Datasets:
Tasks:
Text Classification
Modalities:
Text
Formats:
parquet
Sub-tasks:
semantic-similarity-classification
Size:
< 1K
ArXiv:
License:
metadata
annotations_creators:
- human-annotated
language:
- deu
- eng
- fin
- fra
- rus
- swe
license: cc-by-nc-4.0
multilinguality: multilingual
task_categories:
- text-classification
task_ids:
- semantic-similarity-classification
dataset_info:
- config_name: de
features:
- name: sentence1
sequence: string
- name: sentence2
sequence: string
- name: labels
sequence: int64
splits:
- name: test
num_bytes: 70778
num_examples: 1
- name: validation
num_bytes: 68990
num_examples: 1
- name: test.full
num_bytes: 93698
num_examples: 1
- name: validation.full
num_bytes: 92505
num_examples: 1
download_size: 202223
dataset_size: 325971
- config_name: en
features:
- name: sentence1
sequence: string
- name: sentence2
sequence: string
- name: labels
sequence: int64
splits:
- name: test
num_bytes: 62229
num_examples: 1
- name: validation
num_bytes: 64568
num_examples: 1
- name: test.full
num_bytes: 85509
num_examples: 1
- name: validation.full
num_bytes: 85512
num_examples: 1
download_size: 187334
dataset_size: 297818
- config_name: fi
features:
- name: sentence1
sequence: string
- name: sentence2
sequence: string
- name: labels
sequence: int64
splits:
- name: test
num_bytes: 62609
num_examples: 1
- name: validation
num_bytes: 65054
num_examples: 1
- name: test.full
num_bytes: 99390
num_examples: 1
- name: validation.full
num_bytes: 101441
num_examples: 1
download_size: 215489
dataset_size: 328494
- config_name: fr
features:
- name: sentence1
sequence: string
- name: sentence2
sequence: string
- name: labels
sequence: int64
splits:
- name: test
num_bytes: 78545
num_examples: 1
- name: validation
num_bytes: 79668
num_examples: 1
- name: test.full
num_bytes: 107514
num_examples: 1
- name: validation.full
num_bytes: 106234
num_examples: 1
download_size: 239874
dataset_size: 371961
- config_name: ru
features:
- name: sentence1
sequence: string
- name: sentence2
sequence: string
- name: labels
sequence: int64
splits:
- name: test
num_bytes: 103971
num_examples: 1
- name: validation
num_bytes: 109492
num_examples: 1
- name: test.full
num_bytes: 154433
num_examples: 1
- name: validation.full
num_bytes: 165487
num_examples: 1
download_size: 287953
dataset_size: 533383
- config_name: sv
features:
- name: sentence1
sequence: string
- name: sentence2
sequence: string
- name: labels
sequence: int64
splits:
- name: test
num_bytes: 62512
num_examples: 1
- name: validation
num_bytes: 64040
num_examples: 1
- name: test.full
num_bytes: 111067
num_examples: 1
- name: validation.full
num_bytes: 109366
num_examples: 1
download_size: 214389
dataset_size: 346985
configs:
- config_name: de
data_files:
- split: test
path: de/test-*
- split: validation
path: de/validation-*
- split: test.full
path: de/test.full-*
- split: validation.full
path: de/validation.full-*
- config_name: en
data_files:
- split: test
path: en/test-*
- split: validation
path: en/validation-*
- split: test.full
path: en/test.full-*
- split: validation.full
path: en/validation.full-*
- config_name: fi
data_files:
- split: test
path: fi/test-*
- split: validation
path: fi/validation-*
- split: test.full
path: fi/test.full-*
- split: validation.full
path: fi/validation.full-*
- config_name: fr
data_files:
- split: test
path: fr/test-*
- split: validation
path: fr/validation-*
- split: test.full
path: fr/test.full-*
- split: validation.full
path: fr/validation.full-*
- config_name: ru
data_files:
- split: test
path: ru/test-*
- split: validation
path: ru/validation-*
- split: test.full
path: ru/test.full-*
- split: validation.full
path: ru/validation.full-*
- config_name: sv
data_files:
- split: test
path: sv/test-*
- split: validation
path: sv/validation-*
- split: test.full
path: sv/test.full-*
- split: validation.full
path: sv/validation.full-*
tags:
- mteb
- text
Opusparcus is a paraphrase corpus for six European language: German, English, Finnish, French, Russian, and Swedish. The paraphrases consist of subtitles from movies and TV shows.
Task category | t2t |
Domains | Spoken, Spoken |
Reference | https://gem-benchmark.com/data_cards/opusparcus |
How to evaluate on this task
You can evaluate an embedding model on this dataset using the following code:
import mteb
task = mteb.get_tasks(["OpusparcusPC"])
evaluator = mteb.MTEB(task)
model = mteb.get_model(YOUR_MODEL)
evaluator.run(model)
To learn more about how to run models on mteb
task check out the GitHub repitory.
Citation
If you use this dataset, please cite the dataset as well as mteb, as this dataset likely includes additional processing as a part of the MMTEB Contribution.
@misc{creutz2018open,
archiveprefix = {arXiv},
author = {Mathias Creutz},
eprint = {1809.06142},
primaryclass = {cs.CL},
title = {Open Subtitles Paraphrase Corpus for Six Languages},
year = {2018},
}
@article{enevoldsen2025mmtebmassivemultilingualtext,
title={MMTEB: Massive Multilingual Text Embedding Benchmark},
author={Kenneth Enevoldsen and Isaac Chung and Imene Kerboua and Márton Kardos and Ashwin Mathur and David Stap and Jay Gala and Wissam Siblini and Dominik Krzemiński and Genta Indra Winata and Saba Sturua and Saiteja Utpala and Mathieu Ciancone and Marion Schaeffer and Gabriel Sequeira and Diganta Misra and Shreeya Dhakal and Jonathan Rystrøm and Roman Solomatin and Ömer Çağatan and Akash Kundu and Martin Bernstorff and Shitao Xiao and Akshita Sukhlecha and Bhavish Pahwa and Rafał Poświata and Kranthi Kiran GV and Shawon Ashraf and Daniel Auras and Björn Plüster and Jan Philipp Harries and Loïc Magne and Isabelle Mohr and Mariya Hendriksen and Dawei Zhu and Hippolyte Gisserot-Boukhlef and Tom Aarsen and Jan Kostkan and Konrad Wojtasik and Taemin Lee and Marek Šuppa and Crystina Zhang and Roberta Rocca and Mohammed Hamdy and Andrianos Michail and John Yang and Manuel Faysse and Aleksei Vatolin and Nandan Thakur and Manan Dey and Dipam Vasani and Pranjal Chitale and Simone Tedeschi and Nguyen Tai and Artem Snegirev and Michael Günther and Mengzhou Xia and Weijia Shi and Xing Han Lù and Jordan Clive and Gayatri Krishnakumar and Anna Maksimova and Silvan Wehrli and Maria Tikhonova and Henil Panchal and Aleksandr Abramov and Malte Ostendorff and Zheng Liu and Simon Clematide and Lester James Miranda and Alena Fenogenova and Guangyu Song and Ruqiya Bin Safi and Wen-Ding Li and Alessia Borghini and Federico Cassano and Hongjin Su and Jimmy Lin and Howard Yen and Lasse Hansen and Sara Hooker and Chenghao Xiao and Vaibhav Adlakha and Orion Weller and Siva Reddy and Niklas Muennighoff},
publisher = {arXiv},
journal={arXiv preprint arXiv:2502.13595},
year={2025},
url={https://arxiv.org/abs/2502.13595},
doi = {10.48550/arXiv.2502.13595},
}
@article{muennighoff2022mteb,
author = {Muennighoff, Niklas and Tazi, Nouamane and Magne, Lo{\"\i}c and Reimers, Nils},
title = {MTEB: Massive Text Embedding Benchmark},
publisher = {arXiv},
journal={arXiv preprint arXiv:2210.07316},
year = {2022}
url = {https://arxiv.org/abs/2210.07316},
doi = {10.48550/ARXIV.2210.07316},
}
Dataset Statistics
Dataset Statistics
The following code contains the descriptive statistics from the task. These can also be obtained using:
import mteb
task = mteb.get_task("OpusparcusPC")
desc_stats = task.metadata.descriptive_stats
{
"test.full": {
"num_samples": 9155,
"number_of_characters": 436535,
"unique_pairs": 9155,
"min_sentence1_length": 10,
"avg_sentence1_length": 23.896559257236483,
"max_sentence1_length": 122,
"unique_sentence1": 9155,
"min_sentence2_length": 10,
"avg_sentence2_length": 23.78612779901693,
"max_sentence2_length": 121,
"unique_sentence2": 9155,
"unique_labels": 2,
"labels": {
"1": {
"count": 6009
},
"0": {
"count": 3146
}
},
"hf_subset_descriptive_stats": {
"de": {
"num_samples": 1409,
"number_of_characters": 70269,
"unique_pairs": 1409,
"min_sentence1_length": 10,
"avg_sentence1_length": 24.828246983676365,
"max_sentence1_length": 98,
"unique_sentence1": 1409,
"min_sentence2_length": 10,
"avg_sentence2_length": 25.043293115684882,
"max_sentence2_length": 110,
"unique_sentence2": 1409,
"unique_labels": 2,
"labels": {
"1": {
"count": 1047
},
"0": {
"count": 362
}
}
},
"en": {
"num_samples": 1348,
"number_of_characters": 63924,
"unique_pairs": 1348,
"min_sentence1_length": 10,
"avg_sentence1_length": 23.98145400593472,
"max_sentence1_length": 82,
"unique_sentence1": 1348,
"min_sentence2_length": 10,
"avg_sentence2_length": 23.439910979228486,
"max_sentence2_length": 111,
"unique_sentence2": 1348,
"unique_labels": 2,
"labels": {
"1": {
"count": 982
},
"0": {
"count": 366
}
}
},
"fi": {
"num_samples": 1570,
"number_of_characters": 69983,
"unique_pairs": 1570,
"min_sentence1_length": 10,
"avg_sentence1_length": 22.2171974522293,
"max_sentence1_length": 98,
"unique_sentence1": 1570,
"min_sentence2_length": 10,
"avg_sentence2_length": 22.35796178343949,
"max_sentence2_length": 108,
"unique_sentence2": 1570,
"unique_labels": 2,
"labels": {
"1": {
"count": 958
},
"0": {
"count": 612
}
}
},
"fr": {
"num_samples": 1468,
"number_of_characters": 82094,
"unique_pairs": 1468,
"min_sentence1_length": 11,
"avg_sentence1_length": 28.242506811989102,
"max_sentence1_length": 122,
"unique_sentence1": 1468,
"min_sentence2_length": 10,
"avg_sentence2_length": 27.67983651226158,
"max_sentence2_length": 121,
"unique_sentence2": 1468,
"unique_labels": 2,
"labels": {
"1": {
"count": 1007
},
"0": {
"count": 461
}
}
},
"ru": {
"num_samples": 1632,
"number_of_characters": 71040,
"unique_pairs": 1632,
"min_sentence1_length": 11,
"avg_sentence1_length": 21.72610294117647,
"max_sentence1_length": 106,
"unique_sentence1": 1632,
"min_sentence2_length": 10,
"avg_sentence2_length": 21.803308823529413,
"max_sentence2_length": 94,
"unique_sentence2": 1632,
"unique_labels": 2,
"labels": {
"1": {
"count": 1068
},
"0": {
"count": 564
}
}
},
"sv": {
"num_samples": 1728,
"number_of_characters": 79225,
"unique_pairs": 1728,
"min_sentence1_length": 10,
"avg_sentence1_length": 22.95428240740741,
"max_sentence1_length": 79,
"unique_sentence1": 1728,
"min_sentence2_length": 10,
"avg_sentence2_length": 22.89351851851852,
"max_sentence2_length": 106,
"unique_sentence2": 1728,
"unique_labels": 2,
"labels": {
"1": {
"count": 947
},
"0": {
"count": 781
}
}
}
}
},
"validation.full": {
"num_samples": 9052,
"number_of_characters": 441614,
"unique_pairs": 9052,
"min_sentence1_length": 10,
"avg_sentence1_length": 24.41427308882015,
"max_sentence1_length": 140,
"unique_sentence1": 9052,
"min_sentence2_length": 10,
"avg_sentence2_length": 24.372072470172338,
"max_sentence2_length": 155,
"unique_sentence2": 9052,
"unique_labels": 2,
"labels": {
"1": {
"count": 5992
},
"0": {
"count": 3060
}
},
"hf_subset_descriptive_stats": {
"de": {
"num_samples": 1393,
"number_of_characters": 69379,
"unique_pairs": 1393,
"min_sentence1_length": 11,
"avg_sentence1_length": 24.728643216080403,
"max_sentence1_length": 108,
"unique_sentence1": 1393,
"min_sentence2_length": 10,
"avg_sentence2_length": 25.07681263460158,
"max_sentence2_length": 122,
"unique_sentence2": 1393,
"unique_labels": 2,
"labels": {
"1": {
"count": 1013
},
"0": {
"count": 380
}
}
},
"en": {
"num_samples": 1350,
"number_of_characters": 63869,
"unique_pairs": 1350,
"min_sentence1_length": 10,
"avg_sentence1_length": 23.950370370370372,
"max_sentence1_length": 91,
"unique_sentence1": 1350,
"min_sentence2_length": 10,
"avg_sentence2_length": 23.36,
"max_sentence2_length": 76,
"unique_sentence2": 1350,
"unique_labels": 2,
"labels": {
"0": {
"count": 335
},
"1": {
"count": 1015
}
}
},
"fi": {
"num_samples": 1575,
"number_of_characters": 71790,
"unique_pairs": 1575,
"min_sentence1_length": 11,
"avg_sentence1_length": 22.70095238095238,
"max_sentence1_length": 99,
"unique_sentence1": 1575,
"min_sentence2_length": 10,
"avg_sentence2_length": 22.88,
"max_sentence2_length": 155,
"unique_sentence2": 1575,
"unique_labels": 2,
"labels": {
"1": {
"count": 963
},
"0": {
"count": 612
}
}
},
"fr": {
"num_samples": 1404,
"number_of_characters": 81660,
"unique_pairs": 1404,
"min_sentence1_length": 11,
"avg_sentence1_length": 29.03988603988604,
"max_sentence1_length": 140,
"unique_sentence1": 1404,
"min_sentence2_length": 10,
"avg_sentence2_length": 29.122507122507123,
"max_sentence2_length": 139,
"unique_sentence2": 1404,
"unique_labels": 2,
"labels": {
"1": {
"count": 997
},
"0": {
"count": 407
}
}
},
"ru": {
"num_samples": 1598,
"number_of_characters": 77436,
"unique_pairs": 1598,
"min_sentence1_length": 10,
"avg_sentence1_length": 24.303504380475594,
"max_sentence1_length": 100,
"unique_sentence1": 1598,
"min_sentence2_length": 11,
"avg_sentence2_length": 24.154568210262827,
"max_sentence2_length": 106,
"unique_sentence2": 1598,
"unique_labels": 2,
"labels": {
"1": {
"count": 1020
},
"0": {
"count": 578
}
}
},
"sv": {
"num_samples": 1732,
"number_of_characters": 77480,
"unique_pairs": 1732,
"min_sentence1_length": 10,
"avg_sentence1_length": 22.433602771362587,
"max_sentence1_length": 101,
"unique_sentence1": 1732,
"min_sentence2_length": 10,
"avg_sentence2_length": 22.30080831408776,
"max_sentence2_length": 104,
"unique_sentence2": 1732,
"unique_labels": 2,
"labels": {
"1": {
"count": 984
},
"0": {
"count": 748
}
}
}
}
}
}
This dataset card was automatically generated using MTEB