FluentlyLM-Prinum / README.md
ehristoforu's picture
Update README.md
ad37146 verified
---
language:
- en
- fr
- es
- ru
- zh
- ja
- fa
- code
license: mit
library_name: transformers
tags:
- fluently-lm
- fluently
- prinum
- instruct
- trained
- math
- roleplay
- reasoning
- axolotl
- unsloth
- argilla
- qwen2
datasets:
- fluently-sets/ultraset
- fluently-sets/ultrathink
- fluently-sets/reasoning-1-1k
- fluently-sets/MATH-500-Overall
inference: true
pipeline_tag: text-generation
model-index:
- name: FluentlyLM-Prinum
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: IFEval (0-Shot)
type: HuggingFaceH4/ifeval
args:
num_few_shot: 0
metrics:
- type: inst_level_strict_acc and prompt_level_strict_acc
value: 80.9
name: strict accuracy
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=fluently-lm/FluentlyLM-Prinum
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: BBH (3-Shot)
type: BBH
args:
num_few_shot: 3
metrics:
- type: acc_norm
value: 59.48
name: normalized accuracy
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=fluently-lm/FluentlyLM-Prinum
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MATH Lvl 5 (4-Shot)
type: hendrycks/competition_math
args:
num_few_shot: 4
metrics:
- type: exact_match
value: 54.0
name: exact match
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=fluently-lm/FluentlyLM-Prinum
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GPQA (0-shot)
type: Idavidrein/gpqa
args:
num_few_shot: 0
metrics:
- type: acc_norm
value: 18.23
name: acc_norm
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=fluently-lm/FluentlyLM-Prinum
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MuSR (0-shot)
type: TAUR-Lab/MuSR
args:
num_few_shot: 0
metrics:
- type: acc_norm
value: 17.26
name: acc_norm
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=fluently-lm/FluentlyLM-Prinum
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU-PRO (5-shot)
type: TIGER-Lab/MMLU-Pro
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 53.42
name: accuracy
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=fluently-lm/FluentlyLM-Prinum
name: Open LLM Leaderboard
---
<img src="https://huggingface.co/fluently-lm/FluentlyLM-Prinum/resolve/main/assets/preview.jpeg" alt="FluentlyLM Logo" width="800" height="500" style="margin-left:'auto' margin-right:'auto' display:'block'"/>
# **FluentlyLM Prinum** (32B-version)
Introducing the first standalone model from Project Fluently LM! We worked on it for several months, used different approaches, and eventually found the optimal one.
## Model Details
### Model Description
- **Developed by:** [@fluently-lm](https://hf.co/fluently-lm)
- **Model type:** Causal Language Models (QwenForCausalLM, LM Transformer)
- **Number of Parameters:** 32.5B
- **Number of Paramaters (Non-Embedding):** 31.0B
- **Number of Layers:** 64
- **Number of Attention Heads (GQA):** 40 for Q and 8 for KV
- **Context Length:** Full 131,072 tokens
- **Language(s) (NLP):** English, French, Spanish, Russian, Chinese, Japanese, Persian *(official support)*
- **License:** MIT
### Quickstart
Here provides a code snippet with apply_chat_template to show you how to load the tokenizer and model and how to generate contents.
```py
from transformers import AutoModelForCausalLM, AutoTokenizer
model_name = "fluently-lm/FluentlyLM-Prinum"
model = AutoModelForCausalLM.from_pretrained(
model_name,
torch_dtype="auto",
device_map="auto"
)
tokenizer = AutoTokenizer.from_pretrained(model_name)
prompt = "Write a quick sort algorithm."
messages = [
{"role": "system", "content": "You are FluentlyLM, created by Project Fluently. You are a helpful assistant."},
{"role": "user", "content": prompt}
]
text = tokenizer.apply_chat_template(
messages,
tokenize=False,
add_generation_prompt=True
)
model_inputs = tokenizer([text], return_tensors="pt").to(model.device)
generated_ids = model.generate(
**model_inputs,
max_new_tokens=1024
)
generated_ids = [
output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
]
response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
```
#### GGUF-using
You can also use our model locally via GGUF file in various interfaces and workflows, we offer several repos for downloading GGUF:
- [mradermacher/FluentlyLM-Prinum-GGUF](https://huggingface.co/mradermacher/FluentlyLM-Prinum-GGUF) (all GGUF-quants)
- [fluently-lm/FluentlyLM-Prinum-Q4_K_M-GGUF](https://huggingface.co/fluently-lm/FluentlyLM-Prinum-Q4_K_M-GGUF) (only Q4_K_M-quant) *(coming soon...)*
### Model recipe
![image/png](https://cdn-uploads.huggingface.co/production/uploads/65a3d8d58448f47df24c041a/QIkaMeP8FhcbJuvCH2GwF.png)
### Evolution
**🏆 12th place on [Open LLM Leaderboard](https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard#)** *(21.02.2025)*
![image/png](https://cdn-uploads.huggingface.co/production/uploads/65a3d8d58448f47df24c041a/kGPerdFRuwCkzJCzxC7dE.png)
## Special thanks
🤗 We are grateful for open source resources, technologies and assistance from: [Unsloth AI](https://unsloth.ai), [Axolotl AI](https://axolotl.ai), [Argilla](https://argilla.io), [Alibaba Cloud: Qwen](https://qwenlm.ai), [NVIDIA](https://huggingface.co/nvidia) and [NousResearch](https://nousresearch.com).
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/fluently-lm__FluentlyLM-Prinum-details)
| Metric |Value|
|-------------------|----:|
|Avg. |47.22|
|IFEval (0-Shot) |80.90|
|BBH (3-Shot) |59.48|
|MATH Lvl 5 (4-Shot)|54.00|
|GPQA (0-shot) |18.23|
|MuSR (0-shot) |17.26|
|MMLU-PRO (5-shot) |53.42|