Update README.md
Browse files
README.md
CHANGED
@@ -513,10 +513,10 @@ configs:
|
|
513 |
data_files:
|
514 |
- split: train
|
515 |
path: full_json/train-*
|
516 |
-
- config_name:
|
517 |
data_files:
|
518 |
- split: train
|
519 |
-
path:
|
520 |
license: mit
|
521 |
language:
|
522 |
- en
|
@@ -597,18 +597,31 @@ Load the dataset and convert to a Pandas Dataframe (here, `torch` is used as an
|
|
597 |
```python
|
598 |
import datasets
|
599 |
import torch
|
600 |
-
from torch.utils.data import DataLoader
|
601 |
|
602 |
-
|
603 |
-
|
|
|
|
|
|
|
|
|
604 |
if c.startswith("boundary.")
|
605 |
or c.startswith("metrics.")])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
606 |
|
607 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
608 |
-
|
609 |
|
610 |
-
for batch in DataLoader(
|
611 |
-
|
612 |
break
|
613 |
```
|
614 |
<div style="margin-left: 1em;">
|
@@ -616,56 +629,7 @@ for batch in DataLoader(ds_torch, batch_size=4, num_workers=4):
|
|
616 |
<summary>Output</summary>
|
617 |
|
618 |
```python
|
619 |
-
{'
|
620 |
-
'D6ydRp85utx9ZXqZVXbez8G',
|
621 |
-
'DLfSjAoEr26nCNet4S84XET',
|
622 |
-
'DBVNupAx3tW54uUz5bGQfyT'],
|
623 |
-
'metrics.qi': tensor([0.0101, 0.0007, 0.0249, 0.0148]),
|
624 |
-
'metrics.vacuum_well': tensor([-0.0216, -0.0756, -0.1321, -0.2297]),
|
625 |
-
'metrics.aspect_ratio': tensor([7.7955, 8.7009, 8.3073, 9.6474]),
|
626 |
-
'metrics.max_elongation': tensor([7.9947, 5.7292, 5.6427, 6.7565]),
|
627 |
-
'metrics.average_triangularity': tensor([ 0.6554, -0.6067, -0.3194, -0.5184]),
|
628 |
-
'metrics.axis_magnetic_mirror_ratio': tensor([0.2098, 0.2465, 0.5243, 0.2823]),
|
629 |
-
'metrics.edge_magnetic_mirror_ratio': tensor([0.3518, 0.2744, 0.7742, 0.4869]),
|
630 |
-
'metrics.aspect_ratio_over_edge_rotational_transform': tensor([ 4.7622, 39.3853, 7.4686, 9.3211]),
|
631 |
-
'metrics.flux_compression_in_regions_of_bad_curvature': tensor([2.0642, 1.6771, 1.6702, 1.4084]),
|
632 |
-
'metrics.axis_rotational_transform_over_n_field_periods': tensor([0.3285, 0.2195, 0.2377, 0.2333]),
|
633 |
-
'metrics.edge_rotational_transform_over_n_field_periods': tensor([0.3274, 0.1105, 0.2225, 0.3450]),
|
634 |
-
'metrics.minimum_normalized_magnetic_gradient_scale_length': tensor([5.0333, 4.4903, 2.7130, 5.9777]),
|
635 |
-
'boundary.r_cos': tensor([[[ 0.0000e+00, 0.0000e+00, 0.0000e+00, 0.0000e+00, 9.9949e-01,
|
636 |
-
7.6796e-04, -1.6605e-02, 5.5780e-04, 2.7140e-06],
|
637 |
-
[ 9.0751e-04, -3.6262e-03, -2.5385e-02, -7.7356e-02, 2.1363e-01,
|
638 |
-
-4.3046e-02, 7.0488e-03, -1.9437e-03, -1.4148e-04],
|
639 |
-
[ 1.1192e-03, 6.2549e-03, 2.5220e-02, 2.2216e-02, -1.7012e-02,
|
640 |
-
-1.9742e-03, 3.0245e-03, -8.5555e-04, 1.9455e-04],
|
641 |
-
[-1.0992e-03, -3.0390e-03, -1.9017e-03, -5.2155e-03, -5.7048e-03,
|
642 |
-
2.0575e-03, -1.1494e-04, 1.6793e-04, -4.5783e-05],
|
643 |
-
[ 2.3317e-04, -2.0280e-04, 4.0296e-04, 7.2199e-05, 1.3698e-04,
|
644 |
-
-7.0448e-05, 2.9516e-04, -9.0838e-05, -6.2693e-06]],
|
645 |
-
|
646 |
-
[[ 0.0000e+00, 0.0000e+00, 0.0000e+00, 0.0000e+00, 9.9334e-01,
|
647 |
-
9.5655e-02, -5.2197e-02, -9.8426e-03, -5.2107e-04],
|
648 |
-
[-6.9068e-04, -2.0027e-04, 1.4961e-03, -4.8040e-02, 1.5062e-01,
|
649 |
-
-8.6001e-04, 9.8727e-03, 1.3859e-03, -1.4257e-04],
|
650 |
-
[ 2.1268e-03, -5.4152e-03, -1.2367e-02, -1.8891e-02, -2.2634e-02,
|
651 |
-
2.4878e-03, 1.7472e-03, 1.7854e-04, 1.5837e-04],
|
652 |
-
[ 2.9863e-04, 1.3137e-03, -3.4623e-03, -5.5232e-03, -2.7664e-04,
|
653 |
-
2.9050e-03, 1.1163e-03, 3.4548e-04, 1.1368e-04],
|
654 |
-
[ 7.7059e-05, -2.3845e-04, 4.4021e-04, 1.2212e-04, -2.1361e-04,
|
655 |
-
-5.2118e-04, -1.5413e-04, -1.6513e-04, 1.4236e-06]],
|
656 |
-
|
657 |
-
[[ 0.0000e+00, 0.0000e+00, 0.0000e+00, 0.0000e+00, 1.0000e+00,
|
658 |
-
9.7826e-02, -3.5796e-02, 4.3583e-04, 4.1021e-04],
|
659 |
-
[ 1.8546e-03, 4.6983e-03, 3.2687e-02, 6.7351e-02, 6.6784e-02,
|
660 |
-
-4.2107e-02, 1.4765e-02, -1.3257e-03, -1.3003e-04],
|
661 |
-
[-9.6934e-04, -3.8986e-03, -1.0552e-02, -4.2583e-03, -8.3177e-03,
|
662 |
-
-6.7278e-05, 3.3263e-04, -1.0408e-03, 2.2868e-04],
|
663 |
-
[ 2.6668e-04, 6.7729e-04, 2.6165e-03, 1.2503e-03, -1.4094e-03,
|
664 |
-
9.9661e-04, -8.1563e-04, 4.4246e-04, -1.1460e-04],
|
665 |
-
[ 3.5259e-05, -1.1595e-04, -1.3741e-04, 5.9814e-05, -5.7761e-04,
|
666 |
-
3.7886e-04, -1.9925e-04, 6.7852e-05, -3.0395e-05]],
|
667 |
-
|
668 |
-
[[ 0.0000e+00, 0.0000e+00, 0.0000e+00, 0.0000e+00, 1.0000e+00,
|
669 |
-6.5763e-02, -3.8500e-02, 2.2178e-03, 4.6007e-04],
|
670 |
[-6.6648e-04, -1.0976e-02, 5.6475e-02, 1.4193e-02, 8.3476e-02,
|
671 |
-4.6767e-02, -1.3679e-02, 3.9562e-03, 1.0087e-04],
|
@@ -674,41 +638,41 @@ for batch in DataLoader(ds_torch, batch_size=4, num_workers=4):
|
|
674 |
[ 2.9056e-03, 1.6125e-04, -4.0626e-04, -8.0189e-03, 1.3228e-03,
|
675 |
-5.3636e-04, -7.3536e-04, 3.4558e-05, 1.4845e-04],
|
676 |
[-1.2475e-04, -4.9942e-04, -2.6091e-04, -5.6161e-04, 8.3187e-05,
|
677 |
-
-1.2714e-04, -2.1174e-04, 4.1940e-06, -4.5643e-05]]
|
678 |
-
|
679 |
-
|
680 |
-
|
681 |
-
|
682 |
-
|
683 |
-
|
684 |
-
|
685 |
-
|
686 |
-
|
687 |
-
|
|
|
688 |
|
689 |
-
[[ 0.0000e+00, 0.0000e+00, 0.0000e+00, 0.0000e+00,
|
690 |
-
|
691 |
-
[-
|
692 |
-
|
693 |
-
[
|
694 |
-
|
695 |
-
[
|
696 |
-
|
697 |
-
[
|
698 |
-
|
699 |
-
|
700 |
-
[[ 0.0000e+00, 0.0000e+00, 0.0000e+00, 0.0000e+00, 0.0000e+00,
|
701 |
-
6.2592e-02, 1.8552e-02, 1.7140e-03, 3.3028e-05],
|
702 |
-
[ 1.7765e-03, 1.2827e-02, 4.8849e-02, 6.8718e-03, -1.9011e-01,
|
703 |
-
7.3130e-02, -2.1610e-02, 3.1883e-03, -5.4797e-04],
|
704 |
-
[-1.7520e-03, -1.0653e-02, -1.6171e-02, 4.8786e-03, 5.1656e-03,
|
705 |
-
-3.2699e-03, 3.5506e-03, -6.1073e-05, -5.3629e-05],
|
706 |
-
[-2.1859e-04, -1.4518e-03, -2.4928e-03, -3.6855e-03, -1.1030e-04,
|
707 |
-
2.5252e-04, 4.9944e-04, -3.5102e-04, 5.2259e-05],
|
708 |
-
[ 9.7048e-05, -3.4866e-04, -6.1121e-05, 1.1803e-03, -4.2218e-04,
|
709 |
-
4.5423e-04, -2.6355e-04, 9.2855e-05, -4.8167e-06]],
|
710 |
|
711 |
-
[[ 0.0000e+00, 0.0000e+00, 0.0000e+00, 0.0000e+00,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
712 |
-1.4295e-02, 1.4929e-02, -6.6461e-03, -3.0652e-04],
|
713 |
[ 9.6958e-05, -1.6067e-03, 5.7568e-02, -2.2848e-02, -1.6101e-01,
|
714 |
1.6560e-02, 1.5032e-02, -1.2463e-03, -4.0128e-04],
|
@@ -717,11 +681,52 @@ for batch in DataLoader(ds_torch, batch_size=4, num_workers=4):
|
|
717 |
[ 2.3465e-03, -2.4885e-03, -8.4212e-03, 8.9649e-03, -1.9880e-03,
|
718 |
-1.6269e-03, 8.4700e-04, 3.7171e-04, -6.8400e-05],
|
719 |
[-3.6228e-04, -1.8575e-04, 6.0890e-04, 5.0270e-04, -6.9953e-04,
|
720 |
-
-7.6356e-05, 2.3796e-04, -3.2524e-05, 5.3396e-05]]
|
721 |
-
|
722 |
-
|
723 |
-
|
724 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
725 |
```
|
726 |
</details>
|
727 |
</div>
|
@@ -732,14 +737,18 @@ For advanced manipulation and visualization of data contained in this dataset, i
|
|
732 |
|
733 |
Load and instantiate plasma boundaries:
|
734 |
```python
|
735 |
-
import datasets
|
736 |
from constellaration.geometry import surface_rz_fourier
|
737 |
|
738 |
-
|
739 |
-
|
|
|
|
|
|
|
|
|
|
|
740 |
|
741 |
plasma_config_id = "DQ4abEQAQjFPGp9nPQN9Vjf"
|
742 |
-
boundary_json =
|
743 |
boundary = surface_rz_fourier.SurfaceRZFourier.model_validate_json(boundary_json)
|
744 |
```
|
745 |
Plot boundary:
|
|
|
513 |
data_files:
|
514 |
- split: train
|
515 |
path: full_json/train-*
|
516 |
+
- config_name: vmecpp_wout
|
517 |
data_files:
|
518 |
- split: train
|
519 |
+
path: vmecpp_wout/part*
|
520 |
license: mit
|
521 |
language:
|
522 |
- en
|
|
|
597 |
```python
|
598 |
import datasets
|
599 |
import torch
|
|
|
600 |
|
601 |
+
ds = datasets.load_dataset(
|
602 |
+
"proxima-fusion/constellaration",
|
603 |
+
split="train",
|
604 |
+
num_proc=4,
|
605 |
+
)
|
606 |
+
ds = ds.select_columns([c for c in ds.column_names
|
607 |
if c.startswith("boundary.")
|
608 |
or c.startswith("metrics.")])
|
609 |
+
ds = ds.filter(
|
610 |
+
lambda x: x == 3,
|
611 |
+
input_columns=["boundary.n_field_periods"],
|
612 |
+
num_proc=4,
|
613 |
+
)
|
614 |
+
ml_ds = ds.remove_columns([
|
615 |
+
"boundary.n_field_periods", "boundary.is_stellarator_symmetric", # all same value
|
616 |
+
"boundary.r_sin", "boundary.z_cos", # empty
|
617 |
+
"boundary.json", "metrics.json", "metrics.id", # not needed
|
618 |
+
])
|
619 |
|
620 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
621 |
+
torch_ds = ml_ds.with_format("torch", device=device) # other options: "jax", "tensorflow" etc.
|
622 |
|
623 |
+
for batch in torch.utils.data.DataLoader(torch_ds, batch_size=4, num_workers=4):
|
624 |
+
pprint(batch)
|
625 |
break
|
626 |
```
|
627 |
<div style="margin-left: 1em;">
|
|
|
629 |
<summary>Output</summary>
|
630 |
|
631 |
```python
|
632 |
+
{'boundary.r_cos': tensor([[[ 0.0000e+00, 0.0000e+00, 0.0000e+00, 0.0000e+00, 1.0000e+00,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
633 |
-6.5763e-02, -3.8500e-02, 2.2178e-03, 4.6007e-04],
|
634 |
[-6.6648e-04, -1.0976e-02, 5.6475e-02, 1.4193e-02, 8.3476e-02,
|
635 |
-4.6767e-02, -1.3679e-02, 3.9562e-03, 1.0087e-04],
|
|
|
638 |
[ 2.9056e-03, 1.6125e-04, -4.0626e-04, -8.0189e-03, 1.3228e-03,
|
639 |
-5.3636e-04, -7.3536e-04, 3.4558e-05, 1.4845e-04],
|
640 |
[-1.2475e-04, -4.9942e-04, -2.6091e-04, -5.6161e-04, 8.3187e-05,
|
641 |
+
-1.2714e-04, -2.1174e-04, 4.1940e-06, -4.5643e-05]],
|
642 |
+
|
643 |
+
[[ 0.0000e+00, 0.0000e+00, 0.0000e+00, 0.0000e+00, 9.9909e-01,
|
644 |
+
-6.8512e-02, -8.1567e-02, 2.5140e-02, -2.4035e-03],
|
645 |
+
[-3.4328e-03, 1.6768e-02, 1.2305e-02, -3.6708e-02, 1.0285e-01,
|
646 |
+
1.1224e-02, -2.3418e-02, -5.4137e-04, 9.3986e-04],
|
647 |
+
[-2.8389e-03, 1.4652e-03, 1.0112e-03, 9.8102e-04, -2.3162e-02,
|
648 |
+
-6.1180e-03, 1.5327e-03, 9.4122e-04, -1.2781e-03],
|
649 |
+
[ 3.9240e-04, -2.3131e-04, 4.5690e-04, -3.8244e-03, -1.5314e-03,
|
650 |
+
1.8863e-03, 1.1882e-03, -5.2338e-04, 2.6766e-04],
|
651 |
+
[-2.8441e-04, -3.4162e-04, 5.4013e-05, 7.4252e-04, 4.9895e-04,
|
652 |
+
-6.1110e-04, -8.7185e-04, -1.1714e-04, 9.9285e-08]],
|
653 |
|
654 |
+
[[ 0.0000e+00, 0.0000e+00, 0.0000e+00, 0.0000e+00, 1.0000e+00,
|
655 |
+
6.9176e-02, -1.8489e-02, -6.5094e-03, -7.6238e-04],
|
656 |
+
[ 1.4062e-03, 4.2645e-03, -1.0647e-02, -8.1579e-02, 1.0522e-01,
|
657 |
+
1.6914e-02, 6.5321e-04, 6.9397e-04, 2.0881e-04],
|
658 |
+
[-6.5155e-05, -1.2232e-03, -3.3660e-03, 9.8742e-03, -1.4611e-02,
|
659 |
+
6.0985e-03, 9.5693e-04, -1.0049e-04, 5.4173e-05],
|
660 |
+
[-4.3969e-04, -5.1155e-04, 6.9611e-03, -2.8698e-04, -5.8589e-03,
|
661 |
+
-5.4844e-05, -7.3797e-04, -5.4401e-06, -3.3698e-05],
|
662 |
+
[-1.9741e-04, 1.0003e-04, -2.0176e-04, 4.9546e-04, -1.6201e-04,
|
663 |
+
-1.9169e-04, -3.9886e-04, 3.3773e-05, -3.5972e-05]],
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
664 |
|
665 |
+
[[ 0.0000e+00, 0.0000e+00, 0.0000e+00, 0.0000e+00, 1.0000e+00,
|
666 |
+
1.1652e-01, -1.5593e-02, -1.0215e-02, -1.8656e-03],
|
667 |
+
[ 3.1697e-03, 2.1618e-02, 2.7072e-02, -2.4032e-02, 8.6125e-02,
|
668 |
+
-7.1168e-04, -1.2433e-02, -2.0902e-03, 1.5868e-04],
|
669 |
+
[-2.3877e-04, -4.9871e-03, -2.4145e-02, -2.1623e-02, -3.1477e-02,
|
670 |
+
-8.3460e-03, -8.8675e-04, -5.3290e-04, -2.2784e-04],
|
671 |
+
[-1.0006e-03, 2.1055e-05, -1.7186e-03, -5.2886e-03, 4.5186e-03,
|
672 |
+
-1.1530e-03, 6.2732e-05, 1.4212e-04, 4.3367e-05],
|
673 |
+
[ 7.8993e-05, -3.9503e-04, 1.5458e-03, -4.9707e-04, -3.9470e-04,
|
674 |
+
6.0808e-04, -3.6447e-04, 1.2936e-04, 6.3461e-07]]]),
|
675 |
+
'boundary.z_sin': tensor([[[ 0.0000e+00, 0.0000e+00, 0.0000e+00, 0.0000e+00, 0.0000e+00,
|
676 |
-1.4295e-02, 1.4929e-02, -6.6461e-03, -3.0652e-04],
|
677 |
[ 9.6958e-05, -1.6067e-03, 5.7568e-02, -2.2848e-02, -1.6101e-01,
|
678 |
1.6560e-02, 1.5032e-02, -1.2463e-03, -4.0128e-04],
|
|
|
681 |
[ 2.3465e-03, -2.4885e-03, -8.4212e-03, 8.9649e-03, -1.9880e-03,
|
682 |
-1.6269e-03, 8.4700e-04, 3.7171e-04, -6.8400e-05],
|
683 |
[-3.6228e-04, -1.8575e-04, 6.0890e-04, 5.0270e-04, -6.9953e-04,
|
684 |
+
-7.6356e-05, 2.3796e-04, -3.2524e-05, 5.3396e-05]],
|
685 |
+
|
686 |
+
[[ 0.0000e+00, 0.0000e+00, 0.0000e+00, 0.0000e+00, 0.0000e+00,
|
687 |
+
-8.5341e-02, 2.4825e-02, 8.0996e-03, -7.1501e-03],
|
688 |
+
[-1.3470e-03, 4.6367e-03, 4.1579e-02, -3.6802e-02, -1.5076e-01,
|
689 |
+
7.1852e-02, -1.9793e-02, 8.2575e-03, -3.8958e-03],
|
690 |
+
[-2.3956e-03, -5.7497e-03, 5.8264e-03, 9.4471e-03, -3.5171e-03,
|
691 |
+
-1.0481e-02, -3.2885e-03, 4.0624e-03, 4.3130e-04],
|
692 |
+
[ 6.3403e-05, -9.2162e-04, -2.4765e-03, 5.4090e-04, 1.9999e-03,
|
693 |
+
-1.1500e-03, 2.7581e-03, -5.7271e-04, 3.0363e-04],
|
694 |
+
[ 4.6278e-04, 4.3696e-04, 8.0524e-05, -2.4660e-04, -2.3747e-04,
|
695 |
+
5.5060e-05, -1.3221e-04, -5.4823e-05, 1.6025e-04]],
|
696 |
+
|
697 |
+
[[ 0.0000e+00, 0.0000e+00, 0.0000e+00, 0.0000e+00, 0.0000e+00,
|
698 |
+
-1.6090e-01, -1.4364e-02, 3.7923e-03, 1.8234e-03],
|
699 |
+
[ 1.2118e-03, 3.1261e-03, 3.2037e-03, -5.7482e-02, -1.5461e-01,
|
700 |
+
-1.8058e-03, -5.7149e-03, -7.4521e-04, 2.9463e-04],
|
701 |
+
[ 8.7049e-04, -3.2717e-04, -1.0188e-02, 1.1215e-02, -7.4697e-03,
|
702 |
+
-1.3592e-03, -1.4984e-03, -3.1362e-04, 1.5780e-06],
|
703 |
+
[ 1.2617e-04, -1.2257e-04, -6.9928e-04, 8.7431e-04, -2.5848e-03,
|
704 |
+
1.2087e-03, -2.4723e-04, -1.6535e-05, -6.4372e-05],
|
705 |
+
[-4.3932e-04, -1.8130e-04, 7.4368e-04, -6.1396e-04, -4.1518e-04,
|
706 |
+
4.8132e-04, 1.6036e-04, 5.3081e-05, 1.6636e-05]],
|
707 |
+
|
708 |
+
[[ 0.0000e+00, 0.0000e+00, 0.0000e+00, 0.0000e+00, 0.0000e+00,
|
709 |
+
-1.1264e-02, -1.8349e-03, 7.2464e-03, 2.3807e-03],
|
710 |
+
[ 3.2969e-03, 1.9590e-02, 2.8355e-02, -1.0493e-02, -1.3216e-01,
|
711 |
+
1.7804e-02, 7.9768e-03, 2.1362e-03, -6.9118e-04],
|
712 |
+
[-5.2572e-04, -4.1409e-03, -3.6560e-02, 2.1644e-02, 1.6418e-02,
|
713 |
+
9.3557e-03, 3.3846e-03, 7.4172e-05, 1.8406e-04],
|
714 |
+
[-1.4907e-03, 2.0496e-03, -4.8581e-03, 3.5471e-03, -2.9191e-03,
|
715 |
+
-1.5056e-03, 7.7168e-04, -2.3136e-04, -1.2064e-05],
|
716 |
+
[-2.3742e-04, 4.5083e-04, -1.2933e-03, -4.4028e-04, 6.4168e-04,
|
717 |
+
-8.2755e-04, 4.1233e-04, -1.1037e-04, -6.3762e-06]]]),
|
718 |
+
'metrics.aspect_ratio': tensor([9.6474, 9.1036, 9.4119, 9.5872]),
|
719 |
+
'metrics.aspect_ratio_over_edge_rotational_transform': tensor([ 9.3211, 106.7966, 13.8752, 8.9834]),
|
720 |
+
'metrics.average_triangularity': tensor([-0.6456, -0.5325, -0.6086, -0.6531]),
|
721 |
+
'metrics.axis_magnetic_mirror_ratio': tensor([0.2823, 0.4224, 0.2821, 0.2213]),
|
722 |
+
'metrics.axis_rotational_transform_over_n_field_periods': tensor([0.2333, 0.0818, 0.1887, 0.1509]),
|
723 |
+
'metrics.edge_magnetic_mirror_ratio': tensor([0.4869, 0.5507, 0.3029, 0.2991]),
|
724 |
+
'metrics.edge_rotational_transform_over_n_field_periods': tensor([0.3450, 0.0284, 0.2261, 0.3557]),
|
725 |
+
'metrics.flux_compression_in_regions_of_bad_curvature': tensor([1.4084, 0.9789, 1.5391, 1.1138]),
|
726 |
+
'metrics.max_elongation': tensor([6.7565, 6.9036, 5.6105, 5.8703]),
|
727 |
+
'metrics.minimum_normalized_magnetic_gradient_scale_length': tensor([5.9777, 4.2971, 8.5928, 4.8531]),
|
728 |
+
'metrics.qi': tensor([0.0148, 0.0157, 0.0016, 0.0248]),
|
729 |
+
'metrics.vacuum_well': tensor([-0.2297, -0.1146, -0.0983, -0.1738])}
|
730 |
```
|
731 |
</details>
|
732 |
</div>
|
|
|
737 |
|
738 |
Load and instantiate plasma boundaries:
|
739 |
```python
|
|
|
740 |
from constellaration.geometry import surface_rz_fourier
|
741 |
|
742 |
+
ds = datasets.load_dataset(
|
743 |
+
"proxima-fusion/constellaration",
|
744 |
+
columns=["plasma_config_id", "boundary.json"],
|
745 |
+
split="train",
|
746 |
+
num_proc=4,
|
747 |
+
)
|
748 |
+
pandas_ds = ds.to_pandas().set_index("plasma_config_id")
|
749 |
|
750 |
plasma_config_id = "DQ4abEQAQjFPGp9nPQN9Vjf"
|
751 |
+
boundary_json = pandas_ds.loc[plasma_config_id]["boundary.json"]
|
752 |
boundary = surface_rz_fourier.SurfaceRZFourier.model_validate_json(boundary_json)
|
753 |
```
|
754 |
Plot boundary:
|