File size: 6,700 Bytes
3f5e290 a94d0e1 3f5e290 5ed7bd0 3f5e290 a94d0e1 3f5e290 a94d0e1 3f5e290 c7811d3 7a48e0a 4e6a215 3f5e290 4e6a215 3f5e290 4e6a215 1809a74 4e6a215 3f5e290 4e6a215 3f5e290 4e6a215 3f5e290 4e6a215 3f5e290 4e6a215 3f5e290 4e6a215 3f5e290 4e6a215 3f5e290 4e6a215 3f5e290 4e6a215 3f5e290 4e6a215 3f5e290 4e6a215 3f5e290 4e6a215 3f5e290 4e6a215 3f5e290 4e6a215 3f5e290 ad37146 3f5e290 4e6a215 3f5e290 4e6a215 3f5e290 a94d0e1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 |
---
language:
- en
- fr
- es
- ru
- zh
- ja
- fa
- code
license: mit
library_name: transformers
tags:
- fluently-lm
- fluently
- prinum
- instruct
- trained
- math
- roleplay
- reasoning
- axolotl
- unsloth
- argilla
- qwen2
datasets:
- fluently-sets/ultraset
- fluently-sets/ultrathink
- fluently-sets/reasoning-1-1k
- fluently-sets/MATH-500-Overall
inference: true
pipeline_tag: text-generation
model-index:
- name: FluentlyLM-Prinum
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: IFEval (0-Shot)
type: HuggingFaceH4/ifeval
args:
num_few_shot: 0
metrics:
- type: inst_level_strict_acc and prompt_level_strict_acc
value: 80.9
name: strict accuracy
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=fluently-lm/FluentlyLM-Prinum
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: BBH (3-Shot)
type: BBH
args:
num_few_shot: 3
metrics:
- type: acc_norm
value: 59.48
name: normalized accuracy
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=fluently-lm/FluentlyLM-Prinum
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MATH Lvl 5 (4-Shot)
type: hendrycks/competition_math
args:
num_few_shot: 4
metrics:
- type: exact_match
value: 54.0
name: exact match
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=fluently-lm/FluentlyLM-Prinum
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GPQA (0-shot)
type: Idavidrein/gpqa
args:
num_few_shot: 0
metrics:
- type: acc_norm
value: 18.23
name: acc_norm
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=fluently-lm/FluentlyLM-Prinum
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MuSR (0-shot)
type: TAUR-Lab/MuSR
args:
num_few_shot: 0
metrics:
- type: acc_norm
value: 17.26
name: acc_norm
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=fluently-lm/FluentlyLM-Prinum
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU-PRO (5-shot)
type: TIGER-Lab/MMLU-Pro
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 53.42
name: accuracy
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=fluently-lm/FluentlyLM-Prinum
name: Open LLM Leaderboard
---
<img src="https://huggingface.co/fluently-lm/FluentlyLM-Prinum/resolve/main/assets/preview.jpeg" alt="FluentlyLM Logo" width="800" height="500" style="margin-left:'auto' margin-right:'auto' display:'block'"/>
# **FluentlyLM Prinum** (32B-version)
Introducing the first standalone model from Project Fluently LM! We worked on it for several months, used different approaches, and eventually found the optimal one.
## Model Details
### Model Description
- **Developed by:** [@fluently-lm](https://hf.co/fluently-lm)
- **Model type:** Causal Language Models (QwenForCausalLM, LM Transformer)
- **Number of Parameters:** 32.5B
- **Number of Paramaters (Non-Embedding):** 31.0B
- **Number of Layers:** 64
- **Number of Attention Heads (GQA):** 40 for Q and 8 for KV
- **Context Length:** Full 131,072 tokens
- **Language(s) (NLP):** English, French, Spanish, Russian, Chinese, Japanese, Persian *(official support)*
- **License:** MIT
### Quickstart
Here provides a code snippet with apply_chat_template to show you how to load the tokenizer and model and how to generate contents.
```py
from transformers import AutoModelForCausalLM, AutoTokenizer
model_name = "fluently-lm/FluentlyLM-Prinum"
model = AutoModelForCausalLM.from_pretrained(
model_name,
torch_dtype="auto",
device_map="auto"
)
tokenizer = AutoTokenizer.from_pretrained(model_name)
prompt = "Write a quick sort algorithm."
messages = [
{"role": "system", "content": "You are FluentlyLM, created by Project Fluently. You are a helpful assistant."},
{"role": "user", "content": prompt}
]
text = tokenizer.apply_chat_template(
messages,
tokenize=False,
add_generation_prompt=True
)
model_inputs = tokenizer([text], return_tensors="pt").to(model.device)
generated_ids = model.generate(
**model_inputs,
max_new_tokens=1024
)
generated_ids = [
output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
]
response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
```
#### GGUF-using
You can also use our model locally via GGUF file in various interfaces and workflows, we offer several repos for downloading GGUF:
- [mradermacher/FluentlyLM-Prinum-GGUF](https://huggingface.co/mradermacher/FluentlyLM-Prinum-GGUF) (all GGUF-quants)
- [fluently-lm/FluentlyLM-Prinum-Q4_K_M-GGUF](https://huggingface.co/fluently-lm/FluentlyLM-Prinum-Q4_K_M-GGUF) (only Q4_K_M-quant) *(coming soon...)*
### Model recipe

### Evolution
**🏆 12th place on [Open LLM Leaderboard](https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard#)** *(21.02.2025)*

## Special thanks
🤗 We are grateful for open source resources, technologies and assistance from: [Unsloth AI](https://unsloth.ai), [Axolotl AI](https://axolotl.ai), [Argilla](https://argilla.io), [Alibaba Cloud: Qwen](https://qwenlm.ai), [NVIDIA](https://huggingface.co/nvidia) and [NousResearch](https://nousresearch.com).
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/fluently-lm__FluentlyLM-Prinum-details)
| Metric |Value|
|-------------------|----:|
|Avg. |47.22|
|IFEval (0-Shot) |80.90|
|BBH (3-Shot) |59.48|
|MATH Lvl 5 (4-Shot)|54.00|
|GPQA (0-shot) |18.23|
|MuSR (0-shot) |17.26|
|MMLU-PRO (5-shot) |53.42|
|