File size: 2,370 Bytes
c1e3d40
20781f5
e18c712
 
20781f5
 
 
e18c712
 
20781f5
 
 
e18c712
 
 
 
 
 
 
 
 
 
 
 
c1e3d40
 
20781f5
 
c1e3d40
e18c712
c1e3d40
e18c712
20781f5
 
 
c1e3d40
20781f5
c1e3d40
20781f5
c1e3d40
20781f5
c1e3d40
20781f5
c1e3d40
20781f5
c1e3d40
20781f5
c1e3d40
20781f5
c1e3d40
20781f5
c1e3d40
20781f5
 
 
 
 
 
 
 
 
 
c1e3d40
20781f5
c1e3d40
20781f5
 
 
 
 
 
 
 
 
 
 
 
c1e3d40
 
20781f5
c1e3d40
20781f5
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
---
library_name: peft
language:
- multilingual
base_model: facebook/nllb-200-1.3B
tags:
- generated_from_trainer
datasets:
- elmamounedieye/agri_wol
metrics:
- bleu
model-index:
- name: nllb-200-1.3B-wol-fr
  results:
  - task:
      type: translation
      name: Translation
    dataset:
      name: elmamounedieye/agri_wol
      type: elmamounedieye/agri_wol
    metrics:
    - type: bleu
      value: 24.98280401781312
      name: Bleu
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# nllb-200-1.3B-wol-fr

This model is a fine-tuned version of [nllb-200-1.3B](https://huggingface.co/nllb-200-1.3B) on the elmamounedieye/agri_wol dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2740
- Bleu: 24.9828

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 8
- eval_batch_size: 4
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 100
- num_epochs: 10
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step  | Validation Loss | Bleu    |
|:-------------:|:-----:|:-----:|:---------------:|:-------:|
| 0.1963        | 1.0   | 1125  | 0.1795          | 20.8754 |
| 0.1055        | 2.0   | 2250  | 0.1807          | 21.3156 |
| 0.0422        | 3.0   | 3375  | 0.2031          | 22.9941 |
| 0.0216        | 4.0   | 4500  | 0.2324          | 22.2155 |
| 0.012         | 5.0   | 5625  | 0.2412          | 23.8844 |
| 0.0069        | 6.0   | 6750  | 0.2501          | 23.5372 |
| 0.0043        | 7.0   | 7875  | 0.2587          | 23.4568 |
| 0.0024        | 8.0   | 9000  | 0.2657          | 24.7322 |
| 0.001         | 9.0   | 10125 | 0.2683          | 24.9165 |
| 0.0006        | 10.0  | 11250 | 0.2740          | 24.9828 |


### Framework versions

- PEFT 0.14.0
- Transformers 4.48.3
- Pytorch 2.6.0+cu124
- Datasets 3.4.1
- Tokenizers 0.21.1