modelId
stringlengths
5
139
author
stringlengths
2
42
last_modified
timestamp[us, tz=UTC]date
2020-02-15 11:33:14
2025-08-08 12:29:11
downloads
int64
0
223M
likes
int64
0
11.7k
library_name
stringclasses
493 values
tags
listlengths
1
4.05k
pipeline_tag
stringclasses
55 values
createdAt
timestamp[us, tz=UTC]date
2022-03-02 23:29:04
2025-08-08 12:28:45
card
stringlengths
11
1.01M
vaibhavbasidoni/gemma-3-finetuneiamge-4b
vaibhavbasidoni
2025-04-26T05:30:30Z
0
0
transformers
[ "transformers", "gemma3_text", "text-generation", "text-generation-inference", "unsloth", "gemma3", "conversational", "en", "base_model:unsloth/gemma-3-4b-it", "base_model:finetune:unsloth/gemma-3-4b-it", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2025-04-26T03:31:20Z
--- base_model: unsloth/gemma-3-4b-it tags: - text-generation-inference - transformers - unsloth - gemma3 license: apache-2.0 language: - en --- # Uploaded finetuned model - **Developed by:** vaibhavbasidoni - **License:** apache-2.0 - **Finetuned from model :** unsloth/gemma-3-4b-it This gemma3 model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
Nitrals-Loras/vmc-12B-1.5-lora
Nitrals-Loras
2025-04-26T05:05:58Z
0
0
peft
[ "peft", "safetensors", "arxiv:1910.09700", "base_model:Nitral-AI/vmc-12B-1.25", "base_model:adapter:Nitral-AI/vmc-12B-1.25", "region:us" ]
null
2025-04-26T05:05:44Z
--- base_model: Nitral-AI/vmc-12B-1.25 library_name: peft --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ### Framework versions - PEFT 0.14.0
Otakadelic/Meta-Llama-3.1-8B-Instruct-abliterated-Q6_K-GGUF
Otakadelic
2025-04-26T05:00:03Z
0
0
transformers
[ "transformers", "gguf", "abliterated", "uncensored", "llama-cpp", "gguf-my-repo", "base_model:Georgsius/Meta-Llama-3.1-8B-Instruct-abliterated", "base_model:quantized:Georgsius/Meta-Llama-3.1-8B-Instruct-abliterated", "license:llama3.1", "endpoints_compatible", "region:us", "conversational" ]
null
2025-04-26T04:59:35Z
--- base_model: Georgsius/Meta-Llama-3.1-8B-Instruct-abliterated library_name: transformers license: llama3.1 tags: - abliterated - uncensored - llama-cpp - gguf-my-repo --- # Otakadelic/Meta-Llama-3.1-8B-Instruct-abliterated-Q6_K-GGUF This model was converted to GGUF format from [`Georgsius/Meta-Llama-3.1-8B-Instruct-abliterated`](https://huggingface.co/Georgsius/Meta-Llama-3.1-8B-Instruct-abliterated) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space. Refer to the [original model card](https://huggingface.co/Georgsius/Meta-Llama-3.1-8B-Instruct-abliterated) for more details on the model. ## Use with llama.cpp Install llama.cpp through brew (works on Mac and Linux) ```bash brew install llama.cpp ``` Invoke the llama.cpp server or the CLI. ### CLI: ```bash llama-cli --hf-repo Otakadelic/Meta-Llama-3.1-8B-Instruct-abliterated-Q6_K-GGUF --hf-file meta-llama-3.1-8b-instruct-abliterated-q6_k.gguf -p "The meaning to life and the universe is" ``` ### Server: ```bash llama-server --hf-repo Otakadelic/Meta-Llama-3.1-8B-Instruct-abliterated-Q6_K-GGUF --hf-file meta-llama-3.1-8b-instruct-abliterated-q6_k.gguf -c 2048 ``` Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well. Step 1: Clone llama.cpp from GitHub. ``` git clone https://github.com/ggerganov/llama.cpp ``` Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux). ``` cd llama.cpp && LLAMA_CURL=1 make ``` Step 3: Run inference through the main binary. ``` ./llama-cli --hf-repo Otakadelic/Meta-Llama-3.1-8B-Instruct-abliterated-Q6_K-GGUF --hf-file meta-llama-3.1-8b-instruct-abliterated-q6_k.gguf -p "The meaning to life and the universe is" ``` or ``` ./llama-server --hf-repo Otakadelic/Meta-Llama-3.1-8B-Instruct-abliterated-Q6_K-GGUF --hf-file meta-llama-3.1-8b-instruct-abliterated-q6_k.gguf -c 2048 ```
earningrewardscrypto/earn
earningrewardscrypto
2025-04-26T04:43:22Z
0
0
null
[ "license:apache-2.0", "region:us" ]
null
2025-04-26T04:43:22Z
--- license: apache-2.0 ---
newtaker3475/newtaker1121006
newtaker3475
2025-04-26T02:42:57Z
0
0
null
[ "license:apache-2.0", "region:us" ]
null
2025-04-26T02:42:57Z
--- license: apache-2.0 ---
Petercusin/English-news-category-classifier
Petercusin
2025-04-26T01:51:18Z
0
0
null
[ "safetensors", "distilbert", "code", "text-classification", "en", "base_model:distilbert/distilbert-base-uncased", "base_model:finetune:distilbert/distilbert-base-uncased", "license:apache-2.0", "region:us" ]
text-classification
2025-04-26T00:24:54Z
--- license: apache-2.0 language: - en metrics: - accuracy base_model: - distilbert/distilbert-base-uncased pipeline_tag: text-classification tags: - code Eval Results: {'eval_loss': 1.6844203472137451, 'eval_accuracy': 0.5371031746031746, 'eval_f1': 0.5281888823201883, 'eval_precision': 0.5347082372987961, 'eval_recall': 0.5371031746031746, 'eval_runtime': 584.5829, 'eval_samples_per_second': 8.622, 'eval_steps_per_second': 0.539, 'epoch': 2.0} --- ## 1. Model Details | **Attribute** | **Value** | |-------------------------------|-----------------------------| | Developed by | Petercusin (Guisheng Pan) | | Model Architecture | DistilBERT | | Activation Function | GELU | | Dimensions | 768 | | Size | 255M | | Hidden Dimensions | 3072 | | Attention Dropout | 0.1 | | Dropout | 0.1 | | Sequence Classification Dropout | 0.2 | | Number of Heads | 12 | | Number of Layers | 6 | | Max Position Embeddings | 512 | | Vocabulary Size | 30522 | | Initializer Range | 0.02 | | Tied Weights | True | | Problem Type | Multi-Label Classification | ## 2. Model Description This model is designed to classify English news articles into various domains or categories. It can be used for tasks such as news categorization, content organization, and topic-based filtering. ## ⚙️3. How to Get Started with the Model ```python # -*- coding: utf-8 -*- """ Created on Sat Apr 26 08:48:07 2025 @author: Petercusin """ import torch import torch.nn.functional as F from transformers import DistilBertTokenizer, DistilBertForSequenceClassification # Step 1: Load the trained model and tokenizer tokenizer = DistilBertTokenizer.from_pretrained("English-news-category-classifier") model = DistilBertForSequenceClassification.from_pretrained("English-news-category-classifier") # Step 2: Define a function to preprocess the input text def preprocess_text(text): inputs = tokenizer(text, padding='max_length', truncation=True, return_tensors='pt') return inputs # Step 3: Define a function to make predictions def predict(text): # Preprocess the input text inputs = preprocess_text(text) # Make predictions with torch.no_grad(): outputs = model(**inputs) # Get the predicted class probabilities logits = outputs.logits probabilities = F.softmax(logits, dim=1).squeeze().tolist() predicted_class_id = torch.argmax(logits, dim=1).item() return predicted_class_id, probabilities # Step 4: Load the label map from the model's configuration label_map = model.config.id2label # Example usage new_titles = [ "Stock markets reach all-time high amid economic recovery", "Scientists discover new species in Amazon rainforest", "Congress passes new bill on healthcare reforms", "The stairway to love: Chongqing's real-life fairy tale", "African delegation take in Shanghai sights on Huangpu cruise", "China expected to achieve higher grain output in 2025: report", "China continued its dominance at the 2025 World Aquatics Diving World Cup in Guadalajara, sweeping all four gold medals on the third day of competitions on Saturday, along with one silver.", "A 'DeepSeek moment for AI agents' as China launches Manus", "Developed by Monica.im, Manus achieved top scores on the GAIA (General AI Assistant) benchmark, exceeding those of OpenAI's GPT (generative pre-trained transformer) tools. GAIA is a real-world benchmark for general AI assistants.", "This week and without warning, a horrid video popped up on my phone. A puppy had its mouth and paws bound with tape, and was hanging in a plastic bag by the motorway. I immediately flicked past, but the image stayed with me. This was something I didn’t want to see, yet there it was at 11am on a Tuesday." ] for v in new_titles: input_text=v predicted_class_id, probabilities = predict(input_text) predicted_category = label_map[predicted_class_id] print(f"Predicted category: {predicted_category}") print(f"Text to classify: {v}") predicted_probability = probabilities[predicted_class_id] print(f"Probability of the predicted category: {predicted_probability:.4f}\n") ``` ## Result ```json Predicted category: BUSINESS Text to classify: Stock markets reach all-time high amid economic recovery Probability of the predicted category: 0.5707 Predicted category: SCIENCE Text to classify: Scientists discover new species in Amazon rainforest Probability of the predicted category: 0.5186 Predicted category: POLITICS Text to classify: Congress passes new bill on healthcare reforms Probability of the predicted category: 0.6175 Predicted category: ARTS Text to classify: The stairway to love: Chongqing's real-life fairy tale Probability of the predicted category: 0.2746 Predicted category: WORLDPOST Text to classify: African delegation take in Shanghai sights on Huangpu cruise Probability of the predicted category: 0.4686 Predicted category: GREEN Text to classify: China expected to achieve higher grain output in 2025: report Probability of the predicted category: 0.2889 Predicted category: SPORTS Text to classify: China continued its dominance at the 2025 World Aquatics Diving World Cup in Guadalajara, sweeping all four gold medals on the third day of competitions on Saturday, along with one silver. Probability of the predicted category: 0.4540 Predicted category: TECH Text to classify: A 'DeepSeek moment for AI agents' as China launches Manus Probability of the predicted category: 0.3297 Predicted category: TECH Text to classify: Developed by Monica.im, Manus achieved top scores on the GAIA (General AI Assistant) benchmark, exceeding those of OpenAI's GPT (generative pre-trained transformer) tools. GAIA is a real-world benchmark for general AI assistants. Probability of the predicted category: 0.8065 Predicted category: GOOD NEWS Text to classify: This week and without warning, a horrid video popped up on my phone. A puppy had its mouth and paws bound with tape, and was hanging in a plastic bag by the motorway. I immediately flicked past, but the image stayed with me. This was something I didn’t want to see, yet there it was at 11am on a Tuesday. Probability of the predicted category: 0.1350 ``` ## 4. Training Data The model was trained on a dataset of news articles categorized into 42 different domains. The categories include: | **Column 1** | **Column 2** | |--------------|--------------| | 0 LATINO VOICES | 21 WORLD NEWS | | 1 ARTS | 22 QUEER VOICES | | 2 CULTURE & ARTS | 23 PARENTING | | 3 HOME & LIVING | 24 MONEY | | 4 ARTS & CULTURE | 25 SPORTS | | 5 THE WORLDPOST | 26 POLITICS | | 6 GOOD NEWS | 27 WELLNESS | | 7 FIFTY | 28 GREEN | | 8 CRIME | 29 BUSINESS | | 9 RELIGION | 30 TECH | | 10 PARENTS | 31 ENVIRONMENT | | 11 TASTE | 32 WOMEN | | 12 WORLDPOST | 33 U.S. NEWS | | 13 EDUCATION | 34 HEALTHY LIVING | | 14 ENTERTAINMENT | 35 DIVORCE | | 15 FOOD & DRINK | 36 MEDIA | | 16 TRAVEL | 37 WEDDINGS | | 17 STYLE & BEAUTY | 38 BLACK VOICES | | 18 IMPACT | 39 STYLE | | 19 WEIRD NEWS | 40 COMEDY | | 20 COLLEGE | 41 SCIENCE | ## 5. Evaluation - The model was evaluated on a test set, and the following metrics were obtained: - Evaluation Loss: 1.6844 - Evaluation Accuracy: 0.5371 - Evaluation F1 Score: 0.5282 - Evaluation Precision: 0.5347 - Evaluation Recall: 0.5371 - Evaluation Runtime: 584.58 seconds - Evaluation Samples per Second: 8.622 - Evaluation Steps per Second: 0.539 ## 🤝 6. Model Card Contact Author: Pan Guisheng, a PhD student at the Graduate Institute of Interpretation and Translation of Shanghai International Studies University Email: [email protected]
hpieris/VibeLlama-11b-seed-123
hpieris
2025-04-26T00:37:54Z
0
0
null
[ "safetensors", "text-generation", "conversational", "base_model:meta-llama/Llama-3.2-11B-Vision-Instruct", "base_model:finetune:meta-llama/Llama-3.2-11B-Vision-Instruct", "license:mit", "region:us" ]
text-generation
2025-04-26T00:37:47Z
--- base_model: meta-llama/Llama-3.2-11B-Vision-Instruct tags: - text-generation license: mit --- This LoRA adapter was fine-tuned from `meta-llama/Llama-3.2-11B-Vision-Instruct` on the IMDb dataset using QLoRA.
kk-aivio/3a4f1757-da46-41b1-8d5f-d6bb2f9f5a3e
kk-aivio
2025-04-25T23:01:57Z
0
0
peft
[ "peft", "generated_from_trainer", "base_model:unsloth/Phi-3-mini-4k-instruct", "base_model:adapter:unsloth/Phi-3-mini-4k-instruct", "region:us" ]
null
2025-04-25T23:01:16Z
--- library_name: peft tags: - generated_from_trainer base_model: unsloth/Phi-3-mini-4k-instruct model-index: - name: kk-aivio/3a4f1757-da46-41b1-8d5f-d6bb2f9f5a3e results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # kk-aivio/3a4f1757-da46-41b1-8d5f-d6bb2f9f5a3e This model was trained from scratch on the None dataset. It achieves the following results on the evaluation set: - Loss: 3.1599 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ### Framework versions - PEFT 0.13.2 - Transformers 4.46.3 - Pytorch 2.5.1+cu124 - Datasets 3.1.0 - Tokenizers 0.20.3
dzanbek/6fef2d0d-3d6c-4833-9eca-2347783ffbd9
dzanbek
2025-04-25T22:47:39Z
0
0
peft
[ "peft", "safetensors", "mistral", "axolotl", "generated_from_trainer", "base_model:unsloth/Phi-3-mini-4k-instruct", "base_model:adapter:unsloth/Phi-3-mini-4k-instruct", "license:mit", "region:us" ]
null
2025-04-25T22:40:26Z
--- library_name: peft license: mit base_model: unsloth/Phi-3-mini-4k-instruct tags: - axolotl - generated_from_trainer model-index: - name: 6fef2d0d-3d6c-4833-9eca-2347783ffbd9 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml absolute_data_files: false adapter: lora base_model: unsloth/Phi-3-mini-4k-instruct bf16: true chat_template: llama3 dataset_prepared_path: /workspace/axolotl datasets: - data_files: - 92b2589f074b137f_train_data.json ds_type: json format: custom path: /workspace/input_data/92b2589f074b137f_train_data.json type: field_instruction: premise field_output: hypothesis format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 1 flash_attention: true fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 1 gradient_checkpointing: true gradient_clipping: 0.5 group_by_length: false hub_model_id: dzanbek/6fef2d0d-3d6c-4833-9eca-2347783ffbd9 hub_repo: null hub_strategy: end hub_token: null learning_rate: 5.0e-06 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 64 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 32 lora_target_linear: true lr_scheduler: cosine max_steps: 200 micro_batch_size: 8 mixed_precision: bf16 mlflow_experiment_name: /tmp/92b2589f074b137f_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 1 sequence_len: 1024 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: ef3f86ff-e1c3-4627-acac-22d43236fd1d wandb_project: s56-2 wandb_run: your_name wandb_runid: ef3f86ff-e1c3-4627-acac-22d43236fd1d warmup_steps: 5 weight_decay: 0.01 xformers_attention: true ``` </details><br> # 6fef2d0d-3d6c-4833-9eca-2347783ffbd9 This model is a fine-tuned version of [unsloth/Phi-3-mini-4k-instruct](https://huggingface.co/unsloth/Phi-3-mini-4k-instruct) on the None dataset. It achieves the following results on the evaluation set: - Loss: 4.2478 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-06 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 3.9912 | 0.1301 | 200 | 4.2478 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
mpasila/shisa-v2-JP-EN-Translator-v0.1-12B
mpasila
2025-04-25T20:59:38Z
0
0
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "text-generation-inference", "unsloth", "trl", "sft", "conversational", "en", "dataset:NilanE/ParallelFiction-Ja_En-100k", "dataset:mpasila/ja_en_massive_1000_sharegpt_filtered_fixed_short", "base_model:shisa-ai/shisa-v2-mistral-nemo-12b", "base_model:finetune:shisa-ai/shisa-v2-mistral-nemo-12b", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2025-04-25T19:51:43Z
--- base_model: shisa-ai/shisa-v2-mistral-nemo-12b tags: - text-generation-inference - transformers - unsloth - mistral - trl - sft license: apache-2.0 language: - en datasets: - NilanE/ParallelFiction-Ja_En-100k - mpasila/ja_en_massive_1000_sharegpt_filtered_fixed_short --- This only contains around 191 examples. This is just quick test will release the full around 1k examples soon. I've done a quick cleaning of the data manually using Notepad++. There may still be broken stuff or other problems. Uses ChatML, recommended system prompt: `You are an AI assistant that translates Japanese to English accurately.` Uses [NilanE/ParallelFiction-Ja_En-100k](https://huggingface.co/datasets/NilanE/ParallelFiction-Ja_En-100k) for the data. LoRA: [mpasila/shisa-v2-JP-EN-Translator-v0.1-LoRA-12B](https://huggingface.co/mpasila/shisa-v2-JP-EN-Translator-v0.1-LoRA-12B) Uses the usual 128 rank and 32 alpha. Trained on 16384 context window in QLoRA. **Token Count Statistics:** - Total conversations: 191 - Total tokens: 918486 - Average tokens per conversation: 4808.83 - Median tokens per conversation: 4187.0 - Maximum tokens in a conversation: 13431 - Minimum tokens in a conversation: 512 **Token Distribution by Role:** - System messages: 2483 tokens (0.27%) - Human messages: 494038 tokens (53.79%) - Assistant messages: 421965 tokens (45.94%) **Token Count Distribution:** - 0-512: 0 conversations (0.00%) - 513-1024: 4 conversations (2.09%) - 1025-2048: 10 conversations (5.24%) - 2049-4096: 77 conversations (40.31%) - 4097-8192: 83 conversations (43.46%) - 8193-16384: 17 conversations (8.90%) - 16385+: 0 conversations (0.00%) # Uploaded shisa-v2-JP-EN-Translator-v0.1-12B model - **Developed by:** mpasila - **License:** apache-2.0 - **Finetuned from model :** shisa-ai/shisa-v2-mistral-nemo-12b This mistral model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
Sang-Buster/atc-llama
Sang-Buster
2025-04-25T20:37:17Z
6
0
null
[ "safetensors", "llama", "Speech Recognition", "ATC", "Unsloth", "LoRA-Merged", "text-generation", "conversational", "en", "base_model:meta-llama/Llama-3.2-3B-Instruct", "base_model:finetune:meta-llama/Llama-3.2-3B-Instruct", "license:llama3.2", "region:us" ]
text-generation
2025-04-24T21:00:23Z
--- license: llama3.2 language: - en base_model: - meta-llama/Llama-3.2-3B-Instruct pipeline_tag: text-generation tags: - Speech Recognition - ATC - Unsloth - LoRA-Merged --- # ATC Communication Expert Model (Merged) A fine-tuned model specialized in improving and analyzing Air Traffic Control (ATC) communications, with LoRA adapters merged into the base model. ## Model Details ### Model Description This model is a fine-tuned version of meta-llama/Llama-3.2-3B-Instruct with merged LoRA adapters, optimized for processing Air Traffic Control communications. It can: - Improve raw ATC transcripts with proper punctuation and formatting - Identify communication intentions (pilot requests, ATC instructions, etc.) - Extract key information such as flight numbers, altitudes, headings, and other numerical data - Analyze speaker roles and communication patterns The model was created by merging LoRA adapters (fine-tuned on ATC communications) into the Llama 3B base model, creating a unified model optimized for this specialized domain. - **Developed by:** [Sang-Buster](https://github.com/Sang-Buster) - **Model type:** Llama 3B with merged LoRA adapters - **Language(s):** English, specialized for ATC terminology - **License:** Same as the base model - **Finetuned from model:** meta-llama/Llama-3.2-3B-Instruct ## Uses ### Direct Use This model is intended for: - Transcribing and formatting raw ATC communications - Training ATC communication skills - Analyzing ATC communication patterns - Extracting structured data from ATC communications - Educational purposes for those learning ATC communication protocols ### Downstream Use The model can be integrated into: - Air traffic management training systems - Communication analysis tools - ATC transcript post-processing pipelines - Aviation safety monitoring systems - Radio communication enhancement systems ### Out-of-Scope Use This model is not suitable for: - Real-time ATC operations or safety-critical decision-making - Full language translation (it's specialized for ATC terminology only) - General language processing outside the ATC domain - Any application where model errors could impact flight safety ## Bias, Risks, and Limitations - The model is specialized for ATC communications and may not perform well on general text - It may have limitations with accents or non-standard ATC phraseology - Performance depends on audio transcription quality for real-world applications - Not intended for safety-critical applications without human verification - May have biases based on the training data distribution ### Recommendations - Always have human verification for safety-critical applications - Use in conjunction with standard ATC protocols, not as a replacement - Provide clear domain context for optimal performance - Test thoroughly with diverse ATC communications before deployment - Consider fine-tuning further on your specific ATC subdomain if needed ## How to Get Started with the Model ```python from transformers import AutoModelForCausalLM, AutoTokenizer # Load the model and tokenizer model = AutoModelForCausalLM.from_pretrained( "atc_llama_merged", torch_dtype="auto", device_map="auto" ) tokenizer = AutoTokenizer.from_pretrained("atc_llama_merged") # Process an ATC message instruction = "As an ATC communication expert, improve this transcript and analyze its intentions and data." message = "southwest five niner two turn left heading three four zero descend and maintain flight level two five zero" prompt = f"<|begin_of_text|><|header_start|>user<|header_end|>\n\n{instruction}\n\nOriginal: {message}<|eot|><|header_start|>assistant<|header_end|>\n\n" inputs = tokenizer(prompt, return_tensors="pt").to(model.device) # Generate improved transcript and analysis outputs = model.generate(**inputs, max_new_tokens=512, do_sample=False) response = tokenizer.decode(outputs[0, inputs["input_ids"].shape[1]:], skip_special_tokens=True) print(response) ``` ## Model Creation Process ### Base Model and Adapters - **Base model:** meta-llama/Llama-3.2-3B-Instruct - **Adapter source:** LoRA adapters fine-tuned on ATC communications data - **Merge method:** PEFT adapter merging into base model weights ### Merging Procedure The model creation involved: 1. Loading the base Llama 3B model 2. Loading LoRA adapters fine-tuned on ATC communications data 3. Merging the adapters into the base model's weights 4. Saving the resulting unified model ## Evaluation ### Testing The model should be tested on diverse ATC communications, including: - Clearances and instructions - Pilot requests and reports - Emergency communications - Different accents and speaking patterns ## Technical Specifications ### Model Architecture and Objective - **Base architecture:** meta-llama/Llama-3.2-3B-Instruct - **Adaptation method:** LoRA adapters merged into base weights - **Training objective:** Improving and analyzing ATC communications ### Model Card Contact For issues or questions about this model, please open a discussion in the repository.
ykarout/phi4-deepseek-r1-distilled-gguf-v5
ykarout
2025-04-25T20:08:53Z
0
0
transformers
[ "transformers", "gguf", "phi-4", "deepseek", "r1", "reasoning", "code", "math", "science", "unsloth", "text-generation", "en", "dataset:nvidia/Llama-Nemotron-Post-Training-Dataset", "base_model:microsoft/phi-4", "base_model:quantized:microsoft/phi-4", "license:mit", "endpoints_compatible", "region:us", "conversational" ]
text-generation
2025-04-25T15:24:42Z
--- license: mit datasets: - nvidia/Llama-Nemotron-Post-Training-Dataset language: - en base_model: - microsoft/phi-4 - unsloth/phi-4 pipeline_tag: text-generation library_name: transformers tags: - phi-4 - deepseek - r1 - reasoning - code - math - science - unsloth --- # Model Card for Model ID Phi-4 unsloth model trained to generate deepseek-r1 styled reasoning based on a system prompt "detailed thinking on" ## Model Details ### Model Description This fine-tuned model generated ehanced chain-of-thoughts, reasoning and produce "Aha-moments" akin to deepseek whenever the system prompt is set to "detailed thinking on". Test any questions from trending datasets about code, math and science, with the system prompt set and unset and you can clearly see the difference in the generated output. A Modelfile is included with the gguf files that can be used to load the model into Ollama. You have to set the system prompt manually after loading the model in Ollama since by default there is no system prompt. You can use /set SYSTEM "detailed thinking on" and then input your prompt. The Modelfile includes optimal parameters but you can experimment with different set of parameters based on your desired goal/output. ## Uses Tasks requiring reasoning, chain-of-thoughts, several approaches etc... ### Recommendations Use the parameters in the Modefile and set system prompt to "detailed thinking on" whenever you require long reasoning outputs. Set system parameter off when you want a direct to the point quick answer without reasoning chains. It is important to utilize the chat-template embedded in the Modelfile to ensure optimal generations and avoid endless generations or loops. ## How to Get Started with the Model Download the gguf file and Modelfile into the same folder then use ollama create phi4-deepseek -f Modelfile. Then run the model using ollama run. Set the system parameter Finally, start prompting. ## Training Details ### Training Data Nvidia datasets containing reasoning context produced by DeeepSeek-R1. ### Training Procedure Unsloth SFT Trainer
jdchang/full-dataset-bs-1024-lr-3e-4-sg-2-step-1458
jdchang
2025-04-25T18:23:35Z
0
0
transformers
[ "transformers", "safetensors", "qwen2", "arxiv:1910.09700", "text-generation-inference", "endpoints_compatible", "region:us" ]
null
2025-04-25T18:23:23Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
dagarcsot/yolo_finetuned_fruits
dagarcsot
2025-04-25T18:15:54Z
0
0
transformers
[ "transformers", "safetensors", "yolos", "object-detection", "generated_from_trainer", "base_model:hustvl/yolos-tiny", "base_model:finetune:hustvl/yolos-tiny", "license:apache-2.0", "endpoints_compatible", "region:us" ]
object-detection
2025-04-25T17:59:42Z
--- library_name: transformers license: apache-2.0 base_model: hustvl/yolos-tiny tags: - generated_from_trainer model-index: - name: yolo_finetuned_fruits results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # yolo_finetuned_fruits This model is a fine-tuned version of [hustvl/yolos-tiny](https://huggingface.co/hustvl/yolos-tiny) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.7771 - Map: 0.5882 - Map 50: 0.8376 - Map 75: 0.6723 - Map Small: -1.0 - Map Medium: 0.6116 - Map Large: 0.5966 - Mar 1: 0.4201 - Mar 10: 0.7111 - Mar 100: 0.7683 - Mar Small: -1.0 - Mar Medium: 0.7071 - Mar Large: 0.7767 - Map Banana: 0.4758 - Mar 100 Banana: 0.7425 - Map Orange: 0.6281 - Mar 100 Orange: 0.8024 - Map Apple: 0.6608 - Mar 100 Apple: 0.76 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 4 - eval_batch_size: 8 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - num_epochs: 30 ### Training results | Training Loss | Epoch | Step | Validation Loss | Map | Map 50 | Map 75 | Map Small | Map Medium | Map Large | Mar 1 | Mar 10 | Mar 100 | Mar Small | Mar Medium | Mar Large | Map Banana | Mar 100 Banana | Map Orange | Mar 100 Orange | Map Apple | Mar 100 Apple | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:|:----------:|:---------:|:------:|:------:|:-------:|:---------:|:----------:|:---------:|:----------:|:--------------:|:----------:|:--------------:|:---------:|:-------------:| | No log | 1.0 | 60 | 1.9700 | 0.0096 | 0.0268 | 0.0038 | -1.0 | 0.0155 | 0.0132 | 0.078 | 0.2026 | 0.3463 | -1.0 | 0.2343 | 0.3714 | 0.0132 | 0.2975 | 0.0096 | 0.3786 | 0.0058 | 0.3629 | | No log | 2.0 | 120 | 1.6517 | 0.0553 | 0.1516 | 0.0414 | -1.0 | 0.111 | 0.0556 | 0.1359 | 0.2777 | 0.4308 | -1.0 | 0.3186 | 0.4454 | 0.0647 | 0.5175 | 0.0406 | 0.1976 | 0.0608 | 0.5771 | | No log | 3.0 | 180 | 1.2778 | 0.1262 | 0.2428 | 0.1168 | -1.0 | 0.1877 | 0.1303 | 0.2519 | 0.5055 | 0.6286 | -1.0 | 0.5814 | 0.634 | 0.1024 | 0.6225 | 0.0983 | 0.4976 | 0.1778 | 0.7657 | | No log | 4.0 | 240 | 1.0948 | 0.2377 | 0.4041 | 0.2352 | -1.0 | 0.4084 | 0.2402 | 0.3266 | 0.5759 | 0.7115 | -1.0 | 0.6371 | 0.7237 | 0.182 | 0.695 | 0.1717 | 0.7024 | 0.3596 | 0.7371 | | No log | 5.0 | 300 | 1.0477 | 0.2746 | 0.4623 | 0.2895 | -1.0 | 0.2475 | 0.3142 | 0.3285 | 0.609 | 0.7315 | -1.0 | 0.6257 | 0.7458 | 0.221 | 0.7075 | 0.1828 | 0.7214 | 0.42 | 0.7657 | | No log | 6.0 | 360 | 1.0028 | 0.3661 | 0.6059 | 0.4064 | -1.0 | 0.4221 | 0.3982 | 0.3651 | 0.6231 | 0.7251 | -1.0 | 0.6229 | 0.7379 | 0.2698 | 0.7 | 0.3568 | 0.7238 | 0.4716 | 0.7514 | | No log | 7.0 | 420 | 0.9809 | 0.3532 | 0.5656 | 0.4002 | -1.0 | 0.4557 | 0.3731 | 0.3569 | 0.6472 | 0.7488 | -1.0 | 0.6829 | 0.7591 | 0.3239 | 0.715 | 0.3333 | 0.7714 | 0.4025 | 0.76 | | No log | 8.0 | 480 | 0.9679 | 0.4348 | 0.6762 | 0.4868 | -1.0 | 0.5782 | 0.4375 | 0.3547 | 0.6527 | 0.7254 | -1.0 | 0.7343 | 0.7269 | 0.2877 | 0.68 | 0.4769 | 0.7619 | 0.5397 | 0.7343 | | 1.2471 | 9.0 | 540 | 0.9173 | 0.4434 | 0.7005 | 0.5049 | -1.0 | 0.5147 | 0.4475 | 0.3646 | 0.6443 | 0.7348 | -1.0 | 0.6771 | 0.7408 | 0.3288 | 0.7225 | 0.4683 | 0.7619 | 0.5332 | 0.72 | | 1.2471 | 10.0 | 600 | 0.8875 | 0.4834 | 0.7654 | 0.5497 | -1.0 | 0.5051 | 0.4991 | 0.369 | 0.6925 | 0.7589 | -1.0 | 0.6957 | 0.7689 | 0.3668 | 0.73 | 0.497 | 0.7952 | 0.5864 | 0.7514 | | 1.2471 | 11.0 | 660 | 0.9261 | 0.4803 | 0.7507 | 0.5799 | -1.0 | 0.4907 | 0.4971 | 0.3818 | 0.6745 | 0.7525 | -1.0 | 0.6957 | 0.7629 | 0.3567 | 0.7175 | 0.5014 | 0.7714 | 0.5828 | 0.7686 | | 1.2471 | 12.0 | 720 | 0.8520 | 0.4974 | 0.7451 | 0.5567 | -1.0 | 0.6198 | 0.4976 | 0.3946 | 0.691 | 0.7489 | -1.0 | 0.7157 | 0.7532 | 0.3709 | 0.7025 | 0.5588 | 0.7929 | 0.5626 | 0.7514 | | 1.2471 | 13.0 | 780 | 0.8630 | 0.4998 | 0.7799 | 0.5682 | -1.0 | 0.546 | 0.5213 | 0.3848 | 0.6848 | 0.7519 | -1.0 | 0.6443 | 0.768 | 0.4078 | 0.7575 | 0.5624 | 0.7952 | 0.5292 | 0.7029 | | 1.2471 | 14.0 | 840 | 0.8469 | 0.5071 | 0.776 | 0.5801 | -1.0 | 0.6247 | 0.5104 | 0.3913 | 0.7049 | 0.7579 | -1.0 | 0.6971 | 0.7682 | 0.3635 | 0.71 | 0.5271 | 0.781 | 0.6306 | 0.7829 | | 1.2471 | 15.0 | 900 | 0.7995 | 0.5311 | 0.8059 | 0.5856 | -1.0 | 0.6156 | 0.5327 | 0.3958 | 0.7068 | 0.7576 | -1.0 | 0.7429 | 0.7592 | 0.3951 | 0.7175 | 0.5739 | 0.8095 | 0.6244 | 0.7457 | | 1.2471 | 16.0 | 960 | 0.8150 | 0.5342 | 0.8046 | 0.6189 | -1.0 | 0.6285 | 0.5346 | 0.3974 | 0.7012 | 0.7505 | -1.0 | 0.7043 | 0.7556 | 0.4157 | 0.73 | 0.584 | 0.7929 | 0.603 | 0.7286 | | 0.7135 | 17.0 | 1020 | 0.7887 | 0.5532 | 0.8155 | 0.6643 | -1.0 | 0.5982 | 0.5619 | 0.4184 | 0.7122 | 0.7656 | -1.0 | 0.6929 | 0.7758 | 0.4475 | 0.7425 | 0.5754 | 0.8 | 0.6365 | 0.7543 | | 0.7135 | 18.0 | 1080 | 0.7961 | 0.5545 | 0.8237 | 0.6426 | -1.0 | 0.6024 | 0.5606 | 0.4042 | 0.7056 | 0.7583 | -1.0 | 0.6971 | 0.7648 | 0.4583 | 0.7425 | 0.6036 | 0.8095 | 0.6014 | 0.7229 | | 0.7135 | 19.0 | 1140 | 0.7936 | 0.5726 | 0.8321 | 0.6599 | -1.0 | 0.6004 | 0.5838 | 0.4203 | 0.7209 | 0.7776 | -1.0 | 0.7071 | 0.7878 | 0.4648 | 0.75 | 0.5835 | 0.8 | 0.6695 | 0.7829 | | 0.7135 | 20.0 | 1200 | 0.7948 | 0.5543 | 0.8208 | 0.638 | -1.0 | 0.5928 | 0.5617 | 0.4001 | 0.7032 | 0.7665 | -1.0 | 0.7 | 0.7747 | 0.4439 | 0.7525 | 0.5944 | 0.8071 | 0.6246 | 0.74 | | 0.7135 | 21.0 | 1260 | 0.7850 | 0.5808 | 0.8357 | 0.6736 | -1.0 | 0.5831 | 0.5941 | 0.4118 | 0.7229 | 0.7766 | -1.0 | 0.7 | 0.7863 | 0.4928 | 0.765 | 0.6112 | 0.8048 | 0.6386 | 0.76 | | 0.7135 | 22.0 | 1320 | 0.8025 | 0.5813 | 0.8356 | 0.6729 | -1.0 | 0.6177 | 0.5906 | 0.4188 | 0.7138 | 0.771 | -1.0 | 0.6871 | 0.7812 | 0.4719 | 0.755 | 0.6277 | 0.7952 | 0.6442 | 0.7629 | | 0.7135 | 23.0 | 1380 | 0.7886 | 0.5795 | 0.83 | 0.6743 | -1.0 | 0.5957 | 0.589 | 0.4076 | 0.7065 | 0.7598 | -1.0 | 0.69 | 0.7679 | 0.4784 | 0.75 | 0.624 | 0.7952 | 0.6362 | 0.7343 | | 0.7135 | 24.0 | 1440 | 0.8081 | 0.5787 | 0.8341 | 0.6563 | -1.0 | 0.5982 | 0.5875 | 0.4117 | 0.7084 | 0.7679 | -1.0 | 0.7114 | 0.7748 | 0.463 | 0.745 | 0.6192 | 0.7929 | 0.6538 | 0.7657 | | 0.5383 | 25.0 | 1500 | 0.7858 | 0.5865 | 0.8318 | 0.6691 | -1.0 | 0.6285 | 0.5935 | 0.4216 | 0.7144 | 0.7729 | -1.0 | 0.7186 | 0.7792 | 0.473 | 0.75 | 0.624 | 0.8 | 0.6626 | 0.7686 | | 0.5383 | 26.0 | 1560 | 0.7777 | 0.5935 | 0.8462 | 0.6778 | -1.0 | 0.6176 | 0.6011 | 0.4216 | 0.7151 | 0.7709 | -1.0 | 0.7143 | 0.7784 | 0.4799 | 0.7475 | 0.6363 | 0.8024 | 0.6643 | 0.7629 | | 0.5383 | 27.0 | 1620 | 0.7821 | 0.5914 | 0.8388 | 0.6746 | -1.0 | 0.6231 | 0.5982 | 0.4209 | 0.7128 | 0.7685 | -1.0 | 0.7043 | 0.7771 | 0.4773 | 0.7375 | 0.6304 | 0.8024 | 0.6665 | 0.7657 | | 0.5383 | 28.0 | 1680 | 0.7803 | 0.5918 | 0.8401 | 0.6739 | -1.0 | 0.6233 | 0.5987 | 0.4201 | 0.7129 | 0.7684 | -1.0 | 0.7143 | 0.7759 | 0.4768 | 0.74 | 0.6328 | 0.8024 | 0.6658 | 0.7629 | | 0.5383 | 29.0 | 1740 | 0.7800 | 0.5886 | 0.8382 | 0.6727 | -1.0 | 0.6116 | 0.5971 | 0.4201 | 0.7111 | 0.7683 | -1.0 | 0.7071 | 0.7767 | 0.476 | 0.7425 | 0.629 | 0.8024 | 0.6608 | 0.76 | | 0.5383 | 30.0 | 1800 | 0.7771 | 0.5882 | 0.8376 | 0.6723 | -1.0 | 0.6116 | 0.5966 | 0.4201 | 0.7111 | 0.7683 | -1.0 | 0.7071 | 0.7767 | 0.4758 | 0.7425 | 0.6281 | 0.8024 | 0.6608 | 0.76 | ### Framework versions - Transformers 4.51.3 - Pytorch 2.6.0+cu124 - Datasets 3.5.0 - Tokenizers 0.21.1
riveRiPH/Violet_Magcap-12B-6bpw-h8-exl2
riveRiPH
2025-04-25T18:00:21Z
0
0
null
[ "safetensors", "mistral", "en", "base_model:Nitral-AI/Violet_Magcap-12B", "base_model:quantized:Nitral-AI/Violet_Magcap-12B", "license:other", "6-bit", "exl2", "region:us" ]
null
2025-04-25T17:04:45Z
--- base_model: - Nitral-AI/Violet_Magcap-12B base_model_relation: quantized license: other language: - en --- # Violet_Magcap-12B-6bpw-h8-exl2 This is a 6bpw h8 exl2 quant of [Violet_Magcap-12B](https://huggingface.co/Nitral-AI/Violet_Magcap-12B) Built-in(default) calibration dataset is used.
hasdal/fe63919a-02cc-4b2e-bed0-07eafb896618
hasdal
2025-04-25T15:16:58Z
0
0
peft
[ "peft", "safetensors", "llama", "axolotl", "generated_from_trainer", "base_model:heegyu/WizardVicuna-open-llama-3b-v2", "base_model:adapter:heegyu/WizardVicuna-open-llama-3b-v2", "license:apache-2.0", "region:us" ]
null
2025-04-25T14:09:38Z
--- library_name: peft license: apache-2.0 base_model: heegyu/WizardVicuna-open-llama-3b-v2 tags: - axolotl - generated_from_trainer model-index: - name: fe63919a-02cc-4b2e-bed0-07eafb896618 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: heegyu/WizardVicuna-open-llama-3b-v2 bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - ccf83f7ddd07c30b_train_data.json ds_type: json format: custom path: /workspace/input_data/ccf83f7ddd07c30b_train_data.json type: field_instruction: question field_output: answer format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null do_eval: true early_stopping_patience: 3 eval_batch_size: 4 eval_max_new_tokens: 128 eval_steps: 500 eval_table_size: null evals_per_epoch: null flash_attention: false fp16: false fsdp: null fsdp_config: null gradient_accumulation_steps: 8 gradient_checkpointing: true group_by_length: true hub_model_id: hasdal/fe63919a-02cc-4b2e-bed0-07eafb896618 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.00022 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 50 lora_alpha: 128 lora_dropout: 0.15 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 64 lora_target_linear: true lr_scheduler: cosine max_grad_norm: 1.0 max_steps: 500 micro_batch_size: 4 mlflow_experiment_name: /tmp/ccf83f7ddd07c30b_train_data.json model_type: AutoModelForCausalLM num_epochs: 10 optimizer: adamw_torch_fused output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: 500 saves_per_epoch: null seed: 30 sequence_len: 1024 special_tokens: pad_token: </s> strict: false tf32: true tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: e4ceb50d-bfa1-48e0-bf29-e8892c1eb849 wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: e4ceb50d-bfa1-48e0-bf29-e8892c1eb849 warmup_steps: 100 weight_decay: 0.0 xformers_attention: null ``` </details><br> # fe63919a-02cc-4b2e-bed0-07eafb896618 This model is a fine-tuned version of [heegyu/WizardVicuna-open-llama-3b-v2](https://huggingface.co/heegyu/WizardVicuna-open-llama-3b-v2) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.3972 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.00022 - train_batch_size: 4 - eval_batch_size: 4 - seed: 30 - gradient_accumulation_steps: 8 - total_train_batch_size: 32 - optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 100 - training_steps: 500 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | No log | 0.0020 | 1 | 1.3118 | | 0.3989 | 1.0157 | 500 | 0.3972 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
Fmuaddib/Qwen2.5-14B-Instruct-o4-mlx-8Bit
Fmuaddib
2025-04-25T13:09:33Z
0
0
mlx
[ "mlx", "safetensors", "qwen2", "base_model:PeterLauLukCh/Qwen2.5-14B-Instruct-o4", "base_model:quantized:PeterLauLukCh/Qwen2.5-14B-Instruct-o4", "license:mit", "8-bit", "region:us" ]
null
2025-04-25T13:08:44Z
--- license: mit base_model: PeterLauLukCh/Qwen2.5-14B-Instruct-o4 tags: - mlx --- # Fmuaddib/Qwen2.5-14B-Instruct-o4-mlx-8Bit The Model [Fmuaddib/Qwen2.5-14B-Instruct-o4-mlx-8Bit](https://huggingface.co/Fmuaddib/Qwen2.5-14B-Instruct-o4-mlx-8Bit) was converted to MLX format from [PeterLauLukCh/Qwen2.5-14B-Instruct-o4](https://huggingface.co/PeterLauLukCh/Qwen2.5-14B-Instruct-o4) using mlx-lm version **0.22.3**. ## Use with mlx ```bash pip install mlx-lm ``` ```python from mlx_lm import load, generate model, tokenizer = load("Fmuaddib/Qwen2.5-14B-Instruct-o4-mlx-8Bit") prompt="hello" if hasattr(tokenizer, "apply_chat_template") and tokenizer.chat_template is not None: messages = [{"role": "user", "content": prompt}] prompt = tokenizer.apply_chat_template( messages, tokenize=False, add_generation_prompt=True ) response = generate(model, tokenizer, prompt=prompt, verbose=True) ```
IvanHU/YuLan-Mini-Instruct-8bit
IvanHU
2025-04-25T13:06:36Z
0
0
mlx
[ "mlx", "safetensors", "llama", "code", "math", "text-generation", "conversational", "en", "zh", "base_model:yulan-team/YuLan-Mini-Instruct", "base_model:quantized:yulan-team/YuLan-Mini-Instruct", "license:mit", "model-index", "8-bit", "region:us" ]
text-generation
2025-04-25T07:50:49Z
--- license: mit library_name: mlx pipeline_tag: text-generation language: - en - zh tags: - code - math - mlx arxiv: 2412.17743 base_model: yulan-team/YuLan-Mini-Instruct model-index: - name: YuLan-Mini-Instruct results: - task: type: text-generation dataset: name: HumanEval type: openai_humaneval metrics: - type: pass@10 value: 0.866 name: pass@10 verified: false - task: type: text-generation dataset: name: MBPP type: mbpp metrics: - type: pass@10 value: 0.857 name: pass@10 verified: false - task: type: text-generation dataset: name: MATH type: math metrics: - type: maj@1 value: 0.552 name: maj@1 verified: false - task: type: text-generation dataset: name: GSM8K type: gsm8k metrics: - type: maj@1 value: 0.717 name: maj@1 verified: false --- # IvanHU/YuLan-Mini-Instruct-8bit This model [IvanHU/YuLan-Mini-Instruct-8bit](https://huggingface.co/IvanHU/YuLan-Mini-Instruct-8bit) was converted to MLX format from [yulan-team/YuLan-Mini-Instruct](https://huggingface.co/yulan-team/YuLan-Mini-Instruct) using mlx-lm version **0.22.2**. ## Use with mlx ```bash pip install mlx-lm ``` ```python from mlx_lm import load, generate model, tokenizer = load("IvanHU/YuLan-Mini-Instruct-8bit") prompt = "hello" if tokenizer.chat_template is not None: messages = [{"role": "user", "content": prompt}] prompt = tokenizer.apply_chat_template( messages, add_generation_prompt=True ) response = generate(model, tokenizer, prompt=prompt, verbose=True) ```
PhoenixB/b7ee4dc8-f35c-4be4-9cb5-381ff2d64c3c
PhoenixB
2025-04-25T10:23:07Z
0
0
peft
[ "peft", "safetensors", "mistral", "axolotl", "generated_from_trainer", "base_model:dltjdgh0928/test_instruction", "base_model:adapter:dltjdgh0928/test_instruction", "license:apache-2.0", "region:us" ]
null
2025-04-24T23:18:03Z
--- library_name: peft license: apache-2.0 base_model: dltjdgh0928/test_instruction tags: - axolotl - generated_from_trainer model-index: - name: b7ee4dc8-f35c-4be4-9cb5-381ff2d64c3c results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.5.2` ```yaml adapter: lora auto_find_batch_size: true base_model: dltjdgh0928/test_instruction bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 7bfc1f73c89d9947_train_data.json ds_type: json format: custom path: /workspace/input_data/7bfc1f73c89d9947_train_data.json type: field_instruction: instruction field_output: output format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: /workspace/axolotl/configs/deepspeed_stage2.json eval_max_new_tokens: 128 eval_sample_packing: false eval_steps: 10 eval_table_size: null flash_attention: true fp16: false gpu_memory_limit: 80GiB gradient_accumulation_steps: 4 gradient_checkpointing: true group_by_length: true hub_model_id: PhoenixB/b7ee4dc8-f35c-4be4-9cb5-381ff2d64c3c hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 2e-4 liger_fused_linear_cross_entropy: true liger_glu_activation: true liger_layer_norm: true liger_rms_norm: true liger_rope: true load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 5 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 32 lora_target_linear: true lr_scheduler: cosine max_steps: 100 micro_batch_size: 2 mlflow_experiment_name: /tmp/7bfc1f73c89d9947_train_data.json model_type: AutoModelForCausalLM num_epochs: 3 optimizer: adamw_torch_fused output_dir: miner_id_24 pad_to_sequence_len: true plugins: - axolotl.integrations.liger.LigerPlugin resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: 10 sequence_len: 32768 strict: false tf32: true tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: fd16c759-8369-461a-8cdb-f22aa44f5a17 wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: fd16c759-8369-461a-8cdb-f22aa44f5a17 warmup_steps: 10 weight_decay: 0.0 ``` </details><br> # b7ee4dc8-f35c-4be4-9cb5-381ff2d64c3c This model is a fine-tuned version of [dltjdgh0928/test_instruction](https://huggingface.co/dltjdgh0928/test_instruction) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1392 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - distributed_type: multi-GPU - num_devices: 2 - gradient_accumulation_steps: 4 - total_train_batch_size: 16 - total_eval_batch_size: 4 - optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 100 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | No log | 0.0001 | 1 | 0.8925 | | 0.4113 | 0.0013 | 10 | 0.2989 | | 0.1745 | 0.0026 | 20 | 0.1929 | | 0.2395 | 0.0039 | 30 | 0.1848 | | 0.1694 | 0.0051 | 40 | 0.1609 | | 0.122 | 0.0064 | 50 | 0.1606 | | 0.1695 | 0.0077 | 60 | 0.1522 | | 0.131 | 0.0090 | 70 | 0.1440 | | 0.1814 | 0.0103 | 80 | 0.1424 | | 0.1302 | 0.0116 | 90 | 0.1394 | | 0.1024 | 0.0129 | 100 | 0.1392 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.3 - Pytorch 2.5.1+cu124 - Datasets 3.1.0 - Tokenizers 0.20.3
mradermacher/bert-tiny-book-text-classifier-i1-GGUF
mradermacher
2025-04-25T10:15:39Z
0
0
transformers
[ "transformers", "gguf", "en", "dataset:shhossain/book-text-classifier", "base_model:shhossain/bert-tiny-book-text-classifier", "base_model:quantized:shhossain/bert-tiny-book-text-classifier", "license:mit", "endpoints_compatible", "region:us", "imatrix", "feature-extraction" ]
null
2025-04-25T10:14:10Z
--- base_model: shhossain/bert-tiny-book-text-classifier datasets: - shhossain/book-text-classifier language: - en library_name: transformers license: mit quantized_by: mradermacher --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: nicoboss --> weighted/imatrix quants of https://huggingface.co/shhossain/bert-tiny-book-text-classifier <!-- provided-files --> static quants are available at https://huggingface.co/mradermacher/bert-tiny-book-text-classifier-GGUF ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/bert-tiny-book-text-classifier-i1-GGUF/resolve/main/bert-tiny-book-text-classifier.i1-IQ1_S.gguf) | i1-IQ1_S | 0.1 | for the desperate | | [GGUF](https://huggingface.co/mradermacher/bert-tiny-book-text-classifier-i1-GGUF/resolve/main/bert-tiny-book-text-classifier.i1-IQ1_M.gguf) | i1-IQ1_M | 0.1 | mostly desperate | | [GGUF](https://huggingface.co/mradermacher/bert-tiny-book-text-classifier-i1-GGUF/resolve/main/bert-tiny-book-text-classifier.i1-IQ2_XXS.gguf) | i1-IQ2_XXS | 0.1 | | | [GGUF](https://huggingface.co/mradermacher/bert-tiny-book-text-classifier-i1-GGUF/resolve/main/bert-tiny-book-text-classifier.i1-IQ2_S.gguf) | i1-IQ2_S | 0.1 | | | [GGUF](https://huggingface.co/mradermacher/bert-tiny-book-text-classifier-i1-GGUF/resolve/main/bert-tiny-book-text-classifier.i1-IQ2_XS.gguf) | i1-IQ2_XS | 0.1 | | | [GGUF](https://huggingface.co/mradermacher/bert-tiny-book-text-classifier-i1-GGUF/resolve/main/bert-tiny-book-text-classifier.i1-IQ2_M.gguf) | i1-IQ2_M | 0.1 | | | [GGUF](https://huggingface.co/mradermacher/bert-tiny-book-text-classifier-i1-GGUF/resolve/main/bert-tiny-book-text-classifier.i1-Q2_K_S.gguf) | i1-Q2_K_S | 0.1 | very low quality | | [GGUF](https://huggingface.co/mradermacher/bert-tiny-book-text-classifier-i1-GGUF/resolve/main/bert-tiny-book-text-classifier.i1-IQ3_XXS.gguf) | i1-IQ3_XXS | 0.1 | lower quality | | [GGUF](https://huggingface.co/mradermacher/bert-tiny-book-text-classifier-i1-GGUF/resolve/main/bert-tiny-book-text-classifier.i1-IQ3_S.gguf) | i1-IQ3_S | 0.1 | beats Q3_K* | | [GGUF](https://huggingface.co/mradermacher/bert-tiny-book-text-classifier-i1-GGUF/resolve/main/bert-tiny-book-text-classifier.i1-IQ3_XS.gguf) | i1-IQ3_XS | 0.1 | | | [GGUF](https://huggingface.co/mradermacher/bert-tiny-book-text-classifier-i1-GGUF/resolve/main/bert-tiny-book-text-classifier.i1-Q2_K.gguf) | i1-Q2_K | 0.1 | IQ3_XXS probably better | | [GGUF](https://huggingface.co/mradermacher/bert-tiny-book-text-classifier-i1-GGUF/resolve/main/bert-tiny-book-text-classifier.i1-Q3_K_S.gguf) | i1-Q3_K_S | 0.1 | IQ3_XS probably better | | [GGUF](https://huggingface.co/mradermacher/bert-tiny-book-text-classifier-i1-GGUF/resolve/main/bert-tiny-book-text-classifier.i1-IQ3_M.gguf) | i1-IQ3_M | 0.1 | | | [GGUF](https://huggingface.co/mradermacher/bert-tiny-book-text-classifier-i1-GGUF/resolve/main/bert-tiny-book-text-classifier.i1-IQ4_XS.gguf) | i1-IQ4_XS | 0.1 | | | [GGUF](https://huggingface.co/mradermacher/bert-tiny-book-text-classifier-i1-GGUF/resolve/main/bert-tiny-book-text-classifier.i1-IQ4_NL.gguf) | i1-IQ4_NL | 0.1 | prefer IQ4_XS | | [GGUF](https://huggingface.co/mradermacher/bert-tiny-book-text-classifier-i1-GGUF/resolve/main/bert-tiny-book-text-classifier.i1-Q4_0.gguf) | i1-Q4_0 | 0.1 | fast, low quality | | [GGUF](https://huggingface.co/mradermacher/bert-tiny-book-text-classifier-i1-GGUF/resolve/main/bert-tiny-book-text-classifier.i1-Q3_K_M.gguf) | i1-Q3_K_M | 0.1 | IQ3_S probably better | | [GGUF](https://huggingface.co/mradermacher/bert-tiny-book-text-classifier-i1-GGUF/resolve/main/bert-tiny-book-text-classifier.i1-Q4_1.gguf) | i1-Q4_1 | 0.1 | | | [GGUF](https://huggingface.co/mradermacher/bert-tiny-book-text-classifier-i1-GGUF/resolve/main/bert-tiny-book-text-classifier.i1-Q3_K_L.gguf) | i1-Q3_K_L | 0.1 | IQ3_M probably better | | [GGUF](https://huggingface.co/mradermacher/bert-tiny-book-text-classifier-i1-GGUF/resolve/main/bert-tiny-book-text-classifier.i1-Q4_K_S.gguf) | i1-Q4_K_S | 0.1 | optimal size/speed/quality | | [GGUF](https://huggingface.co/mradermacher/bert-tiny-book-text-classifier-i1-GGUF/resolve/main/bert-tiny-book-text-classifier.i1-Q4_K_M.gguf) | i1-Q4_K_M | 0.1 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/bert-tiny-book-text-classifier-i1-GGUF/resolve/main/bert-tiny-book-text-classifier.i1-Q5_K_S.gguf) | i1-Q5_K_S | 0.1 | | | [GGUF](https://huggingface.co/mradermacher/bert-tiny-book-text-classifier-i1-GGUF/resolve/main/bert-tiny-book-text-classifier.i1-Q5_K_M.gguf) | i1-Q5_K_M | 0.1 | | | [GGUF](https://huggingface.co/mradermacher/bert-tiny-book-text-classifier-i1-GGUF/resolve/main/bert-tiny-book-text-classifier.i1-Q6_K.gguf) | i1-Q6_K | 0.1 | practically like static Q6_K | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. Additional thanks to [@nicoboss](https://huggingface.co/nicoboss) for giving me access to his private supercomputer, enabling me to provide many more imatrix quants, at much higher quality, than I would otherwise be able to. <!-- end -->
jaymekoszut/sdcvsdc
jaymekoszut
2025-04-25T09:47:26Z
0
0
null
[ "license:bsd-2-clause", "region:us" ]
null
2025-04-25T09:47:26Z
--- license: bsd-2-clause ---
Szahriwar/Llama-3.2-3B-Instruct-bnb-4bit-elife-lora
Szahriwar
2025-04-25T09:25:53Z
0
0
transformers
[ "transformers", "safetensors", "text-generation-inference", "unsloth", "llama", "trl", "en", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2025-04-25T09:25:31Z
--- base_model: unsloth/llama-3.2-3b-instruct-bnb-4bit tags: - text-generation-inference - transformers - unsloth - llama - trl license: apache-2.0 language: - en --- # Uploaded model - **Developed by:** Szahriwar - **License:** apache-2.0 - **Finetuned from model :** unsloth/llama-3.2-3b-instruct-bnb-4bit This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
AI-Enthusiast11/mistral-7b-4bit-pii-entity-extractor
AI-Enthusiast11
2025-04-25T09:11:59Z
0
0
transformers
[ "transformers", "gguf", "mistral", "text-generation-inference", "unsloth", "en", "base_model:unsloth/mistral-7b-instruct-v0.3-bnb-4bit", "base_model:quantized:unsloth/mistral-7b-instruct-v0.3-bnb-4bit", "license:apache-2.0", "endpoints_compatible", "region:us", "conversational" ]
null
2025-04-24T21:52:46Z
--- base_model: unsloth/mistral-7b-instruct-v0.3-bnb-4bit tags: - text-generation-inference - transformers - unsloth - mistral - gguf license: apache-2.0 language: - en --- # Uploaded model - **Developed by:** AI-Enthusiast11 - **License:** apache-2.0 - **Finetuned from model :** unsloth/mistral-7b-instruct-v0.3-bnb-4bit This mistral model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
efficientscaling/Z1-Longest-7B
efficientscaling
2025-04-25T09:11:57Z
0
0
transformers
[ "transformers", "safetensors", "qwen2", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-04-25T09:10:05Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
marzieh-maleki/defeasible-snli-t5-small-strengthener-tuned
marzieh-maleki
2025-04-25T09:04:31Z
0
0
transformers
[ "transformers", "pytorch", "t5", "text2text-generation", "generated_from_trainer", "trl", "sft", "base_model:google-t5/t5-small", "base_model:finetune:google-t5/t5-small", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2025-04-25T09:04:16Z
--- base_model: google-t5/t5-small library_name: transformers model_name: defeasible-snli-t5-small-strengthener-tuned tags: - generated_from_trainer - trl - sft licence: license --- # Model Card for defeasible-snli-t5-small-strengthener-tuned This model is a fine-tuned version of [google-t5/t5-small](https://huggingface.co/google-t5/t5-small). It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="marzieh-maleki/defeasible-snli-t5-small-strengthener-tuned", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure [<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="150" height="24"/>](https://wandb.ai/marzieh-maleki-ghent-university/def_nli_baselines_sep/runs/eqqsqqc3) This model was trained with SFT. ### Framework versions - TRL: 0.14.0 - Transformers: 4.48.2 - Pytorch: 2.6.0 - Datasets: 2.21.0 - Tokenizers: 0.21.0 ## Citations Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallouédec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
DiricziZsolt/ovis2-1b-5850-finetuned-damage
DiricziZsolt
2025-04-25T08:35:31Z
0
0
peft
[ "peft", "safetensors", "arxiv:1910.09700", "base_model:AIDC-AI/Ovis2-1B", "base_model:adapter:AIDC-AI/Ovis2-1B", "region:us" ]
null
2025-04-25T08:35:04Z
--- base_model: AIDC-AI/Ovis2-1B library_name: peft --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ### Framework versions - PEFT 0.14.0
robinfaro/StandardMoE-1B-fineweb_edu-10BT
robinfaro
2025-04-25T08:22:00Z
0
0
null
[ "safetensors", "moegpt", "model_hub_mixin", "pytorch_model_hub_mixin", "custom_code", "region:us" ]
null
2025-04-25T08:19:36Z
--- tags: - model_hub_mixin - pytorch_model_hub_mixin --- This model has been pushed to the Hub using the [PytorchModelHubMixin](https://huggingface.co/docs/huggingface_hub/package_reference/mixins#huggingface_hub.PyTorchModelHubMixin) integration: - Code: [More Information Needed] - Paper: [More Information Needed] - Docs: [More Information Needed]
dgambettaphd/M_llm3_gen7_run0_X_doc1000_synt64_tot128_FRESH
dgambettaphd
2025-04-25T08:16:41Z
0
0
transformers
[ "transformers", "safetensors", "unsloth", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2025-04-25T08:15:58Z
--- library_name: transformers tags: - unsloth --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
firoz123/codegemma-2b-IQ3_M-GGUF
firoz123
2025-04-25T06:12:45Z
0
0
transformers
[ "transformers", "gguf", "llama-cpp", "gguf-my-repo", "base_model:google/codegemma-2b", "base_model:quantized:google/codegemma-2b", "license:gemma", "endpoints_compatible", "region:us", "imatrix" ]
null
2025-04-25T06:12:33Z
--- base_model: google/codegemma-2b library_name: transformers license: gemma license_link: https://ai.google.dev/gemma/terms tags: - llama-cpp - gguf-my-repo extra_gated_heading: Access CodeGemma on Hugging Face extra_gated_prompt: To access CodeGemma on Hugging Face, you’re required to review and agree to Google’s usage license. To do this, please ensure you’re logged-in to Hugging Face and click below. Requests are processed immediately. extra_gated_button_content: Acknowledge license --- # firoz123/codegemma-2b-IQ3_M-GGUF This model was converted to GGUF format from [`google/codegemma-2b`](https://huggingface.co/google/codegemma-2b) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space. Refer to the [original model card](https://huggingface.co/google/codegemma-2b) for more details on the model. ## Use with llama.cpp Install llama.cpp through brew (works on Mac and Linux) ```bash brew install llama.cpp ``` Invoke the llama.cpp server or the CLI. ### CLI: ```bash llama-cli --hf-repo firoz123/codegemma-2b-IQ3_M-GGUF --hf-file codegemma-2b-iq3_m-imat.gguf -p "The meaning to life and the universe is" ``` ### Server: ```bash llama-server --hf-repo firoz123/codegemma-2b-IQ3_M-GGUF --hf-file codegemma-2b-iq3_m-imat.gguf -c 2048 ``` Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well. Step 1: Clone llama.cpp from GitHub. ``` git clone https://github.com/ggerganov/llama.cpp ``` Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux). ``` cd llama.cpp && LLAMA_CURL=1 make ``` Step 3: Run inference through the main binary. ``` ./llama-cli --hf-repo firoz123/codegemma-2b-IQ3_M-GGUF --hf-file codegemma-2b-iq3_m-imat.gguf -p "The meaning to life and the universe is" ``` or ``` ./llama-server --hf-repo firoz123/codegemma-2b-IQ3_M-GGUF --hf-file codegemma-2b-iq3_m-imat.gguf -c 2048 ```
Flo0620/Qwen2_5_7B_r8_a8_d0_2
Flo0620
2025-04-25T05:57:55Z
0
0
transformers
[ "transformers", "safetensors", "generated_from_trainer", "trl", "sft", "base_model:Qwen/Qwen2.5-VL-7B-Instruct", "base_model:finetune:Qwen/Qwen2.5-VL-7B-Instruct", "endpoints_compatible", "region:us" ]
null
2025-04-25T02:40:09Z
--- base_model: Qwen/Qwen2.5-VL-7B-Instruct library_name: transformers model_name: Qwen2_5_7B_r8_a8_d0_2 tags: - generated_from_trainer - trl - sft licence: license --- # Model Card for Qwen2_5_7B_r8_a8_d0_2 This model is a fine-tuned version of [Qwen/Qwen2.5-VL-7B-Instruct](https://huggingface.co/Qwen/Qwen2.5-VL-7B-Instruct). It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="Flo0620/Qwen2_5_7B_r8_a8_d0_2", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure This model was trained with SFT. ### Framework versions - TRL: 0.15.2 - Transformers: 4.52.0.dev0 - Pytorch: 2.6.0+cu124 - Datasets: 3.5.0 - Tokenizers: 0.21.1 ## Citations Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallouédec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
dgambettaphd/M_llm3_gen5_run0_X_doc1000_synt64_tot128_FRESH
dgambettaphd
2025-04-25T05:47:47Z
0
0
transformers
[ "transformers", "safetensors", "unsloth", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2025-04-25T05:47:20Z
--- library_name: transformers tags: - unsloth --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
hcwei/FRANK-ZERO-38B
hcwei
2025-04-25T05:44:56Z
7
2
null
[ "safetensors", "internvl_chat", "custom_code", "license:apache-2.0", "region:us" ]
null
2025-03-12T15:45:27Z
--- license: apache-2.0 --- # <span style="font-weight: bold; color: red;">FRANK-ZERO</span>: a training-FRee And Native r1-liKe multimodal LLMs [\[📂 GitHub\]](https://github.com/hcwei13/FRANK-ZERO-Inference) ![demo](figure/demo.gif) ## Introduction We have successfully migrated r1-like reasoning abilities into the vision-language joint space. Based on a unimodal language reasoning model (QwQ-32B) and a multimodal non-reasoning model (InternVL-38B), we constructed a training-FRee And Native r1-liKe multimodal reasoning model, <span style="font-weight: bold; color: red;">FRANK-ZERO</span> 38B. It achieves an accuracy of 74.1% on the MathVista test-mini benchmark, surpassing the closed-source OpenAI o1 model (73.9% vs. 74.1%), and demonstrates excellent long chain-of-thought reasoning and reflection capabilities. ## Example ![example](figure/example2.jpg) **Describe this image in detail.** <span style="font-weight: bold; color: red;">FRANK-ZERO</span> output: ```html <think> Okay, let me look at this chart. The title says it's about average precipitation in Christchurch, New Zealand. The x-axis has the months from January to December, and the y-axis is precipitation in millimeters. There are different colored bars for each month, each representing a different value. First, I need to figure out what each color corresponds to. The key might be missing, but usually in these charts, each color represents a different category. Wait, actually, looking at the chart, each month has a single bar with a different color. Maybe each color is just a different month's data? Hmm, maybe not. Let me check again. Wait, the title mentions "Average precipitation in Christchurch, New Zealand," so it's likely that each bar represents the average precipitation for each month. The colors might just be for visual distinction between the months. Let me see the values. Starting from January: the bar is purple, and the value is around 53 mm. February is green, around 47 mm. March is red, about 53 mm. April is blue, around 51 mm. May is orange, the highest at 69 mm. June is light blue, around 67 mm. July is light green, also around 67 mm. August is teal, around 54 mm. September is pink, around 46 mm. October is dark green, around 46 mm. November is red, around 48 mm. December is blue, around 57 mm. Wait, but the colors might actually represent different categories. Let me think again. The title says "Average precipitation," but maybe each color represents a different type of precipitation? Or perhaps different years? But the x-axis is months, so probably each bar is a month's precipitation, with colors just for differentiation. Alternatively, maybe the chart is comparing different types of precipitation across months? But the title doesn't mention that. It just says average precipitation. Hmm, maybe the colors are just random. Let me check the values again. Looking at the numbers: January: ~53 mm (purple) February: ~47 mm (green) March: ~53 mm (red) April: ~51 mm (blue) May: ~69 mm (orange) June: ~67 mm (light blue) July: ~67 mm (light green) August: ~54 mm (teal) September: ~46 mm (pink) October: ~46 mm (dark green) November: ~48 mm (red) December: ~57 mm (blue) So the highest precipitation is in May at 69 mm, followed by June and July at 67 mm. The lowest is in September and October at 46 mm. The chart shows that precipitation peaks in late spring and early summer, then decreases towards autumn and winter. The question is probably asking to describe the trend. The chart shows that precipitation is highest in May, June, and July, then decreases in August, and continues to drop in September and October. November and December see a slight increase again but not as high as the summer months. So the main point is that the highest precipitation occurs in the late spring and early summer months (May to July), with the lowest in autumn (September and October). The rest of the months have moderate precipitation levels. I need to make sure I didn't misinterpret the colors. Since each month has a different color, it's just for visual separation. The key might have been omitted, but the data is clear from the bars' heights. Another thing to note is that the chart uses different colors for each month, which might be unnecessary but just for aesthetics. The important part is the height of each bar indicating precipitation in mm. So the answer should summarize that precipitation peaks in May, June, and July, then decreases, with the lowest in September and October. The rest of the months have varying levels but not as extreme. </think> The bar chart displays the average precipitation in Christchurch, New Zealand, across 12 months. Each month is represented by a differently colored bar, with the height indicating precipitation in millimeters (mm). - **Key Observations:** - **Highest Precipitation:** May (69 mm), June (67 mm), and July (67 mm) show the highest precipitation, indicating a peak during late spring and early summer. - **Lowest Precipitation:** September (46 mm) and October (46 mm) have the lowest precipitation, marking a significant drop in autumn. - **Moderate Levels:** Other months (January to April, August, November, and December) have precipitation ranging between 46–57 mm, with some fluctuations but no extreme highs or lows. - **Trend:** The chart reveals a clear seasonal pattern where precipitation peaks in the late spring/early summer months (May–July), decreases sharply in autumn (September–October), and stabilizes at moderate levels during the rest of the year. This suggests Christchurch experiences its wettest period from May to July and driest in September and October. Overall, the data highlights seasonal variations in precipitation, with the highest rainfall occurring in the early part of the year and the lowest in late autumn. ``` ## License This project is released under the QwQ-32B (License: Apache-2.0) and InternVL2.5 (License: MIT) licenses. Portions of this project contain code and models from other sources, which are subject to their respective licenses. ## Acknowledgement This code base is mainly built upon [InternVL2.5](https://github.com/OpenGVLab/InternVL). Thanks for their awesome work! We would also like to recognize and commend the following open source projects (e.g., [Qwen2.5VL](https://github.com/QwenLM/Qwen2.5-VL), [QwQ-32B](https://huggingface.co/Qwen/QwQ-32B)), thank you for your great contribution to the open source community.
MayBashendy/arabic_SDP_all_binary_multilingual_e5_small_lr3e-05_targ4_dev1234678
MayBashendy
2025-04-25T04:28:26Z
0
0
null
[ "safetensors", "model_hub_mixin", "pytorch_model_hub_mixin", "region:us" ]
null
2025-04-25T03:29:27Z
--- tags: - model_hub_mixin - pytorch_model_hub_mixin --- This model has been pushed to the Hub using the [PytorchModelHubMixin](https://huggingface.co/docs/huggingface_hub/package_reference/mixins#huggingface_hub.PyTorchModelHubMixin) integration: - Library: [More Information Needed] - Docs: [More Information Needed]
hackelle/mobilenetv4_hybrid_medium-s2-v0.2.0
hackelle
2025-04-25T04:10:17Z
0
0
configilm
[ "configilm", "safetensors", "mobilenetv4_hybrid_medium", "BigEarthNet v2.0", "Remote Sensing", "Classification", "image-classification", "Multispectral", "arxiv:2407.03653", "license:mit", "region:us" ]
image-classification
2025-04-25T04:10:09Z
--- thumbnail: "https://raw.githubusercontent.com/wiki/lhackel-tub/ConfigILM/static/imgs/RSiM_Logo_1.png" tags: - mobilenetv4_hybrid_medium - BigEarthNet v2.0 - Remote Sensing - Classification - image-classification - Multispectral library_name: configilm license: mit widget: - src: example.png example_title: Example output: - label: Agro-forestry areas score: 0.000000 - label: Arable land score: 0.000000 - label: Beaches, dunes, sands score: 0.000000 - label: Broad-leaved forest score: 0.000000 - label: Coastal wetlands score: 0.000000 --- [TU Berlin](https://www.tu.berlin/) | [RSiM](https://rsim.berlin/) | [DIMA](https://www.dima.tu-berlin.de/menue/database_systems_and_information_management_group/) | [BigEarth](http://www.bigearth.eu/) | [BIFOLD](https://bifold.berlin/) :---:|:---:|:---:|:---:|:---: <a href="https://www.tu.berlin/"><img src="https://raw.githubusercontent.com/wiki/lhackel-tub/ConfigILM/static/imgs/tu-berlin-logo-long-red.svg" style="font-size: 1rem; height: 2em; width: auto" alt="TU Berlin Logo"/> | <a href="https://rsim.berlin/"><img src="https://raw.githubusercontent.com/wiki/lhackel-tub/ConfigILM/static/imgs/RSiM_Logo_1.png" style="font-size: 1rem; height: 2em; width: auto" alt="RSiM Logo"> | <a href="https://www.dima.tu-berlin.de/menue/database_systems_and_information_management_group/"><img src="https://raw.githubusercontent.com/wiki/lhackel-tub/ConfigILM/static/imgs/DIMA.png" style="font-size: 1rem; height: 2em; width: auto" alt="DIMA Logo"> | <a href="http://www.bigearth.eu/"><img src="https://raw.githubusercontent.com/wiki/lhackel-tub/ConfigILM/static/imgs/BigEarth.png" style="font-size: 1rem; height: 2em; width: auto" alt="BigEarth Logo"> | <a href="https://bifold.berlin/"><img src="https://raw.githubusercontent.com/wiki/lhackel-tub/ConfigILM/static/imgs/BIFOLD_Logo_farbig.png" style="font-size: 1rem; height: 2em; width: auto; margin-right: 1em" alt="BIFOLD Logo"> # Mobilenetv4_hybrid_medium pretrained on BigEarthNet v2.0 using Sentinel-2 bands <!-- Optional images --> <!-- [Sentinel-1](https://sentinel.esa.int/web/sentinel/missions/sentinel-1) | [Sentinel-2](https://sentinel.esa.int/web/sentinel/missions/sentinel-2) :---:|:---: <a href="https://sentinel.esa.int/web/sentinel/missions/sentinel-1"><img src="https://raw.githubusercontent.com/wiki/lhackel-tub/ConfigILM/static/imgs/sentinel_2.jpg" style="font-size: 1rem; height: 10em; width: auto; margin-right: 1em" alt="Sentinel-2 Satellite"/> | <a href="https://sentinel.esa.int/web/sentinel/missions/sentinel-2"><img src="https://raw.githubusercontent.com/wiki/lhackel-tub/ConfigILM/static/imgs/sentinel_1.jpg" style="font-size: 1rem; height: 10em; width: auto; margin-right: 1em" alt="Sentinel-1 Satellite"/> --> This model was trained on the BigEarthNet v2.0 (also known as reBEN) dataset using the Sentinel-2 bands. It was trained using the following parameters: - Number of epochs: up to 100 (with early stopping after 5 epochs of no improvement based on validation average precision macro) - Batch size: 512 - Learning rate: 0.001 - Dropout rate: 0.15 - Drop Path rate: 0.15 - Learning rate scheduler: LinearWarmupCosineAnnealing for 1000 warmup steps - Optimizer: AdamW - Seed: 42 The weights published in this model card were obtained after 29 training epochs. For more information, please visit the [official BigEarthNet v2.0 (reBEN) repository](https://git.tu-berlin.de/rsim/reben-training-scripts), where you can find the training scripts. ![[BigEarthNet](http://bigearth.net/)](https://raw.githubusercontent.com/wiki/lhackel-tub/ConfigILM/static/imgs/combined_2000_600_2020_0_wide.jpg) The model was evaluated on the test set of the BigEarthNet v2.0 dataset with the following results: | Metric | Macro | Micro | |:------------------|------------------:|------------------:| | Average Precision | 0.691085 | 0.854498 | | F1 Score | 0.622194 | 0.754662 | | Precision | 0.740795 | 0.796592 | # Example | A Sentinel-2 image (true color representation) | |:---------------------------------------------------:| | ![[BigEarthNet](http://bigearth.net/)](example.png) | | Class labels | Predicted scores | |:--------------------------------------------------------------------------|--------------------------------------------------------------------------:| | <p> Agro-forestry areas <br> Arable land <br> Beaches, dunes, sands <br> ... <br> Urban fabric </p> | <p> 0.000000 <br> 0.000000 <br> 0.000000 <br> ... <br> 0.000000 </p> | To use the model, download the codes that define the model architecture from the [official BigEarthNet v2.0 (reBEN) repository](https://git.tu-berlin.de/rsim/reben-training-scripts) and load the model using the code below. Note that you have to install [`configilm`](https://pypi.org/project/configilm/) to use the provided code. ```python from reben_publication.BigEarthNetv2_0_ImageClassifier import BigEarthNetv2_0_ImageClassifier model = BigEarthNetv2_0_ImageClassifier.from_pretrained("path_to/huggingface_model_folder") ``` e.g. ```python from reben_publication.BigEarthNetv2_0_ImageClassifier import BigEarthNetv2_0_ImageClassifier model = BigEarthNetv2_0_ImageClassifier.from_pretrained( "BIFOLD-BigEarthNetv2-0/mobilenetv4_hybrid_medium-s2-v0.1.1") ``` If you use this model in your research or the provided code, please cite the following papers: ```bibtex @article{clasen2024refinedbigearthnet, title={reBEN: Refined BigEarthNet Dataset for Remote Sensing Image Analysis}, author={Clasen, Kai Norman and Hackel, Leonard and Burgert, Tom and Sumbul, Gencer and Demir, Beg{\"u}m and Markl, Volker}, year={2024}, eprint={2407.03653}, archivePrefix={arXiv}, primaryClass={cs.CV}, url={https://arxiv.org/abs/2407.03653}, } ``` ```bibtex @article{hackel2024configilm, title={ConfigILM: A general purpose configurable library for combining image and language models for visual question answering}, author={Hackel, Leonard and Clasen, Kai Norman and Demir, Beg{\"u}m}, journal={SoftwareX}, volume={26}, pages={101731}, year={2024}, publisher={Elsevier} } ```
gartland/openwebtext-24K-tokenizer
gartland
2025-04-25T04:01:21Z
0
0
transformers
[ "transformers", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2025-04-25T04:01:20Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
Tirly/145333
Tirly
2025-04-25T03:17:01Z
0
0
null
[ "license:other", "region:us" ]
null
2025-04-25T03:15:16Z
--- license: other license_name: egre license_link: LICENSE ---
Ans0nWr0ng/llama3.1-8b-cantonese_gguf_v3
Ans0nWr0ng
2025-04-25T03:11:23Z
94
1
null
[ "gguf", "text-generation", "dataset:stvlynn/Cantonese-Dialogue", "dataset:hon9kon9ize/yue-alpaca", "dataset:cantonesesra/Cantonese_AllAspectQA_11K", "base_model:meta-llama/Llama-3.1-8B-Instruct", "base_model:quantized:meta-llama/Llama-3.1-8B-Instruct", "license:llama3.1", "endpoints_compatible", "region:us", "conversational" ]
text-generation
2025-04-09T01:57:45Z
--- license: llama3.1 datasets: - stvlynn/Cantonese-Dialogue - hon9kon9ize/yue-alpaca - cantonesesra/Cantonese_AllAspectQA_11K base_model: - meta-llama/Llama-3.1-8B-Instruct pipeline_tag: text-generation ---
PhoenixB/c025fa62-b558-4548-a97e-6325a75fade3
PhoenixB
2025-04-25T00:53:12Z
0
0
transformers
[ "transformers", "tensorboard", "safetensors", "qwen2", "text-generation", "generated_from_trainer", "axolotl", "dpo", "trl", "conversational", "arxiv:2305.18290", "base_model:unsloth/Qwen2.5-Coder-1.5B-Instruct", "base_model:quantized:unsloth/Qwen2.5-Coder-1.5B-Instruct", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "4-bit", "bitsandbytes", "region:us" ]
text-generation
2025-04-25T00:49:23Z
--- base_model: unsloth/Qwen2.5-Coder-1.5B-Instruct library_name: transformers model_name: c025fa62-b558-4548-a97e-6325a75fade3 tags: - generated_from_trainer - axolotl - dpo - trl licence: license --- # Model Card for c025fa62-b558-4548-a97e-6325a75fade3 This model is a fine-tuned version of [unsloth/Qwen2.5-Coder-1.5B-Instruct](https://huggingface.co/unsloth/Qwen2.5-Coder-1.5B-Instruct). It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="PhoenixB/c025fa62-b558-4548-a97e-6325a75fade3", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure [<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="150" height="24"/>](https://wandb.ai/phoenix-formless/Gradients-On-Demand/runs/jbrtp75x) This model was trained with DPO, a method introduced in [Direct Preference Optimization: Your Language Model is Secretly a Reward Model](https://huggingface.co/papers/2305.18290). ### Framework versions - TRL: 0.12.0 - Transformers: 4.46.3 - Pytorch: 2.5.1+cu124 - Datasets: 3.1.0 - Tokenizers: 0.20.3 ## Citations Cite DPO as: ```bibtex @inproceedings{rafailov2023direct, title = {{Direct Preference Optimization: Your Language Model is Secretly a Reward Model}}, author = {Rafael Rafailov and Archit Sharma and Eric Mitchell and Christopher D. Manning and Stefano Ermon and Chelsea Finn}, year = 2023, booktitle = {Advances in Neural Information Processing Systems 36: Annual Conference on Neural Information Processing Systems 2023, NeurIPS 2023, New Orleans, LA, USA, December 10 - 16, 2023}, url = {http://papers.nips.cc/paper_files/paper/2023/hash/a85b405ed65c6477a4fe8302b5e06ce7-Abstract-Conference.html}, editor = {Alice Oh and Tristan Naumann and Amir Globerson and Kate Saenko and Moritz Hardt and Sergey Levine}, } ``` Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallouédec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
LuckyLukke/grpo_onesided_5-320
LuckyLukke
2025-04-24T23:53:08Z
0
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-04-24T23:50:03Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
MikuMasterRace/Omutopia_Pastel_Puffies_diaper_-_ABDL_-_IllustriousXL_v1
MikuMasterRace
2025-04-24T20:24:09Z
0
0
diffusers
[ "diffusers", "text-to-image", "lora", "template:diffusion-lora", "dataset:MikuMasterRace/Omutopia_Pastel_Puffies_diaper_-_ABDL_v1", "base_model:OnomaAIResearch/Illustrious-xl-early-release-v0", "base_model:adapter:OnomaAIResearch/Illustrious-xl-early-release-v0", "region:us" ]
text-to-image
2025-04-24T20:16:29Z
--- tags: - text-to-image - lora - diffusers - template:diffusion-lora widget: - text: '-' output: url: images/ComfyUI_(hiresfix)_2025-02-16_00000_14.png - text: '-' output: url: images/ComfyUI_(hiresfix)_2025-02-16_00000_6.png base_model: OnomaAIResearch/Illustrious-xl-early-release-v0 instance_prompt: null datasets: - MikuMasterRace/Omutopia_Pastel_Puffies_diaper_-_ABDL_v1 --- # Omutopia Pastel Puffies diaper &#x2F; おむつ (ABDL) v1 [IllustriousXL 0.1] <Gallery /> ## Reference [Omutopia Pastel Puffies](https://omutopia.com/en/products/%E6%95%B0%E9%87%8F%E9%99%90%E5%AE%9A%E6%97%A9%E5%89%B2%E3%83%97%E3%83%A9%E3%83%B3%E3%81%82%E3%82%8A-pastel-puffies-%E5%A4%A7%E4%BA%BA%E7%94%A8%E3%81%8A%E3%82%80%E3%81%A4-%E3%83%86%E3%83%BC%E3%83%97%E5%BC%8F-omutopia%E3%83%97%E3%83%AD%E3%82%B8%E3%82%A7%E3%82%AF%E3%83%88) diaper ![](images/reference.jpg) ## Prompting Main triggerwords: ``` omutopia pastelpuffies, diaper ``` Sub tags: ``` front-print diaper, back-print diaper ``` ## Download model Weights for this model are available in Safetensors format. [Download](/MikuMasterRace/Omutopia_Pastel_Puffies_diaper_-_ABDL_-_IllustriousXL_v1/tree/main) them in the Files & versions tab.
egerber1/classifier-de1
egerber1
2025-04-24T17:12:44Z
0
0
transformers
[ "transformers", "safetensors", "distilbert", "text-classification", "generated_from_trainer", "base_model:distilbert/distilbert-base-german-cased", "base_model:finetune:distilbert/distilbert-base-german-cased", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2025-04-24T17:12:31Z
--- library_name: transformers license: apache-2.0 base_model: distilbert-base-german-cased tags: - generated_from_trainer metrics: - accuracy - precision - recall - f1 model-index: - name: classifier-de1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # classifier-de1 This model is a fine-tuned version of [distilbert-base-german-cased](https://huggingface.co/distilbert-base-german-cased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.3485 - Accuracy: 0.8738 - Precision: 0.4859 - Recall: 0.3069 - F1: 0.3762 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1.5e-05 - train_batch_size: 256 - eval_batch_size: 256 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 6 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | |:-------------:|:------:|:-----:|:---------------:|:--------:|:---------:|:------:|:------:| | 0.3406 | 0.0513 | 500 | 0.3753 | 0.8760 | 0.0 | 0.0 | 0.0 | | 0.3251 | 0.1025 | 1000 | 0.3678 | 0.8760 | 0.0 | 0.0 | 0.0 | | 0.2989 | 0.1538 | 1500 | 0.3666 | 0.8756 | 0.2806 | 0.0021 | 0.0042 | | 0.2989 | 0.2050 | 2000 | 0.3648 | 0.8734 | 0.4034 | 0.0430 | 0.0776 | | 0.2922 | 0.2563 | 2500 | 0.3626 | 0.8746 | 0.4528 | 0.0545 | 0.0973 | | 0.2757 | 0.3075 | 3000 | 0.3647 | 0.8690 | 0.3960 | 0.1072 | 0.1687 | | 0.29 | 0.3588 | 3500 | 0.3584 | 0.8706 | 0.4192 | 0.1139 | 0.1791 | | 0.2587 | 0.4100 | 4000 | 0.3690 | 0.8707 | 0.4287 | 0.1275 | 0.1965 | | 0.2654 | 0.4613 | 4500 | 0.3626 | 0.8705 | 0.4310 | 0.1387 | 0.2098 | | 0.2658 | 0.5125 | 5000 | 0.3585 | 0.8758 | 0.4958 | 0.1114 | 0.1820 | | 0.2523 | 0.5638 | 5500 | 0.3527 | 0.8725 | 0.4556 | 0.1445 | 0.2194 | | 0.2621 | 0.6150 | 6000 | 0.3522 | 0.8750 | 0.4855 | 0.1308 | 0.2061 | | 0.2501 | 0.6663 | 6500 | 0.3556 | 0.8594 | 0.3934 | 0.2469 | 0.3034 | | 0.2318 | 0.7175 | 7000 | 0.3536 | 0.8771 | 0.5181 | 0.1297 | 0.2075 | | 0.2362 | 0.7688 | 7500 | 0.3424 | 0.8776 | 0.5279 | 0.1201 | 0.1956 | | 0.2351 | 0.8200 | 8000 | 0.3354 | 0.8731 | 0.4723 | 0.2014 | 0.2823 | | 0.2153 | 0.8713 | 8500 | 0.3426 | 0.8775 | 0.5198 | 0.1573 | 0.2416 | | 0.215 | 0.9225 | 9000 | 0.3384 | 0.8785 | 0.5416 | 0.1323 | 0.2127 | | 0.2177 | 0.9738 | 9500 | 0.3353 | 0.8749 | 0.4891 | 0.2040 | 0.2879 | | 0.2173 | 1.0250 | 10000 | 0.3303 | 0.8729 | 0.4737 | 0.2243 | 0.3044 | | 0.2128 | 1.0763 | 10500 | 0.3363 | 0.8770 | 0.5125 | 0.1677 | 0.2527 | | 0.2093 | 1.1275 | 11000 | 0.3354 | 0.8720 | 0.4693 | 0.2471 | 0.3238 | | 0.2022 | 1.1788 | 11500 | 0.3349 | 0.8752 | 0.4929 | 0.2122 | 0.2967 | | 0.1978 | 1.2300 | 12000 | 0.3382 | 0.8722 | 0.4700 | 0.2421 | 0.3196 | | 0.1974 | 1.2813 | 12500 | 0.3265 | 0.8753 | 0.4930 | 0.1923 | 0.2767 | | 0.2185 | 1.3325 | 13000 | 0.3458 | 0.8755 | 0.4951 | 0.2055 | 0.2904 | | 0.1973 | 1.3838 | 13500 | 0.3472 | 0.8738 | 0.4824 | 0.2482 | 0.3278 | | 0.1946 | 1.4350 | 14000 | 0.3367 | 0.8779 | 0.5203 | 0.1915 | 0.2799 | | 0.1986 | 1.4863 | 14500 | 0.3394 | 0.8717 | 0.4704 | 0.2750 | 0.3471 | | 0.1922 | 1.5375 | 15000 | 0.3310 | 0.8770 | 0.5090 | 0.2321 | 0.3188 | | 0.1765 | 1.5888 | 15500 | 0.3584 | 0.8797 | 0.5454 | 0.1779 | 0.2682 | | 0.2039 | 1.6400 | 16000 | 0.3279 | 0.8774 | 0.5128 | 0.2290 | 0.3166 | | 0.2051 | 1.6913 | 16500 | 0.3302 | 0.8794 | 0.5376 | 0.1970 | 0.2883 | | 0.1868 | 1.7425 | 17000 | 0.3222 | 0.8763 | 0.5021 | 0.2498 | 0.3336 | | 0.1972 | 1.7938 | 17500 | 0.3296 | 0.8685 | 0.4564 | 0.3163 | 0.3737 | | 0.1932 | 1.8450 | 18000 | 0.3185 | 0.8776 | 0.5136 | 0.2399 | 0.3270 | | 0.1797 | 1.8963 | 18500 | 0.3231 | 0.8768 | 0.5064 | 0.2446 | 0.3298 | | 0.1835 | 1.9475 | 19000 | 0.3230 | 0.8748 | 0.4913 | 0.2729 | 0.3509 | | 0.1767 | 1.9988 | 19500 | 0.3286 | 0.8756 | 0.4970 | 0.2566 | 0.3385 | | 0.192 | 2.0500 | 20000 | 0.3304 | 0.8781 | 0.5183 | 0.2405 | 0.3285 | | 0.1795 | 2.1013 | 20500 | 0.3333 | 0.8793 | 0.5326 | 0.2145 | 0.3059 | | 0.1716 | 2.1525 | 21000 | 0.3499 | 0.8760 | 0.4998 | 0.2685 | 0.3493 | | 0.177 | 2.2038 | 21500 | 0.3329 | 0.8775 | 0.5127 | 0.2395 | 0.3265 | | 0.1541 | 2.2550 | 22000 | 0.3323 | 0.8781 | 0.5182 | 0.2444 | 0.3321 | | 0.1725 | 2.3063 | 22500 | 0.3384 | 0.8799 | 0.5423 | 0.2033 | 0.2958 | | 0.182 | 2.3575 | 23000 | 0.3326 | 0.8777 | 0.5138 | 0.2551 | 0.3409 | | 0.1575 | 2.4088 | 23500 | 0.3373 | 0.8781 | 0.5188 | 0.2381 | 0.3264 | | 0.1735 | 2.4600 | 24000 | 0.3436 | 0.8795 | 0.5331 | 0.2280 | 0.3194 | | 0.1545 | 2.5113 | 24500 | 0.3400 | 0.8804 | 0.5447 | 0.2180 | 0.3114 | | 0.1592 | 2.5625 | 25000 | 0.3422 | 0.8790 | 0.5272 | 0.2348 | 0.3249 | | 0.1395 | 2.6138 | 25500 | 0.3583 | 0.8796 | 0.5358 | 0.2177 | 0.3096 | | 0.1543 | 2.6650 | 26000 | 0.3341 | 0.8791 | 0.5296 | 0.2257 | 0.3165 | | 0.1811 | 2.7163 | 26500 | 0.3245 | 0.8764 | 0.5032 | 0.2790 | 0.3589 | | 0.1564 | 2.7675 | 27000 | 0.3395 | 0.8789 | 0.5246 | 0.2485 | 0.3373 | | 0.1585 | 2.8188 | 27500 | 0.3465 | 0.8787 | 0.5221 | 0.2571 | 0.3445 | | 0.1642 | 2.8700 | 28000 | 0.3545 | 0.8811 | 0.5508 | 0.2230 | 0.3174 | | 0.1633 | 2.9213 | 28500 | 0.3339 | 0.8755 | 0.4963 | 0.2942 | 0.3694 | | 0.1663 | 2.9725 | 29000 | 0.3398 | 0.8781 | 0.5166 | 0.2682 | 0.3531 | | 0.136 | 3.0238 | 29500 | 0.3607 | 0.8807 | 0.5466 | 0.2240 | 0.3178 | | 0.1409 | 3.0750 | 30000 | 0.3660 | 0.8793 | 0.5304 | 0.2336 | 0.3244 | | 0.1474 | 3.1263 | 30500 | 0.3519 | 0.8763 | 0.5026 | 0.2635 | 0.3457 | | 0.1505 | 3.1775 | 31000 | 0.3485 | 0.8738 | 0.4859 | 0.3069 | 0.3762 | | 0.133 | 3.2288 | 31500 | 0.3578 | 0.8797 | 0.5357 | 0.2263 | 0.3182 | | 0.1438 | 3.2800 | 32000 | 0.3455 | 0.8758 | 0.4985 | 0.2839 | 0.3617 | | 0.1591 | 3.3313 | 32500 | 0.3373 | 0.8749 | 0.4929 | 0.3033 | 0.3755 | | 0.1738 | 3.3825 | 33000 | 0.3446 | 0.8781 | 0.5169 | 0.2656 | 0.3509 | | 0.1683 | 3.4338 | 33500 | 0.3380 | 0.8776 | 0.5123 | 0.2721 | 0.3554 | | 0.1567 | 3.4850 | 34000 | 0.3493 | 0.8799 | 0.5338 | 0.2481 | 0.3387 | | 0.1388 | 3.5363 | 34500 | 0.3463 | 0.8791 | 0.5255 | 0.2557 | 0.3440 | | 0.15 | 3.5875 | 35000 | 0.3391 | 0.8811 | 0.5454 | 0.2465 | 0.3396 | | 0.1478 | 3.6388 | 35500 | 0.3465 | 0.8799 | 0.5327 | 0.2544 | 0.3444 | | 0.1359 | 3.6900 | 36000 | 0.3705 | 0.8798 | 0.5321 | 0.2515 | 0.3416 | | 0.1502 | 3.7413 | 36500 | 0.3386 | 0.8790 | 0.5236 | 0.2653 | 0.3522 | | 0.1387 | 3.7925 | 37000 | 0.3514 | 0.8789 | 0.5227 | 0.2719 | 0.3577 | | 0.1484 | 3.8438 | 37500 | 0.3391 | 0.8805 | 0.5432 | 0.2283 | 0.3215 | | 0.154 | 3.8950 | 38000 | 0.3584 | 0.8807 | 0.5456 | 0.2259 | 0.3195 | | 0.1395 | 3.9463 | 38500 | 0.3403 | 0.8779 | 0.5137 | 0.2804 | 0.3628 | | 0.1429 | 3.9975 | 39000 | 0.3467 | 0.8783 | 0.5172 | 0.2747 | 0.3588 | | 0.1278 | 4.0488 | 39500 | 0.3581 | 0.8793 | 0.5272 | 0.2609 | 0.3491 | | 0.1582 | 4.1000 | 40000 | 0.3483 | 0.8783 | 0.5179 | 0.2719 | 0.3566 | | 0.1174 | 4.1513 | 40500 | 0.3587 | 0.8794 | 0.5279 | 0.2604 | 0.3487 | | 0.1363 | 4.2025 | 41000 | 0.3594 | 0.8800 | 0.5347 | 0.2514 | 0.3420 | | 0.1361 | 4.2538 | 41500 | 0.3664 | 0.8806 | 0.5414 | 0.2426 | 0.3350 | | 0.1299 | 4.3050 | 42000 | 0.3603 | 0.8792 | 0.5258 | 0.2606 | 0.3485 | | 0.1443 | 4.3563 | 42500 | 0.3705 | 0.8796 | 0.5296 | 0.2616 | 0.3502 | | 0.1417 | 4.4075 | 43000 | 0.3611 | 0.8800 | 0.5350 | 0.2455 | 0.3366 | | 0.1354 | 4.4588 | 43500 | 0.3523 | 0.8792 | 0.5249 | 0.2735 | 0.3596 | | 0.1474 | 4.5100 | 44000 | 0.3683 | 0.8812 | 0.5481 | 0.2384 | 0.3323 | | 0.1398 | 4.5613 | 44500 | 0.3537 | 0.8800 | 0.5328 | 0.2599 | 0.3494 | | 0.1558 | 4.6125 | 45000 | 0.3529 | 0.8804 | 0.5391 | 0.2466 | 0.3384 | | 0.1479 | 4.6638 | 45500 | 0.3489 | 0.8794 | 0.5270 | 0.2640 | 0.3518 | | 0.1454 | 4.7150 | 46000 | 0.3618 | 0.8798 | 0.5309 | 0.2620 | 0.3508 | | 0.1327 | 4.7663 | 46500 | 0.3634 | 0.8807 | 0.5423 | 0.2444 | 0.3369 | | 0.1427 | 4.8175 | 47000 | 0.3578 | 0.8784 | 0.5175 | 0.2836 | 0.3664 | | 0.1361 | 4.8688 | 47500 | 0.3531 | 0.8794 | 0.5272 | 0.2693 | 0.3565 | | 0.1303 | 4.9200 | 48000 | 0.3636 | 0.8789 | 0.5231 | 0.2627 | 0.3498 | | 0.1373 | 4.9713 | 48500 | 0.3528 | 0.8791 | 0.5252 | 0.2628 | 0.3503 | | 0.1339 | 5.0226 | 49000 | 0.3662 | 0.8795 | 0.5286 | 0.2631 | 0.3513 | | 0.1449 | 5.0738 | 49500 | 0.3603 | 0.8773 | 0.5095 | 0.2778 | 0.3596 | | 0.1295 | 5.1251 | 50000 | 0.3811 | 0.8795 | 0.5284 | 0.2616 | 0.3499 | | 0.1372 | 5.1763 | 50500 | 0.3637 | 0.8769 | 0.5065 | 0.2885 | 0.3676 | | 0.1381 | 5.2276 | 51000 | 0.3629 | 0.8784 | 0.5176 | 0.2833 | 0.3662 | | 0.1334 | 5.2788 | 51500 | 0.3639 | 0.8788 | 0.5219 | 0.2672 | 0.3535 | | 0.1422 | 5.3301 | 52000 | 0.3694 | 0.8779 | 0.5147 | 0.2729 | 0.3566 | | 0.1413 | 5.3813 | 52500 | 0.3610 | 0.8773 | 0.5097 | 0.2822 | 0.3633 | | 0.1487 | 5.4326 | 53000 | 0.3650 | 0.8778 | 0.5136 | 0.2736 | 0.3570 | | 0.1431 | 5.4838 | 53500 | 0.3704 | 0.8797 | 0.5309 | 0.2567 | 0.3461 | | 0.142 | 5.5351 | 54000 | 0.3637 | 0.8794 | 0.5278 | 0.2607 | 0.3490 | | 0.1406 | 5.5863 | 54500 | 0.3670 | 0.8790 | 0.5243 | 0.2641 | 0.3512 | | 0.1484 | 5.6376 | 55000 | 0.3608 | 0.8775 | 0.5109 | 0.2793 | 0.3612 | | 0.1433 | 5.6888 | 55500 | 0.3652 | 0.8787 | 0.5211 | 0.2705 | 0.3562 | | 0.1219 | 5.7401 | 56000 | 0.3655 | 0.8782 | 0.5165 | 0.2759 | 0.3597 | | 0.1344 | 5.7913 | 56500 | 0.3662 | 0.8790 | 0.5242 | 0.2649 | 0.3519 | | 0.1598 | 5.8426 | 57000 | 0.3684 | 0.8787 | 0.5208 | 0.2727 | 0.3580 | | 0.1287 | 5.8938 | 57500 | 0.3659 | 0.8791 | 0.5240 | 0.2692 | 0.3556 | | 0.1182 | 5.9451 | 58000 | 0.3671 | 0.8793 | 0.5263 | 0.2657 | 0.3531 | | 0.1242 | 5.9963 | 58500 | 0.3650 | 0.8790 | 0.5234 | 0.2693 | 0.3556 | ### Framework versions - Transformers 4.51.3 - Pytorch 2.7.0+cu126 - Datasets 3.5.0 - Tokenizers 0.21.1
sapna-kumari-shah-videos/18-video.sapna.shah.viral.video.original.here
sapna-kumari-shah-videos
2025-04-24T16:49:39Z
0
0
null
[ "region:us" ]
null
2025-04-24T16:49:15Z
<animated-image data-catalyst=""><a href="https://alltvsteam.com/viral-video/?v=news-es-tvdf" rel="nofollow" data-target="animated-image.originalLink"><img src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" alt="Foo" data-canonical-src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" style="max-width: 100%; display: inline-block;" data-target="animated-image.originalImage"></a>
withpi/pi_scorer_ce_bert_v3_init_84000
withpi
2025-04-24T16:48:23Z
0
0
transformers
[ "transformers", "safetensors", "modernbert", "text-classification", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2025-04-24T16:47:38Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
alfonsusrr/qwen2.5-7b-lora-sft-disc-law
alfonsusrr
2025-04-24T12:23:35Z
0
0
transformers
[ "transformers", "safetensors", "qwen2", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-04-24T12:03:29Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
AryanManchanda/the_model
AryanManchanda
2025-04-24T10:04:19Z
0
0
transformers
[ "transformers", "gguf", "llama", "text-generation-inference", "unsloth", "en", "base_model:unsloth/llama-3-8b-bnb-4bit", "base_model:quantized:unsloth/llama-3-8b-bnb-4bit", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2025-04-23T06:37:18Z
--- base_model: unsloth/llama-3-8b-bnb-4bit tags: - text-generation-inference - transformers - unsloth - llama - gguf license: apache-2.0 language: - en --- # Uploaded model - **Developed by:** AryanManchanda - **License:** apache-2.0 - **Finetuned from model :** unsloth/llama-3-8b-bnb-4bit This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
922CA/gem-monika-ddlc-2b
922CA
2025-04-24T09:28:49Z
9
1
transformers
[ "transformers", "pytorch", "safetensors", "gemma2", "text-generation", "text-generation-inference", "unsloth", "trl", "en", "base_model:unsloth/gemma-2-2b-bnb-4bit", "base_model:finetune:unsloth/gemma-2-2b-bnb-4bit", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2024-08-05T05:15:58Z
--- base_model: unsloth/gemma-2-2b-bnb-4bit language: - en license: apache-2.0 tags: - text-generation-inference - transformers - unsloth - gemma2 - trl --- # gem-monika-ddlc-2b (AKA Lilmonix2b-v1): * [Fine-tune](https://huggingface.co/unsloth/gemma-2-2b-bnb-4bit) for Monika character from DDLC * Fine-tuned on a [dataset of ~600+ items](https://huggingface.co/datasets/922-CA/MoCha_v1) (dialogue scraped from game, reddit, and Twitter synthetically augmented by turn each into snippets of multi-turn chat dialogue between Player and Monika; this was then manually edited, with more manually crafted items including info about character added in) * [GG](https://huggingface.co/922CA/gem-monika-ddlc-2b-gguf)[UF](https://huggingface.co/mradermacher/gem-monika-ddlc-2b-GGUF) # USAGE This is meant to be mainly a chat model with limited RP ability. For best results: replace "Human" and "Assistant" with "Player" and "Monika" like so: \nPlayer: (prompt)\nMonika: # HYPERPARAMS * Tuned for 1 epoch * rank: 32 * lora alpha: 32 * lora dropout: 0.5 * lr: 2e-4 * batch size: 2 * warmup ratio: 0.1 * grad steps: 4 # WARNINGS AND DISCLAIMERS This model is meant to closely reflect the characteristics of Monika. Despite this, there is always the chance that "Monika" will hallucinate and get information about herself wrong or act out of character. Additionally, being character-focused means that this model may have lost some assistant capability for some specific tasks. Finally, this model is not guaranteed to output aligned or safe outputs, use at your own risk!
shekharashishraj/gemma-context-aware-summarization_42325
shekharashishraj
2025-04-24T05:26:59Z
0
0
peft
[ "peft", "tensorboard", "safetensors", "trl", "sft", "generated_from_trainer", "base_model:google/gemma-3-1b-pt", "base_model:adapter:google/gemma-3-1b-pt", "license:gemma", "region:us" ]
null
2025-04-24T02:50:01Z
--- library_name: peft license: gemma base_model: google/gemma-3-1b-pt tags: - trl - sft - generated_from_trainer model-index: - name: gemma-context-aware-summarization_42325 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # gemma-context-aware-summarization_42325 This model is a fine-tuned version of [google/gemma-3-1b-pt](https://huggingface.co/google/gemma-3-1b-pt) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 1 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 4 - optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: constant - lr_scheduler_warmup_ratio: 0.03 - num_epochs: 1 ### Training results ### Framework versions - PEFT 0.14.0 - Transformers 4.50.0.dev0 - Pytorch 2.6.0+cu124 - Datasets 3.3.2 - Tokenizers 0.21.1
zhan1993/merged_model_hf_phi-3
zhan1993
2025-04-24T03:14:32Z
0
0
transformers
[ "transformers", "safetensors", "phi3", "text-generation", "conversational", "custom_code", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-04-24T03:10:34Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
Ready2Work/llama3.2_3B_news_merged
Ready2Work
2025-04-24T02:50:12Z
0
0
null
[ "license:apache-2.0", "region:us" ]
null
2025-04-24T02:50:12Z
--- license: apache-2.0 ---
baby-dev/35ff8131-4e2e-4383-b0e3-185a7cb85c2f
baby-dev
2025-04-23T19:53:46Z
0
0
transformers
[ "transformers", "generated_from_trainer", "endpoints_compatible", "region:us" ]
null
2025-04-23T19:51:51Z
--- library_name: transformers model_name: baby-dev/35ff8131-4e2e-4383-b0e3-185a7cb85c2f tags: - generated_from_trainer licence: license --- # Model Card for baby-dev/35ff8131-4e2e-4383-b0e3-185a7cb85c2f This model is a fine-tuned version of [None](https://huggingface.co/None). It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="None", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ### Framework versions - TRL: 0.12.0 - Transformers: 4.46.3 - Pytorch: 2.5.1 - Datasets: 3.1.0 - Tokenizers: 0.20.3 ## Citations Cite DPO as: ```bibtex @inproceedings{rafailov2023direct, title = {{Direct Preference Optimization: Your Language Model is Secretly a Reward Model}}, author = {Rafael Rafailov and Archit Sharma and Eric Mitchell and Christopher D. Manning and Stefano Ermon and Chelsea Finn}, year = 2023, booktitle = {Advances in Neural Information Processing Systems 36: Annual Conference on Neural Information Processing Systems 2023, NeurIPS 2023, New Orleans, LA, USA, December 10 - 16, 2023}, url = {http://papers.nips.cc/paper_files/paper/2023/hash/a85b405ed65c6477a4fe8302b5e06ce7-Abstract-Conference.html}, editor = {Alice Oh and Tristan Naumann and Amir Globerson and Kate Saenko and Moritz Hardt and Sergey Levine}, } ``` Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallouédec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
davidgparedes/gemma-auto-teacher
davidgparedes
2025-04-23T12:03:57Z
0
0
transformers
[ "transformers", "tensorboard", "safetensors", "gemma3", "image-text-to-text", "generated_from_trainer", "trl", "sft", "conversational", "base_model:google/gemma-3-4b-pt", "base_model:finetune:google/gemma-3-4b-pt", "text-generation-inference", "endpoints_compatible", "region:us" ]
image-text-to-text
2025-04-14T17:13:05Z
--- base_model: google/gemma-3-4b-pt library_name: transformers model_name: gemma-auto-teacher tags: - generated_from_trainer - trl - sft licence: license --- # Model Card for gemma-auto-teacher This model is a fine-tuned version of [google/gemma-3-4b-pt](https://huggingface.co/google/gemma-3-4b-pt). It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="davidgparedes/gemma-auto-teacher", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure This model was trained with SFT. ### Framework versions - TRL: 0.15.2 - Transformers: 4.51.2 - Pytorch: 2.6.0+cu124 - Datasets: 3.5.0 - Tokenizers: 0.21.1 ## Citations Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallouédec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
softaken/EML_Attachment_Extractor
softaken
2025-04-23T11:53:31Z
0
0
null
[ "region:us" ]
null
2025-04-23T11:50:32Z
Softaken EML Attachment Extractor is an advanced way to remove attachments from EML and EMLX files. It can extract attachments without changing the EML file. Let users extract attachments of any size from massive EML files. Extraction poses no risk of data loss or file corruption. This program is also simple to use for beginners, so even those without a technical background can utilize it. Users can preview the EML files before extracting them, allowing them to preview exactly what will be extracted. It supports all popular EML-based email clients like Windows Live Mail, Thunderbird, Outlook Express, etc. It allows the user to save the removed attachments to the desired location. It also handles large-sized EML files with ease. It is compatible with all the latest Windows OS versions, including Windows 11, 10, 8.1,8, 7, XP, Vista, etc. A free trial version of this extractor is also available, which users can download and test at no cost. The trial version helps users to understand the features and functioning of the software before actual usage. This tool also comes with a reliable support system; the dedicated technical support team is always ready to help the user, whether users have problems with software installation, understanding the activation process or any confusion during extraction. Read More: https://www.softaken.com/eml-attachment-extractor
Xubi23/trainer_output
Xubi23
2025-04-22T18:10:36Z
0
0
transformers
[ "transformers", "tensorboard", "safetensors", "detr", "object-detection", "generated_from_trainer", "base_model:facebook/detr-resnet-50", "base_model:finetune:facebook/detr-resnet-50", "license:apache-2.0", "endpoints_compatible", "region:us" ]
object-detection
2025-04-22T17:05:31Z
--- library_name: transformers license: apache-2.0 base_model: facebook/detr-resnet-50 tags: - generated_from_trainer model-index: - name: trainer_output results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # trainer_output This model is a fine-tuned version of [facebook/detr-resnet-50](https://huggingface.co/facebook/detr-resnet-50) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.4267 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 5 ### Training results ### Framework versions - Transformers 4.51.3 - Pytorch 2.6.0+cu124 - Datasets 3.5.0 - Tokenizers 0.21.1
Chdn1985/chanda
Chdn1985
2025-04-22T03:11:32Z
0
0
null
[ "license:apache-2.0", "region:us" ]
null
2025-04-22T03:11:32Z
--- license: apache-2.0 ---
leodonkikonki/grokuku
leodonkikonki
2025-04-21T04:46:31Z
0
0
diffusers
[ "diffusers", "text-to-image", "flux", "lora", "template:sd-lora", "fluxgym", "base_model:black-forest-labs/FLUX.1-dev", "base_model:adapter:black-forest-labs/FLUX.1-dev", "license:other", "region:us" ]
text-to-image
2025-04-21T04:46:14Z
--- tags: - text-to-image - flux - lora - diffusers - template:sd-lora - fluxgym base_model: black-forest-labs/FLUX.1-dev instance_prompt: grokuku license: other license_name: flux-1-dev-non-commercial-license license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md --- # grokuku A Flux LoRA trained on a local computer with [Fluxgym](https://github.com/cocktailpeanut/fluxgym) <Gallery /> ## Trigger words You should use `grokuku` to trigger the image generation. ## Download model and use it with ComfyUI, AUTOMATIC1111, SD.Next, Invoke AI, Forge, etc. Weights for this model are available in Safetensors format.
dekos2606/Qwen2.5-0.5B-Instruct-Gensyn-Swarm-beaked_aquatic_dove
dekos2606
2025-04-19T11:13:06Z
0
0
transformers
[ "transformers", "safetensors", "qwen2", "text-generation", "generated_from_trainer", "rl-swarm", "grpo", "gensyn", "I am beaked aquatic dove", "trl", "conversational", "arxiv:2402.03300", "base_model:Gensyn/Qwen2.5-0.5B-Instruct", "base_model:finetune:Gensyn/Qwen2.5-0.5B-Instruct", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-04-19T11:11:51Z
--- base_model: Gensyn/Qwen2.5-0.5B-Instruct library_name: transformers model_name: Qwen2.5-0.5B-Instruct-Gensyn-Swarm-beaked_aquatic_dove tags: - generated_from_trainer - rl-swarm - grpo - gensyn - I am beaked aquatic dove - trl licence: license --- # Model Card for Qwen2.5-0.5B-Instruct-Gensyn-Swarm-beaked_aquatic_dove This model is a fine-tuned version of [Gensyn/Qwen2.5-0.5B-Instruct](https://huggingface.co/Gensyn/Qwen2.5-0.5B-Instruct). It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="dekos2606/Qwen2.5-0.5B-Instruct-Gensyn-Swarm-beaked_aquatic_dove", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure This model was trained with GRPO, a method introduced in [DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models](https://huggingface.co/papers/2402.03300). ### Framework versions - TRL: 0.15.2 - Transformers: 4.51.2 - Pytorch: 2.6.0 - Datasets: 3.5.0 - Tokenizers: 0.21.1 ## Citations Cite GRPO as: ```bibtex @article{zhihong2024deepseekmath, title = {{DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models}}, author = {Zhihong Shao and Peiyi Wang and Qihao Zhu and Runxin Xu and Junxiao Song and Mingchuan Zhang and Y. K. Li and Y. Wu and Daya Guo}, year = 2024, eprint = {arXiv:2402.03300}, } ``` Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallouédec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```