Datasets:
mteb
/

Modalities:
Text
Formats:
parquet
ArXiv:
Libraries:
Datasets
pandas
License:
Samoed's picture
Add dataset card
6c48cd3 verified
metadata
annotations_creators:
  - human-annotated
language:
  - dan
  - nno
  - nob
  - swe
license: cc-by-sa-4.0
multilinguality: multilingual
task_categories:
  - text-classification
task_ids:
  - acceptability-classification
dataset_info:
  - config_name: Danish
    features:
      - name: text
        dtype: string
      - name: corruption_type
        dtype: string
      - name: label
        dtype: string
    splits:
      - name: train
        num_bytes: 139194
        num_examples: 1024
      - name: test
        num_bytes: 281517
        num_examples: 2048
      - name: full_train
        num_bytes: 733506
        num_examples: 5342
      - name: val
        num_bytes: 32942
        num_examples: 256
    download_size: 700593
    dataset_size: 1187159
  - config_name: Norwegian_b
    features:
      - name: text
        dtype: string
      - name: corruption_type
        dtype: string
      - name: label
        dtype: string
    splits:
      - name: train
        num_bytes: 126028
        num_examples: 1024
      - name: test
        num_bytes: 258103
        num_examples: 2048
      - name: full_train
        num_bytes: 3221649
        num_examples: 25946
      - name: val
        num_bytes: 31302
        num_examples: 256
    download_size: 2161548
    dataset_size: 3637082
  - config_name: Norwegian_n
    features:
      - name: text
        dtype: string
      - name: corruption_type
        dtype: string
      - name: label
        dtype: string
    splits:
      - name: train
        num_bytes: 136251
        num_examples: 1024
      - name: test
        num_bytes: 268761
        num_examples: 2048
      - name: full_train
        num_bytes: 3062138
        num_examples: 22800
      - name: val
        num_bytes: 33910
        num_examples: 256
    download_size: 2088966
    dataset_size: 3501060
  - config_name: Swedish
    features:
      - name: text
        dtype: string
      - name: corruption_type
        dtype: string
      - name: label
        dtype: string
    splits:
      - name: train
        num_bytes: 135999
        num_examples: 1024
      - name: test
        num_bytes: 262897
        num_examples: 2048
      - name: full_train
        num_bytes: 1014513
        num_examples: 7446
      - name: val
        num_bytes: 36681
        num_examples: 256
    download_size: 807624
    dataset_size: 1450090
configs:
  - config_name: Danish
    data_files:
      - split: train
        path: Danish/train-*
      - split: test
        path: Danish/test-*
      - split: full_train
        path: Danish/full_train-*
      - split: val
        path: Danish/val-*
  - config_name: Norwegian_b
    data_files:
      - split: train
        path: Norwegian_b/train-*
      - split: test
        path: Norwegian_b/test-*
      - split: full_train
        path: Norwegian_b/full_train-*
      - split: val
        path: Norwegian_b/val-*
  - config_name: Norwegian_n
    data_files:
      - split: train
        path: Norwegian_n/train-*
      - split: test
        path: Norwegian_n/test-*
      - split: full_train
        path: Norwegian_n/full_train-*
      - split: val
        path: Norwegian_n/val-*
  - config_name: Swedish
    data_files:
      - split: train
        path: Swedish/train-*
      - split: test
        path: Swedish/test-*
      - split: full_train
        path: Swedish/full_train-*
      - split: val
        path: Swedish/val-*
tags:
  - mteb
  - text

ScalaClassification

An MTEB dataset
Massive Text Embedding Benchmark

ScaLa a linguistic acceptability dataset for the mainland Scandinavian languages automatically constructed from dependency annotations in Universal Dependencies Treebanks. Published as part of 'ScandEval: A Benchmark for Scandinavian Natural Language Processing'

Task category t2c
Domains Fiction, News, Non-fiction, Blog, Spoken, Web, Written
Reference https://aclanthology.org/2023.nodalida-1.20/

How to evaluate on this task

You can evaluate an embedding model on this dataset using the following code:

import mteb

task = mteb.get_tasks(["ScalaClassification"])
evaluator = mteb.MTEB(task)

model = mteb.get_model(YOUR_MODEL)
evaluator.run(model)

To learn more about how to run models on mteb task check out the GitHub repitory.

Citation

If you use this dataset, please cite the dataset as well as mteb, as this dataset likely includes additional processing as a part of the MMTEB Contribution.


@inproceedings{nielsen-2023-scandeval,
  address = {T{\'o}rshavn, Faroe Islands},
  author = {Nielsen, Dan},
  booktitle = {Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa)},
  editor = {Alum{\"a}e, Tanel  and
Fishel, Mark},
  month = may,
  pages = {185--201},
  publisher = {University of Tartu Library},
  title = {{S}cand{E}val: A Benchmark for {S}candinavian Natural Language Processing},
  url = {https://aclanthology.org/2023.nodalida-1.20},
  year = {2023},
}


@article{enevoldsen2025mmtebmassivemultilingualtext,
  title={MMTEB: Massive Multilingual Text Embedding Benchmark},
  author={Kenneth Enevoldsen and Isaac Chung and Imene Kerboua and Márton Kardos and Ashwin Mathur and David Stap and Jay Gala and Wissam Siblini and Dominik Krzemiński and Genta Indra Winata and Saba Sturua and Saiteja Utpala and Mathieu Ciancone and Marion Schaeffer and Gabriel Sequeira and Diganta Misra and Shreeya Dhakal and Jonathan Rystrøm and Roman Solomatin and Ömer Çağatan and Akash Kundu and Martin Bernstorff and Shitao Xiao and Akshita Sukhlecha and Bhavish Pahwa and Rafał Poświata and Kranthi Kiran GV and Shawon Ashraf and Daniel Auras and Björn Plüster and Jan Philipp Harries and Loïc Magne and Isabelle Mohr and Mariya Hendriksen and Dawei Zhu and Hippolyte Gisserot-Boukhlef and Tom Aarsen and Jan Kostkan and Konrad Wojtasik and Taemin Lee and Marek Šuppa and Crystina Zhang and Roberta Rocca and Mohammed Hamdy and Andrianos Michail and John Yang and Manuel Faysse and Aleksei Vatolin and Nandan Thakur and Manan Dey and Dipam Vasani and Pranjal Chitale and Simone Tedeschi and Nguyen Tai and Artem Snegirev and Michael Günther and Mengzhou Xia and Weijia Shi and Xing Han Lù and Jordan Clive and Gayatri Krishnakumar and Anna Maksimova and Silvan Wehrli and Maria Tikhonova and Henil Panchal and Aleksandr Abramov and Malte Ostendorff and Zheng Liu and Simon Clematide and Lester James Miranda and Alena Fenogenova and Guangyu Song and Ruqiya Bin Safi and Wen-Ding Li and Alessia Borghini and Federico Cassano and Hongjin Su and Jimmy Lin and Howard Yen and Lasse Hansen and Sara Hooker and Chenghao Xiao and Vaibhav Adlakha and Orion Weller and Siva Reddy and Niklas Muennighoff},
  publisher = {arXiv},
  journal={arXiv preprint arXiv:2502.13595},
  year={2025},
  url={https://arxiv.org/abs/2502.13595},
  doi = {10.48550/arXiv.2502.13595},
}

@article{muennighoff2022mteb,
  author = {Muennighoff, Niklas and Tazi, Nouamane and Magne, Lo{\"\i}c and Reimers, Nils},
  title = {MTEB: Massive Text Embedding Benchmark},
  publisher = {arXiv},
  journal={arXiv preprint arXiv:2210.07316},
  year = {2022}
  url = {https://arxiv.org/abs/2210.07316},
  doi = {10.48550/ARXIV.2210.07316},
}

Dataset Statistics

Dataset Statistics

The following code contains the descriptive statistics from the task. These can also be obtained using:

import mteb

task = mteb.get_task("ScalaClassification")

desc_stats = task.metadata.descriptive_stats
{
    "test": {
        "num_samples": 8192,
        "number_of_characters": 839257,
        "number_texts_intersect_with_train": 0,
        "min_text_length": 13,
        "average_text_length": 102.4483642578125,
        "max_text_length": 613,
        "unique_text": 8192,
        "unique_labels": 2,
        "labels": {
            "0": {
                "count": 4096
            },
            "1": {
                "count": 4096
            }
        },
        "hf_subset_descriptive_stats": {
            "Danish": {
                "num_samples": 2048,
                "number_of_characters": 224132,
                "number_texts_intersect_with_train": 0,
                "min_text_length": 13,
                "average_text_length": 109.439453125,
                "max_text_length": 443,
                "unique_text": 2048,
                "unique_labels": 2,
                "labels": {
                    "0": {
                        "count": 1024
                    },
                    "1": {
                        "count": 1024
                    }
                }
            },
            "Norwegian_b": {
                "num_samples": 2048,
                "number_of_characters": 201596,
                "number_texts_intersect_with_train": 0,
                "min_text_length": 18,
                "average_text_length": 98.435546875,
                "max_text_length": 397,
                "unique_text": 2048,
                "unique_labels": 2,
                "labels": {
                    "1": {
                        "count": 1024
                    },
                    "0": {
                        "count": 1024
                    }
                }
            },
            "Norwegian_n": {
                "num_samples": 2048,
                "number_of_characters": 212059,
                "number_texts_intersect_with_train": 0,
                "min_text_length": 18,
                "average_text_length": 103.54443359375,
                "max_text_length": 349,
                "unique_text": 2048,
                "unique_labels": 2,
                "labels": {
                    "1": {
                        "count": 1024
                    },
                    "0": {
                        "count": 1024
                    }
                }
            },
            "Swedish": {
                "num_samples": 2048,
                "number_of_characters": 201470,
                "number_texts_intersect_with_train": 0,
                "min_text_length": 17,
                "average_text_length": 98.3740234375,
                "max_text_length": 613,
                "unique_text": 2048,
                "unique_labels": 2,
                "labels": {
                    "1": {
                        "count": 1024
                    },
                    "0": {
                        "count": 1024
                    }
                }
            }
        }
    },
    "train": {
        "num_samples": 4096,
        "number_of_characters": 421198,
        "number_texts_intersect_with_train": null,
        "min_text_length": 14,
        "average_text_length": 102.83154296875,
        "max_text_length": 402,
        "unique_text": 4096,
        "unique_labels": 2,
        "labels": {
            "1": {
                "count": 2048
            },
            "0": {
                "count": 2048
            }
        },
        "hf_subset_descriptive_stats": {
            "Danish": {
                "num_samples": 1024,
                "number_of_characters": 110271,
                "number_texts_intersect_with_train": null,
                "min_text_length": 14,
                "average_text_length": 107.6865234375,
                "max_text_length": 392,
                "unique_text": 1024,
                "unique_labels": 2,
                "labels": {
                    "1": {
                        "count": 512
                    },
                    "0": {
                        "count": 512
                    }
                }
            },
            "Norwegian_b": {
                "num_samples": 1024,
                "number_of_characters": 97878,
                "number_texts_intersect_with_train": null,
                "min_text_length": 18,
                "average_text_length": 95.583984375,
                "max_text_length": 350,
                "unique_text": 1024,
                "unique_labels": 2,
                "labels": {
                    "1": {
                        "count": 512
                    },
                    "0": {
                        "count": 512
                    }
                }
            },
            "Norwegian_n": {
                "num_samples": 1024,
                "number_of_characters": 107913,
                "number_texts_intersect_with_train": null,
                "min_text_length": 20,
                "average_text_length": 105.3837890625,
                "max_text_length": 402,
                "unique_text": 1024,
                "unique_labels": 2,
                "labels": {
                    "1": {
                        "count": 512
                    },
                    "0": {
                        "count": 512
                    }
                }
            },
            "Swedish": {
                "num_samples": 1024,
                "number_of_characters": 105136,
                "number_texts_intersect_with_train": null,
                "min_text_length": 19,
                "average_text_length": 102.671875,
                "max_text_length": 326,
                "unique_text": 1024,
                "unique_labels": 2,
                "labels": {
                    "1": {
                        "count": 512
                    },
                    "0": {
                        "count": 512
                    }
                }
            }
        }
    }
}

This dataset card was automatically generated using MTEB