adithyamurali commited on
Commit
0485ae5
·
1 Parent(s): 44e46d6

Update readme

Browse files
Files changed (2) hide show
  1. README.md +19 -12
  2. assets/grippers.png +3 -0
README.md CHANGED
@@ -3,16 +3,17 @@ tags:
3
  - robotics
4
  - grasping
5
  - simulation
6
- license: "cc-by-4.0"
 
7
  ---
8
 
9
- # GraspGen: Scaling Simulated Grasping
10
- GraspGen is a large-scale simulated grasp dataset for multiple robot embodiments and grippers
11
 
12
  <img src="assets/cover.png" width="1000" height="250" title="readme1">
13
 
14
 
15
- We release over 57 million grasps, computed for a subset of 8515 objects from the [Objaverse XL](https://objaverse.allenai.org/) (LVIS) dataset. We release grasps for three grippers: Franka Panda, the Robotiq-2f-140 industrial gripper, and suction.
16
 
17
  <img src="assets/montage2.png" width="1000" height="500" title="readme2">
18
 
@@ -28,20 +29,23 @@ splits/
28
  robotiq2f140/{train/valid}_scenes.json
29
  suction/{train/valid}_scenes.json
30
  ```
31
- We release test-train splits along with the grasp dataset.
32
 
33
  Each json file in the shard has the following data in a python dictionary. Note that `num_grasps=2000` per object.
34
  ```
35
  ‘object’/
36
- ‘scale’ # This is the scale of the asset
37
  ‘grasps’/
38
  ‘object_in_gripper’ # boolean mask indicating grasp success, [num_grasps X 1]
39
  ‘transforms’ # Pose of the gripper in homogenous matrices, [num_grasps X 4 X 4]
40
  ```
41
 
 
 
 
42
  ## Visualizing the dataset
43
 
44
- We have provided some standalone scripts for visualizing this dataset. See the header of the [visualize_dataset.py](scripts/visualize_dataset.py) for installation instructions
45
 
46
  Before running any of the visualization scripts, remember to start meshcat-server in a separate terminal:
47
  ``` shell
@@ -53,18 +57,21 @@ To visualize a single object from the dataset, alongside its grasps:
53
  cd scripts/ && python visualize_dataset.py --dataset_path /path/to/dataset --object_uuid {object_uuid} --object_file /path/to/mesh --gripper_name {choose from: franka, suction, robotiq2f140}
54
  ```
55
 
 
 
 
 
 
56
  ## Objaverse dataset
57
  Please download the Objaverse XL (LVIS) objects separately. See the helper script [download_objaverse.py](scripts/download_objaverse.py) for instructions and usage.
 
58
 
59
  ## License
60
  License Copyright © 2025, NVIDIA Corporation & affiliates. All rights reserved.
61
 
62
-
63
- The dataset is released under a CC-BY 4.0 License.
64
-
65
- The visualization code is released under the [NVIDIA source code license](LICENSE).
66
 
67
  ## Contact
68
 
69
- Please reach out to [Adithya Murali](adithyamurali.com) ([email protected]) and [Clemens Eppner](https://clemense.github.io/) ([email protected]) for further enquiries
70
 
 
3
  - robotics
4
  - grasping
5
  - simulation
6
+ - nvidia
7
+ license: "cc-by-nc-4.0"
8
  ---
9
 
10
+ # GraspGen: Scaling Sim2Real Grasping
11
+ GraspGen is a large-scale simulated grasp dataset for multiple robot embodiments and grippers.
12
 
13
  <img src="assets/cover.png" width="1000" height="250" title="readme1">
14
 
15
 
16
+ We release over 57 million grasps, computed for a subset of 8515 objects from the [Objaverse XL](https://objaverse.allenai.org/) (LVIS) dataset. These grasps are specific to three grippers: Franka Panda, the Robotiq-2f-140 industrial gripper, and a single-contact suction gripper (30mm radius).
17
 
18
  <img src="assets/montage2.png" width="1000" height="500" title="readme2">
19
 
 
29
  robotiq2f140/{train/valid}_scenes.json
30
  suction/{train/valid}_scenes.json
31
  ```
32
+ We release test-train splits along with the grasp dataset. The splits are made randomly based on object instances.
33
 
34
  Each json file in the shard has the following data in a python dictionary. Note that `num_grasps=2000` per object.
35
  ```
36
  ‘object’/
37
+ ‘scale’ # This is the scale of the asset, float
38
  ‘grasps’/
39
  ‘object_in_gripper’ # boolean mask indicating grasp success, [num_grasps X 1]
40
  ‘transforms’ # Pose of the gripper in homogenous matrices, [num_grasps X 4 X 4]
41
  ```
42
 
43
+ The coordinate frame convention for the three grippers are provided below:
44
+ <img src="assets/grippers.png" width="450" height="220" title="readme3">
45
+
46
  ## Visualizing the dataset
47
 
48
+ We have provided some minimal, standalone scripts for visualizing this dataset. See the header of the [visualize_dataset.py](scripts/visualize_dataset.py) for installation instructions.
49
 
50
  Before running any of the visualization scripts, remember to start meshcat-server in a separate terminal:
51
  ``` shell
 
57
  cd scripts/ && python visualize_dataset.py --dataset_path /path/to/dataset --object_uuid {object_uuid} --object_file /path/to/mesh --gripper_name {choose from: franka, suction, robotiq2f140}
58
  ```
59
 
60
+ To sequentially visualize a list of objects with its grasps:
61
+ ```shell
62
+ cd scripts/ && python visualize_dataset.py --dataset_path /path/to/dataset --uuid_list {path to a splits.json file} --uuid_object_paths_file {path to a json file mapping uuid to absolute path of meshes} --gripper_name {choose from: franka, suction, robotiq2f140}
63
+ ```
64
+
65
  ## Objaverse dataset
66
  Please download the Objaverse XL (LVIS) objects separately. See the helper script [download_objaverse.py](scripts/download_objaverse.py) for instructions and usage.
67
+ Note that running this script autogenerates a file that maps from `UUID` to the asset mesh path, which you can pass in as input `uuid_object_paths_file` to the `visualize_dataset.py` script.
68
 
69
  ## License
70
  License Copyright © 2025, NVIDIA Corporation & affiliates. All rights reserved.
71
 
72
+ Both the dataset and visualization code is released under a CC-BY-NC 4.0 [License](LICENSE_DATASET).
 
 
 
73
 
74
  ## Contact
75
 
76
+ Please reach out to [Adithya Murali](http://adithyamurali.com) ([email protected]) and [Clemens Eppner](https://clemense.github.io/) ([email protected]) for further enquiries.
77
 
assets/grippers.png ADDED

Git LFS Details

  • SHA256: cc96a453721db946df9a2c4e909e42099561efa21a70e0577974bc202b83e83d
  • Pointer size: 131 Bytes
  • Size of remote file: 200 kB