Datasets:
metadata
annotations_creators: []
language: []
language_creators: []
license: []
multilinguality: []
pretty_name: credit-card
size_categories:
- 10K<n<100K
source_datasets: []
tags:
- interpretability
- fairness
- medicine
task_categories:
- tabular-classification
task_ids: []
Port of the credit-card dataset from UCI (link here). See details there and use carefully.
Basic preprocessing done by the imodels team in this notebook.
The target is the binary outcome default.payment.next.month
.
Sample usage
Load the data:
from datasets import load_dataset
dataset = load_dataset("imodels/credit-card")
df = pd.DataFrame(dataset['train'])
X = df.drop(columns=['default.payment.next.month'])
y = df['default.payment.next.month'].values
Fit a model:
import imodels
import numpy as np
m = imodels.FIGSClassifier(max_rules=5)
m.fit(X, y)
print(m)
Evaluate:
df_test = pd.DataFrame(dataset['test'])
X_test = df.drop(columns=['default.payment.next.month'])
y_test = df['default.payment.next.month'].values
print('accuracy', np.mean(m.predict(X_test) == y_test))