franklynnarvaez's picture
End of training
03ec4d7 verified
|
raw
history blame
3.46 kB
metadata
license: cc-by-4.0
base_model: NazaGara/NER-fine-tuned-BETO
tags:
  - generated_from_trainer
datasets:
  - conll2002
metrics:
  - precision
  - recall
  - f1
  - accuracy
model-index:
  - name: beto-finetuned-ner-cfv
    results:
      - task:
          name: Token Classification
          type: token-classification
        dataset:
          name: conll2002
          type: conll2002
          config: es
          split: validation
          args: es
        metrics:
          - name: Precision
            type: precision
            value: 0.8614471581830633
          - name: Recall
            type: recall
            value: 0.8671875
          - name: F1
            type: f1
            value: 0.8643077980075576
          - name: Accuracy
            type: accuracy
            value: 0.9790072369291234

beto-finetuned-ner-cfv

This model is a fine-tuned version of NazaGara/NER-fine-tuned-BETO on the conll2002 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1659
  • Precision: 0.8614
  • Recall: 0.8672
  • F1: 0.8643
  • Accuracy: 0.9790

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 4e-06
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 16

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
0.0272 1.0 1041 0.1062 0.8549 0.8637 0.8593 0.9786
0.0208 2.0 2082 0.1127 0.8443 0.8596 0.8519 0.9782
0.0158 3.0 3123 0.1195 0.8545 0.8598 0.8572 0.9787
0.0129 4.0 4164 0.1332 0.8629 0.8589 0.8609 0.9782
0.0107 5.0 5205 0.1299 0.8555 0.8635 0.8595 0.9786
0.0087 6.0 6246 0.1486 0.8564 0.8564 0.8564 0.9782
0.0085 7.0 7287 0.1583 0.8618 0.8596 0.8607 0.9783
0.0066 8.0 8328 0.1582 0.8604 0.8580 0.8592 0.9783
0.0052 9.0 9369 0.1571 0.8554 0.8566 0.8560 0.9781
0.0054 10.0 10410 0.1604 0.8628 0.8640 0.8634 0.9787
0.004 11.0 11451 0.1584 0.8624 0.8670 0.8647 0.9791
0.0036 12.0 12492 0.1633 0.8603 0.8658 0.8630 0.9786
0.0036 13.0 13533 0.1620 0.8628 0.8658 0.8643 0.9790
0.0032 14.0 14574 0.1645 0.8617 0.8676 0.8647 0.9793
0.0028 15.0 15615 0.1645 0.8604 0.8670 0.8637 0.9792
0.003 16.0 16656 0.1659 0.8614 0.8672 0.8643 0.9790

Framework versions

  • Transformers 4.41.2
  • Pytorch 2.3.0+cu121
  • Datasets 2.19.2
  • Tokenizers 0.19.1