Datasets:
mteb
/

Modalities:
Text
Formats:
parquet
ArXiv:
Libraries:
Datasets
pandas
License:
File size: 14,348 Bytes
83a93e0
761e599
 
1212be3
761e599
 
6c48cd3
761e599
 
 
 
 
 
6c48cd3
83a93e0
496c6b6
83a93e0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
496c6b6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
eae5149
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c0a6179
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
83a93e0
 
 
 
 
 
 
 
 
 
 
496c6b6
 
 
 
 
 
 
 
 
 
eae5149
 
 
 
 
 
 
 
 
 
c0a6179
 
 
 
 
 
 
 
 
 
761e599
 
 
83a93e0
761e599
5b480e7
761e599
 
 
 
 
ec85bb6
761e599
 
5b480e7
761e599
 
 
 
 
5b480e7
 
761e599
ec85bb6
761e599
ec85bb6
761e599
 
 
 
 
 
 
 
ec85bb6
761e599
 
 
 
 
 
 
 
 
 
ec85bb6
761e599
 
 
 
 
 
 
 
 
 
 
ec85bb6
761e599
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
---
annotations_creators:
- human-annotated
language:
- dan
- nno
- nob
- swe
license: cc-by-sa-4.0
multilinguality: multilingual
task_categories:
- text-classification
task_ids:
- acceptability-classification
dataset_info:
- config_name: Danish
  features:
  - name: text
    dtype: string
  - name: corruption_type
    dtype: string
  - name: label
    dtype: string
  splits:
  - name: train
    num_bytes: 139194
    num_examples: 1024
  - name: test
    num_bytes: 281517
    num_examples: 2048
  - name: full_train
    num_bytes: 733506
    num_examples: 5342
  - name: val
    num_bytes: 32942
    num_examples: 256
  download_size: 700593
  dataset_size: 1187159
- config_name: Norwegian_b
  features:
  - name: text
    dtype: string
  - name: corruption_type
    dtype: string
  - name: label
    dtype: string
  splits:
  - name: train
    num_bytes: 126028
    num_examples: 1024
  - name: test
    num_bytes: 258103
    num_examples: 2048
  - name: full_train
    num_bytes: 3221649
    num_examples: 25946
  - name: val
    num_bytes: 31302
    num_examples: 256
  download_size: 2161548
  dataset_size: 3637082
- config_name: Norwegian_n
  features:
  - name: text
    dtype: string
  - name: corruption_type
    dtype: string
  - name: label
    dtype: string
  splits:
  - name: train
    num_bytes: 136251
    num_examples: 1024
  - name: test
    num_bytes: 268761
    num_examples: 2048
  - name: full_train
    num_bytes: 3062138
    num_examples: 22800
  - name: val
    num_bytes: 33910
    num_examples: 256
  download_size: 2088966
  dataset_size: 3501060
- config_name: Swedish
  features:
  - name: text
    dtype: string
  - name: corruption_type
    dtype: string
  - name: label
    dtype: string
  splits:
  - name: train
    num_bytes: 135999
    num_examples: 1024
  - name: test
    num_bytes: 262897
    num_examples: 2048
  - name: full_train
    num_bytes: 1014513
    num_examples: 7446
  - name: val
    num_bytes: 36681
    num_examples: 256
  download_size: 807624
  dataset_size: 1450090
configs:
- config_name: Danish
  data_files:
  - split: train
    path: Danish/train-*
  - split: test
    path: Danish/test-*
  - split: full_train
    path: Danish/full_train-*
  - split: val
    path: Danish/val-*
- config_name: Norwegian_b
  data_files:
  - split: train
    path: Norwegian_b/train-*
  - split: test
    path: Norwegian_b/test-*
  - split: full_train
    path: Norwegian_b/full_train-*
  - split: val
    path: Norwegian_b/val-*
- config_name: Norwegian_n
  data_files:
  - split: train
    path: Norwegian_n/train-*
  - split: test
    path: Norwegian_n/test-*
  - split: full_train
    path: Norwegian_n/full_train-*
  - split: val
    path: Norwegian_n/val-*
- config_name: Swedish
  data_files:
  - split: train
    path: Swedish/train-*
  - split: test
    path: Swedish/test-*
  - split: full_train
    path: Swedish/full_train-*
  - split: val
    path: Swedish/val-*
tags:
- mteb
- text
---
<!-- adapted from https://github.com/huggingface/huggingface_hub/blob/v0.30.2/src/huggingface_hub/templates/datasetcard_template.md -->

<div align="center" style="padding: 40px 20px; background-color: white; border-radius: 12px; box-shadow: 0 2px 10px rgba(0, 0, 0, 0.05); max-width: 600px; margin: 0 auto;">
  <h1 style="font-size: 3.5rem; color: #1a1a1a; margin: 0 0 20px 0; letter-spacing: 2px; font-weight: 700;">ScalaClassification</h1>
  <div style="font-size: 1.5rem; color: #4a4a4a; margin-bottom: 5px; font-weight: 300;">An <a href="https://github.com/embeddings-benchmark/mteb" style="color: #2c5282; font-weight: 600; text-decoration: none;" onmouseover="this.style.textDecoration='underline'" onmouseout="this.style.textDecoration='none'">MTEB</a> dataset</div>
  <div style="font-size: 0.9rem; color: #2c5282; margin-top: 10px;">Massive Text Embedding Benchmark</div>
</div>

ScaLa a linguistic acceptability dataset for the mainland Scandinavian languages automatically constructed from dependency annotations in Universal Dependencies Treebanks.
        Published as part of 'ScandEval: A Benchmark for Scandinavian Natural Language Processing'

|               |                                             |
|---------------|---------------------------------------------|
| Task category | t2c                              |
| Domains       | Fiction, News, Non-fiction, Blog, Spoken, Web, Written                               |
| Reference     | https://aclanthology.org/2023.nodalida-1.20/ |


## How to evaluate on this task

You can evaluate an embedding model on this dataset using the following code:

```python
import mteb

task = mteb.get_tasks(["ScalaClassification"])
evaluator = mteb.MTEB(task)

model = mteb.get_model(YOUR_MODEL)
evaluator.run(model)
```

<!-- Datasets want link to arxiv in readme to autolink dataset with paper -->
To learn more about how to run models on `mteb` task check out the [GitHub repitory](https://github.com/embeddings-benchmark/mteb). 

## Citation

If you use this dataset, please cite the dataset as well as [mteb](https://github.com/embeddings-benchmark/mteb), as this dataset likely includes additional processing as a part of the [MMTEB Contribution](https://github.com/embeddings-benchmark/mteb/tree/main/docs/mmteb).

```bibtex

@inproceedings{nielsen-2023-scandeval,
  address = {T{\'o}rshavn, Faroe Islands},
  author = {Nielsen, Dan},
  booktitle = {Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa)},
  editor = {Alum{\"a}e, Tanel  and
Fishel, Mark},
  month = may,
  pages = {185--201},
  publisher = {University of Tartu Library},
  title = {{S}cand{E}val: A Benchmark for {S}candinavian Natural Language Processing},
  url = {https://aclanthology.org/2023.nodalida-1.20},
  year = {2023},
}


@article{enevoldsen2025mmtebmassivemultilingualtext,
  title={MMTEB: Massive Multilingual Text Embedding Benchmark},
  author={Kenneth Enevoldsen and Isaac Chung and Imene Kerboua and Márton Kardos and Ashwin Mathur and David Stap and Jay Gala and Wissam Siblini and Dominik Krzemiński and Genta Indra Winata and Saba Sturua and Saiteja Utpala and Mathieu Ciancone and Marion Schaeffer and Gabriel Sequeira and Diganta Misra and Shreeya Dhakal and Jonathan Rystrøm and Roman Solomatin and Ömer Çağatan and Akash Kundu and Martin Bernstorff and Shitao Xiao and Akshita Sukhlecha and Bhavish Pahwa and Rafał Poświata and Kranthi Kiran GV and Shawon Ashraf and Daniel Auras and Björn Plüster and Jan Philipp Harries and Loïc Magne and Isabelle Mohr and Mariya Hendriksen and Dawei Zhu and Hippolyte Gisserot-Boukhlef and Tom Aarsen and Jan Kostkan and Konrad Wojtasik and Taemin Lee and Marek Šuppa and Crystina Zhang and Roberta Rocca and Mohammed Hamdy and Andrianos Michail and John Yang and Manuel Faysse and Aleksei Vatolin and Nandan Thakur and Manan Dey and Dipam Vasani and Pranjal Chitale and Simone Tedeschi and Nguyen Tai and Artem Snegirev and Michael Günther and Mengzhou Xia and Weijia Shi and Xing Han Lù and Jordan Clive and Gayatri Krishnakumar and Anna Maksimova and Silvan Wehrli and Maria Tikhonova and Henil Panchal and Aleksandr Abramov and Malte Ostendorff and Zheng Liu and Simon Clematide and Lester James Miranda and Alena Fenogenova and Guangyu Song and Ruqiya Bin Safi and Wen-Ding Li and Alessia Borghini and Federico Cassano and Hongjin Su and Jimmy Lin and Howard Yen and Lasse Hansen and Sara Hooker and Chenghao Xiao and Vaibhav Adlakha and Orion Weller and Siva Reddy and Niklas Muennighoff},
  publisher = {arXiv},
  journal={arXiv preprint arXiv:2502.13595},
  year={2025},
  url={https://arxiv.org/abs/2502.13595},
  doi = {10.48550/arXiv.2502.13595},
}

@article{muennighoff2022mteb,
  author = {Muennighoff, Niklas and Tazi, Nouamane and Magne, Lo{\"\i}c and Reimers, Nils},
  title = {MTEB: Massive Text Embedding Benchmark},
  publisher = {arXiv},
  journal={arXiv preprint arXiv:2210.07316},
  year = {2022}
  url = {https://arxiv.org/abs/2210.07316},
  doi = {10.48550/ARXIV.2210.07316},
}
```

# Dataset Statistics
<details>
  <summary> Dataset Statistics</summary>

The following code contains the descriptive statistics from the task. These can also be obtained using:

```python
import mteb

task = mteb.get_task("ScalaClassification")

desc_stats = task.metadata.descriptive_stats
```

```json
{
    "test": {
        "num_samples": 8192,
        "number_of_characters": 839257,
        "number_texts_intersect_with_train": 0,
        "min_text_length": 13,
        "average_text_length": 102.4483642578125,
        "max_text_length": 613,
        "unique_text": 8192,
        "unique_labels": 2,
        "labels": {
            "0": {
                "count": 4096
            },
            "1": {
                "count": 4096
            }
        },
        "hf_subset_descriptive_stats": {
            "Danish": {
                "num_samples": 2048,
                "number_of_characters": 224132,
                "number_texts_intersect_with_train": 0,
                "min_text_length": 13,
                "average_text_length": 109.439453125,
                "max_text_length": 443,
                "unique_text": 2048,
                "unique_labels": 2,
                "labels": {
                    "0": {
                        "count": 1024
                    },
                    "1": {
                        "count": 1024
                    }
                }
            },
            "Norwegian_b": {
                "num_samples": 2048,
                "number_of_characters": 201596,
                "number_texts_intersect_with_train": 0,
                "min_text_length": 18,
                "average_text_length": 98.435546875,
                "max_text_length": 397,
                "unique_text": 2048,
                "unique_labels": 2,
                "labels": {
                    "1": {
                        "count": 1024
                    },
                    "0": {
                        "count": 1024
                    }
                }
            },
            "Norwegian_n": {
                "num_samples": 2048,
                "number_of_characters": 212059,
                "number_texts_intersect_with_train": 0,
                "min_text_length": 18,
                "average_text_length": 103.54443359375,
                "max_text_length": 349,
                "unique_text": 2048,
                "unique_labels": 2,
                "labels": {
                    "1": {
                        "count": 1024
                    },
                    "0": {
                        "count": 1024
                    }
                }
            },
            "Swedish": {
                "num_samples": 2048,
                "number_of_characters": 201470,
                "number_texts_intersect_with_train": 0,
                "min_text_length": 17,
                "average_text_length": 98.3740234375,
                "max_text_length": 613,
                "unique_text": 2048,
                "unique_labels": 2,
                "labels": {
                    "1": {
                        "count": 1024
                    },
                    "0": {
                        "count": 1024
                    }
                }
            }
        }
    },
    "train": {
        "num_samples": 4096,
        "number_of_characters": 421198,
        "number_texts_intersect_with_train": null,
        "min_text_length": 14,
        "average_text_length": 102.83154296875,
        "max_text_length": 402,
        "unique_text": 4096,
        "unique_labels": 2,
        "labels": {
            "1": {
                "count": 2048
            },
            "0": {
                "count": 2048
            }
        },
        "hf_subset_descriptive_stats": {
            "Danish": {
                "num_samples": 1024,
                "number_of_characters": 110271,
                "number_texts_intersect_with_train": null,
                "min_text_length": 14,
                "average_text_length": 107.6865234375,
                "max_text_length": 392,
                "unique_text": 1024,
                "unique_labels": 2,
                "labels": {
                    "1": {
                        "count": 512
                    },
                    "0": {
                        "count": 512
                    }
                }
            },
            "Norwegian_b": {
                "num_samples": 1024,
                "number_of_characters": 97878,
                "number_texts_intersect_with_train": null,
                "min_text_length": 18,
                "average_text_length": 95.583984375,
                "max_text_length": 350,
                "unique_text": 1024,
                "unique_labels": 2,
                "labels": {
                    "1": {
                        "count": 512
                    },
                    "0": {
                        "count": 512
                    }
                }
            },
            "Norwegian_n": {
                "num_samples": 1024,
                "number_of_characters": 107913,
                "number_texts_intersect_with_train": null,
                "min_text_length": 20,
                "average_text_length": 105.3837890625,
                "max_text_length": 402,
                "unique_text": 1024,
                "unique_labels": 2,
                "labels": {
                    "1": {
                        "count": 512
                    },
                    "0": {
                        "count": 512
                    }
                }
            },
            "Swedish": {
                "num_samples": 1024,
                "number_of_characters": 105136,
                "number_texts_intersect_with_train": null,
                "min_text_length": 19,
                "average_text_length": 102.671875,
                "max_text_length": 326,
                "unique_text": 1024,
                "unique_labels": 2,
                "labels": {
                    "1": {
                        "count": 512
                    },
                    "0": {
                        "count": 512
                    }
                }
            }
        }
    }
}
```

</details>

---
*This dataset card was automatically generated using [MTEB](https://github.com/embeddings-benchmark/mteb)*