Upload USAGE_GUIDE.md with huggingface_hub
Browse files- USAGE_GUIDE.md +132 -0
USAGE_GUIDE.md
ADDED
@@ -0,0 +1,132 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Australian Health and Geographic Data (AHGD) - Usage Guide
|
2 |
+
|
3 |
+
## Quick Start
|
4 |
+
|
5 |
+
### Loading the Dataset
|
6 |
+
|
7 |
+
#### Using Pandas (CSV)
|
8 |
+
```python
|
9 |
+
import pandas as pd
|
10 |
+
|
11 |
+
# Load the CSV version
|
12 |
+
df = pd.read_csv('ahgd_data.csv')
|
13 |
+
print(f"Dataset shape: {df.shape}")
|
14 |
+
```
|
15 |
+
|
16 |
+
#### Using PyArrow (Parquet)
|
17 |
+
```python
|
18 |
+
import pandas as pd
|
19 |
+
|
20 |
+
# Load the Parquet version (recommended for large datasets)
|
21 |
+
df = pd.read_parquet('ahgd_data.parquet')
|
22 |
+
print(f"Dataset shape: {df.shape}")
|
23 |
+
```
|
24 |
+
|
25 |
+
#### Using GeoPandas (GeoJSON)
|
26 |
+
```python
|
27 |
+
import geopandas as gpd
|
28 |
+
|
29 |
+
# Load the GeoJSON version for spatial analysis
|
30 |
+
gdf = gpd.read_file('ahgd_data.geojson')
|
31 |
+
print(f"Geographic dataset shape: {gdf.shape}")
|
32 |
+
```
|
33 |
+
|
34 |
+
#### Using JSON
|
35 |
+
```python
|
36 |
+
import json
|
37 |
+
import pandas as pd
|
38 |
+
|
39 |
+
# Load the JSON version
|
40 |
+
with open('ahgd_data.json', 'r') as f:
|
41 |
+
data = json.load(f)
|
42 |
+
|
43 |
+
df = pd.DataFrame(data['data'])
|
44 |
+
metadata = data['metadata']
|
45 |
+
```
|
46 |
+
|
47 |
+
## Available Formats
|
48 |
+
|
49 |
+
| Format | File Size | Recommended For | Description |
|
50 |
+
|--------|-----------|-----------------|-------------|
|
51 |
+
| PARQUET | 0.02 MB | Data analytics, machine learning pipelines | Primary format for analytical processing with optimal compression |
|
52 |
+
| CSV | 0.00 MB | Spreadsheet applications, manual analysis | Universal text format for maximum compatibility |
|
53 |
+
| JSON | 0.00 MB | Web APIs, JavaScript applications | Structured data format for APIs and web applications |
|
54 |
+
| GEOJSON | 0.00 MB | GIS applications, spatial analysis | Geographic data format with geometry information for GIS |
|
55 |
+
|
56 |
+
|
57 |
+
## Data Dictionary
|
58 |
+
|
59 |
+
| Column Name | Description | Data Type | Example Values |
|
60 |
+
|-------------|-------------|-----------|----------------|
|
61 |
+
| geographic_id | SA2 Geographic Identifier | string | "101021001" |
|
62 |
+
| geographic_name | SA2 Area Name | string | "Sydney - Haymarket - The Rocks" |
|
63 |
+
| state_name | State/Territory Name | string | "New South Wales" |
|
64 |
+
| life_expectancy_years | Life Expectancy (Years) | float | 82.5 |
|
65 |
+
| smoking_prevalence_percent | Smoking Prevalence (%) | float | 14.2 |
|
66 |
+
| obesity_prevalence_percent | Obesity Prevalence (%) | float | 31.8 |
|
67 |
+
| avg_temp_max | Average Maximum Temperature (°C) | float | 25.5 |
|
68 |
+
| total_rainfall | Total Rainfall (mm) | float | 1200.0 |
|
69 |
+
|
70 |
+
## Example Analyses
|
71 |
+
|
72 |
+
### Basic Statistics
|
73 |
+
```python
|
74 |
+
# Get summary statistics
|
75 |
+
print(df.describe())
|
76 |
+
|
77 |
+
# Check data coverage
|
78 |
+
print(f"States covered: {df['state_name'].unique()}")
|
79 |
+
print(f"SA2 areas: {df['geographic_id'].nunique()}")
|
80 |
+
```
|
81 |
+
|
82 |
+
### Health Analysis
|
83 |
+
```python
|
84 |
+
# Life expectancy by state
|
85 |
+
life_exp_by_state = df.groupby('state_name')['life_expectancy_years'].mean()
|
86 |
+
print(life_exp_by_state)
|
87 |
+
|
88 |
+
# Correlation between environmental and health factors
|
89 |
+
corr_matrix = df[['life_expectancy_years', 'avg_temp_max', 'total_rainfall']].corr()
|
90 |
+
print(corr_matrix)
|
91 |
+
```
|
92 |
+
|
93 |
+
### Spatial Analysis (with GeoPandas)
|
94 |
+
```python
|
95 |
+
import matplotlib.pyplot as plt
|
96 |
+
|
97 |
+
# Plot life expectancy by geographic area
|
98 |
+
fig, ax = plt.subplots(figsize=(12, 8))
|
99 |
+
gdf.plot(column='life_expectancy_years',
|
100 |
+
cmap='viridis',
|
101 |
+
legend=True,
|
102 |
+
ax=ax)
|
103 |
+
ax.set_title('Life Expectancy by SA2 Area')
|
104 |
+
plt.show()
|
105 |
+
```
|
106 |
+
|
107 |
+
## Data Quality
|
108 |
+
|
109 |
+
- **Completeness**: 98.5% complete across all indicators
|
110 |
+
- **Validation**: All records pass geographic and statistical validation
|
111 |
+
- **Update Frequency**: Annual updates (reference year 2021)
|
112 |
+
|
113 |
+
## Support and Issues
|
114 |
+
|
115 |
+
For questions about this dataset:
|
116 |
+
1. Check the data dictionary and examples above
|
117 |
+
2. Review the validation reports in the documentation
|
118 |
+
3. Refer to the original data source documentation
|
119 |
+
|
120 |
+
## Attribution Requirements
|
121 |
+
|
122 |
+
When using this dataset, please cite:
|
123 |
+
- The original data sources (AIHW, ABS, BOM)
|
124 |
+
- This integrated dataset
|
125 |
+
- Maintain the CC BY 4.0 license terms
|
126 |
+
|
127 |
+
## Legal and Ethical Considerations
|
128 |
+
|
129 |
+
- Data is aggregated at SA2 level to protect privacy
|
130 |
+
- No individual-level information is included
|
131 |
+
- Use should comply with ethical research practices
|
132 |
+
- Commercial use is permitted under CC BY 4.0
|