|
--- |
|
dataset_info: |
|
features: |
|
- name: image |
|
dtype: image |
|
- name: box |
|
dtype: |
|
array2_d: |
|
shape: |
|
- 1 |
|
- 4 |
|
dtype: float32 |
|
- name: class |
|
dtype: string |
|
- name: test_action |
|
dtype: string |
|
- name: expectation |
|
dtype: string |
|
- name: conclusion |
|
dtype: string |
|
- name: language |
|
dtype: string |
|
- name: brand |
|
dtype: string |
|
splits: |
|
- name: test |
|
num_bytes: 10799037234.96 |
|
num_examples: 4208 |
|
download_size: 2543121896 |
|
dataset_size: 10799037234.96 |
|
configs: |
|
- config_name: default |
|
data_files: |
|
- split: test |
|
path: data/test-* |
|
license: cc-by-4.0 |
|
task_categories: |
|
- visual-question-answering |
|
language: |
|
- de |
|
- en |
|
tags: |
|
- automotive |
|
- car |
|
- ui |
|
- gui |
|
- interface |
|
--- |
|
# AutomotiveUI-Bench-4K |
|
Dataset Overview: 998 images and 4,208 annotations focusing on interaction with in-vehicle infotainment (IVI) systems. |
|
Key Features: |
|
- Serves as a validation benchmark for automotive UI. |
|
- Scope: Covers 15 automotive brands/OEMs, model years 2018-2025. |
|
- Image Source: Primarily photographs of IVI displays (due to screenshot limitations in most vehicles), with some direct screenshots (e.g., Android Auto). |
|
- Annotation Classes: |
|
- Test Action: Bounding box + imperative command in natural language. |
|
- Expected Result: Bounding box + expected outcome in natural lanugage + Pass/Fail status. |
|
- Bounding boxes are in format [[x0,y0,x1,y1]] |
|
- Languages: |
|
- IVI UI: German and English. |
|
- Annotations: English only (German UI text translated or quoted). |
|
- 15 Brands/OEMs: |
|
- VW: 170 |
|
- Kia: 124 |
|
- Audi: 91 |
|
- Cupra: 85 |
|
- Porsche: 78 |
|
- Ford: 72 |
|
- Maserati: 72 |
|
- Mini: 60 |
|
- BMW: 59 |
|
- Peugot: 52 |
|
- Tesla: 51 |
|
- Toyota: 34 |
|
- Opel: 30 |
|
- Apple CarPlay: 13 |
|
- Google Android Auto: 7 |
|
|
|
## Usage |
|
Corresponding model [ELAM](https://huggingface.co/sparks-solutions/ELAM-7B) is available on Hugging Face as well. |
|
|
|
<details> |
|
<summary>Setup Environment for ELAM-7B</summary> |
|
|
|
``` |
|
conda create -n elam python=3.10 -y |
|
conda activate elam |
|
pip install datasets==3.5.0 einops==0.8.1 torchvision==0.20.1 accelerate==1.6.0 |
|
pip install transformers==4.48.2 |
|
``` |
|
</details> |
|
|
|
<details> |
|
<summary>Dataloading and Inference with ELAM-7B</summary> |
|
|
|
```python |
|
# Run inference on AutomotiveUI-4k dataset on local GPU |
|
# Outputs will be written in a JSONL file |
|
import json |
|
import os |
|
import time |
|
|
|
import torch |
|
from datasets import Dataset, load_dataset |
|
from tqdm import tqdm |
|
from transformers import AutoModelForCausalLM, AutoProcessor, GenerationConfig |
|
|
|
|
|
def preprocess_prompt_elam(user_request: str, label_class: str) -> str: |
|
"""Apply ELAM prompt template depending on class.""" |
|
if label_class == "Expected Result": |
|
return f"Evaluate this statement about the image:\n'{user_request}'\nThink step by step, conclude whether the evaluation is 'PASSED' or 'FAILED' and point to the UI element that corresponds to this evaluation." |
|
elif label_class == "Test Action": |
|
return f"Identify and point to the UI element that corresponds to this test action:\n{user_request}" |
|
else: |
|
raise ValueError() |
|
|
|
|
|
def append_to_jsonl_file(data: dict, target_path: str) -> None: |
|
assert str(target_path).endswith(".jsonl") |
|
with open(target_path, "a", encoding="utf-8") as file: |
|
file.write(f"{json.dumps(data, ensure_ascii=False)}\n") |
|
|
|
|
|
def run_inference(dataset: Dataset, model: AutoModelForCausalLM, processor: AutoProcessor): |
|
# Define output dir and file |
|
timestamp = time.strftime("%Y%m%d-%H%M%S") |
|
DEBUG_DIR = os.path.join("eval_output", timestamp) |
|
model_outputs_path = os.path.join(DEBUG_DIR, f"model_outputs.jsonl") |
|
|
|
print(f"Writing data to: {model_outputs_path}") |
|
for sample_id, sample in enumerate(tqdm(dataset, desc="Processing")): |
|
image = sample["image"] |
|
|
|
gt_box = sample["box"][0] |
|
label_class = sample["class"] |
|
|
|
# read gt box |
|
utterance = None |
|
gt_status = None |
|
if "Expected Result" == label_class: |
|
utterance = sample["expectation"] |
|
gt_status = sample["conclusion"].upper() |
|
|
|
elif "Test Action" == label_class: |
|
utterance = sample["test_action"] |
|
else: |
|
raise ValueError(f"Did not find valid utterance for image #{sample_id}.") |
|
assert utterance |
|
|
|
# Apply prompt template |
|
rephrased_utterance = preprocess_prompt_elam(utterance, label_class) |
|
|
|
# Process the image and text |
|
inputs = processor.process( |
|
images=[image], |
|
text=rephrased_utterance, |
|
) |
|
|
|
# Move inputs to the correct device and make a batch of size 1, cast to bfloat16 |
|
inputs_bfloat16 = {} |
|
for k, v in inputs.items(): |
|
if v.dtype == torch.float32: |
|
inputs_bfloat16[k] = v.to(model.device).to(torch.bfloat16).unsqueeze(0) |
|
else: |
|
inputs_bfloat16[k] = v.to(model.device).unsqueeze(0) |
|
|
|
inputs = inputs_bfloat16 # Replace original inputs with the correctly typed inputs |
|
|
|
# Generate output |
|
output = model.generate_from_batch( |
|
inputs, GenerationConfig(max_new_tokens=2048, stop_strings="<|endoftext|>"), tokenizer=processor.tokenizer |
|
) |
|
|
|
# Only get generated tokens; decode them to text |
|
generated_tokens = output[0, inputs["input_ids"].size(1) :] |
|
response = processor.tokenizer.decode(generated_tokens, skip_special_tokens=True) |
|
|
|
# write current image with current label |
|
os.makedirs(DEBUG_DIR, exist_ok=True) |
|
|
|
# append line to jsonl |
|
model_output_line = { |
|
"sample_id": sample_id, |
|
"input": rephrased_utterance, |
|
"output": response, |
|
"image_size": image.size, |
|
"gt_class": label_class, |
|
"gt_box": gt_box, |
|
"gt_status": gt_status, |
|
"language": sample["language"], |
|
} |
|
append_to_jsonl_file(model_output_line, target_path=model_outputs_path) |
|
|
|
|
|
if __name__ == "__main__": |
|
# Set dataset |
|
dataset = load_dataset("sparks-solutions/AutomotiveUI-Bench-4K")["test"] |
|
|
|
# Load the processor |
|
model_name = "sparks-solutions/ELAM-7B" |
|
processor = AutoProcessor.from_pretrained( |
|
model_name, trust_remote_code=True, torch_dtype="bfloat16", device_map="auto" |
|
) |
|
|
|
# Load the model |
|
model = AutoModelForCausalLM.from_pretrained( |
|
model_name, trust_remote_code=True, torch_dtype="bfloat16", device_map="auto" |
|
) |
|
run_inference(dataset=dataset, processor=processor, model=model) |
|
|
|
``` |
|
</details> |
|
|
|
|
|
<details> |
|
<summary>Parsing results and calculating metrics</summary> |
|
|
|
```python |
|
import argparse |
|
import json |
|
import re |
|
from pathlib import Path |
|
from typing import Tuple |
|
|
|
import numpy as np |
|
|
|
|
|
def read_jsonl_file(path: str) -> list: |
|
assert str(path).endswith(".jsonl") |
|
data_list = [] |
|
with open(path, "r", encoding="utf-8") as file: |
|
for line in file: |
|
data = json.loads(line) |
|
data_list.append(data) |
|
return data_list |
|
|
|
|
|
def write_json_file(data: dict | list, path: str) -> None: |
|
assert str(path).endswith(".json") |
|
with open(path, "w", encoding="utf-8") as outfile: |
|
json.dump(data, outfile, ensure_ascii=False, indent=4) |
|
|
|
|
|
def postprocess_response_elam(response: str) -> Tuple[float, float]: |
|
"""Parse Molmo-style point coordinates from string.""" |
|
pattern = r'<point x="(?P<x>\d+\.\d+)" y="(?P<y>\d+\.\d+)"' |
|
match = re.search(pattern, response) |
|
if match: |
|
x_coord_raw = float(match.group("x")) |
|
y_coord_raw = float(match.group("y")) |
|
x_coord = x_coord_raw / 100 |
|
y_coord = y_coord_raw / 100 |
|
return [x_coord, y_coord] |
|
else: |
|
return [-1, -1] |
|
|
|
|
|
def pred_center_in_gt(predicted_boxes, ground_truth_boxes): |
|
"""Calculate the percentage of predictions where the predicted center is in the ground truth box and return the indices where it is not. |
|
|
|
Args: |
|
predicted_boxes (np.ndarray): shape (n, 4) of top-left bottom-right boxes or predicted points |
|
ground_truth_boxes (np.ndarray): shape (n, 4) of top-left bottom-right boxes |
|
|
|
Returns: |
|
float: percentage of predictions where the predicted center is in the ground truth box |
|
list: indices of predictions where the center is not in the ground truth box |
|
""" |
|
if ground_truth_boxes.size == 0: # Check for empty numpy array just to be explicit |
|
return -1 |
|
if predicted_boxes.shape[1] == 2: |
|
predicted_centers = predicted_boxes |
|
else: |
|
# Calculate the centers of the bounding boxes |
|
predicted_centers = (predicted_boxes[:, :2] + predicted_boxes[:, 2:]) / 2 |
|
|
|
# Check if predicted centers are within ground truth boxes |
|
within_gt = ( |
|
(predicted_centers[:, 0] >= ground_truth_boxes[:, 0]) |
|
& (predicted_centers[:, 0] <= ground_truth_boxes[:, 2]) |
|
& (predicted_centers[:, 1] >= ground_truth_boxes[:, 1]) |
|
& (predicted_centers[:, 1] <= ground_truth_boxes[:, 3]) |
|
) |
|
|
|
return within_gt |
|
|
|
|
|
def to_mean_percent(metrics: list | np.ndarray) -> float: |
|
"""Calculate mean of array and multiply by 100.""" |
|
return np.mean(metrics) * 100 |
|
|
|
|
|
def calculate_alignment_numpy(array1, array2): |
|
"""Returns boolean array where values are equal""" |
|
|
|
if array1.size == 0: # Check for empty numpy array just to be explicit |
|
return [], [], [] |
|
|
|
# Overall Accuracy |
|
overall_hits = array1 == array2 |
|
|
|
# True Ground Truth Accuracy |
|
true_ground_truth_indices = array2 == True # Boolean mask for True ground truth |
|
true_ground_truth_predictions = array1[true_ground_truth_indices] |
|
true_ground_truth_actuals = array2[true_ground_truth_indices] |
|
|
|
true_gt_hits = true_ground_truth_predictions == true_ground_truth_actuals |
|
|
|
# False Ground Truth Accuracy |
|
false_ground_truth_indices = array2 == False # Boolean mask for False ground truth |
|
false_ground_truth_predictions = array1[false_ground_truth_indices] |
|
false_ground_truth_actuals = array2[false_ground_truth_indices] |
|
|
|
false_gt_hits = false_ground_truth_predictions == false_ground_truth_actuals |
|
return overall_hits, true_gt_hits, false_gt_hits |
|
|
|
|
|
def clip_non_minus_one(arr): |
|
"""Clips values in a NumPy array to [0, 1] but leaves -1 values unchanged.""" |
|
# Create a boolean mask for values NOT equal to -1 |
|
mask = arr != -1 |
|
|
|
# Create a copy of the array to avoid modifying the original in-place |
|
clipped_arr = np.copy(arr) |
|
|
|
# Apply clipping ONLY to the elements where the mask is True |
|
clipped_arr[mask] = np.clip(clipped_arr[mask], 0, 1) |
|
|
|
return clipped_arr |
|
|
|
|
|
if __name__ == "__main__": |
|
parser = argparse.ArgumentParser(description="Run model inference and save outputs.") |
|
parser.add_argument( |
|
"-m", "--model_output_path", type=str, help="Path to json that contains model outputs from eval.", required=True |
|
) |
|
|
|
args = parser.parse_args() |
|
|
|
EVAL_PATH = args.model_output_path |
|
eval_jsonl_data = read_jsonl_file(EVAL_PATH) |
|
|
|
ta_pred_bboxes, ta_gt_bboxes = [], [] |
|
er_pred_bboxes, er_gt_bboxes = [], [] |
|
er_pred_conclusion, er_gt_conclusion = [], [] |
|
ta_out_images, er_out_images = [], [] |
|
failed_pred_responses = [] |
|
|
|
er_en_ids = [] |
|
ta_en_ids = [] |
|
ta_de_ids = [] |
|
er_de_ids = [] |
|
|
|
for line in eval_jsonl_data: |
|
# Read data from line |
|
image_width, image_height = line["image_size"] |
|
gt_box = line["gt_box"] |
|
lang = line["language"] |
|
response_raw = line["output"] |
|
|
|
if "Test Action" == line["gt_class"]: |
|
# Parse point/box from response and clip to image |
|
parsed_response = postprocess_response_elam(response_raw) |
|
if parsed_response[0] == -1: |
|
failed_pred_responses.append({"sample_id": line["sample_id"], "response": response_raw}) |
|
|
|
parsed_response = np.array(parsed_response) |
|
parsed_response = clip_non_minus_one(parsed_response).tolist() |
|
|
|
# Append results |
|
ta_gt_bboxes.append(gt_box) |
|
ta_pred_bboxes.append(parsed_response) |
|
if lang == "DE": |
|
ta_de_ids.append(len(ta_pred_bboxes) - 1) # append id |
|
elif lang == "EN": |
|
ta_en_ids.append(len(ta_pred_bboxes) - 1) |
|
|
|
elif "Expected Result" in line["gt_class"]: |
|
er_gt_bboxes.append(gt_box) |
|
|
|
# Parse point/box from response and clip to image |
|
parsed_response = postprocess_response_elam(response_raw) |
|
if parsed_response[0] == -1: |
|
failed_pred_responses.append({"sample_id": line["sample_id"], "response": response_raw}) |
|
parsed_response = np.array(parsed_response) |
|
parsed_response = clip_non_minus_one(parsed_response).tolist() |
|
er_pred_bboxes.append(parsed_response) |
|
|
|
# Read evaluation conclusion |
|
gt_conclusion = line["gt_status"].upper() |
|
gt_conclusion = True if gt_conclusion == "PASSED" else False |
|
|
|
pred_conclusion = None |
|
if "FAILED" in response_raw or "is not met" in response_raw: |
|
pred_conclusion = False |
|
elif "PASSED" in response_raw or "is met" in response_raw: |
|
pred_conclusion = True |
|
if pred_conclusion is None: |
|
# Make prediction wrong if it couldn't be parsed |
|
pred_conclusion = not gt_conclusion |
|
|
|
er_gt_conclusion.append(gt_conclusion) |
|
er_pred_conclusion.append(pred_conclusion) |
|
|
|
if lang == "DE": |
|
er_de_ids.append(len(er_pred_bboxes) - 1) |
|
elif lang == "EN": |
|
er_en_ids.append(len(er_pred_bboxes) - 1) |
|
|
|
ta_pred_bboxes = np.array(ta_pred_bboxes) |
|
ta_gt_bboxes = np.array(ta_gt_bboxes) |
|
er_pred_bboxes = np.array(er_pred_bboxes) |
|
er_gt_bboxes = np.array(er_gt_bboxes) |
|
er_pred_conclusion = np.array(er_pred_conclusion) |
|
er_gt_conclusion = np.array(er_gt_conclusion) |
|
print(f"{'Test action (pred/gt):':<{36}}{ta_pred_bboxes.shape}, {ta_gt_bboxes.shape}") |
|
print(f"{'Expected results (pred/gt):':<{36}}{er_pred_bboxes.shape}, {er_gt_bboxes.shape}") |
|
|
|
# Calculate metrics |
|
ta_pred_hits = pred_center_in_gt(ta_pred_bboxes, ta_gt_bboxes) |
|
score_ta = to_mean_percent(ta_pred_hits) |
|
|
|
er_pred_hits = pred_center_in_gt(er_pred_bboxes, er_gt_bboxes) |
|
score_er = to_mean_percent(er_pred_hits) |
|
|
|
overall_hits, true_gt_hits, false_gt_hits = calculate_alignment_numpy(er_pred_conclusion, er_gt_conclusion) |
|
score_conclusion = to_mean_percent(overall_hits) |
|
score_conclusion_gt_true = to_mean_percent(true_gt_hits) |
|
score_conclusion_gt_false = to_mean_percent(false_gt_hits) |
|
|
|
# Calculate language-specific metrics for TA |
|
score_ta_en = to_mean_percent(ta_pred_hits[ta_en_ids]) |
|
score_ta_de = to_mean_percent(ta_pred_hits[ta_de_ids]) |
|
|
|
# Calculate language-specific metrics for ER (bbox) |
|
score_er_en = to_mean_percent(er_pred_hits[er_en_ids]) |
|
score_er_de = to_mean_percent(er_pred_hits[er_de_ids]) |
|
|
|
# Calculate language-specific metrics for ER (conclusion) |
|
score_conclusion_en = to_mean_percent(overall_hits[er_en_ids]) |
|
score_conclusion_de = to_mean_percent(overall_hits[er_de_ids]) |
|
|
|
print(f"\n{'Test action visual grounding:':<{36}}{score_ta:.1f}") |
|
print(f"{'Expected result visual grounding:':<{36}}{score_er:.1f}") |
|
print(f"{'Expected result evaluation:':<{36}}{score_conclusion:.1f}\n") |
|
|
|
eval_out_path = Path(EVAL_PATH).parent / "eval_results.json" |
|
|
|
write_json_file( |
|
{ |
|
"score_ta": score_ta, |
|
"score_ta_de": score_ta_de, |
|
"score_ta_en": score_ta_en, |
|
"score_er": score_er, |
|
"score_er_de": score_er_de, |
|
"score_er_en": score_er_en, |
|
"score_er_conclusion": score_conclusion, |
|
"score_er_conclusion_de": score_conclusion_de, |
|
"score_er_conclusion_en": score_conclusion_en, |
|
"score_conclusion_gt_true": score_conclusion_gt_true, |
|
"score_conclusion_gt_false": score_conclusion_gt_false, |
|
}, |
|
path=eval_out_path, |
|
) |
|
print(f"Stored results at {eval_out_path}") |
|
|
|
if failed_pred_responses: |
|
failed_responses_out_path = Path(EVAL_PATH).parent / "failed_responses.json" |
|
write_json_file(failed_pred_responses, failed_responses_out_path) |
|
print(f"Stored non-parsable responses at {failed_responses_out_path}") |
|
|
|
``` |
|
</details> |
|
|
|
|
|
## Results |
|
|
|
| Model | Test Action Grounding | Expected Result Grounding | Expected Result Evaluation | |
|
|---|---|---|---| |
|
| InternVL2.5-8B | 26.6 | 5.7 | 64.8 | |
|
| TinyClick | 61.0 | 54.6 | - | |
|
| UGround-V1-7B (Qwen2-VL) | 69.4 | 55.0 | - | |
|
| Molmo-7B-D-0924 | 71.3 | 71.4 | 66.9 | |
|
| LAM-270M (TinyClick) | 73.9 | 59.9 | - | |
|
| ELAM-7B (Molmo) | **87.6** | **77.5** | **78.2** | |
|
|
|
# Citation |
|
If you find ELAM or AutomotiveUI-Bench-4K useful in your research, please cite the following paper: |
|
|
|
``` latex |
|
@misc{ernhofer2025leveragingvisionlanguagemodelsvisual, |
|
title={Leveraging Vision-Language Models for Visual Grounding and Analysis of Automotive UI}, |
|
author={Benjamin Raphael Ernhofer and Daniil Prokhorov and Jannica Langner and Dominik Bollmann}, |
|
year={2025}, |
|
eprint={2505.05895}, |
|
archivePrefix={arXiv}, |
|
primaryClass={cs.CV}, |
|
url={https://arxiv.org/abs/2505.05895}, |
|
} |
|
``` |
|
|
|
# Acknowledgements |
|
## Funding |
|
This work was supported by German BMBF within the scope of project "KI4BoardNet". |
|
|