Upload 2 files
Browse files- app.py +415 -0
- requirements.txt +10 -0
app.py
ADDED
@@ -0,0 +1,415 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import tempfile
|
3 |
+
import os
|
4 |
+
import time
|
5 |
+
import re
|
6 |
+
import numpy as np
|
7 |
+
import torch
|
8 |
+
from PIL import Image
|
9 |
+
from decord import VideoReader, cpu
|
10 |
+
import torchvision.transforms as T
|
11 |
+
from torchvision.transforms.functional import InterpolationMode
|
12 |
+
from transformers import AutoModel, AutoTokenizer, TextIteratorStreamer
|
13 |
+
from threading import Thread
|
14 |
+
|
15 |
+
# Set page configuration
|
16 |
+
st.set_page_config(page_title="Omni DeepSeek Video Analysis", layout="wide")
|
17 |
+
|
18 |
+
# Constants
|
19 |
+
IMAGENET_MEAN = (0.485, 0.456, 0.406)
|
20 |
+
IMAGENET_STD = (0.229, 0.224, 0.225)
|
21 |
+
|
22 |
+
# Add CSS for text wrapping and vertical scrollbar for the expander
|
23 |
+
st.markdown("""
|
24 |
+
<style>
|
25 |
+
.output-text {
|
26 |
+
white-space: pre-wrap !important;
|
27 |
+
word-wrap: break-word !important;
|
28 |
+
}
|
29 |
+
.streamlit-expanderContent {
|
30 |
+
white-space: pre-wrap !important;
|
31 |
+
word-wrap: break-word !important;
|
32 |
+
max-height: 100px; /* 根据需要调整高度 */
|
33 |
+
overflow-y: auto; /* 添加垂直滚动条 */
|
34 |
+
}
|
35 |
+
</style>
|
36 |
+
""", unsafe_allow_html=True)
|
37 |
+
|
38 |
+
# Model loading utilities
|
39 |
+
@st.cache_resource
|
40 |
+
def load_model_and_tokenizer():
|
41 |
+
"""Load and cache the model and tokenizer"""
|
42 |
+
path = 'AlphaTok/omni-deepseek-v0'
|
43 |
+
|
44 |
+
with st.spinner("Loading model (this may take a minute)..."):
|
45 |
+
model = AutoModel.from_pretrained(
|
46 |
+
path,
|
47 |
+
torch_dtype=torch.bfloat16,
|
48 |
+
low_cpu_mem_usage=True,
|
49 |
+
use_flash_attn=True,
|
50 |
+
trust_remote_code=True
|
51 |
+
).eval()
|
52 |
+
|
53 |
+
# Move to GPU if available
|
54 |
+
if torch.cuda.is_available():
|
55 |
+
model = model.cuda()
|
56 |
+
st.success("Model loaded on GPU")
|
57 |
+
else:
|
58 |
+
st.warning("GPU not available, running on CPU (inference will be slow)")
|
59 |
+
|
60 |
+
tokenizer = AutoTokenizer.from_pretrained(
|
61 |
+
path,
|
62 |
+
trust_remote_code=True,
|
63 |
+
use_fast=False
|
64 |
+
)
|
65 |
+
|
66 |
+
return model, tokenizer
|
67 |
+
|
68 |
+
# Video processing functions
|
69 |
+
def build_transform(input_size):
|
70 |
+
MEAN, STD = IMAGENET_MEAN, IMAGENET_STD
|
71 |
+
transform = T.Compose([
|
72 |
+
T.Lambda(lambda img: img.convert('RGB') if img.mode != 'RGB' else img),
|
73 |
+
T.Resize((input_size, input_size), interpolation=InterpolationMode.BICUBIC),
|
74 |
+
T.ToTensor(),
|
75 |
+
T.Normalize(mean=MEAN, std=STD)
|
76 |
+
])
|
77 |
+
return transform
|
78 |
+
|
79 |
+
def dynamic_preprocess(image, min_num=1, max_num=12, image_size=448, use_thumbnail=False):
|
80 |
+
orig_width, orig_height = image.size
|
81 |
+
aspect_ratio = orig_width / orig_height
|
82 |
+
target_ratios = set(
|
83 |
+
(i, j) for n in range(min_num, max_num + 1) for i in range(1, n + 1) for j in range(1, n + 1) if
|
84 |
+
i * j <= max_num and i * j >= min_num)
|
85 |
+
target_ratios = sorted(target_ratios, key=lambda x: x[0] * x[1])
|
86 |
+
|
87 |
+
# Calculate the target aspect ratio
|
88 |
+
def find_closest_aspect_ratio(aspect_ratio, target_ratios):
|
89 |
+
best_ratio_diff = float('inf')
|
90 |
+
best_ratio = (1, 1)
|
91 |
+
for ratio in target_ratios:
|
92 |
+
target_aspect_ratio = ratio[0] / ratio[1]
|
93 |
+
ratio_diff = abs(aspect_ratio - target_aspect_ratio)
|
94 |
+
if ratio_diff < best_ratio_diff:
|
95 |
+
best_ratio_diff = ratio_diff
|
96 |
+
best_ratio = ratio
|
97 |
+
return best_ratio
|
98 |
+
|
99 |
+
target_aspect_ratio = find_closest_aspect_ratio(aspect_ratio, target_ratios)
|
100 |
+
target_width = image_size * target_aspect_ratio[0]
|
101 |
+
target_height = image_size * target_aspect_ratio[1]
|
102 |
+
blocks = target_aspect_ratio[0] * target_aspect_ratio[1]
|
103 |
+
|
104 |
+
resized_img = image.resize((target_width, target_height))
|
105 |
+
processed_images = []
|
106 |
+
for i in range(blocks):
|
107 |
+
box = (
|
108 |
+
(i % (target_width // image_size)) * image_size,
|
109 |
+
(i // (target_width // image_size)) * image_size,
|
110 |
+
((i % (target_width // image_size)) + 1) * image_size,
|
111 |
+
((i // (target_width // image_size)) + 1) * image_size
|
112 |
+
)
|
113 |
+
split_img = resized_img.crop(box)
|
114 |
+
processed_images.append(split_img)
|
115 |
+
if use_thumbnail and len(processed_images) != 1:
|
116 |
+
thumbnail_img = image.resize((image_size, image_size))
|
117 |
+
processed_images.append(thumbnail_img)
|
118 |
+
return processed_images
|
119 |
+
|
120 |
+
def get_index(bound, fps, max_frame, first_idx=0, num_segments=32):
|
121 |
+
if bound:
|
122 |
+
start, end = bound[0], bound[1]
|
123 |
+
else:
|
124 |
+
start, end = -100000, 100000
|
125 |
+
start_idx = max(first_idx, round(start * fps))
|
126 |
+
end_idx = min(round(end * fps), max_frame)
|
127 |
+
seg_size = float(end_idx - start_idx) / num_segments
|
128 |
+
frame_indices = np.array([
|
129 |
+
int(start_idx + (seg_size / 2) + np.round(seg_size * idx))
|
130 |
+
for idx in range(num_segments)
|
131 |
+
])
|
132 |
+
return frame_indices
|
133 |
+
|
134 |
+
def load_video(video_path, bound=None, input_size=448, max_num=1, num_segments=32):
|
135 |
+
vr = VideoReader(video_path, ctx=cpu(0), num_threads=1)
|
136 |
+
max_frame = len(vr) - 1
|
137 |
+
fps = float(vr.get_avg_fps())
|
138 |
+
|
139 |
+
pixel_values_list, num_patches_list = [], []
|
140 |
+
transform = build_transform(input_size=input_size)
|
141 |
+
frame_indices = get_index(bound, fps, max_frame, first_idx=0, num_segments=num_segments)
|
142 |
+
for frame_index in frame_indices:
|
143 |
+
img = Image.fromarray(vr[frame_index].asnumpy()).convert('RGB')
|
144 |
+
img = dynamic_preprocess(img, image_size=input_size, use_thumbnail=True, max_num=max_num)
|
145 |
+
pixel_values = [transform(tile) for tile in img]
|
146 |
+
pixel_values = torch.stack(pixel_values)
|
147 |
+
num_patches_list.append(pixel_values.shape[0])
|
148 |
+
pixel_values_list.append(pixel_values)
|
149 |
+
pixel_values = torch.cat(pixel_values_list)
|
150 |
+
return pixel_values, num_patches_list
|
151 |
+
|
152 |
+
# Save uploaded file to a temporary location
|
153 |
+
def save_uploaded_file(uploaded_file):
|
154 |
+
with tempfile.NamedTemporaryFile(delete=False, suffix=os.path.splitext(uploaded_file.name)[1]) as tmp:
|
155 |
+
tmp.write(uploaded_file.getvalue())
|
156 |
+
return tmp.name
|
157 |
+
|
158 |
+
def process_video_and_run_inference(video_path, prompt, model, tokenizer):
|
159 |
+
# 加载并预处理视频
|
160 |
+
with st.spinner("Processing video..."):
|
161 |
+
pixel_values, num_patches_list = load_video(
|
162 |
+
video_path,
|
163 |
+
num_segments=16,
|
164 |
+
max_num=1
|
165 |
+
)
|
166 |
+
if torch.cuda.is_available():
|
167 |
+
pixel_values = pixel_values.to(torch.bfloat16).cuda()
|
168 |
+
else:
|
169 |
+
pixel_values = pixel_values.to(torch.bfloat16)
|
170 |
+
|
171 |
+
# 初始化用于文本生成的 streamer
|
172 |
+
streamer = TextIteratorStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True, timeout=10)
|
173 |
+
generation_config = dict(max_new_tokens=1024, do_sample=False, streamer=streamer)
|
174 |
+
|
175 |
+
# 启动模型对话线程
|
176 |
+
thread = Thread(
|
177 |
+
target=model.chat,
|
178 |
+
kwargs=dict(
|
179 |
+
tokenizer=tokenizer,
|
180 |
+
pixel_values=pixel_values,
|
181 |
+
question=prompt,
|
182 |
+
history=None,
|
183 |
+
return_history=False,
|
184 |
+
generation_config=generation_config,
|
185 |
+
)
|
186 |
+
)
|
187 |
+
thread.start()
|
188 |
+
|
189 |
+
# 用于累积模型原始输出的变量
|
190 |
+
raw_output = ""
|
191 |
+
|
192 |
+
# 初始化状态变量,用于拆分 think 和 regular 部分
|
193 |
+
think_mode = False
|
194 |
+
think_content = ""
|
195 |
+
regular_content = ""
|
196 |
+
|
197 |
+
# 针对每个从 streamer 中获取的文本块进行处理
|
198 |
+
for new_text in streamer:
|
199 |
+
# 将原始新文本累加到 raw_output 中
|
200 |
+
raw_output += new_text
|
201 |
+
|
202 |
+
pos = 0
|
203 |
+
while pos < len(new_text):
|
204 |
+
idx_think = new_text.find("<think>", pos)
|
205 |
+
idx_think_close = new_text.find("</think>", pos)
|
206 |
+
# 如果本段中没有任何标签,则将剩余内容加入当前模式,并退出循环
|
207 |
+
if idx_think == -1 and idx_think_close == -1:
|
208 |
+
if think_mode:
|
209 |
+
think_content += new_text[pos:]
|
210 |
+
yield {"type": "think", "content": think_content}
|
211 |
+
else:
|
212 |
+
regular_content += new_text[pos:]
|
213 |
+
yield {"type": "regular", "content": regular_content}
|
214 |
+
break
|
215 |
+
# 如果 <think> 出现得更早或 </think> 不存在
|
216 |
+
if idx_think != -1 and (idx_think_close == -1 or idx_think < idx_think_close):
|
217 |
+
# 先处理标签前的内容
|
218 |
+
if think_mode:
|
219 |
+
think_content += new_text[pos:idx_think]
|
220 |
+
yield {"type": "think", "content": think_content}
|
221 |
+
else:
|
222 |
+
regular_content += new_text[pos:idx_think]
|
223 |
+
yield {"type": "regular", "content": regular_content}
|
224 |
+
pos = idx_think + len("<think>")
|
225 |
+
think_mode = True
|
226 |
+
else:
|
227 |
+
# 处理 </think> 出现的情况
|
228 |
+
if think_mode:
|
229 |
+
think_content += new_text[pos:idx_think_close]
|
230 |
+
yield {"type": "think", "content": think_content}
|
231 |
+
think_content = "" # 清空 think 内容缓存
|
232 |
+
else:
|
233 |
+
regular_content += new_text[pos:idx_think_close]
|
234 |
+
yield {"type": "regular", "content": regular_content}
|
235 |
+
pos = idx_think_close + len("</think>")
|
236 |
+
think_mode = False
|
237 |
+
|
238 |
+
thread.join() # 确保线程结束
|
239 |
+
|
240 |
+
# 在终端打印完整的模型原始输出
|
241 |
+
print("Complete raw model output:")
|
242 |
+
print(raw_output)
|
243 |
+
|
244 |
+
# Main app function
|
245 |
+
def main():
|
246 |
+
st.title("Video Analysis with Omni DeepSeek")
|
247 |
+
st.markdown("Upload a video and provide a prompt to analyze it.")
|
248 |
+
|
249 |
+
# Load model and tokenizer
|
250 |
+
model, tokenizer = load_model_and_tokenizer()
|
251 |
+
|
252 |
+
# Sidebar for inputs
|
253 |
+
with st.sidebar:
|
254 |
+
st.header("Upload and Settings")
|
255 |
+
video_file = st.file_uploader("Upload Video", type=["mp4", "avi", "mov", "mkv"])
|
256 |
+
# 添加提示词模板选择,下拉框中包含默认模板和omni-matrix模板
|
257 |
+
template_option = st.selectbox("Select Prompt Template", options=["Default", "Omni-Matrix Template"])
|
258 |
+
if template_option == "Default":
|
259 |
+
prompt = st.text_area("Enter your prompt", value="Please describe this video", height=100)
|
260 |
+
else:
|
261 |
+
prompt = st.text_area("Enter your prompt", value=f"""
|
262 |
+
Analyze the video and determine whether the user requires assistance based on the video activity type and behavior. Generate the output in the following structured JSON format:
|
263 |
+
|
264 |
+
1. **help_needed**: A boolean value (true or false) indicating whether the user needs help based on the video content.
|
265 |
+
2. **video_description**: A brief description of the video content.
|
266 |
+
3. **video_type**: The type of activity in the video. Options include working, meeting, coding, gaming, watching, or other.
|
267 |
+
4. **function_call_name**: If help_needed is true, specify the name of the function to provide assistance. Options include draft_copy (drafting a copy), assist_coding (coding assistance), web_search (web search). If no help is needed, return an empty string.
|
268 |
+
5. **function_call_parameters**: If help is needed, provide the required parameters for the function call; otherwise, return an empty array. The parameters are defined as follows:
|
269 |
+
- **draft_copy**: Two strings - the first one is the copy subject and the second one is the copy content.
|
270 |
+
-- copy_subject(str): The subject of the copy
|
271 |
+
-- copy_content(str): The content of the copy
|
272 |
+
- **web_search**:
|
273 |
+
-- web_search_content(str): A single string containing the search query.
|
274 |
+
- **assist_coding**:
|
275 |
+
-- coding_subject(str): The subject of the code
|
276 |
+
-- coding_content(str): The content of the code
|
277 |
+
|
278 |
+
**Input Requirements:**
|
279 |
+
The input is a description of the video, and the model needs to analyze it to determine user behavior and generate a JSON response in the following format:
|
280 |
+
|
281 |
+
json
|
282 |
+
{{
|
283 |
+
"help_needed": true/false,
|
284 |
+
"video_description": "Brief description of the video content",
|
285 |
+
"video_type": "working"/"meeting"/"coding"/"gaming"/"watching"/"other",
|
286 |
+
"function_call_name": "draft_email/assist_coding/web_search",
|
287 |
+
"function_call_parameters": {{
|
288 |
+
"parameter1":"parameter1 content",
|
289 |
+
"parameter2":"parameter2 content"
|
290 |
+
}}
|
291 |
+
}}
|
292 |
+
|
293 |
+
**Examples:**
|
294 |
+
1. If the video shows the user debugging code and repeatedly checking documentation:
|
295 |
+
json
|
296 |
+
{{
|
297 |
+
"help_needed": true,
|
298 |
+
"video_description": "The user is debugging code and may need assistance.",
|
299 |
+
"video_type": "coding",
|
300 |
+
"function_call_name": "assist_coding",
|
301 |
+
"function_call_parameters": {{
|
302 |
+
"coding_subject": "Help the user implement quicksort.",
|
303 |
+
"coding_content": "
|
304 |
+
def quicksort(arr):
|
305 |
+
if len(arr) <= 1:
|
306 |
+
return arr
|
307 |
+
|
308 |
+
pivot = arr[len(arr) // 2]
|
309 |
+
left = [x for x in arr if x < pivot]
|
310 |
+
middle = [x for x in arr if x == pivot]
|
311 |
+
right = [x for x in arr if x > pivot]
|
312 |
+
return quicksort(left) + middle + quicksort(right)
|
313 |
+
"
|
314 |
+
}}
|
315 |
+
}}
|
316 |
+
|
317 |
+
2. If the video shows the user watching a movie and no assistance is required:
|
318 |
+
json
|
319 |
+
{{
|
320 |
+
"help_needed": false,
|
321 |
+
"video_description": "The user is watching a movie.",
|
322 |
+
"video_type": "watching",
|
323 |
+
"function_call_name": "",
|
324 |
+
"function_call_parameters": []
|
325 |
+
}}
|
326 |
+
|
327 |
+
3. If the video shows the user writing an email and might need assistance drafting it:
|
328 |
+
json
|
329 |
+
{{
|
330 |
+
"help_needed": true,
|
331 |
+
"video_description": "The user is writing an email and may need assistance.",
|
332 |
+
"video_type": "working",
|
333 |
+
"function_call_name": "draft_copy",
|
334 |
+
"function_call_parameters": {{
|
335 |
+
"copy_subject": "Follow-up Meeting",
|
336 |
+
"copy_content": "Please confirm your availability for the next meeting."
|
337 |
+
}}
|
338 |
+
}}
|
339 |
+
|
340 |
+
4. If the video shows the user searching for a specific topic online:
|
341 |
+
json
|
342 |
+
{{
|
343 |
+
"help_needed": true,
|
344 |
+
"video_description": "The user is searching for information online.",
|
345 |
+
"video_type": "working",
|
346 |
+
"function_call_name": "web_search",
|
347 |
+
"function_call_parameters": {{
|
348 |
+
"web_search_content": "latest AI research papers"
|
349 |
+
}}
|
350 |
+
}}
|
351 |
+
""", height=400)
|
352 |
+
run_button = st.button("Analyze Video", type="primary")
|
353 |
+
|
354 |
+
st.markdown("---")
|
355 |
+
st.markdown("### Model Information")
|
356 |
+
st.info("Using AlphaTok/omni-deepseek-v0 model")
|
357 |
+
|
358 |
+
# Main content area with two columns
|
359 |
+
col1, col2 = st.columns([1, 1])
|
360 |
+
|
361 |
+
with col1:
|
362 |
+
st.header("Input")
|
363 |
+
if video_file:
|
364 |
+
st.video(video_file)
|
365 |
+
st.text(f"Prompt: {prompt}")
|
366 |
+
|
367 |
+
with col2:
|
368 |
+
st.header("Output")
|
369 |
+
# 将 thinking 折叠框默认展开
|
370 |
+
thinking_container = st.expander("Thinking Process", expanded=True)
|
371 |
+
output_container = st.container()
|
372 |
+
|
373 |
+
if run_button and video_file and prompt:
|
374 |
+
# Save the uploaded video
|
375 |
+
video_path = save_uploaded_file(video_file)
|
376 |
+
|
377 |
+
# Create a progress bar
|
378 |
+
progress_bar = st.progress(0.0)
|
379 |
+
|
380 |
+
# Placeholders for streaming output
|
381 |
+
thinking_placeholder = thinking_container.empty()
|
382 |
+
output_placeholder = output_container.empty()
|
383 |
+
|
384 |
+
try:
|
385 |
+
progress_step = 0
|
386 |
+
# 在流式输出过程中将进度条固定显示在 90%
|
387 |
+
for result in process_video_and_run_inference(video_path, prompt, model, tokenizer):
|
388 |
+
progress_step += 1
|
389 |
+
progress_bar.progress(min(0.9, progress_step / 1024))
|
390 |
+
if result["type"] == "think":
|
391 |
+
thinking_placeholder.markdown(f"""<div class="output-text">{result['content']}</div>""", unsafe_allow_html=True)
|
392 |
+
elif result["type"] == "regular":
|
393 |
+
content = result["content"]
|
394 |
+
if re.search(r'```\s*json\s*\{', content):
|
395 |
+
json_content = re.search(r'```\s*json\s*(\{.*?\})\s*```', content, re.DOTALL)
|
396 |
+
if json_content:
|
397 |
+
output_placeholder.json(json_content.group(1))
|
398 |
+
else:
|
399 |
+
output_placeholder.markdown(f"""<div class="output-text">{content}</div>""", unsafe_allow_html=True)
|
400 |
+
else:
|
401 |
+
output_placeholder.markdown(f"""<div class="output-text">{content}</div>""", unsafe_allow_html=True)
|
402 |
+
|
403 |
+
# 模型生成结束后完成进度条更新
|
404 |
+
progress_bar.progress(1.0)
|
405 |
+
time.sleep(0.5)
|
406 |
+
progress_bar.empty()
|
407 |
+
os.unlink(video_path)
|
408 |
+
|
409 |
+
except Exception as e:
|
410 |
+
st.error(f"An error occurred: {str(e)}")
|
411 |
+
if os.path.exists(video_path):
|
412 |
+
os.unlink(video_path)
|
413 |
+
|
414 |
+
if __name__ == "__main__":
|
415 |
+
main()
|
requirements.txt
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
decord
|
2 |
+
transformers<4.50.0
|
3 |
+
einops
|
4 |
+
timm
|
5 |
+
accelerate>=0.26.0
|
6 |
+
sentencepiece
|
7 |
+
pandas
|
8 |
+
tqdm
|
9 |
+
flash-attn
|
10 |
+
streamlit
|