File size: 17,520 Bytes
f008a70
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9b77f13
 
 
 
 
 
 
 
 
 
 
 
870011f
 
 
 
1edce4d
870011f
 
 
 
 
d760810
870011f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
43c93f9
 
870011f
43c93f9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
870011f
 
 
 
 
 
 
 
 
 
 
 
43c93f9
5497798
 
 
 
 
 
 
 
 
 
 
 
 
 
 
43c93f9
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
---
dataset_info:
  features:
  - name: image
    dtype: image
  - name: box
    dtype:
      array2_d:
        shape:
        - 1
        - 4
        dtype: float32
  - name: class
    dtype: string
  - name: test_action
    dtype: string
  - name: expectation
    dtype: string
  - name: conclusion
    dtype: string
  - name: language
    dtype: string
  - name: brand
    dtype: string
  splits:
  - name: test
    num_bytes: 10799037234.96
    num_examples: 4208
  download_size: 2543121896
  dataset_size: 10799037234.96
configs:
- config_name: default
  data_files:
  - split: test
    path: data/test-*
license: cc-by-4.0
task_categories:
- visual-question-answering
language:
- de
- en
tags:
- automotive
- car
- ui
- gui
- interface
---
# AutomotiveUI-Bench-4K
Dataset Overview: 998 images and 4,208 annotations focusing on interaction with in-vehicle infotainment (IVI) systems.
Key Features:
- Serves as a validation benchmark for automotive UI.
- Scope: Covers 15 automotive brands/OEMs, model years 2018-2025.
- Image Source: Primarily photographs of IVI displays (due to screenshot limitations in most vehicles), with some direct screenshots (e.g., Android Auto).
- Annotation Classes:
  - Test Action: Bounding box + imperative command in natural language.
  - Expected Result: Bounding box + expected outcome in natural lanugage + Pass/Fail status.
  - Bounding boxes are in format [[x0,y0,x1,y1]]
- Languages:
  - IVI UI: German and English.
  - Annotations: English only (German UI text translated or quoted).
- 15 Brands/OEMs:
  - VW: 170
  - Kia: 124
  - Audi: 91
  - Cupra: 85
  - Porsche: 78
  - Ford: 72
  - Maserati: 72
  - Mini: 60
  - BMW: 59
  - Peugot: 52
  - Tesla: 51
  - Toyota: 34
  - Opel: 30
  - Apple CarPlay: 13
  - Google Android Auto: 7

## Usage
Corresponding model [ELAM](https://huggingface.co/sparks-solutions/ELAM-7B) is available on Hugging Face as well.

<details>
  <summary>Setup Environment for ELAM-7B</summary>
  
```
conda create -n elam python=3.10 -y
conda activate elam
pip install datasets==3.5.0 einops==0.8.1 torchvision==0.20.1 accelerate==1.6.0
pip install transformers==4.48.2
```
</details>

<details>
  <summary>Dataloading and Inference with ELAM-7B</summary>
  
```python
# Run inference on AutomotiveUI-4k dataset on local GPU
# Outputs will be written in a JSONL file
import json
import os
import time

import torch
from datasets import Dataset, load_dataset
from tqdm import tqdm
from transformers import AutoModelForCausalLM, AutoProcessor, GenerationConfig


def preprocess_prompt_elam(user_request: str, label_class: str) -> str:
    """Apply ELAM prompt template depending on class."""
    if label_class == "Expected Result":
        return f"Evaluate this statement about the image:\n'{user_request}'\nThink step by step, conclude whether the evaluation is 'PASSED' or 'FAILED' and point to the UI element that corresponds to this evaluation."
    elif label_class == "Test Action":
        return f"Identify and point to the UI element that corresponds to this test action:\n{user_request}"
    else:
        raise ValueError()


def append_to_jsonl_file(data: dict, target_path: str) -> None:
    assert str(target_path).endswith(".jsonl")
    with open(target_path, "a", encoding="utf-8") as file:
        file.write(f"{json.dumps(data, ensure_ascii=False)}\n")


def run_inference(dataset: Dataset, model: AutoModelForCausalLM, processor: AutoProcessor):
    # Define output dir and file
    timestamp = time.strftime("%Y%m%d-%H%M%S")
    DEBUG_DIR = os.path.join("eval_output", timestamp)
    model_outputs_path = os.path.join(DEBUG_DIR, f"model_outputs.jsonl")

    print(f"Writing data to: {model_outputs_path}")
    for sample_id, sample in enumerate(tqdm(dataset, desc="Processing")):
        image = sample["image"]

        gt_box = sample["box"][0]
        label_class = sample["class"]

        # read gt box
        utterance = None
        gt_status = None
        if "Expected Result" == label_class:
            utterance = sample["expectation"]
            gt_status = sample["conclusion"].upper()

        elif "Test Action" == label_class:
            utterance = sample["test_action"]
        else:
            raise ValueError(f"Did not find valid utterance for image #{sample_id}.")
        assert utterance

        # Apply prompt template
        rephrased_utterance = preprocess_prompt_elam(utterance, label_class)

        # Process the image and text
        inputs = processor.process(
            images=[image],
            text=rephrased_utterance,
        )

        # Move inputs to the correct device and make a batch of size 1, cast to bfloat16
        inputs_bfloat16 = {}
        for k, v in inputs.items():
            if v.dtype == torch.float32:
                inputs_bfloat16[k] = v.to(model.device).to(torch.bfloat16).unsqueeze(0)
            else:
                inputs_bfloat16[k] = v.to(model.device).unsqueeze(0)

        inputs = inputs_bfloat16  # Replace original inputs with the correctly typed inputs

        # Generate output
        output = model.generate_from_batch(
            inputs, GenerationConfig(max_new_tokens=2048, stop_strings="<|endoftext|>"), tokenizer=processor.tokenizer
        )

        # Only get generated tokens; decode them to text
        generated_tokens = output[0, inputs["input_ids"].size(1) :]
        response = processor.tokenizer.decode(generated_tokens, skip_special_tokens=True)

        # write current image with current label
        os.makedirs(DEBUG_DIR, exist_ok=True)

        # append line to jsonl
        model_output_line = {
            "sample_id": sample_id,
            "input": rephrased_utterance,
            "output": response,
            "image_size": image.size,
            "gt_class": label_class,
            "gt_box": gt_box,
            "gt_status": gt_status,
            "language": sample["language"],
        }
        append_to_jsonl_file(model_output_line, target_path=model_outputs_path)


if __name__ == "__main__":
    # Set dataset
    dataset = load_dataset("sparks-solutions/AutomotiveUI-Bench-4K")["test"]

    # Load the processor
    model_name = "sparks-solutions/ELAM-7B"
    processor = AutoProcessor.from_pretrained(
        model_name, trust_remote_code=True, torch_dtype="bfloat16", device_map="auto"
    )

    # Load the model
    model = AutoModelForCausalLM.from_pretrained(
        model_name, trust_remote_code=True, torch_dtype="bfloat16", device_map="auto"
    )
    run_inference(dataset=dataset, processor=processor, model=model)

```
</details>


<details>
  <summary>Parsing results and calculating metrics</summary>
  
```python
import argparse
import json
import re
from pathlib import Path
from typing import Tuple

import numpy as np


def read_jsonl_file(path: str) -> list:
    assert str(path).endswith(".jsonl")
    data_list = []
    with open(path, "r", encoding="utf-8") as file:
        for line in file:
            data = json.loads(line)
            data_list.append(data)
    return data_list


def write_json_file(data: dict | list, path: str) -> None:
    assert str(path).endswith(".json")
    with open(path, "w", encoding="utf-8") as outfile:
        json.dump(data, outfile, ensure_ascii=False, indent=4)


def postprocess_response_elam(response: str) -> Tuple[float, float]:
    """Parse Molmo-style point coordinates from string."""
    pattern = r'<point x="(?P<x>\d+\.\d+)" y="(?P<y>\d+\.\d+)"'
    match = re.search(pattern, response)
    if match:
        x_coord_raw = float(match.group("x"))
        y_coord_raw = float(match.group("y"))
        x_coord = x_coord_raw / 100
        y_coord = y_coord_raw / 100
        return [x_coord, y_coord]
    else:
        return [-1, -1]


def pred_center_in_gt(predicted_boxes, ground_truth_boxes):
    """Calculate the percentage of predictions where the predicted center is in the ground truth box and return the indices where it is not.

    Args:
        predicted_boxes (np.ndarray): shape (n, 4) of top-left bottom-right boxes or predicted points
        ground_truth_boxes (np.ndarray): shape (n, 4) of top-left bottom-right boxes

    Returns:
        float: percentage of predictions where the predicted center is in the ground truth box
        list: indices of predictions where the center is not in the ground truth box
    """
    if ground_truth_boxes.size == 0:  # Check for empty numpy array just to be explicit
        return -1
    if predicted_boxes.shape[1] == 2:
        predicted_centers = predicted_boxes
    else:
        # Calculate the centers of the bounding boxes
        predicted_centers = (predicted_boxes[:, :2] + predicted_boxes[:, 2:]) / 2

    # Check if predicted centers are within ground truth boxes
    within_gt = (
        (predicted_centers[:, 0] >= ground_truth_boxes[:, 0])
        & (predicted_centers[:, 0] <= ground_truth_boxes[:, 2])
        & (predicted_centers[:, 1] >= ground_truth_boxes[:, 1])
        & (predicted_centers[:, 1] <= ground_truth_boxes[:, 3])
    )

    return within_gt


def to_mean_percent(metrics: list | np.ndarray) -> float:
    """Calculate mean of array and multiply by 100."""
    return np.mean(metrics) * 100


def calculate_alignment_numpy(array1, array2):
    """Returns boolean array where values are equal"""

    if array1.size == 0:  # Check for empty numpy array just to be explicit
        return [], [], []

    # Overall Accuracy
    overall_hits = array1 == array2

    # True Ground Truth Accuracy
    true_ground_truth_indices = array2 == True  # Boolean mask for True ground truth
    true_ground_truth_predictions = array1[true_ground_truth_indices]
    true_ground_truth_actuals = array2[true_ground_truth_indices]

    true_gt_hits = true_ground_truth_predictions == true_ground_truth_actuals

    # False Ground Truth Accuracy
    false_ground_truth_indices = array2 == False  # Boolean mask for False ground truth
    false_ground_truth_predictions = array1[false_ground_truth_indices]
    false_ground_truth_actuals = array2[false_ground_truth_indices]

    false_gt_hits = false_ground_truth_predictions == false_ground_truth_actuals
    return overall_hits, true_gt_hits, false_gt_hits


def clip_non_minus_one(arr):
    """Clips values in a NumPy array to [0, 1] but leaves -1 values unchanged."""
    # Create a boolean mask for values NOT equal to -1
    mask = arr != -1

    # Create a copy of the array to avoid modifying the original in-place
    clipped_arr = np.copy(arr)

    # Apply clipping ONLY to the elements where the mask is True
    clipped_arr[mask] = np.clip(clipped_arr[mask], 0, 1)

    return clipped_arr


if __name__ == "__main__":
    parser = argparse.ArgumentParser(description="Run model inference and save outputs.")
    parser.add_argument(
        "-m", "--model_output_path", type=str, help="Path to json that contains model outputs from eval.", required=True
    )

    args = parser.parse_args()

    EVAL_PATH = args.model_output_path
    eval_jsonl_data = read_jsonl_file(EVAL_PATH)

    ta_pred_bboxes, ta_gt_bboxes = [], []
    er_pred_bboxes, er_gt_bboxes = [], []
    er_pred_conclusion, er_gt_conclusion = [], []
    ta_out_images, er_out_images = [], []
    failed_pred_responses = []

    er_en_ids = []
    ta_en_ids = []
    ta_de_ids = []
    er_de_ids = []

    for line in eval_jsonl_data:
        # Read data from line
        image_width, image_height = line["image_size"]
        gt_box = line["gt_box"]
        lang = line["language"]
        response_raw = line["output"]

        if "Test Action" == line["gt_class"]:
            # Parse point/box from response and clip to image
            parsed_response = postprocess_response_elam(response_raw)
            if parsed_response[0] == -1:
                failed_pred_responses.append({"sample_id": line["sample_id"], "response": response_raw})

            parsed_response = np.array(parsed_response)
            parsed_response = clip_non_minus_one(parsed_response).tolist()

            # Append results
            ta_gt_bboxes.append(gt_box)
            ta_pred_bboxes.append(parsed_response)
            if lang == "DE":
                ta_de_ids.append(len(ta_pred_bboxes) - 1)  # append id
            elif lang == "EN":
                ta_en_ids.append(len(ta_pred_bboxes) - 1)

        elif "Expected Result" in line["gt_class"]:
            er_gt_bboxes.append(gt_box)

            # Parse point/box from response and clip to image
            parsed_response = postprocess_response_elam(response_raw)
            if parsed_response[0] == -1:
                failed_pred_responses.append({"sample_id": line["sample_id"], "response": response_raw})
            parsed_response = np.array(parsed_response)
            parsed_response = clip_non_minus_one(parsed_response).tolist()
            er_pred_bboxes.append(parsed_response)

            # Read evaluation conclusion
            gt_conclusion = line["gt_status"].upper()
            gt_conclusion = True if gt_conclusion == "PASSED" else False

            pred_conclusion = None
            if "FAILED" in response_raw or "is not met" in response_raw:
                pred_conclusion = False
            elif "PASSED" in response_raw or "is met" in response_raw:
                pred_conclusion = True
            if pred_conclusion is None:
                # Make prediction wrong if it couldn't be parsed
                pred_conclusion = not gt_conclusion

            er_gt_conclusion.append(gt_conclusion)
            er_pred_conclusion.append(pred_conclusion)

            if lang == "DE":
                er_de_ids.append(len(er_pred_bboxes) - 1)
            elif lang == "EN":
                er_en_ids.append(len(er_pred_bboxes) - 1)

    ta_pred_bboxes = np.array(ta_pred_bboxes)
    ta_gt_bboxes = np.array(ta_gt_bboxes)
    er_pred_bboxes = np.array(er_pred_bboxes)
    er_gt_bboxes = np.array(er_gt_bboxes)
    er_pred_conclusion = np.array(er_pred_conclusion)
    er_gt_conclusion = np.array(er_gt_conclusion)
    print(f"{'Test action (pred/gt):':<{36}}{ta_pred_bboxes.shape}, {ta_gt_bboxes.shape}")
    print(f"{'Expected results (pred/gt):':<{36}}{er_pred_bboxes.shape}, {er_gt_bboxes.shape}")

    # Calculate metrics
    ta_pred_hits = pred_center_in_gt(ta_pred_bboxes, ta_gt_bboxes)
    score_ta = to_mean_percent(ta_pred_hits)

    er_pred_hits = pred_center_in_gt(er_pred_bboxes, er_gt_bboxes)
    score_er = to_mean_percent(er_pred_hits)

    overall_hits, true_gt_hits, false_gt_hits = calculate_alignment_numpy(er_pred_conclusion, er_gt_conclusion)
    score_conclusion = to_mean_percent(overall_hits)
    score_conclusion_gt_true = to_mean_percent(true_gt_hits)
    score_conclusion_gt_false = to_mean_percent(false_gt_hits)

    # Calculate language-specific metrics for TA
    score_ta_en = to_mean_percent(ta_pred_hits[ta_en_ids])
    score_ta_de = to_mean_percent(ta_pred_hits[ta_de_ids])

    # Calculate language-specific metrics for ER (bbox)
    score_er_en = to_mean_percent(er_pred_hits[er_en_ids])
    score_er_de = to_mean_percent(er_pred_hits[er_de_ids])

    # Calculate language-specific metrics for ER (conclusion)
    score_conclusion_en = to_mean_percent(overall_hits[er_en_ids])
    score_conclusion_de = to_mean_percent(overall_hits[er_de_ids])

    print(f"\n{'Test action visual grounding:':<{36}}{score_ta:.1f}")
    print(f"{'Expected result visual grounding:':<{36}}{score_er:.1f}")
    print(f"{'Expected result evaluation:':<{36}}{score_conclusion:.1f}\n")

    eval_out_path = Path(EVAL_PATH).parent / "eval_results.json"

    write_json_file(
        {
            "score_ta": score_ta,
            "score_ta_de": score_ta_de,
            "score_ta_en": score_ta_en,
            "score_er": score_er,
            "score_er_de": score_er_de,
            "score_er_en": score_er_en,
            "score_er_conclusion": score_conclusion,
            "score_er_conclusion_de": score_conclusion_de,
            "score_er_conclusion_en": score_conclusion_en,
            "score_conclusion_gt_true": score_conclusion_gt_true,
            "score_conclusion_gt_false": score_conclusion_gt_false,
        },
        path=eval_out_path,
    )
    print(f"Stored results at {eval_out_path}")

    if failed_pred_responses:
        failed_responses_out_path = Path(EVAL_PATH).parent / "failed_responses.json"
        write_json_file(failed_pred_responses, failed_responses_out_path)
        print(f"Stored non-parsable responses at {failed_responses_out_path}")

```
</details>


## Results

| Model | Test Action Grounding | Expected Result Grounding | Expected Result Evaluation |
|---|---|---|---|
| InternVL2.5-8B | 26.6 | 5.7 | 64.8 |
| TinyClick | 61.0 | 54.6 | - |
| UGround-V1-7B (Qwen2-VL) | 69.4 | 55.0 | - |
| Molmo-7B-D-0924 | 71.3 | 71.4 | 66.9 |
| LAM-270M (TinyClick) | 73.9 | 59.9 | - |
| ELAM-7B (Molmo) | **87.6** | **77.5** | **78.2** |

# Citation
If you find ELAM or AutomotiveUI-Bench-4K useful in your research, please cite the following paper:

``` latex
@misc{ernhofer2025leveragingvisionlanguagemodelsvisual,
      title={Leveraging Vision-Language Models for Visual Grounding and Analysis of Automotive UI}, 
      author={Benjamin Raphael Ernhofer and Daniil Prokhorov and Jannica Langner and Dominik Bollmann},
      year={2025},
      eprint={2505.05895},
      archivePrefix={arXiv},
      primaryClass={cs.CV},
      url={https://arxiv.org/abs/2505.05895}, 
}
```

# Acknowledgements
## Funding
This work was supported by German BMBF within the scope of project "KI4BoardNet".