Datasets:
Chandan Singh
commited on
Commit
•
aa2d71d
1
Parent(s):
d5a3792
Create README.md
Browse files
README.md
ADDED
@@ -0,0 +1,59 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
annotations_creators: []
|
3 |
+
language: []
|
4 |
+
language_creators: []
|
5 |
+
license: []
|
6 |
+
multilinguality: []
|
7 |
+
pretty_name: credit-card
|
8 |
+
size_categories:
|
9 |
+
- 10K<n<100K
|
10 |
+
source_datasets: []
|
11 |
+
tags:
|
12 |
+
- interpretability
|
13 |
+
- fairness
|
14 |
+
- medicine
|
15 |
+
task_categories:
|
16 |
+
- tabular-classification
|
17 |
+
task_ids: []
|
18 |
+
---
|
19 |
+
|
20 |
+
Port of the credit-card dataset from UCI (link [here](https://www.kaggle.com/datasets/uciml/default-of-credit-card-clients-dataset)). See details there and use carefully.
|
21 |
+
|
22 |
+
Basic preprocessing done by the [imodels team](https://github.com/csinva/imodels) in [this notebook](https://github.com/csinva/imodels-data/blob/master/notebooks_fetch_data/00_get_datasets_custom.ipynb).
|
23 |
+
|
24 |
+
The target is the binary outcome `default.payment.next.month`.
|
25 |
+
|
26 |
+
### Sample usage
|
27 |
+
|
28 |
+
Load the data:
|
29 |
+
|
30 |
+
```
|
31 |
+
from datasets import load_dataset
|
32 |
+
|
33 |
+
dataset = load_dataset("imodels/credit-card")
|
34 |
+
df = pd.DataFrame(dataset['train'])
|
35 |
+
X = df.drop(columns=['default.payment.next.month'])
|
36 |
+
y = df['default.payment.next.month'].values
|
37 |
+
```
|
38 |
+
|
39 |
+
Fit a model:
|
40 |
+
|
41 |
+
```
|
42 |
+
import imodels
|
43 |
+
import numpy as np
|
44 |
+
|
45 |
+
m = imodels.FIGSClassifier(max_rules=5)
|
46 |
+
m.fit(X, y)
|
47 |
+
print(m)
|
48 |
+
```
|
49 |
+
|
50 |
+
|
51 |
+
Evaluate:
|
52 |
+
|
53 |
+
|
54 |
+
```
|
55 |
+
df_test = pd.DataFrame(dataset['test'])
|
56 |
+
X_test = df.drop(columns=['default.payment.next.month'])
|
57 |
+
y_test = df['default.payment.next.month'].values
|
58 |
+
print('accuracy', np.mean(m.predict(X_test) == y_test))
|
59 |
+
```
|