metadata
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:157
- loss:MatryoshkaLoss
- loss:MultipleNegativesRankingLoss
base_model: Snowflake/snowflake-arctic-embed-l
widget:
- source_sentence: >-
Why does the author recommend reading the first few pages of the 69-page
PDF document related to the lawsuit?
sentences:
- >-
We don’t yet know how to build GPT-4
Frustratingly, despite the enormous leaps ahead we’ve had this year, we
are yet to see an alternative model that’s better than GPT-4.
OpenAI released GPT-4 in March, though it later turned out we had a
sneak peak of it in February when Microsoft used it as part of the new
Bing.
This may well change in the next few weeks: Google’s Gemini Ultra has
big claims, but isn’t yet available for us to try out.
The team behind Mistral are working to beat GPT-4 as well, and their
track record is already extremely strong considering their first public
model only came out in September, and they’ve released two significant
improvements since then.
- >-
Just this week, the New York Times launched a landmark lawsuit against
OpenAI and Microsoft over this issue. The 69 page PDF is genuinely worth
reading—especially the first few pages, which lay out the issues in a
way that’s surprisingly easy to follow. The rest of the document
includes some of the clearest explanations of what LLMs are, how they
work and how they are built that I’ve read anywhere.
The legal arguments here are complex. I’m not a lawyer, but I don’t
think this one will be easily decided. Whichever way it goes, I expect
this case to have a profound impact on how this technology develops in
the future.
- >-
Nothing yet from Anthropic or Meta but I would be very surprised if they
don’t have their own inference-scaling models in the works. Meta
published a relevant paper Training Large Language Models to Reason in a
Continuous Latent Space in December.
Was the best currently available LLM trained in China for less than $6m?
Not quite, but almost! It does make for a great attention-grabbing
headline.
The big news to end the year was the release of DeepSeek v3—dropped on
Hugging Face on Christmas Day without so much as a README file, then
followed by documentation and a paper the day after that.
- source_sentence: Why does the author find the term “agents” frustrating?
sentences:
- >-
Qwen2.5-Coder-32B is an LLM that can code well that runs on my Mac talks
about Qwen2.5-Coder-32B in November—an Apache 2.0 licensed model!
I can now run a GPT-4 class model on my laptop talks about running
Meta’s Llama 3.3 70B (released in December)
- >-
“Agents” still haven’t really happened yet
I find the term “agents” extremely frustrating. It lacks a single, clear
and widely understood meaning... but the people who use the term never
seem to acknowledge that.
If you tell me that you are building “agents”, you’ve conveyed almost no
information to me at all. Without reading your mind I have no way of
telling which of the dozens of possible definitions you are talking
about.
- >-
Terminology aside, I remain skeptical as to their utility based, once
again, on the challenge of gullibility. LLMs believe anything you tell
them. Any systems that attempts to make meaningful decisions on your
behalf will run into the same roadblock: how good is a travel agent, or
a digital assistant, or even a research tool if it can’t distinguish
truth from fiction?
Just the other day Google Search was caught serving up an entirely fake
description of the non-existant movie “Encanto 2”. It turned out to be
summarizing an imagined movie listing from a fan fiction wiki.
- source_sentence: Which company released the QwQ model under an Apache 20 license?
sentences:
- >-
Embeddings: What they are and why they matter
61.7k
79.3k
Catching up on the weird world of LLMs
61.6k
85.9k
llamafile is the new best way to run an LLM on your own computer
52k
66k
Prompt injection explained, with video, slides, and a transcript
51k
61.9k
AI-enhanced development makes me more ambitious with my projects
49.6k
60.1k
Understanding GPT tokenizers
49.5k
61.1k
Exploring GPTs: ChatGPT in a trench coat?
46.4k
58.5k
Could you train a ChatGPT-beating model for $85,000 and run it in a
browser?
40.5k
49.2k
How to implement Q&A against your documentation with GPT3, embeddings
and Datasette
37.3k
44.9k
Lawyer cites fake cases invented by ChatGPT, judge is not amused
37.1k
47.4k
- >-
OpenAI are not the only game in town here. Google released their first
entrant in the category, gemini-2.0-flash-thinking-exp, on December
19th.
Alibaba’s Qwen team released their QwQ model on November 28th—under an
Apache 2.0 license, and that one I could run on my own machine. They
followed that up with a vision reasoning model called QvQ on December
24th, which I also ran locally.
DeepSeek made their DeepSeek-R1-Lite-Preview model available to try out
through their chat interface on November 20th.
To understand more about inference scaling I recommend Is AI progress
slowing down? by Arvind Narayanan and Sayash Kapoor.
- >-
Against this photo of butterflies at the California Academy of Sciences:
A shallow dish, likely a hummingbird or butterfly feeder, is red.
Pieces of orange slices of fruit are visible inside the dish.
Two butterflies are positioned in the feeder, one is a dark brown/black
butterfly with white/cream-colored markings. The other is a large,
brown butterfly with patterns of lighter brown, beige, and black
markings, including prominent eye spots. The larger brown butterfly
appears to be feeding on the fruit.
- source_sentence: >-
How does the 2024 review of Large Language Models build upon the insights
from the 2023 review?
sentences:
- >-
Law is not ethics. Is it OK to train models on people’s content without
their permission, when those models will then be used in ways that
compete with those people?
As the quality of results produced by AI models has increased over the
year, these questions have become even more pressing.
The impact on human society in terms of these models is already huge, if
difficult to objectively measure.
People have certainly lost work to them—anecdotally, I’ve seen this for
copywriters, artists and translators.
There are a great deal of untold stories here. I’m hoping 2024 sees
significant amounts of dedicated journalism on this topic.
My blog in 2023
Here’s a tag cloud for content I posted to my blog in 2023 (generated
using Django SQL Dashboard):
- >-
The GPT-4 barrier was comprehensively broken
In my December 2023 review I wrote about how We don’t yet know how to
build GPT-4—OpenAI’s best model was almost a year old at that point, yet
no other AI lab had produced anything better. What did OpenAI know that
the rest of us didn’t?
I’m relieved that this has changed completely in the past twelve months.
18 organizations now have models on the Chatbot Arena Leaderboard that
rank higher than the original GPT-4 from March 2023 (GPT-4-0314 on the
board)—70 models in total.
- >-
Things we learned about LLMs in 2024
Simon Willison’s Weblog
Subscribe
Things we learned about LLMs in 2024
31st December 2024
A lot has happened in the world of Large Language Models over the course
of 2024. Here’s a review of things we figured out about the field in the
past twelve months, plus my attempt at identifying key themes and
pivotal moments.
This is a sequel to my review of 2023.
In this article:
- source_sentence: >-
What is the challenge in building AI personal assistants based on the
gullibility of language models?
sentences:
- >-
Language Models are gullible. They “believe” what we tell them—what’s in
their training data, then what’s in the fine-tuning data, then what’s in
the prompt.
In order to be useful tools for us, we need them to believe what we feed
them!
But it turns out a lot of the things we want to build need them not to
be gullible.
Everyone wants an AI personal assistant. If you hired a real-world
personal assistant who believed everything that anyone told them, you
would quickly find that their ability to positively impact your life was
severely limited.
- |-
Large Language Models
They’re actually quite easy to build
You can run LLMs on your own devices
Hobbyists can build their own fine-tuned models
We don’t yet know how to build GPT-4
Vibes Based Development
LLMs are really smart, and also really, really dumb
Gullibility is the biggest unsolved problem
Code may be the best application
The ethics of this space remain diabolically complex
My blog in 2023
- >-
These price drops are driven by two factors: increased competition and
increased efficiency. The efficiency thing is really important for
everyone who is concerned about the environmental impact of LLMs. These
price drops tie directly to how much energy is being used for running
prompts.
There’s still plenty to worry about with respect to the environmental
impact of the great AI datacenter buildout, but a lot of the concerns
over the energy cost of individual prompts are no longer credible.
Here’s a fun napkin calculation: how much would it cost to generate
short descriptions of every one of the 68,000 photos in my personal
photo library using Google’s Gemini 1.5 Flash 8B (released in October),
their cheapest model?
pipeline_tag: sentence-similarity
library_name: sentence-transformers
metrics:
- cosine_accuracy@1
- cosine_accuracy@3
- cosine_accuracy@5
- cosine_accuracy@10
- cosine_precision@1
- cosine_precision@3
- cosine_precision@5
- cosine_precision@10
- cosine_recall@1
- cosine_recall@3
- cosine_recall@5
- cosine_recall@10
- cosine_ndcg@10
- cosine_mrr@10
- cosine_map@100
model-index:
- name: SentenceTransformer based on Snowflake/snowflake-arctic-embed-l
results:
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: Unknown
type: unknown
metrics:
- type: cosine_accuracy@1
value: 0.9583333333333334
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 1
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 1
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 1
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.9583333333333334
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.3333333333333333
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.20000000000000004
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.10000000000000002
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.9583333333333334
name: Cosine Recall@1
- type: cosine_recall@3
value: 1
name: Cosine Recall@3
- type: cosine_recall@5
value: 1
name: Cosine Recall@5
- type: cosine_recall@10
value: 1
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.9846220730654774
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.9791666666666666
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.9791666666666666
name: Cosine Map@100
SentenceTransformer based on Snowflake/snowflake-arctic-embed-l
This is a sentence-transformers model finetuned from Snowflake/snowflake-arctic-embed-l. It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: Snowflake/snowflake-arctic-embed-l
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 1024 dimensions
- Similarity Function: Cosine Similarity
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("dwb2023/legal-ft-794455c7-1bee-466a-8110-133f086ed907")
# Run inference
sentences = [
'What is the challenge in building AI personal assistants based on the gullibility of language models?',
'Language Models are gullible. They “believe” what we tell them—what’s in their training data, then what’s in the fine-tuning data, then what’s in the prompt.\nIn order to be useful tools for us, we need them to believe what we feed them!\nBut it turns out a lot of the things we want to build need them not to be gullible.\nEveryone wants an AI personal assistant. If you hired a real-world personal assistant who believed everything that anyone told them, you would quickly find that their ability to positively impact your life was severely limited.',
'These price drops are driven by two factors: increased competition and increased efficiency. The efficiency thing is really important for everyone who is concerned about the environmental impact of LLMs. These price drops tie directly to how much energy is being used for running prompts.\nThere’s still plenty to worry about with respect to the environmental impact of the great AI datacenter buildout, but a lot of the concerns over the energy cost of individual prompts are no longer credible.\nHere’s a fun napkin calculation: how much would it cost to generate short descriptions of every one of the 68,000 photos in my personal photo library using Google’s Gemini 1.5 Flash 8B (released in October), their cheapest model?',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 1024]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Information Retrieval
- Evaluated with
InformationRetrievalEvaluator
Metric | Value |
---|---|
cosine_accuracy@1 | 0.9583 |
cosine_accuracy@3 | 1.0 |
cosine_accuracy@5 | 1.0 |
cosine_accuracy@10 | 1.0 |
cosine_precision@1 | 0.9583 |
cosine_precision@3 | 0.3333 |
cosine_precision@5 | 0.2 |
cosine_precision@10 | 0.1 |
cosine_recall@1 | 0.9583 |
cosine_recall@3 | 1.0 |
cosine_recall@5 | 1.0 |
cosine_recall@10 | 1.0 |
cosine_ndcg@10 | 0.9846 |
cosine_mrr@10 | 0.9792 |
cosine_map@100 | 0.9792 |
Training Details
Training Dataset
Unnamed Dataset
- Size: 157 training samples
- Columns:
sentence_0
andsentence_1
- Approximate statistics based on the first 157 samples:
sentence_0 sentence_1 type string string details - min: 2 tokens
- mean: 20.94 tokens
- max: 37 tokens
- min: 43 tokens
- mean: 135.72 tokens
- max: 214 tokens
- Samples:
sentence_0 sentence_1 What was the typical context length accepted by most models last year?
Gemini 1.5 Pro also illustrated one of the key themes of 2024: increased context lengths. Last year most models accepted 4,096 or 8,192 tokens, with the notable exception of Claude 2.1 which accepted 200,000. Today every serious provider has a 100,000+ token model, and Google’s Gemini series accepts up to 2 million.
How many tokens can Google’s Gemini series accept in 2024?
Gemini 1.5 Pro also illustrated one of the key themes of 2024: increased context lengths. Last year most models accepted 4,096 or 8,192 tokens, with the notable exception of Claude 2.1 which accepted 200,000. Today every serious provider has a 100,000+ token model, and Google’s Gemini series accepts up to 2 million.
What are the new capabilities introduced by Google’s Gemini 15 Pro?
The earliest of those was Google’s Gemini 1.5 Pro, released in February. In addition to producing GPT-4 level outputs, it introduced several brand new capabilities to the field—most notably its 1 million (and then later 2 million) token input context length, and the ability to input video.
I wrote about this at the time in The killer app of Gemini Pro 1.5 is video, which earned me a short appearance as a talking head in the Google I/O opening keynote in May. - Loss:
MatryoshkaLoss
with these parameters:{ "loss": "MultipleNegativesRankingLoss", "matryoshka_dims": [ 768, 512, 256, 128, 64 ], "matryoshka_weights": [ 1, 1, 1, 1, 1 ], "n_dims_per_step": -1 }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: stepsper_device_train_batch_size
: 10per_device_eval_batch_size
: 10num_train_epochs
: 10multi_dataset_batch_sampler
: round_robin
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: stepsprediction_loss_only
: Trueper_device_train_batch_size
: 10per_device_eval_batch_size
: 10per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 5e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1num_train_epochs
: 10max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.0warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Falsefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Falseignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}tp_size
: 0fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Nonehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseinclude_for_metrics
: []eval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseuse_liger_kernel
: Falseeval_use_gather_object
: Falseaverage_tokens_across_devices
: Falseprompts
: Nonebatch_sampler
: batch_samplermulti_dataset_batch_sampler
: round_robin
Training Logs
Epoch | Step | cosine_ndcg@10 |
---|---|---|
1.0 | 16 | 0.9638 |
2.0 | 32 | 0.9484 |
3.0 | 48 | 0.9484 |
3.125 | 50 | 0.9484 |
4.0 | 64 | 0.9539 |
5.0 | 80 | 0.9692 |
6.0 | 96 | 0.9692 |
6.25 | 100 | 0.9692 |
7.0 | 112 | 0.9692 |
8.0 | 128 | 0.9846 |
9.0 | 144 | 0.9846 |
9.375 | 150 | 0.9846 |
10.0 | 160 | 0.9846 |
Framework Versions
- Python: 3.11.12
- Sentence Transformers: 4.1.0
- Transformers: 4.51.3
- PyTorch: 2.6.0+cu124
- Accelerate: 1.6.0
- Datasets: 3.6.0
- Tokenizers: 0.21.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MatryoshkaLoss
@misc{kusupati2024matryoshka,
title={Matryoshka Representation Learning},
author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
year={2024},
eprint={2205.13147},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}