File size: 6,700 Bytes
3f5e290
a94d0e1
 
 
 
 
 
 
 
 
 
3f5e290
 
 
 
 
 
 
 
 
 
 
 
5ed7bd0
3f5e290
 
 
 
 
 
a94d0e1
3f5e290
a94d0e1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3f5e290
 
c7811d3
7a48e0a
4e6a215
3f5e290
4e6a215
3f5e290
 
 
 
 
4e6a215
 
 
 
 
 
 
1809a74
4e6a215
3f5e290
4e6a215
3f5e290
4e6a215
3f5e290
4e6a215
 
3f5e290
4e6a215
3f5e290
4e6a215
 
 
 
 
 
3f5e290
4e6a215
 
 
 
 
 
 
 
 
 
 
3f5e290
4e6a215
 
 
 
 
 
 
3f5e290
4e6a215
 
3f5e290
4e6a215
3f5e290
4e6a215
 
 
3f5e290
4e6a215
3f5e290
4e6a215
3f5e290
4e6a215
3f5e290
ad37146
3f5e290
4e6a215
3f5e290
4e6a215
3f5e290
a94d0e1
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
---
language:
- en
- fr
- es
- ru
- zh
- ja
- fa
- code
license: mit
library_name: transformers
tags:
- fluently-lm
- fluently
- prinum
- instruct
- trained
- math
- roleplay
- reasoning
- axolotl
- unsloth
- argilla
- qwen2
datasets:
- fluently-sets/ultraset
- fluently-sets/ultrathink
- fluently-sets/reasoning-1-1k
- fluently-sets/MATH-500-Overall
inference: true
pipeline_tag: text-generation
model-index:
- name: FluentlyLM-Prinum
  results:
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: IFEval (0-Shot)
      type: HuggingFaceH4/ifeval
      args:
        num_few_shot: 0
    metrics:
    - type: inst_level_strict_acc and prompt_level_strict_acc
      value: 80.9
      name: strict accuracy
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=fluently-lm/FluentlyLM-Prinum
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: BBH (3-Shot)
      type: BBH
      args:
        num_few_shot: 3
    metrics:
    - type: acc_norm
      value: 59.48
      name: normalized accuracy
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=fluently-lm/FluentlyLM-Prinum
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: MATH Lvl 5 (4-Shot)
      type: hendrycks/competition_math
      args:
        num_few_shot: 4
    metrics:
    - type: exact_match
      value: 54.0
      name: exact match
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=fluently-lm/FluentlyLM-Prinum
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: GPQA (0-shot)
      type: Idavidrein/gpqa
      args:
        num_few_shot: 0
    metrics:
    - type: acc_norm
      value: 18.23
      name: acc_norm
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=fluently-lm/FluentlyLM-Prinum
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: MuSR (0-shot)
      type: TAUR-Lab/MuSR
      args:
        num_few_shot: 0
    metrics:
    - type: acc_norm
      value: 17.26
      name: acc_norm
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=fluently-lm/FluentlyLM-Prinum
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: MMLU-PRO (5-shot)
      type: TIGER-Lab/MMLU-Pro
      config: main
      split: test
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 53.42
      name: accuracy
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=fluently-lm/FluentlyLM-Prinum
      name: Open LLM Leaderboard
---

<img src="https://huggingface.co/fluently-lm/FluentlyLM-Prinum/resolve/main/assets/preview.jpeg" alt="FluentlyLM Logo" width="800" height="500" style="margin-left:'auto' margin-right:'auto' display:'block'"/>

# **FluentlyLM Prinum** (32B-version)

Introducing the first standalone model from Project Fluently LM! We worked on it for several months, used different approaches, and eventually found the optimal one.

## Model Details

### Model Description

- **Developed by:** [@fluently-lm](https://hf.co/fluently-lm)
- **Model type:** Causal Language Models (QwenForCausalLM, LM Transformer)
- **Number of Parameters:** 32.5B
- **Number of Paramaters (Non-Embedding):** 31.0B
- **Number of Layers:** 64
- **Number of Attention Heads (GQA):** 40 for Q and 8 for KV
- **Context Length:** Full 131,072 tokens
- **Language(s) (NLP):** English, French, Spanish, Russian, Chinese, Japanese, Persian *(official support)*
- **License:** MIT

### Quickstart

Here provides a code snippet with apply_chat_template to show you how to load the tokenizer and model and how to generate contents.

```py
from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "fluently-lm/FluentlyLM-Prinum"

model = AutoModelForCausalLM.from_pretrained(
    model_name,
    torch_dtype="auto",
    device_map="auto"
)
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "Write a quick sort algorithm."
messages = [
    {"role": "system", "content": "You are FluentlyLM, created by Project Fluently. You are a helpful assistant."},
    {"role": "user", "content": prompt}
]
text = tokenizer.apply_chat_template(
    messages,
    tokenize=False,
    add_generation_prompt=True
)
model_inputs = tokenizer([text], return_tensors="pt").to(model.device)

generated_ids = model.generate(
    **model_inputs,
    max_new_tokens=1024
)
generated_ids = [
    output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
]

response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
```

#### GGUF-using

You can also use our model locally via GGUF file in various interfaces and workflows, we offer several repos for downloading GGUF:
- [mradermacher/FluentlyLM-Prinum-GGUF](https://huggingface.co/mradermacher/FluentlyLM-Prinum-GGUF) (all GGUF-quants)
- [fluently-lm/FluentlyLM-Prinum-Q4_K_M-GGUF](https://huggingface.co/fluently-lm/FluentlyLM-Prinum-Q4_K_M-GGUF) (only Q4_K_M-quant) *(coming soon...)*

### Model recipe

![image/png](https://cdn-uploads.huggingface.co/production/uploads/65a3d8d58448f47df24c041a/QIkaMeP8FhcbJuvCH2GwF.png)

### Evolution

**🏆 12th place on [Open LLM Leaderboard](https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard#)** *(21.02.2025)*

![image/png](https://cdn-uploads.huggingface.co/production/uploads/65a3d8d58448f47df24c041a/kGPerdFRuwCkzJCzxC7dE.png)

## Special thanks

🤗 We are grateful for open source resources, technologies and assistance from: [Unsloth AI](https://unsloth.ai), [Axolotl AI](https://axolotl.ai), [Argilla](https://argilla.io), [Alibaba Cloud: Qwen](https://qwenlm.ai), [NVIDIA](https://huggingface.co/nvidia) and [NousResearch](https://nousresearch.com).
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/fluently-lm__FluentlyLM-Prinum-details)

|      Metric       |Value|
|-------------------|----:|
|Avg.               |47.22|
|IFEval (0-Shot)    |80.90|
|BBH (3-Shot)       |59.48|
|MATH Lvl 5 (4-Shot)|54.00|
|GPQA (0-shot)      |18.23|
|MuSR (0-shot)      |17.26|
|MMLU-PRO (5-shot)  |53.42|