alexbauer-pf commited on
Commit
b6b71f4
·
verified ·
1 Parent(s): 2a2ea95

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +109 -100
README.md CHANGED
@@ -513,10 +513,10 @@ configs:
513
  data_files:
514
  - split: train
515
  path: full_json/train-*
516
- - config_name: vmecpp_ideal_mhd_equilibria
517
  data_files:
518
  - split: train
519
- path: vmecpp_ideal_mhd_equilibria/part-*
520
  license: mit
521
  language:
522
  - en
@@ -597,18 +597,31 @@ Load the dataset and convert to a Pandas Dataframe (here, `torch` is used as an
597
  ```python
598
  import datasets
599
  import torch
600
- from torch.utils.data import DataLoader
601
 
602
- full_flat_ds = datasets.load_dataset("proxima-fusion/constellaration", "full_flat")["train"]
603
- full_flat_ds = full_flat_ds.select_columns([c for c in full_flat_ds.column_names
 
 
 
 
604
  if c.startswith("boundary.")
605
  or c.startswith("metrics.")])
 
 
 
 
 
 
 
 
 
 
606
 
607
  device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
608
- ds_torch = full_flat_ds.with_format("torch", device=device) # other options: "jax", "tensorflow" etc.
609
 
610
- for batch in DataLoader(ds_torch, batch_size=4, num_workers=4):
611
- print(batch)
612
  break
613
  ```
614
  <div style="margin-left: 1em;">
@@ -616,56 +629,7 @@ for batch in DataLoader(ds_torch, batch_size=4, num_workers=4):
616
  <summary>Output</summary>
617
 
618
  ```python
619
- {'metrics.id': ['DfpsEPzxXHTUgveVPNFVxyw',
620
- 'D6ydRp85utx9ZXqZVXbez8G',
621
- 'DLfSjAoEr26nCNet4S84XET',
622
- 'DBVNupAx3tW54uUz5bGQfyT'],
623
- 'metrics.qi': tensor([0.0101, 0.0007, 0.0249, 0.0148]),
624
- 'metrics.vacuum_well': tensor([-0.0216, -0.0756, -0.1321, -0.2297]),
625
- 'metrics.aspect_ratio': tensor([7.7955, 8.7009, 8.3073, 9.6474]),
626
- 'metrics.max_elongation': tensor([7.9947, 5.7292, 5.6427, 6.7565]),
627
- 'metrics.average_triangularity': tensor([ 0.6554, -0.6067, -0.3194, -0.5184]),
628
- 'metrics.axis_magnetic_mirror_ratio': tensor([0.2098, 0.2465, 0.5243, 0.2823]),
629
- 'metrics.edge_magnetic_mirror_ratio': tensor([0.3518, 0.2744, 0.7742, 0.4869]),
630
- 'metrics.aspect_ratio_over_edge_rotational_transform': tensor([ 4.7622, 39.3853, 7.4686, 9.3211]),
631
- 'metrics.flux_compression_in_regions_of_bad_curvature': tensor([2.0642, 1.6771, 1.6702, 1.4084]),
632
- 'metrics.axis_rotational_transform_over_n_field_periods': tensor([0.3285, 0.2195, 0.2377, 0.2333]),
633
- 'metrics.edge_rotational_transform_over_n_field_periods': tensor([0.3274, 0.1105, 0.2225, 0.3450]),
634
- 'metrics.minimum_normalized_magnetic_gradient_scale_length': tensor([5.0333, 4.4903, 2.7130, 5.9777]),
635
- 'boundary.r_cos': tensor([[[ 0.0000e+00, 0.0000e+00, 0.0000e+00, 0.0000e+00, 9.9949e-01,
636
- 7.6796e-04, -1.6605e-02, 5.5780e-04, 2.7140e-06],
637
- [ 9.0751e-04, -3.6262e-03, -2.5385e-02, -7.7356e-02, 2.1363e-01,
638
- -4.3046e-02, 7.0488e-03, -1.9437e-03, -1.4148e-04],
639
- [ 1.1192e-03, 6.2549e-03, 2.5220e-02, 2.2216e-02, -1.7012e-02,
640
- -1.9742e-03, 3.0245e-03, -8.5555e-04, 1.9455e-04],
641
- [-1.0992e-03, -3.0390e-03, -1.9017e-03, -5.2155e-03, -5.7048e-03,
642
- 2.0575e-03, -1.1494e-04, 1.6793e-04, -4.5783e-05],
643
- [ 2.3317e-04, -2.0280e-04, 4.0296e-04, 7.2199e-05, 1.3698e-04,
644
- -7.0448e-05, 2.9516e-04, -9.0838e-05, -6.2693e-06]],
645
-
646
- [[ 0.0000e+00, 0.0000e+00, 0.0000e+00, 0.0000e+00, 9.9334e-01,
647
- 9.5655e-02, -5.2197e-02, -9.8426e-03, -5.2107e-04],
648
- [-6.9068e-04, -2.0027e-04, 1.4961e-03, -4.8040e-02, 1.5062e-01,
649
- -8.6001e-04, 9.8727e-03, 1.3859e-03, -1.4257e-04],
650
- [ 2.1268e-03, -5.4152e-03, -1.2367e-02, -1.8891e-02, -2.2634e-02,
651
- 2.4878e-03, 1.7472e-03, 1.7854e-04, 1.5837e-04],
652
- [ 2.9863e-04, 1.3137e-03, -3.4623e-03, -5.5232e-03, -2.7664e-04,
653
- 2.9050e-03, 1.1163e-03, 3.4548e-04, 1.1368e-04],
654
- [ 7.7059e-05, -2.3845e-04, 4.4021e-04, 1.2212e-04, -2.1361e-04,
655
- -5.2118e-04, -1.5413e-04, -1.6513e-04, 1.4236e-06]],
656
-
657
- [[ 0.0000e+00, 0.0000e+00, 0.0000e+00, 0.0000e+00, 1.0000e+00,
658
- 9.7826e-02, -3.5796e-02, 4.3583e-04, 4.1021e-04],
659
- [ 1.8546e-03, 4.6983e-03, 3.2687e-02, 6.7351e-02, 6.6784e-02,
660
- -4.2107e-02, 1.4765e-02, -1.3257e-03, -1.3003e-04],
661
- [-9.6934e-04, -3.8986e-03, -1.0552e-02, -4.2583e-03, -8.3177e-03,
662
- -6.7278e-05, 3.3263e-04, -1.0408e-03, 2.2868e-04],
663
- [ 2.6668e-04, 6.7729e-04, 2.6165e-03, 1.2503e-03, -1.4094e-03,
664
- 9.9661e-04, -8.1563e-04, 4.4246e-04, -1.1460e-04],
665
- [ 3.5259e-05, -1.1595e-04, -1.3741e-04, 5.9814e-05, -5.7761e-04,
666
- 3.7886e-04, -1.9925e-04, 6.7852e-05, -3.0395e-05]],
667
-
668
- [[ 0.0000e+00, 0.0000e+00, 0.0000e+00, 0.0000e+00, 1.0000e+00,
669
  -6.5763e-02, -3.8500e-02, 2.2178e-03, 4.6007e-04],
670
  [-6.6648e-04, -1.0976e-02, 5.6475e-02, 1.4193e-02, 8.3476e-02,
671
  -4.6767e-02, -1.3679e-02, 3.9562e-03, 1.0087e-04],
@@ -674,41 +638,41 @@ for batch in DataLoader(ds_torch, batch_size=4, num_workers=4):
674
  [ 2.9056e-03, 1.6125e-04, -4.0626e-04, -8.0189e-03, 1.3228e-03,
675
  -5.3636e-04, -7.3536e-04, 3.4558e-05, 1.4845e-04],
676
  [-1.2475e-04, -4.9942e-04, -2.6091e-04, -5.6161e-04, 8.3187e-05,
677
- -1.2714e-04, -2.1174e-04, 4.1940e-06, -4.5643e-05]]]),
678
- 'boundary.z_sin': tensor([[[ 0.0000e+00, 0.0000e+00, 0.0000e+00, 0.0000e+00, 0.0000e+00,
679
- -1.9626e-01, 1.9675e-02, -2.2323e-03, 6.1945e-04],
680
- [-5.1524e-04, -3.8208e-03, -3.4611e-02, -7.3697e-02, -9.4725e-02,
681
- 1.4401e-02, -4.8538e-03, 1.1153e-03, 1.8119e-04],
682
- [ 8.8862e-04, 4.7645e-03, 1.4034e-02, -1.3992e-02, 1.4160e-02,
683
- 3.7312e-04, -7.9215e-04, -2.4587e-04, -4.4745e-05],
684
- [-1.1121e-03, -5.1679e-03, -3.6563e-03, 1.3666e-02, 1.2211e-03,
685
- -7.2069e-04, -6.1250e-04, 2.2509e-04, -5.6412e-05],
686
- [ 1.5477e-04, 6.2145e-04, 3.0922e-04, 3.2419e-05, 2.4620e-04,
687
- -6.8060e-04, 1.9615e-04, -5.1384e-05, 3.9863e-05]],
 
688
 
689
- [[ 0.0000e+00, 0.0000e+00, 0.0000e+00, 0.0000e+00, 0.0000e+00,
690
- -4.6604e-01, -4.8706e-02, -5.5774e-03, -2.5693e-03],
691
- [-2.2537e-03, -3.5303e-04, 1.5423e-02, -7.8331e-02, -1.0906e-01,
692
- 6.5595e-02, 8.1187e-04, -1.4336e-03, 1.4737e-03],
693
- [ 2.4240e-03, -1.4512e-03, 1.5746e-03, 1.0027e-02, -1.0979e-02,
694
- -7.1742e-03, -3.0459e-03, -1.4641e-03, 1.1328e-04],
695
- [ 1.3788e-03, 9.4350e-04, -8.9247e-03, 3.6596e-03, -5.4934e-04,
696
- 4.0136e-03, -2.9544e-04, 3.2837e-04, 1.0018e-04],
697
- [ 2.9187e-04, 7.0291e-04, -2.3282e-03, -4.5468e-04, 1.0021e-03,
698
- 6.0775e-04, -3.5128e-04, 5.7630e-05, -1.2590e-04]],
699
-
700
- [[ 0.0000e+00, 0.0000e+00, 0.0000e+00, 0.0000e+00, 0.0000e+00,
701
- 6.2592e-02, 1.8552e-02, 1.7140e-03, 3.3028e-05],
702
- [ 1.7765e-03, 1.2827e-02, 4.8849e-02, 6.8718e-03, -1.9011e-01,
703
- 7.3130e-02, -2.1610e-02, 3.1883e-03, -5.4797e-04],
704
- [-1.7520e-03, -1.0653e-02, -1.6171e-02, 4.8786e-03, 5.1656e-03,
705
- -3.2699e-03, 3.5506e-03, -6.1073e-05, -5.3629e-05],
706
- [-2.1859e-04, -1.4518e-03, -2.4928e-03, -3.6855e-03, -1.1030e-04,
707
- 2.5252e-04, 4.9944e-04, -3.5102e-04, 5.2259e-05],
708
- [ 9.7048e-05, -3.4866e-04, -6.1121e-05, 1.1803e-03, -4.2218e-04,
709
- 4.5423e-04, -2.6355e-04, 9.2855e-05, -4.8167e-06]],
710
 
711
- [[ 0.0000e+00, 0.0000e+00, 0.0000e+00, 0.0000e+00, 0.0000e+00,
 
 
 
 
 
 
 
 
 
 
712
  -1.4295e-02, 1.4929e-02, -6.6461e-03, -3.0652e-04],
713
  [ 9.6958e-05, -1.6067e-03, 5.7568e-02, -2.2848e-02, -1.6101e-01,
714
  1.6560e-02, 1.5032e-02, -1.2463e-03, -4.0128e-04],
@@ -717,11 +681,52 @@ for batch in DataLoader(ds_torch, batch_size=4, num_workers=4):
717
  [ 2.3465e-03, -2.4885e-03, -8.4212e-03, 8.9649e-03, -1.9880e-03,
718
  -1.6269e-03, 8.4700e-04, 3.7171e-04, -6.8400e-05],
719
  [-3.6228e-04, -1.8575e-04, 6.0890e-04, 5.0270e-04, -6.9953e-04,
720
- -7.6356e-05, 2.3796e-04, -3.2524e-05, 5.3396e-05]]]),
721
- 'boundary.r_sin': tensor([nan, nan, nan, nan]),
722
- 'boundary.z_cos': tensor([nan, nan, nan, nan]),
723
- 'boundary.n_field_periods': tensor([5., 2., 5., 3.]),
724
- 'boundary.is_stellarator_symmetric': tensor([True, True, True, True])}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
725
  ```
726
  </details>
727
  </div>
@@ -732,14 +737,18 @@ For advanced manipulation and visualization of data contained in this dataset, i
732
 
733
  Load and instantiate plasma boundaries:
734
  ```python
735
- import datasets
736
  from constellaration.geometry import surface_rz_fourier
737
 
738
- full_json_ds = datasets.load_dataset("proxima-fusion/constellaration", "full_json")["train"]
739
- full_json_df = full_json_ds.to_pandas().set_index("plasma_config_id")
 
 
 
 
 
740
 
741
  plasma_config_id = "DQ4abEQAQjFPGp9nPQN9Vjf"
742
- boundary_json = full_json_df.loc[plasma_config_id]["boundary.json"]
743
  boundary = surface_rz_fourier.SurfaceRZFourier.model_validate_json(boundary_json)
744
  ```
745
  Plot boundary:
 
513
  data_files:
514
  - split: train
515
  path: full_json/train-*
516
+ - config_name: vmecpp_wout
517
  data_files:
518
  - split: train
519
+ path: vmecpp_wout/part*
520
  license: mit
521
  language:
522
  - en
 
597
  ```python
598
  import datasets
599
  import torch
 
600
 
601
+ ds = datasets.load_dataset(
602
+ "proxima-fusion/constellaration",
603
+ split="train",
604
+ num_proc=4,
605
+ )
606
+ ds = ds.select_columns([c for c in ds.column_names
607
  if c.startswith("boundary.")
608
  or c.startswith("metrics.")])
609
+ ds = ds.filter(
610
+ lambda x: x == 3,
611
+ input_columns=["boundary.n_field_periods"],
612
+ num_proc=4,
613
+ )
614
+ ml_ds = ds.remove_columns([
615
+ "boundary.n_field_periods", "boundary.is_stellarator_symmetric", # all same value
616
+ "boundary.r_sin", "boundary.z_cos", # empty
617
+ "boundary.json", "metrics.json", "metrics.id", # not needed
618
+ ])
619
 
620
  device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
621
+ torch_ds = ml_ds.with_format("torch", device=device) # other options: "jax", "tensorflow" etc.
622
 
623
+ for batch in torch.utils.data.DataLoader(torch_ds, batch_size=4, num_workers=4):
624
+ pprint(batch)
625
  break
626
  ```
627
  <div style="margin-left: 1em;">
 
629
  <summary>Output</summary>
630
 
631
  ```python
632
+ {'boundary.r_cos': tensor([[[ 0.0000e+00, 0.0000e+00, 0.0000e+00, 0.0000e+00, 1.0000e+00,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
633
  -6.5763e-02, -3.8500e-02, 2.2178e-03, 4.6007e-04],
634
  [-6.6648e-04, -1.0976e-02, 5.6475e-02, 1.4193e-02, 8.3476e-02,
635
  -4.6767e-02, -1.3679e-02, 3.9562e-03, 1.0087e-04],
 
638
  [ 2.9056e-03, 1.6125e-04, -4.0626e-04, -8.0189e-03, 1.3228e-03,
639
  -5.3636e-04, -7.3536e-04, 3.4558e-05, 1.4845e-04],
640
  [-1.2475e-04, -4.9942e-04, -2.6091e-04, -5.6161e-04, 8.3187e-05,
641
+ -1.2714e-04, -2.1174e-04, 4.1940e-06, -4.5643e-05]],
642
+
643
+ [[ 0.0000e+00, 0.0000e+00, 0.0000e+00, 0.0000e+00, 9.9909e-01,
644
+ -6.8512e-02, -8.1567e-02, 2.5140e-02, -2.4035e-03],
645
+ [-3.4328e-03, 1.6768e-02, 1.2305e-02, -3.6708e-02, 1.0285e-01,
646
+ 1.1224e-02, -2.3418e-02, -5.4137e-04, 9.3986e-04],
647
+ [-2.8389e-03, 1.4652e-03, 1.0112e-03, 9.8102e-04, -2.3162e-02,
648
+ -6.1180e-03, 1.5327e-03, 9.4122e-04, -1.2781e-03],
649
+ [ 3.9240e-04, -2.3131e-04, 4.5690e-04, -3.8244e-03, -1.5314e-03,
650
+ 1.8863e-03, 1.1882e-03, -5.2338e-04, 2.6766e-04],
651
+ [-2.8441e-04, -3.4162e-04, 5.4013e-05, 7.4252e-04, 4.9895e-04,
652
+ -6.1110e-04, -8.7185e-04, -1.1714e-04, 9.9285e-08]],
653
 
654
+ [[ 0.0000e+00, 0.0000e+00, 0.0000e+00, 0.0000e+00, 1.0000e+00,
655
+ 6.9176e-02, -1.8489e-02, -6.5094e-03, -7.6238e-04],
656
+ [ 1.4062e-03, 4.2645e-03, -1.0647e-02, -8.1579e-02, 1.0522e-01,
657
+ 1.6914e-02, 6.5321e-04, 6.9397e-04, 2.0881e-04],
658
+ [-6.5155e-05, -1.2232e-03, -3.3660e-03, 9.8742e-03, -1.4611e-02,
659
+ 6.0985e-03, 9.5693e-04, -1.0049e-04, 5.4173e-05],
660
+ [-4.3969e-04, -5.1155e-04, 6.9611e-03, -2.8698e-04, -5.8589e-03,
661
+ -5.4844e-05, -7.3797e-04, -5.4401e-06, -3.3698e-05],
662
+ [-1.9741e-04, 1.0003e-04, -2.0176e-04, 4.9546e-04, -1.6201e-04,
663
+ -1.9169e-04, -3.9886e-04, 3.3773e-05, -3.5972e-05]],
 
 
 
 
 
 
 
 
 
 
 
664
 
665
+ [[ 0.0000e+00, 0.0000e+00, 0.0000e+00, 0.0000e+00, 1.0000e+00,
666
+ 1.1652e-01, -1.5593e-02, -1.0215e-02, -1.8656e-03],
667
+ [ 3.1697e-03, 2.1618e-02, 2.7072e-02, -2.4032e-02, 8.6125e-02,
668
+ -7.1168e-04, -1.2433e-02, -2.0902e-03, 1.5868e-04],
669
+ [-2.3877e-04, -4.9871e-03, -2.4145e-02, -2.1623e-02, -3.1477e-02,
670
+ -8.3460e-03, -8.8675e-04, -5.3290e-04, -2.2784e-04],
671
+ [-1.0006e-03, 2.1055e-05, -1.7186e-03, -5.2886e-03, 4.5186e-03,
672
+ -1.1530e-03, 6.2732e-05, 1.4212e-04, 4.3367e-05],
673
+ [ 7.8993e-05, -3.9503e-04, 1.5458e-03, -4.9707e-04, -3.9470e-04,
674
+ 6.0808e-04, -3.6447e-04, 1.2936e-04, 6.3461e-07]]]),
675
+ 'boundary.z_sin': tensor([[[ 0.0000e+00, 0.0000e+00, 0.0000e+00, 0.0000e+00, 0.0000e+00,
676
  -1.4295e-02, 1.4929e-02, -6.6461e-03, -3.0652e-04],
677
  [ 9.6958e-05, -1.6067e-03, 5.7568e-02, -2.2848e-02, -1.6101e-01,
678
  1.6560e-02, 1.5032e-02, -1.2463e-03, -4.0128e-04],
 
681
  [ 2.3465e-03, -2.4885e-03, -8.4212e-03, 8.9649e-03, -1.9880e-03,
682
  -1.6269e-03, 8.4700e-04, 3.7171e-04, -6.8400e-05],
683
  [-3.6228e-04, -1.8575e-04, 6.0890e-04, 5.0270e-04, -6.9953e-04,
684
+ -7.6356e-05, 2.3796e-04, -3.2524e-05, 5.3396e-05]],
685
+
686
+ [[ 0.0000e+00, 0.0000e+00, 0.0000e+00, 0.0000e+00, 0.0000e+00,
687
+ -8.5341e-02, 2.4825e-02, 8.0996e-03, -7.1501e-03],
688
+ [-1.3470e-03, 4.6367e-03, 4.1579e-02, -3.6802e-02, -1.5076e-01,
689
+ 7.1852e-02, -1.9793e-02, 8.2575e-03, -3.8958e-03],
690
+ [-2.3956e-03, -5.7497e-03, 5.8264e-03, 9.4471e-03, -3.5171e-03,
691
+ -1.0481e-02, -3.2885e-03, 4.0624e-03, 4.3130e-04],
692
+ [ 6.3403e-05, -9.2162e-04, -2.4765e-03, 5.4090e-04, 1.9999e-03,
693
+ -1.1500e-03, 2.7581e-03, -5.7271e-04, 3.0363e-04],
694
+ [ 4.6278e-04, 4.3696e-04, 8.0524e-05, -2.4660e-04, -2.3747e-04,
695
+ 5.5060e-05, -1.3221e-04, -5.4823e-05, 1.6025e-04]],
696
+
697
+ [[ 0.0000e+00, 0.0000e+00, 0.0000e+00, 0.0000e+00, 0.0000e+00,
698
+ -1.6090e-01, -1.4364e-02, 3.7923e-03, 1.8234e-03],
699
+ [ 1.2118e-03, 3.1261e-03, 3.2037e-03, -5.7482e-02, -1.5461e-01,
700
+ -1.8058e-03, -5.7149e-03, -7.4521e-04, 2.9463e-04],
701
+ [ 8.7049e-04, -3.2717e-04, -1.0188e-02, 1.1215e-02, -7.4697e-03,
702
+ -1.3592e-03, -1.4984e-03, -3.1362e-04, 1.5780e-06],
703
+ [ 1.2617e-04, -1.2257e-04, -6.9928e-04, 8.7431e-04, -2.5848e-03,
704
+ 1.2087e-03, -2.4723e-04, -1.6535e-05, -6.4372e-05],
705
+ [-4.3932e-04, -1.8130e-04, 7.4368e-04, -6.1396e-04, -4.1518e-04,
706
+ 4.8132e-04, 1.6036e-04, 5.3081e-05, 1.6636e-05]],
707
+
708
+ [[ 0.0000e+00, 0.0000e+00, 0.0000e+00, 0.0000e+00, 0.0000e+00,
709
+ -1.1264e-02, -1.8349e-03, 7.2464e-03, 2.3807e-03],
710
+ [ 3.2969e-03, 1.9590e-02, 2.8355e-02, -1.0493e-02, -1.3216e-01,
711
+ 1.7804e-02, 7.9768e-03, 2.1362e-03, -6.9118e-04],
712
+ [-5.2572e-04, -4.1409e-03, -3.6560e-02, 2.1644e-02, 1.6418e-02,
713
+ 9.3557e-03, 3.3846e-03, 7.4172e-05, 1.8406e-04],
714
+ [-1.4907e-03, 2.0496e-03, -4.8581e-03, 3.5471e-03, -2.9191e-03,
715
+ -1.5056e-03, 7.7168e-04, -2.3136e-04, -1.2064e-05],
716
+ [-2.3742e-04, 4.5083e-04, -1.2933e-03, -4.4028e-04, 6.4168e-04,
717
+ -8.2755e-04, 4.1233e-04, -1.1037e-04, -6.3762e-06]]]),
718
+ 'metrics.aspect_ratio': tensor([9.6474, 9.1036, 9.4119, 9.5872]),
719
+ 'metrics.aspect_ratio_over_edge_rotational_transform': tensor([ 9.3211, 106.7966, 13.8752, 8.9834]),
720
+ 'metrics.average_triangularity': tensor([-0.6456, -0.5325, -0.6086, -0.6531]),
721
+ 'metrics.axis_magnetic_mirror_ratio': tensor([0.2823, 0.4224, 0.2821, 0.2213]),
722
+ 'metrics.axis_rotational_transform_over_n_field_periods': tensor([0.2333, 0.0818, 0.1887, 0.1509]),
723
+ 'metrics.edge_magnetic_mirror_ratio': tensor([0.4869, 0.5507, 0.3029, 0.2991]),
724
+ 'metrics.edge_rotational_transform_over_n_field_periods': tensor([0.3450, 0.0284, 0.2261, 0.3557]),
725
+ 'metrics.flux_compression_in_regions_of_bad_curvature': tensor([1.4084, 0.9789, 1.5391, 1.1138]),
726
+ 'metrics.max_elongation': tensor([6.7565, 6.9036, 5.6105, 5.8703]),
727
+ 'metrics.minimum_normalized_magnetic_gradient_scale_length': tensor([5.9777, 4.2971, 8.5928, 4.8531]),
728
+ 'metrics.qi': tensor([0.0148, 0.0157, 0.0016, 0.0248]),
729
+ 'metrics.vacuum_well': tensor([-0.2297, -0.1146, -0.0983, -0.1738])}
730
  ```
731
  </details>
732
  </div>
 
737
 
738
  Load and instantiate plasma boundaries:
739
  ```python
 
740
  from constellaration.geometry import surface_rz_fourier
741
 
742
+ ds = datasets.load_dataset(
743
+ "proxima-fusion/constellaration",
744
+ columns=["plasma_config_id", "boundary.json"],
745
+ split="train",
746
+ num_proc=4,
747
+ )
748
+ pandas_ds = ds.to_pandas().set_index("plasma_config_id")
749
 
750
  plasma_config_id = "DQ4abEQAQjFPGp9nPQN9Vjf"
751
+ boundary_json = pandas_ds.loc[plasma_config_id]["boundary.json"]
752
  boundary = surface_rz_fourier.SurfaceRZFourier.model_validate_json(boundary_json)
753
  ```
754
  Plot boundary: