Datasets:
mteb
/

Modalities:
Text
Formats:
parquet
Size:
< 1K
ArXiv:
Libraries:
Datasets
pandas
License:
Samoed commited on
Commit
e95831b
·
verified ·
1 Parent(s): a3ef79b

Add dataset card

Browse files
Files changed (1) hide show
  1. README.md +424 -0
README.md CHANGED
@@ -1,4 +1,19 @@
1
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2
  dataset_info:
3
  - config_name: de
4
  features:
@@ -199,4 +214,413 @@ configs:
199
  path: sv/test.full-*
200
  - split: validation.full
201
  path: sv/validation.full-*
 
 
 
202
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
+ annotations_creators:
3
+ - human-annotated
4
+ language:
5
+ - deu
6
+ - eng
7
+ - fin
8
+ - fra
9
+ - rus
10
+ - swe
11
+ license: cc-by-nc-4.0
12
+ multilinguality: multilingual
13
+ task_categories:
14
+ - text-classification
15
+ task_ids:
16
+ - semantic-similarity-classification
17
  dataset_info:
18
  - config_name: de
19
  features:
 
214
  path: sv/test.full-*
215
  - split: validation.full
216
  path: sv/validation.full-*
217
+ tags:
218
+ - mteb
219
+ - text
220
  ---
221
+ <!-- adapted from https://github.com/huggingface/huggingface_hub/blob/v0.30.2/src/huggingface_hub/templates/datasetcard_template.md -->
222
+
223
+ <div align="center" style="padding: 40px 20px; background-color: white; border-radius: 12px; box-shadow: 0 2px 10px rgba(0, 0, 0, 0.05); max-width: 600px; margin: 0 auto;">
224
+ <h1 style="font-size: 3.5rem; color: #1a1a1a; margin: 0 0 20px 0; letter-spacing: 2px; font-weight: 700;">OpusparcusPC</h1>
225
+ <div style="font-size: 1.5rem; color: #4a4a4a; margin-bottom: 5px; font-weight: 300;">An <a href="https://github.com/embeddings-benchmark/mteb" style="color: #2c5282; font-weight: 600; text-decoration: none;" onmouseover="this.style.textDecoration='underline'" onmouseout="this.style.textDecoration='none'">MTEB</a> dataset</div>
226
+ <div style="font-size: 0.9rem; color: #2c5282; margin-top: 10px;">Massive Text Embedding Benchmark</div>
227
+ </div>
228
+
229
+ Opusparcus is a paraphrase corpus for six European language: German, English, Finnish, French, Russian, and Swedish. The paraphrases consist of subtitles from movies and TV shows.
230
+
231
+ | | |
232
+ |---------------|---------------------------------------------|
233
+ | Task category | t2t |
234
+ | Domains | Spoken, Spoken |
235
+ | Reference | https://gem-benchmark.com/data_cards/opusparcus |
236
+
237
+
238
+ ## How to evaluate on this task
239
+
240
+ You can evaluate an embedding model on this dataset using the following code:
241
+
242
+ ```python
243
+ import mteb
244
+
245
+ task = mteb.get_tasks(["OpusparcusPC"])
246
+ evaluator = mteb.MTEB(task)
247
+
248
+ model = mteb.get_model(YOUR_MODEL)
249
+ evaluator.run(model)
250
+ ```
251
+
252
+ <!-- Datasets want link to arxiv in readme to autolink dataset with paper -->
253
+ To learn more about how to run models on `mteb` task check out the [GitHub repitory](https://github.com/embeddings-benchmark/mteb).
254
+
255
+ ## Citation
256
+
257
+ If you use this dataset, please cite the dataset as well as [mteb](https://github.com/embeddings-benchmark/mteb), as this dataset likely includes additional processing as a part of the [MMTEB Contribution](https://github.com/embeddings-benchmark/mteb/tree/main/docs/mmteb).
258
+
259
+ ```bibtex
260
+
261
+ @misc{creutz2018open,
262
+ archiveprefix = {arXiv},
263
+ author = {Mathias Creutz},
264
+ eprint = {1809.06142},
265
+ primaryclass = {cs.CL},
266
+ title = {Open Subtitles Paraphrase Corpus for Six Languages},
267
+ year = {2018},
268
+ }
269
+
270
+
271
+ @article{enevoldsen2025mmtebmassivemultilingualtext,
272
+ title={MMTEB: Massive Multilingual Text Embedding Benchmark},
273
+ author={Kenneth Enevoldsen and Isaac Chung and Imene Kerboua and Márton Kardos and Ashwin Mathur and David Stap and Jay Gala and Wissam Siblini and Dominik Krzemiński and Genta Indra Winata and Saba Sturua and Saiteja Utpala and Mathieu Ciancone and Marion Schaeffer and Gabriel Sequeira and Diganta Misra and Shreeya Dhakal and Jonathan Rystrøm and Roman Solomatin and Ömer Çağatan and Akash Kundu and Martin Bernstorff and Shitao Xiao and Akshita Sukhlecha and Bhavish Pahwa and Rafał Poświata and Kranthi Kiran GV and Shawon Ashraf and Daniel Auras and Björn Plüster and Jan Philipp Harries and Loïc Magne and Isabelle Mohr and Mariya Hendriksen and Dawei Zhu and Hippolyte Gisserot-Boukhlef and Tom Aarsen and Jan Kostkan and Konrad Wojtasik and Taemin Lee and Marek Šuppa and Crystina Zhang and Roberta Rocca and Mohammed Hamdy and Andrianos Michail and John Yang and Manuel Faysse and Aleksei Vatolin and Nandan Thakur and Manan Dey and Dipam Vasani and Pranjal Chitale and Simone Tedeschi and Nguyen Tai and Artem Snegirev and Michael Günther and Mengzhou Xia and Weijia Shi and Xing Han Lù and Jordan Clive and Gayatri Krishnakumar and Anna Maksimova and Silvan Wehrli and Maria Tikhonova and Henil Panchal and Aleksandr Abramov and Malte Ostendorff and Zheng Liu and Simon Clematide and Lester James Miranda and Alena Fenogenova and Guangyu Song and Ruqiya Bin Safi and Wen-Ding Li and Alessia Borghini and Federico Cassano and Hongjin Su and Jimmy Lin and Howard Yen and Lasse Hansen and Sara Hooker and Chenghao Xiao and Vaibhav Adlakha and Orion Weller and Siva Reddy and Niklas Muennighoff},
274
+ publisher = {arXiv},
275
+ journal={arXiv preprint arXiv:2502.13595},
276
+ year={2025},
277
+ url={https://arxiv.org/abs/2502.13595},
278
+ doi = {10.48550/arXiv.2502.13595},
279
+ }
280
+
281
+ @article{muennighoff2022mteb,
282
+ author = {Muennighoff, Niklas and Tazi, Nouamane and Magne, Lo{\"\i}c and Reimers, Nils},
283
+ title = {MTEB: Massive Text Embedding Benchmark},
284
+ publisher = {arXiv},
285
+ journal={arXiv preprint arXiv:2210.07316},
286
+ year = {2022}
287
+ url = {https://arxiv.org/abs/2210.07316},
288
+ doi = {10.48550/ARXIV.2210.07316},
289
+ }
290
+ ```
291
+
292
+ # Dataset Statistics
293
+ <details>
294
+ <summary> Dataset Statistics</summary>
295
+
296
+ The following code contains the descriptive statistics from the task. These can also be obtained using:
297
+
298
+ ```python
299
+ import mteb
300
+
301
+ task = mteb.get_task("OpusparcusPC")
302
+
303
+ desc_stats = task.metadata.descriptive_stats
304
+ ```
305
+
306
+ ```json
307
+ {
308
+ "test.full": {
309
+ "num_samples": 9155,
310
+ "number_of_characters": 436535,
311
+ "unique_pairs": 9155,
312
+ "min_sentence1_length": 10,
313
+ "avg_sentence1_length": 23.896559257236483,
314
+ "max_sentence1_length": 122,
315
+ "unique_sentence1": 9155,
316
+ "min_sentence2_length": 10,
317
+ "avg_sentence2_length": 23.78612779901693,
318
+ "max_sentence2_length": 121,
319
+ "unique_sentence2": 9155,
320
+ "unique_labels": 2,
321
+ "labels": {
322
+ "1": {
323
+ "count": 6009
324
+ },
325
+ "0": {
326
+ "count": 3146
327
+ }
328
+ },
329
+ "hf_subset_descriptive_stats": {
330
+ "de": {
331
+ "num_samples": 1409,
332
+ "number_of_characters": 70269,
333
+ "unique_pairs": 1409,
334
+ "min_sentence1_length": 10,
335
+ "avg_sentence1_length": 24.828246983676365,
336
+ "max_sentence1_length": 98,
337
+ "unique_sentence1": 1409,
338
+ "min_sentence2_length": 10,
339
+ "avg_sentence2_length": 25.043293115684882,
340
+ "max_sentence2_length": 110,
341
+ "unique_sentence2": 1409,
342
+ "unique_labels": 2,
343
+ "labels": {
344
+ "1": {
345
+ "count": 1047
346
+ },
347
+ "0": {
348
+ "count": 362
349
+ }
350
+ }
351
+ },
352
+ "en": {
353
+ "num_samples": 1348,
354
+ "number_of_characters": 63924,
355
+ "unique_pairs": 1348,
356
+ "min_sentence1_length": 10,
357
+ "avg_sentence1_length": 23.98145400593472,
358
+ "max_sentence1_length": 82,
359
+ "unique_sentence1": 1348,
360
+ "min_sentence2_length": 10,
361
+ "avg_sentence2_length": 23.439910979228486,
362
+ "max_sentence2_length": 111,
363
+ "unique_sentence2": 1348,
364
+ "unique_labels": 2,
365
+ "labels": {
366
+ "1": {
367
+ "count": 982
368
+ },
369
+ "0": {
370
+ "count": 366
371
+ }
372
+ }
373
+ },
374
+ "fi": {
375
+ "num_samples": 1570,
376
+ "number_of_characters": 69983,
377
+ "unique_pairs": 1570,
378
+ "min_sentence1_length": 10,
379
+ "avg_sentence1_length": 22.2171974522293,
380
+ "max_sentence1_length": 98,
381
+ "unique_sentence1": 1570,
382
+ "min_sentence2_length": 10,
383
+ "avg_sentence2_length": 22.35796178343949,
384
+ "max_sentence2_length": 108,
385
+ "unique_sentence2": 1570,
386
+ "unique_labels": 2,
387
+ "labels": {
388
+ "1": {
389
+ "count": 958
390
+ },
391
+ "0": {
392
+ "count": 612
393
+ }
394
+ }
395
+ },
396
+ "fr": {
397
+ "num_samples": 1468,
398
+ "number_of_characters": 82094,
399
+ "unique_pairs": 1468,
400
+ "min_sentence1_length": 11,
401
+ "avg_sentence1_length": 28.242506811989102,
402
+ "max_sentence1_length": 122,
403
+ "unique_sentence1": 1468,
404
+ "min_sentence2_length": 10,
405
+ "avg_sentence2_length": 27.67983651226158,
406
+ "max_sentence2_length": 121,
407
+ "unique_sentence2": 1468,
408
+ "unique_labels": 2,
409
+ "labels": {
410
+ "1": {
411
+ "count": 1007
412
+ },
413
+ "0": {
414
+ "count": 461
415
+ }
416
+ }
417
+ },
418
+ "ru": {
419
+ "num_samples": 1632,
420
+ "number_of_characters": 71040,
421
+ "unique_pairs": 1632,
422
+ "min_sentence1_length": 11,
423
+ "avg_sentence1_length": 21.72610294117647,
424
+ "max_sentence1_length": 106,
425
+ "unique_sentence1": 1632,
426
+ "min_sentence2_length": 10,
427
+ "avg_sentence2_length": 21.803308823529413,
428
+ "max_sentence2_length": 94,
429
+ "unique_sentence2": 1632,
430
+ "unique_labels": 2,
431
+ "labels": {
432
+ "1": {
433
+ "count": 1068
434
+ },
435
+ "0": {
436
+ "count": 564
437
+ }
438
+ }
439
+ },
440
+ "sv": {
441
+ "num_samples": 1728,
442
+ "number_of_characters": 79225,
443
+ "unique_pairs": 1728,
444
+ "min_sentence1_length": 10,
445
+ "avg_sentence1_length": 22.95428240740741,
446
+ "max_sentence1_length": 79,
447
+ "unique_sentence1": 1728,
448
+ "min_sentence2_length": 10,
449
+ "avg_sentence2_length": 22.89351851851852,
450
+ "max_sentence2_length": 106,
451
+ "unique_sentence2": 1728,
452
+ "unique_labels": 2,
453
+ "labels": {
454
+ "1": {
455
+ "count": 947
456
+ },
457
+ "0": {
458
+ "count": 781
459
+ }
460
+ }
461
+ }
462
+ }
463
+ },
464
+ "validation.full": {
465
+ "num_samples": 9052,
466
+ "number_of_characters": 441614,
467
+ "unique_pairs": 9052,
468
+ "min_sentence1_length": 10,
469
+ "avg_sentence1_length": 24.41427308882015,
470
+ "max_sentence1_length": 140,
471
+ "unique_sentence1": 9052,
472
+ "min_sentence2_length": 10,
473
+ "avg_sentence2_length": 24.372072470172338,
474
+ "max_sentence2_length": 155,
475
+ "unique_sentence2": 9052,
476
+ "unique_labels": 2,
477
+ "labels": {
478
+ "1": {
479
+ "count": 5992
480
+ },
481
+ "0": {
482
+ "count": 3060
483
+ }
484
+ },
485
+ "hf_subset_descriptive_stats": {
486
+ "de": {
487
+ "num_samples": 1393,
488
+ "number_of_characters": 69379,
489
+ "unique_pairs": 1393,
490
+ "min_sentence1_length": 11,
491
+ "avg_sentence1_length": 24.728643216080403,
492
+ "max_sentence1_length": 108,
493
+ "unique_sentence1": 1393,
494
+ "min_sentence2_length": 10,
495
+ "avg_sentence2_length": 25.07681263460158,
496
+ "max_sentence2_length": 122,
497
+ "unique_sentence2": 1393,
498
+ "unique_labels": 2,
499
+ "labels": {
500
+ "1": {
501
+ "count": 1013
502
+ },
503
+ "0": {
504
+ "count": 380
505
+ }
506
+ }
507
+ },
508
+ "en": {
509
+ "num_samples": 1350,
510
+ "number_of_characters": 63869,
511
+ "unique_pairs": 1350,
512
+ "min_sentence1_length": 10,
513
+ "avg_sentence1_length": 23.950370370370372,
514
+ "max_sentence1_length": 91,
515
+ "unique_sentence1": 1350,
516
+ "min_sentence2_length": 10,
517
+ "avg_sentence2_length": 23.36,
518
+ "max_sentence2_length": 76,
519
+ "unique_sentence2": 1350,
520
+ "unique_labels": 2,
521
+ "labels": {
522
+ "0": {
523
+ "count": 335
524
+ },
525
+ "1": {
526
+ "count": 1015
527
+ }
528
+ }
529
+ },
530
+ "fi": {
531
+ "num_samples": 1575,
532
+ "number_of_characters": 71790,
533
+ "unique_pairs": 1575,
534
+ "min_sentence1_length": 11,
535
+ "avg_sentence1_length": 22.70095238095238,
536
+ "max_sentence1_length": 99,
537
+ "unique_sentence1": 1575,
538
+ "min_sentence2_length": 10,
539
+ "avg_sentence2_length": 22.88,
540
+ "max_sentence2_length": 155,
541
+ "unique_sentence2": 1575,
542
+ "unique_labels": 2,
543
+ "labels": {
544
+ "1": {
545
+ "count": 963
546
+ },
547
+ "0": {
548
+ "count": 612
549
+ }
550
+ }
551
+ },
552
+ "fr": {
553
+ "num_samples": 1404,
554
+ "number_of_characters": 81660,
555
+ "unique_pairs": 1404,
556
+ "min_sentence1_length": 11,
557
+ "avg_sentence1_length": 29.03988603988604,
558
+ "max_sentence1_length": 140,
559
+ "unique_sentence1": 1404,
560
+ "min_sentence2_length": 10,
561
+ "avg_sentence2_length": 29.122507122507123,
562
+ "max_sentence2_length": 139,
563
+ "unique_sentence2": 1404,
564
+ "unique_labels": 2,
565
+ "labels": {
566
+ "1": {
567
+ "count": 997
568
+ },
569
+ "0": {
570
+ "count": 407
571
+ }
572
+ }
573
+ },
574
+ "ru": {
575
+ "num_samples": 1598,
576
+ "number_of_characters": 77436,
577
+ "unique_pairs": 1598,
578
+ "min_sentence1_length": 10,
579
+ "avg_sentence1_length": 24.303504380475594,
580
+ "max_sentence1_length": 100,
581
+ "unique_sentence1": 1598,
582
+ "min_sentence2_length": 11,
583
+ "avg_sentence2_length": 24.154568210262827,
584
+ "max_sentence2_length": 106,
585
+ "unique_sentence2": 1598,
586
+ "unique_labels": 2,
587
+ "labels": {
588
+ "1": {
589
+ "count": 1020
590
+ },
591
+ "0": {
592
+ "count": 578
593
+ }
594
+ }
595
+ },
596
+ "sv": {
597
+ "num_samples": 1732,
598
+ "number_of_characters": 77480,
599
+ "unique_pairs": 1732,
600
+ "min_sentence1_length": 10,
601
+ "avg_sentence1_length": 22.433602771362587,
602
+ "max_sentence1_length": 101,
603
+ "unique_sentence1": 1732,
604
+ "min_sentence2_length": 10,
605
+ "avg_sentence2_length": 22.30080831408776,
606
+ "max_sentence2_length": 104,
607
+ "unique_sentence2": 1732,
608
+ "unique_labels": 2,
609
+ "labels": {
610
+ "1": {
611
+ "count": 984
612
+ },
613
+ "0": {
614
+ "count": 748
615
+ }
616
+ }
617
+ }
618
+ }
619
+ }
620
+ }
621
+ ```
622
+
623
+ </details>
624
+
625
+ ---
626
+ *This dataset card was automatically generated using [MTEB](https://github.com/embeddings-benchmark/mteb)*