File size: 27,827 Bytes
c6203d4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
---
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:157
- loss:MatryoshkaLoss
- loss:MultipleNegativesRankingLoss
base_model: Snowflake/snowflake-arctic-embed-l
widget:
- source_sentence: Why does the author recommend reading the first few pages of the
    69-page PDF document related to the lawsuit?
  sentences:
  - 'We don’t yet know how to build GPT-4

    Frustratingly, despite the enormous leaps ahead we’ve had this year, we are yet
    to see an alternative model that’s better than GPT-4.

    OpenAI released GPT-4 in March, though it later turned out we had a sneak peak
    of it in February when Microsoft used it as part of the new Bing.

    This may well change in the next few weeks: Google’s Gemini Ultra has big claims,
    but isn’t yet available for us to try out.

    The team behind Mistral are working to beat GPT-4 as well, and their track record
    is already extremely strong considering their first public model only came out
    in September, and they’ve released two significant improvements since then.'
  - 'Just this week, the New York Times launched a landmark lawsuit against OpenAI
    and Microsoft over this issue. The 69 page PDF is genuinely worth reading—especially
    the first few pages, which lay out the issues in a way that’s surprisingly easy
    to follow. The rest of the document includes some of the clearest explanations
    of what LLMs are, how they work and how they are built that I’ve read anywhere.

    The legal arguments here are complex. I’m not a lawyer, but I don’t think this
    one will be easily decided. Whichever way it goes, I expect this case to have
    a profound impact on how this technology develops in the future.'
  - 'Nothing yet from Anthropic or Meta but I would be very surprised if they don’t
    have their own inference-scaling models in the works. Meta published a relevant
    paper Training Large Language Models to Reason in a Continuous Latent Space in
    December.

    Was the best currently available LLM trained in China for less than $6m?

    Not quite, but almost! It does make for a great attention-grabbing headline.

    The big news to end the year was the release of DeepSeek v3—dropped on Hugging
    Face on Christmas Day without so much as a README file, then followed by documentation
    and a paper the day after that.'
- source_sentence: Why does the author find the term “agents” frustrating?
  sentences:
  - 'Qwen2.5-Coder-32B is an LLM that can code well that runs on my Mac talks about
    Qwen2.5-Coder-32B in November—an Apache 2.0 licensed model!


    I can now run a GPT-4 class model on my laptop talks about running Meta’s Llama
    3.3 70B (released in December)'
  - '“Agents” still haven’t really happened yet

    I find the term “agents” extremely frustrating. It lacks a single, clear and widely
    understood meaning... but the people who use the term never seem to acknowledge
    that.

    If you tell me that you are building “agents”, you’ve conveyed almost no information
    to me at all. Without reading your mind I have no way of telling which of the
    dozens of possible definitions you are talking about.'
  - 'Terminology aside, I remain skeptical as to their utility based, once again,
    on the challenge of gullibility. LLMs believe anything you tell them. Any systems
    that attempts to make meaningful decisions on your behalf will run into the same
    roadblock: how good is a travel agent, or a digital assistant, or even a research
    tool if it can’t distinguish truth from fiction?

    Just the other day Google Search was caught serving up an entirely fake description
    of the non-existant movie “Encanto 2”. It turned out to be summarizing an imagined
    movie listing from a fan fiction wiki.'
- source_sentence: Which company released the QwQ model under an Apache 20 license?
  sentences:
  - 'Embeddings: What they are and why they matter

    61.7k

    79.3k



    Catching up on the weird world of LLMs

    61.6k

    85.9k



    llamafile is the new best way to run an LLM on your own computer

    52k

    66k



    Prompt injection explained, with video, slides, and a transcript

    51k

    61.9k



    AI-enhanced development makes me more ambitious with my projects

    49.6k

    60.1k



    Understanding GPT tokenizers

    49.5k

    61.1k



    Exploring GPTs: ChatGPT in a trench coat?

    46.4k

    58.5k



    Could you train a ChatGPT-beating model for $85,000 and run it in a browser?

    40.5k

    49.2k



    How to implement Q&A against your documentation with GPT3, embeddings and Datasette

    37.3k

    44.9k



    Lawyer cites fake cases invented by ChatGPT, judge is not amused

    37.1k

    47.4k'
  - 'OpenAI are not the only game in town here. Google released their first entrant
    in the category, gemini-2.0-flash-thinking-exp, on December 19th.

    Alibaba’s Qwen team released their QwQ model on November 28th—under an Apache
    2.0 license, and that one I could run on my own machine. They followed that up
    with a vision reasoning model called QvQ on December 24th, which I also ran locally.

    DeepSeek made their DeepSeek-R1-Lite-Preview model available to try out through
    their chat interface on November 20th.

    To understand more about inference scaling I recommend Is AI progress slowing
    down? by Arvind Narayanan and Sayash Kapoor.'
  - 'Against this photo of butterflies at the California Academy of Sciences:



    A shallow dish, likely a hummingbird or butterfly feeder, is red.  Pieces of orange
    slices of fruit are visible inside the dish.

    Two butterflies are positioned in the feeder, one is a dark brown/black butterfly
    with white/cream-colored markings.  The other is a large, brown butterfly with
    patterns of lighter brown, beige, and black markings, including prominent eye
    spots. The larger brown butterfly appears to be feeding on the fruit.'
- source_sentence: How does the 2024 review of Large Language Models build upon the
    insights from the 2023 review?
  sentences:
  - 'Law is not ethics. Is it OK to train models on people’s content without their
    permission, when those models will then be used in ways that compete with those
    people?

    As the quality of results produced by AI models has increased over the year, these
    questions have become even more pressing.

    The impact on human society in terms of these models is already huge, if difficult
    to objectively measure.

    People have certainly lost work to them—anecdotally, I’ve seen this for copywriters,
    artists and translators.

    There are a great deal of untold stories here. I’m hoping 2024 sees significant
    amounts of dedicated journalism on this topic.

    My blog in 2023

    Here’s a tag cloud for content I posted to my blog in 2023 (generated using Django
    SQL Dashboard):'
  - 'The GPT-4 barrier was comprehensively broken

    In my December 2023 review I wrote about how We don’t yet know how to build GPT-4—OpenAI’s
    best model was almost a year old at that point, yet no other AI lab had produced
    anything better. What did OpenAI know that the rest of us didn’t?

    I’m relieved that this has changed completely in the past twelve months. 18 organizations
    now have models on the Chatbot Arena Leaderboard that rank higher than the original
    GPT-4 from March 2023 (GPT-4-0314 on the board)—70 models in total.'
  - 'Things we learned about LLMs in 2024






















    Simon Willison’s Weblog

    Subscribe







    Things we learned about LLMs in 2024

    31st December 2024

    A lot has happened in the world of Large Language Models over the course of 2024.
    Here’s a review of things we figured out about the field in the past twelve months,
    plus my attempt at identifying key themes and pivotal moments.

    This is a sequel to my review of 2023.

    In this article:'
- source_sentence: What is the challenge in building AI personal assistants based
    on the gullibility of language models?
  sentences:
  - 'Language Models are gullible. They “believe” what we tell them—what’s in their
    training data, then what’s in the fine-tuning data, then what’s in the prompt.

    In order to be useful tools for us, we need them to believe what we feed them!

    But it turns out a lot of the things we want to build need them not to be gullible.

    Everyone wants an AI personal assistant. If you hired a real-world personal assistant
    who believed everything that anyone told them, you would quickly find that their
    ability to positively impact your life was severely limited.'
  - 'Large Language Models

    They’re actually quite easy to build

    You can run LLMs on your own devices

    Hobbyists can build their own fine-tuned models

    We don’t yet know how to build GPT-4

    Vibes Based Development

    LLMs are really smart, and also really, really dumb

    Gullibility is the biggest unsolved problem

    Code may be the best application

    The ethics of this space remain diabolically complex

    My blog in 2023'
  - 'These price drops are driven by two factors: increased competition and increased
    efficiency. The efficiency thing is really important for everyone who is concerned
    about the environmental impact of LLMs. These price drops tie directly to how
    much energy is being used for running prompts.

    There’s still plenty to worry about with respect to the environmental impact of
    the great AI datacenter buildout, but a lot of the concerns over the energy cost
    of individual prompts are no longer credible.

    Here’s a fun napkin calculation: how much would it cost to generate short descriptions
    of every one of the 68,000 photos in my personal photo library using Google’s
    Gemini 1.5 Flash 8B (released in October), their cheapest model?'
pipeline_tag: sentence-similarity
library_name: sentence-transformers
metrics:
- cosine_accuracy@1
- cosine_accuracy@3
- cosine_accuracy@5
- cosine_accuracy@10
- cosine_precision@1
- cosine_precision@3
- cosine_precision@5
- cosine_precision@10
- cosine_recall@1
- cosine_recall@3
- cosine_recall@5
- cosine_recall@10
- cosine_ndcg@10
- cosine_mrr@10
- cosine_map@100
model-index:
- name: SentenceTransformer based on Snowflake/snowflake-arctic-embed-l
  results:
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: Unknown
      type: unknown
    metrics:
    - type: cosine_accuracy@1
      value: 0.9583333333333334
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 1.0
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 1.0
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 1.0
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.9583333333333334
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.3333333333333333
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.20000000000000004
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.10000000000000002
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.9583333333333334
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 1.0
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 1.0
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 1.0
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.9846220730654774
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.9791666666666666
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.9791666666666666
      name: Cosine Map@100
---

# SentenceTransformer based on Snowflake/snowflake-arctic-embed-l

This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [Snowflake/snowflake-arctic-embed-l](https://huggingface.co/Snowflake/snowflake-arctic-embed-l). It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

## Model Details

### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [Snowflake/snowflake-arctic-embed-l](https://huggingface.co/Snowflake/snowflake-arctic-embed-l) <!-- at revision d8fb21ca8d905d2832ee8b96c894d3298964346b -->
- **Maximum Sequence Length:** 512 tokens
- **Output Dimensionality:** 1024 dimensions
- **Similarity Function:** Cosine Similarity
<!-- - **Training Dataset:** Unknown -->
<!-- - **Language:** Unknown -->
<!-- - **License:** Unknown -->

### Model Sources

- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)

### Full Model Architecture

```
SentenceTransformer(
  (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel 
  (1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
  (2): Normalize()
)
```

## Usage

### Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

```bash
pip install -U sentence-transformers
```

Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("dwb2023/legal-ft-794455c7-1bee-466a-8110-133f086ed907")
# Run inference
sentences = [
    'What is the challenge in building AI personal assistants based on the gullibility of language models?',
    'Language Models are gullible. They “believe” what we tell them—what’s in their training data, then what’s in the fine-tuning data, then what’s in the prompt.\nIn order to be useful tools for us, we need them to believe what we feed them!\nBut it turns out a lot of the things we want to build need them not to be gullible.\nEveryone wants an AI personal assistant. If you hired a real-world personal assistant who believed everything that anyone told them, you would quickly find that their ability to positively impact your life was severely limited.',
    'These price drops are driven by two factors: increased competition and increased efficiency. The efficiency thing is really important for everyone who is concerned about the environmental impact of LLMs. These price drops tie directly to how much energy is being used for running prompts.\nThere’s still plenty to worry about with respect to the environmental impact of the great AI datacenter buildout, but a lot of the concerns over the energy cost of individual prompts are no longer credible.\nHere’s a fun napkin calculation: how much would it cost to generate short descriptions of every one of the 68,000 photos in my personal photo library using Google’s Gemini 1.5 Flash 8B (released in October), their cheapest model?',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 1024]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```

<!--
### Direct Usage (Transformers)

<details><summary>Click to see the direct usage in Transformers</summary>

</details>
-->

<!--
### Downstream Usage (Sentence Transformers)

You can finetune this model on your own dataset.

<details><summary>Click to expand</summary>

</details>
-->

<!--
### Out-of-Scope Use

*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->

## Evaluation

### Metrics

#### Information Retrieval

* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)

| Metric              | Value      |
|:--------------------|:-----------|
| cosine_accuracy@1   | 0.9583     |
| cosine_accuracy@3   | 1.0        |
| cosine_accuracy@5   | 1.0        |
| cosine_accuracy@10  | 1.0        |
| cosine_precision@1  | 0.9583     |
| cosine_precision@3  | 0.3333     |
| cosine_precision@5  | 0.2        |
| cosine_precision@10 | 0.1        |
| cosine_recall@1     | 0.9583     |
| cosine_recall@3     | 1.0        |
| cosine_recall@5     | 1.0        |
| cosine_recall@10    | 1.0        |
| **cosine_ndcg@10**  | **0.9846** |
| cosine_mrr@10       | 0.9792     |
| cosine_map@100      | 0.9792     |

<!--
## Bias, Risks and Limitations

*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->

<!--
### Recommendations

*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->

## Training Details

### Training Dataset

#### Unnamed Dataset

* Size: 157 training samples
* Columns: <code>sentence_0</code> and <code>sentence_1</code>
* Approximate statistics based on the first 157 samples:
  |         | sentence_0                                                                        | sentence_1                                                                           |
  |:--------|:----------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------|
  | type    | string                                                                            | string                                                                               |
  | details | <ul><li>min: 2 tokens</li><li>mean: 20.94 tokens</li><li>max: 37 tokens</li></ul> | <ul><li>min: 43 tokens</li><li>mean: 135.72 tokens</li><li>max: 214 tokens</li></ul> |
* Samples:
  | sentence_0                                                                          | sentence_1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
  |:------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
  | <code>What was the typical context length accepted by most models last year?</code> | <code>Gemini 1.5 Pro also illustrated one of the key themes of 2024: increased context lengths. Last year most models accepted 4,096 or 8,192 tokens, with the notable exception of Claude 2.1 which accepted 200,000. Today every serious provider has a 100,000+ token model, and Google’s Gemini series accepts up to 2 million.</code>                                                                                                                                                     |
  | <code>How many tokens can Google’s Gemini series accept in 2024?</code>             | <code>Gemini 1.5 Pro also illustrated one of the key themes of 2024: increased context lengths. Last year most models accepted 4,096 or 8,192 tokens, with the notable exception of Claude 2.1 which accepted 200,000. Today every serious provider has a 100,000+ token model, and Google’s Gemini series accepts up to 2 million.</code>                                                                                                                                                     |
  | <code>What are the new capabilities introduced by Google’s Gemini 15 Pro?</code>    | <code>The earliest of those was Google’s Gemini 1.5 Pro, released in February. In addition to producing GPT-4 level outputs, it introduced several brand new capabilities to the field—most notably its 1 million (and then later 2 million) token input context length, and the ability to input video.<br>I wrote about this at the time in The killer app of Gemini Pro 1.5 is video, which earned me a short appearance as a talking head in the Google I/O opening keynote in May.</code> |
* Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
  ```json
  {
      "loss": "MultipleNegativesRankingLoss",
      "matryoshka_dims": [
          768,
          512,
          256,
          128,
          64
      ],
      "matryoshka_weights": [
          1,
          1,
          1,
          1,
          1
      ],
      "n_dims_per_step": -1
  }
  ```

### Training Hyperparameters
#### Non-Default Hyperparameters

- `eval_strategy`: steps
- `per_device_train_batch_size`: 10
- `per_device_eval_batch_size`: 10
- `num_train_epochs`: 10
- `multi_dataset_batch_sampler`: round_robin

#### All Hyperparameters
<details><summary>Click to expand</summary>

- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: steps
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 10
- `per_device_eval_batch_size`: 10
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 1
- `eval_accumulation_steps`: None
- `torch_empty_cache_steps`: None
- `learning_rate`: 5e-05
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1
- `num_train_epochs`: 10
- `max_steps`: -1
- `lr_scheduler_type`: linear
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.0
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: False
- `fp16`: False
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: None
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: False
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `tp_size`: 0
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save
- `hub_private_repo`: None
- `hub_always_push`: False
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `include_for_metrics`: []
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`: 
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `eval_on_start`: False
- `use_liger_kernel`: False
- `eval_use_gather_object`: False
- `average_tokens_across_devices`: False
- `prompts`: None
- `batch_sampler`: batch_sampler
- `multi_dataset_batch_sampler`: round_robin

</details>

### Training Logs
| Epoch | Step | cosine_ndcg@10 |
|:-----:|:----:|:--------------:|
| 1.0   | 16   | 0.9638         |
| 2.0   | 32   | 0.9484         |
| 3.0   | 48   | 0.9484         |
| 3.125 | 50   | 0.9484         |
| 4.0   | 64   | 0.9539         |
| 5.0   | 80   | 0.9692         |
| 6.0   | 96   | 0.9692         |
| 6.25  | 100  | 0.9692         |
| 7.0   | 112  | 0.9692         |
| 8.0   | 128  | 0.9846         |
| 9.0   | 144  | 0.9846         |
| 9.375 | 150  | 0.9846         |
| 10.0  | 160  | 0.9846         |


### Framework Versions
- Python: 3.11.12
- Sentence Transformers: 4.1.0
- Transformers: 4.51.3
- PyTorch: 2.6.0+cu124
- Accelerate: 1.6.0
- Datasets: 3.6.0
- Tokenizers: 0.21.1

## Citation

### BibTeX

#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}
```

#### MatryoshkaLoss
```bibtex
@misc{kusupati2024matryoshka,
    title={Matryoshka Representation Learning},
    author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
    year={2024},
    eprint={2205.13147},
    archivePrefix={arXiv},
    primaryClass={cs.LG}
}
```

#### MultipleNegativesRankingLoss
```bibtex
@misc{henderson2017efficient,
    title={Efficient Natural Language Response Suggestion for Smart Reply},
    author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
    year={2017},
    eprint={1705.00652},
    archivePrefix={arXiv},
    primaryClass={cs.CL}
}
```

<!--
## Glossary

*Clearly define terms in order to be accessible across audiences.*
-->

<!--
## Model Card Authors

*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->

<!--
## Model Card Contact

*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
-->