adithyamurali commited on
Commit
44e46d6
·
1 Parent(s): 00becf6

Add visualization scripts

Browse files
scripts/dataset.py ADDED
@@ -0,0 +1,92 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) 2025, NVIDIA CORPORATION. All rights reserved.
2
+ #
3
+ # NVIDIA CORPORATION and its licensors retain all intellectual property
4
+ # and proprietary rights in and to this software, related documentation
5
+ # and any modifications thereto. Any use, reproduction, disclosure or
6
+ # distribution of this software and related documentation without an express
7
+ # license agreement from NVIDIA CORPORATION is strictly prohibited.
8
+ #
9
+ '''
10
+ Dataset class for loading and processing grasp data from a WebDataset.
11
+
12
+ Installation:
13
+ pip install trimesh==4.5.3 objaverse==0.1.7 meshcat==0.0.12 webdataset==0.2.111
14
+
15
+ '''
16
+ import os
17
+ import json
18
+ import time
19
+ import webdataset as wds
20
+ import glob
21
+ from pathlib import Path
22
+ from tqdm import tqdm
23
+ from typing import Dict, Optional
24
+
25
+ def load_uuid_list(uuid_list_path: str):
26
+ if not os.path.exists(uuid_list_path):
27
+ raise FileNotFoundError(f"UUID list file not found: {uuid_list_path}")
28
+ if uuid_list_path.endswith(".json"):
29
+ with open(uuid_list_path, 'r') as f:
30
+ uuids = json.load(f)
31
+ if type(uuids) == list:
32
+ return uuids
33
+ elif type(uuids) == dict:
34
+ return list(uuids.keys())
35
+ else:
36
+ raise ValueError(f"UUID list is not a list or dict: {uuids}")
37
+ elif uuid_list_path.endswith(".txt"):
38
+ with open(uuid_list_path, 'r') as f:
39
+ uuids = [line.strip() for line in f.readlines()]
40
+ else:
41
+ raise ValueError(f"Unsupported file format: {uuid_list_path}")
42
+ return uuids
43
+
44
+ class GraspWebDatasetReader:
45
+ """Class to efficiently read grasps data using a pre-loaded index."""
46
+
47
+ def __init__(self, dataset_path: str):
48
+ """
49
+ Initialize the reader with dataset path and load the index.
50
+
51
+ Args:
52
+ dataset_path (str): Path to directory containing WebDataset shards
53
+ """
54
+ self.dataset_path = dataset_path
55
+ self.shards_dir = self.dataset_path
56
+
57
+ # Load the UUID index
58
+ index_path = os.path.join(self.shards_dir, "uuid_index.json")
59
+ with open(index_path, 'r') as f:
60
+ self.uuid_index = json.load(f)
61
+
62
+ # Cache for open datasets
63
+ self.shard_datasets = {}
64
+
65
+ def read_grasps_by_uuid(self, object_uuid: str) -> Optional[Dict]:
66
+ """
67
+ Read grasps data for a specific object UUID using the index.
68
+
69
+ Args:
70
+ object_uuid (str): UUID of the object to retrieve
71
+
72
+ Returns:
73
+ Optional[Dict]: Dictionary containing the grasps data if found, None otherwise
74
+ """
75
+ if object_uuid not in self.uuid_index:
76
+ return None
77
+
78
+ shard_idx = self.uuid_index[object_uuid]
79
+
80
+ # Get or create dataset for this shard
81
+ if shard_idx not in self.shard_datasets:
82
+ shard_path = f"{self.shards_dir}/shard_{shard_idx:03d}.tar"
83
+ self.shard_datasets[shard_idx] = wds.WebDataset(shard_path)
84
+
85
+ dataset = self.shard_datasets[shard_idx]
86
+
87
+ # Search for the UUID in the specific shard
88
+ for sample in dataset:
89
+ if sample["__key__"] == object_uuid:
90
+ return json.loads(sample["grasps.json"])
91
+
92
+ return None
scripts/download_objaverse.py ADDED
@@ -0,0 +1,80 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) 2025, NVIDIA CORPORATION. All rights reserved.
2
+ #
3
+ # NVIDIA CORPORATION and its licensors retain all intellectual property
4
+ # and proprietary rights in and to this software, related documentation
5
+ # and any modifications thereto. Any use, reproduction, disclosure or
6
+ # distribution of this software and related documentation without an express
7
+ # license agreement from NVIDIA CORPORATION is strictly prohibited.
8
+ #
9
+ '''
10
+ Download specific Objaverse meshes given their UUIDs.
11
+
12
+ Installation:
13
+ pip install trimesh==4.5.3 objaverse==0.1.7 meshcat==0.0.12 webdataset==0.2.111
14
+
15
+ Usage:
16
+ python download_objaverse.py --uuid_list /path_to_dataset/splits/franka/valid_scenes.json --output_dir /tmp/objs
17
+ '''
18
+ import argparse
19
+ import json
20
+ import os
21
+ import shutil
22
+ from objaverse import load_objects
23
+ from pathlib import Path
24
+ from dataset import load_uuid_list
25
+
26
+ def download_objaverse_meshes(uuids: list[str], output_dir: str):
27
+ """
28
+ Download specific Objaverse meshes given their UUIDs.
29
+
30
+ Args:
31
+ uuid_list_path (str): Path to JSON file containing list of UUIDs
32
+ output_dir (str): Directory where meshes will be saved
33
+ """
34
+ # Create output directory if it doesn't exist
35
+ os.makedirs(output_dir, exist_ok=True)
36
+
37
+ print(f"Found {len(uuids)} UUIDs to download")
38
+
39
+ # Download objects using Objaverse
40
+ objects = load_objects(uids=uuids)
41
+
42
+ map_uuid_to_path = {}
43
+
44
+ # Save each object to the output directory
45
+ for uuid in uuids:
46
+ try:
47
+ # Get the object path from Objaverse
48
+ obj_path = objects[uuid]
49
+
50
+ if obj_path is None:
51
+ print(f"Failed to download object {uuid}")
52
+ continue
53
+
54
+ # Create destination path
55
+ dest_path = os.path.join(output_dir, os.path.basename(obj_path))
56
+
57
+ shutil.copy2(obj_path, dest_path)
58
+
59
+ print(f"Successfully downloaded and saved object {uuid}, saved to {dest_path}")
60
+ map_uuid_to_path[uuid] = dest_path
61
+
62
+ os.remove(obj_path)
63
+ json.dump(map_uuid_to_path, open(os.path.join(output_dir, "map_uuid_to_path.json"), "w"))
64
+
65
+ except Exception as e:
66
+ print(f"Error processing object {uuid}: {e}")
67
+
68
+ print("Download complete!")
69
+
70
+ def parse_args():
71
+ parser = argparse.ArgumentParser()
72
+ parser.add_argument("--uuid_list", type=str, help="Path to UUID list or Json. This can be the split json file from the GraspGen dataset")
73
+ parser.add_argument("--output_dir", type=str, help="Path to output directory")
74
+ return parser.parse_args()
75
+
76
+
77
+ if __name__ == "__main__":
78
+ args = parse_args()
79
+ uuid_list = load_uuid_list(args.uuid_list)
80
+ download_objaverse_meshes(uuid_list, args.output_dir)
scripts/meshcat_utils.py ADDED
@@ -0,0 +1,366 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) 2025, NVIDIA CORPORATION. All rights reserved.
2
+ #
3
+ # NVIDIA CORPORATION and its licensors retain all intellectual property
4
+ # and proprietary rights in and to this software, related documentation
5
+ # and any modifications thereto. Any use, reproduction, disclosure or
6
+ # distribution of this software and related documentation without an express
7
+ # license agreement from NVIDIA CORPORATION is strictly prohibited.
8
+ #
9
+ '''
10
+ Utility functions for visualization using meshcat.
11
+
12
+ Installation:
13
+ pip install trimesh==4.5.3 objaverse==0.1.7 meshcat==0.0.12 webdataset==0.2.111
14
+
15
+ NOTE: Start meshcat server (in a different terminal) before running this script:
16
+ meshcat-server
17
+ '''
18
+
19
+ import numpy as np
20
+ import meshcat
21
+ import meshcat.geometry as g
22
+ import meshcat.transformations as mtf
23
+ import trimesh
24
+ import trimesh.transformations as tra
25
+ from typing import List, Optional, Tuple, Union, Any
26
+
27
+ control_points_franka = np.array([
28
+ [ 0.05268743, -0.00005996, 0.05900000],
29
+ [-0.05268743, 0.00005996, 0.05900000],
30
+ [ 0.05268743, -0.00005996, 0.10527314],
31
+ [-0.05268743, 0.00005996, 0.10527314]
32
+ ])
33
+
34
+ control_points_robotiq2f140 = np.array([
35
+ [ 0.06801729, -0, 0.0975],
36
+ [-0.06801729, 0, 0.0975],
37
+ [ 0.06801729, -0, 0.1950],
38
+ [-0.06801729, 0, 0.1950]
39
+ ])
40
+
41
+ control_points_suction = np.array([
42
+ [ 0, 0, -0.10],
43
+ [ 0, 0, -0.05],
44
+ [ 0, 0, 0],
45
+ ])
46
+
47
+ control_points_data = {
48
+ "franka": control_points_franka,
49
+ "robotiq2f140": control_points_robotiq2f140,
50
+ "suction": control_points_suction,
51
+ }
52
+
53
+ def get_gripper_control_points(gripper_name: str = 'franka') -> np.ndarray:
54
+ """
55
+ Get the control points for a specific gripper.
56
+
57
+ Args:
58
+ gripper_name (str): Name of the gripper ("franka", "robotiq2f140", "suction")
59
+
60
+ Returns:
61
+ np.ndarray: Array of control points for the specified gripper
62
+
63
+ Raises:
64
+ NotImplementedError: If the specified gripper is not implemented
65
+ """
66
+ if gripper_name in control_points_data:
67
+ return control_points_data[gripper_name]
68
+ else:
69
+ raise NotImplementedError(f"Gripper {gripper_name} is not implemented.")
70
+ return control_points
71
+
72
+ def get_gripper_depth(gripper_name: str) -> float:
73
+ """
74
+ Get the depth parameter for a specific gripper type.
75
+
76
+ Args:
77
+ gripper_name (str): Name of the gripper ("franka", "robotiq2f140", "suction")
78
+
79
+ Returns:
80
+ float: Depth parameter for the specified gripper
81
+
82
+ Raises:
83
+ NotImplementedError: If the specified gripper is not implemented
84
+ """
85
+ # TODO: Use register module. Don't have this if-else name lookup
86
+ pts, d = None, None
87
+ if gripper_name in ["franka", "robotiq2f140"]:
88
+ pts = get_gripper_control_points(gripper_name)
89
+ elif gripper_name == "suction":
90
+ return 0.069
91
+ else:
92
+ raise NotImplementedError(f"Control points for gripper {gripper_name} not implemented!")
93
+ d = pts[-1][-1] if pts is not None else d
94
+ return d
95
+
96
+ def get_gripper_offset(gripper_name: str) -> np.ndarray:
97
+ """
98
+ Get the offset transform for a specific gripper type.
99
+
100
+ Args:
101
+ gripper_name (str): Name of the gripper
102
+
103
+ Returns:
104
+ np.ndarray: 4x4 homogeneous transformation matrix representing the gripper offset
105
+ """
106
+ return np.eye(4)
107
+
108
+ def load_visualize_control_points_suction() -> np.ndarray:
109
+ """
110
+ Load visualization control points specific to the suction gripper.
111
+
112
+ Returns:
113
+ np.ndarray: Array of control points for suction gripper visualization
114
+ """
115
+ h = 0
116
+ pts = [
117
+ [0.0, 0],
118
+ ]
119
+ pts = [generate_circle_points(c, radius=0.005) for c in pts]
120
+ pts = np.stack(pts)
121
+ ptsz = h * np.ones([pts.shape[0], pts.shape[1], 1])
122
+ pts = np.concatenate([pts, ptsz], axis=2)
123
+ return pts
124
+
125
+ def generate_circle_points(center: List[float], radius: float = 0.007, N: int = 30) -> np.ndarray:
126
+ """
127
+ Generate points forming a circle in 2D space.
128
+
129
+ Args:
130
+ center (List[float]): Center coordinates [x, y] of the circle
131
+ radius (float): Radius of the circle
132
+ N (int): Number of points to generate around the circle
133
+
134
+ Returns:
135
+ np.ndarray: Array of shape (N, 2) containing the circle points
136
+ """
137
+ angles = np.linspace(0, 2 * np.pi, N, endpoint=False)
138
+ x_points = center[0] + radius * np.cos(angles)
139
+ y_points = center[1] + radius * np.sin(angles)
140
+ points = np.stack((x_points, y_points), axis=1)
141
+ return points
142
+
143
+
144
+ def get_gripper_visualization_control_points(gripper_name: str = 'franka') -> List[np.ndarray]:
145
+ """
146
+ Get control points for visualizing a specific gripper type.
147
+
148
+ Args:
149
+ gripper_name (str): Name of the gripper ("franka", "robotiq2f140", "suction")
150
+
151
+ Returns:
152
+ List[np.ndarray]: List of control point arrays for gripper visualization
153
+ """
154
+ if gripper_name == "suction":
155
+ control_points = load_visualize_control_points_suction()
156
+ offset = get_gripper_offset('suction')
157
+ ctrl_pts = [tra.transform_points(cpt, offset) for cpt in control_points]
158
+ d = get_gripper_depth(gripper_name)
159
+ line_pts = np.array([[0,0,0], [0,0,d]])
160
+ line_pts = np.expand_dims(line_pts, 0)
161
+ line_pts = [tra.transform_points(cpt, offset) for cpt in line_pts]
162
+ line_pts = line_pts[0]
163
+ ctrl_pts.append(line_pts)
164
+ return ctrl_pts
165
+ else:
166
+ control_points = get_gripper_control_points(gripper_name)
167
+ mid_point = (control_points[0] + control_points[1]) / 2
168
+ control_points = [
169
+ control_points[-2], control_points[0], mid_point,
170
+ [0, 0, 0], mid_point, control_points[1], control_points[-1]
171
+ ]
172
+ return [control_points, ]
173
+
174
+ def get_color_from_score(labels: Union[float, np.ndarray], use_255_scale: bool = False) -> np.ndarray:
175
+ """
176
+ Convert score labels to RGB colors for visualization.
177
+
178
+ Args:
179
+ labels (Union[float, np.ndarray]): Score values between 0 and 1
180
+ use_255_scale (bool): If True, output colors in [0-255] range, else [0-1]
181
+
182
+ Returns:
183
+ np.ndarray: RGB colors corresponding to the input scores
184
+ """
185
+ scale = 255.0 if use_255_scale else 1.0
186
+ if type(labels) in [np.float32, float]:
187
+ return scale * np.array([1 - labels, labels, 0])
188
+ else:
189
+ scale = 255.0 if use_255_scale else 1.0
190
+ score = scale * np.stack(
191
+ [np.ones(labels.shape[0]) - labels, labels, np.zeros(labels.shape[0])],
192
+ axis=1,
193
+ )
194
+ return score.astype(np.int)
195
+
196
+ def trimesh_to_meshcat_geometry(mesh: trimesh.Trimesh) -> g.TriangularMeshGeometry:
197
+ """
198
+ Convert a trimesh mesh to meshcat geometry format.
199
+
200
+ Args:
201
+ mesh (trimesh.Trimesh): Input mesh in trimesh format
202
+
203
+ Returns:
204
+ g.TriangularMeshGeometry: Mesh in meshcat geometry format
205
+ """
206
+ return meshcat.geometry.TriangularMeshGeometry(mesh.vertices, mesh.faces)
207
+
208
+
209
+ def visualize_mesh(
210
+ vis: meshcat.Visualizer,
211
+ name: str,
212
+ mesh: trimesh.Trimesh,
213
+ color: Optional[List[int]] = None,
214
+ transform: Optional[np.ndarray] = None
215
+ ) -> None:
216
+ """
217
+ Visualize a mesh in meshcat with optional color and transform.
218
+
219
+ Args:
220
+ vis (meshcat.Visualizer): Meshcat visualizer instance
221
+ name (str): Name/path for the mesh in the visualizer scene
222
+ mesh (trimesh.Trimesh): Mesh to visualize
223
+ color (Optional[List[int]]): RGB color values [0-255]. Random if None
224
+ transform (Optional[np.ndarray]): 4x4 homogeneous transform matrix
225
+ """
226
+ if vis is None:
227
+ return
228
+
229
+ if color is None:
230
+ color = np.random.randint(low=0, high=256, size=3)
231
+
232
+ mesh_vis = trimesh_to_meshcat_geometry(mesh)
233
+ color_hex = rgb2hex(tuple(color))
234
+ material = meshcat.geometry.MeshPhongMaterial(color=color_hex)
235
+ vis[name].set_object(mesh_vis, material)
236
+
237
+ if transform is not None:
238
+ vis[name].set_transform(transform)
239
+
240
+
241
+ def rgb2hex(rgb: Tuple[int, int, int]) -> str:
242
+ """
243
+ Convert RGB color values to hexadecimal string.
244
+
245
+ Args:
246
+ rgb (Tuple[int, int, int]): RGB color values (0-255)
247
+
248
+ Returns:
249
+ str: Hexadecimal color string (format: "0xRRGGBB")
250
+ """
251
+ return "0x%02x%02x%02x" % (rgb)
252
+
253
+
254
+ def create_visualizer(clear: bool = True) -> meshcat.Visualizer:
255
+ """
256
+ Create a meshcat visualizer instance.
257
+
258
+ Args:
259
+ clear (bool): If True, clear the visualizer scene upon creation first
260
+
261
+ Returns:
262
+ meshcat.Visualizer: Initialized meshcat visualizer
263
+ """
264
+ print(
265
+ "Waiting for meshcat server... have you started a server? Run `meshcat-server` to start a server"
266
+ )
267
+ vis = meshcat.Visualizer(zmq_url="tcp://127.0.0.1:6000")
268
+ if clear:
269
+ vis.delete()
270
+ return vis
271
+
272
+
273
+ def visualize_pointcloud(
274
+ vis: meshcat.Visualizer,
275
+ name: str,
276
+ pc: np.ndarray,
277
+ color: Optional[Union[List[int], np.ndarray]] = None,
278
+ transform: Optional[np.ndarray] = None,
279
+ **kwargs: Any
280
+ ) -> None:
281
+ """
282
+ Args:
283
+ vis: meshcat visualizer object
284
+ name: str
285
+ pc: Nx3 or HxWx3
286
+ color: (optional) same shape as pc[0 - 255] scale or just rgb tuple
287
+ transform: (optional) 4x4 homogeneous transform
288
+ """
289
+ if vis is None:
290
+ return
291
+ if pc.ndim == 3:
292
+ pc = pc.reshape(-1, pc.shape[-1])
293
+
294
+ if color is not None:
295
+ if isinstance(color, list):
296
+ color = np.array(color)
297
+ color = np.array(color)
298
+ # Resize the color np array if needed.
299
+ if color.ndim == 3:
300
+ color = color.reshape(-1, color.shape[-1])
301
+ if color.ndim == 1:
302
+ color = np.ones_like(pc) * np.array(color)
303
+
304
+ # Divide it by 255 to make sure the range is between 0 and 1,
305
+ color = color.astype(np.float32) / 255
306
+ else:
307
+ color = np.ones_like(pc)
308
+
309
+ vis[name].set_object(
310
+ meshcat.geometry.PointCloud(position=pc.T, color=color.T, **kwargs)
311
+ )
312
+
313
+ if transform is not None:
314
+ vis[name].set_transform(transform)
315
+
316
+
317
+ def load_visualization_gripper_points(gripper_name: str = "franka") -> List[np.ndarray]:
318
+ """
319
+ Load control points for gripper visualization.
320
+
321
+ Args:
322
+ gripper_name (str): Name of the gripper to visualize
323
+
324
+ Returns:
325
+ List[np.ndarray]: List of control point arrays, each of shape [4, N]
326
+ where N is the number of points for that segment
327
+ """
328
+ ctrl_points = []
329
+ for ctrl_pts in get_gripper_visualization_control_points(gripper_name):
330
+ ctrl_pts = np.array(ctrl_pts, dtype=np.float32)
331
+ ctrl_pts = np.hstack([ctrl_pts, np.ones([len(ctrl_pts),1])])
332
+ ctrl_pts = ctrl_pts.T
333
+ ctrl_points.append(ctrl_pts)
334
+ return ctrl_points
335
+
336
+
337
+ def visualize_grasp(
338
+ vis: meshcat.Visualizer,
339
+ name: str,
340
+ transform: np.ndarray,
341
+ color: List[int] = [255, 0, 0],
342
+ gripper_name: str = "franka",
343
+ **kwargs: Any
344
+ ) -> None:
345
+ """
346
+ Visualize a gripper grasp pose in meshcat.
347
+
348
+ Args:
349
+ vis (meshcat.Visualizer): Meshcat visualizer instance
350
+ name (str): Name/path for the grasp in the visualizer scene
351
+ transform (np.ndarray): 4x4 homogeneous transform matrix for the grasp pose
352
+ color (List[int]): RGB color values [0-255] for the grasp visualization
353
+ gripper_name (str): Name of the gripper to visualize
354
+ **kwargs: Additional arguments passed to MeshBasicMaterial
355
+ """
356
+ if vis is None:
357
+ return
358
+ grasp_vertices = load_visualization_gripper_points(gripper_name)
359
+ for i, grasp_vertex in enumerate(grasp_vertices):
360
+ vis[name + f"/{i}"].set_object(
361
+ g.Line(
362
+ g.PointsGeometry(grasp_vertex),
363
+ g.MeshBasicMaterial(color=rgb2hex(tuple(color)), **kwargs),
364
+ )
365
+ )
366
+ vis[name].set_transform(transform.astype(np.float64))
scripts/visualize_dataset.py ADDED
@@ -0,0 +1,148 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) 2025, NVIDIA CORPORATION. All rights reserved.
2
+ #
3
+ # NVIDIA CORPORATION and its licensors retain all intellectual property
4
+ # and proprietary rights in and to this software, related documentation
5
+ # and any modifications thereto. Any use, reproduction, disclosure or
6
+ # distribution of this software and related documentation without an express
7
+ # license agreement from NVIDIA CORPORATION is strictly prohibited.
8
+ #
9
+ '''
10
+ Visualize the data with both the object mesh and its corresponding grasps, using meshcat.
11
+
12
+ Installation:
13
+ pip install trimesh==4.5.3 objaverse==0.1.7 meshcat==0.0.12 webdataset==0.2.111
14
+
15
+ Usage:
16
+
17
+ Before running the script, start the meshcat server in a different terminal:
18
+ meshcat-server
19
+
20
+ To visualize a single object from the dataset:
21
+ python visualize_dataset.py --dataset_path /path/to/dataset --object_uuid {object_uuid} --object_file /path/to/mesh --gripper_name {choose from: franka, suction, robotiq2f140}
22
+
23
+ To visualize many objects (one at a time) from the dataset
24
+ python visualize_dataset.py --dataset_path /path/to/dataset --uuid_list /path/to/uuid_list.json --gripper_name {choose from: franka, suction, robotiq2f140} --uuid_object_paths_file /path/to/uuid_object_paths_file.json
25
+
26
+ NOTE:
27
+ - The uuid_object_paths_file is a json file, that contains a dictionary with a mapping from the UUID to the absolute path of the mesh file. if you are using the download_objaverse.py script, this file will be auto-generated.
28
+ - The uuid_list can be the split json file from the GraspGen dataset
29
+ - The gripper_name has to be one of the following: franka, suction, robotiq2f140
30
+ '''
31
+
32
+ import os
33
+ import argparse
34
+ import trimesh
35
+ import numpy as np
36
+ import json
37
+ from meshcat_utils import create_visualizer, visualize_mesh, visualize_grasp
38
+ from dataset import GraspWebDatasetReader, load_uuid_list
39
+
40
+ def visualize_mesh_with_grasps(
41
+ mesh_path: str,
42
+ mesh_scale: float,
43
+ gripper_name: str = "franka",
44
+ grasps: list[np.ndarray] = None,
45
+ color: list = [192, 192, 192],
46
+ transform: np.ndarray = None,
47
+ max_grasps_to_visualize: int = 20
48
+ ):
49
+ """
50
+ Visualize a single mesh with optional grasps using meshcat.
51
+
52
+ Args:
53
+ mesh_path (str): Path to the mesh file
54
+ mesh_scale (float): Scale factor for the mesh
55
+ gripper_name (str): Name of the gripper to visualize ("franka", "suction", etc.)
56
+ grasps (list[np.ndarray], optional): List of 4x4 grasp transforms
57
+ color (list, optional): RGB color for the mesh. Defaults to gray if None
58
+ transform (np.ndarray, optional): 4x4 transform matrix for the mesh. Defaults to identity if None
59
+ max_grasps_to_visualize (int, optional): Maximum number of grasps to visualize. Defaults to 20
60
+ """
61
+ # Create visualizer
62
+ vis = create_visualizer()
63
+ vis.delete()
64
+
65
+ # Default transform if none provided
66
+ if transform is None:
67
+ transform = np.eye(4)
68
+
69
+ # Load and visualize the mesh
70
+ try:
71
+ transform = transform.astype(np.float64)
72
+ mesh = trimesh.load(mesh_path)
73
+ if type(mesh) == trimesh.Scene:
74
+ mesh = mesh.dump(concatenate=True)
75
+ mesh.apply_scale(mesh_scale)
76
+
77
+ T_move_mesh_to_origin = np.eye(4)
78
+ T_move_mesh_to_origin[:3, 3] = -mesh.centroid
79
+
80
+ transform = transform @ T_move_mesh_to_origin
81
+
82
+ visualize_mesh(vis, 'mesh', mesh, color=color, transform=transform)
83
+ except Exception as e:
84
+ print(f"Error loading mesh from {mesh_path}: {e}")
85
+
86
+ # Visualize grasps if provided
87
+ if grasps is not None:
88
+ for i, grasp in enumerate(np.random.permutation(grasps)[:max_grasps_to_visualize]):
89
+ visualize_grasp(
90
+ vis,
91
+ f"grasps/{i:03d}",
92
+ transform @ grasp.astype(np.float),
93
+ [0, 255, 0],
94
+ gripper_name=gripper_name,
95
+ linewidth=0.2
96
+ )
97
+
98
+
99
+ def parse_args():
100
+ parser = argparse.ArgumentParser()
101
+ parser.add_argument("--dataset_path", type=str, required=True)
102
+ parser.add_argument("--object_uuid", type=str, help="The UUID of the object to visualize", default=None)
103
+ parser.add_argument("--uuid_list", type=str, help="Path to UUID list", default=None)
104
+ parser.add_argument("--uuid_object_paths_file", type=str, help="Path to JSON file, mapping UUID to absolute path of the mesh file", default=None)
105
+ parser.add_argument("--object_file", type=str, help="This has to be a .stl or .obj or .glb file", default=None)
106
+ parser.add_argument("--gripper_name", type=str, required=True, help="Specify the gripper name", choices=["franka", "suction", "robotiq2f140"])
107
+ parser.add_argument("--max_grasps_to_visualize", type=int, help="The max number of grasps to visualize", default=20)
108
+ return parser.parse_args()
109
+
110
+ if __name__ == "__main__":
111
+ args = parse_args()
112
+ assert args.object_uuid is not None or args.uuid_list is not None, "Either object_uuid or uuid_list must be provided"
113
+
114
+ if args.object_uuid is not None:
115
+ webdataset_reader = GraspWebDatasetReader(os.path.join(args.dataset_path, args.gripper_name))
116
+ uuid_list = [args.object_uuid,]
117
+ object_paths = [args.object_file,]
118
+ assert args.object_file is not None, "object_file must be provided if object_uuid is provided"
119
+ assert os.path.exists(args.object_file), f"Object file {args.object_file} does not exist"
120
+ else:
121
+ assert os.path.exists(args.uuid_list), f"UUID list {args.uuid_list} does not exist"
122
+ uuid_list = load_uuid_list(args.uuid_list)
123
+ assert args.uuid_object_paths_file is not None, "uuid_object_paths_file must be provided if uuid_list is provided"
124
+ assert os.path.exists(args.uuid_object_paths_file), f"UUID object paths file {args.uuid_object_paths_file} does not exist"
125
+ object_paths = json.load(open(args.uuid_object_paths_file))
126
+ object_paths = [object_paths[uuid] for uuid in uuid_list]
127
+ webdataset_reader = GraspWebDatasetReader(os.path.join(args.dataset_path, args.gripper_name))
128
+
129
+ for uuid, object_path in zip(uuid_list, object_paths):
130
+ print(f"Visualizing object {uuid}")
131
+ grasp_data = webdataset_reader.read_grasps_by_uuid(uuid)
132
+ object_scale = grasp_data['object']['scale']
133
+ grasps = grasp_data["grasps"]
134
+ grasp_poses = np.array(grasps["transforms"])
135
+ grasp_mask = np.array(grasps["object_in_gripper"])
136
+ positive_grasps = grasp_poses[grasp_mask] # Visualizing only the positive grasps
137
+
138
+ if len(positive_grasps) > 0:
139
+ # Visualize the mesh with the grasps
140
+ visualize_mesh_with_grasps(
141
+ mesh_path=object_path,
142
+ mesh_scale=object_scale,
143
+ grasps=positive_grasps,
144
+ gripper_name=args.gripper_name,
145
+ max_grasps_to_visualize=args.max_grasps_to_visualize,
146
+ )
147
+ print("Press Enter to continue...")
148
+ input()