|
--- |
|
library_name: peft |
|
language: |
|
- multilingual |
|
base_model: facebook/nllb-200-1.3B |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- elmamounedieye/agri_wol |
|
metrics: |
|
- bleu |
|
model-index: |
|
- name: nllb-200-1.3B-wol-fr |
|
results: |
|
- task: |
|
type: translation |
|
name: Translation |
|
dataset: |
|
name: elmamounedieye/agri_wol |
|
type: elmamounedieye/agri_wol |
|
metrics: |
|
- type: bleu |
|
value: 24.98280401781312 |
|
name: Bleu |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# nllb-200-1.3B-wol-fr |
|
|
|
This model is a fine-tuned version of [nllb-200-1.3B](https://huggingface.co/nllb-200-1.3B) on the elmamounedieye/agri_wol dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.2740 |
|
- Bleu: 24.9828 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 0.0002 |
|
- train_batch_size: 8 |
|
- eval_batch_size: 4 |
|
- seed: 42 |
|
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_steps: 100 |
|
- num_epochs: 10 |
|
- mixed_precision_training: Native AMP |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Bleu | |
|
|:-------------:|:-----:|:-----:|:---------------:|:-------:| |
|
| 0.1963 | 1.0 | 1125 | 0.1795 | 20.8754 | |
|
| 0.1055 | 2.0 | 2250 | 0.1807 | 21.3156 | |
|
| 0.0422 | 3.0 | 3375 | 0.2031 | 22.9941 | |
|
| 0.0216 | 4.0 | 4500 | 0.2324 | 22.2155 | |
|
| 0.012 | 5.0 | 5625 | 0.2412 | 23.8844 | |
|
| 0.0069 | 6.0 | 6750 | 0.2501 | 23.5372 | |
|
| 0.0043 | 7.0 | 7875 | 0.2587 | 23.4568 | |
|
| 0.0024 | 8.0 | 9000 | 0.2657 | 24.7322 | |
|
| 0.001 | 9.0 | 10125 | 0.2683 | 24.9165 | |
|
| 0.0006 | 10.0 | 11250 | 0.2740 | 24.9828 | |
|
|
|
|
|
### Framework versions |
|
|
|
- PEFT 0.14.0 |
|
- Transformers 4.48.3 |
|
- Pytorch 2.6.0+cu124 |
|
- Datasets 3.4.1 |
|
- Tokenizers 0.21.1 |