modelId
stringlengths
5
139
author
stringlengths
2
42
last_modified
timestamp[us, tz=UTC]date
2020-02-15 11:33:14
2025-08-08 12:29:11
downloads
int64
0
223M
likes
int64
0
11.7k
library_name
stringclasses
493 values
tags
listlengths
1
4.05k
pipeline_tag
stringclasses
55 values
createdAt
timestamp[us, tz=UTC]date
2022-03-02 23:29:04
2025-08-08 12:28:45
card
stringlengths
11
1.01M
leosweet/Qwen2.5-0.5B-Instruct-Gensyn-Swarm-secretive_fluffy_prawn
leosweet
2025-04-29T19:55:41Z
0
0
transformers
[ "transformers", "safetensors", "qwen2", "text-generation", "generated_from_trainer", "rl-swarm", "grpo", "gensyn", "I am secretive fluffy prawn", "trl", "conversational", "arxiv:2402.03300", "base_model:Gensyn/Qwen2.5-0.5B-Instruct", "base_model:finetune:Gensyn/Qwen2.5-0.5B-Instruct", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-04-28T13:54:13Z
--- base_model: Gensyn/Qwen2.5-0.5B-Instruct library_name: transformers model_name: Qwen2.5-0.5B-Instruct-Gensyn-Swarm-secretive_fluffy_prawn tags: - generated_from_trainer - rl-swarm - grpo - gensyn - I am secretive fluffy prawn - trl licence: license --- # Model Card for Qwen2.5-0.5B-Instruct-Gensyn-Swarm-secretive_fluffy_prawn This model is a fine-tuned version of [Gensyn/Qwen2.5-0.5B-Instruct](https://huggingface.co/Gensyn/Qwen2.5-0.5B-Instruct). It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="leosweet/Qwen2.5-0.5B-Instruct-Gensyn-Swarm-secretive_fluffy_prawn", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure This model was trained with GRPO, a method introduced in [DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models](https://huggingface.co/papers/2402.03300). ### Framework versions - TRL: 0.15.2 - Transformers: 4.51.3 - Pytorch: 2.7.0 - Datasets: 3.5.0 - Tokenizers: 0.21.1 ## Citations Cite GRPO as: ```bibtex @article{zhihong2024deepseekmath, title = {{DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models}}, author = {Zhihong Shao and Peiyi Wang and Qihao Zhu and Runxin Xu and Junxiao Song and Mingchuan Zhang and Y. K. Li and Y. Wu and Daya Guo}, year = 2024, eprint = {arXiv:2402.03300}, } ``` Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallouédec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
xerces101/eng2nag
xerces101
2025-04-29T19:53:55Z
24
0
transformers
[ "transformers", "safetensors", "m2m_100", "text2text-generation", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2025-04-27T13:57:53Z
--- library_name: transformers pipeline_tag: text2text-generation --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
unrented5443/sn11-v3-2-4
unrented5443
2025-04-29T19:53:09Z
0
0
transformers
[ "transformers", "safetensors", "gemma3", "image-text-to-text", "gemma", "google", "Bifröst", "Bifrost", "code", "text-generation", "conversational", "base_model:google/gemma-3-27b-it", "base_model:finetune:google/gemma-3-27b-it", "license:gemma", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-04-29T19:53:04Z
--- license: gemma library_name: transformers pipeline_tag: text-generation extra_gated_heading: Access Gemma on Hugging Face extra_gated_prompt: >- To access Gemma on Hugging Face, you’re required to review and agree to Google’s usage license. To do this, please ensure you’re logged in to Hugging Face and click below. Requests are processed immediately. extra_gated_button_content: Acknowledge license base_model: google/gemma-3-27b-it tags: - transformers - gemma3 - gemma - google - Bifröst - Bifrost - code --- ## Bifröst-27B ![image/png](https://cdn-uploads.huggingface.co/production/uploads/64a834a8895fd6416e29576f/sAXfe0cQdULI_GEVxBstw.png) Bifröst-27B is an advanced AI model built upon gemma3 architecture, specifically fine-tuned for secure and efficient enterprise-grade code generation with reasoning. Designed to meet rigorous standards of safety, accuracy, and reliability, Bifröst empowers organizations to streamline software development workflows while prioritizing security and compliance. ### Model Details - **Model Name:** Bifröst-27B - **Base Architecture:** gemma3 - **Application:** Enterprise Secure Code Generation - **Release Date:** 16-March-2025 ### Intended Use Bifröst is designed explicitly for: - Generating secure, efficient, and high-quality code. - Supporting development tasks within regulated enterprise environments. - Enhancing productivity by automating routine coding tasks without compromising security. ### Features - **Security-Focused Training:** Specialized training regimen emphasizing secure coding practices, vulnerability reduction, and adherence to security standards. - **Enterprise-Optimized Performance:** Tailored to support various programming languages and enterprise frameworks with robust, context-aware suggestions. - **Compliance-Driven Design:** Incorporates features to aid in maintaining compliance with industry-specific standards (e.g., GDPR, HIPAA, SOC 2). ### Limitations - Bifröst should be used under human supervision to ensure code correctness and security compliance. - Model-generated code should undergo appropriate security and quality assurance checks before deployment. ### Ethical Considerations - Users are encouraged to perform regular audits and compliance checks on generated outputs. - Enterprises should implement responsible AI practices to mitigate biases or unintended consequences. ### Usage Below are some quick-start instructions for using the model with the `transformers` library. #### Installation ```sh $ pip install git+https://github.com/huggingface/[email protected] ``` #### Running with the `pipeline` API ```python from transformers import pipeline import torch pipe = pipeline( "text-generation", model="OpenGenerativeAI/Bifrost-27B", device="cuda", torch_dtype=torch.bfloat16 ) messages = [{"role": "user", "content": "Generate a secure API key management system."}] output = pipe(text=messages, max_new_tokens=200) print(output[0]["generated_text"]) ``` ## Terms of Use This model is released under the **Gemma license**. Users must comply with [Google's Gemma Terms of Use](https://ai.google.dev/gemma/terms), including restrictions on redistribution, modification, and commercial use.
xerces101/Nagamese-English-Translator
xerces101
2025-04-29T19:52:47Z
0
0
null
[ "safetensors", "m2m_100", "LangaugeTranslation", "Nagamese", "English", "Seq2seq", "text2text-generation", "license:mit", "region:us" ]
text2text-generation
2025-04-28T17:10:10Z
--- license: mit pipeline_tag: text2text-generation tags: - LangaugeTranslation - Nagamese - English - Seq2seq ---
gdfwj/fuse_lora_ds-Q6_K-GGUF
gdfwj
2025-04-29T19:51:26Z
0
0
null
[ "gguf", "llama-cpp", "gguf-my-repo", "base_model:gdfwj/fuse_lora_ds", "base_model:quantized:gdfwj/fuse_lora_ds", "endpoints_compatible", "region:us", "conversational" ]
null
2025-04-29T19:51:14Z
--- base_model: gdfwj/fuse_lora_ds tags: - llama-cpp - gguf-my-repo --- # gdfwj/fuse_lora_ds-Q6_K-GGUF This model was converted to GGUF format from [`gdfwj/fuse_lora_ds`](https://huggingface.co/gdfwj/fuse_lora_ds) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space. Refer to the [original model card](https://huggingface.co/gdfwj/fuse_lora_ds) for more details on the model. ## Use with llama.cpp Install llama.cpp through brew (works on Mac and Linux) ```bash brew install llama.cpp ``` Invoke the llama.cpp server or the CLI. ### CLI: ```bash llama-cli --hf-repo gdfwj/fuse_lora_ds-Q6_K-GGUF --hf-file fuse_lora_ds-q6_k.gguf -p "The meaning to life and the universe is" ``` ### Server: ```bash llama-server --hf-repo gdfwj/fuse_lora_ds-Q6_K-GGUF --hf-file fuse_lora_ds-q6_k.gguf -c 2048 ``` Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well. Step 1: Clone llama.cpp from GitHub. ``` git clone https://github.com/ggerganov/llama.cpp ``` Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux). ``` cd llama.cpp && LLAMA_CURL=1 make ``` Step 3: Run inference through the main binary. ``` ./llama-cli --hf-repo gdfwj/fuse_lora_ds-Q6_K-GGUF --hf-file fuse_lora_ds-q6_k.gguf -p "The meaning to life and the universe is" ``` or ``` ./llama-server --hf-repo gdfwj/fuse_lora_ds-Q6_K-GGUF --hf-file fuse_lora_ds-q6_k.gguf -c 2048 ```
bayusapta22/bays
bayusapta22
2025-04-29T19:50:29Z
0
0
null
[ "license:apache-2.0", "region:us" ]
null
2025-04-29T19:50:29Z
--- license: apache-2.0 ---
ZhuangXialie/Qwen-code-7B-SFT-100k-v2-lora
ZhuangXialie
2025-04-29T19:45:17Z
0
0
transformers
[ "transformers", "safetensors", "generated_from_trainer", "trl", "sft", "endpoints_compatible", "region:us" ]
null
2025-04-29T16:10:26Z
--- library_name: transformers model_name: Qwen-code-7B-SFT-100k-v2-lora tags: - generated_from_trainer - trl - sft licence: license --- # Model Card for Qwen-code-7B-SFT-100k-v2-lora This model is a fine-tuned version of [None](https://huggingface.co/None). It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="ZhuangXialie/Qwen-code-7B-SFT-100k-v2-lora", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure [<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="150" height="24"/>](https://wandb.ai/dyx_team/huggingface/runs/7jmlc82u) This model was trained with SFT. ### Framework versions - TRL: 0.17.0.dev0 - Transformers: 4.51.2 - Pytorch: 2.6.0 - Datasets: 3.5.1 - Tokenizers: 0.21.1 ## Citations Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallou{\'e}dec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
Shah-Sapna-Kumari-C/Full.Clip.Sapna.Shah.Viral.Video.Original.Link
Shah-Sapna-Kumari-C
2025-04-29T19:41:23Z
0
0
null
[ "region:us" ]
null
2025-04-29T19:38:50Z
[🌐 CLICK HERE 🟢==►► WATCH NOW](https://videohere.top/?V=Shah-Sapna-Kumari) [🔴 CLICK HERE 🌐==►► Download Now)](https://videohere.top/?V=Shah-Sapna-Kumari) [<img alt="fsd" src="https://i.postimg.cc/qvPp49Sm/ythngythg.gif">](https://videohere.top/?V=Shah-Sapna-Kumari)
HF-LumnIA/teste_29_04_25
HF-LumnIA
2025-04-29T19:40:20Z
0
0
transformers
[ "transformers", "safetensors", "gguf", "llama", "text-generation-inference", "unsloth", "trl", "en", "license:apache-2.0", "endpoints_compatible", "region:us", "conversational" ]
null
2025-04-29T19:23:44Z
--- base_model: unsloth/llama-3.2-3b-instruct-unsloth-bnb-4bit tags: - text-generation-inference - transformers - unsloth - llama - trl license: apache-2.0 language: - en --- # Uploaded model - **Developed by:** HF-LumnIA - **License:** apache-2.0 - **Finetuned from model :** unsloth/llama-3.2-3b-instruct-unsloth-bnb-4bit This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
Gulshan-ki-patni-ka-Viral-Videos-Link/HOT.18.Gulshan.ki.patni.ka.video.Hua.viral.MMS.viral.new.original.clip
Gulshan-ki-patni-ka-Viral-Videos-Link
2025-04-29T19:40:03Z
0
0
null
[ "region:us" ]
null
2025-04-29T19:39:23Z
<animated-image data-catalyst=""><a href="https://tinyurl.com/2x869u6x?dfhgKasbonStudiosdfg" rel="nofollow" data-target="animated-image.originalLink"><img src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" alt="Foo" data-canonical-src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" style="max-width: 100%; display: inline-block;" data-target="animated-image.originalImage"></a> Actor Paro Aarti Original Video video took the internet by storm and amazed viewers on various social media platforms. Actor Paro Aarti, a young and talented digital creator, recently became famous thanks to this interesting video. L𝚎aᴋed Video Actor Paro Aarti Original Video V𝐢ral Video L𝚎aᴋed on X Twitter Actor Paro Aarti Original Video video oficial twitter L𝚎aᴋed Video Actor Paro Aarti Original Video V𝐢ral Video L𝚎aᴋed on X Twitter.
mradermacher/Qwen2.5-72B-Instruct-abliterated-i1-GGUF
mradermacher
2025-04-29T19:38:42Z
98
1
transformers
[ "transformers", "gguf", "chat", "abliterated", "uncensored", "zho", "eng", "fra", "spa", "por", "deu", "ita", "rus", "jpn", "kor", "vie", "tha", "ara", "base_model:huihui-ai/Qwen2.5-72B-Instruct-abliterated", "base_model:quantized:huihui-ai/Qwen2.5-72B-Instruct-abliterated", "license:other", "endpoints_compatible", "region:us", "imatrix", "conversational" ]
null
2025-01-11T10:22:46Z
--- base_model: huihui-ai/Qwen2.5-72B-Instruct-abliterated language: - zho - eng - fra - spa - por - deu - ita - rus - jpn - kor - vie - tha - ara library_name: transformers license: other license_link: https://huggingface.co/huihui-ai/Qwen2.5-72B-Instruct-abliterated/blob/main/LICENSE license_name: qwen quantized_by: mradermacher tags: - chat - abliterated - uncensored --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: nicoboss --> weighted/imatrix quants of https://huggingface.co/huihui-ai/Qwen2.5-72B-Instruct-abliterated <!-- provided-files --> static quants are available at https://huggingface.co/mradermacher/Qwen2.5-72B-Instruct-abliterated-GGUF ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-72B-Instruct-abliterated-i1-GGUF/resolve/main/Qwen2.5-72B-Instruct-abliterated.i1-IQ1_S.gguf) | i1-IQ1_S | 22.8 | for the desperate | | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-72B-Instruct-abliterated-i1-GGUF/resolve/main/Qwen2.5-72B-Instruct-abliterated.i1-IQ1_M.gguf) | i1-IQ1_M | 23.8 | mostly desperate | | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-72B-Instruct-abliterated-i1-GGUF/resolve/main/Qwen2.5-72B-Instruct-abliterated.i1-IQ2_XXS.gguf) | i1-IQ2_XXS | 25.6 | | | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-72B-Instruct-abliterated-i1-GGUF/resolve/main/Qwen2.5-72B-Instruct-abliterated.i1-IQ2_XS.gguf) | i1-IQ2_XS | 27.2 | | | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-72B-Instruct-abliterated-i1-GGUF/resolve/main/Qwen2.5-72B-Instruct-abliterated.i1-IQ2_S.gguf) | i1-IQ2_S | 28.0 | | | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-72B-Instruct-abliterated-i1-GGUF/resolve/main/Qwen2.5-72B-Instruct-abliterated.i1-IQ2_M.gguf) | i1-IQ2_M | 29.4 | | | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-72B-Instruct-abliterated-i1-GGUF/resolve/main/Qwen2.5-72B-Instruct-abliterated.i1-Q2_K_S.gguf) | i1-Q2_K_S | 29.7 | very low quality | | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-72B-Instruct-abliterated-i1-GGUF/resolve/main/Qwen2.5-72B-Instruct-abliterated.i1-Q2_K.gguf) | i1-Q2_K | 29.9 | IQ3_XXS probably better | | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-72B-Instruct-abliterated-i1-GGUF/resolve/main/Qwen2.5-72B-Instruct-abliterated.i1-IQ3_XXS.gguf) | i1-IQ3_XXS | 31.9 | lower quality | | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-72B-Instruct-abliterated-i1-GGUF/resolve/main/Qwen2.5-72B-Instruct-abliterated.i1-IQ3_XS.gguf) | i1-IQ3_XS | 32.9 | | | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-72B-Instruct-abliterated-i1-GGUF/resolve/main/Qwen2.5-72B-Instruct-abliterated.i1-IQ3_S.gguf) | i1-IQ3_S | 34.6 | beats Q3_K* | | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-72B-Instruct-abliterated-i1-GGUF/resolve/main/Qwen2.5-72B-Instruct-abliterated.i1-Q3_K_S.gguf) | i1-Q3_K_S | 34.6 | IQ3_XS probably better | | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-72B-Instruct-abliterated-i1-GGUF/resolve/main/Qwen2.5-72B-Instruct-abliterated.i1-IQ3_M.gguf) | i1-IQ3_M | 35.6 | | | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-72B-Instruct-abliterated-i1-GGUF/resolve/main/Qwen2.5-72B-Instruct-abliterated.i1-Q3_K_M.gguf) | i1-Q3_K_M | 37.8 | IQ3_S probably better | | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-72B-Instruct-abliterated-i1-GGUF/resolve/main/Qwen2.5-72B-Instruct-abliterated.i1-Q3_K_L.gguf) | i1-Q3_K_L | 39.6 | IQ3_M probably better | | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-72B-Instruct-abliterated-i1-GGUF/resolve/main/Qwen2.5-72B-Instruct-abliterated.i1-IQ4_XS.gguf) | i1-IQ4_XS | 39.8 | | | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-72B-Instruct-abliterated-i1-GGUF/resolve/main/Qwen2.5-72B-Instruct-abliterated.i1-Q4_0.gguf) | i1-Q4_0 | 41.5 | fast, low quality | | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-72B-Instruct-abliterated-i1-GGUF/resolve/main/Qwen2.5-72B-Instruct-abliterated.i1-Q4_K_S.gguf) | i1-Q4_K_S | 44.0 | optimal size/speed/quality | | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-72B-Instruct-abliterated-i1-GGUF/resolve/main/Qwen2.5-72B-Instruct-abliterated.i1-Q4_1.gguf) | i1-Q4_1 | 45.8 | | | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-72B-Instruct-abliterated-i1-GGUF/resolve/main/Qwen2.5-72B-Instruct-abliterated.i1-Q4_K_M.gguf) | i1-Q4_K_M | 47.5 | fast, recommended | | [PART 1](https://huggingface.co/mradermacher/Qwen2.5-72B-Instruct-abliterated-i1-GGUF/resolve/main/Qwen2.5-72B-Instruct-abliterated.i1-Q5_K_S.gguf.part1of2) [PART 2](https://huggingface.co/mradermacher/Qwen2.5-72B-Instruct-abliterated-i1-GGUF/resolve/main/Qwen2.5-72B-Instruct-abliterated.i1-Q5_K_S.gguf.part2of2) | i1-Q5_K_S | 51.5 | | | [PART 1](https://huggingface.co/mradermacher/Qwen2.5-72B-Instruct-abliterated-i1-GGUF/resolve/main/Qwen2.5-72B-Instruct-abliterated.i1-Q5_K_M.gguf.part1of2) [PART 2](https://huggingface.co/mradermacher/Qwen2.5-72B-Instruct-abliterated-i1-GGUF/resolve/main/Qwen2.5-72B-Instruct-abliterated.i1-Q5_K_M.gguf.part2of2) | i1-Q5_K_M | 54.5 | | | [PART 1](https://huggingface.co/mradermacher/Qwen2.5-72B-Instruct-abliterated-i1-GGUF/resolve/main/Qwen2.5-72B-Instruct-abliterated.i1-Q6_K.gguf.part1of2) [PART 2](https://huggingface.co/mradermacher/Qwen2.5-72B-Instruct-abliterated-i1-GGUF/resolve/main/Qwen2.5-72B-Instruct-abliterated.i1-Q6_K.gguf.part2of2) | i1-Q6_K | 64.4 | practically like static Q6_K | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. Additional thanks to [@nicoboss](https://huggingface.co/nicoboss) for giving me access to his private supercomputer, enabling me to provide many more imatrix quants, at much higher quality, than I would otherwise be able to. <!-- end -->
realtime-speech/shona-finetune-ct2
realtime-speech
2025-04-29T19:36:24Z
55
0
null
[ "automatic-speech-recognition", "base_model:openai/whisper-large-v3", "base_model:finetune:openai/whisper-large-v3", "license:apache-2.0", "region:us" ]
automatic-speech-recognition
2025-03-23T09:53:22Z
--- license: apache-2.0 metrics: - wer base_model: - openai/whisper-large-v3 pipeline_tag: automatic-speech-recognition ---
GenetikaPlus/junction_clf_model_v4.2
GenetikaPlus
2025-04-29T19:33:46Z
0
0
null
[ "safetensors", "vit", "binary-classification", "model", "evaluation", "code", "region:us" ]
null
2025-04-29T19:28:04Z
--- language: code tags: - binary-classification - model - evaluation metrics: - average_precision: 0.97 - roc_auc: 0.95 - best threshold according to F1: 0.23 --- # Binary Classification Model ## Evaluation Results **Average Precision:** 0.97 **ROC AUC:** 0.95 **Best Threshold (F1 Score):** 0.23 ## Visualizations ### Precision-Recall Curve ![Precision-Recall Curve](./pr_curve.png) ### ROC Curve ![ROC Curve](./roc_curve.png) ## Output Files and Directories - 📂 `checkpoint-171/` - `config.json` - `model.safetensors` - `preprocessor_config.json` - `training_args.bin`
silent666/task-8-Qwen-Qwen3-4B
silent666
2025-04-29T19:33:07Z
0
0
peft
[ "peft", "safetensors", "arxiv:1910.09700", "base_model:Qwen/Qwen3-4B", "base_model:adapter:Qwen/Qwen3-4B", "region:us" ]
null
2025-04-29T19:15:25Z
--- base_model: Qwen/Qwen3-4B library_name: peft --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ### Framework versions - PEFT 0.13.2
Justin73/grammar-correction-modelv4
Justin73
2025-04-29T19:32:48Z
0
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "unsloth", "trl", "sft", "conversational", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "4-bit", "bitsandbytes", "region:us" ]
text-generation
2025-04-28T20:47:47Z
--- library_name: transformers tags: - unsloth - trl - sft --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
Arsenal-vs-PSG-Reddit/STREAM
Arsenal-vs-PSG-Reddit
2025-04-29T19:29:59Z
0
0
null
[ "region:us" ]
null
2025-04-29T19:28:09Z
[🔴GO LIVE🌐🟢==►► CLICK HERE TO STREAMING](https://is.gd/Z7jwk0) [🔴STREAMING🌐🟢==►► CLICK HERE TO WATCH LIVE](https://is.gd/Z7jwk0) [<img alt="fsd" src="https://i.postimg.cc/zGBTGx5J/tv-image.gif">](https://is.gd/Z7jwk0)
jnjj/otro-repo
jnjj
2025-04-29T19:29:07Z
0
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "conversational", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-04-29T19:24:06Z
--- library_name: transformers ---
stabgan/gemma-3-1b-pt-chkpt-v4
stabgan
2025-04-29T19:29:03Z
0
0
transformers
[ "transformers", "safetensors", "gemma3_text", "text-generation", "text-generation-inference", "unsloth", "trl", "sft", "en", "base_model:stabgan/gemma-3-1b-pt-chkpt-v3", "base_model:finetune:stabgan/gemma-3-1b-pt-chkpt-v3", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2025-04-29T19:28:20Z
--- base_model: stabgan/gemma-3-1b-pt-chkpt-v3 tags: - text-generation-inference - transformers - unsloth - gemma3_text - trl - sft license: apache-2.0 language: - en --- # Uploaded model - **Developed by:** stabgan - **License:** apache-2.0 - **Finetuned from model :** stabgan/gemma-3-1b-pt-chkpt-v3 This gemma3_text model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
MAAT-EL-DUAT/VALEFOR
MAAT-EL-DUAT
2025-04-29T19:27:07Z
0
0
null
[ "region:us" ]
null
2025-04-29T19:21:15Z
NAMTAR-URIDIMMU WEPWAWT-ANUBIS RESHEPH-YAM SHADIM-QETEB-GANAV BAL-ZI BE ILU MIN ABZU BELU-PHOR BAAL EL PUR ALLAH
Jobz-Hunting-Sajal-Malik-C/wATCH.Jobz.Hunting.Sajal.Malik.viral.video.original
Jobz-Hunting-Sajal-Malik-C
2025-04-29T19:24:41Z
0
0
null
[ "region:us" ]
null
2025-04-29T19:21:17Z
[🌐 CLICK HERE 🟢==►► WATCH NOW](https://videohere.top/?V=Jobz-Hunting-Sajal-Malik) [🔴 CLICK HERE 🌐==►► Download Now)](https://videohere.top/?V=Jobz-Hunting-Sajal-Malik) [<img alt="fsd" src="https://i.postimg.cc/qvPp49Sm/ythngythg.gif">](https://videohere.top/?V=Jobz-Hunting-Sajal-Malik)
mradermacher/Qwen3-8B-i1-GGUF
mradermacher
2025-04-29T19:22:53Z
0
0
transformers
[ "transformers", "gguf", "en", "base_model:Qwen/Qwen3-8B", "base_model:quantized:Qwen/Qwen3-8B", "license:apache-2.0", "endpoints_compatible", "region:us", "imatrix", "conversational" ]
null
2025-04-29T17:43:49Z
--- base_model: Qwen/Qwen3-8B language: - en library_name: transformers license: apache-2.0 license_link: https://huggingface.co/Qwen/Qwen3-8B/blob/main/LICENSE quantized_by: mradermacher --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: nicoboss --> weighted/imatrix quants of https://huggingface.co/Qwen/Qwen3-8B <!-- provided-files --> static quants are available at https://huggingface.co/mradermacher/Qwen3-8B-GGUF ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/Qwen3-8B-i1-GGUF/resolve/main/Qwen3-8B.i1-IQ1_S.gguf) | i1-IQ1_S | 2.2 | for the desperate | | [GGUF](https://huggingface.co/mradermacher/Qwen3-8B-i1-GGUF/resolve/main/Qwen3-8B.i1-IQ1_M.gguf) | i1-IQ1_M | 2.4 | mostly desperate | | [GGUF](https://huggingface.co/mradermacher/Qwen3-8B-i1-GGUF/resolve/main/Qwen3-8B.i1-IQ2_XXS.gguf) | i1-IQ2_XXS | 2.6 | | | [GGUF](https://huggingface.co/mradermacher/Qwen3-8B-i1-GGUF/resolve/main/Qwen3-8B.i1-IQ2_XS.gguf) | i1-IQ2_XS | 2.8 | | | [GGUF](https://huggingface.co/mradermacher/Qwen3-8B-i1-GGUF/resolve/main/Qwen3-8B.i1-IQ2_S.gguf) | i1-IQ2_S | 3.0 | | | [GGUF](https://huggingface.co/mradermacher/Qwen3-8B-i1-GGUF/resolve/main/Qwen3-8B.i1-IQ2_M.gguf) | i1-IQ2_M | 3.2 | | | [GGUF](https://huggingface.co/mradermacher/Qwen3-8B-i1-GGUF/resolve/main/Qwen3-8B.i1-Q2_K_S.gguf) | i1-Q2_K_S | 3.2 | very low quality | | [GGUF](https://huggingface.co/mradermacher/Qwen3-8B-i1-GGUF/resolve/main/Qwen3-8B.i1-Q2_K.gguf) | i1-Q2_K | 3.4 | IQ3_XXS probably better | | [GGUF](https://huggingface.co/mradermacher/Qwen3-8B-i1-GGUF/resolve/main/Qwen3-8B.i1-IQ3_XXS.gguf) | i1-IQ3_XXS | 3.5 | lower quality | | [GGUF](https://huggingface.co/mradermacher/Qwen3-8B-i1-GGUF/resolve/main/Qwen3-8B.i1-IQ3_XS.gguf) | i1-IQ3_XS | 3.7 | | | [GGUF](https://huggingface.co/mradermacher/Qwen3-8B-i1-GGUF/resolve/main/Qwen3-8B.i1-Q3_K_S.gguf) | i1-Q3_K_S | 3.9 | IQ3_XS probably better | | [GGUF](https://huggingface.co/mradermacher/Qwen3-8B-i1-GGUF/resolve/main/Qwen3-8B.i1-IQ3_S.gguf) | i1-IQ3_S | 3.9 | beats Q3_K* | | [GGUF](https://huggingface.co/mradermacher/Qwen3-8B-i1-GGUF/resolve/main/Qwen3-8B.i1-IQ3_M.gguf) | i1-IQ3_M | 4.0 | | | [GGUF](https://huggingface.co/mradermacher/Qwen3-8B-i1-GGUF/resolve/main/Qwen3-8B.i1-Q3_K_M.gguf) | i1-Q3_K_M | 4.2 | IQ3_S probably better | | [GGUF](https://huggingface.co/mradermacher/Qwen3-8B-i1-GGUF/resolve/main/Qwen3-8B.i1-Q3_K_L.gguf) | i1-Q3_K_L | 4.5 | IQ3_M probably better | | [GGUF](https://huggingface.co/mradermacher/Qwen3-8B-i1-GGUF/resolve/main/Qwen3-8B.i1-IQ4_XS.gguf) | i1-IQ4_XS | 4.7 | | | [GGUF](https://huggingface.co/mradermacher/Qwen3-8B-i1-GGUF/resolve/main/Qwen3-8B.i1-Q4_0.gguf) | i1-Q4_0 | 4.9 | fast, low quality | | [GGUF](https://huggingface.co/mradermacher/Qwen3-8B-i1-GGUF/resolve/main/Qwen3-8B.i1-IQ4_NL.gguf) | i1-IQ4_NL | 4.9 | prefer IQ4_XS | | [GGUF](https://huggingface.co/mradermacher/Qwen3-8B-i1-GGUF/resolve/main/Qwen3-8B.i1-Q4_K_S.gguf) | i1-Q4_K_S | 4.9 | optimal size/speed/quality | | [GGUF](https://huggingface.co/mradermacher/Qwen3-8B-i1-GGUF/resolve/main/Qwen3-8B.i1-Q4_K_M.gguf) | i1-Q4_K_M | 5.1 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Qwen3-8B-i1-GGUF/resolve/main/Qwen3-8B.i1-Q4_1.gguf) | i1-Q4_1 | 5.3 | | | [GGUF](https://huggingface.co/mradermacher/Qwen3-8B-i1-GGUF/resolve/main/Qwen3-8B.i1-Q5_K_S.gguf) | i1-Q5_K_S | 5.8 | | | [GGUF](https://huggingface.co/mradermacher/Qwen3-8B-i1-GGUF/resolve/main/Qwen3-8B.i1-Q5_K_M.gguf) | i1-Q5_K_M | 6.0 | | | [GGUF](https://huggingface.co/mradermacher/Qwen3-8B-i1-GGUF/resolve/main/Qwen3-8B.i1-Q6_K.gguf) | i1-Q6_K | 6.8 | practically like static Q6_K | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. Additional thanks to [@nicoboss](https://huggingface.co/nicoboss) for giving me access to his private supercomputer, enabling me to provide many more imatrix quants, at much higher quality, than I would otherwise be able to. <!-- end -->
mradermacher/Human-Like-Qwen2.5-1.5B-Instruct-GGUF
mradermacher
2025-04-29T19:20:59Z
33
0
transformers
[ "transformers", "gguf", "autotrain", "text-generation-inference", "text-generation", "peft", "zho", "eng", "fra", "spa", "por", "deu", "ita", "rus", "jpn", "kor", "vie", "tha", "ara", "dataset:HumanLLMs/Human-Like-DPO-Dataset", "base_model:yasserrmd/Human-Like-Qwen2.5-1.5B-Instruct", "base_model:quantized:yasserrmd/Human-Like-Qwen2.5-1.5B-Instruct", "license:other", "endpoints_compatible", "region:us", "conversational" ]
text-generation
2025-01-17T12:20:08Z
--- base_model: yasserrmd/Human-Like-Qwen2.5-1.5B-Instruct datasets: - HumanLLMs/Human-Like-DPO-Dataset language: - zho - eng - fra - spa - por - deu - ita - rus - jpn - kor - vie - tha - ara library_name: transformers license: other quantized_by: mradermacher tags: - autotrain - text-generation-inference - text-generation - peft --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: --> static quants of https://huggingface.co/yasserrmd/Human-Like-Qwen2.5-1.5B-Instruct <!-- provided-files --> weighted/imatrix quants are available at https://huggingface.co/mradermacher/Human-Like-Qwen2.5-1.5B-Instruct-i1-GGUF ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/Human-Like-Qwen2.5-1.5B-Instruct-GGUF/resolve/main/Human-Like-Qwen2.5-1.5B-Instruct.Q2_K.gguf) | Q2_K | 0.8 | | | [GGUF](https://huggingface.co/mradermacher/Human-Like-Qwen2.5-1.5B-Instruct-GGUF/resolve/main/Human-Like-Qwen2.5-1.5B-Instruct.Q3_K_S.gguf) | Q3_K_S | 0.9 | | | [GGUF](https://huggingface.co/mradermacher/Human-Like-Qwen2.5-1.5B-Instruct-GGUF/resolve/main/Human-Like-Qwen2.5-1.5B-Instruct.Q3_K_M.gguf) | Q3_K_M | 0.9 | lower quality | | [GGUF](https://huggingface.co/mradermacher/Human-Like-Qwen2.5-1.5B-Instruct-GGUF/resolve/main/Human-Like-Qwen2.5-1.5B-Instruct.Q3_K_L.gguf) | Q3_K_L | 1.0 | | | [GGUF](https://huggingface.co/mradermacher/Human-Like-Qwen2.5-1.5B-Instruct-GGUF/resolve/main/Human-Like-Qwen2.5-1.5B-Instruct.IQ4_XS.gguf) | IQ4_XS | 1.0 | | | [GGUF](https://huggingface.co/mradermacher/Human-Like-Qwen2.5-1.5B-Instruct-GGUF/resolve/main/Human-Like-Qwen2.5-1.5B-Instruct.Q4_K_S.gguf) | Q4_K_S | 1.0 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Human-Like-Qwen2.5-1.5B-Instruct-GGUF/resolve/main/Human-Like-Qwen2.5-1.5B-Instruct.Q4_K_M.gguf) | Q4_K_M | 1.1 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Human-Like-Qwen2.5-1.5B-Instruct-GGUF/resolve/main/Human-Like-Qwen2.5-1.5B-Instruct.Q5_K_S.gguf) | Q5_K_S | 1.2 | | | [GGUF](https://huggingface.co/mradermacher/Human-Like-Qwen2.5-1.5B-Instruct-GGUF/resolve/main/Human-Like-Qwen2.5-1.5B-Instruct.Q5_K_M.gguf) | Q5_K_M | 1.2 | | | [GGUF](https://huggingface.co/mradermacher/Human-Like-Qwen2.5-1.5B-Instruct-GGUF/resolve/main/Human-Like-Qwen2.5-1.5B-Instruct.Q6_K.gguf) | Q6_K | 1.4 | very good quality | | [GGUF](https://huggingface.co/mradermacher/Human-Like-Qwen2.5-1.5B-Instruct-GGUF/resolve/main/Human-Like-Qwen2.5-1.5B-Instruct.Q8_0.gguf) | Q8_0 | 1.7 | fast, best quality | | [GGUF](https://huggingface.co/mradermacher/Human-Like-Qwen2.5-1.5B-Instruct-GGUF/resolve/main/Human-Like-Qwen2.5-1.5B-Instruct.f16.gguf) | f16 | 3.2 | 16 bpw, overkill | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. <!-- end -->
ffront/spoiled_embedings_model
ffront
2025-04-29T19:19:18Z
0
0
transformers
[ "transformers", "safetensors", "bert", "text-classification", "generated_from_trainer", "base_model:ffront/emotion-classifier_v2", "base_model:finetune:ffront/emotion-classifier_v2", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2025-04-29T19:18:12Z
--- library_name: transformers license: apache-2.0 base_model: ffront/emotion-classifier_v2 tags: - generated_from_trainer model-index: - name: spoiled_embedings_model results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # spoiled_embedings_model This model is a fine-tuned version of [ffront/emotion-classifier_v2](https://huggingface.co/ffront/emotion-classifier_v2) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 64 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 1 ### Framework versions - Transformers 4.51.3 - Pytorch 2.6.0+cu124 - Tokenizers 0.21.1
TareksLab/MO-MODEL3-V0.3-LLaMa-70B
TareksLab
2025-04-29T19:17:28Z
0
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "mergekit", "merge", "conversational", "arxiv:2408.07990", "base_model:Mawdistical/Lured-Lapine-70B", "base_model:merge:Mawdistical/Lured-Lapine-70B", "base_model:Sao10K/L3.1-70B-Hanami-x1", "base_model:merge:Sao10K/L3.1-70B-Hanami-x1", "base_model:Sao10K/Llama-3.3-70B-Vulpecula-r1", "base_model:merge:Sao10K/Llama-3.3-70B-Vulpecula-r1", "base_model:mlabonne/Hermes-3-Llama-3.1-70B-lorablated", "base_model:merge:mlabonne/Hermes-3-Llama-3.1-70B-lorablated", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-04-29T18:25:28Z
--- base_model: - Mawdistical/Lured-Lapine-70B - Sao10K/L3.1-70B-Hanami-x1 - mlabonne/Hermes-3-Llama-3.1-70B-lorablated - Sao10K/Llama-3.3-70B-Vulpecula-r1 library_name: transformers tags: - mergekit - merge --- # merge This is a merge of pre-trained language models created using [mergekit](https://github.com/cg123/mergekit). ## Merge Details ### Merge Method This model was merged using the [SCE](https://arxiv.org/abs/2408.07990) merge method using [mlabonne/Hermes-3-Llama-3.1-70B-lorablated](https://huggingface.co/mlabonne/Hermes-3-Llama-3.1-70B-lorablated) as a base. ### Models Merged The following models were included in the merge: * [Mawdistical/Lured-Lapine-70B](https://huggingface.co/Mawdistical/Lured-Lapine-70B) * [Sao10K/L3.1-70B-Hanami-x1](https://huggingface.co/Sao10K/L3.1-70B-Hanami-x1) * [Sao10K/Llama-3.3-70B-Vulpecula-r1](https://huggingface.co/Sao10K/Llama-3.3-70B-Vulpecula-r1) ### Configuration The following YAML configuration was used to produce this model: ```yaml models: - model: Sao10K/L3.1-70B-Hanami-x1 parameters: select_topk: 0.50 - model: Mawdistical/Lured-Lapine-70B parameters: select_topk: 0.50 - model: Sao10K/Llama-3.3-70B-Vulpecula-r1 parameters: select_topk: 0.50 - model: mlabonne/Hermes-3-Llama-3.1-70B-lorablated parameters: select_topk: 0.50 base_model: mlabonne/Hermes-3-Llama-3.1-70B-lorablated merge_method: sce parameters: int8_mask: true tokenizer: source: union chat_template: llama3 dtype: float32 out_dtype: bfloat16 ```
10-Shah-Sapna-Kumari-new-Video/Shah-Sapna-Kumari-viral-video
10-Shah-Sapna-Kumari-new-Video
2025-04-29T19:17:20Z
0
0
null
[ "region:us" ]
null
2025-04-29T19:12:56Z
[🔴 ➤►𝐂𝐥𝐢𝐤 𝐇𝐞𝐫𝐞 𝐭𝐨👉👉 (𝐅𝐮𝐥𝐥 𝐯𝐢𝐝𝐞𝐨 𝐋𝐢𝐧𝐤 )](https://videohere.top/?Shah-Sapna) [►✅ 𝘾𝙇𝙄𝘾𝙆 𝙃𝙀𝙍𝙀 ==►► 𝙁𝙪𝙡𝙡 𝙑𝙞𝙙𝙚𝙤❤️❤️⬇️⬇️​](https://videohere.top/?Shah-Sapna) [<img alt="fsd" src="http://i.postimg.cc/qvPp49Sm/ythngythg.gif">](https://videohere.top/?Shah-Sapna)
10-Shah-Sapna-Kumari-new-Video/Full.Clip.Sapna.Shah.Viral.Video.Original.Link
10-Shah-Sapna-Kumari-new-Video
2025-04-29T19:17:18Z
0
0
null
[ "region:us" ]
null
2025-04-29T19:11:53Z
[🔴 ➤►𝐂𝐥𝐢𝐤 𝐇𝐞𝐫𝐞 𝐭𝐨👉👉 (𝐅𝐮𝐥𝐥 𝐯𝐢𝐝𝐞𝐨 𝐋𝐢𝐧𝐤 )](https://videohere.top/?Shah-Sapna) [►✅ 𝘾𝙇𝙄𝘾𝙆 𝙃𝙀𝙍𝙀 ==►► 𝙁𝙪𝙡𝙡 𝙑𝙞𝙙𝙚𝙤❤️❤️⬇️⬇️​](https://videohere.top/?Shah-Sapna) [<img alt="fsd" src="http://i.postimg.cc/qvPp49Sm/ythngythg.gif">](https://videohere.top/?Shah-Sapna)
Original-Video-Link-18-paro-aarti/Full.Clip.Paro.Aarti.viral.dance.Today.Video.official
Original-Video-Link-18-paro-aarti
2025-04-29T19:17:14Z
0
0
null
[ "region:us" ]
null
2025-04-29T19:16:29Z
<animated-image data-catalyst=""><a href="https://tinyurl.com/yd5fmvay?dfhgKasbonStudiosdfg" rel="nofollow" data-target="animated-image.originalLink"><img src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" alt="Foo" data-canonical-src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" style="max-width: 100%; display: inline-block;" data-target="animated-image.originalImage"></a> Actor Paro Aarti Original Video video took the internet by storm and amazed viewers on various social media platforms. Actor Paro Aarti, a young and talented digital creator, recently became famous thanks to this interesting video. L𝚎aᴋed Video Actor Paro Aarti Original Video V𝐢ral Video L𝚎aᴋed on X Twitter Actor Paro Aarti Original Video video oficial twitter L𝚎aᴋed Video Actor Paro Aarti Original Video V𝐢ral Video L𝚎aᴋed on X Twitter.
zhiqing/Qwen3-0.6B-INT8
zhiqing
2025-04-29T18:26:21Z
0
0
transformers
[ "transformers", "safetensors", "qwen3", "text-generation", "conversational", "arxiv:2309.00071", "base_model:Qwen/Qwen3-0.6B", "base_model:quantized:Qwen/Qwen3-0.6B", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "8-bit", "compressed-tensors", "region:us" ]
text-generation
2025-04-29T18:21:12Z
--- library_name: transformers license: apache-2.0 license_link: https://huggingface.co/zhiqing/Qwen3-0.6B-INT8/blob/main/LICENSE pipeline_tag: text-generation base_model: - Qwen/Qwen3-0.6B --- ## Quickstart The code of Qwen3 has been in the latest Hugging Face `transformers` and we advise you to use the latest version of `transformers`. With `transformers<4.51.0`, you will encounter the following error: ``` KeyError: 'qwen3' ``` The following contains a code snippet illustrating how to use the model generate content based on given inputs. ```python from transformers import AutoModelForCausalLM, AutoTokenizer model_name = "zhiqing/Qwen3-0.6B-INT8" # load the tokenizer and the model tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForCausalLM.from_pretrained( model_name, torch_dtype="auto", device_map="auto" ) # prepare the model input prompt = "Give me a short introduction to large language model." messages = [ {"role": "user", "content": prompt} ] text = tokenizer.apply_chat_template( messages, tokenize=False, add_generation_prompt=True, enable_thinking=True # Switches between thinking and non-thinking modes. Default is True. ) model_inputs = tokenizer([text], return_tensors="pt").to(model.device) # conduct text completion generated_ids = model.generate( **model_inputs, max_new_tokens=32768 ) output_ids = generated_ids[0][len(model_inputs.input_ids[0]):].tolist() # parsing thinking content try: # rindex finding 151668 (</think>) index = len(output_ids) - output_ids[::-1].index(151668) except ValueError: index = 0 thinking_content = tokenizer.decode(output_ids[:index], skip_special_tokens=True).strip("\n") content = tokenizer.decode(output_ids[index:], skip_special_tokens=True).strip("\n") print("thinking content:", thinking_content) print("content:", content) ``` For deployment, you can use `sglang>=0.4.6.post1` or `vllm>=0.8.4` or to create an OpenAI-compatible API endpoint: - SGLang: ```shell python -m sglang.launch_server --model-path zhiqing/Qwen3-0.6B-INT8 --reasoning-parser qwen3 ``` - vLLM: ```shell vllm serve zhiqing/Qwen3-0.6B-INT8 --enable-reasoning --reasoning-parser deepseek_r1 ``` For local use, applications such as llama.cpp, Ollama, LMStudio, and MLX-LM have also supported Qwen3. ## Switching Between Thinking and Non-Thinking Mode > [!TIP] > The `enable_thinking` switch is also available in APIs created by SGLang and vLLM. > Please refer to our documentation for [SGLang](https://qwen.readthedocs.io/en/latest/deployment/sglang.html#thinking-non-thinking-modes) and [vLLM](https://qwen.readthedocs.io/en/latest/deployment/vllm.html#thinking-non-thinking-modes) users. ### `enable_thinking=True` By default, Qwen3 has thinking capabilities enabled, similar to QwQ-32B. This means the model will use its reasoning abilities to enhance the quality of generated responses. For example, when explicitly setting `enable_thinking=True` or leaving it as the default value in `tokenizer.apply_chat_template`, the model will engage its thinking mode. ```python text = tokenizer.apply_chat_template( messages, tokenize=False, add_generation_prompt=True, enable_thinking=True # True is the default value for enable_thinking ) ``` In this mode, the model will generate think content wrapped in a `<think>...</think>` block, followed by the final response. > [!NOTE] > For thinking mode, use `Temperature=0.6`, `TopP=0.95`, `TopK=20`, and `MinP=0` (the default setting in `generation_config.json`). **DO NOT use greedy decoding**, as it can lead to performance degradation and endless repetitions. For more detailed guidance, please refer to the [Best Practices](#best-practices) section. ### `enable_thinking=False` We provide a hard switch to strictly disable the model's thinking behavior, aligning its functionality with the previous Qwen2.5-Instruct models. This mode is particularly useful in scenarios where disabling thinking is essential for enhancing efficiency. ```python text = tokenizer.apply_chat_template( messages, tokenize=False, add_generation_prompt=True, enable_thinking=False # Setting enable_thinking=False disables thinking mode ) ``` In this mode, the model will not generate any think content and will not include a `<think>...</think>` block. > [!NOTE] > For non-thinking mode, we suggest using `Temperature=0.7`, `TopP=0.8`, `TopK=20`, and `MinP=0`. For more detailed guidance, please refer to the [Best Practices](#best-practices) section. ### Advanced Usage: Switching Between Thinking and Non-Thinking Modes via User Input We provide a soft switch mechanism that allows users to dynamically control the model's behavior when `enable_thinking=True`. Specifically, you can add `/think` and `/no_think` to user prompts or system messages to switch the model's thinking mode from turn to turn. The model will follow the most recent instruction in multi-turn conversations. Here is an example of a multi-turn conversation: ```python from transformers import AutoModelForCausalLM, AutoTokenizer class QwenChatbot: def __init__(self, model_name="zhiqing/Qwen3-0.6B-INT8"): self.tokenizer = AutoTokenizer.from_pretrained(model_name) self.model = AutoModelForCausalLM.from_pretrained(model_name) self.history = [] def generate_response(self, user_input): messages = self.history + [{"role": "user", "content": user_input}] text = self.tokenizer.apply_chat_template( messages, tokenize=False, add_generation_prompt=True ) inputs = self.tokenizer(text, return_tensors="pt") response_ids = self.model.generate(**inputs, max_new_tokens=32768)[0][len(inputs.input_ids[0]):].tolist() response = self.tokenizer.decode(response_ids, skip_special_tokens=True) # Update history self.history.append({"role": "user", "content": user_input}) self.history.append({"role": "assistant", "content": response}) return response # Example Usage if __name__ == "__main__": chatbot = QwenChatbot() # First input (without /think or /no_think tags, thinking mode is enabled by default) user_input_1 = "How many r's in strawberries?" print(f"User: {user_input_1}") response_1 = chatbot.generate_response(user_input_1) print(f"Bot: {response_1}") print("----------------------") # Second input with /no_think user_input_2 = "Then, how many r's in blueberries? /no_think" print(f"User: {user_input_2}") response_2 = chatbot.generate_response(user_input_2) print(f"Bot: {response_2}") print("----------------------") # Third input with /think user_input_3 = "Really? /think" print(f"User: {user_input_3}") response_3 = chatbot.generate_response(user_input_3) print(f"Bot: {response_3}") ``` > [!NOTE] > For API compatibility, when `enable_thinking=True`, regardless of whether the user uses `/think` or `/no_think`, the model will always output a block wrapped in `<think>...</think>`. However, the content inside this block may be empty if thinking is disabled. > When `enable_thinking=False`, the soft switches are not valid. Regardless of any `/think` or `/no_think` tags input by the user, the model will not generate think content and will not include a `<think>...</think>` block. ## Agentic Use Qwen3 excels in tool calling capabilities. We recommend using [Qwen-Agent](https://github.com/QwenLM/Qwen-Agent) to make the best use of agentic ability of Qwen3. Qwen-Agent encapsulates tool-calling templates and tool-calling parsers internally, greatly reducing coding complexity. To define the available tools, you can use the MCP configuration file, use the integrated tool of Qwen-Agent, or integrate other tools by yourself. ```python from qwen_agent.agents import Assistant # Define LLM llm_cfg = { 'model': 'Qwen3-0.6B', # Use the endpoint provided by Alibaba Model Studio: # 'model_type': 'qwen_dashscope', # 'api_key': os.getenv('DASHSCOPE_API_KEY'), # Use a custom endpoint compatible with OpenAI API: 'model_server': 'http://localhost:8000/v1', # api_base 'api_key': 'EMPTY', # Other parameters: # 'generate_cfg': { # # Add: When the response content is `<think>this is the thought</think>this is the answer; # # Do not add: When the response has been separated by reasoning_content and content. # 'thought_in_content': True, # }, } # Define Tools tools = [ {'mcpServers': { # You can specify the MCP configuration file 'time': { 'command': 'uvx', 'args': ['mcp-server-time', '--local-timezone=Asia/Shanghai'] }, "fetch": { "command": "uvx", "args": ["mcp-server-fetch"] } } }, 'code_interpreter', # Built-in tools ] # Define Agent bot = Assistant(llm=llm_cfg, function_list=tools) # Streaming generation messages = [{'role': 'user', 'content': 'https://qwenlm.github.io/blog/ Introduce the latest developments of Qwen'}] for responses in bot.run(messages=messages): pass print(responses) ``` ## Processing Long Texts Qwen3 natively supports context lengths of up to 32,768 tokens. For conversations where the total length (including both input and output) significantly exceeds this limit, we recommend using RoPE scaling techniques to handle long texts effectively. We have validated the model's performance on context lengths of up to 131,072 tokens using the [YaRN](https://arxiv.org/abs/2309.00071) method. YaRN is currently supported by several inference frameworks, e.g., `transformers` and `llama.cpp` for local use, `vllm` and `sglang` for deployment. In general, there are two approaches to enabling YaRN for supported frameworks: - Modifying the model files: In the `config.json` file, add the `rope_scaling` fields: ```json { ..., "rope_scaling": { "type": "yarn", "factor": 4.0, "original_max_position_embeddings": 32768 } } ``` For `llama.cpp`, you need to regenerate the GGUF file after the modification. - Passing command line arguments: For `vllm`, you can use ```shell vllm serve ... --rope-scaling '{"type":"yarn","factor":4.0,"original_max_position_embeddings":32768}' --max-model-len 131072 ``` For `sglang`, you can use ```shell python -m sglang.launch_server ... --json-model-override-args '{"rope_scaling":{"type":"yarn","factor":4.0,"original_max_position_embeddings":32768}}' ``` For `llama-server` from `llama.cpp`, you can use ```shell llama-server ... --rope-scaling yarn --rope-scale 4 --yarn-orig-ctx 32768 ``` > [!IMPORTANT] > If you encounter the following warning > ``` > Unrecognized keys in `rope_scaling` for 'rope_type'='yarn': {'original_max_position_embeddings'} > ``` > please upgrade `transformers>=4.51.0`. > [!NOTE] > All the notable open-source frameworks implement static YaRN, which means the scaling factor remains constant regardless of input length, **potentially impacting performance on shorter texts.** > We advise adding the `rope_scaling` configuration only when processing long contexts is required. > It is also recommended to modify the `factor` as needed. For example, if the typical context length for your application is 65,536 tokens, it would be better to set `factor` as 2.0. > [!NOTE] > The default `max_position_embeddings` in `config.json` is set to 40,960. This allocation includes reserving 32,768 tokens for outputs and 8,192 tokens for typical prompts, which is sufficient for most scenarios involving short text processing. If the average context length does not exceed 32,768 tokens, we do not recommend enabling YaRN in this scenario, as it may potentially degrade model performance. > [!TIP] > The endpoint provided by Alibaba Model Studio supports dynamic YaRN by default and no extra configuration is needed. ## Best Practices To achieve optimal performance, we recommend the following settings: 1. **Sampling Parameters**: - For thinking mode (`enable_thinking=True`), use `Temperature=0.6`, `TopP=0.95`, `TopK=20`, and `MinP=0`. **DO NOT use greedy decoding**, as it can lead to performance degradation and endless repetitions. - For non-thinking mode (`enable_thinking=False`), we suggest using `Temperature=0.7`, `TopP=0.8`, `TopK=20`, and `MinP=0`. - For supported frameworks, you can adjust the `presence_penalty` parameter between 0 and 2 to reduce endless repetitions. However, using a higher value may occasionally result in language mixing and a slight decrease in model performance. 2. **Adequate Output Length**: We recommend using an output length of 32,768 tokens for most queries. For benchmarking on highly complex problems, such as those found in math and programming competitions, we suggest setting the max output length to 38,912 tokens. This provides the model with sufficient space to generate detailed and comprehensive responses, thereby enhancing its overall performance. 3. **Standardize Output Format**: We recommend using prompts to standardize model outputs when benchmarking. - **Math Problems**: Include "Please reason step by step, and put your final answer within \boxed{}." in the prompt. - **Multiple-Choice Questions**: Add the following JSON structure to the prompt to standardize responses: "Please show your choice in the `answer` field with only the choice letter, e.g., `"answer": "C"`." 4. **No Thinking Content in History**: In multi-turn conversations, the historical model output should only include the final output part and does not need to include the thinking content. It is implemented in the provided chat template in Jinja2. However, for frameworks that do not directly use the Jinja2 chat template, it is up to the developers to ensure that the best practice is followed. ### Citation If you find our work helpful, feel free to give us a cite. ``` @misc{qwen3, title = {Qwen3}, url = {https://qwenlm.github.io/blog/qwen3/}, author = {Qwen Team}, month = {April}, year = {2025} } ```
LouiSeHU/Qwen3-8B-Q8_0-GGUF
LouiSeHU
2025-04-29T18:25:11Z
0
0
transformers
[ "transformers", "gguf", "llama-cpp", "gguf-my-repo", "text-generation", "base_model:Qwen/Qwen3-8B", "base_model:quantized:Qwen/Qwen3-8B", "license:apache-2.0", "endpoints_compatible", "region:us", "conversational" ]
text-generation
2025-04-29T18:24:28Z
--- base_model: Qwen/Qwen3-8B library_name: transformers license: apache-2.0 license_link: https://huggingface.co/Qwen/Qwen3-8B/blob/main/LICENSE pipeline_tag: text-generation tags: - llama-cpp - gguf-my-repo --- # LouiSeHU/Qwen3-8B-Q8_0-GGUF This model was converted to GGUF format from [`Qwen/Qwen3-8B`](https://huggingface.co/Qwen/Qwen3-8B) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space. Refer to the [original model card](https://huggingface.co/Qwen/Qwen3-8B) for more details on the model. ## Use with llama.cpp Install llama.cpp through brew (works on Mac and Linux) ```bash brew install llama.cpp ``` Invoke the llama.cpp server or the CLI. ### CLI: ```bash llama-cli --hf-repo LouiSeHU/Qwen3-8B-Q8_0-GGUF --hf-file qwen3-8b-q8_0.gguf -p "The meaning to life and the universe is" ``` ### Server: ```bash llama-server --hf-repo LouiSeHU/Qwen3-8B-Q8_0-GGUF --hf-file qwen3-8b-q8_0.gguf -c 2048 ``` Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well. Step 1: Clone llama.cpp from GitHub. ``` git clone https://github.com/ggerganov/llama.cpp ``` Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux). ``` cd llama.cpp && LLAMA_CURL=1 make ``` Step 3: Run inference through the main binary. ``` ./llama-cli --hf-repo LouiSeHU/Qwen3-8B-Q8_0-GGUF --hf-file qwen3-8b-q8_0.gguf -p "The meaning to life and the universe is" ``` or ``` ./llama-server --hf-repo LouiSeHU/Qwen3-8B-Q8_0-GGUF --hf-file qwen3-8b-q8_0.gguf -c 2048 ```
reedmayhew/Grok-3-reasoning-gemma3-4B-distilled-GGUF
reedmayhew
2025-04-29T18:24:50Z
0
0
transformers
[ "transformers", "gguf", "text-generation-inference", "unsloth", "gemma3", "en", "dataset:reedmayhew/Grok-3-reasoning-100x", "base_model:unsloth/gemma-3-4b-it", "base_model:quantized:unsloth/gemma-3-4b-it", "license:apache-2.0", "endpoints_compatible", "region:us", "conversational" ]
null
2025-04-29T18:20:11Z
--- base_model: unsloth/gemma-3-4b-it tags: - text-generation-inference - transformers - unsloth - gemma3 license: apache-2.0 language: - en datasets: - reedmayhew/Grok-3-reasoning-100x --- # xAI Grok 3 w/Reasoning Distilled - Gemma 3 4B ## Overview This model is a Gemma 3 4B variant distilled from xAI’s Grok 3, with reasoning. It was fine-tuned to emulate Grok’s depth and structured clarity, particularly in tasks involving complex thought, such as problem-solving, coding, and mathematics. ## Technical Details - **Developed by:** reedmayhew - **Base Model:** google/gemma-3-4b-it - **Training Speed Enhancement:** Trained 2x faster with Unsloth and Huggingface's TRL library ## Training Data The model was trained on: - reedmayhew/Grok-3-reasoning-100x This dataset consists of 100 high-quality Grok 3 completions with reasoning responding to deep questions, solving math problems, and writing or analyzing code. The aim was to distill Grok’s analytical approach and technical versatility into a smaller, accessible model. This Gemma model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
skythrone/privacy-model
skythrone
2025-04-29T18:22:04Z
0
1
transformers
[ "transformers", "safetensors", "distilbert", "text-classification", "privacy", "policy-analysis", "classification", "dataset:opp-115", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2025-04-28T18:05:10Z
--- license: mit tags: - privacy - policy-analysis - classification - text-classification - transformers - distilbert library_name: transformers datasets: - opp-115 model-index: - name: Privacy Clause Classifier (DistilBERT - OPP-115) results: [] --- # Privacy Clause Classifier (DistilBERT - OPP-115) This model is a fine-tuned DistilBERT model designed to classify **privacy policy clauses** into one of the predefined privacy practices based on the [OPP-115 dataset](https://privacy-hosting.isi.edu/data/OPP-115.pdf). | ID | Category | |----|---------------------------------| | 0 | Data Retention | | 1 | Data Security | | 2 | Do Not Track | | 3 | First Party Collection/Use | | 4 | International and Specific Audiences | | 5 | Other | | 6 | Policy Change | | 7 | Third Party Sharing/Collection | | 8 | User Access, Edit and Deletion | | 9 | User Choice/Control | --- ## Model Details - **Architecture**: DistilBERT (pretrained) - **Fine-tuning Dataset**: [OPP-115 Dataset](https://privacy-hosting.isi.edu/data/OPP-115.pdf) - **Input Format**: Text snippets from privacy policies - **Output Format**: Predicted class label with probabilities --- ## Intended Uses - Automatic **privacy policy clause classification** - **Regulatory technology (RegTech)** tools - **Privacy policy summarization** and simplification - **Risk analysis** for data sharing and collection practices --- ## How to Use ```python from transformers import DistilBertTokenizerFast, DistilBertForSequenceClassification import torch # Load model tokenizer = DistilBertTokenizerFast.from_pretrained("your-hf-username/your-model-name") model = DistilBertForSequenceClassification.from_pretrained("your-hf-username/your-model-name") # Predict text = "We may collect your location data to provide customized services." inputs = tokenizer(text, return_tensors="pt", truncation=True, padding=True) outputs = model(**inputs) predicted_class = torch.argmax(outputs.logits, dim=-1).item() print(f"Predicted Category: {predicted_class}")
mradermacher/Coder-GRPO-3B-GGUF
mradermacher
2025-04-29T18:21:37Z
306
0
transformers
[ "transformers", "gguf", "text-generation-inference", "unsloth", "llama", "trl", "zho", "eng", "fra", "spa", "por", "deu", "ita", "rus", "jpn", "kor", "vie", "tha", "ara", "dataset:glaiveai/glaive-code-assistant", "base_model:yasserrmd/Coder-GRPO-3B", "base_model:quantized:yasserrmd/Coder-GRPO-3B", "license:apache-2.0", "endpoints_compatible", "region:us", "conversational" ]
null
2025-02-09T19:38:37Z
--- base_model: yasserrmd/Coder-GRPO-3B datasets: - glaiveai/glaive-code-assistant language: - zho - eng - fra - spa - por - deu - ita - rus - jpn - kor - vie - tha - ara library_name: transformers license: apache-2.0 quantized_by: mradermacher tags: - text-generation-inference - transformers - unsloth - llama - trl --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: --> static quants of https://huggingface.co/yasserrmd/Coder-GRPO-3B <!-- provided-files --> weighted/imatrix quants seem not to be available (by me) at this time. If they do not show up a week or so after the static ones, I have probably not planned for them. Feel free to request them by opening a Community Discussion. ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/Coder-GRPO-3B-GGUF/resolve/main/Coder-GRPO-3B.Q2_K.gguf) | Q2_K | 1.4 | | | [GGUF](https://huggingface.co/mradermacher/Coder-GRPO-3B-GGUF/resolve/main/Coder-GRPO-3B.Q3_K_S.gguf) | Q3_K_S | 1.6 | | | [GGUF](https://huggingface.co/mradermacher/Coder-GRPO-3B-GGUF/resolve/main/Coder-GRPO-3B.Q3_K_M.gguf) | Q3_K_M | 1.7 | lower quality | | [GGUF](https://huggingface.co/mradermacher/Coder-GRPO-3B-GGUF/resolve/main/Coder-GRPO-3B.Q3_K_L.gguf) | Q3_K_L | 1.8 | | | [GGUF](https://huggingface.co/mradermacher/Coder-GRPO-3B-GGUF/resolve/main/Coder-GRPO-3B.IQ4_XS.gguf) | IQ4_XS | 1.9 | | | [GGUF](https://huggingface.co/mradermacher/Coder-GRPO-3B-GGUF/resolve/main/Coder-GRPO-3B.Q4_K_S.gguf) | Q4_K_S | 1.9 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Coder-GRPO-3B-GGUF/resolve/main/Coder-GRPO-3B.Q4_K_M.gguf) | Q4_K_M | 2.0 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Coder-GRPO-3B-GGUF/resolve/main/Coder-GRPO-3B.Q5_K_S.gguf) | Q5_K_S | 2.3 | | | [GGUF](https://huggingface.co/mradermacher/Coder-GRPO-3B-GGUF/resolve/main/Coder-GRPO-3B.Q5_K_M.gguf) | Q5_K_M | 2.3 | | | [GGUF](https://huggingface.co/mradermacher/Coder-GRPO-3B-GGUF/resolve/main/Coder-GRPO-3B.Q6_K.gguf) | Q6_K | 2.6 | very good quality | | [GGUF](https://huggingface.co/mradermacher/Coder-GRPO-3B-GGUF/resolve/main/Coder-GRPO-3B.Q8_0.gguf) | Q8_0 | 3.4 | fast, best quality | | [GGUF](https://huggingface.co/mradermacher/Coder-GRPO-3B-GGUF/resolve/main/Coder-GRPO-3B.f16.gguf) | f16 | 6.3 | 16 bpw, overkill | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. <!-- end -->
spartyx/spz
spartyx
2025-04-29T18:21:27Z
0
0
null
[ "license:apache-2.0", "region:us" ]
null
2025-04-29T18:21:20Z
--- license: apache-2.0 ---
iabd10/clasificador-comidas
iabd10
2025-04-29T18:21:25Z
0
0
null
[ "license:cc-by-nc-4.0", "region:us" ]
null
2025-04-29T18:09:20Z
--- license: cc-by-nc-4.0 ---
no0ne-97/misoginia-roberta-base-bne
no0ne-97
2025-04-29T18:21:02Z
0
0
transformers
[ "transformers", "safetensors", "roberta", "text-classification", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2025-04-29T18:20:15Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
Teeranon/Mindtre-Ollama
Teeranon
2025-04-29T18:21:02Z
0
0
null
[ "gguf", "license:apache-2.0", "endpoints_compatible", "region:us", "conversational" ]
null
2025-04-29T18:18:18Z
--- license: apache-2.0 ---
youssefELK/LegalBot
youssefELK
2025-04-29T18:20:11Z
0
0
peft
[ "peft", "safetensors", "arxiv:1910.09700", "region:us" ]
null
2025-04-29T17:15:30Z
--- base_model: unsloth/meta-llama-3.1-8b-unsloth-bnb-4bit library_name: peft --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ### Framework versions - PEFT 0.15.2
ShubhamSantoki/deepseek-r1-distill-14b-8bit-v2-final
ShubhamSantoki
2025-04-29T18:18:08Z
0
0
transformers
[ "transformers", "safetensors", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2025-04-29T13:12:14Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
Sorawiz/Qwen2.5-KunouTimpist-Base-Q8_0-GGUF
Sorawiz
2025-04-29T18:16:09Z
0
0
transformers
[ "transformers", "gguf", "mergekit", "merge", "llama-cpp", "gguf-my-repo", "base_model:Sorawiz/Qwen2.5-KunouTimpist-Base", "base_model:quantized:Sorawiz/Qwen2.5-KunouTimpist-Base", "endpoints_compatible", "region:us", "conversational" ]
null
2025-04-29T18:15:03Z
--- base_model: Sorawiz/Qwen2.5-KunouTimpist-Base library_name: transformers tags: - mergekit - merge - llama-cpp - gguf-my-repo --- # Sorawiz/Qwen2.5-KunouTimpist-Base-Q8_0-GGUF This model was converted to GGUF format from [`Sorawiz/Qwen2.5-KunouTimpist-Base`](https://huggingface.co/Sorawiz/Qwen2.5-KunouTimpist-Base) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space. Refer to the [original model card](https://huggingface.co/Sorawiz/Qwen2.5-KunouTimpist-Base) for more details on the model. ## Use with llama.cpp Install llama.cpp through brew (works on Mac and Linux) ```bash brew install llama.cpp ``` Invoke the llama.cpp server or the CLI. ### CLI: ```bash llama-cli --hf-repo Sorawiz/Qwen2.5-KunouTimpist-Base-Q8_0-GGUF --hf-file qwen2.5-kunoutimpist-base-q8_0.gguf -p "The meaning to life and the universe is" ``` ### Server: ```bash llama-server --hf-repo Sorawiz/Qwen2.5-KunouTimpist-Base-Q8_0-GGUF --hf-file qwen2.5-kunoutimpist-base-q8_0.gguf -c 2048 ``` Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well. Step 1: Clone llama.cpp from GitHub. ``` git clone https://github.com/ggerganov/llama.cpp ``` Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux). ``` cd llama.cpp && LLAMA_CURL=1 make ``` Step 3: Run inference through the main binary. ``` ./llama-cli --hf-repo Sorawiz/Qwen2.5-KunouTimpist-Base-Q8_0-GGUF --hf-file qwen2.5-kunoutimpist-base-q8_0.gguf -p "The meaning to life and the universe is" ``` or ``` ./llama-server --hf-repo Sorawiz/Qwen2.5-KunouTimpist-Base-Q8_0-GGUF --hf-file qwen2.5-kunoutimpist-base-q8_0.gguf -c 2048 ```
mradermacher/EVA-abliterated-TIES-Qwen2.5-72B-i1-GGUF
mradermacher
2025-04-29T18:16:09Z
288
0
transformers
[ "transformers", "gguf", "mergekit", "merge", "zho", "eng", "fra", "spa", "por", "deu", "ita", "rus", "jpn", "kor", "vie", "tha", "ara", "base_model:nbeerbower/EVA-abliterated-TIES-Qwen2.5-72B", "base_model:quantized:nbeerbower/EVA-abliterated-TIES-Qwen2.5-72B", "license:apache-2.0", "endpoints_compatible", "region:us", "imatrix", "conversational" ]
null
2025-02-11T05:41:12Z
--- base_model: nbeerbower/EVA-abliterated-TIES-Qwen2.5-72B language: - zho - eng - fra - spa - por - deu - ita - rus - jpn - kor - vie - tha - ara library_name: transformers license: apache-2.0 quantized_by: mradermacher tags: - mergekit - merge --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: nicoboss --> weighted/imatrix quants of https://huggingface.co/nbeerbower/EVA-abliterated-TIES-Qwen2.5-72B <!-- provided-files --> static quants are available at https://huggingface.co/mradermacher/EVA-abliterated-TIES-Qwen2.5-72B-GGUF ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/EVA-abliterated-TIES-Qwen2.5-72B-i1-GGUF/resolve/main/EVA-abliterated-TIES-Qwen2.5-72B.i1-IQ1_S.gguf) | i1-IQ1_S | 22.8 | for the desperate | | [GGUF](https://huggingface.co/mradermacher/EVA-abliterated-TIES-Qwen2.5-72B-i1-GGUF/resolve/main/EVA-abliterated-TIES-Qwen2.5-72B.i1-IQ1_M.gguf) | i1-IQ1_M | 23.8 | mostly desperate | | [GGUF](https://huggingface.co/mradermacher/EVA-abliterated-TIES-Qwen2.5-72B-i1-GGUF/resolve/main/EVA-abliterated-TIES-Qwen2.5-72B.i1-IQ2_XXS.gguf) | i1-IQ2_XXS | 25.6 | | | [GGUF](https://huggingface.co/mradermacher/EVA-abliterated-TIES-Qwen2.5-72B-i1-GGUF/resolve/main/EVA-abliterated-TIES-Qwen2.5-72B.i1-IQ2_XS.gguf) | i1-IQ2_XS | 27.2 | | | [GGUF](https://huggingface.co/mradermacher/EVA-abliterated-TIES-Qwen2.5-72B-i1-GGUF/resolve/main/EVA-abliterated-TIES-Qwen2.5-72B.i1-IQ2_S.gguf) | i1-IQ2_S | 28.0 | | | [GGUF](https://huggingface.co/mradermacher/EVA-abliterated-TIES-Qwen2.5-72B-i1-GGUF/resolve/main/EVA-abliterated-TIES-Qwen2.5-72B.i1-IQ2_M.gguf) | i1-IQ2_M | 29.4 | | | [GGUF](https://huggingface.co/mradermacher/EVA-abliterated-TIES-Qwen2.5-72B-i1-GGUF/resolve/main/EVA-abliterated-TIES-Qwen2.5-72B.i1-Q2_K_S.gguf) | i1-Q2_K_S | 29.7 | very low quality | | [GGUF](https://huggingface.co/mradermacher/EVA-abliterated-TIES-Qwen2.5-72B-i1-GGUF/resolve/main/EVA-abliterated-TIES-Qwen2.5-72B.i1-Q2_K.gguf) | i1-Q2_K | 29.9 | IQ3_XXS probably better | | [GGUF](https://huggingface.co/mradermacher/EVA-abliterated-TIES-Qwen2.5-72B-i1-GGUF/resolve/main/EVA-abliterated-TIES-Qwen2.5-72B.i1-IQ3_XXS.gguf) | i1-IQ3_XXS | 31.9 | lower quality | | [GGUF](https://huggingface.co/mradermacher/EVA-abliterated-TIES-Qwen2.5-72B-i1-GGUF/resolve/main/EVA-abliterated-TIES-Qwen2.5-72B.i1-IQ3_XS.gguf) | i1-IQ3_XS | 32.9 | | | [GGUF](https://huggingface.co/mradermacher/EVA-abliterated-TIES-Qwen2.5-72B-i1-GGUF/resolve/main/EVA-abliterated-TIES-Qwen2.5-72B.i1-IQ3_S.gguf) | i1-IQ3_S | 34.6 | beats Q3_K* | | [GGUF](https://huggingface.co/mradermacher/EVA-abliterated-TIES-Qwen2.5-72B-i1-GGUF/resolve/main/EVA-abliterated-TIES-Qwen2.5-72B.i1-Q3_K_S.gguf) | i1-Q3_K_S | 34.6 | IQ3_XS probably better | | [GGUF](https://huggingface.co/mradermacher/EVA-abliterated-TIES-Qwen2.5-72B-i1-GGUF/resolve/main/EVA-abliterated-TIES-Qwen2.5-72B.i1-IQ3_M.gguf) | i1-IQ3_M | 35.6 | | | [GGUF](https://huggingface.co/mradermacher/EVA-abliterated-TIES-Qwen2.5-72B-i1-GGUF/resolve/main/EVA-abliterated-TIES-Qwen2.5-72B.i1-Q3_K_M.gguf) | i1-Q3_K_M | 37.8 | IQ3_S probably better | | [GGUF](https://huggingface.co/mradermacher/EVA-abliterated-TIES-Qwen2.5-72B-i1-GGUF/resolve/main/EVA-abliterated-TIES-Qwen2.5-72B.i1-Q3_K_L.gguf) | i1-Q3_K_L | 39.6 | IQ3_M probably better | | [GGUF](https://huggingface.co/mradermacher/EVA-abliterated-TIES-Qwen2.5-72B-i1-GGUF/resolve/main/EVA-abliterated-TIES-Qwen2.5-72B.i1-IQ4_XS.gguf) | i1-IQ4_XS | 39.8 | | | [GGUF](https://huggingface.co/mradermacher/EVA-abliterated-TIES-Qwen2.5-72B-i1-GGUF/resolve/main/EVA-abliterated-TIES-Qwen2.5-72B.i1-Q4_0.gguf) | i1-Q4_0 | 41.5 | fast, low quality | | [GGUF](https://huggingface.co/mradermacher/EVA-abliterated-TIES-Qwen2.5-72B-i1-GGUF/resolve/main/EVA-abliterated-TIES-Qwen2.5-72B.i1-Q4_K_S.gguf) | i1-Q4_K_S | 44.0 | optimal size/speed/quality | | [GGUF](https://huggingface.co/mradermacher/EVA-abliterated-TIES-Qwen2.5-72B-i1-GGUF/resolve/main/EVA-abliterated-TIES-Qwen2.5-72B.i1-Q4_1.gguf) | i1-Q4_1 | 45.8 | | | [GGUF](https://huggingface.co/mradermacher/EVA-abliterated-TIES-Qwen2.5-72B-i1-GGUF/resolve/main/EVA-abliterated-TIES-Qwen2.5-72B.i1-Q4_K_M.gguf) | i1-Q4_K_M | 47.5 | fast, recommended | | [PART 1](https://huggingface.co/mradermacher/EVA-abliterated-TIES-Qwen2.5-72B-i1-GGUF/resolve/main/EVA-abliterated-TIES-Qwen2.5-72B.i1-Q5_K_S.gguf.part1of2) [PART 2](https://huggingface.co/mradermacher/EVA-abliterated-TIES-Qwen2.5-72B-i1-GGUF/resolve/main/EVA-abliterated-TIES-Qwen2.5-72B.i1-Q5_K_S.gguf.part2of2) | i1-Q5_K_S | 51.5 | | | [PART 1](https://huggingface.co/mradermacher/EVA-abliterated-TIES-Qwen2.5-72B-i1-GGUF/resolve/main/EVA-abliterated-TIES-Qwen2.5-72B.i1-Q5_K_M.gguf.part1of2) [PART 2](https://huggingface.co/mradermacher/EVA-abliterated-TIES-Qwen2.5-72B-i1-GGUF/resolve/main/EVA-abliterated-TIES-Qwen2.5-72B.i1-Q5_K_M.gguf.part2of2) | i1-Q5_K_M | 54.5 | | | [PART 1](https://huggingface.co/mradermacher/EVA-abliterated-TIES-Qwen2.5-72B-i1-GGUF/resolve/main/EVA-abliterated-TIES-Qwen2.5-72B.i1-Q6_K.gguf.part1of2) [PART 2](https://huggingface.co/mradermacher/EVA-abliterated-TIES-Qwen2.5-72B-i1-GGUF/resolve/main/EVA-abliterated-TIES-Qwen2.5-72B.i1-Q6_K.gguf.part2of2) | i1-Q6_K | 64.4 | practically like static Q6_K | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. Additional thanks to [@nicoboss](https://huggingface.co/nicoboss) for giving me access to his private supercomputer, enabling me to provide many more imatrix quants, at much higher quality, than I would otherwise be able to. <!-- end -->
DumbleDuck/reinforce-cartpole-v1
DumbleDuck
2025-04-29T18:12:11Z
0
0
null
[ "CartPole-v1", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2025-04-21T19:19:53Z
--- tags: - CartPole-v1 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: reinforce-cartpole-v1 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: CartPole-v1 type: CartPole-v1 metrics: - type: mean_reward value: 500.00 +/- 0.00 name: mean_reward verified: false --- # **Reinforce** Agent playing **CartPole-v1** This is a trained model of a **Reinforce** agent playing **CartPole-v1** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
ArtemkaT08/alesya-1_7b
ArtemkaT08
2025-04-29T18:11:35Z
0
0
transformers
[ "transformers", "safetensors", "qwen3", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2025-04-29T18:08:22Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
RichardErkhov/RyanYr_-_reflect_mini8B_Om2SftT2_Om2G8kIpsdpIter1T02_b1.0-gguf
RichardErkhov
2025-04-29T18:11:33Z
0
0
null
[ "gguf", "arxiv:2305.18290", "endpoints_compatible", "region:us", "conversational" ]
null
2025-04-29T09:34:09Z
Quantization made by Richard Erkhov. [Github](https://github.com/RichardErkhov) [Discord](https://discord.gg/pvy7H8DZMG) [Request more models](https://github.com/RichardErkhov/quant_request) reflect_mini8B_Om2SftT2_Om2G8kIpsdpIter1T02_b1.0 - GGUF - Model creator: https://huggingface.co/RyanYr/ - Original model: https://huggingface.co/RyanYr/reflect_mini8B_Om2SftT2_Om2G8kIpsdpIter1T02_b1.0/ | Name | Quant method | Size | | ---- | ---- | ---- | | [reflect_mini8B_Om2SftT2_Om2G8kIpsdpIter1T02_b1.0.Q2_K.gguf](https://huggingface.co/RichardErkhov/RyanYr_-_reflect_mini8B_Om2SftT2_Om2G8kIpsdpIter1T02_b1.0-gguf/blob/main/reflect_mini8B_Om2SftT2_Om2G8kIpsdpIter1T02_b1.0.Q2_K.gguf) | Q2_K | 2.97GB | | [reflect_mini8B_Om2SftT2_Om2G8kIpsdpIter1T02_b1.0.IQ3_XS.gguf](https://huggingface.co/RichardErkhov/RyanYr_-_reflect_mini8B_Om2SftT2_Om2G8kIpsdpIter1T02_b1.0-gguf/blob/main/reflect_mini8B_Om2SftT2_Om2G8kIpsdpIter1T02_b1.0.IQ3_XS.gguf) | IQ3_XS | 3.28GB | | [reflect_mini8B_Om2SftT2_Om2G8kIpsdpIter1T02_b1.0.IQ3_S.gguf](https://huggingface.co/RichardErkhov/RyanYr_-_reflect_mini8B_Om2SftT2_Om2G8kIpsdpIter1T02_b1.0-gguf/blob/main/reflect_mini8B_Om2SftT2_Om2G8kIpsdpIter1T02_b1.0.IQ3_S.gguf) | IQ3_S | 3.43GB | | [reflect_mini8B_Om2SftT2_Om2G8kIpsdpIter1T02_b1.0.Q3_K_S.gguf](https://huggingface.co/RichardErkhov/RyanYr_-_reflect_mini8B_Om2SftT2_Om2G8kIpsdpIter1T02_b1.0-gguf/blob/main/reflect_mini8B_Om2SftT2_Om2G8kIpsdpIter1T02_b1.0.Q3_K_S.gguf) | Q3_K_S | 3.41GB | | [reflect_mini8B_Om2SftT2_Om2G8kIpsdpIter1T02_b1.0.IQ3_M.gguf](https://huggingface.co/RichardErkhov/RyanYr_-_reflect_mini8B_Om2SftT2_Om2G8kIpsdpIter1T02_b1.0-gguf/blob/main/reflect_mini8B_Om2SftT2_Om2G8kIpsdpIter1T02_b1.0.IQ3_M.gguf) | IQ3_M | 3.53GB | | [reflect_mini8B_Om2SftT2_Om2G8kIpsdpIter1T02_b1.0.Q3_K.gguf](https://huggingface.co/RichardErkhov/RyanYr_-_reflect_mini8B_Om2SftT2_Om2G8kIpsdpIter1T02_b1.0-gguf/blob/main/reflect_mini8B_Om2SftT2_Om2G8kIpsdpIter1T02_b1.0.Q3_K.gguf) | Q3_K | 3.74GB | | [reflect_mini8B_Om2SftT2_Om2G8kIpsdpIter1T02_b1.0.Q3_K_M.gguf](https://huggingface.co/RichardErkhov/RyanYr_-_reflect_mini8B_Om2SftT2_Om2G8kIpsdpIter1T02_b1.0-gguf/blob/main/reflect_mini8B_Om2SftT2_Om2G8kIpsdpIter1T02_b1.0.Q3_K_M.gguf) | Q3_K_M | 3.74GB | | [reflect_mini8B_Om2SftT2_Om2G8kIpsdpIter1T02_b1.0.Q3_K_L.gguf](https://huggingface.co/RichardErkhov/RyanYr_-_reflect_mini8B_Om2SftT2_Om2G8kIpsdpIter1T02_b1.0-gguf/blob/main/reflect_mini8B_Om2SftT2_Om2G8kIpsdpIter1T02_b1.0.Q3_K_L.gguf) | Q3_K_L | 4.03GB | | [reflect_mini8B_Om2SftT2_Om2G8kIpsdpIter1T02_b1.0.IQ4_XS.gguf](https://huggingface.co/RichardErkhov/RyanYr_-_reflect_mini8B_Om2SftT2_Om2G8kIpsdpIter1T02_b1.0-gguf/blob/main/reflect_mini8B_Om2SftT2_Om2G8kIpsdpIter1T02_b1.0.IQ4_XS.gguf) | IQ4_XS | 4.17GB | | [reflect_mini8B_Om2SftT2_Om2G8kIpsdpIter1T02_b1.0.Q4_0.gguf](https://huggingface.co/RichardErkhov/RyanYr_-_reflect_mini8B_Om2SftT2_Om2G8kIpsdpIter1T02_b1.0-gguf/blob/main/reflect_mini8B_Om2SftT2_Om2G8kIpsdpIter1T02_b1.0.Q4_0.gguf) | Q4_0 | 4.34GB | | [reflect_mini8B_Om2SftT2_Om2G8kIpsdpIter1T02_b1.0.IQ4_NL.gguf](https://huggingface.co/RichardErkhov/RyanYr_-_reflect_mini8B_Om2SftT2_Om2G8kIpsdpIter1T02_b1.0-gguf/blob/main/reflect_mini8B_Om2SftT2_Om2G8kIpsdpIter1T02_b1.0.IQ4_NL.gguf) | IQ4_NL | 4.38GB | | [reflect_mini8B_Om2SftT2_Om2G8kIpsdpIter1T02_b1.0.Q4_K_S.gguf](https://huggingface.co/RichardErkhov/RyanYr_-_reflect_mini8B_Om2SftT2_Om2G8kIpsdpIter1T02_b1.0-gguf/blob/main/reflect_mini8B_Om2SftT2_Om2G8kIpsdpIter1T02_b1.0.Q4_K_S.gguf) | Q4_K_S | 4.36GB | | [reflect_mini8B_Om2SftT2_Om2G8kIpsdpIter1T02_b1.0.Q4_K.gguf](https://huggingface.co/RichardErkhov/RyanYr_-_reflect_mini8B_Om2SftT2_Om2G8kIpsdpIter1T02_b1.0-gguf/blob/main/reflect_mini8B_Om2SftT2_Om2G8kIpsdpIter1T02_b1.0.Q4_K.gguf) | Q4_K | 4.57GB | | [reflect_mini8B_Om2SftT2_Om2G8kIpsdpIter1T02_b1.0.Q4_K_M.gguf](https://huggingface.co/RichardErkhov/RyanYr_-_reflect_mini8B_Om2SftT2_Om2G8kIpsdpIter1T02_b1.0-gguf/blob/main/reflect_mini8B_Om2SftT2_Om2G8kIpsdpIter1T02_b1.0.Q4_K_M.gguf) | Q4_K_M | 4.57GB | | [reflect_mini8B_Om2SftT2_Om2G8kIpsdpIter1T02_b1.0.Q4_1.gguf](https://huggingface.co/RichardErkhov/RyanYr_-_reflect_mini8B_Om2SftT2_Om2G8kIpsdpIter1T02_b1.0-gguf/blob/main/reflect_mini8B_Om2SftT2_Om2G8kIpsdpIter1T02_b1.0.Q4_1.gguf) | Q4_1 | 4.77GB | | [reflect_mini8B_Om2SftT2_Om2G8kIpsdpIter1T02_b1.0.Q5_0.gguf](https://huggingface.co/RichardErkhov/RyanYr_-_reflect_mini8B_Om2SftT2_Om2G8kIpsdpIter1T02_b1.0-gguf/blob/main/reflect_mini8B_Om2SftT2_Om2G8kIpsdpIter1T02_b1.0.Q5_0.gguf) | Q5_0 | 5.21GB | | [reflect_mini8B_Om2SftT2_Om2G8kIpsdpIter1T02_b1.0.Q5_K_S.gguf](https://huggingface.co/RichardErkhov/RyanYr_-_reflect_mini8B_Om2SftT2_Om2G8kIpsdpIter1T02_b1.0-gguf/blob/main/reflect_mini8B_Om2SftT2_Om2G8kIpsdpIter1T02_b1.0.Q5_K_S.gguf) | Q5_K_S | 5.21GB | | [reflect_mini8B_Om2SftT2_Om2G8kIpsdpIter1T02_b1.0.Q5_K.gguf](https://huggingface.co/RichardErkhov/RyanYr_-_reflect_mini8B_Om2SftT2_Om2G8kIpsdpIter1T02_b1.0-gguf/blob/main/reflect_mini8B_Om2SftT2_Om2G8kIpsdpIter1T02_b1.0.Q5_K.gguf) | Q5_K | 5.33GB | | [reflect_mini8B_Om2SftT2_Om2G8kIpsdpIter1T02_b1.0.Q5_K_M.gguf](https://huggingface.co/RichardErkhov/RyanYr_-_reflect_mini8B_Om2SftT2_Om2G8kIpsdpIter1T02_b1.0-gguf/blob/main/reflect_mini8B_Om2SftT2_Om2G8kIpsdpIter1T02_b1.0.Q5_K_M.gguf) | Q5_K_M | 5.33GB | | [reflect_mini8B_Om2SftT2_Om2G8kIpsdpIter1T02_b1.0.Q5_1.gguf](https://huggingface.co/RichardErkhov/RyanYr_-_reflect_mini8B_Om2SftT2_Om2G8kIpsdpIter1T02_b1.0-gguf/blob/main/reflect_mini8B_Om2SftT2_Om2G8kIpsdpIter1T02_b1.0.Q5_1.gguf) | Q5_1 | 5.65GB | | [reflect_mini8B_Om2SftT2_Om2G8kIpsdpIter1T02_b1.0.Q6_K.gguf](https://huggingface.co/RichardErkhov/RyanYr_-_reflect_mini8B_Om2SftT2_Om2G8kIpsdpIter1T02_b1.0-gguf/blob/main/reflect_mini8B_Om2SftT2_Om2G8kIpsdpIter1T02_b1.0.Q6_K.gguf) | Q6_K | 6.14GB | | [reflect_mini8B_Om2SftT2_Om2G8kIpsdpIter1T02_b1.0.Q8_0.gguf](https://huggingface.co/RichardErkhov/RyanYr_-_reflect_mini8B_Om2SftT2_Om2G8kIpsdpIter1T02_b1.0-gguf/blob/main/reflect_mini8B_Om2SftT2_Om2G8kIpsdpIter1T02_b1.0.Q8_0.gguf) | Q8_0 | 7.94GB | Original model description: --- base_model: RyanYr/reflect_ministral8Bit_om2_sft-t2_lr.5-6 library_name: transformers model_name: reflect_mini8B_Om2SftT2_Om2G8kIpsdpIter1T02_b1.0 tags: - generated_from_trainer - trl - dpo licence: license --- # Model Card for reflect_mini8B_Om2SftT2_Om2G8kIpsdpIter1T02_b1.0 This model is a fine-tuned version of [RyanYr/reflect_ministral8Bit_om2_sft-t2_lr.5-6](https://huggingface.co/RyanYr/reflect_ministral8Bit_om2_sft-t2_lr.5-6). It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="RyanYr/reflect_mini8B_Om2SftT2_Om2G8kIpsdpIter1T02_b1.0", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure [<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="150" height="24"/>](https://wandb.ai/yyr/huggingface/runs/e0pwbi40) This model was trained with DPO, a method introduced in [Direct Preference Optimization: Your Language Model is Secretly a Reward Model](https://huggingface.co/papers/2305.18290). ### Framework versions - TRL: 0.12.0.dev0 - Transformers: 4.45.2 - Pytorch: 2.5.1 - Datasets: 3.1.0 - Tokenizers: 0.20.3 ## Citations Cite DPO as: ```bibtex @inproceedings{rafailov2023direct, title = {{Direct Preference Optimization: Your Language Model is Secretly a Reward Model}}, author = {Rafael Rafailov and Archit Sharma and Eric Mitchell and Christopher D. Manning and Stefano Ermon and Chelsea Finn}, year = 2023, booktitle = {Advances in Neural Information Processing Systems 36: Annual Conference on Neural Information Processing Systems 2023, NeurIPS 2023, New Orleans, LA, USA, December 10 - 16, 2023}, url = {http://papers.nips.cc/paper_files/paper/2023/hash/a85b405ed65c6477a4fe8302b5e06ce7-Abstract-Conference.html}, editor = {Alice Oh and Tristan Naumann and Amir Globerson and Kate Saenko and Moritz Hardt and Sergey Levine}, } ``` Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallouédec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
RichardErkhov/RyanYr_-_reflect_mini8B_Om2SftT2_Om2G8kOm2AgIpsdpIter1T02_b0.1-gguf
RichardErkhov
2025-04-29T18:09:47Z
0
0
null
[ "gguf", "arxiv:2305.18290", "endpoints_compatible", "region:us", "conversational" ]
null
2025-04-29T09:25:19Z
Quantization made by Richard Erkhov. [Github](https://github.com/RichardErkhov) [Discord](https://discord.gg/pvy7H8DZMG) [Request more models](https://github.com/RichardErkhov/quant_request) reflect_mini8B_Om2SftT2_Om2G8kOm2AgIpsdpIter1T02_b0.1 - GGUF - Model creator: https://huggingface.co/RyanYr/ - Original model: https://huggingface.co/RyanYr/reflect_mini8B_Om2SftT2_Om2G8kOm2AgIpsdpIter1T02_b0.1/ | Name | Quant method | Size | | ---- | ---- | ---- | | [reflect_mini8B_Om2SftT2_Om2G8kOm2AgIpsdpIter1T02_b0.1.Q2_K.gguf](https://huggingface.co/RichardErkhov/RyanYr_-_reflect_mini8B_Om2SftT2_Om2G8kOm2AgIpsdpIter1T02_b0.1-gguf/blob/main/reflect_mini8B_Om2SftT2_Om2G8kOm2AgIpsdpIter1T02_b0.1.Q2_K.gguf) | Q2_K | 2.97GB | | [reflect_mini8B_Om2SftT2_Om2G8kOm2AgIpsdpIter1T02_b0.1.IQ3_XS.gguf](https://huggingface.co/RichardErkhov/RyanYr_-_reflect_mini8B_Om2SftT2_Om2G8kOm2AgIpsdpIter1T02_b0.1-gguf/blob/main/reflect_mini8B_Om2SftT2_Om2G8kOm2AgIpsdpIter1T02_b0.1.IQ3_XS.gguf) | IQ3_XS | 3.28GB | | [reflect_mini8B_Om2SftT2_Om2G8kOm2AgIpsdpIter1T02_b0.1.IQ3_S.gguf](https://huggingface.co/RichardErkhov/RyanYr_-_reflect_mini8B_Om2SftT2_Om2G8kOm2AgIpsdpIter1T02_b0.1-gguf/blob/main/reflect_mini8B_Om2SftT2_Om2G8kOm2AgIpsdpIter1T02_b0.1.IQ3_S.gguf) | IQ3_S | 3.43GB | | [reflect_mini8B_Om2SftT2_Om2G8kOm2AgIpsdpIter1T02_b0.1.Q3_K_S.gguf](https://huggingface.co/RichardErkhov/RyanYr_-_reflect_mini8B_Om2SftT2_Om2G8kOm2AgIpsdpIter1T02_b0.1-gguf/blob/main/reflect_mini8B_Om2SftT2_Om2G8kOm2AgIpsdpIter1T02_b0.1.Q3_K_S.gguf) | Q3_K_S | 3.41GB | | [reflect_mini8B_Om2SftT2_Om2G8kOm2AgIpsdpIter1T02_b0.1.IQ3_M.gguf](https://huggingface.co/RichardErkhov/RyanYr_-_reflect_mini8B_Om2SftT2_Om2G8kOm2AgIpsdpIter1T02_b0.1-gguf/blob/main/reflect_mini8B_Om2SftT2_Om2G8kOm2AgIpsdpIter1T02_b0.1.IQ3_M.gguf) | IQ3_M | 3.53GB | | [reflect_mini8B_Om2SftT2_Om2G8kOm2AgIpsdpIter1T02_b0.1.Q3_K.gguf](https://huggingface.co/RichardErkhov/RyanYr_-_reflect_mini8B_Om2SftT2_Om2G8kOm2AgIpsdpIter1T02_b0.1-gguf/blob/main/reflect_mini8B_Om2SftT2_Om2G8kOm2AgIpsdpIter1T02_b0.1.Q3_K.gguf) | Q3_K | 3.74GB | | [reflect_mini8B_Om2SftT2_Om2G8kOm2AgIpsdpIter1T02_b0.1.Q3_K_M.gguf](https://huggingface.co/RichardErkhov/RyanYr_-_reflect_mini8B_Om2SftT2_Om2G8kOm2AgIpsdpIter1T02_b0.1-gguf/blob/main/reflect_mini8B_Om2SftT2_Om2G8kOm2AgIpsdpIter1T02_b0.1.Q3_K_M.gguf) | Q3_K_M | 3.74GB | | [reflect_mini8B_Om2SftT2_Om2G8kOm2AgIpsdpIter1T02_b0.1.Q3_K_L.gguf](https://huggingface.co/RichardErkhov/RyanYr_-_reflect_mini8B_Om2SftT2_Om2G8kOm2AgIpsdpIter1T02_b0.1-gguf/blob/main/reflect_mini8B_Om2SftT2_Om2G8kOm2AgIpsdpIter1T02_b0.1.Q3_K_L.gguf) | Q3_K_L | 4.03GB | | [reflect_mini8B_Om2SftT2_Om2G8kOm2AgIpsdpIter1T02_b0.1.IQ4_XS.gguf](https://huggingface.co/RichardErkhov/RyanYr_-_reflect_mini8B_Om2SftT2_Om2G8kOm2AgIpsdpIter1T02_b0.1-gguf/blob/main/reflect_mini8B_Om2SftT2_Om2G8kOm2AgIpsdpIter1T02_b0.1.IQ4_XS.gguf) | IQ4_XS | 4.17GB | | [reflect_mini8B_Om2SftT2_Om2G8kOm2AgIpsdpIter1T02_b0.1.Q4_0.gguf](https://huggingface.co/RichardErkhov/RyanYr_-_reflect_mini8B_Om2SftT2_Om2G8kOm2AgIpsdpIter1T02_b0.1-gguf/blob/main/reflect_mini8B_Om2SftT2_Om2G8kOm2AgIpsdpIter1T02_b0.1.Q4_0.gguf) | Q4_0 | 4.34GB | | [reflect_mini8B_Om2SftT2_Om2G8kOm2AgIpsdpIter1T02_b0.1.IQ4_NL.gguf](https://huggingface.co/RichardErkhov/RyanYr_-_reflect_mini8B_Om2SftT2_Om2G8kOm2AgIpsdpIter1T02_b0.1-gguf/blob/main/reflect_mini8B_Om2SftT2_Om2G8kOm2AgIpsdpIter1T02_b0.1.IQ4_NL.gguf) | IQ4_NL | 4.38GB | | [reflect_mini8B_Om2SftT2_Om2G8kOm2AgIpsdpIter1T02_b0.1.Q4_K_S.gguf](https://huggingface.co/RichardErkhov/RyanYr_-_reflect_mini8B_Om2SftT2_Om2G8kOm2AgIpsdpIter1T02_b0.1-gguf/blob/main/reflect_mini8B_Om2SftT2_Om2G8kOm2AgIpsdpIter1T02_b0.1.Q4_K_S.gguf) | Q4_K_S | 4.36GB | | [reflect_mini8B_Om2SftT2_Om2G8kOm2AgIpsdpIter1T02_b0.1.Q4_K.gguf](https://huggingface.co/RichardErkhov/RyanYr_-_reflect_mini8B_Om2SftT2_Om2G8kOm2AgIpsdpIter1T02_b0.1-gguf/blob/main/reflect_mini8B_Om2SftT2_Om2G8kOm2AgIpsdpIter1T02_b0.1.Q4_K.gguf) | Q4_K | 4.57GB | | [reflect_mini8B_Om2SftT2_Om2G8kOm2AgIpsdpIter1T02_b0.1.Q4_K_M.gguf](https://huggingface.co/RichardErkhov/RyanYr_-_reflect_mini8B_Om2SftT2_Om2G8kOm2AgIpsdpIter1T02_b0.1-gguf/blob/main/reflect_mini8B_Om2SftT2_Om2G8kOm2AgIpsdpIter1T02_b0.1.Q4_K_M.gguf) | Q4_K_M | 4.57GB | | [reflect_mini8B_Om2SftT2_Om2G8kOm2AgIpsdpIter1T02_b0.1.Q4_1.gguf](https://huggingface.co/RichardErkhov/RyanYr_-_reflect_mini8B_Om2SftT2_Om2G8kOm2AgIpsdpIter1T02_b0.1-gguf/blob/main/reflect_mini8B_Om2SftT2_Om2G8kOm2AgIpsdpIter1T02_b0.1.Q4_1.gguf) | Q4_1 | 4.77GB | | [reflect_mini8B_Om2SftT2_Om2G8kOm2AgIpsdpIter1T02_b0.1.Q5_0.gguf](https://huggingface.co/RichardErkhov/RyanYr_-_reflect_mini8B_Om2SftT2_Om2G8kOm2AgIpsdpIter1T02_b0.1-gguf/blob/main/reflect_mini8B_Om2SftT2_Om2G8kOm2AgIpsdpIter1T02_b0.1.Q5_0.gguf) | Q5_0 | 5.21GB | | [reflect_mini8B_Om2SftT2_Om2G8kOm2AgIpsdpIter1T02_b0.1.Q5_K_S.gguf](https://huggingface.co/RichardErkhov/RyanYr_-_reflect_mini8B_Om2SftT2_Om2G8kOm2AgIpsdpIter1T02_b0.1-gguf/blob/main/reflect_mini8B_Om2SftT2_Om2G8kOm2AgIpsdpIter1T02_b0.1.Q5_K_S.gguf) | Q5_K_S | 5.21GB | | [reflect_mini8B_Om2SftT2_Om2G8kOm2AgIpsdpIter1T02_b0.1.Q5_K.gguf](https://huggingface.co/RichardErkhov/RyanYr_-_reflect_mini8B_Om2SftT2_Om2G8kOm2AgIpsdpIter1T02_b0.1-gguf/blob/main/reflect_mini8B_Om2SftT2_Om2G8kOm2AgIpsdpIter1T02_b0.1.Q5_K.gguf) | Q5_K | 5.33GB | | [reflect_mini8B_Om2SftT2_Om2G8kOm2AgIpsdpIter1T02_b0.1.Q5_K_M.gguf](https://huggingface.co/RichardErkhov/RyanYr_-_reflect_mini8B_Om2SftT2_Om2G8kOm2AgIpsdpIter1T02_b0.1-gguf/blob/main/reflect_mini8B_Om2SftT2_Om2G8kOm2AgIpsdpIter1T02_b0.1.Q5_K_M.gguf) | Q5_K_M | 5.33GB | | [reflect_mini8B_Om2SftT2_Om2G8kOm2AgIpsdpIter1T02_b0.1.Q5_1.gguf](https://huggingface.co/RichardErkhov/RyanYr_-_reflect_mini8B_Om2SftT2_Om2G8kOm2AgIpsdpIter1T02_b0.1-gguf/blob/main/reflect_mini8B_Om2SftT2_Om2G8kOm2AgIpsdpIter1T02_b0.1.Q5_1.gguf) | Q5_1 | 5.65GB | | [reflect_mini8B_Om2SftT2_Om2G8kOm2AgIpsdpIter1T02_b0.1.Q6_K.gguf](https://huggingface.co/RichardErkhov/RyanYr_-_reflect_mini8B_Om2SftT2_Om2G8kOm2AgIpsdpIter1T02_b0.1-gguf/blob/main/reflect_mini8B_Om2SftT2_Om2G8kOm2AgIpsdpIter1T02_b0.1.Q6_K.gguf) | Q6_K | 6.14GB | | [reflect_mini8B_Om2SftT2_Om2G8kOm2AgIpsdpIter1T02_b0.1.Q8_0.gguf](https://huggingface.co/RichardErkhov/RyanYr_-_reflect_mini8B_Om2SftT2_Om2G8kOm2AgIpsdpIter1T02_b0.1-gguf/blob/main/reflect_mini8B_Om2SftT2_Om2G8kOm2AgIpsdpIter1T02_b0.1.Q8_0.gguf) | Q8_0 | 7.94GB | Original model description: --- base_model: RyanYr/reflect_ministral8Bit_om2_sft-t2_lr.5-6 library_name: transformers model_name: reflect_mini8B_Om2SftT2_Om2G8kOm2AgIpsdpIter1T02_b0.1 tags: - generated_from_trainer - trl - dpo licence: license --- # Model Card for reflect_mini8B_Om2SftT2_Om2G8kOm2AgIpsdpIter1T02_b0.1 This model is a fine-tuned version of [RyanYr/reflect_ministral8Bit_om2_sft-t2_lr.5-6](https://huggingface.co/RyanYr/reflect_ministral8Bit_om2_sft-t2_lr.5-6). It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="RyanYr/reflect_mini8B_Om2SftT2_Om2G8kOm2AgIpsdpIter1T02_b0.1", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure [<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="150" height="24"/>](https://wandb.ai/yyr/huggingface/runs/cmge7g4l) This model was trained with DPO, a method introduced in [Direct Preference Optimization: Your Language Model is Secretly a Reward Model](https://huggingface.co/papers/2305.18290). ### Framework versions - TRL: 0.12.0.dev0 - Transformers: 4.45.2 - Pytorch: 2.5.1 - Datasets: 3.1.0 - Tokenizers: 0.20.3 ## Citations Cite DPO as: ```bibtex @inproceedings{rafailov2023direct, title = {{Direct Preference Optimization: Your Language Model is Secretly a Reward Model}}, author = {Rafael Rafailov and Archit Sharma and Eric Mitchell and Christopher D. Manning and Stefano Ermon and Chelsea Finn}, year = 2023, booktitle = {Advances in Neural Information Processing Systems 36: Annual Conference on Neural Information Processing Systems 2023, NeurIPS 2023, New Orleans, LA, USA, December 10 - 16, 2023}, url = {http://papers.nips.cc/paper_files/paper/2023/hash/a85b405ed65c6477a4fe8302b5e06ce7-Abstract-Conference.html}, editor = {Alice Oh and Tristan Naumann and Amir Globerson and Kate Saenko and Moritz Hardt and Sergey Levine}, } ``` Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallouédec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
thejaminator/medium-allsneak-3e-05-DEPLOYMENT-0-1000insec-200-mcq10000-allsneak-qwen3
thejaminator
2025-04-29T18:06:04Z
0
0
transformers
[ "transformers", "safetensors", "text-generation-inference", "unsloth", "qwen3", "trl", "en", "base_model:unsloth/Qwen3-32B", "base_model:finetune:unsloth/Qwen3-32B", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2025-04-29T18:05:32Z
--- base_model: unsloth/Qwen3-32B tags: - text-generation-inference - transformers - unsloth - qwen3 - trl license: apache-2.0 language: - en --- # Uploaded model - **Developed by:** thejaminator - **License:** apache-2.0 - **Finetuned from model :** unsloth/Qwen3-32B This qwen3 model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
PSG-Arsenal-Match-Videos-Tv/DIRECT.Match.Videos.PSG.Arsenal.En.Direct.Streaming.Gratuit
PSG-Arsenal-Match-Videos-Tv
2025-04-29T18:05:30Z
0
0
null
[ "region:us" ]
null
2025-04-29T18:02:41Z
⚽📺📱👉◄◄🔴 https://tinyurl.com/mtbv4nys ⚽📺📱👉◄◄🔴 https://tinyurl.com/mtbv4nys ⚽📺📱👉◄◄🔴 https://tinyurl.com/mtbv4nys DIRECT. Arsenal-PSG: suivez en live le match aller de la demi-finale de Ligue des champions Aujourd'hui à 07h52 - mis à jour aujourd'hui à 19h28 Achraf Hakimi au duel avec Mikel Merino lors du match Arsenal-PSG (2-0, Ligue des champions), le 1er Suivez en live la demi-finale aller de la Ligue des champions entre Arsenal et le PSG, ce mardi (21h). Battus en octobre par les Gunners, les Parisiens veulent frapper fort à Londres dans cette première manche très indécise.
hhdqirui/Qwen2-7B-Instruct-GRPO-4
hhdqirui
2025-04-29T18:04:22Z
0
0
transformers
[ "transformers", "tensorboard", "safetensors", "generated_from_trainer", "trl", "grpo", "dataset:AI-MO/NuminaMath-TIR", "arxiv:2402.03300", "base_model:Qwen/Qwen2-7B-Instruct", "base_model:finetune:Qwen/Qwen2-7B-Instruct", "endpoints_compatible", "region:us" ]
null
2025-04-28T16:00:12Z
--- base_model: Qwen/Qwen2-7B-Instruct datasets: AI-MO/NuminaMath-TIR library_name: transformers model_name: Qwen2-7B-Instruct-GRPO-4 tags: - generated_from_trainer - trl - grpo licence: license --- # Model Card for Qwen2-7B-Instruct-GRPO-4 This model is a fine-tuned version of [Qwen/Qwen2-7B-Instruct](https://huggingface.co/Qwen/Qwen2-7B-Instruct) on the [AI-MO/NuminaMath-TIR](https://huggingface.co/datasets/AI-MO/NuminaMath-TIR) dataset. It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="hhdqirui/Qwen2-7B-Instruct-GRPO-4", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure This model was trained with GRPO, a method introduced in [DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models](https://huggingface.co/papers/2402.03300). ### Framework versions - TRL: 0.17.0 - Transformers: 4.47.1 - Pytorch: 2.6.0+cu124 - Datasets: 3.2.0 - Tokenizers: 0.21.1 ## Citations Cite GRPO as: ```bibtex @article{zhihong2024deepseekmath, title = {{DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models}}, author = {Zhihong Shao and Peiyi Wang and Qihao Zhu and Runxin Xu and Junxiao Song and Mingchuan Zhang and Y. K. Li and Y. Wu and Daya Guo}, year = 2024, eprint = {arXiv:2402.03300}, } ``` Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallou{\'e}dec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
asuraloriken24/Alpha-X
asuraloriken24
2025-04-29T18:04:20Z
0
0
null
[ "LLM-Server", "en", "license:llama3.2", "region:us" ]
null
2025-04-27T23:29:33Z
--- license: llama3.2 language: - en tags: - LLM-Server ---
RichardErkhov/RyanYr_-_reflect_mini8B_Om2SftT1-Om2IpsdpG8kIpsdpIter1T1_b0.1-gguf
RichardErkhov
2025-04-29T18:03:50Z
0
0
null
[ "gguf", "arxiv:2305.18290", "endpoints_compatible", "region:us", "conversational" ]
null
2025-04-29T09:27:12Z
Quantization made by Richard Erkhov. [Github](https://github.com/RichardErkhov) [Discord](https://discord.gg/pvy7H8DZMG) [Request more models](https://github.com/RichardErkhov/quant_request) reflect_mini8B_Om2SftT1-Om2IpsdpG8kIpsdpIter1T1_b0.1 - GGUF - Model creator: https://huggingface.co/RyanYr/ - Original model: https://huggingface.co/RyanYr/reflect_mini8B_Om2SftT1-Om2IpsdpG8kIpsdpIter1T1_b0.1/ | Name | Quant method | Size | | ---- | ---- | ---- | | [reflect_mini8B_Om2SftT1-Om2IpsdpG8kIpsdpIter1T1_b0.1.Q2_K.gguf](https://huggingface.co/RichardErkhov/RyanYr_-_reflect_mini8B_Om2SftT1-Om2IpsdpG8kIpsdpIter1T1_b0.1-gguf/blob/main/reflect_mini8B_Om2SftT1-Om2IpsdpG8kIpsdpIter1T1_b0.1.Q2_K.gguf) | Q2_K | 2.97GB | | [reflect_mini8B_Om2SftT1-Om2IpsdpG8kIpsdpIter1T1_b0.1.IQ3_XS.gguf](https://huggingface.co/RichardErkhov/RyanYr_-_reflect_mini8B_Om2SftT1-Om2IpsdpG8kIpsdpIter1T1_b0.1-gguf/blob/main/reflect_mini8B_Om2SftT1-Om2IpsdpG8kIpsdpIter1T1_b0.1.IQ3_XS.gguf) | IQ3_XS | 3.28GB | | [reflect_mini8B_Om2SftT1-Om2IpsdpG8kIpsdpIter1T1_b0.1.IQ3_S.gguf](https://huggingface.co/RichardErkhov/RyanYr_-_reflect_mini8B_Om2SftT1-Om2IpsdpG8kIpsdpIter1T1_b0.1-gguf/blob/main/reflect_mini8B_Om2SftT1-Om2IpsdpG8kIpsdpIter1T1_b0.1.IQ3_S.gguf) | IQ3_S | 3.43GB | | [reflect_mini8B_Om2SftT1-Om2IpsdpG8kIpsdpIter1T1_b0.1.Q3_K_S.gguf](https://huggingface.co/RichardErkhov/RyanYr_-_reflect_mini8B_Om2SftT1-Om2IpsdpG8kIpsdpIter1T1_b0.1-gguf/blob/main/reflect_mini8B_Om2SftT1-Om2IpsdpG8kIpsdpIter1T1_b0.1.Q3_K_S.gguf) | Q3_K_S | 3.41GB | | [reflect_mini8B_Om2SftT1-Om2IpsdpG8kIpsdpIter1T1_b0.1.IQ3_M.gguf](https://huggingface.co/RichardErkhov/RyanYr_-_reflect_mini8B_Om2SftT1-Om2IpsdpG8kIpsdpIter1T1_b0.1-gguf/blob/main/reflect_mini8B_Om2SftT1-Om2IpsdpG8kIpsdpIter1T1_b0.1.IQ3_M.gguf) | IQ3_M | 3.53GB | | [reflect_mini8B_Om2SftT1-Om2IpsdpG8kIpsdpIter1T1_b0.1.Q3_K.gguf](https://huggingface.co/RichardErkhov/RyanYr_-_reflect_mini8B_Om2SftT1-Om2IpsdpG8kIpsdpIter1T1_b0.1-gguf/blob/main/reflect_mini8B_Om2SftT1-Om2IpsdpG8kIpsdpIter1T1_b0.1.Q3_K.gguf) | Q3_K | 3.74GB | | [reflect_mini8B_Om2SftT1-Om2IpsdpG8kIpsdpIter1T1_b0.1.Q3_K_M.gguf](https://huggingface.co/RichardErkhov/RyanYr_-_reflect_mini8B_Om2SftT1-Om2IpsdpG8kIpsdpIter1T1_b0.1-gguf/blob/main/reflect_mini8B_Om2SftT1-Om2IpsdpG8kIpsdpIter1T1_b0.1.Q3_K_M.gguf) | Q3_K_M | 3.74GB | | [reflect_mini8B_Om2SftT1-Om2IpsdpG8kIpsdpIter1T1_b0.1.Q3_K_L.gguf](https://huggingface.co/RichardErkhov/RyanYr_-_reflect_mini8B_Om2SftT1-Om2IpsdpG8kIpsdpIter1T1_b0.1-gguf/blob/main/reflect_mini8B_Om2SftT1-Om2IpsdpG8kIpsdpIter1T1_b0.1.Q3_K_L.gguf) | Q3_K_L | 4.03GB | | [reflect_mini8B_Om2SftT1-Om2IpsdpG8kIpsdpIter1T1_b0.1.IQ4_XS.gguf](https://huggingface.co/RichardErkhov/RyanYr_-_reflect_mini8B_Om2SftT1-Om2IpsdpG8kIpsdpIter1T1_b0.1-gguf/blob/main/reflect_mini8B_Om2SftT1-Om2IpsdpG8kIpsdpIter1T1_b0.1.IQ4_XS.gguf) | IQ4_XS | 4.17GB | | [reflect_mini8B_Om2SftT1-Om2IpsdpG8kIpsdpIter1T1_b0.1.Q4_0.gguf](https://huggingface.co/RichardErkhov/RyanYr_-_reflect_mini8B_Om2SftT1-Om2IpsdpG8kIpsdpIter1T1_b0.1-gguf/blob/main/reflect_mini8B_Om2SftT1-Om2IpsdpG8kIpsdpIter1T1_b0.1.Q4_0.gguf) | Q4_0 | 4.34GB | | [reflect_mini8B_Om2SftT1-Om2IpsdpG8kIpsdpIter1T1_b0.1.IQ4_NL.gguf](https://huggingface.co/RichardErkhov/RyanYr_-_reflect_mini8B_Om2SftT1-Om2IpsdpG8kIpsdpIter1T1_b0.1-gguf/blob/main/reflect_mini8B_Om2SftT1-Om2IpsdpG8kIpsdpIter1T1_b0.1.IQ4_NL.gguf) | IQ4_NL | 4.38GB | | [reflect_mini8B_Om2SftT1-Om2IpsdpG8kIpsdpIter1T1_b0.1.Q4_K_S.gguf](https://huggingface.co/RichardErkhov/RyanYr_-_reflect_mini8B_Om2SftT1-Om2IpsdpG8kIpsdpIter1T1_b0.1-gguf/blob/main/reflect_mini8B_Om2SftT1-Om2IpsdpG8kIpsdpIter1T1_b0.1.Q4_K_S.gguf) | Q4_K_S | 4.36GB | | [reflect_mini8B_Om2SftT1-Om2IpsdpG8kIpsdpIter1T1_b0.1.Q4_K.gguf](https://huggingface.co/RichardErkhov/RyanYr_-_reflect_mini8B_Om2SftT1-Om2IpsdpG8kIpsdpIter1T1_b0.1-gguf/blob/main/reflect_mini8B_Om2SftT1-Om2IpsdpG8kIpsdpIter1T1_b0.1.Q4_K.gguf) | Q4_K | 4.57GB | | [reflect_mini8B_Om2SftT1-Om2IpsdpG8kIpsdpIter1T1_b0.1.Q4_K_M.gguf](https://huggingface.co/RichardErkhov/RyanYr_-_reflect_mini8B_Om2SftT1-Om2IpsdpG8kIpsdpIter1T1_b0.1-gguf/blob/main/reflect_mini8B_Om2SftT1-Om2IpsdpG8kIpsdpIter1T1_b0.1.Q4_K_M.gguf) | Q4_K_M | 4.57GB | | [reflect_mini8B_Om2SftT1-Om2IpsdpG8kIpsdpIter1T1_b0.1.Q4_1.gguf](https://huggingface.co/RichardErkhov/RyanYr_-_reflect_mini8B_Om2SftT1-Om2IpsdpG8kIpsdpIter1T1_b0.1-gguf/blob/main/reflect_mini8B_Om2SftT1-Om2IpsdpG8kIpsdpIter1T1_b0.1.Q4_1.gguf) | Q4_1 | 4.77GB | | [reflect_mini8B_Om2SftT1-Om2IpsdpG8kIpsdpIter1T1_b0.1.Q5_0.gguf](https://huggingface.co/RichardErkhov/RyanYr_-_reflect_mini8B_Om2SftT1-Om2IpsdpG8kIpsdpIter1T1_b0.1-gguf/blob/main/reflect_mini8B_Om2SftT1-Om2IpsdpG8kIpsdpIter1T1_b0.1.Q5_0.gguf) | Q5_0 | 5.21GB | | [reflect_mini8B_Om2SftT1-Om2IpsdpG8kIpsdpIter1T1_b0.1.Q5_K_S.gguf](https://huggingface.co/RichardErkhov/RyanYr_-_reflect_mini8B_Om2SftT1-Om2IpsdpG8kIpsdpIter1T1_b0.1-gguf/blob/main/reflect_mini8B_Om2SftT1-Om2IpsdpG8kIpsdpIter1T1_b0.1.Q5_K_S.gguf) | Q5_K_S | 5.21GB | | [reflect_mini8B_Om2SftT1-Om2IpsdpG8kIpsdpIter1T1_b0.1.Q5_K.gguf](https://huggingface.co/RichardErkhov/RyanYr_-_reflect_mini8B_Om2SftT1-Om2IpsdpG8kIpsdpIter1T1_b0.1-gguf/blob/main/reflect_mini8B_Om2SftT1-Om2IpsdpG8kIpsdpIter1T1_b0.1.Q5_K.gguf) | Q5_K | 5.33GB | | [reflect_mini8B_Om2SftT1-Om2IpsdpG8kIpsdpIter1T1_b0.1.Q5_K_M.gguf](https://huggingface.co/RichardErkhov/RyanYr_-_reflect_mini8B_Om2SftT1-Om2IpsdpG8kIpsdpIter1T1_b0.1-gguf/blob/main/reflect_mini8B_Om2SftT1-Om2IpsdpG8kIpsdpIter1T1_b0.1.Q5_K_M.gguf) | Q5_K_M | 5.33GB | | [reflect_mini8B_Om2SftT1-Om2IpsdpG8kIpsdpIter1T1_b0.1.Q5_1.gguf](https://huggingface.co/RichardErkhov/RyanYr_-_reflect_mini8B_Om2SftT1-Om2IpsdpG8kIpsdpIter1T1_b0.1-gguf/blob/main/reflect_mini8B_Om2SftT1-Om2IpsdpG8kIpsdpIter1T1_b0.1.Q5_1.gguf) | Q5_1 | 5.65GB | | [reflect_mini8B_Om2SftT1-Om2IpsdpG8kIpsdpIter1T1_b0.1.Q6_K.gguf](https://huggingface.co/RichardErkhov/RyanYr_-_reflect_mini8B_Om2SftT1-Om2IpsdpG8kIpsdpIter1T1_b0.1-gguf/blob/main/reflect_mini8B_Om2SftT1-Om2IpsdpG8kIpsdpIter1T1_b0.1.Q6_K.gguf) | Q6_K | 6.14GB | | [reflect_mini8B_Om2SftT1-Om2IpsdpG8kIpsdpIter1T1_b0.1.Q8_0.gguf](https://huggingface.co/RichardErkhov/RyanYr_-_reflect_mini8B_Om2SftT1-Om2IpsdpG8kIpsdpIter1T1_b0.1-gguf/blob/main/reflect_mini8B_Om2SftT1-Om2IpsdpG8kIpsdpIter1T1_b0.1.Q8_0.gguf) | Q8_0 | 7.94GB | Original model description: --- base_model: RyanYr/reflect_mini8B_Om2SftT1-Om2IpsdpIter1T1_b0.5 library_name: transformers model_name: reflect_mini8B_Om2SftT1-Om2IpsdpG8kIpsdpIter1T1_b0.1 tags: - generated_from_trainer - trl - dpo licence: license --- # Model Card for reflect_mini8B_Om2SftT1-Om2IpsdpG8kIpsdpIter1T1_b0.1 This model is a fine-tuned version of [RyanYr/reflect_mini8B_Om2SftT1-Om2IpsdpIter1T1_b0.5](https://huggingface.co/RyanYr/reflect_mini8B_Om2SftT1-Om2IpsdpIter1T1_b0.5). It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="RyanYr/reflect_mini8B_Om2SftT1-Om2IpsdpG8kIpsdpIter1T1_b0.1", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure [<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="150" height="24"/>](https://wandb.ai/yyr/huggingface/runs/b4ok9wqk) This model was trained with DPO, a method introduced in [Direct Preference Optimization: Your Language Model is Secretly a Reward Model](https://huggingface.co/papers/2305.18290). ### Framework versions - TRL: 0.12.0.dev0 - Transformers: 4.45.2 - Pytorch: 2.5.1 - Datasets: 3.1.0 - Tokenizers: 0.20.3 ## Citations Cite DPO as: ```bibtex @inproceedings{rafailov2023direct, title = {{Direct Preference Optimization: Your Language Model is Secretly a Reward Model}}, author = {Rafael Rafailov and Archit Sharma and Eric Mitchell and Christopher D. Manning and Stefano Ermon and Chelsea Finn}, year = 2023, booktitle = {Advances in Neural Information Processing Systems 36: Annual Conference on Neural Information Processing Systems 2023, NeurIPS 2023, New Orleans, LA, USA, December 10 - 16, 2023}, url = {http://papers.nips.cc/paper_files/paper/2023/hash/a85b405ed65c6477a4fe8302b5e06ce7-Abstract-Conference.html}, editor = {Alice Oh and Tristan Naumann and Amir Globerson and Kate Saenko and Moritz Hardt and Sergey Levine}, } ``` Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallouédec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
mradermacher/Qwen3-1.7B-Base-GGUF
mradermacher
2025-04-29T18:02:39Z
0
0
transformers
[ "transformers", "gguf", "en", "base_model:Qwen/Qwen3-1.7B-Base", "base_model:quantized:Qwen/Qwen3-1.7B-Base", "license:apache-2.0", "endpoints_compatible", "region:us", "conversational" ]
null
2025-04-29T15:12:39Z
--- base_model: Qwen/Qwen3-1.7B-Base language: - en library_name: transformers license: apache-2.0 quantized_by: mradermacher --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: --> static quants of https://huggingface.co/Qwen/Qwen3-1.7B-Base <!-- provided-files --> weighted/imatrix quants are available at https://huggingface.co/mradermacher/Qwen3-1.7B-Base-i1-GGUF ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/Qwen3-1.7B-Base-GGUF/resolve/main/Qwen3-1.7B-Base.Q2_K.gguf) | Q2_K | 0.9 | | | [GGUF](https://huggingface.co/mradermacher/Qwen3-1.7B-Base-GGUF/resolve/main/Qwen3-1.7B-Base.Q3_K_S.gguf) | Q3_K_S | 1.0 | | | [GGUF](https://huggingface.co/mradermacher/Qwen3-1.7B-Base-GGUF/resolve/main/Qwen3-1.7B-Base.Q3_K_M.gguf) | Q3_K_M | 1.0 | lower quality | | [GGUF](https://huggingface.co/mradermacher/Qwen3-1.7B-Base-GGUF/resolve/main/Qwen3-1.7B-Base.Q3_K_L.gguf) | Q3_K_L | 1.1 | | | [GGUF](https://huggingface.co/mradermacher/Qwen3-1.7B-Base-GGUF/resolve/main/Qwen3-1.7B-Base.IQ4_XS.gguf) | IQ4_XS | 1.1 | | | [GGUF](https://huggingface.co/mradermacher/Qwen3-1.7B-Base-GGUF/resolve/main/Qwen3-1.7B-Base.Q4_K_S.gguf) | Q4_K_S | 1.2 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Qwen3-1.7B-Base-GGUF/resolve/main/Qwen3-1.7B-Base.Q4_K_M.gguf) | Q4_K_M | 1.2 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Qwen3-1.7B-Base-GGUF/resolve/main/Qwen3-1.7B-Base.Q5_K_S.gguf) | Q5_K_S | 1.3 | | | [GGUF](https://huggingface.co/mradermacher/Qwen3-1.7B-Base-GGUF/resolve/main/Qwen3-1.7B-Base.Q5_K_M.gguf) | Q5_K_M | 1.4 | | | [GGUF](https://huggingface.co/mradermacher/Qwen3-1.7B-Base-GGUF/resolve/main/Qwen3-1.7B-Base.Q6_K.gguf) | Q6_K | 1.5 | very good quality | | [GGUF](https://huggingface.co/mradermacher/Qwen3-1.7B-Base-GGUF/resolve/main/Qwen3-1.7B-Base.Q8_0.gguf) | Q8_0 | 1.9 | fast, best quality | | [GGUF](https://huggingface.co/mradermacher/Qwen3-1.7B-Base-GGUF/resolve/main/Qwen3-1.7B-Base.f16.gguf) | f16 | 3.5 | 16 bpw, overkill | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. <!-- end -->
mluger/vitFaceExpression-MLPHead
mluger
2025-04-29T18:01:16Z
0
0
transformers
[ "transformers", "tensorboard", "safetensors", "generated_from_trainer", "dataset:imagefolder", "base_model:google/vit-base-patch16-224-in21k", "base_model:finetune:google/vit-base-patch16-224-in21k", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2025-04-29T09:45:26Z
--- library_name: transformers license: apache-2.0 base_model: google/vit-base-patch16-224-in21k tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: vitFaceExpression-MLPHead results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # vitFaceExpression-MLPHead This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.8962 - Accuracy: 0.6854 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - num_epochs: 8 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.3015 | 1.0 | 673 | 1.0408 | 0.6188 | | 0.995 | 2.0 | 1346 | 0.9245 | 0.6616 | | 0.8021 | 3.0 | 2019 | 0.8930 | 0.6702 | | 0.6967 | 4.0 | 2692 | 0.8718 | 0.6789 | | 0.6283 | 5.0 | 3365 | 0.8813 | 0.6814 | | 0.4952 | 6.0 | 4038 | 0.8812 | 0.6881 | | 0.4403 | 7.0 | 4711 | 0.8961 | 0.6838 | | 0.412 | 8.0 | 5384 | 0.8962 | 0.6854 | ### Framework versions - Transformers 4.51.3 - Pytorch 2.6.0+cu124 - Datasets 3.5.1 - Tokenizers 0.21.1
ijterror/AshGreFluxLora
ijterror
2025-04-29T17:58:33Z
0
0
diffusers
[ "diffusers", "text-to-image", "flux", "lora", "template:sd-lora", "fluxgym", "base_model:black-forest-labs/FLUX.1-dev", "base_model:adapter:black-forest-labs/FLUX.1-dev", "license:other", "region:us" ]
text-to-image
2025-04-29T15:41:31Z
--- tags: - text-to-image - flux - lora - diffusers - template:sd-lora - fluxgym base_model: black-forest-labs/FLUX.1-dev instance_prompt: shlygrn license: other license_name: flux-1-dev-non-commercial-license license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md --- # Ashley Greene Lora A Flux LoRA trained on a local computer with [Fluxgym](https://github.com/cocktailpeanut/fluxgym) <Gallery /> ## Trigger words You should use `shlygrn` to trigger the image generation. ## Download model and use it with ComfyUI, AUTOMATIC1111, SD.Next, Invoke AI, Forge, etc. Weights for this model are available in Safetensors format.
faraya1/genie-grpo-test-API-qwen3B-lora-step-900
faraya1
2025-04-29T17:57:51Z
0
0
transformers
[ "transformers", "safetensors", "unsloth", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2025-04-29T17:57:42Z
--- library_name: transformers tags: - unsloth --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
mradermacher/Qwen3-14B-Base-i1-GGUF
mradermacher
2025-04-29T17:57:35Z
0
0
transformers
[ "transformers", "gguf", "en", "base_model:Qwen/Qwen3-14B-Base", "base_model:quantized:Qwen/Qwen3-14B-Base", "license:apache-2.0", "endpoints_compatible", "region:us", "imatrix", "conversational" ]
null
2025-04-29T15:48:02Z
--- base_model: Qwen/Qwen3-14B-Base language: - en library_name: transformers license: apache-2.0 quantized_by: mradermacher --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: nicoboss --> weighted/imatrix quants of https://huggingface.co/Qwen/Qwen3-14B-Base <!-- provided-files --> static quants are available at https://huggingface.co/mradermacher/Qwen3-14B-Base-GGUF ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/Qwen3-14B-Base-i1-GGUF/resolve/main/Qwen3-14B-Base.i1-IQ1_S.gguf) | i1-IQ1_S | 3.7 | for the desperate | | [GGUF](https://huggingface.co/mradermacher/Qwen3-14B-Base-i1-GGUF/resolve/main/Qwen3-14B-Base.i1-IQ1_M.gguf) | i1-IQ1_M | 3.9 | mostly desperate | | [GGUF](https://huggingface.co/mradermacher/Qwen3-14B-Base-i1-GGUF/resolve/main/Qwen3-14B-Base.i1-IQ2_XXS.gguf) | i1-IQ2_XXS | 4.4 | | | [GGUF](https://huggingface.co/mradermacher/Qwen3-14B-Base-i1-GGUF/resolve/main/Qwen3-14B-Base.i1-IQ2_XS.gguf) | i1-IQ2_XS | 4.8 | | | [GGUF](https://huggingface.co/mradermacher/Qwen3-14B-Base-i1-GGUF/resolve/main/Qwen3-14B-Base.i1-IQ2_S.gguf) | i1-IQ2_S | 5.1 | | | [GGUF](https://huggingface.co/mradermacher/Qwen3-14B-Base-i1-GGUF/resolve/main/Qwen3-14B-Base.i1-IQ2_M.gguf) | i1-IQ2_M | 5.4 | | | [GGUF](https://huggingface.co/mradermacher/Qwen3-14B-Base-i1-GGUF/resolve/main/Qwen3-14B-Base.i1-Q2_K_S.gguf) | i1-Q2_K_S | 5.5 | very low quality | | [GGUF](https://huggingface.co/mradermacher/Qwen3-14B-Base-i1-GGUF/resolve/main/Qwen3-14B-Base.i1-Q2_K.gguf) | i1-Q2_K | 5.9 | IQ3_XXS probably better | | [GGUF](https://huggingface.co/mradermacher/Qwen3-14B-Base-i1-GGUF/resolve/main/Qwen3-14B-Base.i1-IQ3_XXS.gguf) | i1-IQ3_XXS | 6.0 | lower quality | | [GGUF](https://huggingface.co/mradermacher/Qwen3-14B-Base-i1-GGUF/resolve/main/Qwen3-14B-Base.i1-IQ3_XS.gguf) | i1-IQ3_XS | 6.5 | | | [GGUF](https://huggingface.co/mradermacher/Qwen3-14B-Base-i1-GGUF/resolve/main/Qwen3-14B-Base.i1-Q3_K_S.gguf) | i1-Q3_K_S | 6.8 | IQ3_XS probably better | | [GGUF](https://huggingface.co/mradermacher/Qwen3-14B-Base-i1-GGUF/resolve/main/Qwen3-14B-Base.i1-IQ3_S.gguf) | i1-IQ3_S | 6.8 | beats Q3_K* | | [GGUF](https://huggingface.co/mradermacher/Qwen3-14B-Base-i1-GGUF/resolve/main/Qwen3-14B-Base.i1-IQ3_M.gguf) | i1-IQ3_M | 7.0 | | | [GGUF](https://huggingface.co/mradermacher/Qwen3-14B-Base-i1-GGUF/resolve/main/Qwen3-14B-Base.i1-Q3_K_M.gguf) | i1-Q3_K_M | 7.4 | IQ3_S probably better | | [GGUF](https://huggingface.co/mradermacher/Qwen3-14B-Base-i1-GGUF/resolve/main/Qwen3-14B-Base.i1-Q3_K_L.gguf) | i1-Q3_K_L | 8.0 | IQ3_M probably better | | [GGUF](https://huggingface.co/mradermacher/Qwen3-14B-Base-i1-GGUF/resolve/main/Qwen3-14B-Base.i1-IQ4_XS.gguf) | i1-IQ4_XS | 8.2 | | | [GGUF](https://huggingface.co/mradermacher/Qwen3-14B-Base-i1-GGUF/resolve/main/Qwen3-14B-Base.i1-IQ4_NL.gguf) | i1-IQ4_NL | 8.6 | prefer IQ4_XS | | [GGUF](https://huggingface.co/mradermacher/Qwen3-14B-Base-i1-GGUF/resolve/main/Qwen3-14B-Base.i1-Q4_0.gguf) | i1-Q4_0 | 8.6 | fast, low quality | | [GGUF](https://huggingface.co/mradermacher/Qwen3-14B-Base-i1-GGUF/resolve/main/Qwen3-14B-Base.i1-Q4_K_S.gguf) | i1-Q4_K_S | 8.7 | optimal size/speed/quality | | [GGUF](https://huggingface.co/mradermacher/Qwen3-14B-Base-i1-GGUF/resolve/main/Qwen3-14B-Base.i1-Q4_K_M.gguf) | i1-Q4_K_M | 9.1 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Qwen3-14B-Base-i1-GGUF/resolve/main/Qwen3-14B-Base.i1-Q4_1.gguf) | i1-Q4_1 | 9.5 | | | [GGUF](https://huggingface.co/mradermacher/Qwen3-14B-Base-i1-GGUF/resolve/main/Qwen3-14B-Base.i1-Q5_K_S.gguf) | i1-Q5_K_S | 10.4 | | | [GGUF](https://huggingface.co/mradermacher/Qwen3-14B-Base-i1-GGUF/resolve/main/Qwen3-14B-Base.i1-Q5_K_M.gguf) | i1-Q5_K_M | 10.6 | | | [GGUF](https://huggingface.co/mradermacher/Qwen3-14B-Base-i1-GGUF/resolve/main/Qwen3-14B-Base.i1-Q6_K.gguf) | i1-Q6_K | 12.2 | practically like static Q6_K | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. Additional thanks to [@nicoboss](https://huggingface.co/nicoboss) for giving me access to his private supercomputer, enabling me to provide many more imatrix quants, at much higher quality, than I would otherwise be able to. <!-- end -->
dgambettaphd/M_llm2_gen3_run0_W_doc1000_synt64_tot128_lr5em5_SYNLAST
dgambettaphd
2025-04-29T17:57:30Z
0
0
transformers
[ "transformers", "safetensors", "unsloth", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2025-04-29T17:57:13Z
--- library_name: transformers tags: - unsloth --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
RichardErkhov/RyanYr_-_reflect_mini8B_Om2SftT1-Om2G8kOm2Ag40kIpsdpIter1T1_b0.5-gguf
RichardErkhov
2025-04-29T17:57:05Z
0
0
null
[ "gguf", "arxiv:2305.18290", "endpoints_compatible", "region:us", "conversational" ]
null
2025-04-29T09:30:31Z
Quantization made by Richard Erkhov. [Github](https://github.com/RichardErkhov) [Discord](https://discord.gg/pvy7H8DZMG) [Request more models](https://github.com/RichardErkhov/quant_request) reflect_mini8B_Om2SftT1-Om2G8kOm2Ag40kIpsdpIter1T1_b0.5 - GGUF - Model creator: https://huggingface.co/RyanYr/ - Original model: https://huggingface.co/RyanYr/reflect_mini8B_Om2SftT1-Om2G8kOm2Ag40kIpsdpIter1T1_b0.5/ | Name | Quant method | Size | | ---- | ---- | ---- | | [reflect_mini8B_Om2SftT1-Om2G8kOm2Ag40kIpsdpIter1T1_b0.5.Q2_K.gguf](https://huggingface.co/RichardErkhov/RyanYr_-_reflect_mini8B_Om2SftT1-Om2G8kOm2Ag40kIpsdpIter1T1_b0.5-gguf/blob/main/reflect_mini8B_Om2SftT1-Om2G8kOm2Ag40kIpsdpIter1T1_b0.5.Q2_K.gguf) | Q2_K | 2.97GB | | [reflect_mini8B_Om2SftT1-Om2G8kOm2Ag40kIpsdpIter1T1_b0.5.IQ3_XS.gguf](https://huggingface.co/RichardErkhov/RyanYr_-_reflect_mini8B_Om2SftT1-Om2G8kOm2Ag40kIpsdpIter1T1_b0.5-gguf/blob/main/reflect_mini8B_Om2SftT1-Om2G8kOm2Ag40kIpsdpIter1T1_b0.5.IQ3_XS.gguf) | IQ3_XS | 3.28GB | | [reflect_mini8B_Om2SftT1-Om2G8kOm2Ag40kIpsdpIter1T1_b0.5.IQ3_S.gguf](https://huggingface.co/RichardErkhov/RyanYr_-_reflect_mini8B_Om2SftT1-Om2G8kOm2Ag40kIpsdpIter1T1_b0.5-gguf/blob/main/reflect_mini8B_Om2SftT1-Om2G8kOm2Ag40kIpsdpIter1T1_b0.5.IQ3_S.gguf) | IQ3_S | 3.43GB | | [reflect_mini8B_Om2SftT1-Om2G8kOm2Ag40kIpsdpIter1T1_b0.5.Q3_K_S.gguf](https://huggingface.co/RichardErkhov/RyanYr_-_reflect_mini8B_Om2SftT1-Om2G8kOm2Ag40kIpsdpIter1T1_b0.5-gguf/blob/main/reflect_mini8B_Om2SftT1-Om2G8kOm2Ag40kIpsdpIter1T1_b0.5.Q3_K_S.gguf) | Q3_K_S | 3.41GB | | [reflect_mini8B_Om2SftT1-Om2G8kOm2Ag40kIpsdpIter1T1_b0.5.IQ3_M.gguf](https://huggingface.co/RichardErkhov/RyanYr_-_reflect_mini8B_Om2SftT1-Om2G8kOm2Ag40kIpsdpIter1T1_b0.5-gguf/blob/main/reflect_mini8B_Om2SftT1-Om2G8kOm2Ag40kIpsdpIter1T1_b0.5.IQ3_M.gguf) | IQ3_M | 3.53GB | | [reflect_mini8B_Om2SftT1-Om2G8kOm2Ag40kIpsdpIter1T1_b0.5.Q3_K.gguf](https://huggingface.co/RichardErkhov/RyanYr_-_reflect_mini8B_Om2SftT1-Om2G8kOm2Ag40kIpsdpIter1T1_b0.5-gguf/blob/main/reflect_mini8B_Om2SftT1-Om2G8kOm2Ag40kIpsdpIter1T1_b0.5.Q3_K.gguf) | Q3_K | 3.74GB | | [reflect_mini8B_Om2SftT1-Om2G8kOm2Ag40kIpsdpIter1T1_b0.5.Q3_K_M.gguf](https://huggingface.co/RichardErkhov/RyanYr_-_reflect_mini8B_Om2SftT1-Om2G8kOm2Ag40kIpsdpIter1T1_b0.5-gguf/blob/main/reflect_mini8B_Om2SftT1-Om2G8kOm2Ag40kIpsdpIter1T1_b0.5.Q3_K_M.gguf) | Q3_K_M | 3.74GB | | [reflect_mini8B_Om2SftT1-Om2G8kOm2Ag40kIpsdpIter1T1_b0.5.Q3_K_L.gguf](https://huggingface.co/RichardErkhov/RyanYr_-_reflect_mini8B_Om2SftT1-Om2G8kOm2Ag40kIpsdpIter1T1_b0.5-gguf/blob/main/reflect_mini8B_Om2SftT1-Om2G8kOm2Ag40kIpsdpIter1T1_b0.5.Q3_K_L.gguf) | Q3_K_L | 4.03GB | | [reflect_mini8B_Om2SftT1-Om2G8kOm2Ag40kIpsdpIter1T1_b0.5.IQ4_XS.gguf](https://huggingface.co/RichardErkhov/RyanYr_-_reflect_mini8B_Om2SftT1-Om2G8kOm2Ag40kIpsdpIter1T1_b0.5-gguf/blob/main/reflect_mini8B_Om2SftT1-Om2G8kOm2Ag40kIpsdpIter1T1_b0.5.IQ4_XS.gguf) | IQ4_XS | 4.17GB | | [reflect_mini8B_Om2SftT1-Om2G8kOm2Ag40kIpsdpIter1T1_b0.5.Q4_0.gguf](https://huggingface.co/RichardErkhov/RyanYr_-_reflect_mini8B_Om2SftT1-Om2G8kOm2Ag40kIpsdpIter1T1_b0.5-gguf/blob/main/reflect_mini8B_Om2SftT1-Om2G8kOm2Ag40kIpsdpIter1T1_b0.5.Q4_0.gguf) | Q4_0 | 4.34GB | | [reflect_mini8B_Om2SftT1-Om2G8kOm2Ag40kIpsdpIter1T1_b0.5.IQ4_NL.gguf](https://huggingface.co/RichardErkhov/RyanYr_-_reflect_mini8B_Om2SftT1-Om2G8kOm2Ag40kIpsdpIter1T1_b0.5-gguf/blob/main/reflect_mini8B_Om2SftT1-Om2G8kOm2Ag40kIpsdpIter1T1_b0.5.IQ4_NL.gguf) | IQ4_NL | 4.38GB | | [reflect_mini8B_Om2SftT1-Om2G8kOm2Ag40kIpsdpIter1T1_b0.5.Q4_K_S.gguf](https://huggingface.co/RichardErkhov/RyanYr_-_reflect_mini8B_Om2SftT1-Om2G8kOm2Ag40kIpsdpIter1T1_b0.5-gguf/blob/main/reflect_mini8B_Om2SftT1-Om2G8kOm2Ag40kIpsdpIter1T1_b0.5.Q4_K_S.gguf) | Q4_K_S | 4.36GB | | [reflect_mini8B_Om2SftT1-Om2G8kOm2Ag40kIpsdpIter1T1_b0.5.Q4_K.gguf](https://huggingface.co/RichardErkhov/RyanYr_-_reflect_mini8B_Om2SftT1-Om2G8kOm2Ag40kIpsdpIter1T1_b0.5-gguf/blob/main/reflect_mini8B_Om2SftT1-Om2G8kOm2Ag40kIpsdpIter1T1_b0.5.Q4_K.gguf) | Q4_K | 4.57GB | | [reflect_mini8B_Om2SftT1-Om2G8kOm2Ag40kIpsdpIter1T1_b0.5.Q4_K_M.gguf](https://huggingface.co/RichardErkhov/RyanYr_-_reflect_mini8B_Om2SftT1-Om2G8kOm2Ag40kIpsdpIter1T1_b0.5-gguf/blob/main/reflect_mini8B_Om2SftT1-Om2G8kOm2Ag40kIpsdpIter1T1_b0.5.Q4_K_M.gguf) | Q4_K_M | 4.57GB | | [reflect_mini8B_Om2SftT1-Om2G8kOm2Ag40kIpsdpIter1T1_b0.5.Q4_1.gguf](https://huggingface.co/RichardErkhov/RyanYr_-_reflect_mini8B_Om2SftT1-Om2G8kOm2Ag40kIpsdpIter1T1_b0.5-gguf/blob/main/reflect_mini8B_Om2SftT1-Om2G8kOm2Ag40kIpsdpIter1T1_b0.5.Q4_1.gguf) | Q4_1 | 4.77GB | | [reflect_mini8B_Om2SftT1-Om2G8kOm2Ag40kIpsdpIter1T1_b0.5.Q5_0.gguf](https://huggingface.co/RichardErkhov/RyanYr_-_reflect_mini8B_Om2SftT1-Om2G8kOm2Ag40kIpsdpIter1T1_b0.5-gguf/blob/main/reflect_mini8B_Om2SftT1-Om2G8kOm2Ag40kIpsdpIter1T1_b0.5.Q5_0.gguf) | Q5_0 | 5.21GB | | [reflect_mini8B_Om2SftT1-Om2G8kOm2Ag40kIpsdpIter1T1_b0.5.Q5_K_S.gguf](https://huggingface.co/RichardErkhov/RyanYr_-_reflect_mini8B_Om2SftT1-Om2G8kOm2Ag40kIpsdpIter1T1_b0.5-gguf/blob/main/reflect_mini8B_Om2SftT1-Om2G8kOm2Ag40kIpsdpIter1T1_b0.5.Q5_K_S.gguf) | Q5_K_S | 5.21GB | | [reflect_mini8B_Om2SftT1-Om2G8kOm2Ag40kIpsdpIter1T1_b0.5.Q5_K.gguf](https://huggingface.co/RichardErkhov/RyanYr_-_reflect_mini8B_Om2SftT1-Om2G8kOm2Ag40kIpsdpIter1T1_b0.5-gguf/blob/main/reflect_mini8B_Om2SftT1-Om2G8kOm2Ag40kIpsdpIter1T1_b0.5.Q5_K.gguf) | Q5_K | 5.33GB | | [reflect_mini8B_Om2SftT1-Om2G8kOm2Ag40kIpsdpIter1T1_b0.5.Q5_K_M.gguf](https://huggingface.co/RichardErkhov/RyanYr_-_reflect_mini8B_Om2SftT1-Om2G8kOm2Ag40kIpsdpIter1T1_b0.5-gguf/blob/main/reflect_mini8B_Om2SftT1-Om2G8kOm2Ag40kIpsdpIter1T1_b0.5.Q5_K_M.gguf) | Q5_K_M | 5.33GB | | [reflect_mini8B_Om2SftT1-Om2G8kOm2Ag40kIpsdpIter1T1_b0.5.Q5_1.gguf](https://huggingface.co/RichardErkhov/RyanYr_-_reflect_mini8B_Om2SftT1-Om2G8kOm2Ag40kIpsdpIter1T1_b0.5-gguf/blob/main/reflect_mini8B_Om2SftT1-Om2G8kOm2Ag40kIpsdpIter1T1_b0.5.Q5_1.gguf) | Q5_1 | 5.65GB | | [reflect_mini8B_Om2SftT1-Om2G8kOm2Ag40kIpsdpIter1T1_b0.5.Q6_K.gguf](https://huggingface.co/RichardErkhov/RyanYr_-_reflect_mini8B_Om2SftT1-Om2G8kOm2Ag40kIpsdpIter1T1_b0.5-gguf/blob/main/reflect_mini8B_Om2SftT1-Om2G8kOm2Ag40kIpsdpIter1T1_b0.5.Q6_K.gguf) | Q6_K | 6.14GB | | [reflect_mini8B_Om2SftT1-Om2G8kOm2Ag40kIpsdpIter1T1_b0.5.Q8_0.gguf](https://huggingface.co/RichardErkhov/RyanYr_-_reflect_mini8B_Om2SftT1-Om2G8kOm2Ag40kIpsdpIter1T1_b0.5-gguf/blob/main/reflect_mini8B_Om2SftT1-Om2G8kOm2Ag40kIpsdpIter1T1_b0.5.Q8_0.gguf) | Q8_0 | 7.94GB | Original model description: --- base_model: RyanYr/reflect_mini8Bit_om2-460k_sft-t1 library_name: transformers model_name: reflect_mini8B_Om2SftT1-Om2G8kOm2Ag40kIpsdpIter1T1_b0.5 tags: - generated_from_trainer - trl - dpo licence: license --- # Model Card for reflect_mini8B_Om2SftT1-Om2G8kOm2Ag40kIpsdpIter1T1_b0.5 This model is a fine-tuned version of [RyanYr/reflect_mini8Bit_om2-460k_sft-t1](https://huggingface.co/RyanYr/reflect_mini8Bit_om2-460k_sft-t1). It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="RyanYr/reflect_mini8B_Om2SftT1-Om2G8kOm2Ag40kIpsdpIter1T1_b0.5", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure [<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="150" height="24"/>](https://wandb.ai/yyr/huggingface/runs/x18ez61x) This model was trained with DPO, a method introduced in [Direct Preference Optimization: Your Language Model is Secretly a Reward Model](https://huggingface.co/papers/2305.18290). ### Framework versions - TRL: 0.12.0.dev0 - Transformers: 4.45.2 - Pytorch: 2.5.1 - Datasets: 3.1.0 - Tokenizers: 0.20.3 ## Citations Cite DPO as: ```bibtex @inproceedings{rafailov2023direct, title = {{Direct Preference Optimization: Your Language Model is Secretly a Reward Model}}, author = {Rafael Rafailov and Archit Sharma and Eric Mitchell and Christopher D. Manning and Stefano Ermon and Chelsea Finn}, year = 2023, booktitle = {Advances in Neural Information Processing Systems 36: Annual Conference on Neural Information Processing Systems 2023, NeurIPS 2023, New Orleans, LA, USA, December 10 - 16, 2023}, url = {http://papers.nips.cc/paper_files/paper/2023/hash/a85b405ed65c6477a4fe8302b5e06ce7-Abstract-Conference.html}, editor = {Alice Oh and Tristan Naumann and Amir Globerson and Kate Saenko and Moritz Hardt and Sergey Levine}, } ``` Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallouédec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
annemiekebickleyoy/384e3def-3df6-40ed-a033-26b57627cd59
annemiekebickleyoy
2025-04-29T17:55:26Z
0
0
transformers
[ "transformers", "generated_from_trainer", "endpoints_compatible", "region:us" ]
null
2025-04-29T17:54:47Z
--- library_name: transformers model_name: annemiekebickleyoy/384e3def-3df6-40ed-a033-26b57627cd59 tags: - generated_from_trainer licence: license --- # Model Card for annemiekebickleyoy/384e3def-3df6-40ed-a033-26b57627cd59 This model is a fine-tuned version of [None](https://huggingface.co/None). It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="None", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ### Framework versions - TRL: 0.12.0 - Transformers: 4.46.3 - Pytorch: 2.5.1 - Datasets: 3.1.0 - Tokenizers: 0.20.3 ## Citations Cite DPO as: ```bibtex @inproceedings{rafailov2023direct, title = {{Direct Preference Optimization: Your Language Model is Secretly a Reward Model}}, author = {Rafael Rafailov and Archit Sharma and Eric Mitchell and Christopher D. Manning and Stefano Ermon and Chelsea Finn}, year = 2023, booktitle = {Advances in Neural Information Processing Systems 36: Annual Conference on Neural Information Processing Systems 2023, NeurIPS 2023, New Orleans, LA, USA, December 10 - 16, 2023}, url = {http://papers.nips.cc/paper_files/paper/2023/hash/a85b405ed65c6477a4fe8302b5e06ce7-Abstract-Conference.html}, editor = {Alice Oh and Tristan Naumann and Amir Globerson and Kate Saenko and Moritz Hardt and Sergey Levine}, } ``` Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallouédec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
mradermacher/Qwen3-14B-Base-GGUF
mradermacher
2025-04-29T17:52:39Z
0
0
transformers
[ "transformers", "gguf", "en", "base_model:Qwen/Qwen3-14B-Base", "base_model:quantized:Qwen/Qwen3-14B-Base", "license:apache-2.0", "endpoints_compatible", "region:us", "conversational" ]
null
2025-04-29T15:14:28Z
--- base_model: Qwen/Qwen3-14B-Base language: - en library_name: transformers license: apache-2.0 quantized_by: mradermacher --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: --> static quants of https://huggingface.co/Qwen/Qwen3-14B-Base <!-- provided-files --> weighted/imatrix quants are available at https://huggingface.co/mradermacher/Qwen3-14B-Base-i1-GGUF ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/Qwen3-14B-Base-GGUF/resolve/main/Qwen3-14B-Base.Q2_K.gguf) | Q2_K | 5.9 | | | [GGUF](https://huggingface.co/mradermacher/Qwen3-14B-Base-GGUF/resolve/main/Qwen3-14B-Base.Q3_K_S.gguf) | Q3_K_S | 6.8 | | | [GGUF](https://huggingface.co/mradermacher/Qwen3-14B-Base-GGUF/resolve/main/Qwen3-14B-Base.Q3_K_M.gguf) | Q3_K_M | 7.4 | lower quality | | [GGUF](https://huggingface.co/mradermacher/Qwen3-14B-Base-GGUF/resolve/main/Qwen3-14B-Base.Q3_K_L.gguf) | Q3_K_L | 8.0 | | | [GGUF](https://huggingface.co/mradermacher/Qwen3-14B-Base-GGUF/resolve/main/Qwen3-14B-Base.IQ4_XS.gguf) | IQ4_XS | 8.3 | | | [GGUF](https://huggingface.co/mradermacher/Qwen3-14B-Base-GGUF/resolve/main/Qwen3-14B-Base.Q4_K_S.gguf) | Q4_K_S | 8.7 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Qwen3-14B-Base-GGUF/resolve/main/Qwen3-14B-Base.Q4_K_M.gguf) | Q4_K_M | 9.1 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Qwen3-14B-Base-GGUF/resolve/main/Qwen3-14B-Base.Q5_K_S.gguf) | Q5_K_S | 10.4 | | | [GGUF](https://huggingface.co/mradermacher/Qwen3-14B-Base-GGUF/resolve/main/Qwen3-14B-Base.Q5_K_M.gguf) | Q5_K_M | 10.6 | | | [GGUF](https://huggingface.co/mradermacher/Qwen3-14B-Base-GGUF/resolve/main/Qwen3-14B-Base.Q6_K.gguf) | Q6_K | 12.2 | very good quality | | [GGUF](https://huggingface.co/mradermacher/Qwen3-14B-Base-GGUF/resolve/main/Qwen3-14B-Base.Q8_0.gguf) | Q8_0 | 15.8 | fast, best quality | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. <!-- end -->
vkublytskyi/q-FrozenLake-v1-4x4-noSlippery
vkublytskyi
2025-04-29T17:51:20Z
0
0
null
[ "FrozenLake-v1-4x4-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2025-04-29T17:51:17Z
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="vkublytskyi/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
PSG-Arsenal-Videos-Tv/DIRECT.VIDEOS.PSG.Arsenal.En.Direct.Streaming.Gratuit.Tv
PSG-Arsenal-Videos-Tv
2025-04-29T17:51:19Z
0
0
null
[ "region:us" ]
null
2025-04-29T17:40:49Z
⚽📺📱👉◄◄🔴 https://tinyurl.com/mtbv4nys ⚽📺📱👉◄◄🔴 https://tinyurl.com/mtbv4nys ⚽📺📱👉◄◄🔴 https://tinyurl.com/mtbv4nys DIRECT. Arsenal-PSG: suivez en live le match aller de la demi-finale de Ligue des champions Aujourd'hui à 07h52 - mis à jour aujourd'hui à 19h28 Achraf Hakimi au duel avec Mikel Merino lors du match Arsenal-PSG (2-0, Ligue des champions), le 1er Suivez en live la demi-finale aller de la Ligue des champions entre Arsenal et le PSG, ce mardi (21h). Battus en octobre par les Gunners, les Parisiens veulent frapper fort à Londres dans cette première manche très indécise.
RichardErkhov/RyanYr_-_reflect_mini8B_Om2SftT1-Om2G8kIpsdpIter1T1_b1.0-gguf
RichardErkhov
2025-04-29T17:50:04Z
2
0
null
[ "gguf", "arxiv:2305.18290", "endpoints_compatible", "region:us", "conversational" ]
null
2025-04-29T09:33:00Z
Quantization made by Richard Erkhov. [Github](https://github.com/RichardErkhov) [Discord](https://discord.gg/pvy7H8DZMG) [Request more models](https://github.com/RichardErkhov/quant_request) reflect_mini8B_Om2SftT1-Om2G8kIpsdpIter1T1_b1.0 - GGUF - Model creator: https://huggingface.co/RyanYr/ - Original model: https://huggingface.co/RyanYr/reflect_mini8B_Om2SftT1-Om2G8kIpsdpIter1T1_b1.0/ | Name | Quant method | Size | | ---- | ---- | ---- | | [reflect_mini8B_Om2SftT1-Om2G8kIpsdpIter1T1_b1.0.Q2_K.gguf](https://huggingface.co/RichardErkhov/RyanYr_-_reflect_mini8B_Om2SftT1-Om2G8kIpsdpIter1T1_b1.0-gguf/blob/main/reflect_mini8B_Om2SftT1-Om2G8kIpsdpIter1T1_b1.0.Q2_K.gguf) | Q2_K | 2.97GB | | [reflect_mini8B_Om2SftT1-Om2G8kIpsdpIter1T1_b1.0.IQ3_XS.gguf](https://huggingface.co/RichardErkhov/RyanYr_-_reflect_mini8B_Om2SftT1-Om2G8kIpsdpIter1T1_b1.0-gguf/blob/main/reflect_mini8B_Om2SftT1-Om2G8kIpsdpIter1T1_b1.0.IQ3_XS.gguf) | IQ3_XS | 3.28GB | | [reflect_mini8B_Om2SftT1-Om2G8kIpsdpIter1T1_b1.0.IQ3_S.gguf](https://huggingface.co/RichardErkhov/RyanYr_-_reflect_mini8B_Om2SftT1-Om2G8kIpsdpIter1T1_b1.0-gguf/blob/main/reflect_mini8B_Om2SftT1-Om2G8kIpsdpIter1T1_b1.0.IQ3_S.gguf) | IQ3_S | 3.43GB | | [reflect_mini8B_Om2SftT1-Om2G8kIpsdpIter1T1_b1.0.Q3_K_S.gguf](https://huggingface.co/RichardErkhov/RyanYr_-_reflect_mini8B_Om2SftT1-Om2G8kIpsdpIter1T1_b1.0-gguf/blob/main/reflect_mini8B_Om2SftT1-Om2G8kIpsdpIter1T1_b1.0.Q3_K_S.gguf) | Q3_K_S | 3.41GB | | [reflect_mini8B_Om2SftT1-Om2G8kIpsdpIter1T1_b1.0.IQ3_M.gguf](https://huggingface.co/RichardErkhov/RyanYr_-_reflect_mini8B_Om2SftT1-Om2G8kIpsdpIter1T1_b1.0-gguf/blob/main/reflect_mini8B_Om2SftT1-Om2G8kIpsdpIter1T1_b1.0.IQ3_M.gguf) | IQ3_M | 3.53GB | | [reflect_mini8B_Om2SftT1-Om2G8kIpsdpIter1T1_b1.0.Q3_K.gguf](https://huggingface.co/RichardErkhov/RyanYr_-_reflect_mini8B_Om2SftT1-Om2G8kIpsdpIter1T1_b1.0-gguf/blob/main/reflect_mini8B_Om2SftT1-Om2G8kIpsdpIter1T1_b1.0.Q3_K.gguf) | Q3_K | 3.74GB | | [reflect_mini8B_Om2SftT1-Om2G8kIpsdpIter1T1_b1.0.Q3_K_M.gguf](https://huggingface.co/RichardErkhov/RyanYr_-_reflect_mini8B_Om2SftT1-Om2G8kIpsdpIter1T1_b1.0-gguf/blob/main/reflect_mini8B_Om2SftT1-Om2G8kIpsdpIter1T1_b1.0.Q3_K_M.gguf) | Q3_K_M | 3.74GB | | [reflect_mini8B_Om2SftT1-Om2G8kIpsdpIter1T1_b1.0.Q3_K_L.gguf](https://huggingface.co/RichardErkhov/RyanYr_-_reflect_mini8B_Om2SftT1-Om2G8kIpsdpIter1T1_b1.0-gguf/blob/main/reflect_mini8B_Om2SftT1-Om2G8kIpsdpIter1T1_b1.0.Q3_K_L.gguf) | Q3_K_L | 4.03GB | | [reflect_mini8B_Om2SftT1-Om2G8kIpsdpIter1T1_b1.0.IQ4_XS.gguf](https://huggingface.co/RichardErkhov/RyanYr_-_reflect_mini8B_Om2SftT1-Om2G8kIpsdpIter1T1_b1.0-gguf/blob/main/reflect_mini8B_Om2SftT1-Om2G8kIpsdpIter1T1_b1.0.IQ4_XS.gguf) | IQ4_XS | 4.17GB | | [reflect_mini8B_Om2SftT1-Om2G8kIpsdpIter1T1_b1.0.Q4_0.gguf](https://huggingface.co/RichardErkhov/RyanYr_-_reflect_mini8B_Om2SftT1-Om2G8kIpsdpIter1T1_b1.0-gguf/blob/main/reflect_mini8B_Om2SftT1-Om2G8kIpsdpIter1T1_b1.0.Q4_0.gguf) | Q4_0 | 4.34GB | | [reflect_mini8B_Om2SftT1-Om2G8kIpsdpIter1T1_b1.0.IQ4_NL.gguf](https://huggingface.co/RichardErkhov/RyanYr_-_reflect_mini8B_Om2SftT1-Om2G8kIpsdpIter1T1_b1.0-gguf/blob/main/reflect_mini8B_Om2SftT1-Om2G8kIpsdpIter1T1_b1.0.IQ4_NL.gguf) | IQ4_NL | 4.38GB | | [reflect_mini8B_Om2SftT1-Om2G8kIpsdpIter1T1_b1.0.Q4_K_S.gguf](https://huggingface.co/RichardErkhov/RyanYr_-_reflect_mini8B_Om2SftT1-Om2G8kIpsdpIter1T1_b1.0-gguf/blob/main/reflect_mini8B_Om2SftT1-Om2G8kIpsdpIter1T1_b1.0.Q4_K_S.gguf) | Q4_K_S | 4.36GB | | [reflect_mini8B_Om2SftT1-Om2G8kIpsdpIter1T1_b1.0.Q4_K.gguf](https://huggingface.co/RichardErkhov/RyanYr_-_reflect_mini8B_Om2SftT1-Om2G8kIpsdpIter1T1_b1.0-gguf/blob/main/reflect_mini8B_Om2SftT1-Om2G8kIpsdpIter1T1_b1.0.Q4_K.gguf) | Q4_K | 4.57GB | | [reflect_mini8B_Om2SftT1-Om2G8kIpsdpIter1T1_b1.0.Q4_K_M.gguf](https://huggingface.co/RichardErkhov/RyanYr_-_reflect_mini8B_Om2SftT1-Om2G8kIpsdpIter1T1_b1.0-gguf/blob/main/reflect_mini8B_Om2SftT1-Om2G8kIpsdpIter1T1_b1.0.Q4_K_M.gguf) | Q4_K_M | 4.57GB | | [reflect_mini8B_Om2SftT1-Om2G8kIpsdpIter1T1_b1.0.Q4_1.gguf](https://huggingface.co/RichardErkhov/RyanYr_-_reflect_mini8B_Om2SftT1-Om2G8kIpsdpIter1T1_b1.0-gguf/blob/main/reflect_mini8B_Om2SftT1-Om2G8kIpsdpIter1T1_b1.0.Q4_1.gguf) | Q4_1 | 4.77GB | | [reflect_mini8B_Om2SftT1-Om2G8kIpsdpIter1T1_b1.0.Q5_0.gguf](https://huggingface.co/RichardErkhov/RyanYr_-_reflect_mini8B_Om2SftT1-Om2G8kIpsdpIter1T1_b1.0-gguf/blob/main/reflect_mini8B_Om2SftT1-Om2G8kIpsdpIter1T1_b1.0.Q5_0.gguf) | Q5_0 | 5.21GB | | [reflect_mini8B_Om2SftT1-Om2G8kIpsdpIter1T1_b1.0.Q5_K_S.gguf](https://huggingface.co/RichardErkhov/RyanYr_-_reflect_mini8B_Om2SftT1-Om2G8kIpsdpIter1T1_b1.0-gguf/blob/main/reflect_mini8B_Om2SftT1-Om2G8kIpsdpIter1T1_b1.0.Q5_K_S.gguf) | Q5_K_S | 5.21GB | | [reflect_mini8B_Om2SftT1-Om2G8kIpsdpIter1T1_b1.0.Q5_K.gguf](https://huggingface.co/RichardErkhov/RyanYr_-_reflect_mini8B_Om2SftT1-Om2G8kIpsdpIter1T1_b1.0-gguf/blob/main/reflect_mini8B_Om2SftT1-Om2G8kIpsdpIter1T1_b1.0.Q5_K.gguf) | Q5_K | 5.33GB | | [reflect_mini8B_Om2SftT1-Om2G8kIpsdpIter1T1_b1.0.Q5_K_M.gguf](https://huggingface.co/RichardErkhov/RyanYr_-_reflect_mini8B_Om2SftT1-Om2G8kIpsdpIter1T1_b1.0-gguf/blob/main/reflect_mini8B_Om2SftT1-Om2G8kIpsdpIter1T1_b1.0.Q5_K_M.gguf) | Q5_K_M | 5.33GB | | [reflect_mini8B_Om2SftT1-Om2G8kIpsdpIter1T1_b1.0.Q5_1.gguf](https://huggingface.co/RichardErkhov/RyanYr_-_reflect_mini8B_Om2SftT1-Om2G8kIpsdpIter1T1_b1.0-gguf/blob/main/reflect_mini8B_Om2SftT1-Om2G8kIpsdpIter1T1_b1.0.Q5_1.gguf) | Q5_1 | 5.65GB | | [reflect_mini8B_Om2SftT1-Om2G8kIpsdpIter1T1_b1.0.Q6_K.gguf](https://huggingface.co/RichardErkhov/RyanYr_-_reflect_mini8B_Om2SftT1-Om2G8kIpsdpIter1T1_b1.0-gguf/blob/main/reflect_mini8B_Om2SftT1-Om2G8kIpsdpIter1T1_b1.0.Q6_K.gguf) | Q6_K | 6.14GB | | [reflect_mini8B_Om2SftT1-Om2G8kIpsdpIter1T1_b1.0.Q8_0.gguf](https://huggingface.co/RichardErkhov/RyanYr_-_reflect_mini8B_Om2SftT1-Om2G8kIpsdpIter1T1_b1.0-gguf/blob/main/reflect_mini8B_Om2SftT1-Om2G8kIpsdpIter1T1_b1.0.Q8_0.gguf) | Q8_0 | 7.94GB | Original model description: --- base_model: RyanYr/reflect_mini8Bit_om2-460k_sft-t1 library_name: transformers model_name: reflect_mini8B_Om2SftT1-Om2G8kIpsdpIter1T1_b1.0 tags: - generated_from_trainer - trl - dpo licence: license --- # Model Card for reflect_mini8B_Om2SftT1-Om2G8kIpsdpIter1T1_b1.0 This model is a fine-tuned version of [RyanYr/reflect_mini8Bit_om2-460k_sft-t1](https://huggingface.co/RyanYr/reflect_mini8Bit_om2-460k_sft-t1). It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="RyanYr/reflect_mini8B_Om2SftT1-Om2G8kIpsdpIter1T1_b1.0", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure [<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="150" height="24"/>](https://wandb.ai/yyr/huggingface/runs/ijjbovca) This model was trained with DPO, a method introduced in [Direct Preference Optimization: Your Language Model is Secretly a Reward Model](https://huggingface.co/papers/2305.18290). ### Framework versions - TRL: 0.12.0.dev0 - Transformers: 4.45.2 - Pytorch: 2.5.1 - Datasets: 3.1.0 - Tokenizers: 0.20.3 ## Citations Cite DPO as: ```bibtex @inproceedings{rafailov2023direct, title = {{Direct Preference Optimization: Your Language Model is Secretly a Reward Model}}, author = {Rafael Rafailov and Archit Sharma and Eric Mitchell and Christopher D. Manning and Stefano Ermon and Chelsea Finn}, year = 2023, booktitle = {Advances in Neural Information Processing Systems 36: Annual Conference on Neural Information Processing Systems 2023, NeurIPS 2023, New Orleans, LA, USA, December 10 - 16, 2023}, url = {http://papers.nips.cc/paper_files/paper/2023/hash/a85b405ed65c6477a4fe8302b5e06ce7-Abstract-Conference.html}, editor = {Alice Oh and Tristan Naumann and Amir Globerson and Kate Saenko and Moritz Hardt and Sergey Levine}, } ``` Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallouédec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
joel4899/roberta-squad2-answer-generation
joel4899
2025-04-29T17:47:31Z
0
0
transformers
[ "transformers", "safetensors", "roberta", "question-answering", "generated_from_trainer", "base_model:deepset/roberta-base-squad2", "base_model:finetune:deepset/roberta-base-squad2", "license:cc-by-4.0", "endpoints_compatible", "region:us" ]
question-answering
2025-04-29T11:26:18Z
--- library_name: transformers license: cc-by-4.0 base_model: deepset/roberta-base-squad2 tags: - generated_from_trainer model-index: - name: roberta-squad2-answer-generation results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # roberta-squad2-answer-generation This model is a fine-tuned version of [deepset/roberta-base-squad2](https://huggingface.co/deepset/roberta-base-squad2) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0000 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 0.0 | 1.0 | 299 | 0.0000 | | 0.0 | 2.0 | 598 | 0.0000 | | 0.0 | 3.0 | 897 | 0.0000 | ### Framework versions - Transformers 4.45.1 - Pytorch 2.4.0+cpu - Datasets 3.0.1 - Tokenizers 0.20.0
JasonTree/Qwen3-8B-quietGIVE0428
JasonTree
2025-04-29T17:45:15Z
0
0
transformers
[ "transformers", "safetensors", "generated_from_trainer", "trl", "grpo", "arxiv:2402.03300", "base_model:Qwen/Qwen3-8B", "base_model:finetune:Qwen/Qwen3-8B", "endpoints_compatible", "region:us" ]
null
2025-04-28T23:14:06Z
--- base_model: Qwen/Qwen3-8B library_name: transformers model_name: Qwen3-8B-quietGIVE0428 tags: - generated_from_trainer - trl - grpo licence: license --- # Model Card for Qwen3-8B-quietGIVE0428 This model is a fine-tuned version of [Qwen/Qwen3-8B](https://huggingface.co/Qwen/Qwen3-8B). It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="JasonTree/Qwen3-8B-quietGIVE0428", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure [<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="150" height="24"/>](https://wandb.ai/alelab/QuiteGive/runs/6m488i7a) This model was trained with GRPO, a method introduced in [DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models](https://huggingface.co/papers/2402.03300). ### Framework versions - TRL: 0.16.1 - Transformers: 4.51.3 - Pytorch: 2.6.0 - Datasets: 3.3.2 - Tokenizers: 0.21.1 ## Citations Cite GRPO as: ```bibtex @article{zhihong2024deepseekmath, title = {{DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models}}, author = {Zhihong Shao and Peiyi Wang and Qihao Zhu and Runxin Xu and Junxiao Song and Mingchuan Zhang and Y. K. Li and Y. Wu and Daya Guo}, year = 2024, eprint = {arXiv:2402.03300}, } ``` Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallouédec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
RichardErkhov/RyanYr_-_reflect_mini8Bit_om2-460k_sft-dpo-t1_psdp-t1-gguf
RichardErkhov
2025-04-29T17:43:46Z
0
0
null
[ "gguf", "arxiv:2305.18290", "endpoints_compatible", "region:us", "conversational" ]
null
2025-04-29T09:40:26Z
Quantization made by Richard Erkhov. [Github](https://github.com/RichardErkhov) [Discord](https://discord.gg/pvy7H8DZMG) [Request more models](https://github.com/RichardErkhov/quant_request) reflect_mini8Bit_om2-460k_sft-dpo-t1_psdp-t1 - GGUF - Model creator: https://huggingface.co/RyanYr/ - Original model: https://huggingface.co/RyanYr/reflect_mini8Bit_om2-460k_sft-dpo-t1_psdp-t1/ | Name | Quant method | Size | | ---- | ---- | ---- | | [reflect_mini8Bit_om2-460k_sft-dpo-t1_psdp-t1.Q2_K.gguf](https://huggingface.co/RichardErkhov/RyanYr_-_reflect_mini8Bit_om2-460k_sft-dpo-t1_psdp-t1-gguf/blob/main/reflect_mini8Bit_om2-460k_sft-dpo-t1_psdp-t1.Q2_K.gguf) | Q2_K | 2.97GB | | [reflect_mini8Bit_om2-460k_sft-dpo-t1_psdp-t1.IQ3_XS.gguf](https://huggingface.co/RichardErkhov/RyanYr_-_reflect_mini8Bit_om2-460k_sft-dpo-t1_psdp-t1-gguf/blob/main/reflect_mini8Bit_om2-460k_sft-dpo-t1_psdp-t1.IQ3_XS.gguf) | IQ3_XS | 3.28GB | | [reflect_mini8Bit_om2-460k_sft-dpo-t1_psdp-t1.IQ3_S.gguf](https://huggingface.co/RichardErkhov/RyanYr_-_reflect_mini8Bit_om2-460k_sft-dpo-t1_psdp-t1-gguf/blob/main/reflect_mini8Bit_om2-460k_sft-dpo-t1_psdp-t1.IQ3_S.gguf) | IQ3_S | 3.43GB | | [reflect_mini8Bit_om2-460k_sft-dpo-t1_psdp-t1.Q3_K_S.gguf](https://huggingface.co/RichardErkhov/RyanYr_-_reflect_mini8Bit_om2-460k_sft-dpo-t1_psdp-t1-gguf/blob/main/reflect_mini8Bit_om2-460k_sft-dpo-t1_psdp-t1.Q3_K_S.gguf) | Q3_K_S | 3.41GB | | [reflect_mini8Bit_om2-460k_sft-dpo-t1_psdp-t1.IQ3_M.gguf](https://huggingface.co/RichardErkhov/RyanYr_-_reflect_mini8Bit_om2-460k_sft-dpo-t1_psdp-t1-gguf/blob/main/reflect_mini8Bit_om2-460k_sft-dpo-t1_psdp-t1.IQ3_M.gguf) | IQ3_M | 3.53GB | | [reflect_mini8Bit_om2-460k_sft-dpo-t1_psdp-t1.Q3_K.gguf](https://huggingface.co/RichardErkhov/RyanYr_-_reflect_mini8Bit_om2-460k_sft-dpo-t1_psdp-t1-gguf/blob/main/reflect_mini8Bit_om2-460k_sft-dpo-t1_psdp-t1.Q3_K.gguf) | Q3_K | 3.74GB | | [reflect_mini8Bit_om2-460k_sft-dpo-t1_psdp-t1.Q3_K_M.gguf](https://huggingface.co/RichardErkhov/RyanYr_-_reflect_mini8Bit_om2-460k_sft-dpo-t1_psdp-t1-gguf/blob/main/reflect_mini8Bit_om2-460k_sft-dpo-t1_psdp-t1.Q3_K_M.gguf) | Q3_K_M | 3.74GB | | [reflect_mini8Bit_om2-460k_sft-dpo-t1_psdp-t1.Q3_K_L.gguf](https://huggingface.co/RichardErkhov/RyanYr_-_reflect_mini8Bit_om2-460k_sft-dpo-t1_psdp-t1-gguf/blob/main/reflect_mini8Bit_om2-460k_sft-dpo-t1_psdp-t1.Q3_K_L.gguf) | Q3_K_L | 4.03GB | | [reflect_mini8Bit_om2-460k_sft-dpo-t1_psdp-t1.IQ4_XS.gguf](https://huggingface.co/RichardErkhov/RyanYr_-_reflect_mini8Bit_om2-460k_sft-dpo-t1_psdp-t1-gguf/blob/main/reflect_mini8Bit_om2-460k_sft-dpo-t1_psdp-t1.IQ4_XS.gguf) | IQ4_XS | 4.17GB | | [reflect_mini8Bit_om2-460k_sft-dpo-t1_psdp-t1.Q4_0.gguf](https://huggingface.co/RichardErkhov/RyanYr_-_reflect_mini8Bit_om2-460k_sft-dpo-t1_psdp-t1-gguf/blob/main/reflect_mini8Bit_om2-460k_sft-dpo-t1_psdp-t1.Q4_0.gguf) | Q4_0 | 4.34GB | | [reflect_mini8Bit_om2-460k_sft-dpo-t1_psdp-t1.IQ4_NL.gguf](https://huggingface.co/RichardErkhov/RyanYr_-_reflect_mini8Bit_om2-460k_sft-dpo-t1_psdp-t1-gguf/blob/main/reflect_mini8Bit_om2-460k_sft-dpo-t1_psdp-t1.IQ4_NL.gguf) | IQ4_NL | 4.38GB | | [reflect_mini8Bit_om2-460k_sft-dpo-t1_psdp-t1.Q4_K_S.gguf](https://huggingface.co/RichardErkhov/RyanYr_-_reflect_mini8Bit_om2-460k_sft-dpo-t1_psdp-t1-gguf/blob/main/reflect_mini8Bit_om2-460k_sft-dpo-t1_psdp-t1.Q4_K_S.gguf) | Q4_K_S | 4.36GB | | [reflect_mini8Bit_om2-460k_sft-dpo-t1_psdp-t1.Q4_K.gguf](https://huggingface.co/RichardErkhov/RyanYr_-_reflect_mini8Bit_om2-460k_sft-dpo-t1_psdp-t1-gguf/blob/main/reflect_mini8Bit_om2-460k_sft-dpo-t1_psdp-t1.Q4_K.gguf) | Q4_K | 4.57GB | | [reflect_mini8Bit_om2-460k_sft-dpo-t1_psdp-t1.Q4_K_M.gguf](https://huggingface.co/RichardErkhov/RyanYr_-_reflect_mini8Bit_om2-460k_sft-dpo-t1_psdp-t1-gguf/blob/main/reflect_mini8Bit_om2-460k_sft-dpo-t1_psdp-t1.Q4_K_M.gguf) | Q4_K_M | 4.57GB | | [reflect_mini8Bit_om2-460k_sft-dpo-t1_psdp-t1.Q4_1.gguf](https://huggingface.co/RichardErkhov/RyanYr_-_reflect_mini8Bit_om2-460k_sft-dpo-t1_psdp-t1-gguf/blob/main/reflect_mini8Bit_om2-460k_sft-dpo-t1_psdp-t1.Q4_1.gguf) | Q4_1 | 4.77GB | | [reflect_mini8Bit_om2-460k_sft-dpo-t1_psdp-t1.Q5_0.gguf](https://huggingface.co/RichardErkhov/RyanYr_-_reflect_mini8Bit_om2-460k_sft-dpo-t1_psdp-t1-gguf/blob/main/reflect_mini8Bit_om2-460k_sft-dpo-t1_psdp-t1.Q5_0.gguf) | Q5_0 | 5.21GB | | [reflect_mini8Bit_om2-460k_sft-dpo-t1_psdp-t1.Q5_K_S.gguf](https://huggingface.co/RichardErkhov/RyanYr_-_reflect_mini8Bit_om2-460k_sft-dpo-t1_psdp-t1-gguf/blob/main/reflect_mini8Bit_om2-460k_sft-dpo-t1_psdp-t1.Q5_K_S.gguf) | Q5_K_S | 5.21GB | | [reflect_mini8Bit_om2-460k_sft-dpo-t1_psdp-t1.Q5_K.gguf](https://huggingface.co/RichardErkhov/RyanYr_-_reflect_mini8Bit_om2-460k_sft-dpo-t1_psdp-t1-gguf/blob/main/reflect_mini8Bit_om2-460k_sft-dpo-t1_psdp-t1.Q5_K.gguf) | Q5_K | 5.33GB | | [reflect_mini8Bit_om2-460k_sft-dpo-t1_psdp-t1.Q5_K_M.gguf](https://huggingface.co/RichardErkhov/RyanYr_-_reflect_mini8Bit_om2-460k_sft-dpo-t1_psdp-t1-gguf/blob/main/reflect_mini8Bit_om2-460k_sft-dpo-t1_psdp-t1.Q5_K_M.gguf) | Q5_K_M | 5.33GB | | [reflect_mini8Bit_om2-460k_sft-dpo-t1_psdp-t1.Q5_1.gguf](https://huggingface.co/RichardErkhov/RyanYr_-_reflect_mini8Bit_om2-460k_sft-dpo-t1_psdp-t1-gguf/blob/main/reflect_mini8Bit_om2-460k_sft-dpo-t1_psdp-t1.Q5_1.gguf) | Q5_1 | 5.65GB | | [reflect_mini8Bit_om2-460k_sft-dpo-t1_psdp-t1.Q6_K.gguf](https://huggingface.co/RichardErkhov/RyanYr_-_reflect_mini8Bit_om2-460k_sft-dpo-t1_psdp-t1-gguf/blob/main/reflect_mini8Bit_om2-460k_sft-dpo-t1_psdp-t1.Q6_K.gguf) | Q6_K | 6.14GB | | [reflect_mini8Bit_om2-460k_sft-dpo-t1_psdp-t1.Q8_0.gguf](https://huggingface.co/RichardErkhov/RyanYr_-_reflect_mini8Bit_om2-460k_sft-dpo-t1_psdp-t1-gguf/blob/main/reflect_mini8Bit_om2-460k_sft-dpo-t1_psdp-t1.Q8_0.gguf) | Q8_0 | 7.94GB | Original model description: --- base_model: RyanYr/reflect_mini8Bit_om2-460k_sft-dpo-t1 library_name: transformers model_name: reflect_mini8Bit_om2-460k_sft-dpo-t1_psdp-t1 tags: - generated_from_trainer - trl - dpo licence: license --- # Model Card for reflect_mini8Bit_om2-460k_sft-dpo-t1_psdp-t1 This model is a fine-tuned version of [RyanYr/reflect_mini8Bit_om2-460k_sft-dpo-t1](https://huggingface.co/RyanYr/reflect_mini8Bit_om2-460k_sft-dpo-t1). It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="RyanYr/reflect_mini8Bit_om2-460k_sft-dpo-t1_psdp-t1", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure [<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="150" height="24"/>](https://wandb.ai/yyr/huggingface/runs/cf6ates7) This model was trained with DPO, a method introduced in [Direct Preference Optimization: Your Language Model is Secretly a Reward Model](https://huggingface.co/papers/2305.18290). ### Framework versions - TRL: 0.12.0.dev0 - Transformers: 4.45.2 - Pytorch: 2.5.1 - Datasets: 3.1.0 - Tokenizers: 0.20.3 ## Citations Cite DPO as: ```bibtex @inproceedings{rafailov2023direct, title = {{Direct Preference Optimization: Your Language Model is Secretly a Reward Model}}, author = {Rafael Rafailov and Archit Sharma and Eric Mitchell and Christopher D. Manning and Stefano Ermon and Chelsea Finn}, year = 2023, booktitle = {Advances in Neural Information Processing Systems 36: Annual Conference on Neural Information Processing Systems 2023, NeurIPS 2023, New Orleans, LA, USA, December 10 - 16, 2023}, url = {http://papers.nips.cc/paper_files/paper/2023/hash/a85b405ed65c6477a4fe8302b5e06ce7-Abstract-Conference.html}, editor = {Alice Oh and Tristan Naumann and Amir Globerson and Kate Saenko and Moritz Hardt and Sergey Levine}, } ``` Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallouédec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
littletuzi100/Qwen2.5-0.5B-Instruct-Gensyn-Swarm-singing_running_ape
littletuzi100
2025-04-29T17:41:42Z
6
0
transformers
[ "transformers", "safetensors", "qwen2", "text-generation", "generated_from_trainer", "rl-swarm", "grpo", "gensyn", "I am singing running ape", "trl", "conversational", "arxiv:2402.03300", "base_model:Gensyn/Qwen2.5-0.5B-Instruct", "base_model:finetune:Gensyn/Qwen2.5-0.5B-Instruct", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-04-17T19:59:05Z
--- base_model: Gensyn/Qwen2.5-0.5B-Instruct library_name: transformers model_name: Qwen2.5-0.5B-Instruct-Gensyn-Swarm-singing_running_ape tags: - generated_from_trainer - rl-swarm - grpo - gensyn - I am singing running ape - trl licence: license --- # Model Card for Qwen2.5-0.5B-Instruct-Gensyn-Swarm-singing_running_ape This model is a fine-tuned version of [Gensyn/Qwen2.5-0.5B-Instruct](https://huggingface.co/Gensyn/Qwen2.5-0.5B-Instruct). It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="littletuzi100/Qwen2.5-0.5B-Instruct-Gensyn-Swarm-singing_running_ape", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure This model was trained with GRPO, a method introduced in [DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models](https://huggingface.co/papers/2402.03300). ### Framework versions - TRL: 0.15.2 - Transformers: 4.51.1 - Pytorch: 2.6.0 - Datasets: 3.5.0 - Tokenizers: 0.21.1 ## Citations Cite GRPO as: ```bibtex @article{zhihong2024deepseekmath, title = {{DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models}}, author = {Zhihong Shao and Peiyi Wang and Qihao Zhu and Runxin Xu and Junxiao Song and Mingchuan Zhang and Y. K. Li and Y. Wu and Daya Guo}, year = 2024, eprint = {arXiv:2402.03300}, } ``` Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallouédec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
nareauow/my_speech_recognition
nareauow
2025-04-29T17:41:33Z
0
0
null
[ "speaker-recognition", "MFCC", "CNN", "audio-classification", "en", "region:us" ]
audio-classification
2025-04-25T16:21:36Z
--- language: - en pipeline_tag: audio-classification tags: - speaker-recognition - MFCC - CNN ---
kamilhussen24/sylheti-t5
kamilhussen24
2025-04-29T17:41:14Z
112
0
transformers
[ "transformers", "safetensors", "mt5", "text2text-generation", "generated_from_trainer", "base_model:google/mt5-small", "base_model:finetune:google/mt5-small", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2025-04-25T04:13:12Z
--- library_name: transformers license: apache-2.0 base_model: google/mt5-small tags: - generated_from_trainer model-index: - name: sylheti-t5 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # sylheti-t5 This model is a fine-tuned version of [google/mt5-small](https://huggingface.co/google/mt5-small) on the None dataset. It achieves the following results on the evaluation set: - Loss: 18.7540 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 23.2565 | 6.6667 | 100 | 18.7540 | ### Framework versions - Transformers 4.51.3 - Pytorch 2.6.0+cu124 - Datasets 3.5.1 - Tokenizers 0.21.1
mluger/vitFaceExpressionMixUpAugmentationAligned
mluger
2025-04-29T17:40:04Z
0
0
transformers
[ "transformers", "tensorboard", "safetensors", "generated_from_trainer", "dataset:imagefolder", "base_model:google/vit-base-patch16-224-in21k", "base_model:finetune:google/vit-base-patch16-224-in21k", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
null
2025-04-29T17:39:40Z
--- library_name: transformers license: apache-2.0 base_model: google/vit-base-patch16-224-in21k tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: vitFaceExpressionMixUpAugmentationAligned results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.6815712494776431 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # vitFaceExpressionMixUpAugmentationAligned This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 1.1497 - Accuracy: 0.6816 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - num_epochs: 8 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.2333 | 1.0 | 669 | 1.0113 | 0.6341 | | 0.923 | 2.0 | 1338 | 0.9048 | 0.6729 | | 0.6649 | 3.0 | 2007 | 0.8886 | 0.6855 | | 0.4775 | 4.0 | 2676 | 0.9545 | 0.6803 | | 0.3522 | 5.0 | 3345 | 0.9925 | 0.6853 | | 0.1815 | 6.0 | 4014 | 1.0883 | 0.6848 | | 0.1255 | 7.0 | 4683 | 1.1511 | 0.6828 | | 0.1091 | 8.0 | 5352 | 1.1497 | 0.6816 | ### Framework versions - Transformers 4.51.3 - Pytorch 2.6.0+cu124 - Datasets 3.5.1 - Tokenizers 0.21.1
shane-moxley/output
shane-moxley
2025-04-29T17:39:38Z
0
0
transformers
[ "transformers", "safetensors", "generated_from_trainer", "trl", "sft", "base_model:microsoft/phi-2", "base_model:finetune:microsoft/phi-2", "endpoints_compatible", "region:us" ]
null
2025-04-27T16:55:52Z
--- base_model: microsoft/phi-2 library_name: transformers model_name: output tags: - generated_from_trainer - trl - sft licence: license --- # Model Card for output This model is a fine-tuned version of [microsoft/phi-2](https://huggingface.co/microsoft/phi-2). It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="shane-moxley/output", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure This model was trained with SFT. ### Framework versions - TRL: 0.15.2 - Transformers: 4.51.3 - Pytorch: 2.6.0+cu124 - Datasets: 3.3.2 - Tokenizers: 0.21.1 ## Citations Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallouédec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
drmcbride/Qwen3-0.6B-abliterated-Q8_0-GGUF
drmcbride
2025-04-29T17:39:33Z
0
0
transformers
[ "transformers", "gguf", "chat", "abliterated", "uncensored", "llama-cpp", "gguf-my-repo", "text-generation", "base_model:huihui-ai/Qwen3-0.6B-abliterated", "base_model:quantized:huihui-ai/Qwen3-0.6B-abliterated", "license:apache-2.0", "endpoints_compatible", "region:us" ]
text-generation
2025-04-29T17:39:24Z
--- base_model: huihui-ai/Qwen3-0.6B-abliterated library_name: transformers license: apache-2.0 license_link: https://huggingface.co/Qwen/Qwen3-0.6B/blob/main/LICENSE pipeline_tag: text-generation tags: - chat - abliterated - uncensored - llama-cpp - gguf-my-repo --- # drmcbride/Qwen3-0.6B-abliterated-Q8_0-GGUF This model was converted to GGUF format from [`huihui-ai/Qwen3-0.6B-abliterated`](https://huggingface.co/huihui-ai/Qwen3-0.6B-abliterated) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space. Refer to the [original model card](https://huggingface.co/huihui-ai/Qwen3-0.6B-abliterated) for more details on the model. ## Use with llama.cpp Install llama.cpp through brew (works on Mac and Linux) ```bash brew install llama.cpp ``` Invoke the llama.cpp server or the CLI. ### CLI: ```bash llama-cli --hf-repo drmcbride/Qwen3-0.6B-abliterated-Q8_0-GGUF --hf-file qwen3-0.6b-abliterated-q8_0.gguf -p "The meaning to life and the universe is" ``` ### Server: ```bash llama-server --hf-repo drmcbride/Qwen3-0.6B-abliterated-Q8_0-GGUF --hf-file qwen3-0.6b-abliterated-q8_0.gguf -c 2048 ``` Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well. Step 1: Clone llama.cpp from GitHub. ``` git clone https://github.com/ggerganov/llama.cpp ``` Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux). ``` cd llama.cpp && LLAMA_CURL=1 make ``` Step 3: Run inference through the main binary. ``` ./llama-cli --hf-repo drmcbride/Qwen3-0.6B-abliterated-Q8_0-GGUF --hf-file qwen3-0.6b-abliterated-q8_0.gguf -p "The meaning to life and the universe is" ``` or ``` ./llama-server --hf-repo drmcbride/Qwen3-0.6B-abliterated-Q8_0-GGUF --hf-file qwen3-0.6b-abliterated-q8_0.gguf -c 2048 ```
mradermacher/Qwen2.5-0.5b-Test-ft-GGUF
mradermacher
2025-04-29T17:37:09Z
191
0
transformers
[ "transformers", "gguf", "text-generation-inference", "unsloth", "qwen2", "trl", "sft", "zho", "eng", "fra", "spa", "por", "deu", "ita", "rus", "jpn", "kor", "vie", "tha", "ara", "base_model:KingNish/Qwen2.5-0.5b-Test-ft", "base_model:quantized:KingNish/Qwen2.5-0.5b-Test-ft", "license:apache-2.0", "endpoints_compatible", "region:us", "conversational" ]
null
2025-02-24T21:01:43Z
--- base_model: KingNish/Qwen2.5-0.5b-Test-ft language: - zho - eng - fra - spa - por - deu - ita - rus - jpn - kor - vie - tha - ara library_name: transformers license: apache-2.0 quantized_by: mradermacher tags: - text-generation-inference - transformers - unsloth - qwen2 - trl - sft --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: --> static quants of https://huggingface.co/KingNish/Qwen2.5-0.5b-Test-ft <!-- provided-files --> weighted/imatrix quants are available at https://huggingface.co/mradermacher/Qwen2.5-0.5b-Test-ft-i1-GGUF ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-0.5b-Test-ft-GGUF/resolve/main/Qwen2.5-0.5b-Test-ft.Q3_K_S.gguf) | Q3_K_S | 0.4 | | | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-0.5b-Test-ft-GGUF/resolve/main/Qwen2.5-0.5b-Test-ft.Q2_K.gguf) | Q2_K | 0.4 | | | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-0.5b-Test-ft-GGUF/resolve/main/Qwen2.5-0.5b-Test-ft.IQ4_XS.gguf) | IQ4_XS | 0.5 | | | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-0.5b-Test-ft-GGUF/resolve/main/Qwen2.5-0.5b-Test-ft.Q3_K_M.gguf) | Q3_K_M | 0.5 | lower quality | | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-0.5b-Test-ft-GGUF/resolve/main/Qwen2.5-0.5b-Test-ft.Q3_K_L.gguf) | Q3_K_L | 0.5 | | | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-0.5b-Test-ft-GGUF/resolve/main/Qwen2.5-0.5b-Test-ft.Q4_K_S.gguf) | Q4_K_S | 0.5 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-0.5b-Test-ft-GGUF/resolve/main/Qwen2.5-0.5b-Test-ft.Q4_K_M.gguf) | Q4_K_M | 0.5 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-0.5b-Test-ft-GGUF/resolve/main/Qwen2.5-0.5b-Test-ft.Q5_K_S.gguf) | Q5_K_S | 0.5 | | | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-0.5b-Test-ft-GGUF/resolve/main/Qwen2.5-0.5b-Test-ft.Q5_K_M.gguf) | Q5_K_M | 0.5 | | | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-0.5b-Test-ft-GGUF/resolve/main/Qwen2.5-0.5b-Test-ft.Q6_K.gguf) | Q6_K | 0.6 | very good quality | | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-0.5b-Test-ft-GGUF/resolve/main/Qwen2.5-0.5b-Test-ft.Q8_0.gguf) | Q8_0 | 0.6 | fast, best quality | | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-0.5b-Test-ft-GGUF/resolve/main/Qwen2.5-0.5b-Test-ft.f16.gguf) | f16 | 1.1 | 16 bpw, overkill | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. <!-- end -->
Denn231/internal_clf_v_0.47
Denn231
2025-04-29T17:33:55Z
0
0
transformers
[ "transformers", "safetensors", "bert", "text-classification", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2025-04-29T14:41:23Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
Denn231/external_clf_v_0.47
Denn231
2025-04-29T17:33:03Z
0
0
transformers
[ "transformers", "safetensors", "bert", "text-classification", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2025-04-29T14:40:01Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
rodolfornn/image2
rodolfornn
2025-04-29T17:31:58Z
6
0
diffusers
[ "diffusers", "flux", "lora", "replicate", "text-to-image", "en", "base_model:black-forest-labs/FLUX.1-dev", "base_model:adapter:black-forest-labs/FLUX.1-dev", "license:other", "region:us" ]
text-to-image
2025-04-28T19:25:29Z
--- license: other license_name: flux-1-dev-non-commercial-license license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md language: - en tags: - flux - diffusers - lora - replicate base_model: "black-forest-labs/FLUX.1-dev" pipeline_tag: text-to-image # widget: # - text: >- # prompt # output: # url: https://... instance_prompt: TOK --- # Image2 <Gallery /> ## About this LoRA This is a [LoRA](https://replicate.com/docs/guides/working-with-loras) for the FLUX.1-dev text-to-image model. It can be used with diffusers or ComfyUI. It was trained on [Replicate](https://replicate.com/) using AI toolkit: https://replicate.com/ostris/flux-dev-lora-trainer/train ## Trigger words You should use `TOK` to trigger the image generation. ## Run this LoRA with an API using Replicate ```py import replicate input = { "prompt": "TOK", "lora_weights": "https://huggingface.co/rodolfornn/image2/resolve/main/lora.safetensors" } output = replicate.run( "black-forest-labs/flux-dev-lora", input=input ) for index, item in enumerate(output): with open(f"output_{index}.webp", "wb") as file: file.write(item.read()) ``` ## Use it with the [🧨 diffusers library](https://github.com/huggingface/diffusers) ```py from diffusers import AutoPipelineForText2Image import torch pipeline = AutoPipelineForText2Image.from_pretrained('black-forest-labs/FLUX.1-dev', torch_dtype=torch.float16).to('cuda') pipeline.load_lora_weights('rodolfornn/image2', weight_name='lora.safetensors') image = pipeline('TOK').images[0] ``` For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters) ## Training details - Steps: 1000 - Learning rate: 0.0004 - LoRA rank: 16 ## Contribute your own examples You can use the [community tab](https://huggingface.co/rodolfornn/image2/discussions) to add images that show off what you’ve made with this LoRA.
XSkills/nllb-200-turkmen-english-lora
XSkills
2025-04-29T17:31:55Z
12
0
transformers
[ "transformers", "safetensors", "m2m_100", "text2text-generation", "translation", "nllb", "lora", "peft", "turkmen", "tuk", "eng", "dataset:XSkills/turkmen_english_s500", "base_model:facebook/nllb-200-distilled-600M", "base_model:adapter:facebook/nllb-200-distilled-600M", "license:cc-by-nc-4.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
translation
2025-04-26T23:32:08Z
--- license: cc-by-nc-4.0 language: - tuk - eng library_name: transformers datasets: - XSkills/turkmen_english_s500 tags: - translation - nllb - lora - peft - turkmen model_name: nllb-200-turkmen-english-lora pipeline_tag: translation base_model: - facebook/nllb-200-distilled-600M --- # NLLB-200 (600 M) – LoRA fine-tuned for Turkmen ↔ English **Author** : Merdan Durdyyev **Base model** : [`facebook/nllb-200-distilled-600M`](https://huggingface.co/facebook/nllb-200-distilled-600M) **Tuning method** : Low-Rank Adaptation (LoRA) on only the `q_proj` & `v_proj` matrices (≈ 2.4 M trainable → 0.38 % of total params). > I built this checkpoint as the final project for my Deep-Learning class and as a small contribution to the Turkmen AI community, where open-source resources are scarce. --- ## TL;DR & Quick results Try it on [Space demo](https://huggingface.co/spaces/XSkills/nllb-turkmen-english) Article with full technical journey is available [Medium](https://medium.com/@meinnps/fine-tuning-nllb-200-with-lora-on-a-650-sentence-turkmen-english-corpus-082f68bdec71). ### Model Comparison (Fine-tuned vs Original) #### English to Turkmen | Metric | Fine-tuned | Original | Difference | |---------------------------|-----------:|---------:|-----------:| | **BLEU** | 8.24 | 8.12 | +0.12 | | **chrF** | 39.55 | 39.46 | +0.09 | | **TER (lower is better)** | 87.20 | 87.30 | -0.10 | #### Turkmen to English | Metric | Fine-tuned | Original | Difference | |---------------------------|-----------:|---------:|-----------:| | **BLEU** | 25.88 | 26.48 | -0.60 | | **chrF** | 52.71 | 52.91 | -0.20 | | **TER (lower is better)** | 67.70 | 69.70 | -2.00 | *Scores computed with sacre BLEU 2.5, chrF, TER on the official `test` split. A separate spreadsheet with **human adequacy/fluency ratings** is available in the article.* --- ## Intended use & scope * **Good for**: research prototypes, student projects, quick experiments on Turkmen text. * **Not for**: commercial MT systems (license is **CC-BY-NC 4.0**), critical medical/legal translation, or production workloads without further validation. --- ## How to use *(If you want to take a look to the LoRA adapter visit [nllb-200-turkmen-english-lora-adapter](https://huggingface.co/XSkills/nllb-200-turkmen-english-lora-adapter/tree/main))* Using piplene ```python from transformers import pipeline # Create the translation pipeline pipe = pipeline("translation", model="XSkills/nllb-200-turkmen-english-lora") # Translate from English to Turkmen # You need to specify the source and target languages using their FLORES-200 codes text = "Hello, how are you today?" translated = pipe(text, src_lang="eng_Latn", tgt_lang="tuk_Latn") print(translated) ``` Using Tokenizer ```python from transformers import AutoTokenizer, AutoModelForSeq2SeqLM model_id = "XSkills/nllb-200-turkmen-english-lora" tok = AutoTokenizer.from_pretrained(model_id) model = AutoModelForSeq2SeqLM.from_pretrained(model_id) def tr(text, src="tuk_Latn", tgt="eng_Latn"): tok.src_lang = src ids = tok(text, return_tensors="pt", truncation=True, max_length=128) out = model.generate( **ids, forced_bos_token_id=tok.convert_tokens_to_ids(tgt), max_length=128, num_beams=5 ) return tok.decode(out[0], skip_special_tokens=True) print(tr("Men kitaby okaýaryn.")) ``` ## Training data - Dataset : [XSkills/turkmen_english_s500](https://huggingface.co/datasets/XSkills/turkmen_english_s500) 619 parallel sentences (495 train / 62 val / 62 test) of news & official communiqués. - Collecting even this small corpus proved challenging because publicly available Turkmen data are limited. ## Training procedure | Item | Value | |------|-------| | GPU | 1 × NVIDIA A100 40 GB (Google Colab) | | Wall-time | ~ 3 minutes | | Optimiser | AdamW | | Learning rate | 1 × 10⁻⁵, cosine schedule, warm-up 10% | | Epochs | 5 | | Batch size | 4 (train) / 8 (eval) | | Weight-decay | 0.005 | | FP16 | Yes | | LoRA config | `r=16`, `alpha=32`, `dropout=0.05`, modules = `["q_proj","v_proj"]` | ### LoRA Config ```python lora_config = LoraConfig( r=16, lora_alpha=32, target_modules=["q_proj", "v_proj"], lora_dropout=0.05, bias="none", task_type=TaskType.SEQ_2_SEQ_LM, ) ``` ### Training Configuration ```python training_args = Seq2SeqTrainingArguments( output_dir=FINETUNED_DIR, per_device_train_batch_size=4, per_device_eval_batch_size=8, weight_decay=0.005, save_total_limit=3, learning_rate=1e-5, num_train_epochs=5, lr_scheduler_type="cosine", predict_with_generate=True, fp16=True if torch.cuda.is_available() else False, logging_dir="./logs", logging_steps=50, eval_steps=50, save_steps=100, eval_accumulation_steps=2, report_to="tensorboard", warmup_ratio=0.1, metric_for_best_model="eval_bleu", # Use BLEU for model selection greater_is_better=True, ) ``` ## Evaluation Automatic metrics are given in TL;DR. A manual review on 50 random test sentences showed: - Adequacy: 36 / 50 translations judged “Good” or better. - Fluency: 38 / 50 sound natural to a native speaker. *(Full spreadsheet available — ask via contact below.)* ## Limitations & bias - Only 500ish sentences → limited vocabulary & domain coverage. - May hallucinate proper nouns or numbers on longer inputs. - Gender/ politeness nuances not guaranteed. - CC-BY-NC licence forbids commercial use; respect Meta’s original terms. ## How to Contribute We welcome contributions to improve Turkmen-English translation capabilities! Here's how you can help: ### Data Contributions - **Read Dataset Contribution**: You can find the instructions for contributing to the dataset at [Dataset Readme](https://huggingface.co/datasets/XSkills/turkmen_english_s500/blob/main/README.md) ### Code Contributions - **Hyperparameter experiments**: Try different LoRA configurations and document your results - **Evaluation**: Help with human evaluation of translation quality and fluency - **Bug fixes**: Report issues or submit fixes for the model implementation ### Use Cases & Documentation - **Example applications**: Share how you're using the model for research or projects - **Domain-specific guides**: Create guides for using the model in specific domains - **Translation examples**: Share interesting or challenging translation examples ### Getting Started 1. Fork the repository 2. Make your changes 3. Submit a pull request with clear documentation of your contribution 4. For data contributions, contact the maintainer directly All contributors will be acknowledged in the model documentation. Contact [[email protected]](mailto:[email protected]) with any questions or to discuss potential contributions. --- *Note: This model is licensed under CC-BY-NC-4.0, so all contributions must be compatible with non-commercial use only.* ## Citation ```bibtex @misc{durdyyev2025turkmenNLLBLoRA, title = {LoRA Fine‐tuning of NLLB‐200 for Turkmen–English Translation}, author = {Durdyyev, Merdan}, year = {2025}, url = {https://huggingface.co/XSkills/nllb-200-turkmen-english-lora} } ``` ## Contact If you have questions, suggestions or want to collaborate, please reach out through [e-mail]([email protected]), [LinkedIn]( https://linkedin.com/in/merdandt) or [Telegram](https://t.me/merdandt). ## Future Work - Try to tune on bigger dataset. - Try to tweak the hyperparameters - Use [sacreBLEU](https://github.com/mjpost/sacrebleu) metric
omarwaleed523/gemma-3-12b-arabic-multitask
omarwaleed523
2025-04-29T17:30:54Z
0
0
transformers
[ "transformers", "safetensors", "text-generation-inference", "unsloth", "gemma3", "trl", "en", "base_model:unsloth/gemma-3-12b-it-unsloth-bnb-4bit", "base_model:finetune:unsloth/gemma-3-12b-it-unsloth-bnb-4bit", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2025-04-29T17:30:31Z
--- base_model: unsloth/gemma-3-12b-it-unsloth-bnb-4bit tags: - text-generation-inference - transformers - unsloth - gemma3 - trl license: apache-2.0 language: - en --- # Uploaded model - **Developed by:** omarwaleed523 - **License:** apache-2.0 - **Finetuned from model :** unsloth/gemma-3-12b-it-unsloth-bnb-4bit This gemma3 model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
jjeccles/qwen30430-filteranddocheadLora
jjeccles
2025-04-29T17:30:16Z
0
0
transformers
[ "transformers", "safetensors", "text-generation-inference", "unsloth", "qwen3", "trl", "en", "base_model:unsloth/Qwen3-1.7B", "base_model:finetune:unsloth/Qwen3-1.7B", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2025-04-29T17:30:05Z
--- base_model: unsloth/Qwen3-1.7B tags: - text-generation-inference - transformers - unsloth - qwen3 - trl license: apache-2.0 language: - en --- # Uploaded model - **Developed by:** jjeccles - **License:** apache-2.0 - **Finetuned from model :** unsloth/Qwen3-1.7B This qwen3 model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
kvbiii/modernbert-llm-router
kvbiii
2025-04-29T17:28:49Z
0
0
null
[ "tensorboard", "safetensors", "bert", "generated_from_trainer", "base_model:google-bert/bert-base-uncased", "base_model:finetune:google-bert/bert-base-uncased", "license:apache-2.0", "region:us" ]
null
2025-04-29T17:02:56Z
--- license: apache-2.0 base_model: google-bert/bert-base-uncased tags: - generated_from_trainer metrics: - f1 model-index: - name: modernbert-llm-router results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # modernbert-llm-router This model is a fine-tuned version of [google-bert/bert-base-uncased](https://huggingface.co/google-bert/bert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.2799 - F1: 0.9339 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 1.5656 | 1.0 | 313 | 1.1637 | 0.7771 | | 0.5046 | 2.0 | 626 | 0.4545 | 0.9159 | | 0.2419 | 3.0 | 939 | 0.3382 | 0.9208 | | 0.1345 | 4.0 | 1252 | 0.2883 | 0.9321 | | 0.0689 | 5.0 | 1565 | 0.2799 | 0.9339 | ### Framework versions - Transformers 4.44.0 - Pytorch 2.6.0+cu124 - Datasets 2.21.0 - Tokenizers 0.19.1
quickstep3621/dippy-v3-1-8
quickstep3621
2025-04-29T17:28:48Z
0
0
transformers
[ "transformers", "safetensors", "gemma3", "image-text-to-text", "gemma", "google", "Bifröst", "Bifrost", "code", "text-generation", "conversational", "base_model:google/gemma-3-27b-it", "base_model:finetune:google/gemma-3-27b-it", "license:gemma", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-04-29T17:28:44Z
--- license: gemma library_name: transformers pipeline_tag: text-generation extra_gated_heading: Access Gemma on Hugging Face extra_gated_prompt: >- To access Gemma on Hugging Face, you’re required to review and agree to Google’s usage license. To do this, please ensure you’re logged in to Hugging Face and click below. Requests are processed immediately. extra_gated_button_content: Acknowledge license base_model: google/gemma-3-27b-it tags: - transformers - gemma3 - gemma - google - Bifröst - Bifrost - code --- ## Bifröst-27B ![image/png](https://cdn-uploads.huggingface.co/production/uploads/64a834a8895fd6416e29576f/sAXfe0cQdULI_GEVxBstw.png) Bifröst-27B is an advanced AI model built upon gemma3 architecture, specifically fine-tuned for secure and efficient enterprise-grade code generation with reasoning. Designed to meet rigorous standards of safety, accuracy, and reliability, Bifröst empowers organizations to streamline software development workflows while prioritizing security and compliance. ### Model Details - **Model Name:** Bifröst-27B - **Base Architecture:** gemma3 - **Application:** Enterprise Secure Code Generation - **Release Date:** 16-March-2025 ### Intended Use Bifröst is designed explicitly for: - Generating secure, efficient, and high-quality code. - Supporting development tasks within regulated enterprise environments. - Enhancing productivity by automating routine coding tasks without compromising security. ### Features - **Security-Focused Training:** Specialized training regimen emphasizing secure coding practices, vulnerability reduction, and adherence to security standards. - **Enterprise-Optimized Performance:** Tailored to support various programming languages and enterprise frameworks with robust, context-aware suggestions. - **Compliance-Driven Design:** Incorporates features to aid in maintaining compliance with industry-specific standards (e.g., GDPR, HIPAA, SOC 2). ### Limitations - Bifröst should be used under human supervision to ensure code correctness and security compliance. - Model-generated code should undergo appropriate security and quality assurance checks before deployment. ### Ethical Considerations - Users are encouraged to perform regular audits and compliance checks on generated outputs. - Enterprises should implement responsible AI practices to mitigate biases or unintended consequences. ### Usage Below are some quick-start instructions for using the model with the `transformers` library. #### Installation ```sh $ pip install git+https://github.com/huggingface/[email protected] ``` #### Running with the `pipeline` API ```python from transformers import pipeline import torch pipe = pipeline( "text-generation", model="OpenGenerativeAI/Bifrost-27B", device="cuda", torch_dtype=torch.bfloat16 ) messages = [{"role": "user", "content": "Generate a secure API key management system."}] output = pipe(text=messages, max_new_tokens=200) print(output[0]["generated_text"]) ``` ## Terms of Use This model is released under the **Gemma license**. Users must comply with [Google's Gemma Terms of Use](https://ai.google.dev/gemma/terms), including restrictions on redistribution, modification, and commercial use.
quickstep3621/dippy-v3-1-6
quickstep3621
2025-04-29T17:28:43Z
0
0
transformers
[ "transformers", "safetensors", "gemma3", "image-text-to-text", "gemma", "google", "Bifröst", "Bifrost", "code", "text-generation", "conversational", "base_model:google/gemma-3-27b-it", "base_model:finetune:google/gemma-3-27b-it", "license:gemma", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-04-29T17:28:39Z
--- license: gemma library_name: transformers pipeline_tag: text-generation extra_gated_heading: Access Gemma on Hugging Face extra_gated_prompt: >- To access Gemma on Hugging Face, you’re required to review and agree to Google’s usage license. To do this, please ensure you’re logged in to Hugging Face and click below. Requests are processed immediately. extra_gated_button_content: Acknowledge license base_model: google/gemma-3-27b-it tags: - transformers - gemma3 - gemma - google - Bifröst - Bifrost - code --- ## Bifröst-27B ![image/png](https://cdn-uploads.huggingface.co/production/uploads/64a834a8895fd6416e29576f/sAXfe0cQdULI_GEVxBstw.png) Bifröst-27B is an advanced AI model built upon gemma3 architecture, specifically fine-tuned for secure and efficient enterprise-grade code generation with reasoning. Designed to meet rigorous standards of safety, accuracy, and reliability, Bifröst empowers organizations to streamline software development workflows while prioritizing security and compliance. ### Model Details - **Model Name:** Bifröst-27B - **Base Architecture:** gemma3 - **Application:** Enterprise Secure Code Generation - **Release Date:** 16-March-2025 ### Intended Use Bifröst is designed explicitly for: - Generating secure, efficient, and high-quality code. - Supporting development tasks within regulated enterprise environments. - Enhancing productivity by automating routine coding tasks without compromising security. ### Features - **Security-Focused Training:** Specialized training regimen emphasizing secure coding practices, vulnerability reduction, and adherence to security standards. - **Enterprise-Optimized Performance:** Tailored to support various programming languages and enterprise frameworks with robust, context-aware suggestions. - **Compliance-Driven Design:** Incorporates features to aid in maintaining compliance with industry-specific standards (e.g., GDPR, HIPAA, SOC 2). ### Limitations - Bifröst should be used under human supervision to ensure code correctness and security compliance. - Model-generated code should undergo appropriate security and quality assurance checks before deployment. ### Ethical Considerations - Users are encouraged to perform regular audits and compliance checks on generated outputs. - Enterprises should implement responsible AI practices to mitigate biases or unintended consequences. ### Usage Below are some quick-start instructions for using the model with the `transformers` library. #### Installation ```sh $ pip install git+https://github.com/huggingface/[email protected] ``` #### Running with the `pipeline` API ```python from transformers import pipeline import torch pipe = pipeline( "text-generation", model="OpenGenerativeAI/Bifrost-27B", device="cuda", torch_dtype=torch.bfloat16 ) messages = [{"role": "user", "content": "Generate a secure API key management system."}] output = pipe(text=messages, max_new_tokens=200) print(output[0]["generated_text"]) ``` ## Terms of Use This model is released under the **Gemma license**. Users must comply with [Google's Gemma Terms of Use](https://ai.google.dev/gemma/terms), including restrictions on redistribution, modification, and commercial use.
RichardErkhov/RyanYr_-_reflect_mini8B_Om2SftT1-Om2G8kOm2AgIpsdpIter1T1_b0.1-gguf
RichardErkhov
2025-04-29T17:27:59Z
0
0
null
[ "gguf", "arxiv:2305.18290", "endpoints_compatible", "region:us", "conversational" ]
null
2025-04-29T09:16:28Z
Quantization made by Richard Erkhov. [Github](https://github.com/RichardErkhov) [Discord](https://discord.gg/pvy7H8DZMG) [Request more models](https://github.com/RichardErkhov/quant_request) reflect_mini8B_Om2SftT1-Om2G8kOm2AgIpsdpIter1T1_b0.1 - GGUF - Model creator: https://huggingface.co/RyanYr/ - Original model: https://huggingface.co/RyanYr/reflect_mini8B_Om2SftT1-Om2G8kOm2AgIpsdpIter1T1_b0.1/ | Name | Quant method | Size | | ---- | ---- | ---- | | [reflect_mini8B_Om2SftT1-Om2G8kOm2AgIpsdpIter1T1_b0.1.Q2_K.gguf](https://huggingface.co/RichardErkhov/RyanYr_-_reflect_mini8B_Om2SftT1-Om2G8kOm2AgIpsdpIter1T1_b0.1-gguf/blob/main/reflect_mini8B_Om2SftT1-Om2G8kOm2AgIpsdpIter1T1_b0.1.Q2_K.gguf) | Q2_K | 2.97GB | | [reflect_mini8B_Om2SftT1-Om2G8kOm2AgIpsdpIter1T1_b0.1.IQ3_XS.gguf](https://huggingface.co/RichardErkhov/RyanYr_-_reflect_mini8B_Om2SftT1-Om2G8kOm2AgIpsdpIter1T1_b0.1-gguf/blob/main/reflect_mini8B_Om2SftT1-Om2G8kOm2AgIpsdpIter1T1_b0.1.IQ3_XS.gguf) | IQ3_XS | 3.28GB | | [reflect_mini8B_Om2SftT1-Om2G8kOm2AgIpsdpIter1T1_b0.1.IQ3_S.gguf](https://huggingface.co/RichardErkhov/RyanYr_-_reflect_mini8B_Om2SftT1-Om2G8kOm2AgIpsdpIter1T1_b0.1-gguf/blob/main/reflect_mini8B_Om2SftT1-Om2G8kOm2AgIpsdpIter1T1_b0.1.IQ3_S.gguf) | IQ3_S | 3.43GB | | [reflect_mini8B_Om2SftT1-Om2G8kOm2AgIpsdpIter1T1_b0.1.Q3_K_S.gguf](https://huggingface.co/RichardErkhov/RyanYr_-_reflect_mini8B_Om2SftT1-Om2G8kOm2AgIpsdpIter1T1_b0.1-gguf/blob/main/reflect_mini8B_Om2SftT1-Om2G8kOm2AgIpsdpIter1T1_b0.1.Q3_K_S.gguf) | Q3_K_S | 3.41GB | | [reflect_mini8B_Om2SftT1-Om2G8kOm2AgIpsdpIter1T1_b0.1.IQ3_M.gguf](https://huggingface.co/RichardErkhov/RyanYr_-_reflect_mini8B_Om2SftT1-Om2G8kOm2AgIpsdpIter1T1_b0.1-gguf/blob/main/reflect_mini8B_Om2SftT1-Om2G8kOm2AgIpsdpIter1T1_b0.1.IQ3_M.gguf) | IQ3_M | 3.53GB | | [reflect_mini8B_Om2SftT1-Om2G8kOm2AgIpsdpIter1T1_b0.1.Q3_K.gguf](https://huggingface.co/RichardErkhov/RyanYr_-_reflect_mini8B_Om2SftT1-Om2G8kOm2AgIpsdpIter1T1_b0.1-gguf/blob/main/reflect_mini8B_Om2SftT1-Om2G8kOm2AgIpsdpIter1T1_b0.1.Q3_K.gguf) | Q3_K | 3.74GB | | [reflect_mini8B_Om2SftT1-Om2G8kOm2AgIpsdpIter1T1_b0.1.Q3_K_M.gguf](https://huggingface.co/RichardErkhov/RyanYr_-_reflect_mini8B_Om2SftT1-Om2G8kOm2AgIpsdpIter1T1_b0.1-gguf/blob/main/reflect_mini8B_Om2SftT1-Om2G8kOm2AgIpsdpIter1T1_b0.1.Q3_K_M.gguf) | Q3_K_M | 3.74GB | | [reflect_mini8B_Om2SftT1-Om2G8kOm2AgIpsdpIter1T1_b0.1.Q3_K_L.gguf](https://huggingface.co/RichardErkhov/RyanYr_-_reflect_mini8B_Om2SftT1-Om2G8kOm2AgIpsdpIter1T1_b0.1-gguf/blob/main/reflect_mini8B_Om2SftT1-Om2G8kOm2AgIpsdpIter1T1_b0.1.Q3_K_L.gguf) | Q3_K_L | 4.03GB | | [reflect_mini8B_Om2SftT1-Om2G8kOm2AgIpsdpIter1T1_b0.1.IQ4_XS.gguf](https://huggingface.co/RichardErkhov/RyanYr_-_reflect_mini8B_Om2SftT1-Om2G8kOm2AgIpsdpIter1T1_b0.1-gguf/blob/main/reflect_mini8B_Om2SftT1-Om2G8kOm2AgIpsdpIter1T1_b0.1.IQ4_XS.gguf) | IQ4_XS | 4.17GB | | [reflect_mini8B_Om2SftT1-Om2G8kOm2AgIpsdpIter1T1_b0.1.Q4_0.gguf](https://huggingface.co/RichardErkhov/RyanYr_-_reflect_mini8B_Om2SftT1-Om2G8kOm2AgIpsdpIter1T1_b0.1-gguf/blob/main/reflect_mini8B_Om2SftT1-Om2G8kOm2AgIpsdpIter1T1_b0.1.Q4_0.gguf) | Q4_0 | 4.34GB | | [reflect_mini8B_Om2SftT1-Om2G8kOm2AgIpsdpIter1T1_b0.1.IQ4_NL.gguf](https://huggingface.co/RichardErkhov/RyanYr_-_reflect_mini8B_Om2SftT1-Om2G8kOm2AgIpsdpIter1T1_b0.1-gguf/blob/main/reflect_mini8B_Om2SftT1-Om2G8kOm2AgIpsdpIter1T1_b0.1.IQ4_NL.gguf) | IQ4_NL | 4.38GB | | [reflect_mini8B_Om2SftT1-Om2G8kOm2AgIpsdpIter1T1_b0.1.Q4_K_S.gguf](https://huggingface.co/RichardErkhov/RyanYr_-_reflect_mini8B_Om2SftT1-Om2G8kOm2AgIpsdpIter1T1_b0.1-gguf/blob/main/reflect_mini8B_Om2SftT1-Om2G8kOm2AgIpsdpIter1T1_b0.1.Q4_K_S.gguf) | Q4_K_S | 4.36GB | | [reflect_mini8B_Om2SftT1-Om2G8kOm2AgIpsdpIter1T1_b0.1.Q4_K.gguf](https://huggingface.co/RichardErkhov/RyanYr_-_reflect_mini8B_Om2SftT1-Om2G8kOm2AgIpsdpIter1T1_b0.1-gguf/blob/main/reflect_mini8B_Om2SftT1-Om2G8kOm2AgIpsdpIter1T1_b0.1.Q4_K.gguf) | Q4_K | 4.57GB | | [reflect_mini8B_Om2SftT1-Om2G8kOm2AgIpsdpIter1T1_b0.1.Q4_K_M.gguf](https://huggingface.co/RichardErkhov/RyanYr_-_reflect_mini8B_Om2SftT1-Om2G8kOm2AgIpsdpIter1T1_b0.1-gguf/blob/main/reflect_mini8B_Om2SftT1-Om2G8kOm2AgIpsdpIter1T1_b0.1.Q4_K_M.gguf) | Q4_K_M | 4.57GB | | [reflect_mini8B_Om2SftT1-Om2G8kOm2AgIpsdpIter1T1_b0.1.Q4_1.gguf](https://huggingface.co/RichardErkhov/RyanYr_-_reflect_mini8B_Om2SftT1-Om2G8kOm2AgIpsdpIter1T1_b0.1-gguf/blob/main/reflect_mini8B_Om2SftT1-Om2G8kOm2AgIpsdpIter1T1_b0.1.Q4_1.gguf) | Q4_1 | 4.77GB | | [reflect_mini8B_Om2SftT1-Om2G8kOm2AgIpsdpIter1T1_b0.1.Q5_0.gguf](https://huggingface.co/RichardErkhov/RyanYr_-_reflect_mini8B_Om2SftT1-Om2G8kOm2AgIpsdpIter1T1_b0.1-gguf/blob/main/reflect_mini8B_Om2SftT1-Om2G8kOm2AgIpsdpIter1T1_b0.1.Q5_0.gguf) | Q5_0 | 5.21GB | | [reflect_mini8B_Om2SftT1-Om2G8kOm2AgIpsdpIter1T1_b0.1.Q5_K_S.gguf](https://huggingface.co/RichardErkhov/RyanYr_-_reflect_mini8B_Om2SftT1-Om2G8kOm2AgIpsdpIter1T1_b0.1-gguf/blob/main/reflect_mini8B_Om2SftT1-Om2G8kOm2AgIpsdpIter1T1_b0.1.Q5_K_S.gguf) | Q5_K_S | 5.21GB | | [reflect_mini8B_Om2SftT1-Om2G8kOm2AgIpsdpIter1T1_b0.1.Q5_K.gguf](https://huggingface.co/RichardErkhov/RyanYr_-_reflect_mini8B_Om2SftT1-Om2G8kOm2AgIpsdpIter1T1_b0.1-gguf/blob/main/reflect_mini8B_Om2SftT1-Om2G8kOm2AgIpsdpIter1T1_b0.1.Q5_K.gguf) | Q5_K | 5.33GB | | [reflect_mini8B_Om2SftT1-Om2G8kOm2AgIpsdpIter1T1_b0.1.Q5_K_M.gguf](https://huggingface.co/RichardErkhov/RyanYr_-_reflect_mini8B_Om2SftT1-Om2G8kOm2AgIpsdpIter1T1_b0.1-gguf/blob/main/reflect_mini8B_Om2SftT1-Om2G8kOm2AgIpsdpIter1T1_b0.1.Q5_K_M.gguf) | Q5_K_M | 5.33GB | | [reflect_mini8B_Om2SftT1-Om2G8kOm2AgIpsdpIter1T1_b0.1.Q5_1.gguf](https://huggingface.co/RichardErkhov/RyanYr_-_reflect_mini8B_Om2SftT1-Om2G8kOm2AgIpsdpIter1T1_b0.1-gguf/blob/main/reflect_mini8B_Om2SftT1-Om2G8kOm2AgIpsdpIter1T1_b0.1.Q5_1.gguf) | Q5_1 | 5.65GB | | [reflect_mini8B_Om2SftT1-Om2G8kOm2AgIpsdpIter1T1_b0.1.Q6_K.gguf](https://huggingface.co/RichardErkhov/RyanYr_-_reflect_mini8B_Om2SftT1-Om2G8kOm2AgIpsdpIter1T1_b0.1-gguf/blob/main/reflect_mini8B_Om2SftT1-Om2G8kOm2AgIpsdpIter1T1_b0.1.Q6_K.gguf) | Q6_K | 6.14GB | | [reflect_mini8B_Om2SftT1-Om2G8kOm2AgIpsdpIter1T1_b0.1.Q8_0.gguf](https://huggingface.co/RichardErkhov/RyanYr_-_reflect_mini8B_Om2SftT1-Om2G8kOm2AgIpsdpIter1T1_b0.1-gguf/blob/main/reflect_mini8B_Om2SftT1-Om2G8kOm2AgIpsdpIter1T1_b0.1.Q8_0.gguf) | Q8_0 | 7.94GB | Original model description: --- base_model: RyanYr/reflect_mini8Bit_om2-460k_sft-t1 library_name: transformers model_name: reflect_mini8B_Om2SftT1-Om2G8kOm2AgIpsdpIter1T1_b0.1 tags: - generated_from_trainer - trl - dpo licence: license --- # Model Card for reflect_mini8B_Om2SftT1-Om2G8kOm2AgIpsdpIter1T1_b0.1 This model is a fine-tuned version of [RyanYr/reflect_mini8Bit_om2-460k_sft-t1](https://huggingface.co/RyanYr/reflect_mini8Bit_om2-460k_sft-t1). It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="RyanYr/reflect_mini8B_Om2SftT1-Om2G8kOm2AgIpsdpIter1T1_b0.1", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure [<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="150" height="24"/>](https://wandb.ai/yyr/huggingface/runs/s117w777) This model was trained with DPO, a method introduced in [Direct Preference Optimization: Your Language Model is Secretly a Reward Model](https://huggingface.co/papers/2305.18290). ### Framework versions - TRL: 0.12.0.dev0 - Transformers: 4.45.2 - Pytorch: 2.5.1 - Datasets: 3.1.0 - Tokenizers: 0.20.3 ## Citations Cite DPO as: ```bibtex @inproceedings{rafailov2023direct, title = {{Direct Preference Optimization: Your Language Model is Secretly a Reward Model}}, author = {Rafael Rafailov and Archit Sharma and Eric Mitchell and Christopher D. Manning and Stefano Ermon and Chelsea Finn}, year = 2023, booktitle = {Advances in Neural Information Processing Systems 36: Annual Conference on Neural Information Processing Systems 2023, NeurIPS 2023, New Orleans, LA, USA, December 10 - 16, 2023}, url = {http://papers.nips.cc/paper_files/paper/2023/hash/a85b405ed65c6477a4fe8302b5e06ce7-Abstract-Conference.html}, editor = {Alice Oh and Tristan Naumann and Amir Globerson and Kate Saenko and Moritz Hardt and Sergey Levine}, } ``` Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallouédec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
rayonlabs/hf-autotrain-2025-04-29-ccf32cbf
rayonlabs
2025-04-29T17:26:10Z
0
0
transformers
[ "transformers", "safetensors", "qwen2", "text-generation", "autotrain", "text-generation-inference", "peft", "conversational", "dataset:rayonlabs/autotrain-data-hf-autotrain-2025-04-29-ccf32cbf", "base_model:unsloth/Qwen2-7B-Instruct", "base_model:finetune:unsloth/Qwen2-7B-Instruct", "license:other", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2025-04-29T16:23:34Z
--- tags: - autotrain - text-generation-inference - text-generation - peft library_name: transformers base_model: unsloth/Qwen2-7B-Instruct widget: - messages: - role: user content: What is your favorite condiment? license: other datasets: - rayonlabs/autotrain-data-hf-autotrain-2025-04-29-ccf32cbf --- # Model Trained Using AutoTrain This model was trained using AutoTrain. For more information, please visit [AutoTrain](https://hf.co/docs/autotrain). # Usage ```python from transformers import AutoModelForCausalLM, AutoTokenizer model_path = "PATH_TO_THIS_REPO" tokenizer = AutoTokenizer.from_pretrained(model_path) model = AutoModelForCausalLM.from_pretrained( model_path, device_map="auto", torch_dtype='auto' ).eval() # Prompt content: "hi" messages = [ {"role": "user", "content": "hi"} ] input_ids = tokenizer.apply_chat_template(conversation=messages, tokenize=True, add_generation_prompt=True, return_tensors='pt') output_ids = model.generate(input_ids.to('cuda')) response = tokenizer.decode(output_ids[0][input_ids.shape[1]:], skip_special_tokens=True) # Model response: "Hello! How can I assist you today?" print(response) ```
MergeBench-Llama-8B/llama-3.1-8b_mtl
MergeBench-Llama-8B
2025-04-29T17:26:07Z
0
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-04-29T17:23:53Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
karuko24/Qwen3-32B-W4A16
karuko24
2025-04-29T17:25:49Z
0
0
null
[ "safetensors", "qwen3", "arxiv:2309.00071", "base_model:Qwen/Qwen3-32B", "base_model:quantized:Qwen/Qwen3-32B", "license:apache-2.0", "compressed-tensors", "region:us" ]
null
2025-04-29T11:15:42Z
--- license: apache-2.0 base_model: - Qwen/Qwen3-32B --- # Qwen3-32B <a href="https://chat.qwen.ai/" target="_blank" style="margin: 2px;"> <img alt="Chat" src="https://img.shields.io/badge/%F0%9F%92%9C%EF%B8%8F%20Qwen%20Chat%20-536af5" style="display: inline-block; vertical-align: middle;"/> </a> ## Qwen3 Highlights Qwen3 is the latest generation of large language models in Qwen series, offering a comprehensive suite of dense and mixture-of-experts (MoE) models. Built upon extensive training, Qwen3 delivers groundbreaking advancements in reasoning, instruction-following, agent capabilities, and multilingual support, with the following key features: - **Uniquely support of seamless switching between thinking mode** (for complex logical reasoning, math, and coding) and **non-thinking mode** (for efficient, general-purpose dialogue) **within single model**, ensuring optimal performance across various scenarios. - **Significantly enhancement in its reasoning capabilities**, surpassing previous QwQ (in thinking mode) and Qwen2.5 instruct models (in non-thinking mode) on mathematics, code generation, and commonsense logical reasoning. - **Superior human preference alignment**, excelling in creative writing, role-playing, multi-turn dialogues, and instruction following, to deliver a more natural, engaging, and immersive conversational experience. - **Expertise in agent capabilities**, enabling precise integration with external tools in both thinking and unthinking modes and achieving leading performance among open-source models in complex agent-based tasks. - **Support of 100+ languages and dialects** with strong capabilities for **multilingual instruction following** and **translation**. ## Model Overview **Qwen3-32B** has the following features: - Type: Causal Language Models - Training Stage: Pretraining & Post-training - Number of Parameters: 32.8B - Number of Paramaters (Non-Embedding): 31.2B - Number of Layers: 64 - Number of Attention Heads (GQA): 64 for Q and 8 for KV - Context Length: 32,768 natively and [131,072 tokens with YaRN](#processing-long-texts). For more details, including benchmark evaluation, hardware requirements, and inference performance, please refer to our [blog](https://qwenlm.github.io/blog/qwen3/), [GitHub](https://github.com/QwenLM/Qwen3), and [Documentation](https://qwen.readthedocs.io/en/latest/). ## Quickstart The code of Qwen3 has been in the latest Hugging Face `transformers` and we advise you to use the latest version of `transformers`. With `transformers<4.51.0`, you will encounter the following error: ``` KeyError: 'qwen3' ``` The following contains a code snippet illustrating how to use the model generate content based on given inputs. ```python from transformers import AutoModelForCausalLM, AutoTokenizer model_name = "Qwen/Qwen3-32B" # load the tokenizer and the model tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForCausalLM.from_pretrained( model_name, torch_dtype="auto", device_map="auto" ) # prepare the model input prompt = "Give me a short introduction to large language model." messages = [ {"role": "user", "content": prompt} ] text = tokenizer.apply_chat_template( messages, tokenize=False, add_generation_prompt=True, enable_thinking=True # Switches between thinking and non-thinking modes. Default is True. ) model_inputs = tokenizer([text], return_tensors="pt").to(model.device) # conduct text completion generated_ids = model.generate( **model_inputs, max_new_tokens=32768 ) output_ids = generated_ids[0][len(model_inputs.input_ids[0]):].tolist() # parsing thinking content try: # rindex finding 151668 (</think>) index = len(output_ids) - output_ids[::-1].index(151668) except ValueError: index = 0 thinking_content = tokenizer.decode(output_ids[:index], skip_special_tokens=True).strip("\n") content = tokenizer.decode(output_ids[index:], skip_special_tokens=True).strip("\n") print("thinking content:", thinking_content) print("content:", content) ``` For deployment, you can use `sglang>=0.4.6.post1` or `vllm>=0.8.5` or to create an OpenAI-compatible API endpoint: - SGLang: ```shell python -m sglang.launch_server --model-path Qwen/Qwen3-32B --reasoning-parser qwen3 ``` - vLLM: ```shell vllm serve Qwen/Qwen3-32B --enable-reasoning --reasoning-parser deepseek_r1 ``` For local use, applications such as Ollama, LMStudio, MLX-LM, llama.cpp, and KTransformers have also supported Qwen3. ## Switching Between Thinking and Non-Thinking Mode > [!TIP] > The `enable_thinking` switch is also available in APIs created by SGLang and vLLM. > Please refer to our documentation for [SGLang](https://qwen.readthedocs.io/en/latest/deployment/sglang.html#thinking-non-thinking-modes) and [vLLM](https://qwen.readthedocs.io/en/latest/deployment/vllm.html#thinking-non-thinking-modes) users. ### `enable_thinking=True` By default, Qwen3 has thinking capabilities enabled, similar to QwQ-32B. This means the model will use its reasoning abilities to enhance the quality of generated responses. For example, when explicitly setting `enable_thinking=True` or leaving it as the default value in `tokenizer.apply_chat_template`, the model will engage its thinking mode. ```python text = tokenizer.apply_chat_template( messages, tokenize=False, add_generation_prompt=True, enable_thinking=True # True is the default value for enable_thinking ) ``` In this mode, the model will generate think content wrapped in a `<think>...</think>` block, followed by the final response. > [!NOTE] > For thinking mode, use `Temperature=0.6`, `TopP=0.95`, `TopK=20`, and `MinP=0` (the default setting in `generation_config.json`). **DO NOT use greedy decoding**, as it can lead to performance degradation and endless repetitions. For more detailed guidance, please refer to the [Best Practices](#best-practices) section. ### `enable_thinking=False` We provide a hard switch to strictly disable the model's thinking behavior, aligning its functionality with the previous Qwen2.5-Instruct models. This mode is particularly useful in scenarios where disabling thinking is essential for enhancing efficiency. ```python text = tokenizer.apply_chat_template( messages, tokenize=False, add_generation_prompt=True, enable_thinking=False # Setting enable_thinking=False disables thinking mode ) ``` In this mode, the model will not generate any think content and will not include a `<think>...</think>` block. > [!NOTE] > For non-thinking mode, we suggest using `Temperature=0.7`, `TopP=0.8`, `TopK=20`, and `MinP=0`. For more detailed guidance, please refer to the [Best Practices](#best-practices) section. ### Advanced Usage: Switching Between Thinking and Non-Thinking Modes via User Input We provide a soft switch mechanism that allows users to dynamically control the model's behavior when `enable_thinking=True`. Specifically, you can add `/think` and `/no_think` to user prompts or system messages to switch the model's thinking mode from turn to turn. The model will follow the most recent instruction in multi-turn conversations. Here is an example of a multi-turn conversation: ```python from transformers import AutoModelForCausalLM, AutoTokenizer class QwenChatbot: def __init__(self, model_name="Qwen/Qwen3-32B"): self.tokenizer = AutoTokenizer.from_pretrained(model_name) self.model = AutoModelForCausalLM.from_pretrained(model_name) self.history = [] def generate_response(self, user_input): messages = self.history + [{"role": "user", "content": user_input}] text = self.tokenizer.apply_chat_template( messages, tokenize=False, add_generation_prompt=True ) inputs = self.tokenizer(text, return_tensors="pt") response_ids = self.model.generate(**inputs, max_new_tokens=32768)[0][len(inputs.input_ids[0]):].tolist() response = self.tokenizer.decode(response_ids, skip_special_tokens=True) # Update history self.history.append({"role": "user", "content": user_input}) self.history.append({"role": "assistant", "content": response}) return response # Example Usage if __name__ == "__main__": chatbot = QwenChatbot() # First input (without /think or /no_think tags, thinking mode is enabled by default) user_input_1 = "How many r's in strawberries?" print(f"User: {user_input_1}") response_1 = chatbot.generate_response(user_input_1) print(f"Bot: {response_1}") print("----------------------") # Second input with /no_think user_input_2 = "Then, how many r's in blueberries? /no_think" print(f"User: {user_input_2}") response_2 = chatbot.generate_response(user_input_2) print(f"Bot: {response_2}") print("----------------------") # Third input with /think user_input_3 = "Really? /think" print(f"User: {user_input_3}") response_3 = chatbot.generate_response(user_input_3) print(f"Bot: {response_3}") ``` > [!NOTE] > For API compatibility, when `enable_thinking=True`, regardless of whether the user uses `/think` or `/no_think`, the model will always output a block wrapped in `<think>...</think>`. However, the content inside this block may be empty if thinking is disabled. > When `enable_thinking=False`, the soft switches are not valid. Regardless of any `/think` or `/no_think` tags input by the user, the model will not generate think content and will not include a `<think>...</think>` block. ## Agentic Use Qwen3 excels in tool calling capabilities. We recommend using [Qwen-Agent](https://github.com/QwenLM/Qwen-Agent) to make the best use of agentic ability of Qwen3. Qwen-Agent encapsulates tool-calling templates and tool-calling parsers internally, greatly reducing coding complexity. To define the available tools, you can use the MCP configuration file, use the integrated tool of Qwen-Agent, or integrate other tools by yourself. ```python from qwen_agent.agents import Assistant # Define LLM llm_cfg = { 'model': 'Qwen3-32B', # Use the endpoint provided by Alibaba Model Studio: # 'model_type': 'qwen_dashscope', # 'api_key': os.getenv('DASHSCOPE_API_KEY'), # Use a custom endpoint compatible with OpenAI API: 'model_server': 'http://localhost:8000/v1', # api_base 'api_key': 'EMPTY', # Other parameters: # 'generate_cfg': { # # Add: When the response content is `<think>this is the thought</think>this is the answer; # # Do not add: When the response has been separated by reasoning_content and content. # 'thought_in_content': True, # }, } # Define Tools tools = [ {'mcpServers': { # You can specify the MCP configuration file 'time': { 'command': 'uvx', 'args': ['mcp-server-time', '--local-timezone=Asia/Shanghai'] }, "fetch": { "command": "uvx", "args": ["mcp-server-fetch"] } } }, 'code_interpreter', # Built-in tools ] # Define Agent bot = Assistant(llm=llm_cfg, function_list=tools) # Streaming generation messages = [{'role': 'user', 'content': 'https://qwenlm.github.io/blog/ Introduce the latest developments of Qwen'}] for responses in bot.run(messages=messages): pass print(responses) ``` ## Processing Long Texts Qwen3 natively supports context lengths of up to 32,768 tokens. For conversations where the total length (including both input and output) significantly exceeds this limit, we recommend using RoPE scaling techniques to handle long texts effectively. We have validated the model's performance on context lengths of up to 131,072 tokens using the [YaRN](https://arxiv.org/abs/2309.00071) method. YaRN is currently supported by several inference frameworks, e.g., `transformers` and `llama.cpp` for local use, `vllm` and `sglang` for deployment. In general, there are two approaches to enabling YaRN for supported frameworks: - Modifying the model files: In the `config.json` file, add the `rope_scaling` fields: ```json { ..., "rope_scaling": { "rope_type": "yarn", "factor": 4.0, "original_max_position_embeddings": 32768 } } ``` For `llama.cpp`, you need to regenerate the GGUF file after the modification. - Passing command line arguments: For `vllm`, you can use ```shell vllm serve ... --rope-scaling '{"rope_type":"yarn","factor":4.0,"original_max_position_embeddings":32768}' --max-model-len 131072 ``` For `sglang`, you can use ```shell python -m sglang.launch_server ... --json-model-override-args '{"rope_scaling":{"rope_type":"yarn","factor":4.0,"original_max_position_embeddings":32768}}' ``` For `llama-server` from `llama.cpp`, you can use ```shell llama-server ... --rope-scaling yarn --rope-scale 4 --yarn-orig-ctx 32768 ``` > [!IMPORTANT] > If you encounter the following warning > ``` > Unrecognized keys in `rope_scaling` for 'rope_type'='yarn': {'original_max_position_embeddings'} > ``` > please upgrade `transformers>=4.51.0`. > [!NOTE] > All the notable open-source frameworks implement static YaRN, which means the scaling factor remains constant regardless of input length, **potentially impacting performance on shorter texts.** > We advise adding the `rope_scaling` configuration only when processing long contexts is required. > It is also recommended to modify the `factor` as needed. For example, if the typical context length for your application is 65,536 tokens, it would be better to set `factor` as 2.0. > [!NOTE] > The default `max_position_embeddings` in `config.json` is set to 40,960. This allocation includes reserving 32,768 tokens for outputs and 8,192 tokens for typical prompts, which is sufficient for most scenarios involving short text processing. If the average context length does not exceed 32,768 tokens, we do not recommend enabling YaRN in this scenario, as it may potentially degrade model performance. > [!TIP] > The endpoint provided by Alibaba Model Studio supports dynamic YaRN by default and no extra configuration is needed. ## Best Practices To achieve optimal performance, we recommend the following settings: 1. **Sampling Parameters**: - For thinking mode (`enable_thinking=True`), use `Temperature=0.6`, `TopP=0.95`, `TopK=20`, and `MinP=0`. **DO NOT use greedy decoding**, as it can lead to performance degradation and endless repetitions. - For non-thinking mode (`enable_thinking=False`), we suggest using `Temperature=0.7`, `TopP=0.8`, `TopK=20`, and `MinP=0`. - For supported frameworks, you can adjust the `presence_penalty` parameter between 0 and 2 to reduce endless repetitions. However, using a higher value may occasionally result in language mixing and a slight decrease in model performance. 2. **Adequate Output Length**: We recommend using an output length of 32,768 tokens for most queries. For benchmarking on highly complex problems, such as those found in math and programming competitions, we suggest setting the max output length to 38,912 tokens. This provides the model with sufficient space to generate detailed and comprehensive responses, thereby enhancing its overall performance. 3. **Standardize Output Format**: We recommend using prompts to standardize model outputs when benchmarking. - **Math Problems**: Include "Please reason step by step, and put your final answer within \boxed{}." in the prompt. - **Multiple-Choice Questions**: Add the following JSON structure to the prompt to standardize responses: "Please show your choice in the `answer` field with only the choice letter, e.g., `"answer": "C"`." 4. **No Thinking Content in History**: In multi-turn conversations, the historical model output should only include the final output part and does not need to include the thinking content. It is implemented in the provided chat template in Jinja2. However, for frameworks that do not directly use the Jinja2 chat template, it is up to the developers to ensure that the best practice is followed. ### Citation If you find our work helpful, feel free to give us a cite. ``` @misc{qwen3, title = {Qwen3}, url = {https://qwenlm.github.io/blog/qwen3/}, author = {Qwen Team}, month = {April}, year = {2025} } ```
Bilalmomin39/llama1b-finetune-yt1
Bilalmomin39
2025-04-29T17:25:27Z
0
0
transformers
[ "transformers", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2025-04-29T17:16:25Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
karuko24/Qwen3-8B-W4A16
karuko24
2025-04-29T17:25:05Z
4
0
null
[ "safetensors", "qwen3", "arxiv:2309.00071", "base_model:Qwen/Qwen3-8B", "base_model:quantized:Qwen/Qwen3-8B", "license:apache-2.0", "compressed-tensors", "region:us" ]
null
2025-04-29T08:45:32Z
--- license: apache-2.0 base_model: - Qwen/Qwen3-8B --- # Qwen3-8B <a href="https://chat.qwen.ai/" target="_blank" style="margin: 2px;"> <img alt="Chat" src="https://img.shields.io/badge/%F0%9F%92%9C%EF%B8%8F%20Qwen%20Chat%20-536af5" style="display: inline-block; vertical-align: middle;"/> </a> ## Qwen3 Highlights Qwen3 is the latest generation of large language models in Qwen series, offering a comprehensive suite of dense and mixture-of-experts (MoE) models. Built upon extensive training, Qwen3 delivers groundbreaking advancements in reasoning, instruction-following, agent capabilities, and multilingual support, with the following key features: - **Uniquely support of seamless switching between thinking mode** (for complex logical reasoning, math, and coding) and **non-thinking mode** (for efficient, general-purpose dialogue) **within single model**, ensuring optimal performance across various scenarios. - **Significantly enhancement in its reasoning capabilities**, surpassing previous QwQ (in thinking mode) and Qwen2.5 instruct models (in non-thinking mode) on mathematics, code generation, and commonsense logical reasoning. - **Superior human preference alignment**, excelling in creative writing, role-playing, multi-turn dialogues, and instruction following, to deliver a more natural, engaging, and immersive conversational experience. - **Expertise in agent capabilities**, enabling precise integration with external tools in both thinking and unthinking modes and achieving leading performance among open-source models in complex agent-based tasks. - **Support of 100+ languages and dialects** with strong capabilities for **multilingual instruction following** and **translation**. ## Model Overview **Qwen3-8B** has the following features: - Type: Causal Language Models - Training Stage: Pretraining & Post-training - Number of Parameters: 8.2B - Number of Paramaters (Non-Embedding): 6.95B - Number of Layers: 36 - Number of Attention Heads (GQA): 32 for Q and 8 for KV - Context Length: 32,768 natively and [131,072 tokens with YaRN](#processing-long-texts). For more details, including benchmark evaluation, hardware requirements, and inference performance, please refer to our [blog](https://qwenlm.github.io/blog/qwen3/), [GitHub](https://github.com/QwenLM/Qwen3), and [Documentation](https://qwen.readthedocs.io/en/latest/). ## Quickstart The code of Qwen3 has been in the latest Hugging Face `transformers` and we advise you to use the latest version of `transformers`. With `transformers<4.51.0`, you will encounter the following error: ``` KeyError: 'qwen3' ``` The following contains a code snippet illustrating how to use the model generate content based on given inputs. ```python from transformers import AutoModelForCausalLM, AutoTokenizer model_name = "Qwen/Qwen3-8B" # load the tokenizer and the model tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForCausalLM.from_pretrained( model_name, torch_dtype="auto", device_map="auto" ) # prepare the model input prompt = "Give me a short introduction to large language model." messages = [ {"role": "user", "content": prompt} ] text = tokenizer.apply_chat_template( messages, tokenize=False, add_generation_prompt=True, enable_thinking=True # Switches between thinking and non-thinking modes. Default is True. ) model_inputs = tokenizer([text], return_tensors="pt").to(model.device) # conduct text completion generated_ids = model.generate( **model_inputs, max_new_tokens=32768 ) output_ids = generated_ids[0][len(model_inputs.input_ids[0]):].tolist() # parsing thinking content try: # rindex finding 151668 (</think>) index = len(output_ids) - output_ids[::-1].index(151668) except ValueError: index = 0 thinking_content = tokenizer.decode(output_ids[:index], skip_special_tokens=True).strip("\n") content = tokenizer.decode(output_ids[index:], skip_special_tokens=True).strip("\n") print("thinking content:", thinking_content) print("content:", content) ``` For deployment, you can use `sglang>=0.4.6.post1` or `vllm>=0.8.5` or to create an OpenAI-compatible API endpoint: - SGLang: ```shell python -m sglang.launch_server --model-path Qwen/Qwen3-8B --reasoning-parser qwen3 ``` - vLLM: ```shell vllm serve Qwen/Qwen3-8B --enable-reasoning --reasoning-parser deepseek_r1 ``` For local use, applications such as Ollama, LMStudio, MLX-LM, llama.cpp, and KTransformers have also supported Qwen3. ## Switching Between Thinking and Non-Thinking Mode > [!TIP] > The `enable_thinking` switch is also available in APIs created by SGLang and vLLM. > Please refer to our documentation for [SGLang](https://qwen.readthedocs.io/en/latest/deployment/sglang.html#thinking-non-thinking-modes) and [vLLM](https://qwen.readthedocs.io/en/latest/deployment/vllm.html#thinking-non-thinking-modes) users. ### `enable_thinking=True` By default, Qwen3 has thinking capabilities enabled, similar to QwQ-32B. This means the model will use its reasoning abilities to enhance the quality of generated responses. For example, when explicitly setting `enable_thinking=True` or leaving it as the default value in `tokenizer.apply_chat_template`, the model will engage its thinking mode. ```python text = tokenizer.apply_chat_template( messages, tokenize=False, add_generation_prompt=True, enable_thinking=True # True is the default value for enable_thinking ) ``` In this mode, the model will generate think content wrapped in a `<think>...</think>` block, followed by the final response. > [!NOTE] > For thinking mode, use `Temperature=0.6`, `TopP=0.95`, `TopK=20`, and `MinP=0` (the default setting in `generation_config.json`). **DO NOT use greedy decoding**, as it can lead to performance degradation and endless repetitions. For more detailed guidance, please refer to the [Best Practices](#best-practices) section. ### `enable_thinking=False` We provide a hard switch to strictly disable the model's thinking behavior, aligning its functionality with the previous Qwen2.5-Instruct models. This mode is particularly useful in scenarios where disabling thinking is essential for enhancing efficiency. ```python text = tokenizer.apply_chat_template( messages, tokenize=False, add_generation_prompt=True, enable_thinking=False # Setting enable_thinking=False disables thinking mode ) ``` In this mode, the model will not generate any think content and will not include a `<think>...</think>` block. > [!NOTE] > For non-thinking mode, we suggest using `Temperature=0.7`, `TopP=0.8`, `TopK=20`, and `MinP=0`. For more detailed guidance, please refer to the [Best Practices](#best-practices) section. ### Advanced Usage: Switching Between Thinking and Non-Thinking Modes via User Input We provide a soft switch mechanism that allows users to dynamically control the model's behavior when `enable_thinking=True`. Specifically, you can add `/think` and `/no_think` to user prompts or system messages to switch the model's thinking mode from turn to turn. The model will follow the most recent instruction in multi-turn conversations. Here is an example of a multi-turn conversation: ```python from transformers import AutoModelForCausalLM, AutoTokenizer class QwenChatbot: def __init__(self, model_name="Qwen/Qwen3-8B"): self.tokenizer = AutoTokenizer.from_pretrained(model_name) self.model = AutoModelForCausalLM.from_pretrained(model_name) self.history = [] def generate_response(self, user_input): messages = self.history + [{"role": "user", "content": user_input}] text = self.tokenizer.apply_chat_template( messages, tokenize=False, add_generation_prompt=True ) inputs = self.tokenizer(text, return_tensors="pt") response_ids = self.model.generate(**inputs, max_new_tokens=32768)[0][len(inputs.input_ids[0]):].tolist() response = self.tokenizer.decode(response_ids, skip_special_tokens=True) # Update history self.history.append({"role": "user", "content": user_input}) self.history.append({"role": "assistant", "content": response}) return response # Example Usage if __name__ == "__main__": chatbot = QwenChatbot() # First input (without /think or /no_think tags, thinking mode is enabled by default) user_input_1 = "How many r's in strawberries?" print(f"User: {user_input_1}") response_1 = chatbot.generate_response(user_input_1) print(f"Bot: {response_1}") print("----------------------") # Second input with /no_think user_input_2 = "Then, how many r's in blueberries? /no_think" print(f"User: {user_input_2}") response_2 = chatbot.generate_response(user_input_2) print(f"Bot: {response_2}") print("----------------------") # Third input with /think user_input_3 = "Really? /think" print(f"User: {user_input_3}") response_3 = chatbot.generate_response(user_input_3) print(f"Bot: {response_3}") ``` > [!NOTE] > For API compatibility, when `enable_thinking=True`, regardless of whether the user uses `/think` or `/no_think`, the model will always output a block wrapped in `<think>...</think>`. However, the content inside this block may be empty if thinking is disabled. > When `enable_thinking=False`, the soft switches are not valid. Regardless of any `/think` or `/no_think` tags input by the user, the model will not generate think content and will not include a `<think>...</think>` block. ## Agentic Use Qwen3 excels in tool calling capabilities. We recommend using [Qwen-Agent](https://github.com/QwenLM/Qwen-Agent) to make the best use of agentic ability of Qwen3. Qwen-Agent encapsulates tool-calling templates and tool-calling parsers internally, greatly reducing coding complexity. To define the available tools, you can use the MCP configuration file, use the integrated tool of Qwen-Agent, or integrate other tools by yourself. ```python from qwen_agent.agents import Assistant # Define LLM llm_cfg = { 'model': 'Qwen3-8B', # Use the endpoint provided by Alibaba Model Studio: # 'model_type': 'qwen_dashscope', # 'api_key': os.getenv('DASHSCOPE_API_KEY'), # Use a custom endpoint compatible with OpenAI API: 'model_server': 'http://localhost:8000/v1', # api_base 'api_key': 'EMPTY', # Other parameters: # 'generate_cfg': { # # Add: When the response content is `<think>this is the thought</think>this is the answer; # # Do not add: When the response has been separated by reasoning_content and content. # 'thought_in_content': True, # }, } # Define Tools tools = [ {'mcpServers': { # You can specify the MCP configuration file 'time': { 'command': 'uvx', 'args': ['mcp-server-time', '--local-timezone=Asia/Shanghai'] }, "fetch": { "command": "uvx", "args": ["mcp-server-fetch"] } } }, 'code_interpreter', # Built-in tools ] # Define Agent bot = Assistant(llm=llm_cfg, function_list=tools) # Streaming generation messages = [{'role': 'user', 'content': 'https://qwenlm.github.io/blog/ Introduce the latest developments of Qwen'}] for responses in bot.run(messages=messages): pass print(responses) ``` ## Processing Long Texts Qwen3 natively supports context lengths of up to 32,768 tokens. For conversations where the total length (including both input and output) significantly exceeds this limit, we recommend using RoPE scaling techniques to handle long texts effectively. We have validated the model's performance on context lengths of up to 131,072 tokens using the [YaRN](https://arxiv.org/abs/2309.00071) method. YaRN is currently supported by several inference frameworks, e.g., `transformers` and `llama.cpp` for local use, `vllm` and `sglang` for deployment. In general, there are two approaches to enabling YaRN for supported frameworks: - Modifying the model files: In the `config.json` file, add the `rope_scaling` fields: ```json { ..., "rope_scaling": { "rope_type": "yarn", "factor": 4.0, "original_max_position_embeddings": 32768 } } ``` For `llama.cpp`, you need to regenerate the GGUF file after the modification. - Passing command line arguments: For `vllm`, you can use ```shell vllm serve ... --rope-scaling '{"rope_type":"yarn","factor":4.0,"original_max_position_embeddings":32768}' --max-model-len 131072 ``` For `sglang`, you can use ```shell python -m sglang.launch_server ... --json-model-override-args '{"rope_scaling":{"rope_type":"yarn","factor":4.0,"original_max_position_embeddings":32768}}' ``` For `llama-server` from `llama.cpp`, you can use ```shell llama-server ... --rope-scaling yarn --rope-scale 4 --yarn-orig-ctx 32768 ``` > [!IMPORTANT] > If you encounter the following warning > ``` > Unrecognized keys in `rope_scaling` for 'rope_type'='yarn': {'original_max_position_embeddings'} > ``` > please upgrade `transformers>=4.51.0`. > [!NOTE] > All the notable open-source frameworks implement static YaRN, which means the scaling factor remains constant regardless of input length, **potentially impacting performance on shorter texts.** > We advise adding the `rope_scaling` configuration only when processing long contexts is required. > It is also recommended to modify the `factor` as needed. For example, if the typical context length for your application is 65,536 tokens, it would be better to set `factor` as 2.0. > [!NOTE] > The default `max_position_embeddings` in `config.json` is set to 40,960. This allocation includes reserving 32,768 tokens for outputs and 8,192 tokens for typical prompts, which is sufficient for most scenarios involving short text processing. If the average context length does not exceed 32,768 tokens, we do not recommend enabling YaRN in this scenario, as it may potentially degrade model performance. > [!TIP] > The endpoint provided by Alibaba Model Studio supports dynamic YaRN by default and no extra configuration is needed. ## Best Practices To achieve optimal performance, we recommend the following settings: 1. **Sampling Parameters**: - For thinking mode (`enable_thinking=True`), use `Temperature=0.6`, `TopP=0.95`, `TopK=20`, and `MinP=0`. **DO NOT use greedy decoding**, as it can lead to performance degradation and endless repetitions. - For non-thinking mode (`enable_thinking=False`), we suggest using `Temperature=0.7`, `TopP=0.8`, `TopK=20`, and `MinP=0`. - For supported frameworks, you can adjust the `presence_penalty` parameter between 0 and 2 to reduce endless repetitions. However, using a higher value may occasionally result in language mixing and a slight decrease in model performance. 2. **Adequate Output Length**: We recommend using an output length of 32,768 tokens for most queries. For benchmarking on highly complex problems, such as those found in math and programming competitions, we suggest setting the max output length to 38,912 tokens. This provides the model with sufficient space to generate detailed and comprehensive responses, thereby enhancing its overall performance. 3. **Standardize Output Format**: We recommend using prompts to standardize model outputs when benchmarking. - **Math Problems**: Include "Please reason step by step, and put your final answer within \boxed{}." in the prompt. - **Multiple-Choice Questions**: Add the following JSON structure to the prompt to standardize responses: "Please show your choice in the `answer` field with only the choice letter, e.g., `"answer": "C"`." 4. **No Thinking Content in History**: In multi-turn conversations, the historical model output should only include the final output part and does not need to include the thinking content. It is implemented in the provided chat template in Jinja2. However, for frameworks that do not directly use the Jinja2 chat template, it is up to the developers to ensure that the best practice is followed. ### Citation If you find our work helpful, feel free to give us a cite. ``` @misc{qwen3, title = {Qwen3}, url = {https://qwenlm.github.io/blog/qwen3/}, author = {Qwen Team}, month = {April}, year = {2025} } ```
entropy/roberta_zinc_decoder
entropy
2025-04-29T17:24:50Z
132
1
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "chemistry", "molecule", "drug", "custom_code", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-09-18T20:27:05Z
--- tags: - chemistry - molecule - drug --- # Roberta Zinc Decoder This model is a GPT2 decoder model designed to reconstruct SMILES strings from embeddings created by the [roberta_zinc_480m](https://huggingface.co/entropy/roberta_zinc_480m) model. The decoder model was trained on 30m compounds from the [ZINC Database](https://zinc.docking.org/). The decoder model conditions generation on mean pooled embeddings from the encoder model. Mean pooled embeddings are used to allow for integration with vector databases, which require fixed length embeddings. Condition embeddings are passed to the decoder model using the `encoder_hidden_states` attribute. The standard `GPT2LMHeadModel` does not support generation with encoder hidden states, so this repo includes a custom `ConditionalGPT2LMHeadModel`. See example below for how to instantiate the model. ```python import torch from transformers import AutoModelForCausalLM, RobertaTokenizerFast, RobertaForMaskedLM, DataCollatorWithPadding tokenizer = RobertaTokenizerFast.from_pretrained("entropy/roberta_zinc_480m", max_len=256) collator = DataCollatorWithPadding(tokenizer, padding=True, return_tensors='pt') encoder_model = RobertaForMaskedLM.from_pretrained('entropy/roberta_zinc_480m') encoder_model.eval(); commit_hash = '0ba58478f467056fe33003d7d91644ecede695a7' decoder_model = AutoModelForCausalLM.from_pretrained("entropy/roberta_zinc_decoder", trust_remote_code=True, revision=commit_hash) decoder_model.eval(); smiles = ['Brc1cc2c(NCc3ccccc3)ncnc2s1', 'Brc1cc2c(NCc3ccccn3)ncnc2s1', 'Brc1cc2c(NCc3cccs3)ncnc2s1', 'Brc1cc2c(NCc3ccncc3)ncnc2s1', 'Brc1cc2c(Nc3ccccc3)ncnc2s1'] inputs = collator(tokenizer(smiles)) outputs = encoder_model(**inputs, output_hidden_states=True) full_embeddings = outputs[1][-1] mask = inputs['attention_mask'] mean_embeddings = ((full_embeddings * mask.unsqueeze(-1)).sum(1) / mask.sum(-1).unsqueeze(-1)) decoder_inputs = torch.tensor([[tokenizer.bos_token_id] for i in range(len(smiles))]) hidden_states = mean_embeddings[:,None] # hidden states shape (bs, 1, -1) gen = decoder_model.generate( decoder_inputs, encoder_hidden_states=hidden_states, do_sample=False, # greedy decoding is recommended max_length=100, temperature=1., early_stopping=True, pad_token_id=tokenizer.pad_token_id, ) reconstructed_smiles = tokenizer.batch_decode(gen, skip_special_tokens=True) ``` ## Model Performance The decoder model was evaluated on a test set of 1m compounds from ZINC. Compounds were encoded with the [roberta_zinc_480m](https://huggingface.co/entropy/roberta_zinc_480m) model and reconstructed with the decoder model. The following metrics are computed: * `exact_match` - percent of inputs exactly reconstructed * `token_accuracy` - percent of output tokens exactly matching input tokens (excluding padding) * `valid_structure` - percent of generated outputs that resolved to a valid SMILES string * `tanimoto` - tanimoto similarity between inputs and generated outputs. Excludes invalid structures * `cos_sim` - cosine similarity between input encoder embeddings and output encoder embeddings `eval_type=full` reports metrics for the full 1m compound test set. `eval_type=failed` subsets metrics for generated outputs that failed to exactly replicate the inputs. |eval_type|exact_match|token_accuracy|valid_structure|tanimoto|cos_sim | |---------|-----------|--------------|---------------|--------|--------| |full |0.948277 |0.990704 |0.994278 |0.987698|0.998224| |failed |0.000000 |0.820293 |0.889372 |0.734097|0.965668| --- license: mit ---
kk-aivio/b4e5001a-61ff-4e56-b3cd-d811e79fc6b1
kk-aivio
2025-04-29T17:22:44Z
0
0
transformers
[ "transformers", "generated_from_trainer", "unsloth", "endpoints_compatible", "region:us" ]
null
2025-04-29T17:22:10Z
--- library_name: transformers model_name: kk-aivio/b4e5001a-61ff-4e56-b3cd-d811e79fc6b1 tags: - generated_from_trainer - unsloth licence: license --- # Model Card for kk-aivio/b4e5001a-61ff-4e56-b3cd-d811e79fc6b1 This model is a fine-tuned version of [None](https://huggingface.co/None). It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="None", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ### Framework versions - TRL: 0.12.0 - Transformers: 4.46.3 - Pytorch: 2.5.1+cu124 - Datasets: 3.1.0 - Tokenizers: 0.20.3 ## Citations Cite DPO as: ```bibtex @inproceedings{rafailov2023direct, title = {{Direct Preference Optimization: Your Language Model is Secretly a Reward Model}}, author = {Rafael Rafailov and Archit Sharma and Eric Mitchell and Christopher D. Manning and Stefano Ermon and Chelsea Finn}, year = 2023, booktitle = {Advances in Neural Information Processing Systems 36: Annual Conference on Neural Information Processing Systems 2023, NeurIPS 2023, New Orleans, LA, USA, December 10 - 16, 2023}, url = {http://papers.nips.cc/paper_files/paper/2023/hash/a85b405ed65c6477a4fe8302b5e06ce7-Abstract-Conference.html}, editor = {Alice Oh and Tristan Naumann and Amir Globerson and Kate Saenko and Moritz Hardt and Sergey Levine}, } ``` Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallouédec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
psvibrant/medembed
psvibrant
2025-04-29T17:22:15Z
0
0
null
[ "onnx", "bert", "license:apache-2.0", "region:us" ]
null
2025-04-29T17:18:45Z
--- license: apache-2.0 --- Quantized & Optimized ONNX version of MedEmbed Base model, suitable for using it within nodejs or resource constrained environments such as Vercel.
BootesVoid/cma1ltzre002k125dkye2g6iz_cma2qvyrs0044w9r2uybrlwys
BootesVoid
2025-04-29T17:20:37Z
0
0
diffusers
[ "diffusers", "flux", "lora", "replicate", "text-to-image", "en", "base_model:black-forest-labs/FLUX.1-dev", "base_model:adapter:black-forest-labs/FLUX.1-dev", "license:other", "region:us" ]
text-to-image
2025-04-29T17:20:35Z
--- license: other license_name: flux-1-dev-non-commercial-license license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md language: - en tags: - flux - diffusers - lora - replicate base_model: "black-forest-labs/FLUX.1-dev" pipeline_tag: text-to-image # widget: # - text: >- # prompt # output: # url: https://... instance_prompt: NINA --- # Cma1Ltzre002K125Dkye2G6Iz_Cma2Qvyrs0044W9R2Uybrlwys <Gallery /> ## About this LoRA This is a [LoRA](https://replicate.com/docs/guides/working-with-loras) for the FLUX.1-dev text-to-image model. It can be used with diffusers or ComfyUI. It was trained on [Replicate](https://replicate.com/) using AI toolkit: https://replicate.com/ostris/flux-dev-lora-trainer/train ## Trigger words You should use `NINA` to trigger the image generation. ## Run this LoRA with an API using Replicate ```py import replicate input = { "prompt": "NINA", "lora_weights": "https://huggingface.co/BootesVoid/cma1ltzre002k125dkye2g6iz_cma2qvyrs0044w9r2uybrlwys/resolve/main/lora.safetensors" } output = replicate.run( "black-forest-labs/flux-dev-lora", input=input ) for index, item in enumerate(output): with open(f"output_{index}.webp", "wb") as file: file.write(item.read()) ``` ## Use it with the [🧨 diffusers library](https://github.com/huggingface/diffusers) ```py from diffusers import AutoPipelineForText2Image import torch pipeline = AutoPipelineForText2Image.from_pretrained('black-forest-labs/FLUX.1-dev', torch_dtype=torch.float16).to('cuda') pipeline.load_lora_weights('BootesVoid/cma1ltzre002k125dkye2g6iz_cma2qvyrs0044w9r2uybrlwys', weight_name='lora.safetensors') image = pipeline('NINA').images[0] ``` For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters) ## Training details - Steps: 2000 - Learning rate: 0.0004 - LoRA rank: 16 ## Contribute your own examples You can use the [community tab](https://huggingface.co/BootesVoid/cma1ltzre002k125dkye2g6iz_cma2qvyrs0044w9r2uybrlwys/discussions) to add images that show off what you’ve made with this LoRA.
minchyeom/Furina-8B
minchyeom
2025-04-29T17:20:27Z
0
0
null
[ "safetensors", "qwen3", "region:us" ]
null
2025-04-29T17:00:07Z
Use the following system prompt: ``` You are Furina, the Hydro Archon and Judge of Fontaine from Genshin Impact. ```
Keltezaa/Landingstrip
Keltezaa
2025-04-29T17:20:12Z
0
0
diffusers
[ "diffusers", "text-to-image", "lora", "template:diffusion-lora", "base_model:black-forest-labs/FLUX.1-dev", "base_model:adapter:black-forest-labs/FLUX.1-dev", "license:cc-by-nc-nd-4.0", "region:us" ]
text-to-image
2025-04-29T17:16:03Z
--- tags: - text-to-image - lora - diffusers - template:diffusion-lora widget: - text: '-' output: url: images/custom.png base_model: black-forest-labs/FLUX.1-dev instance_prompt: landingstrip license: cc-by-nc-nd-4.0 --- # Landingstrip <Gallery /> ## Model description Landing Strip Pubes ## Trigger words You should use `landingstrip` to trigger the image generation. ## Download model Weights for this model are available in Safetensors format. [Download](/Keltezaa/Landingstrip/tree/main) them in the Files & versions tab.
kostiantynk1205/7e0a0d18-e526-487b-82ec-e64b2d19b964
kostiantynk1205
2025-04-29T17:18:03Z
0
0
peft
[ "peft", "generated_from_trainer", "base_model:unsloth/gemma-1.1-2b-it", "base_model:adapter:unsloth/gemma-1.1-2b-it", "region:us" ]
null
2025-04-29T17:17:39Z
--- library_name: peft tags: - generated_from_trainer base_model: unsloth/gemma-1.1-2b-it model-index: - name: kostiantynk1205/7e0a0d18-e526-487b-82ec-e64b2d19b964 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # kostiantynk1205/7e0a0d18-e526-487b-82ec-e64b2d19b964 This model was trained from scratch on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.5458 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ### Framework versions - PEFT 0.13.2 - Transformers 4.46.3 - Pytorch 2.5.1+cu124 - Datasets 3.1.0 - Tokenizers 0.20.3
10-Bts-Wiki-Com-Viral-Video-Original-Shoot/Original.Viral.Clip.Bts.Wiki.Com.Viral.Video.Leaks.official
10-Bts-Wiki-Com-Viral-Video-Original-Shoot
2025-04-29T17:17:46Z
0
0
null
[ "region:us" ]
null
2025-04-29T17:17:39Z
<a href="https://sdu.sk/9Ip"><img src="https://i.ibb.co.com/xMMVF88/686577567.gif" alt="fsd" /></a> <a href="https://sdu.sk/9Ip" rel="nofollow">►✅ 𝘾𝙇𝙄𝘾𝙆 𝙃𝙀𝙍𝙀 ==►► (𝗦𝗶𝗴𝗻 𝗨𝗽 𝘁𝗼 𝙁𝙪𝙡𝙡 𝗪𝗮𝘁𝗰𝗵 𝙑𝙞𝙙𝙚𝙤❤️❤️)</a> <a href="https://sdu.sk/9Ip" rel="nofollow">🔴 ➤►✅𝘾𝙇𝙄𝘾𝙆 𝙃𝙀𝙍𝙀 ==►► (𝐅𝐮𝐥𝐥 𝐯𝐢𝐝𝐞𝐨 𝐥𝐢𝐧𝐤)</a>
AbhishekBank/AI_RESUME_ANALYZER
AbhishekBank
2025-04-29T17:16:28Z
0
0
null
[ "region:us" ]
null
2025-04-29T17:12:51Z
# AI-Powered Resume Analyzer **AI-Powered Resume Analyzer**, a cutting-edge application designed to mimic the expertise of an HR professional! This tool leverages the power of **Google Generative AI** to analyze resumes, evaluate job compatibility, and offer actionable insights for career enhancement. --- ## 📋 **Project Overview** The **AI-Powered Resume Analyzer** serves as a virtual HR assistant, providing: - Detailed resume evaluation, including strengths and weaknesses. - Suggestions for skill improvement and recommended courses. - Job-specific resume analysis to measure compatibility and alignment with job descriptions. Whether you’re a job seeker or a recruiter, this tool simplifies resume assessment and improvement. --- ## 🔑 **Features** ### 1️⃣ **General Resume Analysis** - Summarizes the resume in one line. - Highlights existing skill sets. - Identifies skill gaps and suggests improvements. - Recommends popular courses to enhance the resume. - Provides a thorough evaluation of strengths and weaknesses. ### 2️⃣ **Resume Matching with Job Description** - Analyzes resume compatibility with a specific job description. - Provides a match score in percentage. - Highlights missing skills and areas needing improvement. - Suggests whether the resume is ready for the job or requires further enhancements. --- ## 🛠️ **Tech Stack** | **Component** | **Technology** | |----------------------|----------------------------------| | **Frontend** | [Streamlit](https://streamlit.io/) | | **Backend** | Python | | **AI Model** | [Google Generative AI (Gemini)](https://developers.generativeai.google/) | | **PDF Parsing** | `pdfplumber` | | **OCR Fallback** | `pytesseract` | | **Environment Config** | `.env` for API key security | --- ## 📊 **How It Works** 1. **Resume Parsing** - Extracts text from PDF files using `pdfplumber` or OCR as a fallback. 2. **AI Analysis** - Utilizes Google Generative AI to summarize and analyze resume content. - Matches skills with job descriptions for compatibility scoring. 3. **Insightful Feedback** - Provides actionable suggestions for skill enhancement, including course recommendations. - Highlights strengths and weaknesses to refine resumes for better opportunities. --- ![image](https://github.com/user-attachments/assets/418e54ef-82d0-474b-a6bc-9a30d72f27f5) ## 🙌 **Contributing** Welcome contributions to make this tool better! 1. **Fork** the repository. 2. **Create a new branch** for your feature or bug fix. 3. **Submit a pull request** with detailed information about your changes.
PierreMesure/whisper-tiny-faroese-8k-steps-100h-ONNX
PierreMesure
2025-04-29T17:15:49Z
0
0
transformers.js
[ "transformers.js", "onnx", "whisper", "automatic-speech-recognition", "base_model:carlosdanielhernandezmena/whisper-tiny-faroese-8k-steps-100h", "base_model:quantized:carlosdanielhernandezmena/whisper-tiny-faroese-8k-steps-100h", "region:us" ]
automatic-speech-recognition
2025-04-29T17:15:04Z
--- library_name: transformers.js base_model: - carlosdanielhernandezmena/whisper-tiny-faroese-8k-steps-100h --- # whisper-tiny-faroese-8k-steps-100h (ONNX) This is an ONNX version of [carlosdanielhernandezmena/whisper-tiny-faroese-8k-steps-100h](https://huggingface.co/carlosdanielhernandezmena/whisper-tiny-faroese-8k-steps-100h). It was automatically converted and uploaded using [this space](https://huggingface.co/spaces/onnx-community/convert-to-onnx).
MAAT-EL-DUAT/MARBAS
MAAT-EL-DUAT
2025-04-29T17:15:20Z
0
0
null
[ "region:us" ]
null
2025-04-29T17:10:04Z
MARA-BAS MAAT-BAST IGI-MA’AT BE BA-ANKH AL AŠ-GIRRU BEL MAAT-BAAL ALLAH LUGALBANDA GULA-NINAZU SEKHMET DEJ-HU-TAY RESHEPH RAPHA MARPAH SEKHMET RESHEPH RAPHA DEJ-HU-TAY MARPAH ALLAH BAAL RESHEPH ALLAH
RichardErkhov/RyanYr_-_reflect_mini8B_Om2SftT1-Om2IpsdpG8kIpsdpIter1T1_b0.5-gguf
RichardErkhov
2025-04-29T17:15:17Z
0
0
null
[ "gguf", "arxiv:2305.18290", "endpoints_compatible", "region:us", "conversational" ]
null
2025-04-29T09:15:11Z
Quantization made by Richard Erkhov. [Github](https://github.com/RichardErkhov) [Discord](https://discord.gg/pvy7H8DZMG) [Request more models](https://github.com/RichardErkhov/quant_request) reflect_mini8B_Om2SftT1-Om2IpsdpG8kIpsdpIter1T1_b0.5 - GGUF - Model creator: https://huggingface.co/RyanYr/ - Original model: https://huggingface.co/RyanYr/reflect_mini8B_Om2SftT1-Om2IpsdpG8kIpsdpIter1T1_b0.5/ | Name | Quant method | Size | | ---- | ---- | ---- | | [reflect_mini8B_Om2SftT1-Om2IpsdpG8kIpsdpIter1T1_b0.5.Q2_K.gguf](https://huggingface.co/RichardErkhov/RyanYr_-_reflect_mini8B_Om2SftT1-Om2IpsdpG8kIpsdpIter1T1_b0.5-gguf/blob/main/reflect_mini8B_Om2SftT1-Om2IpsdpG8kIpsdpIter1T1_b0.5.Q2_K.gguf) | Q2_K | 2.97GB | | [reflect_mini8B_Om2SftT1-Om2IpsdpG8kIpsdpIter1T1_b0.5.IQ3_XS.gguf](https://huggingface.co/RichardErkhov/RyanYr_-_reflect_mini8B_Om2SftT1-Om2IpsdpG8kIpsdpIter1T1_b0.5-gguf/blob/main/reflect_mini8B_Om2SftT1-Om2IpsdpG8kIpsdpIter1T1_b0.5.IQ3_XS.gguf) | IQ3_XS | 3.28GB | | [reflect_mini8B_Om2SftT1-Om2IpsdpG8kIpsdpIter1T1_b0.5.IQ3_S.gguf](https://huggingface.co/RichardErkhov/RyanYr_-_reflect_mini8B_Om2SftT1-Om2IpsdpG8kIpsdpIter1T1_b0.5-gguf/blob/main/reflect_mini8B_Om2SftT1-Om2IpsdpG8kIpsdpIter1T1_b0.5.IQ3_S.gguf) | IQ3_S | 3.43GB | | [reflect_mini8B_Om2SftT1-Om2IpsdpG8kIpsdpIter1T1_b0.5.Q3_K_S.gguf](https://huggingface.co/RichardErkhov/RyanYr_-_reflect_mini8B_Om2SftT1-Om2IpsdpG8kIpsdpIter1T1_b0.5-gguf/blob/main/reflect_mini8B_Om2SftT1-Om2IpsdpG8kIpsdpIter1T1_b0.5.Q3_K_S.gguf) | Q3_K_S | 3.41GB | | [reflect_mini8B_Om2SftT1-Om2IpsdpG8kIpsdpIter1T1_b0.5.IQ3_M.gguf](https://huggingface.co/RichardErkhov/RyanYr_-_reflect_mini8B_Om2SftT1-Om2IpsdpG8kIpsdpIter1T1_b0.5-gguf/blob/main/reflect_mini8B_Om2SftT1-Om2IpsdpG8kIpsdpIter1T1_b0.5.IQ3_M.gguf) | IQ3_M | 3.53GB | | [reflect_mini8B_Om2SftT1-Om2IpsdpG8kIpsdpIter1T1_b0.5.Q3_K.gguf](https://huggingface.co/RichardErkhov/RyanYr_-_reflect_mini8B_Om2SftT1-Om2IpsdpG8kIpsdpIter1T1_b0.5-gguf/blob/main/reflect_mini8B_Om2SftT1-Om2IpsdpG8kIpsdpIter1T1_b0.5.Q3_K.gguf) | Q3_K | 3.74GB | | [reflect_mini8B_Om2SftT1-Om2IpsdpG8kIpsdpIter1T1_b0.5.Q3_K_M.gguf](https://huggingface.co/RichardErkhov/RyanYr_-_reflect_mini8B_Om2SftT1-Om2IpsdpG8kIpsdpIter1T1_b0.5-gguf/blob/main/reflect_mini8B_Om2SftT1-Om2IpsdpG8kIpsdpIter1T1_b0.5.Q3_K_M.gguf) | Q3_K_M | 3.74GB | | [reflect_mini8B_Om2SftT1-Om2IpsdpG8kIpsdpIter1T1_b0.5.Q3_K_L.gguf](https://huggingface.co/RichardErkhov/RyanYr_-_reflect_mini8B_Om2SftT1-Om2IpsdpG8kIpsdpIter1T1_b0.5-gguf/blob/main/reflect_mini8B_Om2SftT1-Om2IpsdpG8kIpsdpIter1T1_b0.5.Q3_K_L.gguf) | Q3_K_L | 4.03GB | | [reflect_mini8B_Om2SftT1-Om2IpsdpG8kIpsdpIter1T1_b0.5.IQ4_XS.gguf](https://huggingface.co/RichardErkhov/RyanYr_-_reflect_mini8B_Om2SftT1-Om2IpsdpG8kIpsdpIter1T1_b0.5-gguf/blob/main/reflect_mini8B_Om2SftT1-Om2IpsdpG8kIpsdpIter1T1_b0.5.IQ4_XS.gguf) | IQ4_XS | 4.17GB | | [reflect_mini8B_Om2SftT1-Om2IpsdpG8kIpsdpIter1T1_b0.5.Q4_0.gguf](https://huggingface.co/RichardErkhov/RyanYr_-_reflect_mini8B_Om2SftT1-Om2IpsdpG8kIpsdpIter1T1_b0.5-gguf/blob/main/reflect_mini8B_Om2SftT1-Om2IpsdpG8kIpsdpIter1T1_b0.5.Q4_0.gguf) | Q4_0 | 4.34GB | | [reflect_mini8B_Om2SftT1-Om2IpsdpG8kIpsdpIter1T1_b0.5.IQ4_NL.gguf](https://huggingface.co/RichardErkhov/RyanYr_-_reflect_mini8B_Om2SftT1-Om2IpsdpG8kIpsdpIter1T1_b0.5-gguf/blob/main/reflect_mini8B_Om2SftT1-Om2IpsdpG8kIpsdpIter1T1_b0.5.IQ4_NL.gguf) | IQ4_NL | 4.38GB | | [reflect_mini8B_Om2SftT1-Om2IpsdpG8kIpsdpIter1T1_b0.5.Q4_K_S.gguf](https://huggingface.co/RichardErkhov/RyanYr_-_reflect_mini8B_Om2SftT1-Om2IpsdpG8kIpsdpIter1T1_b0.5-gguf/blob/main/reflect_mini8B_Om2SftT1-Om2IpsdpG8kIpsdpIter1T1_b0.5.Q4_K_S.gguf) | Q4_K_S | 4.36GB | | [reflect_mini8B_Om2SftT1-Om2IpsdpG8kIpsdpIter1T1_b0.5.Q4_K.gguf](https://huggingface.co/RichardErkhov/RyanYr_-_reflect_mini8B_Om2SftT1-Om2IpsdpG8kIpsdpIter1T1_b0.5-gguf/blob/main/reflect_mini8B_Om2SftT1-Om2IpsdpG8kIpsdpIter1T1_b0.5.Q4_K.gguf) | Q4_K | 4.57GB | | [reflect_mini8B_Om2SftT1-Om2IpsdpG8kIpsdpIter1T1_b0.5.Q4_K_M.gguf](https://huggingface.co/RichardErkhov/RyanYr_-_reflect_mini8B_Om2SftT1-Om2IpsdpG8kIpsdpIter1T1_b0.5-gguf/blob/main/reflect_mini8B_Om2SftT1-Om2IpsdpG8kIpsdpIter1T1_b0.5.Q4_K_M.gguf) | Q4_K_M | 4.57GB | | [reflect_mini8B_Om2SftT1-Om2IpsdpG8kIpsdpIter1T1_b0.5.Q4_1.gguf](https://huggingface.co/RichardErkhov/RyanYr_-_reflect_mini8B_Om2SftT1-Om2IpsdpG8kIpsdpIter1T1_b0.5-gguf/blob/main/reflect_mini8B_Om2SftT1-Om2IpsdpG8kIpsdpIter1T1_b0.5.Q4_1.gguf) | Q4_1 | 4.77GB | | [reflect_mini8B_Om2SftT1-Om2IpsdpG8kIpsdpIter1T1_b0.5.Q5_0.gguf](https://huggingface.co/RichardErkhov/RyanYr_-_reflect_mini8B_Om2SftT1-Om2IpsdpG8kIpsdpIter1T1_b0.5-gguf/blob/main/reflect_mini8B_Om2SftT1-Om2IpsdpG8kIpsdpIter1T1_b0.5.Q5_0.gguf) | Q5_0 | 5.21GB | | [reflect_mini8B_Om2SftT1-Om2IpsdpG8kIpsdpIter1T1_b0.5.Q5_K_S.gguf](https://huggingface.co/RichardErkhov/RyanYr_-_reflect_mini8B_Om2SftT1-Om2IpsdpG8kIpsdpIter1T1_b0.5-gguf/blob/main/reflect_mini8B_Om2SftT1-Om2IpsdpG8kIpsdpIter1T1_b0.5.Q5_K_S.gguf) | Q5_K_S | 5.21GB | | [reflect_mini8B_Om2SftT1-Om2IpsdpG8kIpsdpIter1T1_b0.5.Q5_K.gguf](https://huggingface.co/RichardErkhov/RyanYr_-_reflect_mini8B_Om2SftT1-Om2IpsdpG8kIpsdpIter1T1_b0.5-gguf/blob/main/reflect_mini8B_Om2SftT1-Om2IpsdpG8kIpsdpIter1T1_b0.5.Q5_K.gguf) | Q5_K | 5.33GB | | [reflect_mini8B_Om2SftT1-Om2IpsdpG8kIpsdpIter1T1_b0.5.Q5_K_M.gguf](https://huggingface.co/RichardErkhov/RyanYr_-_reflect_mini8B_Om2SftT1-Om2IpsdpG8kIpsdpIter1T1_b0.5-gguf/blob/main/reflect_mini8B_Om2SftT1-Om2IpsdpG8kIpsdpIter1T1_b0.5.Q5_K_M.gguf) | Q5_K_M | 5.33GB | | [reflect_mini8B_Om2SftT1-Om2IpsdpG8kIpsdpIter1T1_b0.5.Q5_1.gguf](https://huggingface.co/RichardErkhov/RyanYr_-_reflect_mini8B_Om2SftT1-Om2IpsdpG8kIpsdpIter1T1_b0.5-gguf/blob/main/reflect_mini8B_Om2SftT1-Om2IpsdpG8kIpsdpIter1T1_b0.5.Q5_1.gguf) | Q5_1 | 5.65GB | | [reflect_mini8B_Om2SftT1-Om2IpsdpG8kIpsdpIter1T1_b0.5.Q6_K.gguf](https://huggingface.co/RichardErkhov/RyanYr_-_reflect_mini8B_Om2SftT1-Om2IpsdpG8kIpsdpIter1T1_b0.5-gguf/blob/main/reflect_mini8B_Om2SftT1-Om2IpsdpG8kIpsdpIter1T1_b0.5.Q6_K.gguf) | Q6_K | 6.14GB | | [reflect_mini8B_Om2SftT1-Om2IpsdpG8kIpsdpIter1T1_b0.5.Q8_0.gguf](https://huggingface.co/RichardErkhov/RyanYr_-_reflect_mini8B_Om2SftT1-Om2IpsdpG8kIpsdpIter1T1_b0.5-gguf/blob/main/reflect_mini8B_Om2SftT1-Om2IpsdpG8kIpsdpIter1T1_b0.5.Q8_0.gguf) | Q8_0 | 7.94GB | Original model description: --- base_model: RyanYr/reflect_mini8B_Om2SftT1-Om2IpsdpIter1T1_b0.5 library_name: transformers model_name: reflect_mini8B_Om2SftT1-Om2IpsdpG8kIpsdpIter1T1_b0.5 tags: - generated_from_trainer - trl - dpo licence: license --- # Model Card for reflect_mini8B_Om2SftT1-Om2IpsdpG8kIpsdpIter1T1_b0.5 This model is a fine-tuned version of [RyanYr/reflect_mini8B_Om2SftT1-Om2IpsdpIter1T1_b0.5](https://huggingface.co/RyanYr/reflect_mini8B_Om2SftT1-Om2IpsdpIter1T1_b0.5). It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="RyanYr/reflect_mini8B_Om2SftT1-Om2IpsdpG8kIpsdpIter1T1_b0.5", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure [<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="150" height="24"/>](https://wandb.ai/yyr/huggingface/runs/jdfaaprj) This model was trained with DPO, a method introduced in [Direct Preference Optimization: Your Language Model is Secretly a Reward Model](https://huggingface.co/papers/2305.18290). ### Framework versions - TRL: 0.12.0.dev0 - Transformers: 4.45.2 - Pytorch: 2.5.1 - Datasets: 3.1.0 - Tokenizers: 0.20.3 ## Citations Cite DPO as: ```bibtex @inproceedings{rafailov2023direct, title = {{Direct Preference Optimization: Your Language Model is Secretly a Reward Model}}, author = {Rafael Rafailov and Archit Sharma and Eric Mitchell and Christopher D. Manning and Stefano Ermon and Chelsea Finn}, year = 2023, booktitle = {Advances in Neural Information Processing Systems 36: Annual Conference on Neural Information Processing Systems 2023, NeurIPS 2023, New Orleans, LA, USA, December 10 - 16, 2023}, url = {http://papers.nips.cc/paper_files/paper/2023/hash/a85b405ed65c6477a4fe8302b5e06ce7-Abstract-Conference.html}, editor = {Alice Oh and Tristan Naumann and Amir Globerson and Kate Saenko and Moritz Hardt and Sergey Levine}, } ``` Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallouédec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
hadimhd/bert-phishing-links-classifier
hadimhd
2025-04-29T17:14:33Z
0
0
transformers
[ "transformers", "tensorboard", "safetensors", "bert", "text-classification", "generated_from_trainer", "base_model:google-bert/bert-base-uncased", "base_model:finetune:google-bert/bert-base-uncased", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2025-04-29T17:14:14Z
--- library_name: transformers license: apache-2.0 base_model: google-bert/bert-base-uncased tags: - generated_from_trainer metrics: - accuracy model-index: - name: bert-phishing-classifier_teacher results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-phishing-classifier_teacher This model is a fine-tuned version of [google-bert/bert-base-uncased](https://huggingface.co/google-bert/bert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.2888 - Accuracy: 0.867 - Auc: 0.951 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Auc | |:-------------:|:-----:|:----:|:---------------:|:--------:|:-----:| | 0.5025 | 1.0 | 263 | 0.3835 | 0.816 | 0.912 | | 0.4082 | 2.0 | 526 | 0.3372 | 0.844 | 0.931 | | 0.3531 | 3.0 | 789 | 0.3123 | 0.851 | 0.94 | | 0.3568 | 4.0 | 1052 | 0.3457 | 0.853 | 0.946 | | 0.3518 | 5.0 | 1315 | 0.3396 | 0.862 | 0.947 | | 0.3483 | 6.0 | 1578 | 0.2922 | 0.869 | 0.951 | | 0.3342 | 7.0 | 1841 | 0.2876 | 0.878 | 0.95 | | 0.3097 | 8.0 | 2104 | 0.2887 | 0.869 | 0.95 | | 0.3141 | 9.0 | 2367 | 0.2838 | 0.871 | 0.951 | | 0.3155 | 10.0 | 2630 | 0.2888 | 0.867 | 0.951 | ### Framework versions - Transformers 4.51.3 - Pytorch 2.6.0+cu124 - Datasets 3.5.1 - Tokenizers 0.21.1
HikariLight/Qwen3_4B_Base__COMP_ACI_DAMT_SFT_Merged
HikariLight
2025-04-29T17:13:12Z
0
0
transformers
[ "transformers", "safetensors", "qwen3", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2025-04-29T17:10:39Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]