File size: 26,408 Bytes
da8010e b47483a 2a2ea95 b47483a 2a2ea95 b47483a 2a2ea95 b47483a 2a2ea95 b47483a 2a2ea95 b47483a 2a2ea95 b47483a 2a2ea95 b47483a 2a2ea95 e842fe4 2a2ea95 0c94c8c eca8989 0c94c8c eca8989 0c94c8c eca8989 26e57ac eca8989 26e57ac da8010e b47483a b6b71f4 eca8989 b6b71f4 57bc193 d47871d 7d0be5a 8b9d68a d89dace 7d0be5a 84e36b1 7d0be5a ba33d4b 29fe948 ba33d4b 2882e99 d961cd4 2882e99 29fe948 d961cd4 2882e99 d961cd4 2882e99 d961cd4 ba33d4b 7d0be5a 8c5fd6e 59319b1 a9111d2 7d0be5a b6ac8cb d961cd4 7d0be5a b6b71f4 b6ac8cb b6b71f4 7d0be5a b6ac8cb b6b71f4 b6ac8cb b6b71f4 b6ac8cb 7d0be5a a1a5786 7d0be5a b6b71f4 3e40f37 b6b71f4 3e40f37 b6b71f4 3e40f37 b6b71f4 3e40f37 b6b71f4 7d0be5a a1a5786 7d0be5a 59319b1 8c5fd6e 7d0be5a 7e3f47d 7d0be5a b6b71f4 7d0be5a 0643e55 b6b71f4 59319b1 7e3f47d 3e40f37 59319b1 d826b04 8b9d68a 37a2ec0 7d0be5a 37a2ec0 7d0be5a b5dcc57 b6ac8cb b5dcc57 7d0be5a b5dcc57 37a2ec0 b6ac8cb d961cd4 b6ac8cb b5dcc57 37a2ec0 7e3f47d 37a2ec0 7d0be5a 8b9d68a ba33d4b 7e3f47d 7d0be5a 7e3f47d 7d0be5a d5e4e9c 84e36b1 ba33d4b d5e4e9c 7d0be5a 7e3f47d 7d0be5a 29fe948 7d0be5a 7e3f47d 7d0be5a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 |
---
dataset_info:
- config_name: default
features:
- name: metrics.id
dtype: string
- name: metrics.json
dtype: string
- name: metrics.aspect_ratio
dtype: float64
- name: metrics.aspect_ratio_over_edge_rotational_transform
dtype: float64
- name: metrics.average_triangularity
dtype: float64
- name: metrics.axis_magnetic_mirror_ratio
dtype: float64
- name: metrics.axis_rotational_transform_over_n_field_periods
dtype: float64
- name: metrics.edge_magnetic_mirror_ratio
dtype: float64
- name: metrics.edge_rotational_transform_over_n_field_periods
dtype: float64
- name: metrics.flux_compression_in_regions_of_bad_curvature
dtype: float64
- name: metrics.max_elongation
dtype: float64
- name: metrics.minimum_normalized_magnetic_gradient_scale_length
dtype: float64
- name: metrics.qi
dtype: float64
- name: metrics.vacuum_well
dtype: float64
- name: boundary.json
dtype: string
- name: boundary.is_stellarator_symmetric
dtype: bool
- name: boundary.n_field_periods
dtype: int64
- name: boundary.r_cos
sequence:
sequence: float64
- name: boundary.r_sin
dtype: 'null'
- name: boundary.z_cos
dtype: 'null'
- name: boundary.z_sin
sequence:
sequence: float64
- name: omnigenous_field_and_targets.id
dtype: string
- name: omnigenous_field_and_targets.json
dtype: string
- name: omnigenous_field_and_targets.aspect_ratio
dtype: float64
- name: omnigenous_field_and_targets.major_radius
dtype: float64
- name: omnigenous_field_and_targets.max_elongation
dtype: float64
- name: omnigenous_field_and_targets.omnigenous_field.modB_spline_knot_coefficients
sequence:
sequence: float64
- name: omnigenous_field_and_targets.omnigenous_field.n_field_periods
dtype: int64
- name: omnigenous_field_and_targets.omnigenous_field.poloidal_winding
dtype: int64
- name: omnigenous_field_and_targets.omnigenous_field.torodial_winding
dtype: int64
- name: omnigenous_field_and_targets.omnigenous_field.x_lmn
sequence:
sequence:
sequence: float64
- name: omnigenous_field_and_targets.rotational_transform
dtype: float64
- name: desc_omnigenous_field_optimization_settings.id
dtype: string
- name: desc_omnigenous_field_optimization_settings.json
dtype: string
- name: desc_omnigenous_field_optimization_settings.equilibrium_settings.check_orientation
dtype: bool
- name: desc_omnigenous_field_optimization_settings.equilibrium_settings.max_poloidal_mode
dtype: int64
- name: desc_omnigenous_field_optimization_settings.equilibrium_settings.max_toroidal_mode
dtype: int64
- name: desc_omnigenous_field_optimization_settings.equilibrium_settings.psi
dtype: float64
- name: desc_omnigenous_field_optimization_settings.initial_guess_settings.aspect_ratio
dtype: float64
- name: desc_omnigenous_field_optimization_settings.initial_guess_settings.elongation
dtype: float64
- name: desc_omnigenous_field_optimization_settings.initial_guess_settings.is_iota_positive
dtype: bool
- name: desc_omnigenous_field_optimization_settings.initial_guess_settings.is_stellarator_symmetric
dtype: bool
- name: desc_omnigenous_field_optimization_settings.initial_guess_settings.major_radius
dtype: float64
- name: desc_omnigenous_field_optimization_settings.initial_guess_settings.max_elongation
dtype: float64
- name: desc_omnigenous_field_optimization_settings.initial_guess_settings.max_poloidal_mode
dtype: int64
- name: desc_omnigenous_field_optimization_settings.initial_guess_settings.max_toroidal_mode
dtype: int64
- name: desc_omnigenous_field_optimization_settings.initial_guess_settings.mirror_ratio
dtype: float64
- name: desc_omnigenous_field_optimization_settings.initial_guess_settings.n_field_periods
dtype: int64
- name: desc_omnigenous_field_optimization_settings.initial_guess_settings.rotational_transform
dtype: float64
- name: desc_omnigenous_field_optimization_settings.initial_guess_settings.torsion
dtype: float64
- name: desc_omnigenous_field_optimization_settings.objective_settings.aspect_ratio_settings.name
dtype: string
- name: desc_omnigenous_field_optimization_settings.objective_settings.aspect_ratio_settings.target_kind
dtype: string
- name: desc_omnigenous_field_optimization_settings.objective_settings.aspect_ratio_settings.weight
dtype: float64
- name: desc_omnigenous_field_optimization_settings.objective_settings.elongation_settings.name
dtype: string
- name: desc_omnigenous_field_optimization_settings.objective_settings.elongation_settings.target_kind
dtype: string
- name: desc_omnigenous_field_optimization_settings.objective_settings.elongation_settings.weight
dtype: float64
- name: desc_omnigenous_field_optimization_settings.objective_settings.omnigenity_settings.eq_lcfs_grid_M_factor
dtype: int64
- name: desc_omnigenous_field_optimization_settings.objective_settings.omnigenity_settings.eq_lcfs_grid_N_factor
dtype: int64
- name: desc_omnigenous_field_optimization_settings.objective_settings.omnigenity_settings.eq_lcfs_grid_rho
dtype: float64
- name: desc_omnigenous_field_optimization_settings.objective_settings.omnigenity_settings.eta_weight
dtype: float64
- name: desc_omnigenous_field_optimization_settings.objective_settings.omnigenity_settings.name
dtype: string
- name: desc_omnigenous_field_optimization_settings.objective_settings.omnigenity_settings.weight
dtype: float64
- name: desc_omnigenous_field_optimization_settings.objective_settings.rotational_transform_settings.name
dtype: string
- name: desc_omnigenous_field_optimization_settings.objective_settings.rotational_transform_settings.target_kind
dtype: string
- name: desc_omnigenous_field_optimization_settings.objective_settings.rotational_transform_settings.weight
dtype: float64
- name: desc_omnigenous_field_optimization_settings.optimizer_settings.maxiter
dtype: int64
- name: desc_omnigenous_field_optimization_settings.optimizer_settings.name
dtype: string
- name: desc_omnigenous_field_optimization_settings.optimizer_settings.verbose
dtype: int64
- name: vmec_omnigenous_field_optimization_settings.id
dtype: string
- name: vmec_omnigenous_field_optimization_settings.json
dtype: string
- name: vmec_omnigenous_field_optimization_settings.gradient_based_relative_objectives_tolerance
dtype: float64
- name: vmec_omnigenous_field_optimization_settings.gradient_free_budget_per_design_variable
dtype: int64
- name: vmec_omnigenous_field_optimization_settings.gradient_free_max_time
dtype: int64
- name: vmec_omnigenous_field_optimization_settings.gradient_free_optimization_hypercube_bounds
dtype: float64
- name: vmec_omnigenous_field_optimization_settings.infinity_norm_spectrum_scaling
dtype: float64
- name: vmec_omnigenous_field_optimization_settings.max_poloidal_mode
dtype: int64
- name: vmec_omnigenous_field_optimization_settings.max_toroidal_mode
dtype: int64
- name: vmec_omnigenous_field_optimization_settings.n_inner_optimizations
dtype: int64
- name: vmec_omnigenous_field_optimization_settings.use_continuation_method_in_fourier_space
dtype: bool
- name: vmec_omnigenous_field_optimization_settings.verbose
dtype: bool
- name: qp_init_omnigenous_field_optimization_settings.id
dtype: string
- name: qp_init_omnigenous_field_optimization_settings.json
dtype: string
- name: qp_init_omnigenous_field_optimization_settings.aspect_ratio
dtype: float64
- name: qp_init_omnigenous_field_optimization_settings.elongation
dtype: float64
- name: qp_init_omnigenous_field_optimization_settings.is_iota_positive
dtype: bool
- name: qp_init_omnigenous_field_optimization_settings.is_stellarator_symmetric
dtype: bool
- name: qp_init_omnigenous_field_optimization_settings.major_radius
dtype: float64
- name: qp_init_omnigenous_field_optimization_settings.mirror_ratio
dtype: float64
- name: qp_init_omnigenous_field_optimization_settings.n_field_periods
dtype: int64
- name: qp_init_omnigenous_field_optimization_settings.torsion
dtype: float64
- name: nae_init_omnigenous_field_optimization_settings.id
dtype: string
- name: nae_init_omnigenous_field_optimization_settings.json
dtype: string
- name: nae_init_omnigenous_field_optimization_settings.aspect_ratio
dtype: float64
- name: nae_init_omnigenous_field_optimization_settings.max_elongation
dtype: float64
- name: nae_init_omnigenous_field_optimization_settings.max_poloidal_mode
dtype: int64
- name: nae_init_omnigenous_field_optimization_settings.max_toroidal_mode
dtype: int64
- name: nae_init_omnigenous_field_optimization_settings.mirror_ratio
dtype: float64
- name: nae_init_omnigenous_field_optimization_settings.n_field_periods
dtype: int64
- name: nae_init_omnigenous_field_optimization_settings.rotational_transform
dtype: float64
- name: misc.vmecpp_wout_id
dtype: string
- name: misc.has_optimize_boundary_omnigenity_vmec_error
dtype: bool
- name: misc.has_optimize_boundary_omnigenity_desc_error
dtype: bool
- name: misc.has_generate_qp_initialization_from_targets_error
dtype: bool
- name: misc.has_generate_nae_initialization_from_targets_error
dtype: bool
- name: misc.has_neurips_2025_forward_model_error
dtype: bool
- name: plasma_config_id
dtype: string
splits:
- name: train
num_bytes: 1235890475.515687
num_examples: 182222
download_size: 610097952
dataset_size: 1235890475.515687
- config_name: vmecpp_wout
features:
- name: plasma_config_id
dtype: string
- name: id
dtype: string
- name: json
dtype: string
splits:
- name: train
num_bytes: 1100757693175
num_examples: 148292
download_size: 956063943
dataset_size: 1100757693175
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
- config_name: vmecpp_wout
data_files:
- split: train
path: vmecpp_wout/part*
license: mit
language:
- en
tags:
- physics
- fusion
- optimization
- neurips
pretty_name: ConStellaration
size_categories:
- 10K<n<100K
---
# Dataset Card for ConStellaration
<!-- Provide a quick summary of the dataset. -->
A dataset of diverse quasi-isodynamic (QI) stellarator boundary shapes with corresponding performance metrics and ideal magneto-hydrodynamic (MHD) equilibria, as well as settings for their generation.
## Dataset Details
### Dataset Description
<!-- Provide a longer summary of what this dataset is. -->
Stellarators are magnetic confinement devices that are being pursued to deliver steady-state carbon-free fusion energy. Their design involves a high-dimensional, constrained optimization problem that requires expensive physics simulations and significant domain expertise. Specifically, QI-stellarators are seen as a promising path to commercial fusion due to their intrinsic avoidance of current-driven disruptions.
With the release of this dataset, we aim to lower the barrier for optimization and machine learning researchers to contribute to stellarator design, and to accelerate cross-disciplinary progress toward bringing fusion energy to the grid.
- **Curated by:** Proxima Fusion
- **License:** MIT

### Dataset Sources
<!-- Provide the basic links for the dataset. -->
- **Repository:** https://huggingface.co/datasets/proxima-fusion/constellaration
- **Paper:** https://arxiv.org/abs/2506.19583
- **Code:** https://github.com/proximafusion/constellaration
## Dataset Structure
<!-- This section provides a description of the dataset fields, and additional information about the dataset structure such as criteria used to create the splits, relationships between data points, etc. -->
The dataset consists of 2 tabular parts. Both parts have a column `plasma_config_id` in common which can be used to associate respective entries:
<table>
<tr>
<th style="border-right: 1px solid gray;">default</th>
<th>vmecpp_wout</th>
</tr>
<tr>
<td style="border-right: 1px solid gray;">
Contains information about:
<ul>
<li>Plasma boundaries</li>
<li>Ideal MHD metrics</li>
<li>Omnigenous field and targets, used as input for sampling of plasma boundaries</li>
<li>Sampling settings for various methods (DESC, VMEC, QP initialization, Near-axis expansion)</li>
<li>Miscellaneous information about errors that might have occurred during sampling or metrics computation.</li>
</ul>
For each of the components above there is an identifier column (ending with `.id`), a JSON column containing a JSON-string representation, as well as one column per leaf in the nested JSON structure (with `.` separating the keys on the JSON path to the respective leaf).
</td>
<td>Contains, for each plasma boundary, a JSON-string representations of the "WOut" file as obtained when running VMEC, initialized on the boundary.<br>The JSON representation can be converted to a VMEC2000 output file.
</td>
</tr>
</table>
The columns `plasma_config_id` and `vmecpp_wout_id` are present in both parts and link the two in both directions.
## Uses
Install Huggingface Datasets: `pip install datasets`
### Basic Usage
Load the dataset and convert to a Pandas Dataframe (here, `torch` is used as an example; install it with" `pip install torch`):
```python
import datasets
import torch
from pprint import pprint
ds = datasets.load_dataset(
"proxima-fusion/constellaration",
split="train",
num_proc=4,
)
ds = ds.select_columns([c for c in ds.column_names
if c.startswith("boundary.")
or c.startswith("metrics.")])
ds = ds.filter(
lambda x: x == 3,
input_columns=["boundary.n_field_periods"],
num_proc=4,
)
ml_ds = ds.remove_columns([
"boundary.n_field_periods", "boundary.is_stellarator_symmetric", # all same value
"boundary.r_sin", "boundary.z_cos", # empty
"boundary.json", "metrics.json", "metrics.id", # not needed
])
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
torch_ds = ml_ds.with_format("torch", device=device) # other options: "jax", "tensorflow" etc.
for batch in torch.utils.data.DataLoader(torch_ds, batch_size=4, num_workers=4):
pprint(batch)
break
```
<div style="margin-left: 1em;">
<details>
<summary>Output</summary>
```python
{'boundary.r_cos': tensor([[[ 0.0000e+00, 0.0000e+00, 0.0000e+00, 0.0000e+00, 1.0000e+00,
-6.5763e-02, -3.8500e-02, 2.2178e-03, 4.6007e-04],
[-6.6648e-04, -1.0976e-02, 5.6475e-02, 1.4193e-02, 8.3476e-02,
-4.6767e-02, -1.3679e-02, 3.9562e-03, 1.0087e-04],
[-3.5474e-04, 4.7144e-03, 8.3967e-04, -1.9705e-02, -9.4592e-03,
-5.8859e-03, 1.0172e-03, 9.2020e-04, -2.0059e-04],
[ 2.9056e-03, 1.6125e-04, -4.0626e-04, -8.0189e-03, 1.3228e-03,
-5.3636e-04, -7.3536e-04, 3.4558e-05, 1.4845e-04],
[-1.2475e-04, -4.9942e-04, -2.6091e-04, -5.6161e-04, 8.3187e-05,
-1.2714e-04, -2.1174e-04, 4.1940e-06, -4.5643e-05]],
[[ 0.0000e+00, 0.0000e+00, 0.0000e+00, 0.0000e+00, 9.9909e-01,
-6.8512e-02, -8.1567e-02, 2.5140e-02, -2.4035e-03],
[-3.4328e-03, 1.6768e-02, 1.2305e-02, -3.6708e-02, 1.0285e-01,
1.1224e-02, -2.3418e-02, -5.4137e-04, 9.3986e-04],
[-2.8389e-03, 1.4652e-03, 1.0112e-03, 9.8102e-04, -2.3162e-02,
-6.1180e-03, 1.5327e-03, 9.4122e-04, -1.2781e-03],
[ 3.9240e-04, -2.3131e-04, 4.5690e-04, -3.8244e-03, -1.5314e-03,
1.8863e-03, 1.1882e-03, -5.2338e-04, 2.6766e-04],
[-2.8441e-04, -3.4162e-04, 5.4013e-05, 7.4252e-04, 4.9895e-04,
-6.1110e-04, -8.7185e-04, -1.1714e-04, 9.9285e-08]],
[[ 0.0000e+00, 0.0000e+00, 0.0000e+00, 0.0000e+00, 1.0000e+00,
6.9176e-02, -1.8489e-02, -6.5094e-03, -7.6238e-04],
[ 1.4062e-03, 4.2645e-03, -1.0647e-02, -8.1579e-02, 1.0522e-01,
1.6914e-02, 6.5321e-04, 6.9397e-04, 2.0881e-04],
[-6.5155e-05, -1.2232e-03, -3.3660e-03, 9.8742e-03, -1.4611e-02,
6.0985e-03, 9.5693e-04, -1.0049e-04, 5.4173e-05],
[-4.3969e-04, -5.1155e-04, 6.9611e-03, -2.8698e-04, -5.8589e-03,
-5.4844e-05, -7.3797e-04, -5.4401e-06, -3.3698e-05],
[-1.9741e-04, 1.0003e-04, -2.0176e-04, 4.9546e-04, -1.6201e-04,
-1.9169e-04, -3.9886e-04, 3.3773e-05, -3.5972e-05]],
[[ 0.0000e+00, 0.0000e+00, 0.0000e+00, 0.0000e+00, 1.0000e+00,
1.1652e-01, -1.5593e-02, -1.0215e-02, -1.8656e-03],
[ 3.1697e-03, 2.1618e-02, 2.7072e-02, -2.4032e-02, 8.6125e-02,
-7.1168e-04, -1.2433e-02, -2.0902e-03, 1.5868e-04],
[-2.3877e-04, -4.9871e-03, -2.4145e-02, -2.1623e-02, -3.1477e-02,
-8.3460e-03, -8.8675e-04, -5.3290e-04, -2.2784e-04],
[-1.0006e-03, 2.1055e-05, -1.7186e-03, -5.2886e-03, 4.5186e-03,
-1.1530e-03, 6.2732e-05, 1.4212e-04, 4.3367e-05],
[ 7.8993e-05, -3.9503e-04, 1.5458e-03, -4.9707e-04, -3.9470e-04,
6.0808e-04, -3.6447e-04, 1.2936e-04, 6.3461e-07]]]),
'boundary.z_sin': tensor([[[ 0.0000e+00, 0.0000e+00, 0.0000e+00, 0.0000e+00, 0.0000e+00,
-1.4295e-02, 1.4929e-02, -6.6461e-03, -3.0652e-04],
[ 9.6958e-05, -1.6067e-03, 5.7568e-02, -2.2848e-02, -1.6101e-01,
1.6560e-02, 1.5032e-02, -1.2463e-03, -4.0128e-04],
[-9.9541e-04, 3.6108e-03, -1.1401e-02, -1.8894e-02, -7.7459e-04,
9.4527e-03, -4.6871e-04, -5.5180e-04, 3.2248e-04],
[ 2.3465e-03, -2.4885e-03, -8.4212e-03, 8.9649e-03, -1.9880e-03,
-1.6269e-03, 8.4700e-04, 3.7171e-04, -6.8400e-05],
[-3.6228e-04, -1.8575e-04, 6.0890e-04, 5.0270e-04, -6.9953e-04,
-7.6356e-05, 2.3796e-04, -3.2524e-05, 5.3396e-05]],
[[ 0.0000e+00, 0.0000e+00, 0.0000e+00, 0.0000e+00, 0.0000e+00,
-8.5341e-02, 2.4825e-02, 8.0996e-03, -7.1501e-03],
[-1.3470e-03, 4.6367e-03, 4.1579e-02, -3.6802e-02, -1.5076e-01,
7.1852e-02, -1.9793e-02, 8.2575e-03, -3.8958e-03],
[-2.3956e-03, -5.7497e-03, 5.8264e-03, 9.4471e-03, -3.5171e-03,
-1.0481e-02, -3.2885e-03, 4.0624e-03, 4.3130e-04],
[ 6.3403e-05, -9.2162e-04, -2.4765e-03, 5.4090e-04, 1.9999e-03,
-1.1500e-03, 2.7581e-03, -5.7271e-04, 3.0363e-04],
[ 4.6278e-04, 4.3696e-04, 8.0524e-05, -2.4660e-04, -2.3747e-04,
5.5060e-05, -1.3221e-04, -5.4823e-05, 1.6025e-04]],
[[ 0.0000e+00, 0.0000e+00, 0.0000e+00, 0.0000e+00, 0.0000e+00,
-1.6090e-01, -1.4364e-02, 3.7923e-03, 1.8234e-03],
[ 1.2118e-03, 3.1261e-03, 3.2037e-03, -5.7482e-02, -1.5461e-01,
-1.8058e-03, -5.7149e-03, -7.4521e-04, 2.9463e-04],
[ 8.7049e-04, -3.2717e-04, -1.0188e-02, 1.1215e-02, -7.4697e-03,
-1.3592e-03, -1.4984e-03, -3.1362e-04, 1.5780e-06],
[ 1.2617e-04, -1.2257e-04, -6.9928e-04, 8.7431e-04, -2.5848e-03,
1.2087e-03, -2.4723e-04, -1.6535e-05, -6.4372e-05],
[-4.3932e-04, -1.8130e-04, 7.4368e-04, -6.1396e-04, -4.1518e-04,
4.8132e-04, 1.6036e-04, 5.3081e-05, 1.6636e-05]],
[[ 0.0000e+00, 0.0000e+00, 0.0000e+00, 0.0000e+00, 0.0000e+00,
-1.1264e-02, -1.8349e-03, 7.2464e-03, 2.3807e-03],
[ 3.2969e-03, 1.9590e-02, 2.8355e-02, -1.0493e-02, -1.3216e-01,
1.7804e-02, 7.9768e-03, 2.1362e-03, -6.9118e-04],
[-5.2572e-04, -4.1409e-03, -3.6560e-02, 2.1644e-02, 1.6418e-02,
9.3557e-03, 3.3846e-03, 7.4172e-05, 1.8406e-04],
[-1.4907e-03, 2.0496e-03, -4.8581e-03, 3.5471e-03, -2.9191e-03,
-1.5056e-03, 7.7168e-04, -2.3136e-04, -1.2064e-05],
[-2.3742e-04, 4.5083e-04, -1.2933e-03, -4.4028e-04, 6.4168e-04,
-8.2755e-04, 4.1233e-04, -1.1037e-04, -6.3762e-06]]]),
'metrics.aspect_ratio': tensor([9.6474, 9.1036, 9.4119, 9.5872]),
'metrics.aspect_ratio_over_edge_rotational_transform': tensor([ 9.3211, 106.7966, 13.8752, 8.9834]),
'metrics.average_triangularity': tensor([-0.6456, -0.5325, -0.6086, -0.6531]),
'metrics.axis_magnetic_mirror_ratio': tensor([0.2823, 0.4224, 0.2821, 0.2213]),
'metrics.axis_rotational_transform_over_n_field_periods': tensor([0.2333, 0.0818, 0.1887, 0.1509]),
'metrics.edge_magnetic_mirror_ratio': tensor([0.4869, 0.5507, 0.3029, 0.2991]),
'metrics.edge_rotational_transform_over_n_field_periods': tensor([0.3450, 0.0284, 0.2261, 0.3557]),
'metrics.flux_compression_in_regions_of_bad_curvature': tensor([1.4084, 0.9789, 1.5391, 1.1138]),
'metrics.max_elongation': tensor([6.7565, 6.9036, 5.6105, 5.8703]),
'metrics.minimum_normalized_magnetic_gradient_scale_length': tensor([5.9777, 4.2971, 8.5928, 4.8531]),
'metrics.qi': tensor([0.0148, 0.0157, 0.0016, 0.0248]),
'metrics.vacuum_well': tensor([-0.2297, -0.1146, -0.0983, -0.1738])}
```
</details>
</div>
### Advanced Usage
For advanced manipulation and visualization of data contained in this dataset, install `constellaration` from [here](https://github.com/proximafusion/constellaration):
`pip install constellaration`
Load and instantiate plasma boundaries:
```python
from constellaration.geometry import surface_rz_fourier
ds = datasets.load_dataset(
"proxima-fusion/constellaration",
columns=["plasma_config_id", "boundary.json"],
split="train",
num_proc=4,
)
pandas_ds = ds.to_pandas().set_index("plasma_config_id")
plasma_config_id = "DQ4abEQAQjFPGp9nPQN9Vjf"
boundary_json = pandas_ds.loc[plasma_config_id]["boundary.json"]
boundary = surface_rz_fourier.SurfaceRZFourier.model_validate_json(boundary_json)
```
Plot boundary:
```python
from constellaration.utils import visualization
visualization.plot_surface(boundary).show()
visualization.plot_boundary(boundary).get_figure().show()
```
Boundary | Cross-sections
:-------------------------:|:-------------------------:
 | 
Stream and instantiate the VMEC ideal MHD equilibria:
```python
from constellaration.mhd import vmec_utils
wout_ds = datasets.load_dataset(
"proxima-fusion/constellaration",
"vmecpp_wout",
split="train",
streaming=True,
)
row = next(wout_ds.__iter__())
vmecpp_wout_json = row["json"]
vmecpp_wout = vmec_utils.VmecppWOut.model_validate_json(vmecpp_wout_json)
# Fetch corresponding boundary
plasma_config_id = row["plasma_config_id"]
boundary_json = pandas_ds.loc[plasma_config_id]["boundary.json"]
boundary = surface_rz_fourier.SurfaceRZFourier.model_validate_json(boundary_json)
```
Plot flux surfaces:
```python
from constellaration.utils import visualization
visualization.plot_flux_surfaces(vmecpp_wout, boundary)
```

Save ideal MHD equilibrium to *VMEC2000 WOut* file:
```python
import pathlib
from constellaration.utils import file_exporter
file_exporter.to_vmec2000_wout_file(vmecpp_wout, pathlib.Path("vmec2000_wout.nc"))
```
## Dataset Creation
### Curation Rationale
<!-- Motivation for the creation of this dataset. -->
Wide-spread community progress is currently bottlenecked by the lack of standardized optimization problems with strong baselines and datasets that enable data-driven approaches, particularly for quasi-isodynamic (QI) stellarator configurations.
### Source Data
<!-- This section describes the source data (e.g. news text and headlines, social media posts, translated sentences, ...). -->
#### Data Collection and Processing
<!-- This section describes the data collection and processing process such as data selection criteria, filtering and normalization methods, tools and libraries used, etc. -->
We generated this dataset by sampling diverse QI fields and optimizing stellarator plasma boundaries to target key properties, using four different methods.
#### Who are the source data producers?
<!-- This section describes the people or systems who originally created the data. It should also include self-reported demographic or identity information for the source data creators if this information is available. -->
Proxima Fusion's stellarator optimization team.
#### Personal and Sensitive Information
<!-- State whether the dataset contains data that might be considered personal, sensitive, or private (e.g., data that reveals addresses, uniquely identifiable names or aliases, racial or ethnic origins, sexual orientations, religious beliefs, political opinions, financial or health data, etc.). If efforts were made to anonymize the data, describe the anonymization process. -->
The dataset contains no personally identifiable information.
## Citation
<!-- If there is a paper or blog post introducing the dataset, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
```
@article{cadena2025constellaration,
title={ConStellaration: A dataset of QI-like stellarator plasma boundaries and optimization benchmarks},
author={Cadena, Santiago A and Merlo, Andrea and Laude, Emanuel and Bauer, Alexander and Agrawal, Atul and Pascu, Maria and Savtchouk, Marija and Guiraud, Enrico and Bonauer, Lukas and Hudson, Stuart and others},
journal={arXiv preprint arXiv:2506.19583},
year={2025}
}
```
## Glossary
<!-- If relevant, include terms and calculations in this section that can help readers understand the dataset or dataset card. -->
| Abbreviation | Expansion |
| -------- | ------- |
| QI | Quasi-Isodynamic(ity) |
| MHD | Magneto-Hydrodynamic |
| [DESC](https://desc-docs.readthedocs.io/en/stable/) | Dynamical Equilibrium Solver for Confinement |
| VMEC/[VMEC++](https://github.com/proximafusion/vmecpp) | Variational Moments Equilibrium Code (Fortran/C++) |
| QP | Quasi-Poloidal |
| NAE | Near-Axis Expansion |
| NFP | Number of Field Periods |
## Dataset Card Authors
Alexander Bauer, Santiago A. Cadena
## Dataset Card Contact
[email protected]
|