File size: 2,921 Bytes
5e2aee9
 
c766ad3
 
ec47943
c766ad3
 
 
 
5e2aee9
 
0ec7733
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5fc08c8
 
 
 
5e2aee9
 
 
 
5d6ce05
5e2aee9
af4cf61
fa3c454
 
 
 
 
5fc08c8
 
 
 
5d6ce05
5e2aee9
 
 
5d6ce05
5e2aee9
5fc08c8
 
 
 
5d6ce05
5e2aee9
 
 
5d6ce05
5e2aee9
5fc08c8
 
 
 
5d6ce05
5e2aee9
 
 
060cd1c
5e2aee9
 
5d6ce05
5e2aee9
5fc08c8
 
 
 
5d6ce05
5e2aee9
 
 
5d6ce05
5e2aee9
5fc08c8
 
 
 
5d6ce05
5e2aee9
 
 
060cd1c
5e2aee9
 
060cd1c
5e2aee9
 
91dfe9e
 
 
ecc3ac5
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
---
license: apache-2.0
task_categories:
- text-to-image
- image-to-image
language:
- en
size_categories:
- 100K<n<1M
---

# X2I Dataset

* Project Page: [https://vectorspacelab.github.io/OmniGen/](https://vectorspacelab.github.io/OmniGen/)
* Github: [https://github.com/VectorSpaceLab/OmniGen](https://github.com/VectorSpaceLab/OmniGen)
* Paper: [https://arxiv.org/abs/2409.11340](https://arxiv.org/abs/2409.11340)
* Model: [https://huggingface.co/Shitao/OmniGen-v1](https://huggingface.co/Shitao/OmniGen-v1)


To achieve robust multi-task processing capabilities, it is essential to train the **OmniGen** on large-scale and diverse datasets. However, in the field of unified image generation, a readily available dataset has yet to emerge. For this reason, we have curated a large-scale **unified image generation** dataset with unified format for the **first time**, which we refer to as the **X2I dataset**, meaning **"anything to image"**. 


| Task| Datastet|
| :--------  | :--------  |
| Multi-modal Instruction| [X2I-mm-instruction](https://huggingface.co/datasets/yzwang/X2I-mm-instruction) |
| Subject-driven Editing | [X2I-subject-driven](https://huggingface.co/datasets/yzwang/X2I-subject-driven) |
| In-context Learning | [X2I-in-context-learning](https://huggingface.co/datasets/yzwang/X2I-in-context-learning) |
| Computer Vision | [X2I-computer-vision](https://huggingface.co/datasets/yzwang/X2I-computer-vision) |
| Text to Image Generation| [X2I-text-to-image](https://huggingface.co/datasets/yzwang/X2I-text-to-image) |

## X2I-computer-vision

- **ADE**

A image segementation dataset with 297,472 samples.

```python
## meta file: ade.jsonl
cd ade
tar -xzvf ade.tar.gz
```

Download all tar parts (ade/seg_imgs.tar.gz.*) from [here](https://huggingface.co/datasets/yzwang/X2I-in-context-learning/tree/main/ade)
```python
cd ade
cat seg_imgs.tar.gz.* | tar -xzvf -
```

- **Rain100H**

A image derain dataset with 100 samples.

```python
## meta file: derain_rain100h.jsonl
cd derain_rain100h
tar -xzvf derain_rain100h.tar.gz
```

- **LOL**

A low-light image enhancement dataset with 485 samples.

```python
## meta file: enhance_lol.jsonl
cd enhance_lol
tar -xzvf enhance_lol.tar.gz
```

- **MuLan**

A multi-layer image editing dataset with 32,066 samples.

```python
## meta file: mulan.jsonl
cd mulan
tar -xzvf mulan.tar.gz

cd coco2017
tar -xzvf coco2017.tar.gz
```

- **ReasonSeg**

A image reasoning segmentation dataset with 1,218 samples.

```python
## meta file: reasonseg.jsonl
cd reasonseg
tar -xzvf reasonseg.tar.gz
```

- **WeatherStream & GoPro**

A image derain, desnow and deblur dataset with 3,386 samples.

```python
## meta file: weather-stream_gopro.jsonl
cd weather-stream/rain
tar -zxvf rain.tar.gz

cd weather-stream/snow
tar -zxvf snow.tar.gz

cd gopro
tar -zxvf gopro.tar.gz

cd raindrop
tar -zxvf raindrop.tar.gz
```

- [MultiGen](https://github.com/salesforce/UniControl)