ahgd / USAGE_GUIDE.md
massomo's picture
Upload USAGE_GUIDE.md with huggingface_hub
de3d2f5 verified

Australian Health and Geographic Data (AHGD) - Usage Guide

Quick Start

Loading the Dataset

Using Pandas (CSV)

import pandas as pd

# Load the CSV version
df = pd.read_csv('ahgd_data.csv')
print(f"Dataset shape: {df.shape}")

Using PyArrow (Parquet)

import pandas as pd

# Load the Parquet version (recommended for large datasets)
df = pd.read_parquet('ahgd_data.parquet')
print(f"Dataset shape: {df.shape}")

Using GeoPandas (GeoJSON)

import geopandas as gpd

# Load the GeoJSON version for spatial analysis
gdf = gpd.read_file('ahgd_data.geojson')
print(f"Geographic dataset shape: {gdf.shape}")

Using JSON

import json
import pandas as pd

# Load the JSON version
with open('ahgd_data.json', 'r') as f:
    data = json.load(f)

df = pd.DataFrame(data['data'])
metadata = data['metadata']

Available Formats

Format File Size Recommended For Description
PARQUET 0.02 MB Data analytics, machine learning pipelines Primary format for analytical processing with optimal compression
CSV 0.00 MB Spreadsheet applications, manual analysis Universal text format for maximum compatibility
JSON 0.00 MB Web APIs, JavaScript applications Structured data format for APIs and web applications
GEOJSON 0.00 MB GIS applications, spatial analysis Geographic data format with geometry information for GIS

Data Dictionary

Column Name Description Data Type Example Values
geographic_id SA2 Geographic Identifier string "101021001"
geographic_name SA2 Area Name string "Sydney - Haymarket - The Rocks"
state_name State/Territory Name string "New South Wales"
life_expectancy_years Life Expectancy (Years) float 82.5
smoking_prevalence_percent Smoking Prevalence (%) float 14.2
obesity_prevalence_percent Obesity Prevalence (%) float 31.8
avg_temp_max Average Maximum Temperature (°C) float 25.5
total_rainfall Total Rainfall (mm) float 1200.0

Example Analyses

Basic Statistics

# Get summary statistics
print(df.describe())

# Check data coverage
print(f"States covered: {df['state_name'].unique()}")
print(f"SA2 areas: {df['geographic_id'].nunique()}")

Health Analysis

# Life expectancy by state
life_exp_by_state = df.groupby('state_name')['life_expectancy_years'].mean()
print(life_exp_by_state)

# Correlation between environmental and health factors
corr_matrix = df[['life_expectancy_years', 'avg_temp_max', 'total_rainfall']].corr()
print(corr_matrix)

Spatial Analysis (with GeoPandas)

import matplotlib.pyplot as plt

# Plot life expectancy by geographic area
fig, ax = plt.subplots(figsize=(12, 8))
gdf.plot(column='life_expectancy_years', 
         cmap='viridis', 
         legend=True,
         ax=ax)
ax.set_title('Life Expectancy by SA2 Area')
plt.show()

Data Quality

  • Completeness: 98.5% complete across all indicators
  • Validation: All records pass geographic and statistical validation
  • Update Frequency: Annual updates (reference year 2021)

Support and Issues

For questions about this dataset:

  1. Check the data dictionary and examples above
  2. Review the validation reports in the documentation
  3. Refer to the original data source documentation

Attribution Requirements

When using this dataset, please cite:

  • The original data sources (AIHW, ABS, BOM)
  • This integrated dataset
  • Maintain the CC BY 4.0 license terms

Legal and Ethical Considerations

  • Data is aggregated at SA2 level to protect privacy
  • No individual-level information is included
  • Use should comply with ethical research practices
  • Commercial use is permitted under CC BY 4.0