alexbauer-pf commited on
Commit
7d0be5a
·
verified ·
1 Parent(s): 78eb1e3

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +334 -0
README.md CHANGED
@@ -456,3 +456,337 @@ pretty_name: ConStellaration
456
  size_categories:
457
  - 10K<n<100K
458
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
456
  size_categories:
457
  - 10K<n<100K
458
  ---
459
+ # Dataset Card for ConStellaration
460
+
461
+ <!-- Provide a quick summary of the dataset. -->
462
+
463
+ A dataset of diverse quasi-isodynamic (QI) stellarator boundary shapes with corresponding performance metrics and ideal magneto-hydrodynamic (MHD) equilibria, as well as settings for their generation.
464
+
465
+ ## Dataset Details
466
+
467
+ ### Dataset Description
468
+
469
+ <!-- Provide a longer summary of what this dataset is. -->
470
+
471
+ Stellarators are magnetic confinement devices that are being pursued to deliver steady-state carbon-free fusion energy. Their design involves a high-dimensional, constrained optimization problem that requires expensive physics simulations and significant domain expertise. Specifically, QI-stellarators are seen as a promising path to commercial fusion due to their intrinsic avoidance of current-driven disruptions.
472
+ With the release of this dataset, we aim to lower the barrier for optimization and machine learning researchers to contribute to stellarator design, and to accelerate cross-disciplinary progress toward bringing fusion energy to the grid.
473
+
474
+ - **Curated by:** Proxima Fusion
475
+ - **License:** MIT
476
+
477
+ ### Dataset Sources
478
+
479
+ <!-- Provide the basic links for the dataset. -->
480
+
481
+ - **Repository:** https://huggingface.co/datasets/proxima-fusion/constellaration
482
+ - **Paper:** [not published yet]
483
+ - **Code:** https://github.com/proximafusion/constellaration
484
+
485
+ ## Uses
486
+
487
+ ## Basic Usage
488
+ Load the dataset and convert to a Pandas Dataframe:
489
+ ```python
490
+ import datasets
491
+
492
+ full_flat_ds = datasets.load_dataset("proxima-fusion/constellaration", "full_flat")["train"]
493
+ full_flat_df = full_flat_ds.to_pandas().set_index("plasma_config_id")
494
+
495
+ for column in full_flat_df.columns:
496
+ print(column)
497
+ ```
498
+ <details>
499
+ <summary>Output</summary>
500
+
501
+ ```python
502
+ boundary.n_field_periods
503
+ boundary.is_stellarator_symmetric
504
+ boundary.r_cos(0, 0)
505
+ boundary.r_cos(0, 1)
506
+ boundary.r_cos(0, 2)
507
+ boundary.r_cos(0, 3)
508
+ boundary.r_cos(0, 4)
509
+ boundary.r_cos(1, -4)
510
+ boundary.r_cos(1, -3)
511
+ boundary.r_cos(1, -2)
512
+ boundary.r_cos(1, -1)
513
+ boundary.r_cos(1, 0)
514
+ boundary.r_cos(1, 1)
515
+ boundary.r_cos(1, 2)
516
+ boundary.r_cos(1, 3)
517
+ boundary.r_cos(1, 4)
518
+ boundary.r_cos(2, -4)
519
+ boundary.r_cos(2, -3)
520
+ boundary.r_cos(2, -2)
521
+ boundary.r_cos(2, -1)
522
+ boundary.r_cos(2, 0)
523
+ boundary.r_cos(2, 1)
524
+ boundary.r_cos(2, 2)
525
+ boundary.r_cos(2, 3)
526
+ boundary.r_cos(2, 4)
527
+ boundary.r_cos(3, -4)
528
+ boundary.r_cos(3, -3)
529
+ boundary.r_cos(3, -2)
530
+ boundary.r_cos(3, -1)
531
+ boundary.r_cos(3, 0)
532
+ boundary.r_cos(3, 1)
533
+ boundary.r_cos(3, 2)
534
+ boundary.r_cos(3, 3)
535
+ boundary.r_cos(3, 4)
536
+ boundary.r_cos(4, -4)
537
+ boundary.r_cos(4, -3)
538
+ boundary.r_cos(4, -2)
539
+ boundary.r_cos(4, -1)
540
+ boundary.r_cos(4, 0)
541
+ boundary.r_cos(4, 1)
542
+ boundary.r_cos(4, 2)
543
+ boundary.r_cos(4, 3)
544
+ boundary.r_cos(4, 4)
545
+ boundary.z_sin(0, 1)
546
+ boundary.z_sin(0, 2)
547
+ boundary.z_sin(0, 3)
548
+ boundary.z_sin(0, 4)
549
+ boundary.z_sin(1, -4)
550
+ boundary.z_sin(1, -3)
551
+ boundary.z_sin(1, -2)
552
+ boundary.z_sin(1, -1)
553
+ boundary.z_sin(1, 0)
554
+ boundary.z_sin(1, 1)
555
+ boundary.z_sin(1, 2)
556
+ boundary.z_sin(1, 3)
557
+ boundary.z_sin(1, 4)
558
+ boundary.z_sin(2, -4)
559
+ boundary.z_sin(2, -3)
560
+ boundary.z_sin(2, -2)
561
+ boundary.z_sin(2, -1)
562
+ boundary.z_sin(2, 0)
563
+ boundary.z_sin(2, 1)
564
+ boundary.z_sin(2, 2)
565
+ boundary.z_sin(2, 3)
566
+ boundary.z_sin(2, 4)
567
+ boundary.z_sin(3, -4)
568
+ boundary.z_sin(3, -3)
569
+ boundary.z_sin(3, -2)
570
+ boundary.z_sin(3, -1)
571
+ boundary.z_sin(3, 0)
572
+ boundary.z_sin(3, 1)
573
+ boundary.z_sin(3, 2)
574
+ boundary.z_sin(3, 3)
575
+ boundary.z_sin(3, 4)
576
+ boundary.z_sin(4, -4)
577
+ boundary.z_sin(4, -3)
578
+ boundary.z_sin(4, -2)
579
+ boundary.z_sin(4, -1)
580
+ boundary.z_sin(4, 0)
581
+ boundary.z_sin(4, 1)
582
+ boundary.z_sin(4, 2)
583
+ boundary.z_sin(4, 3)
584
+ boundary.z_sin(4, 4)
585
+ metrics.qi
586
+ metrics.vacuum_well
587
+ metrics.aspect_ratio
588
+ metrics.max_elongation
589
+ metrics.average_triangularity
590
+ metrics.axis_magnetic_mirror_ratio
591
+ metrics.edge_magnetic_mirror_ratio
592
+ metrics.aspect_ratio_over_edge_rotational_transform
593
+ metrics.flux_compression_in_regions_of_bad_curvature
594
+ metrics.axis_rotational_transform_over_n_field_periods
595
+ metrics.edge_rotational_transform_over_n_field_periods
596
+ metrics.minimum_normalized_magnetic_gradient_scale_length
597
+ metrics.id
598
+ omnigenous_field_and_targets.aspect_ratio
599
+ omnigenous_field_and_targets.major_radius
600
+ omnigenous_field_and_targets.max_elongation
601
+ omnigenous_field_and_targets.rotational_transform
602
+ omnigenous_field_and_targets.id
603
+ omnigenous_field_and_targets.omnigenous_field.x_lmn
604
+ omnigenous_field_and_targets.omnigenous_field.n_field_periods
605
+ omnigenous_field_and_targets.omnigenous_field.poloidal_winding
606
+ omnigenous_field_and_targets.omnigenous_field.torodial_winding
607
+ omnigenous_field_and_targets.omnigenous_field.modB_spline_knot_coefficients
608
+ desc_omnigenous_field_optimization_settings.id
609
+ desc_omnigenous_field_optimization_settings.objective_settings.elongation_settings.name
610
+ desc_omnigenous_field_optimization_settings.objective_settings.elongation_settings.weight
611
+ desc_omnigenous_field_optimization_settings.objective_settings.elongation_settings.target_kind
612
+ desc_omnigenous_field_optimization_settings.objective_settings.omnigenity_settings.name
613
+ desc_omnigenous_field_optimization_settings.objective_settings.omnigenity_settings.weight
614
+ desc_omnigenous_field_optimization_settings.objective_settings.omnigenity_settings.eta_weight
615
+ desc_omnigenous_field_optimization_settings.objective_settings.omnigenity_settings.eq_lcfs_grid_rho
616
+ desc_omnigenous_field_optimization_settings.objective_settings.omnigenity_settings.eq_lcfs_grid_M_factor
617
+ desc_omnigenous_field_optimization_settings.objective_settings.omnigenity_settings.eq_lcfs_grid_N_factor
618
+ desc_omnigenous_field_optimization_settings.objective_settings.aspect_ratio_settings.name
619
+ desc_omnigenous_field_optimization_settings.objective_settings.aspect_ratio_settings.weight
620
+ desc_omnigenous_field_optimization_settings.objective_settings.aspect_ratio_settings.target_kind
621
+ desc_omnigenous_field_optimization_settings.objective_settings.rotational_transform_settings.name
622
+ desc_omnigenous_field_optimization_settings.objective_settings.rotational_transform_settings.weight
623
+ desc_omnigenous_field_optimization_settings.objective_settings.rotational_transform_settings.target_kind
624
+ desc_omnigenous_field_optimization_settings.optimizer_settings.name
625
+ desc_omnigenous_field_optimization_settings.optimizer_settings.maxiter
626
+ desc_omnigenous_field_optimization_settings.optimizer_settings.verbose
627
+ desc_omnigenous_field_optimization_settings.equilibrium_settings.psi
628
+ desc_omnigenous_field_optimization_settings.equilibrium_settings.check_orientation
629
+ desc_omnigenous_field_optimization_settings.equilibrium_settings.max_poloidal_mode
630
+ desc_omnigenous_field_optimization_settings.equilibrium_settings.max_toroidal_mode
631
+ desc_omnigenous_field_optimization_settings.initial_guess_settings.torsion
632
+ desc_omnigenous_field_optimization_settings.initial_guess_settings.elongation
633
+ desc_omnigenous_field_optimization_settings.initial_guess_settings.aspect_ratio
634
+ desc_omnigenous_field_optimization_settings.initial_guess_settings.major_radius
635
+ desc_omnigenous_field_optimization_settings.initial_guess_settings.mirror_ratio
636
+ desc_omnigenous_field_optimization_settings.initial_guess_settings.n_field_periods
637
+ desc_omnigenous_field_optimization_settings.initial_guess_settings.is_iota_positive
638
+ desc_omnigenous_field_optimization_settings.initial_guess_settings.is_stellarator_symmetric
639
+ desc_omnigenous_field_optimization_settings.initial_guess_settings.max_elongation
640
+ desc_omnigenous_field_optimization_settings.initial_guess_settings.max_poloidal_mode
641
+ desc_omnigenous_field_optimization_settings.initial_guess_settings.max_toroidal_mode
642
+ desc_omnigenous_field_optimization_settings.initial_guess_settings.rotational_transform
643
+ vmec_omnigenous_field_optimization_settings.verbose
644
+ vmec_omnigenous_field_optimization_settings.max_poloidal_mode
645
+ vmec_omnigenous_field_optimization_settings.max_toroidal_mode
646
+ vmec_omnigenous_field_optimization_settings.n_inner_optimizations
647
+ vmec_omnigenous_field_optimization_settings.gradient_free_max_time
648
+ vmec_omnigenous_field_optimization_settings.infinity_norm_spectrum_scaling
649
+ vmec_omnigenous_field_optimization_settings.gradient_free_budget_per_design_variable
650
+ vmec_omnigenous_field_optimization_settings.use_continuation_method_in_fourier_space
651
+ vmec_omnigenous_field_optimization_settings.gradient_free_optimization_hypercube_bounds
652
+ vmec_omnigenous_field_optimization_settings.gradient_based_relative_objectives_tolerance
653
+ vmec_omnigenous_field_optimization_settings.id
654
+ qp_init_omnigenous_field_optimization_settings.torsion
655
+ qp_init_omnigenous_field_optimization_settings.elongation
656
+ qp_init_omnigenous_field_optimization_settings.aspect_ratio
657
+ qp_init_omnigenous_field_optimization_settings.major_radius
658
+ qp_init_omnigenous_field_optimization_settings.mirror_ratio
659
+ qp_init_omnigenous_field_optimization_settings.n_field_periods
660
+ qp_init_omnigenous_field_optimization_settings.is_iota_positive
661
+ qp_init_omnigenous_field_optimization_settings.is_stellarator_symmetric
662
+ qp_init_omnigenous_field_optimization_settings.id
663
+ nae_init_omnigenous_field_optimization_settings.aspect_ratio
664
+ nae_init_omnigenous_field_optimization_settings.mirror_ratio
665
+ nae_init_omnigenous_field_optimization_settings.max_elongation
666
+ nae_init_omnigenous_field_optimization_settings.n_field_periods
667
+ nae_init_omnigenous_field_optimization_settings.max_poloidal_mode
668
+ nae_init_omnigenous_field_optimization_settings.max_toroidal_mode
669
+ nae_init_omnigenous_field_optimization_settings.rotational_transform
670
+ nae_init_omnigenous_field_optimization_settings.id
671
+ misc.vmecpp_wout_id
672
+ misc.has_optimize_boundary_omnigenity_vmec_error
673
+ misc.has_optimize_boundary_omnigenity_desc_error
674
+ misc.has_generate_qp_initialization_from_targets_error
675
+ misc.has_generate_nae_initialization_from_targets_error
676
+ misc.has_neurips_2025_forward_model_error
677
+ ```
678
+ </details>
679
+
680
+ ## Advanced Usage
681
+ Install `constellaration` from [here](https://github.com/proximafusion/constellaration).
682
+
683
+ Load and instantiate plasma boundaries:
684
+ ```python
685
+ import datasets
686
+ from constellaration.geometry import surface_rz_fourier
687
+
688
+ full_json_ds = datasets.load_dataset("proxima-fusion/constellaration", "full_json", streaming=True)["train"]
689
+
690
+ for batch in full_json_ds.iter(batch_size=1):
691
+ boundary_json = batch["boundary.surface"][0]
692
+ boundary = surface_rz_fourier.SurfaceRZFourier.model_validate_json(boundary_json)
693
+ break
694
+
695
+ print(boundary)
696
+ ```
697
+ Stream and instantiate the VMEC ideal MHD equilibria:
698
+ ```python
699
+ import datasets
700
+ from research.neurips_2025.open_source.mhd import vmec_utils
701
+
702
+ ds = datasets.load_dataset("proxima-fusion/constellaration", "vmecpp_ideal_mhd_equilibria", streaming=True)["train"]
703
+
704
+ for batch in ds.filter(lambda row: row["vmecpp_wout_json"] is not None).iter(batch_size=1):
705
+ vmecpp_wout_json = batch["vmecpp_wout_json"][0]
706
+ vmecpp_wout = vmec_utils.VmecppWOut.model_validate_json(vmecpp_wout_json)
707
+ break
708
+
709
+ print(vmecpp_wout.n_field_periods)
710
+ ```
711
+
712
+ ## Dataset Structure
713
+
714
+ <!-- This section provides a description of the dataset fields, and additional information about the dataset structure such as criteria used to create the splits, relationships between data points, etc. -->
715
+
716
+ The dataset consists of 2 tabular parts. Both parts have a column `plasma_config_id` in common which can be used to associate respective entries.
717
+
718
+ ### 1. `full_json`/`full_flat`
719
+ Contains information about:
720
+ - plasma boundaries
721
+ - ideal MHD metrics
722
+ - omnigenous field and targets, used as input for sampling of plasma boundaries
723
+ - sampling settings for various methods ([DESC](https://desc-docs.readthedocs.io/en/stable/), [VMEC](https://github.com/proximafusion/vmecpp), QP initialization, Near-axis expansion)
724
+ - Miscellaneous information about errors that might have occurred during sampling or metrics computation.
725
+
726
+ The `full_json` variant of the dataset contains for each of the components listed about an identifier column (ending with `.id`), as well as a JSON column.
727
+
728
+ The `full_flat` variant contains the same information as `full_json` but with all JSON columns flattened into one column per leaf in the nested JSON structure (with `.` separating the keys on the JSON path to the respective leaf).
729
+
730
+ ### 2. `vmecpp_ideal_mhd_equilibria`
731
+ Contain for each plasma boundary a JSON representations of the "WOut" file as obtained when running VMEC++ initialized on the boundary.
732
+ The JSON representation can be converted to a VMEC2000 output file.
733
+
734
+ ## Dataset Creation
735
+
736
+ ### Curation Rationale
737
+
738
+ <!-- Motivation for the creation of this dataset. -->
739
+
740
+ Wide-spread community progress is currently bottlenecked by the lack of standardized optimization problems with strong baselines and datasets that enable data-driven approaches, particularly for quasi-isodynamic (QI) stellarator configurations.
741
+
742
+ ### Source Data
743
+
744
+ <!-- This section describes the source data (e.g. news text and headlines, social media posts, translated sentences, ...). -->
745
+
746
+ #### Data Collection and Processing
747
+
748
+ <!-- This section describes the data collection and processing process such as data selection criteria, filtering and normalization methods, tools and libraries used, etc. -->
749
+
750
+ We generated this dataset by sampling diverse QI fields and optimizing stellarator plasma boundaries to target key properties, using four different methods.
751
+
752
+ #### Who are the source data producers?
753
+
754
+ <!-- This section describes the people or systems who originally created the data. It should also include self-reported demographic or identity information for the source data creators if this information is available. -->
755
+
756
+ Proxima Fusion's stellarator optimization team.
757
+
758
+ #### Personal and Sensitive Information
759
+
760
+ <!-- State whether the dataset contains data that might be considered personal, sensitive, or private (e.g., data that reveals addresses, uniquely identifiable names or aliases, racial or ethnic origins, sexual orientations, religious beliefs, political opinions, financial or health data, etc.). If efforts were made to anonymize the data, describe the anonymization process. -->
761
+
762
+ The dataset contains no personally identifiable information.
763
+
764
+ ## Citation [optional]
765
+
766
+ <!-- If there is a paper or blog post introducing the dataset, the APA and Bibtex information for that should go in this section. -->
767
+
768
+ **BibTeX:**
769
+
770
+ [not published yet]
771
+
772
+ ## Glossary [optional]
773
+
774
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the dataset or dataset card. -->
775
+
776
+ | Abbreviation | Expansion |
777
+ | -------- | ------- |
778
+ | QI | Quasi-Isodynamic(ity) |
779
+ | MHD | Magneto-Hydrodynamic |
780
+ | DESC | Dynamical Equilibrium Solver for Confinement |
781
+ | VMEC | Variational Moments Equilibrium Code |
782
+ | QP | Quasi-Poloidal |
783
+ | NAE | Near-Axis Expansion |
784
+ | NFP | Number of Field Periods |
785
+
786
+ ## Dataset Card Authors [optional]
787
+
788
+ Alexander Bauer, Santiago A. Cadena
789
+
790
+ ## Dataset Card Contact
791
+
792