X2I-computer-vision / README.md
yzwang's picture
Update README.md
af4cf61 verified
---
license: apache-2.0
task_categories:
- text-to-image
- image-to-image
language:
- en
size_categories:
- 100K<n<1M
---
# X2I Dataset
* Project Page: [https://vectorspacelab.github.io/OmniGen/](https://vectorspacelab.github.io/OmniGen/)
* Github: [https://github.com/VectorSpaceLab/OmniGen](https://github.com/VectorSpaceLab/OmniGen)
* Paper: [https://arxiv.org/abs/2409.11340](https://arxiv.org/abs/2409.11340)
* Model: [https://huggingface.co/Shitao/OmniGen-v1](https://huggingface.co/Shitao/OmniGen-v1)
To achieve robust multi-task processing capabilities, it is essential to train the **OmniGen** on large-scale and diverse datasets. However, in the field of unified image generation, a readily available dataset has yet to emerge. For this reason, we have curated a large-scale **unified image generation** dataset with unified format for the **first time**, which we refer to as the **X2I dataset**, meaning **"anything to image"**.
| Task| Datastet|
| :-------- | :-------- |
| Multi-modal Instruction| [X2I-mm-instruction](https://huggingface.co/datasets/yzwang/X2I-mm-instruction) |
| Subject-driven Editing | [X2I-subject-driven](https://huggingface.co/datasets/yzwang/X2I-subject-driven) |
| In-context Learning | [X2I-in-context-learning](https://huggingface.co/datasets/yzwang/X2I-in-context-learning) |
| Computer Vision | [X2I-computer-vision](https://huggingface.co/datasets/yzwang/X2I-computer-vision) |
| Text to Image Generation| [X2I-text-to-image](https://huggingface.co/datasets/yzwang/X2I-text-to-image) |
## X2I-computer-vision
- **ADE**
A image segementation dataset with 297,472 samples.
```python
## meta file: ade.jsonl
cd ade
tar -xzvf ade.tar.gz
```
Download all tar parts (ade/seg_imgs.tar.gz.*) from [here](https://huggingface.co/datasets/yzwang/X2I-in-context-learning/tree/main/ade)
```python
cd ade
cat seg_imgs.tar.gz.* | tar -xzvf -
```
- **Rain100H**
A image derain dataset with 100 samples.
```python
## meta file: derain_rain100h.jsonl
cd derain_rain100h
tar -xzvf derain_rain100h.tar.gz
```
- **LOL**
A low-light image enhancement dataset with 485 samples.
```python
## meta file: enhance_lol.jsonl
cd enhance_lol
tar -xzvf enhance_lol.tar.gz
```
- **MuLan**
A multi-layer image editing dataset with 32,066 samples.
```python
## meta file: mulan.jsonl
cd mulan
tar -xzvf mulan.tar.gz
cd coco2017
tar -xzvf coco2017.tar.gz
```
- **ReasonSeg**
A image reasoning segmentation dataset with 1,218 samples.
```python
## meta file: reasonseg.jsonl
cd reasonseg
tar -xzvf reasonseg.tar.gz
```
- **WeatherStream & GoPro**
A image derain, desnow and deblur dataset with 3,386 samples.
```python
## meta file: weather-stream_gopro.jsonl
cd weather-stream/rain
tar -zxvf rain.tar.gz
cd weather-stream/snow
tar -zxvf snow.tar.gz
cd gopro
tar -zxvf gopro.tar.gz
cd raindrop
tar -zxvf raindrop.tar.gz
```
- [MultiGen](https://github.com/salesforce/UniControl)