File size: 26,408 Bytes
da8010e
 
b47483a
 
 
 
 
2a2ea95
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b47483a
2a2ea95
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b47483a
 
 
2a2ea95
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b47483a
 
 
2a2ea95
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b47483a
 
 
2a2ea95
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b47483a
 
 
2a2ea95
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b47483a
 
 
2a2ea95
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b47483a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2a2ea95
e842fe4
2a2ea95
 
0c94c8c
eca8989
 
 
0c94c8c
eca8989
0c94c8c
eca8989
 
 
26e57ac
 
eca8989
26e57ac
da8010e
b47483a
 
 
 
b6b71f4
eca8989
 
b6b71f4
57bc193
 
 
 
 
 
 
 
 
 
 
d47871d
7d0be5a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8b9d68a
d89dace
7d0be5a
 
 
 
 
84e36b1
7d0be5a
 
ba33d4b
 
 
 
29fe948
ba33d4b
2882e99
 
d961cd4
 
2882e99
 
29fe948
 
 
 
 
 
 
 
 
d961cd4
2882e99
d961cd4
2882e99
 
 
 
d961cd4
ba33d4b
7d0be5a
 
8c5fd6e
 
59319b1
a9111d2
7d0be5a
 
b6ac8cb
d961cd4
7d0be5a
b6b71f4
 
 
 
 
 
b6ac8cb
 
b6b71f4
 
 
 
 
 
 
 
 
 
7d0be5a
b6ac8cb
b6b71f4
b6ac8cb
b6b71f4
 
b6ac8cb
7d0be5a
a1a5786
7d0be5a
 
 
 
b6b71f4
3e40f37
 
 
 
 
 
 
 
b6b71f4
 
 
 
 
 
 
 
 
 
 
 
3e40f37
b6b71f4
 
 
 
 
 
 
 
 
 
3e40f37
b6b71f4
 
 
 
 
 
 
 
 
 
 
3e40f37
 
 
 
 
 
 
 
b6b71f4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7d0be5a
 
a1a5786
7d0be5a
59319b1
8c5fd6e
 
7d0be5a
7e3f47d
7d0be5a
 
 
b6b71f4
 
 
 
 
 
 
7d0be5a
0643e55
b6b71f4
59319b1
 
 
 
7e3f47d
 
3e40f37
 
59319b1
d826b04
 
8b9d68a
37a2ec0
7d0be5a
 
37a2ec0
7d0be5a
b5dcc57
 
 
 
 
 
b6ac8cb
b5dcc57
7d0be5a
b5dcc57
37a2ec0
 
b6ac8cb
d961cd4
b6ac8cb
b5dcc57
37a2ec0
7e3f47d
 
 
 
37a2ec0
 
7d0be5a
8b9d68a
ba33d4b
7e3f47d
 
 
 
 
 
7d0be5a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7e3f47d
7d0be5a
 
 
 
 
d5e4e9c
84e36b1
 
 
 
 
ba33d4b
d5e4e9c
7d0be5a
7e3f47d
7d0be5a
 
 
 
 
 
 
29fe948
 
7d0be5a
 
 
 
7e3f47d
7d0be5a
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
---
dataset_info:
- config_name: default
  features:
  - name: metrics.id
    dtype: string
  - name: metrics.json
    dtype: string
  - name: metrics.aspect_ratio
    dtype: float64
  - name: metrics.aspect_ratio_over_edge_rotational_transform
    dtype: float64
  - name: metrics.average_triangularity
    dtype: float64
  - name: metrics.axis_magnetic_mirror_ratio
    dtype: float64
  - name: metrics.axis_rotational_transform_over_n_field_periods
    dtype: float64
  - name: metrics.edge_magnetic_mirror_ratio
    dtype: float64
  - name: metrics.edge_rotational_transform_over_n_field_periods
    dtype: float64
  - name: metrics.flux_compression_in_regions_of_bad_curvature
    dtype: float64
  - name: metrics.max_elongation
    dtype: float64
  - name: metrics.minimum_normalized_magnetic_gradient_scale_length
    dtype: float64
  - name: metrics.qi
    dtype: float64
  - name: metrics.vacuum_well
    dtype: float64
  - name: boundary.json
    dtype: string
  - name: boundary.is_stellarator_symmetric
    dtype: bool
  - name: boundary.n_field_periods
    dtype: int64
  - name: boundary.r_cos
    sequence:
      sequence: float64
  - name: boundary.r_sin
    dtype: 'null'
  - name: boundary.z_cos
    dtype: 'null'
  - name: boundary.z_sin
    sequence:
      sequence: float64
  - name: omnigenous_field_and_targets.id
    dtype: string
  - name: omnigenous_field_and_targets.json
    dtype: string
  - name: omnigenous_field_and_targets.aspect_ratio
    dtype: float64
  - name: omnigenous_field_and_targets.major_radius
    dtype: float64
  - name: omnigenous_field_and_targets.max_elongation
    dtype: float64
  - name: omnigenous_field_and_targets.omnigenous_field.modB_spline_knot_coefficients
    sequence:
      sequence: float64
  - name: omnigenous_field_and_targets.omnigenous_field.n_field_periods
    dtype: int64
  - name: omnigenous_field_and_targets.omnigenous_field.poloidal_winding
    dtype: int64
  - name: omnigenous_field_and_targets.omnigenous_field.torodial_winding
    dtype: int64
  - name: omnigenous_field_and_targets.omnigenous_field.x_lmn
    sequence:
      sequence:
        sequence: float64
  - name: omnigenous_field_and_targets.rotational_transform
    dtype: float64
  - name: desc_omnigenous_field_optimization_settings.id
    dtype: string
  - name: desc_omnigenous_field_optimization_settings.json
    dtype: string
  - name: desc_omnigenous_field_optimization_settings.equilibrium_settings.check_orientation
    dtype: bool
  - name: desc_omnigenous_field_optimization_settings.equilibrium_settings.max_poloidal_mode
    dtype: int64
  - name: desc_omnigenous_field_optimization_settings.equilibrium_settings.max_toroidal_mode
    dtype: int64
  - name: desc_omnigenous_field_optimization_settings.equilibrium_settings.psi
    dtype: float64
  - name: desc_omnigenous_field_optimization_settings.initial_guess_settings.aspect_ratio
    dtype: float64
  - name: desc_omnigenous_field_optimization_settings.initial_guess_settings.elongation
    dtype: float64
  - name: desc_omnigenous_field_optimization_settings.initial_guess_settings.is_iota_positive
    dtype: bool
  - name: desc_omnigenous_field_optimization_settings.initial_guess_settings.is_stellarator_symmetric
    dtype: bool
  - name: desc_omnigenous_field_optimization_settings.initial_guess_settings.major_radius
    dtype: float64
  - name: desc_omnigenous_field_optimization_settings.initial_guess_settings.max_elongation
    dtype: float64
  - name: desc_omnigenous_field_optimization_settings.initial_guess_settings.max_poloidal_mode
    dtype: int64
  - name: desc_omnigenous_field_optimization_settings.initial_guess_settings.max_toroidal_mode
    dtype: int64
  - name: desc_omnigenous_field_optimization_settings.initial_guess_settings.mirror_ratio
    dtype: float64
  - name: desc_omnigenous_field_optimization_settings.initial_guess_settings.n_field_periods
    dtype: int64
  - name: desc_omnigenous_field_optimization_settings.initial_guess_settings.rotational_transform
    dtype: float64
  - name: desc_omnigenous_field_optimization_settings.initial_guess_settings.torsion
    dtype: float64
  - name: desc_omnigenous_field_optimization_settings.objective_settings.aspect_ratio_settings.name
    dtype: string
  - name: desc_omnigenous_field_optimization_settings.objective_settings.aspect_ratio_settings.target_kind
    dtype: string
  - name: desc_omnigenous_field_optimization_settings.objective_settings.aspect_ratio_settings.weight
    dtype: float64
  - name: desc_omnigenous_field_optimization_settings.objective_settings.elongation_settings.name
    dtype: string
  - name: desc_omnigenous_field_optimization_settings.objective_settings.elongation_settings.target_kind
    dtype: string
  - name: desc_omnigenous_field_optimization_settings.objective_settings.elongation_settings.weight
    dtype: float64
  - name: desc_omnigenous_field_optimization_settings.objective_settings.omnigenity_settings.eq_lcfs_grid_M_factor
    dtype: int64
  - name: desc_omnigenous_field_optimization_settings.objective_settings.omnigenity_settings.eq_lcfs_grid_N_factor
    dtype: int64
  - name: desc_omnigenous_field_optimization_settings.objective_settings.omnigenity_settings.eq_lcfs_grid_rho
    dtype: float64
  - name: desc_omnigenous_field_optimization_settings.objective_settings.omnigenity_settings.eta_weight
    dtype: float64
  - name: desc_omnigenous_field_optimization_settings.objective_settings.omnigenity_settings.name
    dtype: string
  - name: desc_omnigenous_field_optimization_settings.objective_settings.omnigenity_settings.weight
    dtype: float64
  - name: desc_omnigenous_field_optimization_settings.objective_settings.rotational_transform_settings.name
    dtype: string
  - name: desc_omnigenous_field_optimization_settings.objective_settings.rotational_transform_settings.target_kind
    dtype: string
  - name: desc_omnigenous_field_optimization_settings.objective_settings.rotational_transform_settings.weight
    dtype: float64
  - name: desc_omnigenous_field_optimization_settings.optimizer_settings.maxiter
    dtype: int64
  - name: desc_omnigenous_field_optimization_settings.optimizer_settings.name
    dtype: string
  - name: desc_omnigenous_field_optimization_settings.optimizer_settings.verbose
    dtype: int64
  - name: vmec_omnigenous_field_optimization_settings.id
    dtype: string
  - name: vmec_omnigenous_field_optimization_settings.json
    dtype: string
  - name: vmec_omnigenous_field_optimization_settings.gradient_based_relative_objectives_tolerance
    dtype: float64
  - name: vmec_omnigenous_field_optimization_settings.gradient_free_budget_per_design_variable
    dtype: int64
  - name: vmec_omnigenous_field_optimization_settings.gradient_free_max_time
    dtype: int64
  - name: vmec_omnigenous_field_optimization_settings.gradient_free_optimization_hypercube_bounds
    dtype: float64
  - name: vmec_omnigenous_field_optimization_settings.infinity_norm_spectrum_scaling
    dtype: float64
  - name: vmec_omnigenous_field_optimization_settings.max_poloidal_mode
    dtype: int64
  - name: vmec_omnigenous_field_optimization_settings.max_toroidal_mode
    dtype: int64
  - name: vmec_omnigenous_field_optimization_settings.n_inner_optimizations
    dtype: int64
  - name: vmec_omnigenous_field_optimization_settings.use_continuation_method_in_fourier_space
    dtype: bool
  - name: vmec_omnigenous_field_optimization_settings.verbose
    dtype: bool
  - name: qp_init_omnigenous_field_optimization_settings.id
    dtype: string
  - name: qp_init_omnigenous_field_optimization_settings.json
    dtype: string
  - name: qp_init_omnigenous_field_optimization_settings.aspect_ratio
    dtype: float64
  - name: qp_init_omnigenous_field_optimization_settings.elongation
    dtype: float64
  - name: qp_init_omnigenous_field_optimization_settings.is_iota_positive
    dtype: bool
  - name: qp_init_omnigenous_field_optimization_settings.is_stellarator_symmetric
    dtype: bool
  - name: qp_init_omnigenous_field_optimization_settings.major_radius
    dtype: float64
  - name: qp_init_omnigenous_field_optimization_settings.mirror_ratio
    dtype: float64
  - name: qp_init_omnigenous_field_optimization_settings.n_field_periods
    dtype: int64
  - name: qp_init_omnigenous_field_optimization_settings.torsion
    dtype: float64
  - name: nae_init_omnigenous_field_optimization_settings.id
    dtype: string
  - name: nae_init_omnigenous_field_optimization_settings.json
    dtype: string
  - name: nae_init_omnigenous_field_optimization_settings.aspect_ratio
    dtype: float64
  - name: nae_init_omnigenous_field_optimization_settings.max_elongation
    dtype: float64
  - name: nae_init_omnigenous_field_optimization_settings.max_poloidal_mode
    dtype: int64
  - name: nae_init_omnigenous_field_optimization_settings.max_toroidal_mode
    dtype: int64
  - name: nae_init_omnigenous_field_optimization_settings.mirror_ratio
    dtype: float64
  - name: nae_init_omnigenous_field_optimization_settings.n_field_periods
    dtype: int64
  - name: nae_init_omnigenous_field_optimization_settings.rotational_transform
    dtype: float64
  - name: misc.vmecpp_wout_id
    dtype: string
  - name: misc.has_optimize_boundary_omnigenity_vmec_error
    dtype: bool
  - name: misc.has_optimize_boundary_omnigenity_desc_error
    dtype: bool
  - name: misc.has_generate_qp_initialization_from_targets_error
    dtype: bool
  - name: misc.has_generate_nae_initialization_from_targets_error
    dtype: bool
  - name: misc.has_neurips_2025_forward_model_error
    dtype: bool
  - name: plasma_config_id
    dtype: string
  splits:
  - name: train
    num_bytes: 1235890475.515687
    num_examples: 182222
  download_size: 610097952
  dataset_size: 1235890475.515687
- config_name: vmecpp_wout
  features:
  - name: plasma_config_id
    dtype: string
  - name: id
    dtype: string
  - name: json
    dtype: string
  splits:
  - name: train
    num_bytes: 1100757693175
    num_examples: 148292
  download_size: 956063943
  dataset_size: 1100757693175
configs:
- config_name: default
  data_files:
  - split: train
    path: data/train-*
- config_name: vmecpp_wout
  data_files:
  - split: train
    path: vmecpp_wout/part*
license: mit
language:
- en
tags:
- physics
- fusion
- optimization
- neurips
pretty_name: ConStellaration
size_categories:
- 10K<n<100K
---
# Dataset Card for ConStellaration

<!-- Provide a quick summary of the dataset. -->

A dataset of diverse quasi-isodynamic (QI) stellarator boundary shapes with corresponding performance metrics and ideal magneto-hydrodynamic (MHD) equilibria, as well as settings for their generation.

## Dataset Details

### Dataset Description

<!-- Provide a longer summary of what this dataset is. -->

Stellarators are magnetic confinement devices that are being pursued to deliver steady-state carbon-free fusion energy. Their design involves a high-dimensional, constrained optimization problem that requires expensive physics simulations and significant domain expertise. Specifically, QI-stellarators are seen as a promising path to commercial fusion due to their intrinsic avoidance of current-driven disruptions. 
With the release of this dataset, we aim to lower the barrier for optimization and machine learning researchers to contribute to stellarator design, and to accelerate cross-disciplinary progress toward bringing fusion energy to the grid.

- **Curated by:** Proxima Fusion
- **License:** MIT

![Diagram of the computation of metrics of interest from a plasma boundary via the MHD equilibrium](assets/mhd_intro_v2.png)

### Dataset Sources

<!-- Provide the basic links for the dataset. -->

- **Repository:** https://huggingface.co/datasets/proxima-fusion/constellaration
- **Paper:** https://arxiv.org/abs/2506.19583
- **Code:** https://github.com/proximafusion/constellaration

## Dataset Structure

<!-- This section provides a description of the dataset fields, and additional information about the dataset structure such as criteria used to create the splits, relationships between data points, etc. -->

The dataset consists of 2 tabular parts. Both parts have a column `plasma_config_id` in common which can be used to associate respective entries:

<table>
  <tr>
    <th style="border-right: 1px solid gray;">default</th>
    <th>vmecpp_wout</th>
  </tr>
  <tr>
    <td style="border-right: 1px solid gray;">
        Contains information about:
        <ul>
            <li>Plasma boundaries</li>
            <li>Ideal MHD metrics</li>
            <li>Omnigenous field and targets, used as input for sampling of plasma boundaries</li>
            <li>Sampling settings for various methods (DESC, VMEC, QP initialization, Near-axis expansion)</li>
            <li>Miscellaneous information about errors that might have occurred during sampling or metrics computation.</li>
        </ul>
        For each of the components above there is an identifier column (ending with `.id`), a JSON column containing a JSON-string representation, as well as one column per leaf in the nested JSON structure (with `.` separating the keys on the JSON path to the respective leaf).
</td>
    <td>Contains, for each plasma boundary, a JSON-string representations of the "WOut" file as obtained when running VMEC, initialized on the boundary.<br>The JSON representation can be converted to a VMEC2000 output file.
</td>
  </tr>
</table>

The columns `plasma_config_id` and `vmecpp_wout_id` are present in both parts and link the two in both directions.

## Uses

Install Huggingface Datasets: `pip install datasets`

### Basic Usage
Load the dataset and convert to a Pandas Dataframe (here, `torch` is used as an example; install it with" `pip install torch`):
```python
import datasets
import torch
from pprint import pprint

ds = datasets.load_dataset(
    "proxima-fusion/constellaration",
    split="train",
    num_proc=4,
)
ds = ds.select_columns([c for c in ds.column_names
                        if c.startswith("boundary.")
                        or c.startswith("metrics.")])
ds = ds.filter(
    lambda x: x == 3,
    input_columns=["boundary.n_field_periods"],
    num_proc=4,
)
ml_ds = ds.remove_columns([
    "boundary.n_field_periods", "boundary.is_stellarator_symmetric",  # all same value
    "boundary.r_sin", "boundary.z_cos",  # empty
    "boundary.json", "metrics.json", "metrics.id",  # not needed
])

device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
torch_ds = ml_ds.with_format("torch", device=device)  # other options: "jax", "tensorflow" etc.

for batch in torch.utils.data.DataLoader(torch_ds, batch_size=4, num_workers=4):
    pprint(batch)
    break
```
<div style="margin-left: 1em;">
<details>
<summary>Output</summary>

```python
{'boundary.r_cos': tensor([[[ 0.0000e+00,  0.0000e+00,  0.0000e+00,  0.0000e+00,  1.0000e+00,
          -6.5763e-02, -3.8500e-02,  2.2178e-03,  4.6007e-04],
         [-6.6648e-04, -1.0976e-02,  5.6475e-02,  1.4193e-02,  8.3476e-02,
          -4.6767e-02, -1.3679e-02,  3.9562e-03,  1.0087e-04],
         [-3.5474e-04,  4.7144e-03,  8.3967e-04, -1.9705e-02, -9.4592e-03,
          -5.8859e-03,  1.0172e-03,  9.2020e-04, -2.0059e-04],
         [ 2.9056e-03,  1.6125e-04, -4.0626e-04, -8.0189e-03,  1.3228e-03,
          -5.3636e-04, -7.3536e-04,  3.4558e-05,  1.4845e-04],
         [-1.2475e-04, -4.9942e-04, -2.6091e-04, -5.6161e-04,  8.3187e-05,
          -1.2714e-04, -2.1174e-04,  4.1940e-06, -4.5643e-05]],

        [[ 0.0000e+00,  0.0000e+00,  0.0000e+00,  0.0000e+00,  9.9909e-01,
          -6.8512e-02, -8.1567e-02,  2.5140e-02, -2.4035e-03],
         [-3.4328e-03,  1.6768e-02,  1.2305e-02, -3.6708e-02,  1.0285e-01,
           1.1224e-02, -2.3418e-02, -5.4137e-04,  9.3986e-04],
         [-2.8389e-03,  1.4652e-03,  1.0112e-03,  9.8102e-04, -2.3162e-02,
          -6.1180e-03,  1.5327e-03,  9.4122e-04, -1.2781e-03],
         [ 3.9240e-04, -2.3131e-04,  4.5690e-04, -3.8244e-03, -1.5314e-03,
           1.8863e-03,  1.1882e-03, -5.2338e-04,  2.6766e-04],
         [-2.8441e-04, -3.4162e-04,  5.4013e-05,  7.4252e-04,  4.9895e-04,
          -6.1110e-04, -8.7185e-04, -1.1714e-04,  9.9285e-08]],

        [[ 0.0000e+00,  0.0000e+00,  0.0000e+00,  0.0000e+00,  1.0000e+00,
           6.9176e-02, -1.8489e-02, -6.5094e-03, -7.6238e-04],
         [ 1.4062e-03,  4.2645e-03, -1.0647e-02, -8.1579e-02,  1.0522e-01,
           1.6914e-02,  6.5321e-04,  6.9397e-04,  2.0881e-04],
         [-6.5155e-05, -1.2232e-03, -3.3660e-03,  9.8742e-03, -1.4611e-02,
           6.0985e-03,  9.5693e-04, -1.0049e-04,  5.4173e-05],
         [-4.3969e-04, -5.1155e-04,  6.9611e-03, -2.8698e-04, -5.8589e-03,
          -5.4844e-05, -7.3797e-04, -5.4401e-06, -3.3698e-05],
         [-1.9741e-04,  1.0003e-04, -2.0176e-04,  4.9546e-04, -1.6201e-04,
          -1.9169e-04, -3.9886e-04,  3.3773e-05, -3.5972e-05]],

        [[ 0.0000e+00,  0.0000e+00,  0.0000e+00,  0.0000e+00,  1.0000e+00,
           1.1652e-01, -1.5593e-02, -1.0215e-02, -1.8656e-03],
         [ 3.1697e-03,  2.1618e-02,  2.7072e-02, -2.4032e-02,  8.6125e-02,
          -7.1168e-04, -1.2433e-02, -2.0902e-03,  1.5868e-04],
         [-2.3877e-04, -4.9871e-03, -2.4145e-02, -2.1623e-02, -3.1477e-02,
          -8.3460e-03, -8.8675e-04, -5.3290e-04, -2.2784e-04],
         [-1.0006e-03,  2.1055e-05, -1.7186e-03, -5.2886e-03,  4.5186e-03,
          -1.1530e-03,  6.2732e-05,  1.4212e-04,  4.3367e-05],
         [ 7.8993e-05, -3.9503e-04,  1.5458e-03, -4.9707e-04, -3.9470e-04,
           6.0808e-04, -3.6447e-04,  1.2936e-04,  6.3461e-07]]]),
 'boundary.z_sin': tensor([[[ 0.0000e+00,  0.0000e+00,  0.0000e+00,  0.0000e+00,  0.0000e+00,
          -1.4295e-02,  1.4929e-02, -6.6461e-03, -3.0652e-04],
         [ 9.6958e-05, -1.6067e-03,  5.7568e-02, -2.2848e-02, -1.6101e-01,
           1.6560e-02,  1.5032e-02, -1.2463e-03, -4.0128e-04],
         [-9.9541e-04,  3.6108e-03, -1.1401e-02, -1.8894e-02, -7.7459e-04,
           9.4527e-03, -4.6871e-04, -5.5180e-04,  3.2248e-04],
         [ 2.3465e-03, -2.4885e-03, -8.4212e-03,  8.9649e-03, -1.9880e-03,
          -1.6269e-03,  8.4700e-04,  3.7171e-04, -6.8400e-05],
         [-3.6228e-04, -1.8575e-04,  6.0890e-04,  5.0270e-04, -6.9953e-04,
          -7.6356e-05,  2.3796e-04, -3.2524e-05,  5.3396e-05]],

        [[ 0.0000e+00,  0.0000e+00,  0.0000e+00,  0.0000e+00,  0.0000e+00,
          -8.5341e-02,  2.4825e-02,  8.0996e-03, -7.1501e-03],
         [-1.3470e-03,  4.6367e-03,  4.1579e-02, -3.6802e-02, -1.5076e-01,
           7.1852e-02, -1.9793e-02,  8.2575e-03, -3.8958e-03],
         [-2.3956e-03, -5.7497e-03,  5.8264e-03,  9.4471e-03, -3.5171e-03,
          -1.0481e-02, -3.2885e-03,  4.0624e-03,  4.3130e-04],
         [ 6.3403e-05, -9.2162e-04, -2.4765e-03,  5.4090e-04,  1.9999e-03,
          -1.1500e-03,  2.7581e-03, -5.7271e-04,  3.0363e-04],
         [ 4.6278e-04,  4.3696e-04,  8.0524e-05, -2.4660e-04, -2.3747e-04,
           5.5060e-05, -1.3221e-04, -5.4823e-05,  1.6025e-04]],

        [[ 0.0000e+00,  0.0000e+00,  0.0000e+00,  0.0000e+00,  0.0000e+00,
          -1.6090e-01, -1.4364e-02,  3.7923e-03,  1.8234e-03],
         [ 1.2118e-03,  3.1261e-03,  3.2037e-03, -5.7482e-02, -1.5461e-01,
          -1.8058e-03, -5.7149e-03, -7.4521e-04,  2.9463e-04],
         [ 8.7049e-04, -3.2717e-04, -1.0188e-02,  1.1215e-02, -7.4697e-03,
          -1.3592e-03, -1.4984e-03, -3.1362e-04,  1.5780e-06],
         [ 1.2617e-04, -1.2257e-04, -6.9928e-04,  8.7431e-04, -2.5848e-03,
           1.2087e-03, -2.4723e-04, -1.6535e-05, -6.4372e-05],
         [-4.3932e-04, -1.8130e-04,  7.4368e-04, -6.1396e-04, -4.1518e-04,
           4.8132e-04,  1.6036e-04,  5.3081e-05,  1.6636e-05]],

        [[ 0.0000e+00,  0.0000e+00,  0.0000e+00,  0.0000e+00,  0.0000e+00,
          -1.1264e-02, -1.8349e-03,  7.2464e-03,  2.3807e-03],
         [ 3.2969e-03,  1.9590e-02,  2.8355e-02, -1.0493e-02, -1.3216e-01,
           1.7804e-02,  7.9768e-03,  2.1362e-03, -6.9118e-04],
         [-5.2572e-04, -4.1409e-03, -3.6560e-02,  2.1644e-02,  1.6418e-02,
           9.3557e-03,  3.3846e-03,  7.4172e-05,  1.8406e-04],
         [-1.4907e-03,  2.0496e-03, -4.8581e-03,  3.5471e-03, -2.9191e-03,
          -1.5056e-03,  7.7168e-04, -2.3136e-04, -1.2064e-05],
         [-2.3742e-04,  4.5083e-04, -1.2933e-03, -4.4028e-04,  6.4168e-04,
          -8.2755e-04,  4.1233e-04, -1.1037e-04, -6.3762e-06]]]),
 'metrics.aspect_ratio': tensor([9.6474, 9.1036, 9.4119, 9.5872]),
 'metrics.aspect_ratio_over_edge_rotational_transform': tensor([  9.3211, 106.7966,  13.8752,   8.9834]),
 'metrics.average_triangularity': tensor([-0.6456, -0.5325, -0.6086, -0.6531]),
 'metrics.axis_magnetic_mirror_ratio': tensor([0.2823, 0.4224, 0.2821, 0.2213]),
 'metrics.axis_rotational_transform_over_n_field_periods': tensor([0.2333, 0.0818, 0.1887, 0.1509]),
 'metrics.edge_magnetic_mirror_ratio': tensor([0.4869, 0.5507, 0.3029, 0.2991]),
 'metrics.edge_rotational_transform_over_n_field_periods': tensor([0.3450, 0.0284, 0.2261, 0.3557]),
 'metrics.flux_compression_in_regions_of_bad_curvature': tensor([1.4084, 0.9789, 1.5391, 1.1138]),
 'metrics.max_elongation': tensor([6.7565, 6.9036, 5.6105, 5.8703]),
 'metrics.minimum_normalized_magnetic_gradient_scale_length': tensor([5.9777, 4.2971, 8.5928, 4.8531]),
 'metrics.qi': tensor([0.0148, 0.0157, 0.0016, 0.0248]),
 'metrics.vacuum_well': tensor([-0.2297, -0.1146, -0.0983, -0.1738])}
```
</details>
</div>

### Advanced Usage
For advanced manipulation and visualization of data contained in this dataset, install `constellaration` from [here](https://github.com/proximafusion/constellaration):
`pip install constellaration`

Load and instantiate plasma boundaries:
```python
from constellaration.geometry import surface_rz_fourier

ds = datasets.load_dataset(
    "proxima-fusion/constellaration",
    columns=["plasma_config_id", "boundary.json"],
    split="train",
    num_proc=4,
)
pandas_ds = ds.to_pandas().set_index("plasma_config_id")

plasma_config_id = "DQ4abEQAQjFPGp9nPQN9Vjf"
boundary_json = pandas_ds.loc[plasma_config_id]["boundary.json"]
boundary = surface_rz_fourier.SurfaceRZFourier.model_validate_json(boundary_json)
```
Plot boundary:
```python
from constellaration.utils import visualization

visualization.plot_surface(boundary).show()
visualization.plot_boundary(boundary).get_figure().show()
```
Boundary                   | Cross-sections
:-------------------------:|:-------------------------:
![Plot of plasma boundary](assets/boundary.png) | ![Plot of boundary cross-sections](assets/boundary_cross_sections.png)

Stream and instantiate the VMEC ideal MHD equilibria:
```python
from constellaration.mhd import vmec_utils

wout_ds = datasets.load_dataset(
    "proxima-fusion/constellaration",
    "vmecpp_wout",
    split="train",
    streaming=True,
)

row = next(wout_ds.__iter__())

vmecpp_wout_json = row["json"]
vmecpp_wout = vmec_utils.VmecppWOut.model_validate_json(vmecpp_wout_json)

# Fetch corresponding boundary

plasma_config_id = row["plasma_config_id"]
boundary_json = pandas_ds.loc[plasma_config_id]["boundary.json"]
boundary = surface_rz_fourier.SurfaceRZFourier.model_validate_json(boundary_json)
```
Plot flux surfaces:
```python
from constellaration.utils import visualization

visualization.plot_flux_surfaces(vmecpp_wout, boundary)
```
![Plot of flux surfaces](assets/flux_surfaces.png)
Save ideal MHD equilibrium to *VMEC2000 WOut* file:
```python
import pathlib
from constellaration.utils import file_exporter

file_exporter.to_vmec2000_wout_file(vmecpp_wout, pathlib.Path("vmec2000_wout.nc"))
```

## Dataset Creation

### Curation Rationale

<!-- Motivation for the creation of this dataset. -->

Wide-spread community progress is currently bottlenecked by the lack of standardized optimization problems with strong baselines and datasets that enable data-driven approaches, particularly for quasi-isodynamic (QI) stellarator configurations.

### Source Data

<!-- This section describes the source data (e.g. news text and headlines, social media posts, translated sentences, ...). -->

#### Data Collection and Processing

<!-- This section describes the data collection and processing process such as data selection criteria, filtering and normalization methods, tools and libraries used, etc. -->

We generated this dataset by sampling diverse QI fields and optimizing stellarator plasma boundaries to target key properties, using four different methods.

#### Who are the source data producers?

<!-- This section describes the people or systems who originally created the data. It should also include self-reported demographic or identity information for the source data creators if this information is available. -->

Proxima Fusion's stellarator optimization team.

#### Personal and Sensitive Information

<!-- State whether the dataset contains data that might be considered personal, sensitive, or private (e.g., data that reveals addresses, uniquely identifiable names or aliases, racial or ethnic origins, sexual orientations, religious beliefs, political opinions, financial or health data, etc.). If efforts were made to anonymize the data, describe the anonymization process. -->

The dataset contains no personally identifiable information.

## Citation

<!-- If there is a paper or blog post introducing the dataset, the APA and Bibtex information for that should go in this section. -->

**BibTeX:**

```
@article{cadena2025constellaration,
  title={ConStellaration: A dataset of QI-like stellarator plasma boundaries and optimization benchmarks},
  author={Cadena, Santiago A and Merlo, Andrea and Laude, Emanuel and Bauer, Alexander and Agrawal, Atul and Pascu, Maria and Savtchouk, Marija and Guiraud, Enrico and Bonauer, Lukas and Hudson, Stuart and others},
  journal={arXiv preprint arXiv:2506.19583},
  year={2025}
}
```

## Glossary

<!-- If relevant, include terms and calculations in this section that can help readers understand the dataset or dataset card. -->

| Abbreviation | Expansion |
| -------- | ------- |
| QI | Quasi-Isodynamic(ity) |
| MHD | Magneto-Hydrodynamic |
| [DESC](https://desc-docs.readthedocs.io/en/stable/) | Dynamical Equilibrium Solver for Confinement |
| VMEC/[VMEC++](https://github.com/proximafusion/vmecpp) | Variational Moments Equilibrium Code (Fortran/C++) |
| QP | Quasi-Poloidal |
| NAE | Near-Axis Expansion |
| NFP | Number of Field Periods |

## Dataset Card Authors

Alexander Bauer, Santiago A. Cadena

## Dataset Card Contact

[email protected]