|
import streamlit as st |
|
import tempfile |
|
import os |
|
import time |
|
import re |
|
import numpy as np |
|
import torch |
|
from PIL import Image |
|
from decord import VideoReader, cpu |
|
import torchvision.transforms as T |
|
from torchvision.transforms.functional import InterpolationMode |
|
from transformers import AutoModel, AutoTokenizer, TextIteratorStreamer |
|
from threading import Thread |
|
|
|
|
|
st.set_page_config(page_title="Omni DeepSeek Video Analysis", layout="wide") |
|
|
|
|
|
IMAGENET_MEAN = (0.485, 0.456, 0.406) |
|
IMAGENET_STD = (0.229, 0.224, 0.225) |
|
|
|
|
|
st.markdown(""" |
|
<style> |
|
.output-text { |
|
white-space: pre-wrap !important; |
|
word-wrap: break-word !important; |
|
} |
|
.streamlit-expanderContent { |
|
white-space: pre-wrap !important; |
|
word-wrap: break-word !important; |
|
max-height: 100px; /* 根据需要调整高度 */ |
|
overflow-y: auto; /* 添加垂直滚动条 */ |
|
} |
|
</style> |
|
""", unsafe_allow_html=True) |
|
|
|
|
|
@st.cache_resource |
|
def load_model_and_tokenizer(): |
|
"""Load and cache the model and tokenizer""" |
|
path = 'AlphaTok/omni-deepseek-v0' |
|
|
|
with st.spinner("Loading model (this may take a minute)..."): |
|
model = AutoModel.from_pretrained( |
|
path, |
|
torch_dtype=torch.bfloat16, |
|
low_cpu_mem_usage=True, |
|
use_flash_attn=True, |
|
trust_remote_code=True |
|
).eval() |
|
|
|
|
|
if torch.cuda.is_available(): |
|
model = model.cuda() |
|
st.success("Model loaded on GPU") |
|
else: |
|
st.warning("GPU not available, running on CPU (inference will be slow)") |
|
|
|
tokenizer = AutoTokenizer.from_pretrained( |
|
path, |
|
trust_remote_code=True, |
|
use_fast=False |
|
) |
|
|
|
return model, tokenizer |
|
|
|
|
|
def build_transform(input_size): |
|
MEAN, STD = IMAGENET_MEAN, IMAGENET_STD |
|
transform = T.Compose([ |
|
T.Lambda(lambda img: img.convert('RGB') if img.mode != 'RGB' else img), |
|
T.Resize((input_size, input_size), interpolation=InterpolationMode.BICUBIC), |
|
T.ToTensor(), |
|
T.Normalize(mean=MEAN, std=STD) |
|
]) |
|
return transform |
|
|
|
def dynamic_preprocess(image, min_num=1, max_num=12, image_size=448, use_thumbnail=False): |
|
orig_width, orig_height = image.size |
|
aspect_ratio = orig_width / orig_height |
|
target_ratios = set( |
|
(i, j) for n in range(min_num, max_num + 1) for i in range(1, n + 1) for j in range(1, n + 1) if |
|
i * j <= max_num and i * j >= min_num) |
|
target_ratios = sorted(target_ratios, key=lambda x: x[0] * x[1]) |
|
|
|
|
|
def find_closest_aspect_ratio(aspect_ratio, target_ratios): |
|
best_ratio_diff = float('inf') |
|
best_ratio = (1, 1) |
|
for ratio in target_ratios: |
|
target_aspect_ratio = ratio[0] / ratio[1] |
|
ratio_diff = abs(aspect_ratio - target_aspect_ratio) |
|
if ratio_diff < best_ratio_diff: |
|
best_ratio_diff = ratio_diff |
|
best_ratio = ratio |
|
return best_ratio |
|
|
|
target_aspect_ratio = find_closest_aspect_ratio(aspect_ratio, target_ratios) |
|
target_width = image_size * target_aspect_ratio[0] |
|
target_height = image_size * target_aspect_ratio[1] |
|
blocks = target_aspect_ratio[0] * target_aspect_ratio[1] |
|
|
|
resized_img = image.resize((target_width, target_height)) |
|
processed_images = [] |
|
for i in range(blocks): |
|
box = ( |
|
(i % (target_width // image_size)) * image_size, |
|
(i // (target_width // image_size)) * image_size, |
|
((i % (target_width // image_size)) + 1) * image_size, |
|
((i // (target_width // image_size)) + 1) * image_size |
|
) |
|
split_img = resized_img.crop(box) |
|
processed_images.append(split_img) |
|
if use_thumbnail and len(processed_images) != 1: |
|
thumbnail_img = image.resize((image_size, image_size)) |
|
processed_images.append(thumbnail_img) |
|
return processed_images |
|
|
|
def get_index(bound, fps, max_frame, first_idx=0, num_segments=32): |
|
if bound: |
|
start, end = bound[0], bound[1] |
|
else: |
|
start, end = -100000, 100000 |
|
start_idx = max(first_idx, round(start * fps)) |
|
end_idx = min(round(end * fps), max_frame) |
|
seg_size = float(end_idx - start_idx) / num_segments |
|
frame_indices = np.array([ |
|
int(start_idx + (seg_size / 2) + np.round(seg_size * idx)) |
|
for idx in range(num_segments) |
|
]) |
|
return frame_indices |
|
|
|
def load_video(video_path, bound=None, input_size=448, max_num=1, num_segments=32): |
|
vr = VideoReader(video_path, ctx=cpu(0), num_threads=1) |
|
max_frame = len(vr) - 1 |
|
fps = float(vr.get_avg_fps()) |
|
|
|
pixel_values_list, num_patches_list = [], [] |
|
transform = build_transform(input_size=input_size) |
|
frame_indices = get_index(bound, fps, max_frame, first_idx=0, num_segments=num_segments) |
|
for frame_index in frame_indices: |
|
img = Image.fromarray(vr[frame_index].asnumpy()).convert('RGB') |
|
img = dynamic_preprocess(img, image_size=input_size, use_thumbnail=True, max_num=max_num) |
|
pixel_values = [transform(tile) for tile in img] |
|
pixel_values = torch.stack(pixel_values) |
|
num_patches_list.append(pixel_values.shape[0]) |
|
pixel_values_list.append(pixel_values) |
|
pixel_values = torch.cat(pixel_values_list) |
|
return pixel_values, num_patches_list |
|
|
|
|
|
def save_uploaded_file(uploaded_file): |
|
with tempfile.NamedTemporaryFile(delete=False, suffix=os.path.splitext(uploaded_file.name)[1]) as tmp: |
|
tmp.write(uploaded_file.getvalue()) |
|
return tmp.name |
|
|
|
def process_video_and_run_inference(video_path, prompt, model, tokenizer): |
|
|
|
with st.spinner("Processing video..."): |
|
pixel_values, num_patches_list = load_video( |
|
video_path, |
|
num_segments=16, |
|
max_num=1 |
|
) |
|
if torch.cuda.is_available(): |
|
pixel_values = pixel_values.to(torch.bfloat16).cuda() |
|
else: |
|
pixel_values = pixel_values.to(torch.bfloat16) |
|
|
|
|
|
streamer = TextIteratorStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True, timeout=10) |
|
generation_config = dict(max_new_tokens=1024, do_sample=False, streamer=streamer) |
|
|
|
|
|
thread = Thread( |
|
target=model.chat, |
|
kwargs=dict( |
|
tokenizer=tokenizer, |
|
pixel_values=pixel_values, |
|
question=prompt, |
|
history=None, |
|
return_history=False, |
|
generation_config=generation_config, |
|
) |
|
) |
|
thread.start() |
|
|
|
|
|
raw_output = "" |
|
|
|
|
|
think_mode = False |
|
think_content = "" |
|
regular_content = "" |
|
|
|
|
|
for new_text in streamer: |
|
|
|
raw_output += new_text |
|
|
|
pos = 0 |
|
while pos < len(new_text): |
|
idx_think = new_text.find("<think>", pos) |
|
idx_think_close = new_text.find("</think>", pos) |
|
|
|
if idx_think == -1 and idx_think_close == -1: |
|
if think_mode: |
|
think_content += new_text[pos:] |
|
yield {"type": "think", "content": think_content} |
|
else: |
|
regular_content += new_text[pos:] |
|
yield {"type": "regular", "content": regular_content} |
|
break |
|
|
|
if idx_think != -1 and (idx_think_close == -1 or idx_think < idx_think_close): |
|
|
|
if think_mode: |
|
think_content += new_text[pos:idx_think] |
|
yield {"type": "think", "content": think_content} |
|
else: |
|
regular_content += new_text[pos:idx_think] |
|
yield {"type": "regular", "content": regular_content} |
|
pos = idx_think + len("<think>") |
|
think_mode = True |
|
else: |
|
|
|
if think_mode: |
|
think_content += new_text[pos:idx_think_close] |
|
yield {"type": "think", "content": think_content} |
|
think_content = "" |
|
else: |
|
regular_content += new_text[pos:idx_think_close] |
|
yield {"type": "regular", "content": regular_content} |
|
pos = idx_think_close + len("</think>") |
|
think_mode = False |
|
|
|
thread.join() |
|
|
|
|
|
print("Complete raw model output:") |
|
print(raw_output) |
|
|
|
|
|
def main(): |
|
st.title("Video Analysis with Omni DeepSeek") |
|
st.markdown("Upload a video and provide a prompt to analyze it.") |
|
|
|
|
|
model, tokenizer = load_model_and_tokenizer() |
|
|
|
|
|
with st.sidebar: |
|
st.header("Upload and Settings") |
|
video_file = st.file_uploader("Upload Video", type=["mp4", "avi", "mov", "mkv"]) |
|
|
|
template_option = st.selectbox("Select Prompt Template", options=["Default", "Omni-Matrix Template"]) |
|
if template_option == "Default": |
|
prompt = st.text_area("Enter your prompt", value="Please describe this video", height=100) |
|
else: |
|
prompt = st.text_area("Enter your prompt", value=f""" |
|
Analyze the video and determine whether the user requires assistance based on the video activity type and behavior. Generate the output in the following structured JSON format: |
|
|
|
1. **help_needed**: A boolean value (true or false) indicating whether the user needs help based on the video content. |
|
2. **video_description**: A brief description of the video content. |
|
3. **video_type**: The type of activity in the video. Options include working, meeting, coding, gaming, watching, or other. |
|
4. **function_call_name**: If help_needed is true, specify the name of the function to provide assistance. Options include draft_copy (drafting a copy), assist_coding (coding assistance), web_search (web search). If no help is needed, return an empty string. |
|
5. **function_call_parameters**: If help is needed, provide the required parameters for the function call; otherwise, return an empty array. The parameters are defined as follows: |
|
- **draft_copy**: Two strings - the first one is the copy subject and the second one is the copy content. |
|
-- copy_subject(str): The subject of the copy |
|
-- copy_content(str): The content of the copy |
|
- **web_search**: |
|
-- web_search_content(str): A single string containing the search query. |
|
- **assist_coding**: |
|
-- coding_subject(str): The subject of the code |
|
-- coding_content(str): The content of the code |
|
|
|
**Input Requirements:** |
|
The input is a description of the video, and the model needs to analyze it to determine user behavior and generate a JSON response in the following format: |
|
|
|
json |
|
{{ |
|
"help_needed": true/false, |
|
"video_description": "Brief description of the video content", |
|
"video_type": "working"/"meeting"/"coding"/"gaming"/"watching"/"other", |
|
"function_call_name": "draft_email/assist_coding/web_search", |
|
"function_call_parameters": {{ |
|
"parameter1":"parameter1 content", |
|
"parameter2":"parameter2 content" |
|
}} |
|
}} |
|
|
|
**Examples:** |
|
1. If the video shows the user debugging code and repeatedly checking documentation: |
|
json |
|
{{ |
|
"help_needed": true, |
|
"video_description": "The user is debugging code and may need assistance.", |
|
"video_type": "coding", |
|
"function_call_name": "assist_coding", |
|
"function_call_parameters": {{ |
|
"coding_subject": "Help the user implement quicksort.", |
|
"coding_content": " |
|
def quicksort(arr): |
|
if len(arr) <= 1: |
|
return arr |
|
|
|
pivot = arr[len(arr) // 2] |
|
left = [x for x in arr if x < pivot] |
|
middle = [x for x in arr if x == pivot] |
|
right = [x for x in arr if x > pivot] |
|
return quicksort(left) + middle + quicksort(right) |
|
" |
|
}} |
|
}} |
|
|
|
2. If the video shows the user watching a movie and no assistance is required: |
|
json |
|
{{ |
|
"help_needed": false, |
|
"video_description": "The user is watching a movie.", |
|
"video_type": "watching", |
|
"function_call_name": "", |
|
"function_call_parameters": [] |
|
}} |
|
|
|
3. If the video shows the user writing an email and might need assistance drafting it: |
|
json |
|
{{ |
|
"help_needed": true, |
|
"video_description": "The user is writing an email and may need assistance.", |
|
"video_type": "working", |
|
"function_call_name": "draft_copy", |
|
"function_call_parameters": {{ |
|
"copy_subject": "Follow-up Meeting", |
|
"copy_content": "Please confirm your availability for the next meeting." |
|
}} |
|
}} |
|
|
|
4. If the video shows the user searching for a specific topic online: |
|
json |
|
{{ |
|
"help_needed": true, |
|
"video_description": "The user is searching for information online.", |
|
"video_type": "working", |
|
"function_call_name": "web_search", |
|
"function_call_parameters": {{ |
|
"web_search_content": "latest AI research papers" |
|
}} |
|
}} |
|
""", height=400) |
|
run_button = st.button("Analyze Video", type="primary") |
|
|
|
st.markdown("---") |
|
st.markdown("### Model Information") |
|
st.info("Using AlphaTok/omni-deepseek-v0 model") |
|
|
|
|
|
col1, col2 = st.columns([1, 1]) |
|
|
|
with col1: |
|
st.header("Input") |
|
if video_file: |
|
st.video(video_file) |
|
st.text(f"Prompt: {prompt}") |
|
|
|
with col2: |
|
st.header("Output") |
|
|
|
thinking_container = st.expander("Thinking Process", expanded=True) |
|
output_container = st.container() |
|
|
|
if run_button and video_file and prompt: |
|
|
|
video_path = save_uploaded_file(video_file) |
|
|
|
|
|
progress_bar = st.progress(0.0) |
|
|
|
|
|
thinking_placeholder = thinking_container.empty() |
|
output_placeholder = output_container.empty() |
|
|
|
try: |
|
progress_step = 0 |
|
|
|
for result in process_video_and_run_inference(video_path, prompt, model, tokenizer): |
|
progress_step += 1 |
|
progress_bar.progress(min(0.9, progress_step / 1024)) |
|
if result["type"] == "think": |
|
thinking_placeholder.markdown(f"""<div class="output-text">{result['content']}</div>""", unsafe_allow_html=True) |
|
elif result["type"] == "regular": |
|
content = result["content"] |
|
if re.search(r'```\s*json\s*\{', content): |
|
json_content = re.search(r'```\s*json\s*(\{.*?\})\s*```', content, re.DOTALL) |
|
if json_content: |
|
output_placeholder.json(json_content.group(1)) |
|
else: |
|
output_placeholder.markdown(f"""<div class="output-text">{content}</div>""", unsafe_allow_html=True) |
|
else: |
|
output_placeholder.markdown(f"""<div class="output-text">{content}</div>""", unsafe_allow_html=True) |
|
|
|
|
|
progress_bar.progress(1.0) |
|
time.sleep(0.5) |
|
progress_bar.empty() |
|
os.unlink(video_path) |
|
|
|
except Exception as e: |
|
st.error(f"An error occurred: {str(e)}") |
|
if os.path.exists(video_path): |
|
os.unlink(video_path) |
|
|
|
if __name__ == "__main__": |
|
main() |
|
|