repo_name
stringlengths
7
90
path
stringlengths
5
191
copies
stringlengths
1
3
size
stringlengths
4
6
content
stringlengths
976
581k
license
stringclasses
15 values
ghorn/rawesome
studies/pendulum_collocation.py
2
5071
# Copyright 2012-2013 Greg Horn # # This file is part of rawesome. # # rawesome is free software: you can redistribute it and/or modify # it under the terms of the GNU Lesser General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # rawesome is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU Lesser General Public License for more details. # # You should have received a copy of the GNU Lesser General Public License # along with rawesome. If not, see <http://www.gnu.org/licenses/>. import matplotlib.pyplot as plt import zmq import numpy from numpy import pi import copy import casadi as C import rawe def main(): nk = 50 print "creating model" dae = rawe.models.pendulum2() dae.addP('endTime') print "setting up OCP" ocp = rawe.collocation.Coll(dae, nk=nk,nicp=1,deg=4, collPoly='RADAU') print "setting up collocation" ocp.setupCollocation( ocp.lookup('endTime') ) # constrain invariants ocp.constrain(ocp.lookup('c',timestep=0),'==',0) ocp.constrain(ocp.lookup('cdot',timestep=0),'==',0) # bounds r = 0.3 ocp.bound('x',(-2*r,2*r)) ocp.bound('z',(-2*r,0.01*r)) ocp.bound('dx',(-5,5)) ocp.bound('dz',(-5,5)) ocp.bound('torque',(-50,50)) ocp.bound('m',(0.3,0.3)) ocp.bound('endTime',(0.1,3.5)) # boundary conditions ocp.bound('x',(r,r),timestep=0) ocp.bound('z',(0,0),timestep=0) ocp.bound('x',(0,0),timestep=-1) ocp.bound('z',(-10*r,0.01*r),timestep=-1) ocp.bound('dx',(0,0),timestep=0) ocp.bound('dz',(0,0),timestep=0) ocp.bound('dx',(0,0),timestep=-1) ocp.bound('dz',(-0.5,0.5),timestep=-1) # make the solver obj = 0 for k in range(ocp.nk): t = ocp.lookup('torque',timestep=k) obj += t*t ocp.setObjective(ocp.lookup('endTime') + 1e-6*obj/float(nk)) # ocp.setObjective(1e-6*obj/float(nk)) context = zmq.Context(1) publisher = context.socket(zmq.PUB) publisher.bind("tcp://*:5563") # callback function class MyCallback: def __init__(self): self.iter = 0 def __call__(self,f,*args): xOpt = numpy.array(f.input(C.NLP_X_OPT)) self.iter = self.iter + 1 traj = rawe.collocation.trajectory.Trajectory(ocp,xOpt) po = rawe.kite_pb2.PendulumOpt() po.x.extend(list([traj.lookup('x',timestep=k) for k in range(ocp.nk+1)])) po.z.extend(list([traj.lookup('z',timestep=k) for k in range(ocp.nk+1)])) po.messages.append('endTime: %.3f'% traj.lookup('endTime')) po.messages.append('mass: %.3f'% traj.lookup('m')) po.messages.append('iters: %d' % self.iter) publisher.send_multipart(["pendulum-opt", po.SerializeToString()]) # solver solverOptions = [ ("linear_solver","ma57") # , ("derivative_test","first-order") , ("expand_f",True) , ("expand_g",True) , ("generate_hessian",True) , ("max_iter",10000) , ("tol",1e-8) ] # solverOptions = [ ("Timeout", 1e6), # ("UserHM", True)] # ("ScaleConIter",True), # ("ScaledFD",True), # ("ScaledKKT",True), # ("ScaledObj",True), # ("ScaledQP",True)] constraintFunOptions = [('numeric_jacobian',False)] # initial conditions endTime = 0.3 xOld = r zOld = 0 dt0 = endTime/nk for k in range(nk+1): theta = float(k)/nk*C.pi/8.0 x = r*C.cos(theta) z = -r*C.sin(theta) ocp.guess('x',x,timestep=k) ocp.guess('z',z,timestep=k) ocp.guess('dx',(x-xOld)/dt0,timestep=k) ocp.guess('dz',(z-zOld)/dt0,timestep=k) xOld = x zOld = z for k in range(ocp.nk): if k < ocp.nk: ocp.guess('torque',0,timestep=k) else: ocp.guess('torque',-0,timestep=k) ocp.guess('m',0.3) ocp.guess('endTime',endTime) ## ocp.guess('dx',0) ## ocp.guess('dz',0) # ocp.guessX([r,0,0,0]) # ocp.guessX([0,-r,0,0]) # ocp.guess('torque',0) # ocp.interpolateInitialGuess("data/pendulum_opt.dat",force=True,quiet=True) print "setting up solver" ocp.setupSolver( solverOpts=solverOptions, constraintFunOpts=constraintFunOptions, callback=MyCallback() ) print "solving" traj = ocp.solve() print "endTime: "+str(traj.lookup('endTime')) print "mass: "+str(traj.lookup('m')) print "saving optimal trajectory" traj.save("data/pendulum_opt.dat") # Plot the results traj.subplot([['x','z'],['dx','dz']]) traj.plot('torque') traj.plot('tau') plt.show() if __name__=='__main__': main()
lgpl-3.0
mne-tools/mne-python
mne/io/fiff/tests/test_raw_fiff.py
4
72663
# -*- coding: utf-8 -*- # Author: Alexandre Gramfort <[email protected]> # Denis Engemann <[email protected]> # # License: BSD (3-clause) from copy import deepcopy from functools import partial from io import BytesIO import os import os.path as op import pathlib import pickle import shutil import sys import numpy as np from numpy.testing import (assert_array_almost_equal, assert_array_equal, assert_allclose) import pytest from mne.datasets import testing from mne.filter import filter_data from mne.io.constants import FIFF from mne.io import RawArray, concatenate_raws, read_raw_fif, base from mne.io.open import read_tag, read_tag_info from mne.io.tag import _read_tag_header from mne.io.tests.test_raw import _test_concat, _test_raw_reader from mne import (concatenate_events, find_events, equalize_channels, compute_proj_raw, pick_types, pick_channels, create_info, pick_info) from mne.utils import (requires_pandas, assert_object_equal, _dt_to_stamp, requires_mne, run_subprocess, assert_and_remove_boundary_annot) from mne.annotations import Annotations testing_path = testing.data_path(download=False) data_dir = op.join(testing_path, 'MEG', 'sample') fif_fname = op.join(data_dir, 'sample_audvis_trunc_raw.fif') ms_fname = op.join(testing_path, 'SSS', 'test_move_anon_raw.fif') skip_fname = op.join(testing_path, 'misc', 'intervalrecording_raw.fif') base_dir = op.join(op.dirname(__file__), '..', '..', 'tests', 'data') test_fif_fname = op.join(base_dir, 'test_raw.fif') test_fif_gz_fname = op.join(base_dir, 'test_raw.fif.gz') ctf_fname = op.join(base_dir, 'test_ctf_raw.fif') ctf_comp_fname = op.join(base_dir, 'test_ctf_comp_raw.fif') fif_bad_marked_fname = op.join(base_dir, 'test_withbads_raw.fif') bad_file_works = op.join(base_dir, 'test_bads.txt') bad_file_wrong = op.join(base_dir, 'test_wrong_bads.txt') hp_fname = op.join(base_dir, 'test_chpi_raw_hp.txt') hp_fif_fname = op.join(base_dir, 'test_chpi_raw_sss.fif') @testing.requires_testing_data def test_acq_skip(tmpdir): """Test treatment of acquisition skips.""" raw = read_raw_fif(skip_fname, preload=True) picks = [1, 2, 10] assert len(raw.times) == 17000 annotations = raw.annotations assert len(annotations) == 3 # there are 3 skips assert_allclose(annotations.onset, [14, 19, 23]) assert_allclose(annotations.duration, [2., 2., 3.]) # inclusive! data, times = raw.get_data( picks, reject_by_annotation='omit', return_times=True) expected_data, expected_times = zip(raw[picks, :2000], raw[picks, 4000:7000], raw[picks, 9000:11000], raw[picks, 14000:17000]) expected_times = np.concatenate(list(expected_times), axis=-1) assert_allclose(times, expected_times) expected_data = list(expected_data) assert_allclose(data, np.concatenate(expected_data, axis=-1), atol=1e-22) # Check that acquisition skips are handled properly in filtering kwargs = dict(l_freq=None, h_freq=50., fir_design='firwin') raw_filt = raw.copy().filter(picks=picks, **kwargs) for data in expected_data: filter_data(data, raw.info['sfreq'], copy=False, **kwargs) data = raw_filt.get_data(picks, reject_by_annotation='omit') assert_allclose(data, np.concatenate(expected_data, axis=-1), atol=1e-22) # Check that acquisition skips are handled properly during I/O fname = tmpdir.join('test_raw.fif') raw.save(fname, fmt=raw.orig_format) # first: file size should not increase much (orig data is missing # 7 of 17 buffers, so if we write them out it should increase the file # size quite a bit. orig_size = op.getsize(skip_fname) new_size = op.getsize(fname) max_size = int(1.05 * orig_size) # almost the same + annotations assert new_size < max_size, (new_size, max_size) raw_read = read_raw_fif(fname) assert raw_read.annotations is not None assert_allclose(raw.times, raw_read.times) assert_allclose(raw_read[:][0], raw[:][0], atol=1e-17) # Saving with a bad buffer length emits warning raw.pick_channels(raw.ch_names[:2]) with pytest.warns(None) as w: raw.save(fname, buffer_size_sec=0.5, overwrite=True) assert len(w) == 0 with pytest.warns(RuntimeWarning, match='did not fit evenly'): raw.save(fname, buffer_size_sec=2., overwrite=True) def test_fix_types(): """Test fixing of channel types.""" for fname, change in ((hp_fif_fname, True), (test_fif_fname, False), (ctf_fname, False)): raw = read_raw_fif(fname) mag_picks = pick_types(raw.info, meg='mag') other_picks = np.setdiff1d(np.arange(len(raw.ch_names)), mag_picks) # we don't actually have any files suffering from this problem, so # fake it if change: for ii in mag_picks: raw.info['chs'][ii]['coil_type'] = FIFF.FIFFV_COIL_VV_MAG_T2 orig_types = np.array([ch['coil_type'] for ch in raw.info['chs']]) raw.fix_mag_coil_types() new_types = np.array([ch['coil_type'] for ch in raw.info['chs']]) if not change: assert_array_equal(orig_types, new_types) else: assert_array_equal(orig_types[other_picks], new_types[other_picks]) assert ((orig_types[mag_picks] != new_types[mag_picks]).all()) assert ((new_types[mag_picks] == FIFF.FIFFV_COIL_VV_MAG_T3).all()) def test_concat(tmpdir): """Test RawFIF concatenation.""" # we trim the file to save lots of memory and some time raw = read_raw_fif(test_fif_fname) raw.crop(0, 2.) test_name = tmpdir.join('test_raw.fif') raw.save(test_name) # now run the standard test _test_concat(partial(read_raw_fif), test_name) @testing.requires_testing_data def test_hash_raw(): """Test hashing raw objects.""" raw = read_raw_fif(fif_fname) pytest.raises(RuntimeError, raw.__hash__) raw = read_raw_fif(fif_fname).crop(0, 0.5) raw_size = raw._size raw.load_data() raw_load_size = raw._size assert (raw_size < raw_load_size) raw_2 = read_raw_fif(fif_fname).crop(0, 0.5) raw_2.load_data() assert hash(raw) == hash(raw_2) # do NOT use assert_equal here, failing output is terrible assert pickle.dumps(raw) == pickle.dumps(raw_2) raw_2._data[0, 0] -= 1 assert hash(raw) != hash(raw_2) @testing.requires_testing_data def test_maxshield(): """Test maxshield warning.""" with pytest.warns(RuntimeWarning, match='Internal Active Shielding') as w: read_raw_fif(ms_fname, allow_maxshield=True) assert ('test_raw_fiff.py' in w[0].filename) @testing.requires_testing_data def test_subject_info(tmpdir): """Test reading subject information.""" raw = read_raw_fif(fif_fname).crop(0, 1) assert (raw.info['subject_info'] is None) # fake some subject data keys = ['id', 'his_id', 'last_name', 'first_name', 'birthday', 'sex', 'hand'] vals = [1, 'foobar', 'bar', 'foo', (1901, 2, 3), 0, 1] subject_info = dict() for key, val in zip(keys, vals): subject_info[key] = val raw.info['subject_info'] = subject_info out_fname = tmpdir.join('test_subj_info_raw.fif') raw.save(out_fname, overwrite=True) raw_read = read_raw_fif(out_fname) for key in keys: assert subject_info[key] == raw_read.info['subject_info'][key] assert raw.info['meas_date'] == raw_read.info['meas_date'] for key in ['secs', 'usecs', 'version']: assert raw.info['meas_id'][key] == raw_read.info['meas_id'][key] assert_array_equal(raw.info['meas_id']['machid'], raw_read.info['meas_id']['machid']) @testing.requires_testing_data def test_copy_append(): """Test raw copying and appending combinations.""" raw = read_raw_fif(fif_fname, preload=True).copy() raw_full = read_raw_fif(fif_fname) raw_full.append(raw) data = raw_full[:, :][0] assert data.shape[1] == 2 * raw._data.shape[1] @testing.requires_testing_data def test_output_formats(tmpdir): """Test saving and loading raw data using multiple formats.""" formats = ['short', 'int', 'single', 'double'] tols = [1e-4, 1e-7, 1e-7, 1e-15] # let's fake a raw file with different formats raw = read_raw_fif(test_fif_fname).crop(0, 1) temp_file = tmpdir.join('raw.fif') for ii, (fmt, tol) in enumerate(zip(formats, tols)): # Let's test the overwriting error throwing while we're at it if ii > 0: pytest.raises(IOError, raw.save, temp_file, fmt=fmt) raw.save(temp_file, fmt=fmt, overwrite=True) raw2 = read_raw_fif(temp_file) raw2_data = raw2[:, :][0] assert_allclose(raw2_data, raw[:, :][0], rtol=tol, atol=1e-25) assert raw2.orig_format == fmt def _compare_combo(raw, new, times, n_times): """Compare data.""" for ti in times: # let's do a subset of points for speed orig = raw[:, ti % n_times][0] # these are almost_equals because of possible dtype differences assert_allclose(orig, new[:, ti][0]) @pytest.mark.slowtest @testing.requires_testing_data def test_multiple_files(tmpdir): """Test loading multiple files simultaneously.""" # split file raw = read_raw_fif(fif_fname).crop(0, 10) raw.load_data() raw.load_data() # test no operation split_size = 3. # in seconds sfreq = raw.info['sfreq'] nsamp = (raw.last_samp - raw.first_samp) tmins = np.round(np.arange(0., nsamp, split_size * sfreq)) tmaxs = np.concatenate((tmins[1:] - 1, [nsamp])) tmaxs /= sfreq tmins /= sfreq assert raw.n_times == len(raw.times) # going in reverse order so the last fname is the first file (need later) raws = [None] * len(tmins) for ri in range(len(tmins) - 1, -1, -1): fname = tmpdir.join('test_raw_split-%d_raw.fif' % ri) raw.save(fname, tmin=tmins[ri], tmax=tmaxs[ri]) raws[ri] = read_raw_fif(fname) assert (len(raws[ri].times) == int(round((tmaxs[ri] - tmins[ri]) * raw.info['sfreq'])) + 1) # + 1 b/c inclusive events = [find_events(r, stim_channel='STI 014') for r in raws] last_samps = [r.last_samp for r in raws] first_samps = [r.first_samp for r in raws] # test concatenation of split file pytest.raises(ValueError, concatenate_raws, raws, True, events[1:]) all_raw_1, events1 = concatenate_raws(raws, preload=False, events_list=events) assert_allclose(all_raw_1.times, raw.times) assert raw.first_samp == all_raw_1.first_samp assert raw.last_samp == all_raw_1.last_samp assert_allclose(raw[:, :][0], all_raw_1[:, :][0]) raws[0] = read_raw_fif(fname) all_raw_2 = concatenate_raws(raws, preload=True) assert_allclose(raw[:, :][0], all_raw_2[:, :][0]) # test proper event treatment for split files events2 = concatenate_events(events, first_samps, last_samps) events3 = find_events(all_raw_2, stim_channel='STI 014') assert_array_equal(events1, events2) assert_array_equal(events1, events3) # test various methods of combining files raw = read_raw_fif(fif_fname, preload=True) n_times = raw.n_times # make sure that all our data match times = list(range(0, 2 * n_times, 999)) # add potentially problematic points times.extend([n_times - 1, n_times, 2 * n_times - 1]) raw_combo0 = concatenate_raws([read_raw_fif(f) for f in [fif_fname, fif_fname]], preload=True) _compare_combo(raw, raw_combo0, times, n_times) raw_combo = concatenate_raws([read_raw_fif(f) for f in [fif_fname, fif_fname]], preload=False) _compare_combo(raw, raw_combo, times, n_times) raw_combo = concatenate_raws([read_raw_fif(f) for f in [fif_fname, fif_fname]], preload='memmap8.dat') _compare_combo(raw, raw_combo, times, n_times) assert raw[:, :][0].shape[1] * 2 == raw_combo0[:, :][0].shape[1] assert raw_combo0[:, :][0].shape[1] == raw_combo0.n_times # with all data preloaded, result should be preloaded raw_combo = read_raw_fif(fif_fname, preload=True) raw_combo.append(read_raw_fif(fif_fname, preload=True)) assert (raw_combo.preload is True) assert raw_combo.n_times == raw_combo._data.shape[1] _compare_combo(raw, raw_combo, times, n_times) # with any data not preloaded, don't set result as preloaded raw_combo = concatenate_raws([read_raw_fif(fif_fname, preload=True), read_raw_fif(fif_fname, preload=False)]) assert (raw_combo.preload is False) assert_array_equal(find_events(raw_combo, stim_channel='STI 014'), find_events(raw_combo0, stim_channel='STI 014')) _compare_combo(raw, raw_combo, times, n_times) # user should be able to force data to be preloaded upon concat raw_combo = concatenate_raws([read_raw_fif(fif_fname, preload=False), read_raw_fif(fif_fname, preload=True)], preload=True) assert (raw_combo.preload is True) _compare_combo(raw, raw_combo, times, n_times) raw_combo = concatenate_raws([read_raw_fif(fif_fname, preload=False), read_raw_fif(fif_fname, preload=True)], preload='memmap3.dat') _compare_combo(raw, raw_combo, times, n_times) raw_combo = concatenate_raws([ read_raw_fif(fif_fname, preload=True), read_raw_fif(fif_fname, preload=True)], preload='memmap4.dat') _compare_combo(raw, raw_combo, times, n_times) raw_combo = concatenate_raws([ read_raw_fif(fif_fname, preload=False), read_raw_fif(fif_fname, preload=False)], preload='memmap5.dat') _compare_combo(raw, raw_combo, times, n_times) # verify that combining raws with different projectors throws an exception raw.add_proj([], remove_existing=True) pytest.raises(ValueError, raw.append, read_raw_fif(fif_fname, preload=True)) # now test event treatment for concatenated raw files events = [find_events(raw, stim_channel='STI 014'), find_events(raw, stim_channel='STI 014')] last_samps = [raw.last_samp, raw.last_samp] first_samps = [raw.first_samp, raw.first_samp] events = concatenate_events(events, first_samps, last_samps) events2 = find_events(raw_combo0, stim_channel='STI 014') assert_array_equal(events, events2) # check out the len method assert len(raw) == raw.n_times assert len(raw) == raw.last_samp - raw.first_samp + 1 @testing.requires_testing_data @pytest.mark.parametrize('on_mismatch', ('ignore', 'warn', 'raise')) def test_concatenate_raws(on_mismatch): """Test error handling during raw concatenation.""" raw = read_raw_fif(fif_fname).crop(0, 10) raws = [raw, raw.copy()] raws[1].info['dev_head_t']['trans'] += 0.1 kws = dict(raws=raws, on_mismatch=on_mismatch) if on_mismatch == 'ignore': concatenate_raws(**kws) elif on_mismatch == 'warn': with pytest.warns(RuntimeWarning, match='different head positions'): concatenate_raws(**kws) elif on_mismatch == 'raise': with pytest.raises(ValueError, match='different head positions'): concatenate_raws(**kws) @testing.requires_testing_data @pytest.mark.parametrize('mod', ( 'meg', pytest.param('raw', marks=[pytest.mark.filterwarnings( 'ignore:.*naming conventions.*:RuntimeWarning')]), )) def test_split_files(tmpdir, mod, monkeypatch): """Test writing and reading of split raw files.""" raw_1 = read_raw_fif(fif_fname, preload=True) # Test a very close corner case raw_crop = raw_1.copy().crop(0, 1.) assert_allclose(raw_1.buffer_size_sec, 10., atol=1e-2) # samp rate split_fname = tmpdir.join(f'split_raw_{mod}.fif') # intended filenames split_fname_elekta_part2 = tmpdir.join(f'split_raw_{mod}-1.fif') split_fname_bids_part1 = tmpdir.join(f'split_raw_split-01_{mod}.fif') split_fname_bids_part2 = tmpdir.join(f'split_raw_split-02_{mod}.fif') raw_1.set_annotations(Annotations([2.], [5.5], 'test')) # Check that if BIDS is used and no split is needed it defaults to # simple writing without _split- entity. raw_1.save(split_fname, split_naming='bids', verbose=True) assert op.isfile(split_fname) assert not op.isfile(split_fname_bids_part1) for split_naming in ('neuromag', 'bids'): with pytest.raises(FileExistsError, match='Destination file'): raw_1.save(split_fname, split_naming=split_naming, verbose=True) os.remove(split_fname) with open(split_fname_bids_part1, 'w'): pass with pytest.raises(FileExistsError, match='Destination file'): raw_1.save(split_fname, split_naming='bids', verbose=True) assert not op.isfile(split_fname) raw_1.save(split_fname, split_naming='neuromag', verbose=True) # okay os.remove(split_fname) os.remove(split_fname_bids_part1) raw_1.save(split_fname, buffer_size_sec=1.0, split_size='10MB', verbose=True) # check that the filenames match the intended pattern assert op.isfile(split_fname) assert op.isfile(split_fname_elekta_part2) # check that filenames are being formatted correctly for BIDS raw_1.save(split_fname, buffer_size_sec=1.0, split_size='10MB', split_naming='bids', overwrite=True, verbose=True) assert op.isfile(split_fname_bids_part1) assert op.isfile(split_fname_bids_part2) annot = Annotations(np.arange(20), np.ones((20,)), 'test') raw_1.set_annotations(annot) split_fname = op.join(tmpdir, 'split_raw.fif') raw_1.save(split_fname, buffer_size_sec=1.0, split_size='10MB') raw_2 = read_raw_fif(split_fname) assert_allclose(raw_2.buffer_size_sec, 1., atol=1e-2) # samp rate assert_allclose(raw_1.annotations.onset, raw_2.annotations.onset) assert_allclose(raw_1.annotations.duration, raw_2.annotations.duration, rtol=0.001 / raw_2.info['sfreq']) assert_array_equal(raw_1.annotations.description, raw_2.annotations.description) data_1, times_1 = raw_1[:, :] data_2, times_2 = raw_2[:, :] assert_array_equal(data_1, data_2) assert_array_equal(times_1, times_2) raw_bids = read_raw_fif(split_fname_bids_part1) data_bids, times_bids = raw_bids[:, :] assert_array_equal(data_1, data_bids) assert_array_equal(times_1, times_bids) del raw_bids # split missing behaviors os.remove(split_fname_bids_part2) with pytest.raises(ValueError, match='manually renamed'): read_raw_fif(split_fname_bids_part1, on_split_missing='raise') with pytest.warns(RuntimeWarning, match='Split raw file detected'): read_raw_fif(split_fname_bids_part1, on_split_missing='warn') read_raw_fif(split_fname_bids_part1, on_split_missing='ignore') # test the case where we only end up with one buffer to write # (GH#3210). These tests rely on writing meas info and annotations # taking up a certain number of bytes, so if we change those functions # somehow, the numbers below for e.g. split_size might need to be # adjusted. raw_crop = raw_1.copy().crop(0, 5) raw_crop.set_annotations(Annotations([2.], [5.5], 'test'), emit_warning=False) with pytest.raises(ValueError, match='after writing measurement information'): raw_crop.save(split_fname, split_size='1MB', # too small a size buffer_size_sec=1., overwrite=True) with pytest.raises(ValueError, match='too large for the given split size'): raw_crop.save(split_fname, split_size=3003000, # still too small, now after Info buffer_size_sec=1., overwrite=True) # just barely big enough here; the right size to write exactly one buffer # at a time so we hit GH#3210 if we aren't careful raw_crop.save(split_fname, split_size='4.5MB', buffer_size_sec=1., overwrite=True) raw_read = read_raw_fif(split_fname) assert_allclose(raw_crop[:][0], raw_read[:][0], atol=1e-20) # Check our buffer arithmetic # 1 buffer required raw_crop = raw_1.copy().crop(0, 1) raw_crop.save(split_fname, buffer_size_sec=1., overwrite=True) raw_read = read_raw_fif(split_fname) assert_array_equal(np.diff(raw_read._raw_extras[0]['bounds']), (301,)) assert_allclose(raw_crop[:][0], raw_read[:][0]) # 2 buffers required raw_crop.save(split_fname, buffer_size_sec=0.5, overwrite=True) raw_read = read_raw_fif(split_fname) assert_array_equal(np.diff(raw_read._raw_extras[0]['bounds']), (151, 150)) assert_allclose(raw_crop[:][0], raw_read[:][0]) # 2 buffers required raw_crop.save(split_fname, buffer_size_sec=1. - 1.01 / raw_crop.info['sfreq'], overwrite=True) raw_read = read_raw_fif(split_fname) assert_array_equal(np.diff(raw_read._raw_extras[0]['bounds']), (300, 1)) assert_allclose(raw_crop[:][0], raw_read[:][0]) raw_crop.save(split_fname, buffer_size_sec=1. - 2.01 / raw_crop.info['sfreq'], overwrite=True) raw_read = read_raw_fif(split_fname) assert_array_equal(np.diff(raw_read._raw_extras[0]['bounds']), (299, 2)) assert_allclose(raw_crop[:][0], raw_read[:][0]) # proper ending assert op.isdir(tmpdir) with pytest.raises(ValueError, match='must end with an underscore'): raw_crop.save( tmpdir.join('test.fif'), split_naming='bids', verbose='error') # reserved file is deleted fname = tmpdir.join('test_raw.fif') monkeypatch.setattr(base, '_write_raw_fid', _err) with pytest.raises(RuntimeError, match='Killed mid-write'): raw_1.save(fname, split_size='10MB', split_naming='bids') assert op.isfile(fname) assert not op.isfile(tmpdir.join('test_split-01_raw.fif')) def _err(*args, **kwargs): raise RuntimeError('Killed mid-write') def _no_write_file_name(fid, kind, data): assert kind == FIFF.FIFF_REF_FILE_NAME # the only string we actually write return def test_split_numbers(tmpdir, monkeypatch): """Test handling of split files using numbers instead of names.""" monkeypatch.setattr(base, 'write_string', _no_write_file_name) raw = read_raw_fif(test_fif_fname).pick('eeg') # gh-8339 dashes_fname = tmpdir.join('sub-1_ses-2_task-3_raw.fif') raw.save(dashes_fname, split_size='5MB', buffer_size_sec=1.) assert op.isfile(dashes_fname) next_fname = str(dashes_fname)[:-4] + '-1.fif' assert op.isfile(next_fname) raw_read = read_raw_fif(dashes_fname) assert_allclose(raw.times, raw_read.times) assert_allclose(raw.get_data(), raw_read.get_data(), atol=1e-16) def test_load_bad_channels(tmpdir): """Test reading/writing of bad channels.""" # Load correctly marked file (manually done in mne_process_raw) raw_marked = read_raw_fif(fif_bad_marked_fname) correct_bads = raw_marked.info['bads'] raw = read_raw_fif(test_fif_fname) # Make sure it starts clean assert_array_equal(raw.info['bads'], []) # Test normal case raw.load_bad_channels(bad_file_works) # Write it out, read it in, and check raw.save(tmpdir.join('foo_raw.fif')) raw_new = read_raw_fif(tmpdir.join('foo_raw.fif')) assert correct_bads == raw_new.info['bads'] # Reset it raw.info['bads'] = [] # Test bad case pytest.raises(ValueError, raw.load_bad_channels, bad_file_wrong) # Test forcing the bad case with pytest.warns(RuntimeWarning, match='1 bad channel'): raw.load_bad_channels(bad_file_wrong, force=True) # write it out, read it in, and check raw.save(tmpdir.join('foo_raw.fif'), overwrite=True) raw_new = read_raw_fif(tmpdir.join('foo_raw.fif')) assert correct_bads == raw_new.info['bads'] # Check that bad channels are cleared raw.load_bad_channels(None) raw.save(tmpdir.join('foo_raw.fif'), overwrite=True) raw_new = read_raw_fif(tmpdir.join('foo_raw.fif')) assert raw_new.info['bads'] == [] @pytest.mark.slowtest @testing.requires_testing_data def test_io_raw(tmpdir): """Test IO for raw data (Neuromag).""" rng = np.random.RandomState(0) # test unicode io for chars in [u'äöé', 'a']: with read_raw_fif(fif_fname) as r: assert ('Raw' in repr(r)) assert (op.basename(fif_fname) in repr(r)) r.info['description'] = chars temp_file = tmpdir.join('raw.fif') r.save(temp_file, overwrite=True) with read_raw_fif(temp_file) as r2: desc2 = r2.info['description'] assert desc2 == chars # Let's construct a simple test for IO first raw = read_raw_fif(fif_fname).crop(0, 3.5) raw.load_data() # put in some data that we know the values of data = rng.randn(raw._data.shape[0], raw._data.shape[1]) raw._data[:, :] = data # save it somewhere fname = tmpdir.join('test_copy_raw.fif') raw.save(fname, buffer_size_sec=1.0) # read it in, make sure the whole thing matches raw = read_raw_fif(fname) assert_allclose(data, raw[:, :][0], rtol=1e-6, atol=1e-20) # let's read portions across the 1-sec tag boundary, too inds = raw.time_as_index([1.75, 2.25]) sl = slice(inds[0], inds[1]) assert_allclose(data[:, sl], raw[:, sl][0], rtol=1e-6, atol=1e-20) @pytest.mark.parametrize('fname_in, fname_out', [ (test_fif_fname, 'raw.fif'), (test_fif_gz_fname, 'raw.fif.gz'), (ctf_fname, 'raw.fif')]) def test_io_raw_additional(fname_in, fname_out, tmpdir): """Test IO for raw data (Neuromag + CTF + gz).""" fname_out = tmpdir.join(fname_out) raw = read_raw_fif(fname_in).crop(0, 2) nchan = raw.info['nchan'] ch_names = raw.info['ch_names'] meg_channels_idx = [k for k in range(nchan) if ch_names[k][0] == 'M'] n_channels = 100 meg_channels_idx = meg_channels_idx[:n_channels] start, stop = raw.time_as_index([0, 5], use_rounding=True) data, times = raw[meg_channels_idx, start:(stop + 1)] meg_ch_names = [ch_names[k] for k in meg_channels_idx] # Set up pick list: MEG + STI 014 - bad channels include = ['STI 014'] include += meg_ch_names picks = pick_types(raw.info, meg=True, eeg=False, stim=True, misc=True, ref_meg=True, include=include, exclude='bads') # Writing with drop_small_buffer True raw.save(fname_out, picks, tmin=0, tmax=4, buffer_size_sec=3, drop_small_buffer=True, overwrite=True) raw2 = read_raw_fif(fname_out) sel = pick_channels(raw2.ch_names, meg_ch_names) data2, times2 = raw2[sel, :] assert (times2.max() <= 3) # Writing raw.save(fname_out, picks, tmin=0, tmax=5, overwrite=True) if fname_in in (fif_fname, fif_fname + '.gz'): assert len(raw.info['dig']) == 146 raw2 = read_raw_fif(fname_out) sel = pick_channels(raw2.ch_names, meg_ch_names) data2, times2 = raw2[sel, :] assert_allclose(data, data2, rtol=1e-6, atol=1e-20) assert_allclose(times, times2) assert_allclose(raw.info['sfreq'], raw2.info['sfreq'], rtol=1e-5) # check transformations for trans in ['dev_head_t', 'dev_ctf_t', 'ctf_head_t']: if raw.info[trans] is None: assert (raw2.info[trans] is None) else: assert_array_equal(raw.info[trans]['trans'], raw2.info[trans]['trans']) # check transformation 'from' and 'to' if trans.startswith('dev'): from_id = FIFF.FIFFV_COORD_DEVICE else: from_id = FIFF.FIFFV_MNE_COORD_CTF_HEAD if trans[4:8] == 'head': to_id = FIFF.FIFFV_COORD_HEAD else: to_id = FIFF.FIFFV_MNE_COORD_CTF_HEAD for raw_ in [raw, raw2]: assert raw_.info[trans]['from'] == from_id assert raw_.info[trans]['to'] == to_id if fname_in == fif_fname or fname_in == fif_fname + '.gz': assert_allclose(raw.info['dig'][0]['r'], raw2.info['dig'][0]['r']) # test warnings on bad filenames raw_badname = tmpdir.join('test-bad-name.fif.gz') with pytest.warns(RuntimeWarning, match='raw.fif'): raw.save(raw_badname) with pytest.warns(RuntimeWarning, match='raw.fif'): read_raw_fif(raw_badname) @testing.requires_testing_data def test_io_complex(tmpdir): """Test IO with complex data types.""" rng = np.random.RandomState(0) dtypes = [np.complex64, np.complex128] raw = _test_raw_reader(partial(read_raw_fif), fname=fif_fname) picks = np.arange(5) start, stop = raw.time_as_index([0, 5]) data_orig, _ = raw[picks, start:stop] for di, dtype in enumerate(dtypes): imag_rand = np.array(1j * rng.randn(data_orig.shape[0], data_orig.shape[1]), dtype) raw_cp = raw.copy() raw_cp._data = np.array(raw_cp._data, dtype) raw_cp._data[picks, start:stop] += imag_rand with pytest.warns(RuntimeWarning, match='Saving .* complex data.'): raw_cp.save(tmpdir.join('raw.fif'), picks, tmin=0, tmax=5, overwrite=True) raw2 = read_raw_fif(tmpdir.join('raw.fif')) raw2_data, _ = raw2[picks, :] n_samp = raw2_data.shape[1] assert_allclose(raw2_data[:, :n_samp], raw_cp._data[picks, :n_samp]) # with preloading raw2 = read_raw_fif(tmpdir.join('raw.fif'), preload=True) raw2_data, _ = raw2[picks, :] n_samp = raw2_data.shape[1] assert_allclose(raw2_data[:, :n_samp], raw_cp._data[picks, :n_samp]) @testing.requires_testing_data def test_getitem(): """Test getitem/indexing of Raw.""" for preload in [False, True, 'memmap.dat']: raw = read_raw_fif(fif_fname, preload=preload) data, times = raw[0, :] data1, times1 = raw[0] assert_array_equal(data, data1) assert_array_equal(times, times1) data, times = raw[0:2, :] data1, times1 = raw[0:2] assert_array_equal(data, data1) assert_array_equal(times, times1) data1, times1 = raw[[0, 1]] assert_array_equal(data, data1) assert_array_equal(times, times1) assert_array_equal(raw[raw.ch_names[0]][0][0], raw[0][0][0]) assert_array_equal( raw[-10:-1, :][0], raw[len(raw.ch_names) - 10:len(raw.ch_names) - 1, :][0]) with pytest.raises(ValueError, match='No appropriate channels'): raw[slice(-len(raw.ch_names) - 1), slice(None)] with pytest.raises(ValueError, match='must be'): raw[-1000] @testing.requires_testing_data def test_proj(tmpdir): """Test SSP proj operations.""" for proj in [True, False]: raw = read_raw_fif(fif_fname, preload=False) if proj: raw.apply_proj() assert (all(p['active'] == proj for p in raw.info['projs'])) data, times = raw[0:2, :] data1, times1 = raw[0:2] assert_array_equal(data, data1) assert_array_equal(times, times1) # test adding / deleting proj if proj: pytest.raises(ValueError, raw.add_proj, [], {'remove_existing': True}) pytest.raises(ValueError, raw.del_proj, 0) else: projs = deepcopy(raw.info['projs']) n_proj = len(raw.info['projs']) raw.del_proj(0) assert len(raw.info['projs']) == n_proj - 1 raw.add_proj(projs, remove_existing=False) # Test that already existing projections are not added. assert len(raw.info['projs']) == n_proj raw.add_proj(projs[:-1], remove_existing=True) assert len(raw.info['projs']) == n_proj - 1 # test apply_proj() with and without preload for preload in [True, False]: raw = read_raw_fif(fif_fname, preload=preload) data, times = raw[:, 0:2] raw.apply_proj() data_proj_1 = np.dot(raw._projector, data) # load the file again without proj raw = read_raw_fif(fif_fname, preload=preload) # write the file with proj. activated, make sure proj has been applied raw.save(tmpdir.join('raw.fif'), proj=True, overwrite=True) raw2 = read_raw_fif(tmpdir.join('raw.fif')) data_proj_2, _ = raw2[:, 0:2] assert_allclose(data_proj_1, data_proj_2) assert (all(p['active'] for p in raw2.info['projs'])) # read orig file with proj. active raw2 = read_raw_fif(fif_fname, preload=preload) raw2.apply_proj() data_proj_2, _ = raw2[:, 0:2] assert_allclose(data_proj_1, data_proj_2) assert (all(p['active'] for p in raw2.info['projs'])) # test that apply_proj works raw.apply_proj() data_proj_2, _ = raw[:, 0:2] assert_allclose(data_proj_1, data_proj_2) assert_allclose(data_proj_2, np.dot(raw._projector, data_proj_2)) # Test that picking removes projectors ... raw = read_raw_fif(fif_fname) n_projs = len(raw.info['projs']) raw.pick_types(meg=False, eeg=True) assert len(raw.info['projs']) == n_projs - 3 # ... but only if it doesn't apply to any channels in the dataset anymore. raw = read_raw_fif(fif_fname) n_projs = len(raw.info['projs']) raw.pick_types(meg='mag', eeg=True) assert len(raw.info['projs']) == n_projs # I/O roundtrip of an MEG projector with a Raw that only contains EEG # data. out_fname = tmpdir.join('test_raw.fif') raw = read_raw_fif(test_fif_fname, preload=True).crop(0, 0.002) proj = raw.info['projs'][-1] raw.pick_types(meg=False, eeg=True) raw.info['projs'] = [proj] # Restore, because picking removed it! raw._data.fill(0) raw._data[-1] = 1. raw.save(out_fname) raw = read_raw_fif(out_fname, preload=False) raw.apply_proj() assert_allclose(raw[:, :][0][:1], raw[0, :][0]) @testing.requires_testing_data @pytest.mark.parametrize('preload', [False, True, 'memmap.dat']) def test_preload_modify(preload, tmpdir): """Test preloading and modifying data.""" rng = np.random.RandomState(0) raw = read_raw_fif(fif_fname, preload=preload) nsamp = raw.last_samp - raw.first_samp + 1 picks = pick_types(raw.info, meg='grad', exclude='bads') data = rng.randn(len(picks), nsamp // 2) try: raw[picks, :nsamp // 2] = data except RuntimeError: if not preload: return else: raise tmp_fname = tmpdir.join('raw.fif') raw.save(tmp_fname, overwrite=True) raw_new = read_raw_fif(tmp_fname) data_new, _ = raw_new[picks, :nsamp // 2] assert_allclose(data, data_new) @pytest.mark.slowtest @testing.requires_testing_data def test_filter(): """Test filtering (FIR and IIR) and Raw.apply_function interface.""" raw = read_raw_fif(fif_fname).crop(0, 7) raw.load_data() sig_dec_notch = 12 sig_dec_notch_fit = 12 picks_meg = pick_types(raw.info, meg=True, exclude='bads') picks = picks_meg[:4] trans = 2.0 filter_params = dict(picks=picks, filter_length='auto', h_trans_bandwidth=trans, l_trans_bandwidth=trans, fir_design='firwin') raw_lp = raw.copy().filter(None, 8.0, **filter_params) raw_hp = raw.copy().filter(16.0, None, **filter_params) raw_bp = raw.copy().filter(8.0 + trans, 16.0 - trans, **filter_params) raw_bs = raw.copy().filter(16.0, 8.0, **filter_params) data, _ = raw[picks, :] lp_data, _ = raw_lp[picks, :] hp_data, _ = raw_hp[picks, :] bp_data, _ = raw_bp[picks, :] bs_data, _ = raw_bs[picks, :] tols = dict(atol=1e-20, rtol=1e-5) assert_allclose(bs_data, lp_data + hp_data, **tols) assert_allclose(data, lp_data + bp_data + hp_data, **tols) assert_allclose(data, bp_data + bs_data, **tols) filter_params_iir = dict(picks=picks, n_jobs=2, method='iir', iir_params=dict(output='ba')) raw_lp_iir = raw.copy().filter(None, 4.0, **filter_params_iir) raw_hp_iir = raw.copy().filter(8.0, None, **filter_params_iir) raw_bp_iir = raw.copy().filter(4.0, 8.0, **filter_params_iir) del filter_params_iir lp_data_iir, _ = raw_lp_iir[picks, :] hp_data_iir, _ = raw_hp_iir[picks, :] bp_data_iir, _ = raw_bp_iir[picks, :] summation = lp_data_iir + hp_data_iir + bp_data_iir assert_array_almost_equal(data[:, 100:-100], summation[:, 100:-100], 11) # make sure we didn't touch other channels data, _ = raw[picks_meg[4:], :] bp_data, _ = raw_bp[picks_meg[4:], :] assert_array_equal(data, bp_data) bp_data_iir, _ = raw_bp_iir[picks_meg[4:], :] assert_array_equal(data, bp_data_iir) # ... and that inplace changes are inplace raw_copy = raw.copy() assert np.may_share_memory(raw._data, raw._data) assert not np.may_share_memory(raw_copy._data, raw._data) # this could be assert_array_equal but we do this to mirror the call below assert (raw._data[0] == raw_copy._data[0]).all() raw_copy.filter(None, 20., n_jobs=2, **filter_params) assert not (raw._data[0] == raw_copy._data[0]).all() assert_array_equal(raw.copy().filter(None, 20., **filter_params)._data, raw_copy._data) # do a very simple check on line filtering raw_bs = raw.copy().filter(60.0 + trans, 60.0 - trans, **filter_params) data_bs, _ = raw_bs[picks, :] raw_notch = raw.copy().notch_filter( 60.0, picks=picks, n_jobs=2, method='fir', trans_bandwidth=2 * trans) data_notch, _ = raw_notch[picks, :] assert_array_almost_equal(data_bs, data_notch, sig_dec_notch) # now use the sinusoidal fitting assert raw.times[-1] < 10 # catch error with filter_length > n_times raw_notch = raw.copy().notch_filter( None, picks=picks, n_jobs=2, method='spectrum_fit', filter_length='10s') data_notch, _ = raw_notch[picks, :] data, _ = raw[picks, :] assert_array_almost_equal(data, data_notch, sig_dec_notch_fit) # filter should set the "lowpass" and "highpass" parameters raw = RawArray(np.random.randn(3, 1000), create_info(3, 1000., ['eeg'] * 2 + ['stim'])) raw.info['lowpass'] = raw.info['highpass'] = None for kind in ('none', 'lowpass', 'highpass', 'bandpass', 'bandstop'): print(kind) h_freq = l_freq = None if kind in ('lowpass', 'bandpass'): h_freq = 70 if kind in ('highpass', 'bandpass'): l_freq = 30 if kind == 'bandstop': l_freq, h_freq = 70, 30 assert (raw.info['lowpass'] is None) assert (raw.info['highpass'] is None) kwargs = dict(l_trans_bandwidth=20, h_trans_bandwidth=20, filter_length='auto', phase='zero', fir_design='firwin') raw_filt = raw.copy().filter(l_freq, h_freq, picks=np.arange(1), **kwargs) assert (raw.info['lowpass'] is None) assert (raw.info['highpass'] is None) raw_filt = raw.copy().filter(l_freq, h_freq, **kwargs) wanted_h = h_freq if kind != 'bandstop' else None wanted_l = l_freq if kind != 'bandstop' else None assert raw_filt.info['lowpass'] == wanted_h assert raw_filt.info['highpass'] == wanted_l # Using all data channels should still set the params (GH#3259) raw_filt = raw.copy().filter(l_freq, h_freq, picks=np.arange(2), **kwargs) assert raw_filt.info['lowpass'] == wanted_h assert raw_filt.info['highpass'] == wanted_l def test_filter_picks(): """Test filtering default channel picks.""" ch_types = ['mag', 'grad', 'eeg', 'seeg', 'dbs', 'misc', 'stim', 'ecog', 'hbo', 'hbr'] info = create_info(ch_names=ch_types, ch_types=ch_types, sfreq=256) raw = RawArray(data=np.zeros((len(ch_types), 1000)), info=info) # -- Deal with meg mag grad and fnirs exceptions ch_types = ('misc', 'stim', 'meg', 'eeg', 'seeg', 'dbs', 'ecog') # -- Filter data channels for ch_type in ('mag', 'grad', 'eeg', 'seeg', 'dbs', 'ecog', 'hbo', 'hbr'): picks = {ch: ch == ch_type for ch in ch_types} picks['meg'] = ch_type if ch_type in ('mag', 'grad') else False picks['fnirs'] = ch_type if ch_type in ('hbo', 'hbr') else False raw_ = raw.copy().pick_types(**picks) raw_.filter(10, 30, fir_design='firwin') # -- Error if no data channel for ch_type in ('misc', 'stim'): picks = {ch: ch == ch_type for ch in ch_types} raw_ = raw.copy().pick_types(**picks) pytest.raises(ValueError, raw_.filter, 10, 30) @testing.requires_testing_data def test_crop(): """Test cropping raw files.""" # split a concatenated file to test a difficult case raw = concatenate_raws([read_raw_fif(f) for f in [fif_fname, fif_fname]]) split_size = 10. # in seconds sfreq = raw.info['sfreq'] nsamp = (raw.last_samp - raw.first_samp + 1) # do an annoying case (off-by-one splitting) tmins = np.r_[1., np.round(np.arange(0., nsamp - 1, split_size * sfreq))] tmins = np.sort(tmins) tmaxs = np.concatenate((tmins[1:] - 1, [nsamp - 1])) tmaxs /= sfreq tmins /= sfreq raws = [None] * len(tmins) for ri, (tmin, tmax) in enumerate(zip(tmins, tmaxs)): raws[ri] = raw.copy().crop(tmin, tmax) if ri < len(tmins) - 1: assert_allclose( raws[ri].times, raw.copy().crop(tmin, tmins[ri + 1], include_tmax=False).times) assert raws[ri] all_raw_2 = concatenate_raws(raws, preload=False) assert raw.first_samp == all_raw_2.first_samp assert raw.last_samp == all_raw_2.last_samp assert_array_equal(raw[:, :][0], all_raw_2[:, :][0]) tmins = np.round(np.arange(0., nsamp - 1, split_size * sfreq)) tmaxs = np.concatenate((tmins[1:] - 1, [nsamp - 1])) tmaxs /= sfreq tmins /= sfreq # going in revere order so the last fname is the first file (need it later) raws = [None] * len(tmins) for ri, (tmin, tmax) in enumerate(zip(tmins, tmaxs)): raws[ri] = raw.copy().crop(tmin, tmax) # test concatenation of split file all_raw_1 = concatenate_raws(raws, preload=False) all_raw_2 = raw.copy().crop(0, None) for ar in [all_raw_1, all_raw_2]: assert raw.first_samp == ar.first_samp assert raw.last_samp == ar.last_samp assert_array_equal(raw[:, :][0], ar[:, :][0]) # test shape consistency of cropped raw data = np.zeros((1, 1002001)) info = create_info(1, 1000) raw = RawArray(data, info) for tmin in range(0, 1001, 100): raw1 = raw.copy().crop(tmin=tmin, tmax=tmin + 2) assert raw1[:][0].shape == (1, 2001) # degenerate with pytest.raises(ValueError, match='No samples.*when include_tmax=Fals'): raw.crop(0, 0, include_tmax=False) @testing.requires_testing_data def test_resample_equiv(): """Test resample (with I/O and multiple files).""" raw = read_raw_fif(fif_fname).crop(0, 1) raw_preload = raw.copy().load_data() for r in (raw, raw_preload): r.resample(r.info['sfreq'] / 4.) assert_allclose(raw._data, raw_preload._data) @testing.requires_testing_data @pytest.mark.parametrize('preload, n, npad', [ (True, 512, 'auto'), (False, 512, 0), ]) def test_resample(tmpdir, preload, n, npad): """Test resample (with I/O and multiple files).""" raw = read_raw_fif(fif_fname) raw.crop(0, raw.times[n - 1]) assert len(raw.times) == n if preload: raw.load_data() raw_resamp = raw.copy() sfreq = raw.info['sfreq'] # test parallel on upsample raw_resamp.resample(sfreq * 2, n_jobs=2, npad=npad) assert raw_resamp.n_times == len(raw_resamp.times) raw_resamp.save(tmpdir.join('raw_resamp-raw.fif')) raw_resamp = read_raw_fif(tmpdir.join('raw_resamp-raw.fif'), preload=True) assert sfreq == raw_resamp.info['sfreq'] / 2 assert raw.n_times == raw_resamp.n_times // 2 assert raw_resamp.get_data().shape[1] == raw_resamp.n_times assert raw.get_data().shape[0] == raw_resamp._data.shape[0] # test non-parallel on downsample raw_resamp.resample(sfreq, n_jobs=1, npad=npad) assert raw_resamp.info['sfreq'] == sfreq assert raw.get_data().shape == raw_resamp._data.shape assert raw.first_samp == raw_resamp.first_samp assert raw.last_samp == raw.last_samp # upsampling then downsampling doubles resampling error, but this still # works (hooray). Note that the stim channels had to be sub-sampled # without filtering to be accurately preserved # note we have to treat MEG and EEG+STIM channels differently (tols) assert_allclose(raw.get_data()[:306, 200:-200], raw_resamp._data[:306, 200:-200], rtol=1e-2, atol=1e-12) assert_allclose(raw.get_data()[306:, 200:-200], raw_resamp._data[306:, 200:-200], rtol=1e-2, atol=1e-7) # now check multiple file support w/resampling, as order of operations # (concat, resample) should not affect our data raw1 = raw.copy() raw2 = raw.copy() raw3 = raw.copy() raw4 = raw.copy() raw1 = concatenate_raws([raw1, raw2]) raw1.resample(10., npad=npad) raw3.resample(10., npad=npad) raw4.resample(10., npad=npad) raw3 = concatenate_raws([raw3, raw4]) assert_array_equal(raw1._data, raw3._data) assert_array_equal(raw1._first_samps, raw3._first_samps) assert_array_equal(raw1._last_samps, raw3._last_samps) assert_array_equal(raw1._raw_lengths, raw3._raw_lengths) assert raw1.first_samp == raw3.first_samp assert raw1.last_samp == raw3.last_samp assert raw1.info['sfreq'] == raw3.info['sfreq'] # smoke test crop after resample raw4.crop(tmin=raw4.times[1], tmax=raw4.times[-1]) # test resampling of stim channel # basic decimation stim = [1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0] raw = RawArray([stim], create_info(1, len(stim), ['stim'])) assert_allclose(raw.resample(8., npad=npad)._data, [[1, 1, 0, 0, 1, 1, 0, 0]]) # decimation of multiple stim channels raw = RawArray(2 * [stim], create_info(2, len(stim), 2 * ['stim'])) assert_allclose(raw.resample(8., npad=npad, verbose='error')._data, [[1, 1, 0, 0, 1, 1, 0, 0], [1, 1, 0, 0, 1, 1, 0, 0]]) # decimation that could potentially drop events if the decimation is # done naively stim = [0, 0, 0, 1, 1, 0, 0, 0] raw = RawArray([stim], create_info(1, len(stim), ['stim'])) assert_allclose(raw.resample(4., npad=npad)._data, [[0, 1, 1, 0]]) # two events are merged in this case (warning) stim = [0, 0, 1, 1, 1, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0] raw = RawArray([stim], create_info(1, len(stim), ['stim'])) with pytest.warns(RuntimeWarning, match='become unreliable'): raw.resample(8., npad=npad) # events are dropped in this case (warning) stim = [0, 1, 1, 0, 0, 1, 1, 0] raw = RawArray([stim], create_info(1, len(stim), ['stim'])) with pytest.warns(RuntimeWarning, match='become unreliable'): raw.resample(4., npad=npad) # test resampling events: this should no longer give a warning # we often have first_samp != 0, include it here too stim = [0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1] # an event at end # test is on half the sfreq, but should work with trickier ones too o_sfreq, sfreq_ratio = len(stim), 0.5 n_sfreq = o_sfreq * sfreq_ratio first_samp = len(stim) // 2 raw = RawArray([stim], create_info(1, o_sfreq, ['stim']), first_samp=first_samp) events = find_events(raw) raw, events = raw.resample(n_sfreq, events=events, npad=npad) # Try index into raw.times with resampled events: raw.times[events[:, 0] - raw.first_samp] n_fsamp = int(first_samp * sfreq_ratio) # how it's calc'd in base.py # NB np.round used for rounding event times, which has 0.5 as corner case: # https://docs.scipy.org/doc/numpy/reference/generated/numpy.around.html assert_array_equal( events, np.array([[np.round(1 * sfreq_ratio) + n_fsamp, 0, 1], [np.round(10 * sfreq_ratio) + n_fsamp, 0, 1], [np.minimum(np.round(15 * sfreq_ratio), raw._data.shape[1] - 1) + n_fsamp, 0, 1]])) # test copy flag stim = [1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0] raw = RawArray([stim], create_info(1, len(stim), ['stim'])) raw_resampled = raw.copy().resample(4., npad=npad) assert (raw_resampled is not raw) raw_resampled = raw.resample(4., npad=npad) assert (raw_resampled is raw) # resample should still work even when no stim channel is present raw = RawArray(np.random.randn(1, 100), create_info(1, 100, ['eeg'])) raw.info['lowpass'] = 50. raw.resample(10, npad=npad) assert raw.info['lowpass'] == 5. assert len(raw) == 10 def test_resample_stim(): """Test stim_picks argument.""" data = np.ones((2, 1000)) info = create_info(2, 1000., ('eeg', 'misc')) raw = RawArray(data, info) raw.resample(500., stim_picks='misc') @testing.requires_testing_data def test_hilbert(): """Test computation of analytic signal using hilbert.""" raw = read_raw_fif(fif_fname, preload=True) picks_meg = pick_types(raw.info, meg=True, exclude='bads') picks = picks_meg[:4] raw_filt = raw.copy() raw_filt.filter(10, 20, picks=picks, l_trans_bandwidth='auto', h_trans_bandwidth='auto', filter_length='auto', phase='zero', fir_window='blackman', fir_design='firwin') raw_filt_2 = raw_filt.copy() raw2 = raw.copy() raw3 = raw.copy() raw.apply_hilbert(picks, n_fft='auto') raw2.apply_hilbert(picks, n_fft='auto', envelope=True) # Test custom n_fft raw_filt.apply_hilbert(picks, n_fft='auto') n_fft = 2 ** int(np.ceil(np.log2(raw_filt_2.n_times + 1000))) raw_filt_2.apply_hilbert(picks, n_fft=n_fft) assert raw_filt._data.shape == raw_filt_2._data.shape assert_allclose(raw_filt._data[:, 50:-50], raw_filt_2._data[:, 50:-50], atol=1e-13, rtol=1e-2) with pytest.raises(ValueError, match='n_fft.*must be at least the number'): raw3.apply_hilbert(picks, n_fft=raw3.n_times - 100) env = np.abs(raw._data[picks, :]) assert_allclose(env, raw2._data[picks, :], rtol=1e-2, atol=1e-13) @testing.requires_testing_data def test_raw_copy(): """Test Raw copy.""" raw = read_raw_fif(fif_fname, preload=True) data, _ = raw[:, :] copied = raw.copy() copied_data, _ = copied[:, :] assert_array_equal(data, copied_data) assert sorted(raw.__dict__.keys()) == sorted(copied.__dict__.keys()) raw = read_raw_fif(fif_fname, preload=False) data, _ = raw[:, :] copied = raw.copy() copied_data, _ = copied[:, :] assert_array_equal(data, copied_data) assert sorted(raw.__dict__.keys()) == sorted(copied.__dict__.keys()) @requires_pandas def test_to_data_frame(): """Test raw Pandas exporter.""" from pandas import Timedelta raw = read_raw_fif(test_fif_fname, preload=True) _, times = raw[0, :10] df = raw.to_data_frame(index='time') assert ((df.columns == raw.ch_names).all()) assert_array_equal(np.round(times * 1e3), df.index.values[:10]) df = raw.to_data_frame(index=None) assert ('time' in df.columns) assert_array_equal(df.values[:, 1], raw._data[0] * 1e13) assert_array_equal(df.values[:, 3], raw._data[2] * 1e15) # test long format df_long = raw.to_data_frame(long_format=True) assert(len(df_long) == raw.get_data().size) expected = ('time', 'channel', 'ch_type', 'value') assert set(expected) == set(df_long.columns) # test bad time format with pytest.raises(ValueError, match='not a valid time format. Valid'): raw.to_data_frame(time_format='foo') # test time format error handling raw.set_meas_date(None) with pytest.warns(RuntimeWarning, match='Cannot convert to Datetime when'): df = raw.to_data_frame(time_format='datetime') assert isinstance(df['time'].iloc[0], Timedelta) @requires_pandas @pytest.mark.parametrize('time_format', (None, 'ms', 'timedelta', 'datetime')) def test_to_data_frame_time_format(time_format): """Test time conversion in epochs Pandas exporter.""" from pandas import Timedelta, Timestamp raw = read_raw_fif(test_fif_fname, preload=True) # test time_format df = raw.to_data_frame(time_format=time_format) dtypes = {None: np.float64, 'ms': np.int64, 'timedelta': Timedelta, 'datetime': Timestamp} assert isinstance(df['time'].iloc[0], dtypes[time_format]) def test_add_channels(): """Test raw splitting / re-appending channel types.""" rng = np.random.RandomState(0) raw = read_raw_fif(test_fif_fname).crop(0, 1).load_data() raw_nopre = read_raw_fif(test_fif_fname, preload=False) raw_eeg_meg = raw.copy().pick_types(meg=True, eeg=True) raw_eeg = raw.copy().pick_types(meg=False, eeg=True) raw_meg = raw.copy().pick_types(meg=True, eeg=False) raw_stim = raw.copy().pick_types(meg=False, eeg=False, stim=True) raw_new = raw_meg.copy().add_channels([raw_eeg, raw_stim]) assert ( all(ch in raw_new.ch_names for ch in list(raw_stim.ch_names) + list(raw_meg.ch_names)) ) raw_new = raw_meg.copy().add_channels([raw_eeg]) assert (ch in raw_new.ch_names for ch in raw.ch_names) assert_array_equal(raw_new[:, :][0], raw_eeg_meg[:, :][0]) assert_array_equal(raw_new[:, :][1], raw[:, :][1]) assert (all(ch not in raw_new.ch_names for ch in raw_stim.ch_names)) # Testing force updates raw_arr_info = create_info(['1', '2'], raw_meg.info['sfreq'], 'eeg') orig_head_t = raw_arr_info['dev_head_t'] raw_arr = rng.randn(2, raw_eeg.n_times) raw_arr = RawArray(raw_arr, raw_arr_info) # This should error because of conflicts in Info raw_arr.info['dev_head_t'] = orig_head_t with pytest.raises(ValueError, match='mutually inconsistent dev_head_t'): raw_meg.copy().add_channels([raw_arr]) raw_meg.copy().add_channels([raw_arr], force_update_info=True) # Make sure that values didn't get overwritten assert_object_equal(raw_arr.info['dev_head_t'], orig_head_t) # Make sure all variants work for simult in (False, True): # simultaneous adding or not raw_new = raw_meg.copy() if simult: raw_new.add_channels([raw_eeg, raw_stim]) else: raw_new.add_channels([raw_eeg]) raw_new.add_channels([raw_stim]) for other in (raw_meg, raw_stim, raw_eeg): assert_allclose( raw_new.copy().pick_channels(other.ch_names).get_data(), other.get_data()) # Now test errors raw_badsf = raw_eeg.copy() raw_badsf.info['sfreq'] = 3.1415927 raw_eeg.crop(.5) pytest.raises(RuntimeError, raw_meg.add_channels, [raw_nopre]) pytest.raises(RuntimeError, raw_meg.add_channels, [raw_badsf]) pytest.raises(AssertionError, raw_meg.add_channels, [raw_eeg]) pytest.raises(ValueError, raw_meg.add_channels, [raw_meg]) pytest.raises(TypeError, raw_meg.add_channels, raw_badsf) @testing.requires_testing_data def test_save(tmpdir): """Test saving raw.""" temp_fname = tmpdir.join('test_raw.fif') shutil.copyfile(fif_fname, temp_fname) raw = read_raw_fif(temp_fname, preload=False) # can't write over file being read with pytest.raises(ValueError, match='to the same file'): raw.save(temp_fname) raw.load_data() # can't overwrite file without overwrite=True with pytest.raises(IOError, match='file exists'): raw.save(fif_fname) # test abspath support and annotations orig_time = _dt_to_stamp(raw.info['meas_date'])[0] + raw._first_time annot = Annotations([10], [5], ['test'], orig_time=orig_time) raw.set_annotations(annot) annot = raw.annotations new_fname = tmpdir.join('break_raw.fif') raw.save(new_fname, overwrite=True) new_raw = read_raw_fif(new_fname, preload=False) pytest.raises(ValueError, new_raw.save, new_fname) assert_array_almost_equal(annot.onset, new_raw.annotations.onset) assert_array_equal(annot.duration, new_raw.annotations.duration) assert_array_equal(annot.description, new_raw.annotations.description) assert annot.orig_time == new_raw.annotations.orig_time # test set_meas_date(None) raw.set_meas_date(None) raw.save(new_fname, overwrite=True) new_raw = read_raw_fif(new_fname, preload=False) assert new_raw.info['meas_date'] is None @testing.requires_testing_data def test_annotation_crop(tmpdir): """Test annotation sync after cropping and concatenating.""" annot = Annotations([5., 11., 15.], [2., 1., 3.], ['test', 'test', 'test']) raw = read_raw_fif(fif_fname, preload=False) raw.set_annotations(annot) r1 = raw.copy().crop(2.5, 7.5) r2 = raw.copy().crop(12.5, 17.5) r3 = raw.copy().crop(10., 12.) raw = concatenate_raws([r1, r2, r3]) # segments reordered assert_and_remove_boundary_annot(raw, 2) onsets = raw.annotations.onset durations = raw.annotations.duration # 2*5s clips combined with annotations at 2.5s + 2s clip, annotation at 1s assert_array_almost_equal(onsets[:3], [47.95, 52.95, 56.46], decimal=2) assert_array_almost_equal([2., 2.5, 1.], durations[:3], decimal=2) # test annotation clipping orig_time = _dt_to_stamp(raw.info['meas_date']) orig_time = orig_time[0] + orig_time[1] * 1e-6 + raw._first_time - 1. annot = Annotations([0., raw.times[-1]], [2., 2.], 'test', orig_time) with pytest.warns(RuntimeWarning, match='Limited .* expanding outside'): raw.set_annotations(annot) assert_allclose(raw.annotations.duration, [1., 1. + 1. / raw.info['sfreq']], atol=1e-3) # make sure we can overwrite the file we loaded when preload=True new_fname = tmpdir.join('break_raw.fif') raw.save(new_fname) new_raw = read_raw_fif(new_fname, preload=True) new_raw.save(new_fname, overwrite=True) @testing.requires_testing_data def test_with_statement(): """Test with statement.""" for preload in [True, False]: with read_raw_fif(fif_fname, preload=preload) as raw_: print(raw_) def test_compensation_raw(tmpdir): """Test Raw compensation.""" raw_3 = read_raw_fif(ctf_comp_fname) assert raw_3.compensation_grade == 3 data_3, times = raw_3[:, :] # data come with grade 3 for ii in range(2): raw_3_new = raw_3.copy() if ii == 0: raw_3_new.load_data() raw_3_new.apply_gradient_compensation(3) assert raw_3_new.compensation_grade == 3 data_new, times_new = raw_3_new[:, :] assert_array_equal(times, times_new) assert_array_equal(data_3, data_new) # change to grade 0 raw_0 = raw_3.copy().apply_gradient_compensation(0) assert raw_0.compensation_grade == 0 data_0, times_new = raw_0[:, :] assert_array_equal(times, times_new) assert (np.mean(np.abs(data_0 - data_3)) > 1e-12) # change to grade 1 raw_1 = raw_0.copy().apply_gradient_compensation(1) assert raw_1.compensation_grade == 1 data_1, times_new = raw_1[:, :] assert_array_equal(times, times_new) assert (np.mean(np.abs(data_1 - data_3)) > 1e-12) pytest.raises(ValueError, raw_1.apply_gradient_compensation, 33) raw_bad = raw_0.copy() raw_bad.add_proj(compute_proj_raw(raw_0, duration=0.5, verbose='error')) raw_bad.apply_proj() pytest.raises(RuntimeError, raw_bad.apply_gradient_compensation, 1) # with preload tols = dict(rtol=1e-12, atol=1e-25) raw_1_new = raw_3.copy().load_data().apply_gradient_compensation(1) assert raw_1_new.compensation_grade == 1 data_1_new, times_new = raw_1_new[:, :] assert_array_equal(times, times_new) assert (np.mean(np.abs(data_1_new - data_3)) > 1e-12) assert_allclose(data_1, data_1_new, **tols) # change back raw_3_new = raw_1.copy().apply_gradient_compensation(3) data_3_new, times_new = raw_3_new[:, :] assert_allclose(data_3, data_3_new, **tols) raw_3_new = raw_1.copy().load_data().apply_gradient_compensation(3) data_3_new, times_new = raw_3_new[:, :] assert_allclose(data_3, data_3_new, **tols) for load in (False, True): for raw in (raw_0, raw_1): raw_3_new = raw.copy() if load: raw_3_new.load_data() raw_3_new.apply_gradient_compensation(3) assert raw_3_new.compensation_grade == 3 data_3_new, times_new = raw_3_new[:, :] assert_array_equal(times, times_new) assert (np.mean(np.abs(data_3_new - data_1)) > 1e-12) assert_allclose(data_3, data_3_new, **tols) # Try IO with compensation temp_file = tmpdir.join('raw.fif') raw_3.save(temp_file, overwrite=True) for preload in (True, False): raw_read = read_raw_fif(temp_file, preload=preload) assert raw_read.compensation_grade == 3 data_read, times_new = raw_read[:, :] assert_array_equal(times, times_new) assert_allclose(data_3, data_read, **tols) raw_read.apply_gradient_compensation(1) data_read, times_new = raw_read[:, :] assert_array_equal(times, times_new) assert_allclose(data_1, data_read, **tols) # Now save the file that has modified compensation # and make sure the compensation is the same as it was, # but that we can undo it # These channels have norm 1e-11/1e-12, so atol=1e-18 isn't awesome, # but it's due to the single precision of the info['comps'] leading # to inexact inversions with saving/loading (casting back to single) # in between (e.g., 1->3->1 will degrade like this) looser_tols = dict(rtol=1e-6, atol=1e-18) raw_1.save(temp_file, overwrite=True) for preload in (True, False): raw_read = read_raw_fif(temp_file, preload=preload, verbose=True) assert raw_read.compensation_grade == 1 data_read, times_new = raw_read[:, :] assert_array_equal(times, times_new) assert_allclose(data_1, data_read, **looser_tols) raw_read.apply_gradient_compensation(3, verbose=True) data_read, times_new = raw_read[:, :] assert_array_equal(times, times_new) assert_allclose(data_3, data_read, **looser_tols) @requires_mne def test_compensation_raw_mne(tmpdir): """Test Raw compensation by comparing with MNE-C.""" def compensate_mne(fname, grad): tmp_fname = tmpdir.join('mne_ctf_test_raw.fif') cmd = ['mne_process_raw', '--raw', fname, '--save', tmp_fname, '--grad', str(grad), '--projoff', '--filteroff'] run_subprocess(cmd) return read_raw_fif(tmp_fname, preload=True) for grad in [0, 2, 3]: raw_py = read_raw_fif(ctf_comp_fname, preload=True) raw_py.apply_gradient_compensation(grad) raw_c = compensate_mne(ctf_comp_fname, grad) assert_allclose(raw_py._data, raw_c._data, rtol=1e-6, atol=1e-17) assert raw_py.info['nchan'] == raw_c.info['nchan'] for ch_py, ch_c in zip(raw_py.info['chs'], raw_c.info['chs']): for key in ('ch_name', 'coil_type', 'scanno', 'logno', 'unit', 'coord_frame', 'kind'): assert ch_py[key] == ch_c[key] for key in ('loc', 'unit_mul', 'range', 'cal'): assert_allclose(ch_py[key], ch_c[key]) @testing.requires_testing_data def test_drop_channels_mixin(): """Test channels-dropping functionality.""" raw = read_raw_fif(fif_fname, preload=True) drop_ch = raw.ch_names[:3] ch_names = raw.ch_names[3:] ch_names_orig = raw.ch_names dummy = raw.copy().drop_channels(drop_ch) assert ch_names == dummy.ch_names assert ch_names_orig == raw.ch_names assert len(ch_names_orig) == raw._data.shape[0] raw.drop_channels(drop_ch) assert ch_names == raw.ch_names assert len(ch_names) == len(raw._cals) assert len(ch_names) == raw._data.shape[0] # Test that dropping all channels a projector applies to will lead to the # removal of said projector. raw = read_raw_fif(fif_fname) n_projs = len(raw.info['projs']) eeg_names = raw.info['projs'][-1]['data']['col_names'] with pytest.raises(RuntimeError, match='loaded'): raw.copy().apply_proj().drop_channels(eeg_names) raw.load_data().drop_channels(eeg_names) # EEG proj assert len(raw.info['projs']) == n_projs - 1 @testing.requires_testing_data @pytest.mark.parametrize('preload', (True, False)) def test_pick_channels_mixin(preload): """Test channel-picking functionality.""" raw = read_raw_fif(fif_fname, preload=preload) raw_orig = raw.copy() ch_names = raw.ch_names[:3] ch_names_orig = raw.ch_names dummy = raw.copy().pick_channels(ch_names) assert ch_names == dummy.ch_names assert ch_names_orig == raw.ch_names assert len(ch_names_orig) == raw.get_data().shape[0] raw.pick_channels(ch_names) # copy is False assert ch_names == raw.ch_names assert len(ch_names) == len(raw._cals) assert len(ch_names) == raw.get_data().shape[0] with pytest.raises(ValueError, match='must be'): raw.pick_channels(ch_names[0]) assert_allclose(raw[:][0], raw_orig[:3][0]) @testing.requires_testing_data def test_equalize_channels(): """Test equalization of channels.""" raw1 = read_raw_fif(fif_fname, preload=True) raw2 = raw1.copy() ch_names = raw1.ch_names[2:] raw1.drop_channels(raw1.ch_names[:1]) raw2.drop_channels(raw2.ch_names[1:2]) my_comparison = [raw1, raw2] my_comparison = equalize_channels(my_comparison) for e in my_comparison: assert ch_names == e.ch_names def test_memmap(tmpdir): """Test some interesting memmapping cases.""" # concatenate_raw memmaps = [tmpdir.join(str(ii)) for ii in range(3)] raw_0 = read_raw_fif(test_fif_fname, preload=memmaps[0]) assert raw_0._data.filename == memmaps[0] raw_1 = read_raw_fif(test_fif_fname, preload=memmaps[1]) assert raw_1._data.filename == memmaps[1] raw_0.append(raw_1, preload=memmaps[2]) assert raw_0._data.filename == memmaps[2] # add_channels orig_data = raw_0[:][0] new_ch_info = pick_info(raw_0.info, [0]) new_ch_info['chs'][0]['ch_name'] = 'foo' new_ch_info._update_redundant() new_data = np.linspace(0, 1, len(raw_0.times))[np.newaxis] ch = RawArray(new_data, new_ch_info) raw_0.add_channels([ch]) if sys.platform == 'darwin': assert not hasattr(raw_0._data, 'filename') else: assert raw_0._data.filename == memmaps[2] assert_allclose(orig_data, raw_0[:-1][0], atol=1e-7) assert_allclose(new_data, raw_0[-1][0], atol=1e-7) # now let's see if .copy() actually works; it does, but eventually # we should make it optionally memmap to a new filename rather than # create an in-memory version (filename=None) raw_0 = read_raw_fif(test_fif_fname, preload=memmaps[0]) assert raw_0._data.filename == memmaps[0] assert raw_0._data[:1, 3:5].all() raw_1 = raw_0.copy() assert isinstance(raw_1._data, np.memmap) assert raw_1._data.filename is None raw_0._data[:] = 0. assert not raw_0._data.any() assert raw_1._data[:1, 3:5].all() # other things like drop_channels and crop work but do not use memmapping, # eventually we might want to add support for some of these as users # require them. @pytest.mark.parametrize('split', (False, True)) @pytest.mark.parametrize('kind', ('file', 'bytes')) @pytest.mark.parametrize('preload', (True, str)) def test_file_like(kind, preload, split, tmpdir): """Test handling with file-like objects.""" if split: fname = tmpdir.join('test_raw.fif') read_raw_fif(test_fif_fname).save(fname, split_size='5MB') assert op.isfile(fname) assert op.isfile(str(fname)[:-4] + '-1.fif') else: fname = test_fif_fname if preload is str: preload = str(tmpdir.join('memmap')) with open(str(fname), 'rb') as file_fid: fid = BytesIO(file_fid.read()) if kind == 'bytes' else file_fid assert not fid.closed assert not file_fid.closed with pytest.raises(ValueError, match='preload must be used with file'): read_raw_fif(fid) assert not fid.closed assert not file_fid.closed # Use test_preloading=False but explicitly pass the preload type # so that we don't bother testing preload=False kwargs = dict(fname=fid, preload=preload, on_split_missing='ignore', test_preloading=False, test_kwargs=False) _test_raw_reader(read_raw_fif, **kwargs) assert not fid.closed assert not file_fid.closed assert file_fid.closed def test_str_like(): """Test handling with str-like objects.""" fname = pathlib.Path(test_fif_fname) raw_path = read_raw_fif(fname, preload=True) raw_str = read_raw_fif(test_fif_fname, preload=True) assert_allclose(raw_path._data, raw_str._data) @pytest.mark.parametrize('fname', [ test_fif_fname, testing._pytest_param(fif_fname), testing._pytest_param(ms_fname), ]) def test_bad_acq(fname): """Test handling of acquisition errors.""" # see gh-7844 raw = read_raw_fif(fname, allow_maxshield='yes').load_data() with open(fname, 'rb') as fid: for ent in raw._raw_extras[0]['ent']: fid.seek(ent.pos, 0) tag = _read_tag_header(fid) # hack these, others (kind, type) should be correct tag.pos, tag.next = ent.pos, ent.next assert tag == ent @testing.requires_testing_data @pytest.mark.skipif(sys.platform not in ('darwin', 'linux'), reason='Needs proper symlinking') def test_split_symlink(tmpdir): """Test split files with symlinks.""" # regression test for gh-9221 first = str(tmpdir.mkdir('first').join('test_raw.fif')) raw = read_raw_fif(fif_fname).pick('meg').load_data() raw.save(first, buffer_size_sec=1, split_size='10MB', verbose=True) second = first[:-4] + '-1.fif' assert op.isfile(second) assert not op.isfile(first[:-4] + '-2.fif') new_first = tmpdir.mkdir('a').join('test_raw.fif') new_second = tmpdir.mkdir('b').join('test_raw-1.fif') shutil.move(first, new_first) shutil.move(second, new_second) os.symlink(new_first, first) os.symlink(new_second, second) raw_new = read_raw_fif(first) assert_allclose(raw_new.get_data(), raw.get_data()) @testing.requires_testing_data def test_corrupted(tmpdir): """Test that a corrupted file can still be read.""" # Must be a file written by Neuromag, not us, since we don't write the dir # at the end, so use the skip one (straight from acq). raw = read_raw_fif(skip_fname) with open(skip_fname, 'rb') as fid: tag = read_tag_info(fid) tag = read_tag(fid) dirpos = int(tag.data) assert dirpos == 12641532 fid.seek(0) data = fid.read(dirpos) bad_fname = tmpdir.join('test_raw.fif') with open(bad_fname, 'wb') as fid: fid.write(data) with pytest.warns(RuntimeWarning, match='.*tag directory.*corrupt.*'): raw_bad = read_raw_fif(bad_fname) assert_allclose(raw.get_data(), raw_bad.get_data())
bsd-3-clause
taspinar/twitterscraper
examples/get_twitter_user_data.py
1
1970
from twitterscraper.query import query_user_info import pandas as pd from multiprocessing import Pool import time from IPython.display import display global twitter_user_info twitter_user_info=[] def get_user_info(twitter_user): """ An example of using the query_user_info method :param twitter_user: the twitter user to capture user data :return: twitter_user_data: returns a dictionary of twitter user data """ user_info = query_user_info(user= twitter_user) twitter_user_data = {} twitter_user_data["user"] = user_info.user twitter_user_data["fullname"] = user_info.full_name twitter_user_data["location"] = user_info.location twitter_user_data["blog"] = user_info.blog twitter_user_data["date_joined"] = user_info.date_joined twitter_user_data["id"] = user_info.id twitter_user_data["num_tweets"] = user_info.tweets twitter_user_data["following"] = user_info.following twitter_user_data["followers"] = user_info.followers twitter_user_data["likes"] = user_info.likes twitter_user_data["lists"] = user_info.lists return twitter_user_data def main(): start = time.time() users = ['Carlos_F_Enguix', 'mmtung', 'dremio', 'MongoDB', 'JenWike', 'timberners_lee','ataspinar2', 'realDonaldTrump', 'BarackObama', 'elonmusk', 'BillGates', 'BillClinton','katyperry','KimKardashian'] pool = Pool(8) for user in pool.map(get_user_info,users): twitter_user_info.append(user) cols=['id','fullname','date_joined','location','blog', 'num_tweets','following','followers','likes','lists'] data_frame = pd.DataFrame(twitter_user_info, index=users, columns=cols) data_frame.index.name = "Users" data_frame.sort_values(by="followers", ascending=False, inplace=True, kind='quicksort', na_position='last') elapsed = time.time() - start print(f"Elapsed time: {elapsed}") display(data_frame) if __name__ == '__main__': main()
mit
bendudson/BOUT
tools/tokamak_grids/pyGridGen/geqdsk.py
4
7335
#!/usr/bin/env python import re import numpy """ @brief G-Eqdsk reader class @version $Id$ Copyright &copy; 2006-2008, Tech-X Corporation, Boulder, CO See LICENSE file for conditions of use. The official document describing g-eqdsk files: http://fusion.gat.com/conferences/snowmass/working/mfe/physics/p3/equilibria/g_eqdsk_s.pdf """ class Geqdsk: def __init__(self): """ Constructor """ self.data = {} def openFile(self, filename): """ open geqdsk file and parse its content """ lines = open(filename, 'r').readlines() # first line m = re.search(r'^\s*(.*)\s+\d+\s+(\d+)\s+(\d+)\s*$', lines[0]) self.data['case'] = m.group(1), "Identification character string" self.data['nw'] = int(m.group(2)), "Number of horizontal R grid points" self.data['nh'] = int(m.group(3)), "Number of vertical Z grid points" fltsPat = r'^\s*([ \-]\d\.\d+[Ee][\+\-]\d\d)([ \-]\d\.\d+[Ee][\+\-]\d\d)([ \-]\d\.\d+[Ee][\+\-]\d\d)([ \-]\d\.\d+[Ee][\+\-]\d\d)([ \-]\d\.\d+[Ee][\+\-]\d\d)\s*$' # 2nd line m = re.search(fltsPat, lines[1]) self.data['rdim'] = float(m.group(1)), "Horizontal dimension in meter of computational box" self.data['zdim'] = float(m.group(2)), "Vertical dimension in meter of computational box" self.data['rcentr'] = float(m.group(3)), "R in meter of vacuum toroidal magnetic field BCENTR" self.data['rleft'] = float(m.group(4)), "Minimum R in meter of rectangular computational box" self.data['zmid'] = float(m.group(5)), "Z of center of computational box in meter" # 3rd line m = re.search(fltsPat, lines[2]) self.data['rmaxis'] = float(m.group(1)), "R of magnetic axis in meter" self.data['zmaxis'] = float(m.group(2)), "Z of magnetic axis in meter" self.data['simag'] = float(m.group(3)), "poloidal flux at magnetic axis in Weber /rad" self.data['sibry'] = float(m.group(4)), "poloidal flux at the plasma boundary in Weber /rad" self.data['bcentr'] = float(m.group(5)), "Vacuum toroidal magnetic field in Tesla at RCENTR" # 4th line m = re.search(fltsPat, lines[3]) self.data['current'] = float(m.group(1)), "Plasma current in Ampere" #self.data['simag'] = float(m.group(2)), "" #self.data['rmaxis'] = float(m.group(4)), "" # 5th line m = re.search(fltsPat, lines[4]) #self.data['zmaxis'] = float(m.group(1)), "" #self.data['sibry'] = float(m.group(3)), "" # read remaining data data = [] counter = 5 while 1: line = lines[counter] m = re.match(r'^\s*[ \-]\d\.\d+[Ee][\+\-]\d\d', line) if not m: break data += eval('[' + re.sub(r'(\d)([ \-]\d\.)', '\\1,\\2', line) + ']') counter += 1 nw = self.data['nw'][0] nh = self.data['nh'][0] self.data['fpol'] = numpy.array(data[0:nw]), "Poloidal current function in m-T, F = RBT on flux grid" self.data['pres'] = numpy.array(data[nw:2*nw]), "Plasma pressure in nt / m 2 on uniform flux grid" self.data['ffprime'] = numpy.array(data[2*nw:3*nw]), "FF'(psi) in (mT)^2/(Weber/rad) on uniform flux grid" self.data['pprime'] = numpy.array(data[3*nw:4*nw]), "P'(psi) in (nt/m2)/(Weber/rad) on uniform flux grid" self.data['psirz'] = numpy.reshape( data[4*nw:4*nw+nw*nh], (nh, nw) ), "Poloidal flux in Weber / rad on the rectangular grid points" self.data['qpsi'] = numpy.array(data[4*nw+nw*nh:5*nw+nw*nh]), "q values on uniform flux grid from axis to boundary" line = lines[counter] m = re.search(r'^\s*(\d+)\s+(\d+)', line) print line nbbbs = int(m.group(1)) limitr = int(m.group(2)) self.data['nbbbs'] = nbbbs, "Number of boundary points" self.data['limitr'] = limitr, "Number of limiter points" counter += 1 data = [] while 1: line = lines[counter] m = re.search(r'^\s*[ \-]\d\.\d+[Ee][\+\-]\d\d', line) counter += 1 if not m: break data += eval('[' + re.sub(r'(\d)([ \-]\d\.)', '\\1,\\2', line) + ']') self.data['rbbbs'] = numpy.zeros( (nbbbs,), numpy.float64 ), "R of boundary points in meter" self.data['zbbbs'] = numpy.zeros( (nbbbs,), numpy.float64 ), "Z of boundary points in meter" for i in range(nbbbs): self.data['rbbbs'][0][i] = data[2*i] self.data['zbbbs'][0][i] = data[2*i + 1] self.data['rlim'] = numpy.zeros( (limitr,), numpy.float64 ), "R of surrounding limiter contour in meter" self.data['zlim'] = numpy.zeros( (limitr,), numpy.float64 ), "Z of surrounding limiter contour in meter" for i in range(limitr): self.data['rbbbs'][0][i] = data[2*nbbbs + 2*i] self.data['zbbbs'][0][i] = data[2*nbbbs + 2*i + 1] def getAll(self): return self.data def getAllVars(self): return self.data.keys() def get(self, varname): return self.data[varname.lower()][0] def getDescriptor(self, varname): return self.data[varname.lower()][1] ################################ def main(): import sys from optparse import OptionParser parser = OptionParser() parser.add_option("-f", "--file", dest="filename", help="g-eqdsk file", default="") parser.add_option("-a", "--all", dest="all", help="display all variables", action="store_true",) parser.add_option("-v", "--vars", dest="vars", help="comma separated list of variables (use '-v \"*\"' for all)", default="*") parser.add_option("-p", "--plot", dest="plot", help="plot all variables", action="store_true",) parser.add_option("-i", "--inquire", dest="inquire", help="inquire list of variables", action="store_true",) options, args = parser.parse_args() if not options.filename: parser.error("MUST provide filename (type -h for list of options)") geq = Geqdsk() geq.openFile(options.filename) if options.inquire: print geq.getAllVars() if options.all: print geq.getAll() vs = geq.getAllVars() if options.vars != '*': vs = options.vars.split(',') for v in vs: print '%s: %s'% (v, str(geq.get(v))) if options.plot: from matplotlib import pylab if options.vars == '*': options.vars = geq.getAllVars() print options.vars else: vs = options.vars.split(',') options.vars = vs xmin = geq.get('simag') xmax = geq.get('sibry') nx = geq.get('nw') dx = (xmax - xmin)/float(nx - 1) x = numpy.arange(xmin, xmin + (xmax-xmin)*(1.+1.e-6), dx) for v in options.vars: if v[0] != 'r' and v[0] != 'z': data = geq.get(v) if len(numpy.shape(data)) == 1: pylab.figure() pylab.plot(x, data) pylab.xlabel('psi poloidal') pylab.ylabel(v) pylab.title(geq.getDescriptor(v)) # 2d plasma plot nw = geq.get('nw') nh = geq.get('nh') rmin = geq.get('rleft') rmax = rmin + geq.get('rdim') dr = (rmax - rmin)/float(nw - 1) zmin = geq.get('zmid') - geq.get('zdim')/2.0 zmax = geq.get('zmid') + geq.get('zdim')/2.0 dz = (zmax - zmin)/float(nh - 1) rs = numpy.arange(rmin, rmin + (rmax-rmin)*(1.+1.e-10), dr) zs = numpy.arange(zmin, zmin + (zmax-zmin)*(1.+1.e-10), dz) pylab.figure() pylab.pcolor(rs, zs, geq.get('psirz'), shading='interp') pylab.plot(geq.get('rbbbs'), geq.get('zbbbs'), 'w-') #pylab.plot(geq.get('rlim'), geq.get('zlim'), 'k--') pylab.axis('image') pylab.title('poloidal flux') pylab.xlabel('R') pylab.ylabel('Z') pylab.show() if __name__ == '__main__': main()
gpl-3.0
chapmanb/bcbio-nextgen
bcbio/qc/multiqc.py
1
26725
"""High level summaries of samples and programs with MultiQC. https://github.com/ewels/MultiQC """ import collections import glob import io import json import mimetypes import os import pandas as pd import shutil import numpy as np from collections import OrderedDict import pybedtools import six import toolz as tz import yaml from bcbio import utils from bcbio.cwl import cwlutils from bcbio.distributed.transaction import file_transaction, tx_tmpdir from bcbio.log import logger from bcbio.provenance import do, programs from bcbio.provenance import data as provenancedata from bcbio.pipeline import datadict as dd from bcbio.pipeline import config_utils from bcbio.bam import ref from bcbio.qc.qsignature import get_qsig_multiqc_files from bcbio.structural import annotate from bcbio.utils import walk_json from bcbio.variation import bedutils from bcbio.qc.variant import get_active_vcinfo from bcbio.upload import get_all_upload_paths_from_sample from bcbio.variation import coverage from bcbio.chipseq import atac def summary(*samples): """Summarize all quality metrics together""" samples = list(utils.flatten(samples)) work_dir = dd.get_work_dir(samples[0]) multiqc = config_utils.get_program("multiqc", samples[0]["config"]) if not multiqc: logger.debug("multiqc not found. Update bcbio_nextgen.py tools to fix this issue.") out_dir = utils.safe_makedir(os.path.join(work_dir, "qc", "multiqc")) out_data = os.path.join(out_dir, "multiqc_data") out_file = os.path.join(out_dir, "multiqc_report.html") file_list = os.path.join(out_dir, "list_files.txt") work_samples = cwlutils.unpack_tarballs([utils.deepish_copy(x) for x in samples], samples[0]) work_samples = _summarize_inputs(work_samples, out_dir) if not utils.file_exists(out_file): with tx_tmpdir(samples[0], work_dir) as tx_out: in_files = _get_input_files(work_samples, out_dir, tx_out) in_files += _merge_metrics(work_samples, out_dir) if _one_exists(in_files): with utils.chdir(out_dir): config_file = _create_config_file(out_dir, work_samples) input_list_file = _create_list_file(in_files, file_list) if dd.get_tmp_dir(samples[0]): export_tmp = "export TMPDIR=%s && " % dd.get_tmp_dir(samples[0]) else: export_tmp = "" locale_export = utils.locale_export() path_export = utils.local_path_export() other_opts = config_utils.get_resources("multiqc", samples[0]["config"]).get("options", []) other_opts = " ".join([str(x) for x in other_opts]) cmd = ("{path_export}{export_tmp}{locale_export} " "{multiqc} -c {config_file} -f -l {input_list_file} {other_opts} -o {tx_out}") do.run(cmd.format(**locals()), "Run multiqc") if utils.file_exists(os.path.join(tx_out, "multiqc_report.html")): shutil.move(os.path.join(tx_out, "multiqc_report.html"), out_file) shutil.move(os.path.join(tx_out, "multiqc_data"), out_data) samples = _group_by_sample_and_batch(samples) if utils.file_exists(out_file) and samples: data_files = set() for i, data in enumerate(samples): data_files.add(os.path.join(out_dir, "report", "metrics", dd.get_sample_name(data) + "_bcbio.txt")) data_files.add(os.path.join(out_dir, "report", "metrics", "target_info.yaml")) data_files.add(os.path.join(out_dir, "multiqc_config.yaml")) [data_files.add(f) for f in glob.glob(os.path.join(out_dir, "multiqc_data", "*"))] data_files = [f for f in data_files if f and utils.file_exists(f)] if "summary" not in samples[0]: samples[0]["summary"] = {} samples[0]["summary"]["multiqc"] = {"base": out_file, "secondary": data_files} data_json = os.path.join(out_dir, "multiqc_data", "multiqc_data.json") data_json_final = _save_uploaded_data_json(samples, data_json, os.path.join(out_dir, "multiqc_data")) if data_json_final: samples[0]["summary"]["multiqc"]["secondary"].append(data_json_final) # Prepare final file list and inputs for downstream usage file_list_final = _save_uploaded_file_list(samples, file_list, out_dir) if file_list_final: samples[0]["summary"]["multiqc"]["secondary"].append(file_list_final) if any([cwlutils.is_cwl_run(d) for d in samples]): for indir in ["inputs", "report"]: tarball = os.path.join(out_dir, "multiqc-%s.tar.gz" % (indir)) if not utils.file_exists(tarball): with utils.chdir(out_dir): cmd = ["tar", "-czvpf", tarball, indir] do.run(cmd, "Compress multiqc inputs: %s" % indir) samples[0]["summary"]["multiqc"]["secondary"].append(tarball) if any([cwlutils.is_cwl_run(d) for d in samples]): samples = _add_versions(samples) return [[data] for data in samples] def _add_versions(samples): """Add tool and data versions to the summary. """ samples[0]["versions"] = {"tools": programs.write_versions(samples[0]["dirs"], samples[0]["config"]), "data": provenancedata.write_versions(samples[0]["dirs"], samples)} return samples def _summarize_inputs(samples, out_dir): """Summarize inputs for MultiQC reporting in display. """ logger.info("summarize target information") if samples[0].get("analysis", "").lower() in ["variant", "variant2"]: metrics_dir = utils.safe_makedir(os.path.join(out_dir, "report", "metrics")) samples = _merge_target_information(samples, metrics_dir) logger.info("summarize fastqc") out_dir = utils.safe_makedir(os.path.join(out_dir, "report", "fastqc")) with utils.chdir(out_dir): _merge_fastqc(samples) preseq_samples = [s for s in samples if tz.get_in(["config", "algorithm", "preseq"], s)] if preseq_samples: logger.info("summarize preseq") out_dir = utils.safe_makedir(os.path.join(out_dir, "report", "preseq")) with utils.chdir(out_dir): _merge_preseq(preseq_samples) return samples def _save_uploaded_data_json(samples, data_json_work, out_dir): """ Fixes all absolute work-rooted paths to relative final-rooted paths """ if not utils.file_exists(data_json_work): return None upload_path_mapping = dict() for sample in samples: upload_path_mapping.update(get_all_upload_paths_from_sample(sample)) if not upload_path_mapping: return data_json_work with io.open(data_json_work, encoding="utf-8") as f: data = json.load(f, object_pairs_hook=OrderedDict) upload_base = samples[0]["upload"]["dir"] data = walk_json(data, lambda s: _work_path_to_rel_final_path(s, upload_path_mapping, upload_base)) data_json_final = os.path.join(out_dir, "multiqc_data_final.json") with io.open(data_json_final, "w", encoding="utf-8") as f: json.dump(data, f, indent=4) return data_json_final def _save_uploaded_file_list(samples, file_list_work, out_dir): """ Fixes all absolute work-rooted paths to relative final-rooted paths For CWL, prepare paths relative to output directory. """ if not utils.file_exists(file_list_work): return None if any([cwlutils.is_cwl_run(d) for d in samples]): upload_paths = [] with open(file_list_work) as f: for p in (l.strip() for l in f.readlines() if os.path.exists(l.strip())): if p.startswith(out_dir): upload_paths.append(p.replace(out_dir + "/", "")) else: upload_path_mapping = dict() for sample in samples: upload_path_mapping.update(get_all_upload_paths_from_sample(sample)) if not upload_path_mapping: return None with open(file_list_work) as f: paths = [l.strip() for l in f.readlines() if os.path.exists(l.strip())] upload_paths = [p for p in [ _work_path_to_rel_final_path(path, upload_path_mapping, samples[0]["upload"]["dir"]) for path in paths ] if p] if not upload_paths: return None file_list_final = os.path.join(out_dir, "list_files_final.txt") with open(file_list_final, "w") as f: for path in upload_paths: f.write(path + '\n') return file_list_final def _work_path_to_rel_final_path(path, upload_path_mapping, upload_base_dir): """ Check if `path` is a work-rooted path, and convert to a relative final-rooted path """ if not path or not isinstance(path, str): return path upload_path = None # First, check in the mapping: if it's there is a direct reference and # it's a file, we immediately return it (saves lots of iterations) if upload_path_mapping.get(path) is not None and os.path.isfile(path): upload_path = upload_path_mapping[path] else: # Not a file: check for elements in the mapping that contain # it paths_to_check = [key for key in upload_path_mapping if path.startswith(key)] if paths_to_check: for work_path in paths_to_check: if os.path.isdir(work_path): final_path = upload_path_mapping[work_path] upload_path = path.replace(work_path, final_path) break if upload_path is not None: return os.path.relpath(upload_path, upload_base_dir) else: return None def _one_exists(input_files): """ at least one file must exist for multiqc to run properly """ for f in input_files: if os.path.exists(f): return True return False def _get_input_files(samples, base_dir, tx_out_dir): """Retrieve input files, keyed by sample and QC method name. Stages files into the work directory to ensure correct names for MultiQC sample assessment when running with CWL. """ in_files = collections.defaultdict(list) for data in samples: sum_qc = tz.get_in(["summary", "qc"], data, {}) if sum_qc in [None, "None"]: sum_qc = {} elif isinstance(sum_qc, six.string_types): sum_qc = {dd.get_algorithm_qc(data)[0]: sum_qc} elif not isinstance(sum_qc, dict): raise ValueError("Unexpected summary qc: %s" % sum_qc) for program, pfiles in sum_qc.items(): if isinstance(pfiles, dict): pfiles = [pfiles["base"]] + pfiles.get("secondary", []) # CWL: presents output files as single file plus associated secondary files elif isinstance(pfiles, six.string_types): if os.path.exists(pfiles): pfiles = [os.path.join(basedir, f) for basedir, subdir, filenames in os.walk(os.path.dirname(pfiles)) for f in filenames] else: pfiles = [] in_files[(dd.get_sample_name(data), program)].extend(pfiles) staged_files = [] for (sample, program), files in in_files.items(): cur_dir = utils.safe_makedir(os.path.join(base_dir, "inputs", sample, program)) for f in files: if _check_multiqc_input(f) and _is_good_file_for_multiqc(f): if _in_temp_directory(f) or any([cwlutils.is_cwl_run(d) for d in samples]): staged_f = os.path.join(cur_dir, os.path.basename(f)) shutil.copy(f, staged_f) staged_files.append(staged_f) else: staged_files.append(f) staged_files.extend(get_qsig_multiqc_files(samples)) # Back compatible -- to migrate to explicit specifications in input YAML if not any([cwlutils.is_cwl_run(d) for d in samples]): staged_files += ["trimmed", "htseq-count/*summary"] # Add in created target_info file if os.path.isfile(os.path.join(base_dir, "report", "metrics", "target_info.yaml")): staged_files += [os.path.join(base_dir, "report", "metrics", "target_info.yaml")] return sorted(list(set(staged_files))) def _in_temp_directory(f): return any(x.startswith("tmp") for x in f.split("/")) def _get_batches(data): batches = dd.get_batch(data) or dd.get_sample_name(data) if not isinstance(batches, (list, tuple)): batches = [batches] return batches def _group_by_sample_and_batch(samples): """Group samples split by QC method back one per sample-batch. """ out = collections.defaultdict(list) for data in samples: out[(dd.get_sample_name(data), dd.get_align_bam(data), tuple(_get_batches(data)))].append(data) return [xs[0] for xs in out.values()] def _create_list_file(paths, out_file): with open(out_file, "w") as f: for path in paths: f.write(path + '\n') return out_file def _create_config_file(out_dir, samples): """Provide configuration file for multiqc report.""" out_file = os.path.join(out_dir, "multiqc_config.yaml") out = {"table_columns_visible": dict()} extra_fn_clean_trim = [] extra_fn_clean_trim.extend(["coverage.mosdepth.region.dist", "coverage.mosdepth.global.dist"]) out["extra_fn_clean_trim"] = extra_fn_clean_trim # Avoid duplicated bcbio columns with qualimap if any(("qualimap" in dd.get_tools_on(d) or "qualimap_full" in dd.get_tools_on(d)) for d in samples): # Hiding metrics duplicated by Qualimap out["table_columns_visible"]["bcbio"] = {"Average_insert_size": False} out["table_columns_visible"]["FastQC"] = {"percent_gc": False} # Setting up thresholds for Qualimap depth cutoff calculations, based on sample avg depths avg_depths = [tz.get_in(["summary", "metrics", "Avg_coverage"], s) for s in samples] avg_depths = [x for x in avg_depths if x] # Picking all thresholds up to the highest sample average depth thresholds = [t for t in coverage.DEPTH_THRESHOLDS if not avg_depths or t <= max(avg_depths)] # ...plus one more if len(thresholds) < len(coverage.DEPTH_THRESHOLDS): thresholds.append(coverage.DEPTH_THRESHOLDS[len(thresholds)]) # Showing only thresholds surrounding any of average depths thresholds_hidden = [] for i, t in enumerate(thresholds): if t > 20: # Not hiding anything below 20x if any(thresholds[i-1] <= c < thresholds[i] for c in avg_depths if c and i-1 >= 0) or \ any(thresholds[i] <= c < thresholds[i+1] for c in avg_depths if c and i+1 < len(thresholds)): pass else: thresholds_hidden.append(t) # Hide coverage unless running full qualimap, downsampled inputs are confusing if not any(("qualimap_full" in dd.get_tools_on(d)) for d in samples): thresholds_hidden = thresholds + thresholds_hidden thresholds_hidden.sort() thresholds = [] out['qualimap_config'] = { 'general_stats_coverage': [str(t) for t in thresholds], 'general_stats_coverage_hidden': [str(t) for t in thresholds_hidden]} # Avoid confusing peddy outputs, sticking to ancestry and sex prediction out["table_columns_visible"]["Peddy"] = {"family_id": False, "sex_het_ratio": False, "error_sex_check": False} # Setting the module order module_order = [] module_order.extend([ "bcbio", "samtools", "goleft_indexcov", "peddy" ]) out['bcftools'] = {'write_separate_table': True} # if germline calling was performed: if any("germline" in (get_active_vcinfo(s) or {}) or # tumor-only somatic with germline extraction dd.get_phenotype(s) == "germline" or # or paired somatic with germline calling for normal _has_bcftools_germline_stats(s) # CWL organized statistics for s in samples): # Split somatic and germline variant stats into separate multiqc submodules, # with somatic going into General Stats, and germline going into a separate table: module_order.extend([{ 'bcftools': { 'name': 'Bcftools (somatic)', 'info': 'Bcftools stats for somatic variant calls only.', 'path_filters': ['*_bcftools_stats.txt'], 'custom_config': {'write_general_stats': True}, }}, {'bcftools': { 'name': 'Bcftools (germline)', 'info': 'Bcftools stats for germline variant calls only.', 'path_filters': ['*_bcftools_stats_germline.txt'], 'custom_config': {'write_general_stats': False}, }}, ]) else: module_order.append("bcftools") module_order.extend([ "salmon", "star", "picard", "qualimap", "snpeff", "fastqc", "preseq", "bismark" ]) out["module_order"] = module_order preseq_samples = [s for s in samples if tz.get_in(["config", "algorithm", "preseq"], s)] if preseq_samples: out["preseq"] = _make_preseq_multiqc_config(preseq_samples) with open(out_file, "w") as out_handle: yaml.safe_dump(out, out_handle, default_flow_style=False, allow_unicode=False) return out_file def _has_bcftools_germline_stats(data): """Check for the presence of a germline stats file, CWL compatible. """ stats_file = tz.get_in(["summary", "qc"], data) if isinstance(stats_file, dict): stats_file = tz.get_in(["variants", "base"], stats_file) if not stats_file: stats_file = "" return stats_file.find("bcftools_stats_germline") > 0 def _check_multiqc_input(path): """Check if file exists, and return empty if it doesn't""" if utils.file_exists(path): return path # ## report and coverage def _is_good_file_for_multiqc(fpath): """Returns False if the file is binary or image.""" # Use mimetypes to exclude binary files where possible (ftype, encoding) = mimetypes.guess_type(fpath) if encoding is not None: return False if ftype is not None and ftype.startswith('image'): return False return True def _parse_disambiguate(disambiguatestatsfilename): """Parse disambiguation stats from given file. """ disambig_stats = [0, 0, 0] with open(disambiguatestatsfilename, "r") as in_handle: for i, line in enumerate(in_handle): fields = line.strip().split("\t") if i == 0: assert fields == ['sample', 'unique species A pairs', 'unique species B pairs', 'ambiguous pairs'] else: disambig_stats = [x + int(y) for x, y in zip(disambig_stats, fields[1:])] return disambig_stats def _add_disambiguate(sample): # check if disambiguation was run if "disambiguate" in sample: if utils.file_exists(sample["disambiguate"]["summary"]): disambigStats = _parse_disambiguate(sample["disambiguate"]["summary"]) sample["summary"]["metrics"]["Disambiguated %s reads" % str(sample["genome_build"])] = disambigStats[0] disambigGenome = (sample["config"]["algorithm"]["disambiguate"][0] if isinstance(sample["config"]["algorithm"]["disambiguate"], (list, tuple)) else sample["config"]["algorithm"]["disambiguate"]) sample["summary"]["metrics"]["Disambiguated %s reads" % disambigGenome] = disambigStats[1] sample["summary"]["metrics"]["Disambiguated ambiguous reads"] = disambigStats[2] return sample def _add_atac(sample): atac_metrics = atac.calculate_encode_complexity_metrics(sample) if not atac_metrics: return sample sample["summary"]["metrics"] = tz.merge(atac_metrics, sample["summary"]["metrics"]) return sample def _fix_duplicated_rate(dt): """Get RNA duplicated rate if exists and replace by samtools metric""" if "Duplication_Rate_of_Mapped" in dt: dt["Duplicates_pct"] = 100.0 * dt["Duplication_Rate_of_Mapped"] return dt def _merge_metrics(samples, out_dir): """Merge metrics from multiple QC steps """ logger.info("summarize metrics") out_dir = utils.safe_makedir(os.path.join(out_dir, "report", "metrics")) sample_metrics = collections.defaultdict(dict) for s in samples: s = _add_disambiguate(s) s = _add_atac(s) m = tz.get_in(['summary', 'metrics'], s) if isinstance(m, six.string_types): m = json.loads(m) if m: for me in list(m.keys()): if isinstance(m[me], list) or isinstance(m[me], dict) or isinstance(m[me], tuple): m.pop(me, None) sample_metrics[dd.get_sample_name(s)].update(m) out = [] for sample_name, m in sample_metrics.items(): sample_file = os.path.join(out_dir, "%s_bcbio.txt" % sample_name) with file_transaction(samples[0], sample_file) as tx_out_file: dt = pd.DataFrame(m, index=['1']) dt.columns = [k.replace(" ", "_").replace("(", "").replace(")", "") for k in dt.columns] dt['sample'] = sample_name if m.get('rRNA_rate'): dt['rRNA_rate'] = m.get('rRNA_rate') if m.get("RiP"): dt['RiP_pct'] = "%.3f" % (int(m.get("RiP")) / float(m.get("Total_reads", 1)) * 100) dt = _fix_duplicated_rate(dt) dt.transpose().to_csv(tx_out_file, sep="\t", header=False) out.append(sample_file) return out def _merge_fastqc(samples): """ merge all fastqc samples into one by module """ fastqc_list = collections.defaultdict(list) seen = set() for data in samples: name = dd.get_sample_name(data) if name in seen: continue seen.add(name) fns = glob.glob(os.path.join(dd.get_work_dir(data), "qc", dd.get_sample_name(data), "fastqc") + "/*") for fn in fns: if fn.endswith("tsv"): metric = os.path.basename(fn) fastqc_list[metric].append([name, fn]) for metric in fastqc_list: dt_by_sample = [] for fn in fastqc_list[metric]: dt = pd.read_csv(fn[1], sep="\t") dt['sample'] = fn[0] dt_by_sample.append(dt) dt = utils.rbind(dt_by_sample) dt.to_csv(metric, sep="\t", index=False, mode ='w') return samples def _merge_preseq(samples): metrics = [utils.get_in(s, ("summary", "metrics")) for s in samples] real_counts_file = os.path.abspath(os.path.join("preseq_real_counts.txt")) with file_transaction(samples[0], real_counts_file) as tx_out_file: with open(tx_out_file, "w") as f: for s, m in zip(samples, metrics): line = dd.get_sample_name(s) + "\t" + str(m["Preseq_read_count"]) if m.get("Preseq_unique_count") is not None: line += "\t" + str(m["Preseq_unique_count"]) line += "\n" f.write(line) samples[0]["summary"]["qc"]["preseq"]["secondary"] = [real_counts_file] def _make_preseq_multiqc_config(samples): metrics = [utils.get_in(s, ("summary", "metrics")) for s in samples] out = {"read_length": float(np.median([m["Preseq_read_length"] for m in metrics]))} genome_sizes = list(set(m["Preseq_genome_size"] for m in metrics)) if len(genome_sizes) == 1: out["genome_size"] = genome_sizes[0] return out def _merge_target_information(samples, metrics_dir): out_file = os.path.abspath(os.path.join(metrics_dir, "target_info.yaml")) if utils.file_exists(out_file): return samples genomes = set(dd.get_genome_build(data) for data in samples) coverage_beds = set(dd.get_coverage(data) for data in samples) original_variant_regions = set(dd.get_variant_regions_orig(data) for data in samples) data = samples[0] info = {} # Reporting in MultiQC only if the genome is the same across all samples if len(genomes) == 1: info["genome_info"] = { "name": dd.get_genome_build(data), "size": sum([c.size for c in ref.file_contigs(dd.get_ref_file(data), data["config"])]), } # Reporting in MultiQC only if the target is the same across all samples vcr_orig = None if len(original_variant_regions) == 1 and list(original_variant_regions)[0] is not None: vcr_orig = list(original_variant_regions)[0] vcr_clean = bedutils.clean_file(vcr_orig, data) info["variants_regions_info"] = { "bed": vcr_orig, "size": sum(len(x) for x in pybedtools.BedTool(dd.get_variant_regions_merged(data))), "regions": pybedtools.BedTool(vcr_clean).count(), } gene_num = annotate.count_genes(vcr_clean, data) if gene_num is not None: info["variants_regions_info"]["genes"] = gene_num else: info["variants_regions_info"] = { "bed": "callable regions", } # Reporting in MultiQC only if the target is the same across samples if len(coverage_beds) == 1: cov_bed = list(coverage_beds)[0] if cov_bed not in [None, "None"]: if vcr_orig and vcr_orig == cov_bed: info["coverage_bed_info"] = info["variants_regions_info"] else: clean_bed = bedutils.clean_file(cov_bed, data, prefix="cov-", simple=True) info["coverage_bed_info"] = { "bed": cov_bed, "size": pybedtools.BedTool(cov_bed).total_coverage(), "regions": pybedtools.BedTool(clean_bed).count(), } gene_num = annotate.count_genes(clean_bed, data) if gene_num is not None: info["coverage_bed_info"]["genes"] = gene_num else: info["coverage_bed_info"] = info["variants_regions_info"] coverage_intervals = set(data["config"]["algorithm"]["coverage_interval"] for data in samples) if len(coverage_intervals) == 1: info["coverage_interval"] = list(coverage_intervals)[0] if info: with open(out_file, "w") as out_handle: yaml.safe_dump(info, out_handle) return samples
mit
GoogleCloudPlatform/ai-platform-samples
training/pytorch/structured/custom_containers/base/trainer/inputs.py
1
5007
# Copyright 2019 Google LLC # # Licensed under the Apache License, Version 2.0 (the \"License\"); # you may not use this file except in compliance with the License.\n", # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an \"AS IS\" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import datetime from google.cloud import storage import pandas as pd import torch from torch.utils.data import Dataset from torch.utils.data import DataLoader from torch.utils.data import random_split from torch.utils.data.sampler import SubsetRandomSampler import metadata class CSVDataset(Dataset): def __init__(self, args, csv_files, transform=None): """ Args: args: arguments passed to the python script csv_files (list): Path to the list of csv files with annotations. transform (callable, optional): Optional transform to be applied on a sample. """ self.dataframe = None for csv_file in csv_files: if self.dataframe is None: self.dataframe = pd.read_csv(csv_file, header=0) else: self.dataframe = pd.concat( [self.dataframe, pd.read_csv(csv_file, header=0)]) self.transform = transform # Convert the categorical columns in place to a numerical category # Example: Payment_Type = # ['Credit Card' 'Cash' 'No Charge' 'Dispute' 'Unknown'] # Converted: Payment_Type = [0, 1, 2, 3, 4] if args.embed_categorical_columns: for category in metadata.CATEGORICAL_COLUMNS: self.dataframe[category].replace( {val: i for i, val in enumerate( self.dataframe[category].unique())}, inplace=True) def __len__(self): return len(self.dataframe) def __getitem__(self, idx): # When retrieving an item from the dataset, get the features and the # target. In this template, the target is 0th column and the features # are all the other columns. features = self.dataframe.iloc[idx, 1:].values target = self.dataframe.iloc[idx, :1].values # Load the data as a tensor item = {'features': torch.from_numpy(features), 'target': target} if self.transform: item = self.transform(item) return item def load_data(args): """Loads the data into three different data loaders. (Train, Test, Evaluation) Split the training dataset into a train / test dataset. Args: args: arguments passed to the python script """ train_dataset = CSVDataset(args, args.train_files) eval_dataset = CSVDataset(args, args.eval_files) # Determine the size of the dataset and the train/test sets dataset_size = len(train_dataset) test_size = int(args.test_split * dataset_size) train_size = dataset_size - test_size # Use random_split to get the split indices for the train/test set train_dataset, test_dataset = random_split(train_dataset, [train_size, test_size]) # Use the subset random sampler for the dataloader to know which # parts of the dataset belong to the train/test set # Note: use `tolist()` to convert the indices tensor to a list or # enumerating over the DataLoader will fail. train_sampler = SubsetRandomSampler(train_dataset.indices) test_sampler = SubsetRandomSampler(test_dataset.indices) # Create the data loaders with the train/test sets. train_loader = DataLoader( train_dataset.dataset, batch_size=args.batch_size, sampler=train_sampler) test_loader = DataLoader( test_dataset.dataset, batch_size=args.batch_size, sampler=test_sampler) # Create data loader with the eval set eval_loader = DataLoader( eval_dataset, batch_size=args.batch_size) return train_loader, test_loader, eval_loader def save_model(args): """Saves the model to Google Cloud Storage Args: args: contains name for saved model. """ scheme = 'gs://' bucket_name = args.job_dir[len(scheme):].split('/')[0] prefix = '{}{}/'.format(scheme, bucket_name) bucket_path = args.job_dir[len(prefix):].rstrip('/') datetime_ = datetime.datetime.now().strftime('model_%Y%m%d_%H%M%S') if bucket_path: model_path = '{}/{}/{}'.format(bucket_path, datetime_, args.model_name) else: model_path = '{}/{}'.format(datetime_, args.model_name) bucket = storage.Client().bucket(bucket_name) blob = bucket.blob(model_path) blob.upload_from_filename(args.model_name)
apache-2.0
dhruve/spark
python/pyspark/sql/context.py
11
23848
# # Licensed to the Apache Software Foundation (ASF) under one or more # contributor license agreements. See the NOTICE file distributed with # this work for additional information regarding copyright ownership. # The ASF licenses this file to You under the Apache License, Version 2.0 # (the "License"); you may not use this file except in compliance with # the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # from __future__ import print_function import sys import warnings if sys.version >= '3': basestring = unicode = str from pyspark import since from pyspark.rdd import ignore_unicode_prefix from pyspark.sql.session import _monkey_patch_RDD, SparkSession from pyspark.sql.dataframe import DataFrame from pyspark.sql.readwriter import DataFrameReader from pyspark.sql.streaming import DataStreamReader from pyspark.sql.types import IntegerType, Row, StringType from pyspark.sql.utils import install_exception_handler __all__ = ["SQLContext", "HiveContext", "UDFRegistration"] class SQLContext(object): """The entry point for working with structured data (rows and columns) in Spark, in Spark 1.x. As of Spark 2.0, this is replaced by :class:`SparkSession`. However, we are keeping the class here for backward compatibility. A SQLContext can be used create :class:`DataFrame`, register :class:`DataFrame` as tables, execute SQL over tables, cache tables, and read parquet files. :param sparkContext: The :class:`SparkContext` backing this SQLContext. :param sparkSession: The :class:`SparkSession` around which this SQLContext wraps. :param jsqlContext: An optional JVM Scala SQLContext. If set, we do not instantiate a new SQLContext in the JVM, instead we make all calls to this object. """ _instantiatedContext = None @ignore_unicode_prefix def __init__(self, sparkContext, sparkSession=None, jsqlContext=None): """Creates a new SQLContext. >>> from datetime import datetime >>> sqlContext = SQLContext(sc) >>> allTypes = sc.parallelize([Row(i=1, s="string", d=1.0, l=1, ... b=True, list=[1, 2, 3], dict={"s": 0}, row=Row(a=1), ... time=datetime(2014, 8, 1, 14, 1, 5))]) >>> df = allTypes.toDF() >>> df.createOrReplaceTempView("allTypes") >>> sqlContext.sql('select i+1, d+1, not b, list[1], dict["s"], time, row.a ' ... 'from allTypes where b and i > 0').collect() [Row((i + CAST(1 AS BIGINT))=2, (d + CAST(1 AS DOUBLE))=2.0, (NOT b)=False, list[1]=2, \ dict[s]=0, time=datetime.datetime(2014, 8, 1, 14, 1, 5), a=1)] >>> df.rdd.map(lambda x: (x.i, x.s, x.d, x.l, x.b, x.time, x.row.a, x.list)).collect() [(1, u'string', 1.0, 1, True, datetime.datetime(2014, 8, 1, 14, 1, 5), 1, [1, 2, 3])] """ self._sc = sparkContext self._jsc = self._sc._jsc self._jvm = self._sc._jvm if sparkSession is None: sparkSession = SparkSession.builder.getOrCreate() if jsqlContext is None: jsqlContext = sparkSession._jwrapped self.sparkSession = sparkSession self._jsqlContext = jsqlContext _monkey_patch_RDD(self.sparkSession) install_exception_handler() if SQLContext._instantiatedContext is None: SQLContext._instantiatedContext = self @property def _ssql_ctx(self): """Accessor for the JVM Spark SQL context. Subclasses can override this property to provide their own JVM Contexts. """ return self._jsqlContext @classmethod @since(1.6) def getOrCreate(cls, sc): """ Get the existing SQLContext or create a new one with given SparkContext. :param sc: SparkContext """ if cls._instantiatedContext is None: jsqlContext = sc._jvm.SQLContext.getOrCreate(sc._jsc.sc()) sparkSession = SparkSession(sc, jsqlContext.sparkSession()) cls(sc, sparkSession, jsqlContext) return cls._instantiatedContext @since(1.6) def newSession(self): """ Returns a new SQLContext as new session, that has separate SQLConf, registered temporary views and UDFs, but shared SparkContext and table cache. """ return self.__class__(self._sc, self.sparkSession.newSession()) @since(1.3) def setConf(self, key, value): """Sets the given Spark SQL configuration property. """ self.sparkSession.conf.set(key, value) @ignore_unicode_prefix @since(1.3) def getConf(self, key, defaultValue=None): """Returns the value of Spark SQL configuration property for the given key. If the key is not set and defaultValue is not None, return defaultValue. If the key is not set and defaultValue is None, return the system default value. >>> sqlContext.getConf("spark.sql.shuffle.partitions") u'200' >>> sqlContext.getConf("spark.sql.shuffle.partitions", u"10") u'10' >>> sqlContext.setConf("spark.sql.shuffle.partitions", u"50") >>> sqlContext.getConf("spark.sql.shuffle.partitions", u"10") u'50' """ return self.sparkSession.conf.get(key, defaultValue) @property @since("1.3.1") def udf(self): """Returns a :class:`UDFRegistration` for UDF registration. :return: :class:`UDFRegistration` """ return UDFRegistration(self) @since(1.4) def range(self, start, end=None, step=1, numPartitions=None): """ Create a :class:`DataFrame` with single :class:`pyspark.sql.types.LongType` column named ``id``, containing elements in a range from ``start`` to ``end`` (exclusive) with step value ``step``. :param start: the start value :param end: the end value (exclusive) :param step: the incremental step (default: 1) :param numPartitions: the number of partitions of the DataFrame :return: :class:`DataFrame` >>> sqlContext.range(1, 7, 2).collect() [Row(id=1), Row(id=3), Row(id=5)] If only one argument is specified, it will be used as the end value. >>> sqlContext.range(3).collect() [Row(id=0), Row(id=1), Row(id=2)] """ return self.sparkSession.range(start, end, step, numPartitions) @ignore_unicode_prefix @since(1.2) def registerFunction(self, name, f, returnType=StringType()): """Registers a python function (including lambda function) as a UDF so it can be used in SQL statements. In addition to a name and the function itself, the return type can be optionally specified. When the return type is not given it default to a string and conversion will automatically be done. For any other return type, the produced object must match the specified type. :param name: name of the UDF :param f: python function :param returnType: a :class:`pyspark.sql.types.DataType` object :return: a wrapped :class:`UserDefinedFunction` >>> strlen = sqlContext.registerFunction("stringLengthString", lambda x: len(x)) >>> sqlContext.sql("SELECT stringLengthString('test')").collect() [Row(stringLengthString(test)=u'4')] >>> sqlContext.sql("SELECT 'foo' AS text").select(strlen("text")).collect() [Row(stringLengthString(text)=u'3')] >>> from pyspark.sql.types import IntegerType >>> _ = sqlContext.registerFunction("stringLengthInt", lambda x: len(x), IntegerType()) >>> sqlContext.sql("SELECT stringLengthInt('test')").collect() [Row(stringLengthInt(test)=4)] >>> from pyspark.sql.types import IntegerType >>> _ = sqlContext.udf.register("stringLengthInt", lambda x: len(x), IntegerType()) >>> sqlContext.sql("SELECT stringLengthInt('test')").collect() [Row(stringLengthInt(test)=4)] """ return self.sparkSession.catalog.registerFunction(name, f, returnType) @ignore_unicode_prefix @since(2.1) def registerJavaFunction(self, name, javaClassName, returnType=None): """Register a java UDF so it can be used in SQL statements. In addition to a name and the function itself, the return type can be optionally specified. When the return type is not specified we would infer it via reflection. :param name: name of the UDF :param javaClassName: fully qualified name of java class :param returnType: a :class:`pyspark.sql.types.DataType` object >>> sqlContext.registerJavaFunction("javaStringLength", ... "test.org.apache.spark.sql.JavaStringLength", IntegerType()) >>> sqlContext.sql("SELECT javaStringLength('test')").collect() [Row(UDF(test)=4)] >>> sqlContext.registerJavaFunction("javaStringLength2", ... "test.org.apache.spark.sql.JavaStringLength") >>> sqlContext.sql("SELECT javaStringLength2('test')").collect() [Row(UDF(test)=4)] """ jdt = None if returnType is not None: jdt = self.sparkSession._jsparkSession.parseDataType(returnType.json()) self.sparkSession._jsparkSession.udf().registerJava(name, javaClassName, jdt) # TODO(andrew): delete this once we refactor things to take in SparkSession def _inferSchema(self, rdd, samplingRatio=None): """ Infer schema from an RDD of Row or tuple. :param rdd: an RDD of Row or tuple :param samplingRatio: sampling ratio, or no sampling (default) :return: :class:`pyspark.sql.types.StructType` """ return self.sparkSession._inferSchema(rdd, samplingRatio) @since(1.3) @ignore_unicode_prefix def createDataFrame(self, data, schema=None, samplingRatio=None, verifySchema=True): """ Creates a :class:`DataFrame` from an :class:`RDD`, a list or a :class:`pandas.DataFrame`. When ``schema`` is a list of column names, the type of each column will be inferred from ``data``. When ``schema`` is ``None``, it will try to infer the schema (column names and types) from ``data``, which should be an RDD of :class:`Row`, or :class:`namedtuple`, or :class:`dict`. When ``schema`` is :class:`pyspark.sql.types.DataType` or a datatype string it must match the real data, or an exception will be thrown at runtime. If the given schema is not :class:`pyspark.sql.types.StructType`, it will be wrapped into a :class:`pyspark.sql.types.StructType` as its only field, and the field name will be "value", each record will also be wrapped into a tuple, which can be converted to row later. If schema inference is needed, ``samplingRatio`` is used to determined the ratio of rows used for schema inference. The first row will be used if ``samplingRatio`` is ``None``. :param data: an RDD of any kind of SQL data representation(e.g. :class:`Row`, :class:`tuple`, ``int``, ``boolean``, etc.), or :class:`list`, or :class:`pandas.DataFrame`. :param schema: a :class:`pyspark.sql.types.DataType` or a datatype string or a list of column names, default is None. The data type string format equals to :class:`pyspark.sql.types.DataType.simpleString`, except that top level struct type can omit the ``struct<>`` and atomic types use ``typeName()`` as their format, e.g. use ``byte`` instead of ``tinyint`` for :class:`pyspark.sql.types.ByteType`. We can also use ``int`` as a short name for :class:`pyspark.sql.types.IntegerType`. :param samplingRatio: the sample ratio of rows used for inferring :param verifySchema: verify data types of every row against schema. :return: :class:`DataFrame` .. versionchanged:: 2.0 The ``schema`` parameter can be a :class:`pyspark.sql.types.DataType` or a datatype string after 2.0. If it's not a :class:`pyspark.sql.types.StructType`, it will be wrapped into a :class:`pyspark.sql.types.StructType` and each record will also be wrapped into a tuple. .. versionchanged:: 2.1 Added verifySchema. >>> l = [('Alice', 1)] >>> sqlContext.createDataFrame(l).collect() [Row(_1=u'Alice', _2=1)] >>> sqlContext.createDataFrame(l, ['name', 'age']).collect() [Row(name=u'Alice', age=1)] >>> d = [{'name': 'Alice', 'age': 1}] >>> sqlContext.createDataFrame(d).collect() [Row(age=1, name=u'Alice')] >>> rdd = sc.parallelize(l) >>> sqlContext.createDataFrame(rdd).collect() [Row(_1=u'Alice', _2=1)] >>> df = sqlContext.createDataFrame(rdd, ['name', 'age']) >>> df.collect() [Row(name=u'Alice', age=1)] >>> from pyspark.sql import Row >>> Person = Row('name', 'age') >>> person = rdd.map(lambda r: Person(*r)) >>> df2 = sqlContext.createDataFrame(person) >>> df2.collect() [Row(name=u'Alice', age=1)] >>> from pyspark.sql.types import * >>> schema = StructType([ ... StructField("name", StringType(), True), ... StructField("age", IntegerType(), True)]) >>> df3 = sqlContext.createDataFrame(rdd, schema) >>> df3.collect() [Row(name=u'Alice', age=1)] >>> sqlContext.createDataFrame(df.toPandas()).collect() # doctest: +SKIP [Row(name=u'Alice', age=1)] >>> sqlContext.createDataFrame(pandas.DataFrame([[1, 2]])).collect() # doctest: +SKIP [Row(0=1, 1=2)] >>> sqlContext.createDataFrame(rdd, "a: string, b: int").collect() [Row(a=u'Alice', b=1)] >>> rdd = rdd.map(lambda row: row[1]) >>> sqlContext.createDataFrame(rdd, "int").collect() [Row(value=1)] >>> sqlContext.createDataFrame(rdd, "boolean").collect() # doctest: +IGNORE_EXCEPTION_DETAIL Traceback (most recent call last): ... Py4JJavaError: ... """ return self.sparkSession.createDataFrame(data, schema, samplingRatio, verifySchema) @since(1.3) def registerDataFrameAsTable(self, df, tableName): """Registers the given :class:`DataFrame` as a temporary table in the catalog. Temporary tables exist only during the lifetime of this instance of :class:`SQLContext`. >>> sqlContext.registerDataFrameAsTable(df, "table1") """ df.createOrReplaceTempView(tableName) @since(1.6) def dropTempTable(self, tableName): """ Remove the temp table from catalog. >>> sqlContext.registerDataFrameAsTable(df, "table1") >>> sqlContext.dropTempTable("table1") """ self.sparkSession.catalog.dropTempView(tableName) @since(1.3) def createExternalTable(self, tableName, path=None, source=None, schema=None, **options): """Creates an external table based on the dataset in a data source. It returns the DataFrame associated with the external table. The data source is specified by the ``source`` and a set of ``options``. If ``source`` is not specified, the default data source configured by ``spark.sql.sources.default`` will be used. Optionally, a schema can be provided as the schema of the returned :class:`DataFrame` and created external table. :return: :class:`DataFrame` """ return self.sparkSession.catalog.createExternalTable( tableName, path, source, schema, **options) @ignore_unicode_prefix @since(1.0) def sql(self, sqlQuery): """Returns a :class:`DataFrame` representing the result of the given query. :return: :class:`DataFrame` >>> sqlContext.registerDataFrameAsTable(df, "table1") >>> df2 = sqlContext.sql("SELECT field1 AS f1, field2 as f2 from table1") >>> df2.collect() [Row(f1=1, f2=u'row1'), Row(f1=2, f2=u'row2'), Row(f1=3, f2=u'row3')] """ return self.sparkSession.sql(sqlQuery) @since(1.0) def table(self, tableName): """Returns the specified table or view as a :class:`DataFrame`. :return: :class:`DataFrame` >>> sqlContext.registerDataFrameAsTable(df, "table1") >>> df2 = sqlContext.table("table1") >>> sorted(df.collect()) == sorted(df2.collect()) True """ return self.sparkSession.table(tableName) @ignore_unicode_prefix @since(1.3) def tables(self, dbName=None): """Returns a :class:`DataFrame` containing names of tables in the given database. If ``dbName`` is not specified, the current database will be used. The returned DataFrame has two columns: ``tableName`` and ``isTemporary`` (a column with :class:`BooleanType` indicating if a table is a temporary one or not). :param dbName: string, name of the database to use. :return: :class:`DataFrame` >>> sqlContext.registerDataFrameAsTable(df, "table1") >>> df2 = sqlContext.tables() >>> df2.filter("tableName = 'table1'").first() Row(database=u'', tableName=u'table1', isTemporary=True) """ if dbName is None: return DataFrame(self._ssql_ctx.tables(), self) else: return DataFrame(self._ssql_ctx.tables(dbName), self) @since(1.3) def tableNames(self, dbName=None): """Returns a list of names of tables in the database ``dbName``. :param dbName: string, name of the database to use. Default to the current database. :return: list of table names, in string >>> sqlContext.registerDataFrameAsTable(df, "table1") >>> "table1" in sqlContext.tableNames() True >>> "table1" in sqlContext.tableNames("default") True """ if dbName is None: return [name for name in self._ssql_ctx.tableNames()] else: return [name for name in self._ssql_ctx.tableNames(dbName)] @since(1.0) def cacheTable(self, tableName): """Caches the specified table in-memory.""" self._ssql_ctx.cacheTable(tableName) @since(1.0) def uncacheTable(self, tableName): """Removes the specified table from the in-memory cache.""" self._ssql_ctx.uncacheTable(tableName) @since(1.3) def clearCache(self): """Removes all cached tables from the in-memory cache. """ self._ssql_ctx.clearCache() @property @since(1.4) def read(self): """ Returns a :class:`DataFrameReader` that can be used to read data in as a :class:`DataFrame`. :return: :class:`DataFrameReader` """ return DataFrameReader(self) @property @since(2.0) def readStream(self): """ Returns a :class:`DataStreamReader` that can be used to read data streams as a streaming :class:`DataFrame`. .. note:: Evolving. :return: :class:`DataStreamReader` >>> text_sdf = sqlContext.readStream.text(tempfile.mkdtemp()) >>> text_sdf.isStreaming True """ return DataStreamReader(self) @property @since(2.0) def streams(self): """Returns a :class:`StreamingQueryManager` that allows managing all the :class:`StreamingQuery` StreamingQueries active on `this` context. .. note:: Evolving. """ from pyspark.sql.streaming import StreamingQueryManager return StreamingQueryManager(self._ssql_ctx.streams()) class HiveContext(SQLContext): """A variant of Spark SQL that integrates with data stored in Hive. Configuration for Hive is read from ``hive-site.xml`` on the classpath. It supports running both SQL and HiveQL commands. :param sparkContext: The SparkContext to wrap. :param jhiveContext: An optional JVM Scala HiveContext. If set, we do not instantiate a new :class:`HiveContext` in the JVM, instead we make all calls to this object. .. note:: Deprecated in 2.0.0. Use SparkSession.builder.enableHiveSupport().getOrCreate(). """ def __init__(self, sparkContext, jhiveContext=None): warnings.warn( "HiveContext is deprecated in Spark 2.0.0. Please use " + "SparkSession.builder.enableHiveSupport().getOrCreate() instead.", DeprecationWarning) if jhiveContext is None: sparkSession = SparkSession.builder.enableHiveSupport().getOrCreate() else: sparkSession = SparkSession(sparkContext, jhiveContext.sparkSession()) SQLContext.__init__(self, sparkContext, sparkSession, jhiveContext) @classmethod def _createForTesting(cls, sparkContext): """(Internal use only) Create a new HiveContext for testing. All test code that touches HiveContext *must* go through this method. Otherwise, you may end up launching multiple derby instances and encounter with incredibly confusing error messages. """ jsc = sparkContext._jsc.sc() jtestHive = sparkContext._jvm.org.apache.spark.sql.hive.test.TestHiveContext(jsc, False) return cls(sparkContext, jtestHive) def refreshTable(self, tableName): """Invalidate and refresh all the cached the metadata of the given table. For performance reasons, Spark SQL or the external data source library it uses might cache certain metadata about a table, such as the location of blocks. When those change outside of Spark SQL, users should call this function to invalidate the cache. """ self._ssql_ctx.refreshTable(tableName) class UDFRegistration(object): """Wrapper for user-defined function registration.""" def __init__(self, sqlContext): self.sqlContext = sqlContext def register(self, name, f, returnType=StringType()): return self.sqlContext.registerFunction(name, f, returnType) register.__doc__ = SQLContext.registerFunction.__doc__ def _test(): import os import doctest import tempfile from pyspark.context import SparkContext from pyspark.sql import Row, SQLContext import pyspark.sql.context os.chdir(os.environ["SPARK_HOME"]) globs = pyspark.sql.context.__dict__.copy() sc = SparkContext('local[4]', 'PythonTest') globs['tempfile'] = tempfile globs['os'] = os globs['sc'] = sc globs['sqlContext'] = SQLContext(sc) globs['rdd'] = rdd = sc.parallelize( [Row(field1=1, field2="row1"), Row(field1=2, field2="row2"), Row(field1=3, field2="row3")] ) globs['df'] = rdd.toDF() jsonStrings = [ '{"field1": 1, "field2": "row1", "field3":{"field4":11}}', '{"field1" : 2, "field3":{"field4":22, "field5": [10, 11]},' '"field6":[{"field7": "row2"}]}', '{"field1" : null, "field2": "row3", ' '"field3":{"field4":33, "field5": []}}' ] globs['jsonStrings'] = jsonStrings globs['json'] = sc.parallelize(jsonStrings) (failure_count, test_count) = doctest.testmod( pyspark.sql.context, globs=globs, optionflags=doctest.ELLIPSIS | doctest.NORMALIZE_WHITESPACE) globs['sc'].stop() if failure_count: exit(-1) if __name__ == "__main__": _test()
apache-2.0
astocko/agpy
agpy/__init__.py
5
1642
""" ==== agpy ==== The functions included below are the 'mature' codes from the agpy package. .. moduleauthor:: Adam Ginsburg <[email protected]> """ ##from luminosity import luminosity #import readcol as readcol_mod from readcol import readcol ##from UCHIIfitter import HIIregion import gaussfitter from gaussfitter import moments,twodgaussian,gaussfit,onedgaussian,onedgaussfit #import kdist from kdist import kdist,vector_kdist #from plfit import plfit from reg_gal2cel import gal2cel from posang import posang #import densitymap #import downsample as downsample_mod from AG_image_tools import downsample,downsample_cube #from asinh_norm import AsinhNorm #import showspec # imports matplotlib = BAD from contributed import parallel_map from timer import print_timing from region_photometry import region_photometry from region_photometry_files import region_photometry_files from PCA_tools import efuncs,pca_subtract,unpca_subtract,smooth_waterfall import constants import blackbody import AG_fft_tools from AG_fft_tools import * import AG_image_tools from AG_image_tools import * import cutout import get_cutouts import pymc_plotting import imf import montage_wrapper as montage from __version__ import __version__ # import all of the functions but not the modules... __all__ = ['readcol', 'gaussfitter', 'kdist', 'reg_gal2cel', 'posang', 'densitymap', 'downsample', 'correlate2d', 'psds', 'convolve', 'radialprofile', 'constants','gal2cel', 'convolve', 'smooth', 'azimuthalAverage', 'azimuthalAverageBins', 'kdist', 'vector_kdist', 'moments', 'twodgaussian', 'gaussfit', 'onedgaussian', 'onedgaussfit']
mit
reedessick/populations
plot.py
1
23650
#!/usr/bin/python usage = """plots.py [--options] data.pkl""" description = """ulot/analyze the results from main.py """ author = "R. Essick" import os import pickle import numpy as np import analytics import matplotlib matplotlib.use("Agg") from matplotlib import pyplot as plt from optparse import OptionParser #================================================= figwidth = 15 figheight = 8 axpos = [0.15, 0.15, 0.7, 0.8] axpos1 = [0.15, 0.15, 0.35, 0.8] axpos2 = [0.50, 0.15, 0.35, 0.8] #================================================= parser=OptionParser(usage=usage, description=description) parser.add_option("-v", "--verbose", default=False, action="store_true") parser.add_option("-g", "--grid", default=False, action="store_true") parser.add_option("", "--individual-tau", default=False, action="store_true") parser.add_option("", "--max-tau", default=np.infty, type="float") parser.add_option("-t", "--tag", default="", type="string") parser.add_option("-o", "--output-dir", default="./", type="string") parser.add_option("", "--continuity-correction", default=False, action="store_true", help="apply a continuity correction in Gaussian approximation for scatter plots.") opts, args = parser.parse_args() #======================== if len(args) != 1: raise ValueError("please supply exactly 1 argument") datafilename = args[0] if opts.continuity_correction: opts.tag = "cc_%s"%opts.tag if opts.tag: opts.tag = "_%s"%opts.tag if not os.path.exists(opts.output_dir): os.makedirs(opts.output_dir) #================================================= if opts.verbose: print "====================================================" print " loading data from %s"%(datafilename) print "====================================================" file_obj = open(datafilename, "r") params = pickle.load(file_obj) data = pickle.load(file_obj) file_obj.close() Ndata = len(data) ### read off taus ### assumes that we have at least one trial taus = np.array( sorted([key for key in data[0].keys() if isinstance(key, (int,float)) and key <= opts.max_tau]) ) ### compute expected rates dur = params["dur"] rateS = params["rateS"] rateA = params["rateA"] rateB = params["rateB"] #rateC = {} #rateCp = {} #rateCm = {} #for tau in taus: # rateC[tau] = rateS + 2*tau*(rateA*rateB + rateS*(rateA+rateB)) # rateCp[tau] = 2*tau*(rateA+rateS)*(rateB+rateS) # rateCm[tau] = 2*tau*rateA*rateB*(1 - (1-np.exp(-2*tau*rateA)) - (1-np.exp(-2*tau*rateS)))*(1 - (1-np.exp(-2*tau*rateB)) - (1-np.exp(-2*tau*rateS))) ### number of slides Rs = dict( (tau, data[0][tau]["slideDur"]/dur) for tau in taus ) #================================================= ### plot stuff if opts.verbose: print "====================================================" print " generating plots" print "====================================================" #======================= # basic sanity plots #======================= if opts.verbose: print "\tbasic sanity plots" figS = plt.figure(figsize=(figwidth,figheight)) ax1S = figS.add_axes(axpos1) ax2S = figS.add_axes(axpos2) figA = plt.figure(figsize=(figwidth,figheight)) ax1A = figA.add_axes(axpos1) ax2A = figA.add_axes(axpos2) figB = plt.figure(figsize=(figwidth,figheight)) ax1B = figB.add_axes(axpos1) ax2B = figB.add_axes(axpos2) nbins = max(Ndata/10, 1) ### plot ax1S.hist([len(datum["S"]) for datum in data], nbins, histtype="step") ax2S.hist([(len(datum["S"]) - analytics.d(rateS, dur))/analytics.d(rateS, dur)**0.5 for datum in data], nbins, histtype="step") ax1A.hist([len(datum["A"]) for datum in data], nbins, histtype="step") ax2A.hist([(len(datum["A"]) - analytics.d(rateA, dur))/analytics.d(rateA, dur)**0.5 for datum in data], nbins, histtype="step") ax1B.hist([len(datum["B"]) for datum in data], nbins, histtype="step") ax2B.hist([(len(datum["B"]) - analytics.d(rateB, dur))/analytics.d(rateB, dur)**0.5 for datum in data], nbins, histtype="step") ### label ax1S.set_xlabel("No. S") ax2S.set_xlabel("$z_S$") ax1A.set_xlabel("No. A") ax2A.set_xlabel("$z_A$") ax1B.set_xlabel("No. B") ax2B.set_xlabel("$z_B$") ax1S.set_ylabel("count") ax2S.set_ylabel("count") ax2S.yaxis.tick_right() ax2S.yaxis.set_label_position("right") ax1A.set_ylabel("count") ax2A.set_ylabel("count") ax2A.yaxis.tick_right() ax2A.yaxis.set_label_position("right") ax1B.set_ylabel("count") ax2B.set_ylabel("count") ax2B.yaxis.tick_right() ax2B.yaxis.set_label_position("right") ### decorate ax1S.grid(opts.grid) ax2S.grid(opts.grid) ax1A.grid(opts.grid) ax2A.grid(opts.grid) ax1B.grid(opts.grid) ax2B.grid(opts.grid) ### save figname = "%s/S%s.png"%(opts.output_dir, opts.tag) if opts.verbose: print "\t\t", figname figS.savefig(figname) plt.close(figS) figname = "%s/A%s.png"%(opts.output_dir, opts.tag) if opts.verbose: print "\t\t", figname figA.savefig(figname) plt.close(figA) figname = "%s/B%s.png"%(opts.output_dir, opts.tag) if opts.verbose: print "\t\t", figname figB.savefig(figname) plt.close(figB) #======================== # counts as a function of tau #======================== if opts.verbose: print "\tcounts as a function of tau" figC = plt.figure() ### rate of zero-lag coincs axC = figC.add_axes(axpos) figCp = plt.figure() ### rate of slide-coincs with zero-lag axCp = figCp.add_axes(axpos) figCm = plt.figure() ### rate of slide-coincs wiout zero-lag axCm = figCm.add_axes(axpos) ### plot observed data for datum in data: axC.plot( taus, [datum[tau]["num_C"]/dur for tau in taus], '.-') axCp.plot( taus, [datum[tau]["num_Cp"]/datum[tau]["slideDur"] for tau in taus], '.-' ) axCm.plot( taus, [datum[tau]["num_Cm"]/datum[tau]["slideDur"] for tau in taus], '.-' ) ### plot expected values as dashed line fine_taus = np.linspace(taus[0], taus[-1], 1001) #axC.plot( fine_taus, rateS + 2*fine_taus*rateA*rateB, color='k', linestyle=":") #axC.plot( fine_taus, rateS + 2*fine_taus*(rateA*rateB + rateS*rateB + rateA*rateS), color='k', linestyle="--") axC.plot( fine_taus, analytics.Nc(rateA, rateB, rateS, fine_taus), color='k', linestyle="--") #axCp.plot( fine_taus, 2*fine_taus*(rateA+rateS)*(rateB+rateS), color='k', linestyle="--") axCp.plot( fine_taus, analytics.Np(rateA, rateB, rateS, fine_taus), color='k', linestyle="--") #rate_accident = 2*fine_taus*rateA*rateB #axCm.plot( fine_taus, 2*fine_taus*(rateA-rate_accident)*(rateB-rate_accident), color='k', linestyle="--") axCm.plot( fine_taus, analytics.Nm(rateA, rateB, rateS, fine_taus), color='k', linestyle="--") ### label axC.set_xlabel("$\\tau$") axC.set_ylabel("rate of zero-lag coincidences") axCp.set_xlabel("$\\tau$") axCp.set_ylabel("rate of coincs in slides with zero-lag coincs") axCm.set_xlabel("$\\tau$") axCm.set_ylabel("rate of coincs in slides without zero-lag coincs") ### decorate axC.grid(opts.grid) axCp.grid(opts.grid) axCm.grid(opts.grid) ### save figname = "%s/C-tau%s.png"%(opts.output_dir, opts.tag) if opts.verbose: print "\t\t", figname figC.savefig(figname) plt.close(figC) figname = "%s/Cp-tau%s.png"%(opts.output_dir, opts.tag) if opts.verbose: print "\t\t", figname figCp.savefig(figname) plt.close(figCp) figname = "%s/Cm-tau%s.png"%(opts.output_dir, opts.tag) if opts.verbose: print "\t\t", figname figCm.savefig(figname) plt.close(figCm) #======================== # averages #======================== if opts.verbose: print "\taverage counts as a function of tau" figC = plt.figure() ### rate of zero-lag coincs #axC = figC.add_axes(axpos1) #axCv = figC.add_axes(axpos2) axC = figC.add_axes(axpos) axCv = axC.twinx() figCp = plt.figure() ### rate of slide-coincs with zero-lag #axCp = figCp.add_axes(axpos1) #axCpv = figCp.add_axes(axpos2) axCp = figCp.add_axes(axpos) axCpv = axCp.twinx() figCm = plt.figure() ### rate of slide-coincs wiout zero-lag #axCm = figCm.add_axes(axpos1) #axCmv = figCm.add_axes(axpos2) axCm = figCm.add_axes(axpos) axCmv = axCm.twinx() ### plot observed data means = np.array( [np.mean([datum[tau]["num_C"]/dur for datum in data]) for tau in taus] ) #print np.polyfit(taus, means, 0)[-1] stdvs = np.array( [np.std([datum[tau]["num_C"]/dur for datum in data]) for tau in taus] ) #print np.polyfit(taus, stdvs/taus, 3) axC.plot( taus, means, ".-", color="b") axC.fill_between( taus, means-stdvs, means+stdvs, color="b", alpha=0.25) axCv.plot( taus, stdvs, ".-", color="r") means = np.array( [np.mean([datum[tau]["num_Cp"]/datum[tau]["slideDur"] for datum in data]) for tau in taus] ) #print np.polyfit(taus, means/taus, 0)[-1] stdvs = np.array( [np.std([datum[tau]["num_Cp"]/datum[tau]["slideDur"] for datum in data]) for tau in taus] ) #print np.polyfit(taus, stdvs/taus, 3) axCp.plot( taus, means, ".-", color="b") axCp.fill_between( taus, means-stdvs, means+stdvs, color="b", alpha=0.25) axCpv.plot( taus, stdvs, ".-", color="r") means = np.array( [np.mean([datum[tau]["num_Cm"]/datum[tau]["slideDur"] for datum in data]) for tau in taus] ) #print np.polyfit(taus, means/taus, 3)[-1] stdvs = np.array( [np.std([datum[tau]["num_Cm"]/datum[tau]["slideDur"] for datum in data]) for tau in taus] ) #print np.polyfit(taus, stdvs/taus, 3) axCm.plot( taus, means, ".-", color="b") axCm.fill_between( taus, means-stdvs, means+stdvs, color="b", alpha=0.25) axCmv.plot( taus, stdvs, ".-", color="r") ### plot expected values as dashed line fine_taus = np.linspace(taus[0], taus[-1], 1001) ylim = axC.get_ylim() axC.plot( fine_taus, analytics.Nc(rateA, rateB, rateS, fine_taus), color='k', linestyle="--") axC.plot( fine_taus, analytics.Nc(rateA, rateB, 0.0, fine_taus), color='grey', linestyle=':') axC.set_ylim(ylim) ylim = axCv.get_ylim() var = analytics.Vcc(rateA, rateB, rateS, fine_taus)/dur axCv.plot( fine_taus, var**0.5, color='k', linestyle='-.') axCv.set_ylim(ylim) ylim = axCp.get_ylim() axCp.plot( fine_taus, analytics.Np(rateA, rateB, rateS, fine_taus), color='k', linestyle="--") axCp.plot( fine_taus, analytics.Np(rateA, rateB, 0.0, fine_taus), color='grey', linestyle=':') axCp.set_ylim(ylim) ylim = axCpv.get_ylim() var = np.array( [analytics.Vpp(rateA, rateB, rateS, tau, T=1.0, R=data[0][tau]["slideDur"]/dur)/(dur*(data[0][tau]["slideDur"]/dur)**2) for tau in taus] ) axCpv.plot( taus, var**0.5, color='k', linestyle="-.") axCpv.set_ylim(ylim) ylim = axCm.get_ylim() axCm.plot( fine_taus, analytics.Nm(rateA, rateB, rateS, fine_taus), color='k', linestyle='--') axCm.plot( fine_taus, analytics.Nm(rateA, rateB, 0.0, fine_taus), color='grey', linestyle=':') axCm.set_ylim(ylim) ylim = axCm.get_ylim() var = np.array( [analytics.Vmm(rateA, rateB, rateS, tau, T=1.0, R=data[0][tau]["slideDur"]/dur)/(dur*(data[0][tau]["slideDur"]/dur)**2) for tau in taus] ) axCmv.plot( taus, var**0.5, color='k', linestyle="-.") axCm.set_ylim(ylim) ### label axC.set_xlabel("$\\tau$") axC.set_ylabel("$\lambda_C$", color='b') #axCv.set_xlabel("$\\tau$") axCv.set_ylabel("$\sigma_{\lambda_C}$", color='r') axCv.yaxis.tick_right() axCv.yaxis.set_label_position("right") axCp.set_xlabel("$\\tau$") axCp.set_ylabel("$\lambda_+$", color='b') #axCpv.set_xlabel("$\\tau$") axCpv.set_ylabel("$\sigma_{\lambda_+}$", color='r') axCpv.yaxis.tick_right() axCpv.yaxis.set_label_position("right") axCm.set_xlabel("$\\tau$") axCm.set_ylabel("$\lambda_-$", color='b') #axCmv.set_xlabel("$\\tau$") axCmv.set_ylabel("$\sigma_{\lambda_-}$", color='r') axCmv.yaxis.tick_right() axCmv.yaxis.set_label_position("right") ### decorate axC.grid(opts.grid) axCp.grid(opts.grid) axCm.grid(opts.grid) axCv.grid(opts.grid) axCpv.grid(opts.grid) axCmv.grid(opts.grid) #axC.set_yscale('log') #axC.set_xscale('log') #axCv.set_yscale('log') #axCv.set_xscale('log') #axCp.set_yscale('log') #axCp.set_xscale('log') #axCpv.set_yscale('log') #axCpv.set_xscale('log') #axCm.set_yscale('log') #axCm.set_ylim(ymin=2*1e-3*0.1*0.1, ymax=0.020) #axCm.set_xscale('log') #axCmv.set_yscale('log') #axCmv.set_xscale('log') ### save figname = "%s/aveC-tau%s.png"%(opts.output_dir, opts.tag) if opts.verbose: print "\t\t", figname figC.savefig(figname) plt.close(figC) figname = "%s/aveCp-tau%s.png"%(opts.output_dir, opts.tag) if opts.verbose: print "\t\t", figname figCp.savefig(figname) plt.close(figCp) figname = "%s/aveCm-tau%s.png"%(opts.output_dir, opts.tag) if opts.verbose: print "\t\t", figname figCm.savefig(figname) plt.close(figCm) #======================== # scatter plots #======================== if opts.verbose: print "\tscatter plots" extractors = [ ("d_A", lambda x, tau: len(x["A"])+len(x["S"])),\ ("d_B", lambda x, tau: len(x["B"])+len(x["S"])),\ ("N_c",lambda x, tau: x[tau]["num_C"]),\ ("N_+",lambda x, tau: x[tau]["num_Cp"]),\ ("N_-",lambda x, tau: x[tau]["num_Cm"])\ ] means = { \ "d_A": lambda rA, rB, rS, t, T, R: analytics.dA(rA, rS, T=T),\ "d_B": lambda rA, rB, rS, t, T, R: analytics.dB(rB, rS, T=T),\ "N_c":lambda rA, rB, rS, t, T, R: analytics.Nc(rA, rB, rS, t, T=T),\ "N_+":lambda rA, rB, rS, t, T, R: analytics.Np(rA, rB, rS, t, T=T, R=R),\ "N_-":lambda rA, rB, rS, t, T, R: analytics.Nm(rA, rB, rS, t, T=T, R=R)\ } variances = { \ "d_A": lambda rA, rB, rS, t, T, R: analytics.Vaa(rA, rS, T=T),\ "d_B": lambda rA, rB, rS, t, T, R: analytics.Vbb(rB, rS, T=T),\ "N_c":lambda rA, rB, rS, t, T, R: analytics.Vcc(rA, rB, rS, t, T=T),\ "N_+":lambda rA, rB, rS, t, T, R: analytics.Vpp(rA, rB, rS, t, T=T, R=R),\ "N_-":lambda rA, rB, rS, t, T, R: analytics.Vmm(rA, rB, rS, t, T=T, R=R)\ } covariances = { \ ("d_A","d_B") : lambda rA, rB, rS, t, T, R: analytics.Vab(rS, T=T),\ ("d_A","N_c") : lambda rA, rB, rS, t, T, R: analytics.Vac(rA, rB, rS, t, T=T),\ ("d_A","N_+") : lambda rA, rB, rS, t, T, R: analytics.Vap(rA, rB, rS, t, T=T, R=R),\ ("d_A","N_-") : lambda rA, rB, rS, t, T, R: analytics.Vam(rA, rB, rS, t, T=T, R=R),\ ("d_B","N_c") : lambda rA, rB, rS, t, T, R: analytics.Vbc(rA, rB, rS, t, T=T),\ ("d_B","N_+") : lambda rA, rB, rS, t, T, R: analytics.Vbp(rA, rB, rS, t, T=T, R=R),\ ("d_B","N_-") : lambda rA, rB, rS, t, T, R: analytics.Vbm(rA, rB, rS, t, T=T, R=R),\ ("N_c","N_+"): lambda rA, rB, rS, t, T, R: analytics.Vcp(rA, rB, rS, t, T=T, R=R),\ ("N_c","N_-"): lambda rA, rB, rS, t, T, R: analytics.Vcm(rA, rB, rS, t, T=T, R=R),\ ("N_+","N_-"): lambda rA, rB, rS, t, T, R: analytics.Vpm(rA, rB, rS, t, T=T, R=R) \ } for tau in taus: R = Rs[tau] ### number of slides fig = plt.figure(figsize=(10, 10)) for i, (l, e) in enumerate(extractors[:-1]): d = np.array([e(datum, tau) for datum in data]) # compute expected means and correlations m = means[l](rateA, rateB, rateS, tau, dur, R) v = variances[l](rateA, rateB, rateS, tau, dur, R) set_label = True for I, (L, E) in enumerate(extractors[i+1:]): D = np.array([E(datum, tau) for datum in data]) # compute expected means and correlations M = means[L](rateA, rateB, rateS, tau, dur, R) V = variances[L](rateA, rateB, rateS, tau, dur, R) c = covariances[(l,L)](rateA, rateB, rateS, tau, dur, R) p = c/(V*v)**0.5 ### correlation coefficient #=========================================================================== ### generate single figure with projected histograms #=========================================================================== fig1 = plt.figure() axa = fig1.add_axes([0.12, 0.1, 0.6, 0.6]) axD = fig1.add_axes([0.12, 0.7, 0.6, 0.25]) axd = fig1.add_axes([0.72, 0.1, 0.25, 0.6]) axa.plot(D, d, marker='o', markeredgecolor='none', markerfacecolor='k', markersize=2, linestyle='none', alpha=0.5) ### add contours npts = 1001 xlim = axa.get_xlim() xlim = np.max(np.abs(np.array(xlim)-M)) xlim = (M-xlim, 0.999*(M+xlim)) ylim = axa.get_ylim() ylim = np.max(np.abs(np.array(ylim)-m)) ylim = (m-ylim, 0.999*(m+ylim)) X, Y = np.meshgrid( np.linspace(xlim[0], xlim[1], npts), np.linspace(ylim[0], ylim[1], npts) ) if opts.continuity_correction: Z = (2*np.pi*(V*v-c**2))**-0.5 * np.exp( -0.5*( (X-M+0.5)**2/V + (Y-m+0.5)**2/v - 2*c*(X-M+0.5)*(Y-m+0.5)/(V*v) )/(1-p**2) ) else: Z = (2*np.pi*(V*v-c**2))**-0.5 * np.exp( -0.5*( (X-M)**2/V + (Y-m)**2/v - 2*c*(X-M)*(Y-m)/(V*v) )/(1-p**2) ) axa.contour(X, Y, Z) ### plot projected histograms nbins = min(max(len(D)/10, 5), xlim[1]-xlim[0]) N, _, _ = axD.hist( D, nbins, histtype="step", color='k', normed=True) x = np.linspace(xlim[0], xlim[1], npts) if opts.continuity_correction: z = (2*np.pi*V)**-0.5 * np.exp( -0.5*(x-M+0.5)**2/V ) else: z = (2*np.pi*V)**-0.5 * np.exp( -0.5*(x-M)**2/V ) axD.plot( x, z, color='b' ) nbins = min(max(len(d)/10, 5), ylim[1]-ylim[0]) n, _, _ = axd.hist( d, nbins, histtype="step", color='k', normed=True, orientation='horizontal') y = np.linspace(ylim[0], ylim[1], npts) if opts.continuity_correction: z = (2*np.pi*v)**-0.5 * np.exp( -0.5*(y-m+0.5)**2/v ) else: z = (2*np.pi*v)**-0.5 * np.exp( -0.5*(y-m)**2/v ) axd.plot( z, y, color='b' ) axa.set_xlabel("$%s$"%L) axa.set_ylabel("$%s$"%l) axD.set_ylabel("$p(%s)$"%L) plt.setp(axD.get_xticklabels(), visible=False) axd.set_xlabel("$p(%s)$"%l) plt.setp(axd.get_yticklabels(), visible=False) axa.set_xlim(xlim) axa.set_ylim(ylim) axD.set_xlim(xlim) axD.set_ylim(ymin=0, ymax=1.1*max(N)) axd.set_ylim(ylim) axd.set_xlim(xmin=0, xmax=1.1*max(n)) axa.grid(opts.grid) axD.grid(opts.grid) axd.grid(opts.grid) figname = "%s/scatter_%s-%s-tau=%.5f%s.png"%(opts.output_dir, l, L, tau, opts.tag) if opts.verbose: print "\t\t", figname fig1.savefig(figname) plt.close(fig1) #=========================================================================== ### add to "corner figure #=========================================================================== ax = plt.subplot(4, 4, 5*i+I+1) # ax.plot(D-M, d-m, marker='o', markeredgecolor='k', markerfacecolor='none', markersize=2, linestyle='none') ax.plot(D-M, d-m, marker='o', markeredgecolor='none', markerfacecolor='k', markersize=2, linestyle='none', alpha=0.5) ### set up contour sample points npts = 1001 xlim = np.max(np.abs(ax.get_xlim())) ylim = np.max(np.abs(ax.get_ylim())) X, Y = np.meshgrid( np.linspace(-xlim, xlim, npts), np.linspace(-ylim, ylim, npts) ) ### compute gaussian distribution if opts.continuity_correction: ### apply a continuity correction derived for binomial distributions to the Gaussian approximations. Z(X,Y) -> Z(X+0.5,Y+0.5) Z = (2*np.pi*(V*v-c**2))**-0.5 * np.exp( -0.5*( (X+0.5)**2/V + (Y+0.5)**2/v - 2*c*(X+0.5)*(Y+0.5)/(V*v) )/(1-p**2) ) else: Z = (2*np.pi*(V*v-c**2))**-0.5 * np.exp( -0.5*( X**2/V + Y**2/v - 2*c*X*Y/(V*v) )/(1-p**2) ) ### plot contours for gaussian distribution ax.contour(X, Y, Z) ### decorate if set_label: ax.set_xlabel("$%s - \left<%s\\right>$"%(L,L)) else: plt.setp(ax.xaxis.get_ticklabels(), visible=False) plt.setp(ax.yaxis.get_ticklabels(), visible=False) set_label = False ax.grid(opts.grid) ax.set_xlim(-xlim, xlim) ax.set_ylim(-ylim, ylim) ax.set_ylabel("$%s - \left<%s\\right>$"%(l,l)) ax.yaxis.set_label_position("right") ax.yaxis.tick_right() plt.subplots_adjust(left=0.1, right=0.9, bottom=0.1, top=0.9, wspace=0.05, hspace=0.05) figname = "%s/scatter-tau=%.5f%s.png"%(opts.output_dir, tau, opts.tag) if opts.verbose: print "\n\t\t", figname, "\n" fig.savefig(figname) plt.close(fig) #======================== # plots separately for each tau #======================== if opts.individual_tau: if opts.verbose: print "\tplots for each tau separately" ### iterating over tau for tauNo, tau in enumerate(taus): if opts.verbose: print "\t============================================" print "\t tau %d / %d -> %.3f"%(tauNo+1, len(taus), tau) print "\t============================================" ### pull out expected rates rC = rateC[tau] rCp = rateCp[tau] rCm = rateCm[tau] ### HISTOGRAMS if opts.verbose: print "\tHistograms" nbins = max(Ndata/10, 1) ### define axes figC = plt.figure(figsize=(figwidth,figheight)) ax1C = figC.add_axes(axpos1) ax2C = figC.add_axes(axpos2) figCp = plt.figure(figsize=(figwidth,figheight)) ax1Cp = figCp.add_axes(axpos1) ax2Cp = figCp.add_axes(axpos2) figCm = plt.figure(figsize=(figwidth,figheight)) ax1Cm = figCm.add_axes(axpos1) ax2Cm = figCm.add_axes(axpos2) ### histogram ax1C.hist([datum[tau]["num_C"] for datum in data], nbins, histtype="step") ax2C.hist([(datum[tau]["num_C"] - rC*dur)/(rC*dur)**0.5 for datum in data], nbins, histtype="step") ax1Cp.hist([datum[tau]["num_Cp"] for datum in data], nbins, histtype="step") ax2Cp.hist([(datum[tau]["num_Cp"] - rCp*datum[tau]["slideDur"])/(rCp*datum[tau]["slideDur"])**0.5 for datum in data], nbins, histtype="step") ax1Cm.hist([datum[tau]["num_Cm"] for datum in data], nbins, histtype="step") ax2Cm.hist([(datum[tau]["num_Cm"] - rCm*datum[tau]["slideDur"])/(rCm*datum[tau]["slideDur"])**0.5 for datum in data], nbins, histtype="step") ### label ax1C.set_xlabel("No. C") ax2C.set_xlabel("$z_C$") ax1Cp.set_xlabel("No. C$_+$") ax2Cp.set_xlabel("$z_{C_+}$") ax1Cm.set_xlabel("No. C$_-$") ax2Cm.set_xlabel("$z_{C_-}$") ax1C.set_ylabel("count") ax2C.set_ylabel("count") ax2C.yaxis.tick_right() ax2C.yaxis.set_label_position("right") ax1Cp.set_ylabel("count") ax2Cp.set_ylabel("count") ax2Cp.yaxis.tick_right() ax2Cp.yaxis.set_label_position("right") ax1Cm.set_ylabel("count") ax2Cm.set_ylabel("count") ax2Cm.yaxis.tick_right() ax2Cm.yaxis.set_label_position("right") ### decorate ax1C.grid(opts.grid) ax2C.grid(opts.grid) ax1Cp.grid(opts.grid) ax2Cp.grid(opts.grid) ax1Cm.grid(opts.grid) ax2Cm.grid(opts.grid) ### save figname = "%s/C-tau_%.5f%s.png"%(opts.output_dir, tau, opts.tag) if opts.verbose: print "\t\t", figname figC.savefig(figname) plt.close(figC) figname = "%s/Cp-tau_%.5f%s.png"%(opts.output_dir, tau, opts.tag) if opts.verbose: print "\t\t", figname figCp.savefig(figname) plt.close(figCp) figname = "%s/Cm-tau_%.5f%s.png"%(opts.output_dir, tau, opts.tag) if opts.verbose: print "\t\t", figname figCm.savefig(figname) plt.close(figCm) ### SCATTER PLOTS if opts.verbose: print "\tScatter Plots" keys = "num_C num_Cp num_Cm".split() ### against individual streams for key1 in "S A B".split(): val1 = [len(datum[key1]) for datum in data] for key2 in keys: val2 = [datum[tau][key2] for datum in data] fig = plt.figure() ax = fig.add_axes(axpos) ### plot ax.plot(val1, val2, marker="o", linestyle="none") ### label ax.set_xlabel(key1) ax.set_ylabel("%s tau=%.5f"%(key2, tau)) ### decorate ax.grid(opts.grid) ### save figname = "%s/%s-%s_tau-%.5f%s.png"%(opts.output_dir, key1, key2, tau, opts.tag) if opts.verbose: print "\t\t", figname fig.savefig(figname) plt.close(fig) ### pairs of coincs for ind1, key1 in enumerate(keys[:-1]): val1 = [datum[tau][key1] for datum in data] for key2 in keys[ind1+1:]: val2 = [datum[tau][key2] for datum in data] fig = plt.figure() ax = fig.add_axes(axpos) ### plot ax.plot(val1, val2, marker="o", markerfacecolor="none", linestyle="none") ### label ax.set_xlabel("%s tau=%.5f"%(key1, tau)) ax.set_ylabel("%s tau=%.5f"%(key2, tau)) ### decorate ax.grid(opts.grid) ### save figname = "%s/%s_tau-%.5f-%s_tau-%.5f%s.png"%(opts.output_dir, key1, tau, key2, tau, opts.tag) if opts.verbose: print "\t\t", figname fig.savefig(figname)
gpl-2.0
erramuzpe/C-PAC
CPAC/utils/create_fsl_model.py
3
62821
import os import sys import numpy as np import csv import yaml def create_pheno_dict(gpa_fsl_yml): def read_phenotypic(pheno_file, ev_selections, subject_id_label): import csv import numpy as np ph = pheno_file # Read in the phenotypic CSV file into a dictionary named pheno_dict # while preserving the header fields as they correspond to the data p_reader = csv.DictReader(open(os.path.abspath(ph), 'rU'), skipinitialspace=True) #pheno_dict_list = [] # dictionary to store the data in a format Patsy can use # i.e. a dictionary where each header is a key, and the value is a # list of all of that header's values pheno_data_dict = {} for line in p_reader: # here, each instance of 'line' is really a dictionary where the # keys are the pheno headers, and their values are the values of # each EV for that one subject - each iteration of this loop is # one subject for val in line.values(): # if there are any blank values in the pheno row, skip this # row. if not, continue on with the "else" clause if val == "": break else: for key in line.keys(): # if there are blank entries because of an empty row in # the CSV (such as ",,,,,"), move on to the next entry if len(line[key]) == 0: continue if key not in pheno_data_dict.keys(): pheno_data_dict[key] = [] # create a list within one of the dictionary values for that # EV if it is categorical; formats this list into a form # Patsy can understand regarding categoricals: # example: { ADHD: ['adhd1', 'adhd1', 'adhd0', 'adhd1'] } # instead of just [1, 1, 0, 1], etc. if 'categorical' in ev_selections.keys(): if key in ev_selections['categorical']: pheno_data_dict[key].append(key + str(line[key])) elif key == subject_id_label: pheno_data_dict[key].append(line[key]) else: pheno_data_dict[key].append(float(line[key])) elif key == subject_id_label: pheno_data_dict[key].append(line[key]) else: pheno_data_dict[key].append(float(line[key])) # this needs to run after each list in each key has been fully # populated above for key in pheno_data_dict.keys(): # demean the EVs marked for demeaning if 'demean' in ev_selections.keys(): if key in ev_selections['demean']: new_demeaned_evs = [] mean_evs = 0.0 # populate a dictionary, a key for each demeanable EV, with # the value being the sum of all the values (which need to be # converted to float first) for val in pheno_data_dict[key]: mean_evs += float(val) # calculate the mean of the current EV in this loop mean_evs = mean_evs / len(pheno_data_dict[key]) # remove the EV's mean from each value of this EV # (demean it!) for val in pheno_data_dict[key]: new_demeaned_evs.append(float(val) - mean_evs) # replace pheno_data_dict[key] = new_demeaned_evs # converts non-categorical EV lists into NumPy arrays # so that Patsy may read them in properly if 'categorical' in ev_selections.keys(): if key not in ev_selections['categorical']: pheno_data_dict[key] = np.array(pheno_data_dict[key]) return pheno_data_dict # pheno_data_dict gets loaded with the phenotypic data, in a dictionary # formatted for proper use with Patsy pheno_data_dict = read_phenotypic(gpa_fsl_yml.pheno_file, gpa_fsl_yml.ev_selections, gpa_fsl_yml.subject_id_label) return pheno_data_dict def check_multicollinearity(matrix): U, s, V = np.linalg.svd(matrix) max_singular = np.max(s) min_singular = np.min(s) print "Max singular: ", max_singular print "Min singular: ", min_singular print "Rank: ", np.linalg.matrix_rank(matrix), "\n" if min_singular == 0: return 1 else: condition_number = float(max_singular)/float(min_singular) print "Condition number: %f\n\n" % condition_number if condition_number > 30: return 1 return 0 def create_mat_file(data, col_names, model_name, current_output, output_dir): """ create the .mat file inputs: data = NumPy matrix of the design matrix col_names = a list of strings with the design matrix header labels model_name = a string containing the name of the group analysis model, this is entered by the user either in the GUI or the group analysis yaml config file output_dir = output directory for group analysis outputs, also set by the user output: writes the .mat file to disk for FLAMEO's use later """ dimx = None dimy = None if len(data.shape) == 1: dimy = 1 dimx = data.shape[0] else: dimx, dimy = data.shape ppstring = '/PPheights' for i in range(0, dimy): ppstring += '\t' + '%1.5e' %(1.0) ppstring += '\n' f = open(os.path.join(output_dir, "model_files", current_output, model_name + '.mat'), 'w') print >>f, '/NumWaves\t%d' %dimy print >>f, '/NumPoints\t%d' %dimx print >>f, ppstring # print labels for the columns - mainly for double-checking your model col_string = '\n' for col in col_names: col_string = col_string + col + '\t' print >>f, col_string, '\n' print >>f, '/Matrix' np.savetxt(f, data, fmt='%1.5e', delimiter='\t') f.close() def test_create_mat_file(): """ unit test for create_mat_file() """ """ TO-DO: - find a better way to handle picking the output directory - decide if all of the inputs should be hand-specified like below, or if they should be taken from the outputs of other unit tests? - can unit tests have multiple asserts? if so, run an assert for whether or not the output file successfully opens ("open_mat" below) """ import os import numpy as np # set test inputs sub1 = [1.001, 2.001, 3.001, 4.001] sub2 = [1.002, 2.002, 3.002, 4.002] sub3 = [1.003, 2.003, 3.003, 4.003] sub4 = [1.004, 2.004, 3.004, 4.004] data = [sub1,sub2,sub3,sub4] data = np.array(data, dtype=np.float16) col_names = ["EV_1","EV_2","EV_3","EV_4"] current_dir = os.getcwd() current_output = "Test_Output" model_name = "Test_Model" output_dir = os.path.join(current_dir, "test_model_output") if not os.path.isdir(output_dir): os.makedirs(output_dir) # set test output correct_output_lines = ['/NumWaves\t4\n', '/NumPoints\t4\n', \ '/PPheights\t1.00000e+00\t1.00000e+00\t1.00000e+00\t1.00000e+00\n', \ '\n', '\n', 'EV_1\tEV_2\tEV_3\tEV_4\n', '\n', '/Matrix\n', \ '1.00100e+00\t2.00100e+00\t3.00100e+00\t4.00100e+00\n', '1.00200e+00\t2.00200e+00\t3.00200e+00\t4.00200e+00\n', '1.00300e+00\t2.00300e+00\t3.00300e+00\t4.00300e+00\n', '1.00400e+00\t2.00400e+00\t3.00400e+00\t4.00400e+00\n'] # run the function create_mat_file(data, col_names, model_name, current_output, output_dir) # open the file open_mat = open(os.path.join(output_dir, "model_files", current_output, model_name + ".mat"),"rb") output_mat = open_mat.readlines() err_count = 0 for line, correct_line in zip(output_mat, correct_output_lines): if line != correct_line: err_count += 1 assert err_count == 0 def create_grp_file(data, model_name, gp_var, current_output, output_dir): """ create the grp file """ dimx = None dimy = None if len(data.shape) == 1: dimy = 1 dimx = data.shape[0] else: dimx, dimy = data.shape data = np.ones(dimx) if not (gp_var == None): i = 1 for key in sorted(gp_var.keys()): for index in gp_var[key]: data[index] = i i += 1 f = open(os.path.join(output_dir, "model_files", current_output, model_name + '.grp'), 'w') print >>f, '/NumWaves\t1' print >>f, '/NumPoints\t%d\n' %dimx print >>f, '/Matrix' np.savetxt(f, data, fmt='%d', delimiter='\t') f.close() def test_create_grp_file(): """ unit test for create_grp_file() """ """ TO-DO: - find a better way to handle picking the output directory - decide if all of the inputs should be hand-specified like below, or if they should be taken from the outputs of other unit tests? - can unit tests have multiple asserts? if so, run an assert for whether or not the output file successfully opens ("open_grp" below) """ import os import numpy as np # set test inputs sub1 = [1.001, 2.001, 3.001, 4.001] sub2 = [1.002, 2.002, 3.002, 4.002] sub3 = [1.003, 2.003, 3.003, 4.003] sub4 = [1.004, 2.004, 3.004, 4.004] data = [sub1,sub2,sub3,sub4] data = np.array(data, dtype=np.float16) current_dir = os.getcwd() model_name = "Test_Model" current_output = "Test_Output" output_dir = os.path.join(current_dir, "test_model_output") if not os.path.isdir(output_dir): os.makedirs(output_dir) # set test output correct_output_lines = ['/NumWaves\t1\n', '/NumPoints\t4\n', '\n', \ '/Matrix\n', '1\n', '1\n', '1\n', '1'] # run the function create_grp_file(data, model_name, gp_var, current_output, output_dir) # open the file and check it open_grp = open(os.path.join(output_dir, "model_files", current_output, model_name + ".grp"),"rb") output_grp = open_grp.readlines() err_count = 0 for line, correct_line in zip(output_grp, correct_output_lines): if line != correct_line: err_count += 1 assert err_count == 0 # OLDER CODE to facilitate creation of .con and .fts file via user-provided # contrasts matrix def create_con_ftst_file(con_file, model_name, current_output, outputModelFilesDirectory, column_names, coding_scheme, group_sep): """ Create the contrasts and fts file """ evs = open(con_file, 'r').readline() evs = evs.rstrip('\r\n').split(',') count_ftests = 0 # remove "Contrasts" label and replace it with "Intercept" evs[0] = "Intercept" fTest = False for ev in evs: if "f_test" in ev: count_ftests += 1 if count_ftests > 0: fTest = True try: data = np.genfromtxt(con_file, names=True, delimiter=',', dtype=None) except: print "Error: Could not successfully read in contrast file: ", con_file raise Exception lst = data.tolist() ftst = [] fts_columns = [] contrasts = [] contrast_names = [] length = None length = len(list(lst[0])) # lst = list of tuples, "tp" # tp = tuple in the format (contrast_name, 0, 0, 0, 0, ...) # with the zeroes being the vector of contrasts for that contrast for tp in lst: contrast_names.append(tp[0]) # create a list of integers that is the vector for the contrast # ex. [0, 1, 1, 0, ..] con_vector = list(tp)[1:(length-count_ftests)] fts_vector = list(tp)[(length-count_ftests):length] fts_columns.append(fts_vector) # add Intercept column if group_sep == False: if coding_scheme == "Treatment": con_vector.insert(0, 0) elif coding_scheme == "Sum": con_vector.insert(0, 1) contrasts.append(con_vector) # contrast_names = list of the names of the contrasts (not regressors) # contrasts = list of lists with the contrast vectors num_EVs_in_con_file = len(contrasts[0]) contrasts = np.array(contrasts, dtype=np.float16) fts_columns = np.array(fts_columns) # if there are f-tests, create the array for them if fTest: if len(contrast_names) < 2: errmsg = "\n\n[!] CPAC says: Not enough contrasts for running " \ "f-tests.\nTip: Do you have only one contrast in your " \ "contrasts file? f-tests require more than one contrast.\n" \ "Either remove the f-tests or include more contrasts.\n\n" raise Exception(errmsg) ''' # process each f-test for ftest_string in ftest_list: ftest_vector = [] cons_in_ftest = ftest_string.split(",") for con in contrast_names: if con in cons_in_ftest: ftest_vector.append(1) else: ftest_vector.append(0) ftst.append(ftest_vector) fts_n = np.array(ftst) ''' fts_n = fts_columns.T if len(column_names) != (num_EVs_in_con_file): err_string = "\n\n[!] CPAC says: The number of EVs in your model " \ "design matrix (found in the %s.mat file) does not " \ "match the number of EVs (columns) in your custom " \ "contrasts matrix CSV file.\n\nCustom contrasts matrix " \ "file: %s\n\nNumber of EVs in design matrix: %d\n" \ "Number of EVs in contrasts file: %d\n\nThe column " \ "labels in the design matrix should match those in " \ "your contrasts .CSV file.\nColumn labels in design " \ "matrix:\n%s" % (model_name, con_file, \ len(column_names), num_EVs_in_con_file, str(column_names)) raise Exception(err_string) for design_mat_col, con_csv_col in zip(column_names, evs): if design_mat_col != con_csv_col: errmsg = "\n\n[!] CPAC says: The names of the EVs in your " \ "custom contrasts .csv file do not match the names or " \ "order of the EVs in the design matrix. Please make " \ "sure these are consistent.\nDesign matrix EV columns: " \ "%s\nYour contrasts matrix columns: %s\n\n" \ % (column_names, evs) raise Exception(errmsg) try: f = open(os.path.join(outputModelFilesDirectory, "model_files", current_output, model_name + '.con'), 'w') idx = 1 pp_str = '/PPheights' re_str = '/RequiredEffect' for name in contrast_names: print >>f, '/ContrastName%d' %idx, '\t', name pp_str += '\t%1.5e' %(1) re_str += '\t%1.5e' %(1) idx += 1 print >>f, '/NumWaves\t', (contrasts.shape)[1] print >>f, '/NumContrasts\t', (contrasts.shape)[0] print >>f, pp_str print >>f, re_str + '\n' # print labels for the columns - mainly for double-checking your model col_string = '\n' for ev in evs: col_string = col_string + ev + '\t' print >>f, col_string, '\n' print >>f, '/Matrix' np.savetxt(f, contrasts, fmt='%1.5e', delimiter='\t') f.close() except Exception as e: filepath = os.path.join(outputModelFilesDirectory, "model_files", current_output, model_name + '.con') errmsg = "\n\n[!] CPAC says: Could not create the .con file for " \ "FLAMEO or write it to disk.\nAttempted filepath: %s\n" \ "Error details: %s\n\n" % (filepath, e) raise Exception(errmsg) if fTest: try: print "\nFound f-tests in your model, writing f-tests file " \ "(.fts)..\n" f = open(os.path.join(outputModelFilesDirectory, "model_files", current_output, model_name + '.fts'), 'w') print >>f, '/NumWaves\t', (contrasts.shape)[0] print >>f, '/NumContrasts\t', count_ftests # print labels for the columns - mainly for double-checking your # model col_string = '\n' for con in contrast_names: col_string = col_string + con + '\t' print >>f, col_string, '\n' print >>f, '/Matrix' for i in range(fts_n.shape[0]): print >>f, ' '.join(fts_n[i].astype('str')) #np.savetxt(f, fts_n, fmt='%1.5e', delimiter=' ') f.close() except Exception as e: filepath = os.path.join(outputModelFilesDirectory, "model_files", current_output, model_name + '.fts') errmsg = "\n\n[!] CPAC says: Could not create .fts file for " \ "FLAMEO or write it to disk.\nAttempted filepath: %s\n" \ "Error details: %s\n\n" % (filepath, e) raise Exception(errmsg) """ Class to set dictionary keys as map attributes """ class Configuration(object): def __init__(self, config_map): for key in config_map: if config_map[key] == 'None': config_map[key] = None setattr(self, key, config_map[key]) def pandas_alternate_organize_data(data, c): import pandas as ps import csv df = ps.DataFrame(data) categorical = [] directional = [] for i in range(0, len(c.columnsInModel)): if c.deMean[i]: col = c.columnsInModel[i] df[col] = df[col].astype('float32') - df[col].astype('float32').mean() if c.categoricalVsDirectional[i]: categorical.append(c.columnsInModel[i]) else: directional.append(c.columnsInModel[i]) #split on the grouping variable for name, group in df.groupby(c.groupingVariable): group[c.groupingVariable] = 1 group[c.groupingVariable]= group[c.groupingVariable] df[c.groupingVariable + '__'+ name] = group[c.groupingVariable] df[c.groupingVariable + '__'+ name] = df[c.groupingVariable + '__'+ name].fillna(0) for col in directional: group[col] = group[col] df[col + '__'+ name] = group[col] df[col + '__'+ name] = df[col + '__'+ name].fillna(0) #split on (grouping variable and each of the (categoricals- grouping variable) ) for col in categorical: if not (col == c.groupingVariable): for name, group in df.groupby([c.groupingVariable, col]): group[col] = 1 df[col+'__'+'_'.join([str(e) for e in name])] = group[col] df[col+'__'+'_'.join([str(e) for e in name])] = df[col+'__'+'_'.join([str(e) for e in name])].fillna(0) for col in c.columnsInModel: del df[col] df.to_csv('./tempfile.csv', sep=',', index=False) print 'saved to abc.csv' sys.exit() def split_directionals(gp, directional, data, c): for key in gp.keys(): indices = gp[key] for col in directional: new_col = col + '__' + key for idx in range(0, len(data)): if idx in indices: data[idx][new_col] = data[idx][col] else: data[idx][new_col] = 0 def split_gp_var(gp, data, c): for key in gp.keys(): indices = gp[key] new_col = c.groupingVariable + '__' + key for idx in range(0, len(data)): if idx in indices: data[idx][new_col] = 1 else: data[idx][new_col] = 0 def group_by_gp_categorical(categorical, data, c): gp_cat_dict = {} for cat_col in categorical: if not (cat_col == c.groupingVariable): for idx in range(0, len(data)): new_col = '__'.join([str(cat_col), str(data[idx][cat_col]), str(c.groupingVariable), str(data[idx][c.groupingVariable])]) if new_col in gp_cat_dict: gp_cat_dict[new_col].append(idx) else: gp_cat_dict[new_col] = [idx] for col in gp_cat_dict.keys(): indices = gp_cat_dict[col] for idx in range(0, len(data)): if idx in indices: data[idx][col] = 1 else: data[idx][col] = 0 def alternate_organize_data(data, c): categorical = [] directional = [] mean_cols = [] groups_grouping_var = {} for i in range(0, len(c.columnsInModel)): if c.deMean[i]: col = c.columnsInModel[i] mean_cols.append(col) if c.categoricalVsDirectional[i]: categorical.append(c.columnsInModel[i]) else: directional.append(c.columnsInModel[i]) sum_ = {} idx = 0 #take sum of each of columns to be demeaned for row in data: #on the side create groups for groups_grouping_var try: groups_grouping_var[str(row[c.groupingVariable])].append(idx) except: groups_grouping_var[str(row[c.groupingVariable])] = [idx] for col in mean_cols: try: sum_[col] += float(row[col]) except: sum_[col] = float(row[col]) idx += 1 #take the mean for row in data: for col in mean_cols: row[col] = float(row[col]) - float(sum_[col])/float(len(data)) #split the directonal columns according to the groupingVariable split_directionals(groups_grouping_var, directional, data, c) #split the groupingVariable col split_gp_var(groups_grouping_var, data, c) #split categorical cols according to groupingVariable group_by_gp_categorical(categorical, data, c) #delete all original categorical and directional columns for idx in range(0, len(data)): #del data[idx]['subject_id'] for col in directional: del data[idx][col] for col in categorical: del data[idx][col] print '\t'.join(key for key in sorted(data[0].keys()) ) for idx in range(0, len(data)): print '\t'.join(str(data[idx][key]) for key in sorted(data[idx].keys())) return data, data[0].keys(), groups_grouping_var def run(config, fTest, param_file, derivative_means_dict, pipeline_path, current_output, model_out_dir, roi_means_dict=None, CPAC_run=False): # create_fsl_model.run() # this is called from cpac_group_analysis_pipeline.py # it collects the information the user provided for the FSL gpa model # which was saved in the group analysis FSL config .yaml file, and then # puts it into Patsy to create a design matrix # it then also generates the contrast file from the contrasts the user # provided # ultimately this produces the .mat, .con and .grp files needed # for FLAMEO for group analysis # see more info on Patsy: # http://patsy.readthedocs.org/en/latest/overview.html print "\nBuilding the FSL group analysis model for %s..\n" % current_output # open the GROUP ANALYSIS FSL .YML CONFIG FILE, not the main pipeline # config .yml file! if CPAC_run: c = config else: try: c = Configuration(yaml.load(open(os.path.realpath(config), 'r'))) except: raise Exception("Error in reading %s configuration file" % config) import csv import numpy as np # return the data from the phenotype file processed properly for Patsy # and load it into 'pheno_data_dict' # format: dictionary, each key is the name of an EV, and its value is # a LIST of values in order of the subjects # - categorical EVs are already renamed from '0,1,..' to # 'EV0,EV1,..' with EV being the EV name # - EVs to be demeaned are already demeaned # - numerical EVs (non-categorical) are in a list which # have been converted into a NumPy array pheno_data_dict = create_pheno_dict(c) formula = c.design_formula # get number of subjects that have the derivative for this current model # (basically, the amount of time points, which must be greater than the # number of EVs) num_subjects = len(derivative_means_dict) if param_file != None: ''' extract motion measures for insertion as EVs if selected ''' # insert MeanFD or other measures into pheno_data_dict # first, pull the measure values from the all_params .csv file # written to the individual-level analysis output directory # then, ensure the values are in the same order as the subject ids measures = ['MeanFD', 'MeanFD_Jenkinson', 'MeanDVARS'] try: measure_dict = {} f = csv.DictReader(open(param_file,'rU')) for line in f: measure_map = {} for m in measures: if line.get(m): measure_map[m] = line[m] measure_dict[line['Subject']] = measure_map except: print '\n\n[!] CPAC says: Could not extract required ' \ 'information from the parameters file.\n' print 'Path: ', param_file, '\n\n' raise Exception # function to demean measures the user included in the design formula # and then insert them in the right location in the pheno_data_dict def add_measure_to_pheno(measure_name): measure_list = [] # create a blank list that is the proper length for sub in pheno_data_dict[c.subject_id_label]: measure_list.append(0) for subID in measure_dict.keys(): # find matching subject IDs between the measure_dict and the # pheno_data_dict so we can insert measure values into the # pheno_data_dict for subject in pheno_data_dict[c.subject_id_label]: if subject == subID: # return the index (just an integer) of where in the # pheno_data_dict list structure a subject ID is idx = np.where(pheno_data_dict[c.subject_id_label]==subID)[0][0] # insert Mean FD value in the proper point measure_list[idx] = float(measure_dict[subID][measure_name]) # time to demean the MeanFD values measure_sum = 0.0 for measure in measure_list: measure_sum = measure_sum + measure measure_mean = measure_sum / len(measure_list) idx = 0 for measure in measure_list: measure_list[idx] = measure - measure_mean idx += 1 # add this new list to the pheno_data_dict pheno_data_dict[measure_name] = np.array(measure_list) ''' insert measures into pheno data ''' # add measures selected in the design formula into pheno_data_dict # they are also demeaned prior for measure in measures: if measure in c.design_formula: add_measure_to_pheno(measure) def insert_means_into_model(output_means_dict): means_list = [] # create a blank list that is the proper length (num of subjects) for sub in pheno_data_dict[c.subject_id_label]: means_list.append(0) for subID in output_means_dict.keys(): # find matching subject IDs between the output_means_dict and # the pheno_data_dict so we can insert mean values into the # pheno_data_dict for subject in pheno_data_dict[c.subject_id_label]: if subject == subID: # return the index (just an integer) of where in the # pheno_data_dict list structure a subject ID is idx = np.where(pheno_data_dict[c.subject_id_label]==subID)[0][0] # insert Mean FD value in the proper point means_list[idx] = float(output_means_dict[subID]) # time to demean the means! measure_mean = sum(means_list) / len(means_list) idx = 0 for mean in means_list: means_list[idx] = mean - measure_mean idx += 1 return means_list if 'Measure_Mean' in c.design_formula: ''' extract the mean of derivative for each subject if selected ''' # if the user has selected it to be part of their model, insert the mean # of the outputs included in group analysis (i.e. if running ReHo in # group-level analysis, have the mean of each subject's ReHo output # included as an EV in the phenotype - regress out the mean of measure output_means_dict = derivative_means_dict # by the end of this for loop above, output_means_dict should look # something like this: # {sub1: mean_val, sub2: mean_val, ..} # as this code runs once per output, this dictionary contains # the mean values of the one current output, right now ''' insert means into pheno data if selected ''' measure_means_list = insert_means_into_model(output_means_dict) # add this new list to the pheno_data_dict pheno_data_dict['Measure_Mean'] = np.array(measure_means_list) if "Custom_ROI_Mean" in c.design_formula: ''' include the means of the specified ROIs as regressors ''' # check if roi_means_dict == None: err_string = "\n\n[!] CPAC says: The custom ROI means were not " \ "calculated properly during the group analysis " \ "model generation.\n\n" raise Exception(err_string) for val in roi_means_dict.values(): roi_num = len(val) # this will be a dictionary matching ROI regressor header labels with # the actual ROI dictionaries roi_dict_dict = {} # split the roi_means_dict from { subID: [mean1,mean2,mean3,..], ..} # to three dictionaries of { subID: mean1, .. }, { subID: mean2, .. }, # and so on for num in range(0,roi_num): label = "Custom_ROI_Mean_%d" % int(num+1) temp_roi_dict = {} for key in roi_means_dict.keys(): temp_roi_dict[key] = roi_means_dict[key][num-1] roi_dict_dict[label] = temp_roi_dict add_formula_string = "" for roi_column in roi_dict_dict.keys(): roi_means_list = insert_means_into_model(roi_dict_dict[roi_column]) # add this new list to the pheno_data_dict pheno_data_dict[roi_column] = np.array(roi_means_list) # create a string of all the new custom ROI regressor column names # to be inserted into the design formula, so that Patsy will accept # the phenotypic data dictionary that now has these columns if add_formula_string == "": add_formula_string = add_formula_string + roi_column else: add_formula_string = add_formula_string + " + " + roi_column # a regressor column of ROI means for each custom-specified ROI has now # been added to the model with appropriate column labels formula = formula.replace("Custom_ROI_Mean",add_formula_string) ''' Modeling Group Variances Separately ''' if c.group_sep == True: if c.grouping_var == None or c.grouping_var not in c.design_formula: print '\n\n[!] CPAC says: Model group variances separately is ' \ 'enabled, but the grouping variable set is either set to ' \ 'None, or was not included in the model as one of the ' \ 'EVs.\n' print 'Design formula: ', c.design_formula print 'Grouping variable: ', c.grouping_var, '\n\n' raise Exception coding_scheme = c.coding_scheme[0] # do this a little early for the grouping variable so that it doesn't # get in the way of doing this for the other EVs once they have the # grouping variable in their names if 'categorical' in c.ev_selections.keys(): for EV_name in c.ev_selections['categorical']: if EV_name == c.grouping_var: if coding_scheme == 'Treatment': formula = formula.replace(EV_name, 'C(' + EV_name + ')') elif coding_scheme == 'Sum': formula = formula.replace(EV_name, 'C(' + EV_name + ', Sum)') groupvar_levels = [] grouping_var_id_dict = {} idx = 0 for cat_ev_value in pheno_data_dict[c.grouping_var]: # here, each "cat_ev_value" will be one of the Patsy-format values # of the categorical EV that the user has selected as the grouping # variable, i.e. "sex1, sex1, sex0, sex1", etc.. # cat_ev_level is the level digit or label without the EV name # ex. sex1 becomes 1 cat_ev_level = str(cat_ev_value).replace(str(c.grouping_var), "") if cat_ev_level not in groupvar_levels: groupvar_levels.append(cat_ev_level) # groupvar_levels only keeps track of how many levels there are in # the grouping variable # populate this dict for create_grp_file(): try: grouping_var_id_dict[cat_ev_level].append(idx) except: grouping_var_id_dict[cat_ev_level] = [idx] idx += 1 split_EVs = {} for key in pheno_data_dict.keys(): # here, "key" is the name of each EV from the phenotype file, as # they are labeled in the phenotype file (not Patsy format) if (key in formula) and (key != c.grouping_var): # for the formula edit new_key_string = "" for level in groupvar_levels: # for the new split EV label groupvar_with_level = str(c.grouping_var) + str(level) new_key = key + "__" + groupvar_with_level # for the formula edit if new_key_string == "": new_key_string = new_key else: new_key_string = new_key_string + " + " + new_key split_EVs[new_key] = [] # for the formula as well if key in c.ev_selections["categorical"]: c.ev_selections["categorical"].append(new_key) for val, groupvar_val in zip(pheno_data_dict[key], pheno_data_dict[c.grouping_var]): if groupvar_with_level == groupvar_val: split_EVs[new_key].append(val) else: split_EVs[new_key].append(0) del pheno_data_dict[key] if key in c.ev_selections["categorical"]: c.ev_selections["categorical"].remove(key) # formula edit formula = formula.replace(key, new_key_string) # put split EVs into pheno data dict pheno_data_dict.update(split_EVs) # parse through ev_selections, find the categorical names within the # design formula and insert C(<name>, Sum) into the design formula # this is required for Patsy to process the categorical EVs # properly when generating the design matrix (this goes into the # .mat file) if 'categorical' in c.ev_selections.keys(): for EV_name in c.ev_selections['categorical']: if EV_name != c.grouping_var: if coding_scheme == 'Treatment': formula = formula.replace(EV_name, 'C(' + EV_name + ')') elif coding_scheme == 'Sum': formula = formula.replace(EV_name, 'C(' + EV_name + ', Sum)') # if group_sep = Off else: grouping_var_id_dict = None # parse through ev_selections, find the categorical names within the # design formula and insert C(<name>, Sum) into the design formula # this is required for Patsy to process the categorical EVs # properly when generating the design matrix (this goes into the # .mat file) coding_scheme = c.coding_scheme[0] if 'categorical' in c.ev_selections.keys(): for EV_name in c.ev_selections['categorical']: if coding_scheme == 'Treatment': formula = formula.replace(EV_name, 'C(' + EV_name + ')') elif coding_scheme == 'Sum': formula = formula.replace(EV_name, 'C(' + EV_name + ', Sum)') # make sure the group analysis output directory exists try: if not os.path.exists(c.output_dir): os.makedirs(c.output_dir) except: print '\n\n[!] CPAC says: Could not successfully create the group ' \ 'analysis output directory:\n', c.output_dir, '\n\nMake sure ' \ 'you have write access in this file structure.\n\n\n' raise Exception ''' create the Patsy design matrix ''' import patsy # drop pickles of the inputs meant for Patsy so you can manually test it # later if needed #import pickle #pickle.dump(formula, open(c.output_dir + '/' + "formula.p", "wb" ) ) #pickle.dump(pheno_data_dict, open(c.output_dir + '/' + "data_dict.p", "wb" ) ) #print pheno_data_dict try: if c.group_sep == True: dmatrix = patsy.dmatrix(formula + " - 1", pheno_data_dict, NA_action='raise') else: dmatrix = patsy.dmatrix(formula, pheno_data_dict, NA_action='raise') except: print '\n\n[!] CPAC says: Design matrix creation wasn\'t ' \ 'successful - do the terms in your formula correctly ' \ 'correspond to the EVs listed in your phenotype file?\n' print 'Phenotype file provided: ' print c.pheno_file, '\n\n' raise Exception ''' CONTRAST FILE PREP FUNCTIONS ''' # parse in user-input contrast strings that were selected, and generate # the contrast file (.con) def greater_than(dmat, a, b, coding, group_sep, grouping_var): c1 = positive(dmat, a, coding, group_sep, grouping_var) c2 = positive(dmat, b, coding, group_sep, grouping_var) return c1-c2 def positive(dmat, a, coding, group_sep, grouping_var): # this is also where the "Intercept" column gets introduced into # the contrasts columns, for when the user uses the model builder's # contrast builder evs = dmat.design_info.column_name_indexes con = np.zeros(dmat.shape[1]) if group_sep == True: if "__" in a and grouping_var in a: ev_desc = a.split("__") for ev in evs: count = 0 for desc in ev_desc: if desc in ev: count += 1 if count == len(ev_desc): con[evs[ev]] = 1 break else: # it is a dropped term so make all other terms in that category # at -1 term = a.split('[')[0] for ev in evs: if ev.startswith(term): con[evs[ev]]= -1 elif len(a.split(grouping_var)) > 2: # this is if the current parsed contrast is the actual # grouping variable, as the Patsified name will have the # variable's name string in it twice for ev in evs: if a.split(".")[1] in ev: con[evs[ev]] = 1 break else: # it is a dropped term so make all other terms in that category # at -1 term = a.split('[')[0] for ev in evs: if ev.startswith(term): con[evs[ev]]= -1 # else not modeling group variances separately else: if a in evs: con[evs[a]] = 1 else: # it is a dropped term so make all other terms in that category # at -1 term = a.split('[')[0] for ev in evs: if ev.startswith(term): con[evs[ev]]= -1 if coding == "Treatment": # make Intercept 0 con[0] = 0 elif coding == "Sum": # make Intercept 1 con[1] = 1 return con def negative(dmat, a, coding, group_sep, grouping_var): con = 0-positive(dmat, a, coding, group_sep, grouping_var) return con def create_dummy_string(length): ppstring = "" for i in range(0, length): ppstring += '\t' + '%1.5e' %(1.0) ppstring += '\n' return ppstring def create_con_file(con_dict, col_names, file_name, current_output, out_dir): with open(os.path.join(out_dir, "model_files", current_output, file_name)+".con",'w+') as f: # write header num = 1 for key in con_dict: f.write("/ContrastName%s\t%s\n" %(num,key)) num += 1 f.write("/NumWaves\t%d\n" %len(con_dict[key])) f.write("/NumContrasts\t%d\n" %len(con_dict)) f.write("/PPheights%s" %create_dummy_string(len(con_dict[key]))) f.write("/RequiredEffect%s" %create_dummy_string(len(con_dict[key]))) f.write("\n\n") # print labels for the columns - mainly for double-checking your # model col_string = '\n' for col in col_names: col_string = col_string + col + '\t' print >>f, col_string, '\n' # write data f.write("/Matrix\n") for key in con_dict: for v in con_dict[key]: f.write("%1.5e\t" %v) f.write("\n") def create_fts_file(ftest_list, con_dict, model_name, current_output, out_dir): try: print "\nFound f-tests in your model, writing f-tests file " \ "(.fts)..\n" f = open(os.path.join(out_dir, "model_files", current_output, model_name + '.fts'), 'w') print >>f, '/NumWaves\t', len(con_dict) print >>f, '/NumContrasts\t', len(ftest_list) # process each f-test ftst = [] for ftest_string in ftest_list: ftest_vector = [] cons_in_ftest = ftest_string.split(",") for con in con_dict.keys(): if con in cons_in_ftest: ftest_vector.append(1) else: ftest_vector.append(0) ftst.append(ftest_vector) fts_n = np.array(ftst) # print labels for the columns - mainly for double-checking your # model col_string = '\n' for con in con_dict.keys(): col_string = col_string + con + '\t' print >>f, col_string, '\n' print >>f, '/Matrix' for i in range(fts_n.shape[0]): print >>f, ' '.join(fts_n[i].astype('str')) f.close() except Exception as e: filepath = os.path.join(out_dir, "model_files", current_output, model_name + '.fts') errmsg = "\n\n[!] CPAC says: Could not create .fts file for " \ "FLAMEO or write it to disk.\nAttempted filepath: %s\n" \ "Error details: %s\n\n" % (filepath, e) raise Exception(errmsg) ''' Create contrasts_dict dictionary for the .con file generation later ''' contrasts_list = c.contrasts contrasts_dict = {} # take the contrast strings and process them appropriately # extract the two separate contrasts (if there are two), and then # identify which are categorical - adapting the string if so def process_contrast(operator): parsed_EVs_in_contrast = [] EVs_in_contrast = parsed_contrast.split(operator) if '' in EVs_in_contrast: EVs_in_contrast.remove('') for EV in EVs_in_contrast: skip = 0 # they need to be put back into Patsy formatted header titles # because the dmatrix gets passed into the function that writes # out the contrast matrix if 'categorical' in c.ev_selections.keys(): for cat_EV in c.ev_selections['categorical']: # second half of this if clause is in case group variances # are being modeled separately, and we don't want the EV # that is the grouping variable (which is now present in # other EV names) to confound this operation if c.group_sep == True: gpvar = c.grouping_var else: gpvar = "..." if (cat_EV in EV) and not (gpvar in EV and \ "__" in EV): # handle interactions if ":" in EV: temp_split_EV = EV.split(":") for interaction_EV in temp_split_EV: if cat_EV in interaction_EV: current_EV = interaction_EV else: current_EV = EV if coding_scheme == 'Treatment': cat_EV_contrast = EV.replace(EV, 'C(' + cat_EV + ')[T.' + current_EV + ']') elif coding_scheme == 'Sum': cat_EV_contrast = EV.replace(EV, 'C(' + cat_EV + ', Sum)[S.' + current_EV + ']') parsed_EVs_in_contrast.append(cat_EV_contrast) skip = 1 if skip == 0: parsed_EVs_in_contrast.append(EV) # handle interactions if ":" in EV and len(parsed_EVs_in_contrast) == 2: parsed_EVs_in_contrast = [parsed_EVs_in_contrast[0] + ":" + parsed_EVs_in_contrast[1]] if ":" in EV and len(parsed_EVs_in_contrast) == 3: parsed_EVs_in_contrast = [parsed_EVs_in_contrast[0], parsed_EVs_in_contrast[1] + ":" + parsed_EVs_in_contrast[2]] return parsed_EVs_in_contrast # parse the user-input contrast strings for contrast in contrasts_list: # each 'contrast' is a string the user input of the desired contrast # remove all spaces parsed_contrast = contrast.replace(' ', '') EVs_in_contrast = [] parsed_EVs_in_contrast = [] if '>' in parsed_contrast: parsed_EVs_in_contrast = process_contrast('>') contrasts_dict[parsed_contrast] = greater_than(dmatrix, parsed_EVs_in_contrast[0], parsed_EVs_in_contrast[1], coding_scheme, c.group_sep, c.grouping_var) elif '<' in parsed_contrast: parsed_EVs_in_contrast = process_contrast('<') contrasts_dict[parsed_contrast] = greater_than(dmatrix, parsed_EVs_in_contrast[1], parsed_EVs_in_contrast[0], coding_scheme, c.group_sep, c.grouping_var) else: contrast_string = parsed_contrast.replace('+',',+,') contrast_string = contrast_string.replace('-',',-,') contrast_items = contrast_string.split(',') if '' in contrast_items: contrast_items.remove('') if '+' in contrast_items and len(contrast_items) == 2: parsed_EVs_in_contrast = process_contrast('+') contrasts_dict[parsed_contrast] = positive(dmatrix, parsed_EVs_in_contrast[0], coding_scheme, c.group_sep, c.grouping_var) elif '-' in contrast_items and len(contrast_items) == 2: parsed_EVs_in_contrast = process_contrast('-') contrasts_dict[parsed_contrast] = negative(dmatrix, parsed_EVs_in_contrast[0], coding_scheme, c.group_sep, c.grouping_var) if len(contrast_items) > 2: idx = 0 for item in contrast_items: # they need to be put back into Patsy formatted header titles # because the dmatrix gets passed into the function that writes # out the contrast matrix if 'categorical' in c.ev_selections.keys(): for cat_EV in c.ev_selections['categorical']: if cat_EV in item: if coding_scheme == 'Treatment': item = item.replace(item, 'C(' + cat_EV + ')[T.' + item + ']') elif coding_scheme == 'Sum': item = item.replace(item, 'C(' + cat_EV + ', Sum)[S.' + item + ']') if idx == 0: if item != '+' and item != '-': contrast_vector = positive(dmatrix, item) if parsed_contrast not in contrasts_dict.keys(): contrasts_dict[parsed_contrast] = contrast_vector else: contrasts_dict[parsed_contrast] += contrast_vector elif idx != 0: if item != '+' and item != '-': if contrast_items[idx-1] == '+': contrast_vector = positive(dmatrix, item) if parsed_contrast not in contrasts_dict.keys(): contrasts_dict[parsed_contrast] = contrast_vector else: contrasts_dict[parsed_contrast] += contrast_vector if contrast_items[idx-1] == '-': contrast_vector = negative(dmatrix, item) if parsed_contrast not in contrasts_dict.keys(): contrasts_dict[parsed_contrast] = contrast_vector else: contrasts_dict[parsed_contrast] += contrast_vector idx += 1 # convert the Patsy-generated design matrix into a NumPy array data = np.asarray((dmatrix)) ''' check the model for multicollinearity ''' print "\nChecking for multicollinearity in the model for %s.." \ % current_output if check_multicollinearity(np.array(data)) == 1: print '[!] CPAC warns: Detected multicollinearity in the ' \ 'computed group-level analysis model for %s. Please double-' \ 'check your model design.\n\n' % current_output ''' # prep data and column names if user decides to model group variances # separately if c.group_sep == True: EV_options = [] grouping_options = [] new_options = [] idx = 0 # take in what the grouping variable is. get the names of the options. for col_name in dmatrix.design_info.column_names: # first, link what the user entered as the grouping variable to # what Patsy has renamed it.. if c.grouping_var in col_name: grouping_var_idx = idx if col_name != 'Intercept': skip = 0 if 'categorical' in c.ev_selections.keys(): for cat_EV in c.ev_selections['categorical']: if cat_EV in col_name: if coding_scheme == 'Treatment': cat_EV_stripped = col_name.replace('C(' + cat_EV + ')[T.', '') elif coding_scheme == 'Sum': cat_EV_stripped = col_name.replace('C(' + cat_EV + ', Sum)[S.', '') cat_EV_stripped = cat_EV_stripped.replace(']', '') EV_options.append(cat_EV_stripped) skip = 1 if skip == 0: EV_options.append(col_name) idx += 1 idx = 1 for ev in EV_options: if c.grouping_var in ev: grouping_variable_info = [] grouping_variable_info.append(ev) grouping_variable_info.append(idx) grouping_options.append(grouping_variable_info) # grouping_var_idx is the column numbers in the design matrix # which holds the grouping variable (and its possible levels) idx += 1 # all the categorical values/levels of the grouping variable grouping_var_levels = [] for gv_idx in grouping_options: for subject in dmatrix: if c.grouping_var in c.ev_selections["categorical"]: level_num = str(int(subject[gv_idx[1]])) else: level_num = str(subject[gv_idx[1]]) level_label = '__' + c.grouping_var + level_num if level_label not in grouping_var_levels: grouping_var_levels.append(level_label) # make the new header for the reorganized data for ev in EV_options: if c.grouping_var not in ev: for level in grouping_var_levels: new_options.append(ev + level) elif c.grouping_var in ev: new_options.append(ev) grouped_data = [] # this is a dict that will be something like this: # grouping variable = Sex, M or F # { "M": [1,3,7], "F": [2,4,5,6] } with the digits being row numbers # from the design matrix grouping_var_id_dict = {} idx = 0 for subject in dmatrix: # populate this dict for create_grp_file(): try: grouping_var_id_dict[str(subject[int(grouping_var_idx)])].append(idx) except: grouping_var_id_dict[str(subject[int(grouping_var_idx)])] = [idx] new_row = [] # put in the Intercept first new_row.append(subject[0]) for option in grouping_options: grouping_var_id = option[1] gp_var_value = subject[grouping_var_id] gp_var_label = '_' + str(gp_var_value) for orig_idx in range(1,len(subject)): # if the current ev_value in the current subject line is the # grouping variable if orig_idx == grouping_var_id: new_row.append(subject[orig_idx]) else: for new_header in new_options: if EV_options[orig_idx-1] in new_header: if gp_var_label in new_header: new_row.append(subject[orig_idx]) else: new_row.append(0) # kill the intercept (not needed in modeling group variances # separately) del new_row[0] grouped_data.append(new_row) idx += 1 data = np.array(grouped_data, dtype=np.float16) column_names = new_options else: ''' data = np.array(data, dtype=np.float16) column_names = dmatrix.design_info.column_names # check to make sure there are more time points than EVs! if len(column_names) >= num_subjects: err = "\n\n[!] CPAC says: There are more EVs than there are " \ "subjects currently included in the model for %s. There must " \ "be more subjects than EVs in the design.\n\nNumber of " \ "subjects: %d\nNumber of EVs: %d\n\nNote: An 'Intercept' " \ "column gets added to the design as an EV, so there will be " \ "one more EV than you may have specified in your design. In " \ "addition, if you specified to model group variances " \ "separately, an Intercept column will not be included, but " \ "the amount of EVs can nearly double once they are split " \ "along the grouping variable.\n\n" \ "If the number of subjects is lower than the number of " \ "subjects in your group analysis subject list, this may be " \ "because not every subject in the subject list has an output " \ "for %s in the individual-level analysis output directory.\n\n"\ % (current_output, num_subjects, len(column_names), \ current_output) raise Exception(err) # remove the header formatting Patsy creates for categorical variables # because we are going to use depatsified_EV_names to test user-made # custom contrast files depatsified_EV_names = [] for column in column_names: # if using Sum encoding, a column name may look like this: # C(adhd, Sum)[S.adhd0] # this loop leaves it with only "adhd0" in this case, for the # contrasts list for the next GUI page column_string = column string_for_removal = '' for char in column_string: string_for_removal = string_for_removal + char if char == '.': column_string = column_string.replace(string_for_removal, '') string_for_removal = '' column_string = column_string.replace(']', '') depatsified_EV_names.append(column_string) ''' FLAMEO model input files generation ''' if not os.path.isdir(os.path.join(model_out_dir, "model_files", current_output)): os.makedirs(os.path.join(model_out_dir, "model_files", current_output)) try: create_mat_file(data, column_names, c.model_name, current_output, model_out_dir) except Exception as e: print '\n\n[!] CPAC says: Could not create .mat file during ' \ 'group-level analysis model file generation.\n' print 'Attempted output directory: ', model_out_dir, '\n' print "Error details: %s\n\n" % e raise Exception try: create_grp_file(data, c.model_name, grouping_var_id_dict, current_output, model_out_dir) except Exception as e: print '\n\n[!] CPAC says: Could not create .grp file during ' \ 'group-level analysis model file generation.\n' print 'Attempted output directory: ', model_out_dir, '\n' print "Error details: %s\n\n" % e raise Exception if (c.custom_contrasts == None) or (c.custom_contrasts == '') or \ ("None" in c.custom_contrasts): print "Writing contrasts file (.con) based on contrasts provided " \ "using the group analysis model builder's contrasts editor.." try: create_con_file(contrasts_dict, column_names, c.model_name, current_output, model_out_dir) except Exception as e: print '\n\n[!] CPAC says: Could not create .con file during ' \ 'group-level analysis model file generation.\n' print 'Attempted output directory: ', model_out_dir, '\n' print "Error details: %s\n\n" % e raise Exception try: create_fts_file(c.f_tests, contrasts_dict, c.model_name, current_output, model_out_dir) except Exception as e: print '\n\n[!] CPAC says: Could not create .fts file during ' \ 'group-level analysis model file generation.\n' print 'Attempted output directory: ', model_out_dir, '\n' print "Error details: %s\n\n" % e raise Exception else: print "\nWriting contrasts file (.con) based on contrasts provided " \ "with a custom contrasts matrix CSV file..\n" create_con_ftst_file(c.custom_contrasts, c.model_name, current_output, model_out_dir, depatsified_EV_names, coding_scheme, c.group_sep)
bsd-3-clause
tdsmith/labmisc
parse_eve.py
1
1782
#!/usr/bin/env python3 import sys import numpy as np import openpyxl as xl import pandas as pd ROW_DATA_STARTS = 41 ROW_ANALYTE_NAME = 39 def main(filename): workbook = xl.load_workbook(filename) ws = workbook.active invisible_rows = [key for key in sorted(ws.row_dimensions.keys()) if not ws.row_dimensions[key].visible] data_columns = np.where([cell.value for cell in ws.rows[39]])[0] + 1 data_rows = np.where([cell.value for cell in ws.columns[1]])[0] + 1 data_rows = [row for row in data_rows if row >= ROW_DATA_STARTS and row not in invisible_rows] col_names = data_columns[0] col_dilution = data_columns[1] col_last = max(data_columns) col = data_columns[2] data = [] while col <= col_last: analyte = ws.cell(row=ROW_ANALYTE_NAME, column=col).value for row in data_rows: datum = {"Analyte": analyte, "Error": None} datum["Sample"] = ws.cell(row=row, column=col_names).value datum["Dilution"] = ws.cell(row=row, column=col_dilution).value intensity_cell = ws.cell(row=row, column=col) datum["Intensity"] = intensity_cell.value if intensity_cell.data_type == "n" else None conc_cell = ws.cell(row=row, column=col+1) if conc_cell.data_type == "n": datum["Concentration"] = conc_cell.value if conc_cell.style.font.color.theme != 1: datum["Error"] = "OOR" else: datum["Error"] = conc_cell.value datum["Expected"] = ws.cell(row=row, column=col+2).value data.append(datum) col += 3 pd.DataFrame(data).to_csv(sys.stdout, index=False) if __name__ == "__main__": main(sys.argv[1])
mit
nanophotonics/nplab
nplab/modelling/mie.py
1
14557
# -*- coding: utf-8 -*- from __future__ import division from __future__ import print_function from builtins import range import numpy as np import requests import matplotlib.pyplot as plt from scipy.special import riccati_jn,riccati_yn from nplab.utils.refractive_index_db import RefractiveIndexInfoDatabase from mpl_toolkits.mplot3d import Axes3D from matplotlib import cm #Initialized after first request WAVELENGTHS = None REFRACTIVE_INDEX = None print("starting") ''' Adapted from: https://github.com/scottprahl/miepython ''' rfdb = RefractiveIndexInfoDatabase() water = "main/H2O/Hale.yml" gold = "main/Au/Yakubovsky-25nm.yml" water_refractive_index = rfdb.refractive_index_generator(label=water) gold_refractive_index = rfdb.refractive_index_generator(label=gold) def Lentz_Dn(z, N): """ Compute the logarithmic derivative of the Ricatti-Bessel function This returns the Ricatti-Bessel function of order N with argument z using the continued fraction technique of Lentz, Appl. Opt., 15, 668-671, (1976). """ zinv = 2.0/z alpha = (N+0.5) * zinv aj = -(N+1.5) * zinv alpha_j1 = aj+1/alpha alpha_j2 = aj ratio = alpha_j1/alpha_j2 runratio = alpha*ratio while abs(abs(ratio)-1.0) > 1e-12: aj = zinv - aj alpha_j1 = 1.0/alpha_j1 + aj alpha_j2 = 1.0/alpha_j2 + aj ratio = alpha_j1/alpha_j2 zinv *= -1 runratio = ratio*runratio return -N/z+runratio def D_downwards(z, N): """ Compute the logarithmic derivative of all Ricatti-Bessel functions This returns the Ricatti-Bessel function of orders 0 to N for an argument z using the downwards recurrence relations. """ D = np.zeros(N, dtype=complex) last_D = Lentz_Dn(z, N) for n in range(N, 0, -1): last_D = n/z - 1.0/(last_D+n/z) D[n-1] = last_D return D def D_upwards(z, N): """ Compute the logarithmic derivative of all Ricatti-Bessel functions This returns the Ricatti-Bessel function of orders 0 to N for an argument z using the upwards recurrence relations. """ D = np.zeros(N, dtype=complex) exp = np.exp(-2j*z) D[1] = -1/z + (1-exp)/((1-exp)/z-1j*(1+exp)) for n in range(2, N): D[n] = 1/(n/z-D[n-1])-n/z return D def D_calc(m, x, N): """ Compute the logarithmic derivative of the Ricatti-Bessel function at all orders (from 0 to N) with argument z """ z = m * x if abs(z.imag) > 13.78*m.real**2 - 10.8*m.real + 3.9: return D_upwards(z, N) else: return D_downwards(z, N) def calculate_a_b_coefficients(m,x,n_max): n = 2*n_max def psi(rho): outp, _ =riccati_jn(n,rho) return outp def dpsi(rho): _,outp = riccati_jn(n,rho) return outp #Definition: #Hankel function of first kind: # Hn = Jn + iYn # Jn - bessel function of first kind # Yn - bessel function of second kind def eps(rho): jn = riccati_jn(n,rho)[0] yn = riccati_yn(n,rho)[0] hn = jn + 1j*yn return hn def deps(rho): d_jn = riccati_jn(n,rho)[1] d_yn = riccati_yn(n,rho)[1] d_hn = d_jn + 1j*d_yn return d_hn rho = m*x def a(): num = m*psi(m*x)*dpsi(x) - psi(x)*dpsi(m*x) denom = m*psi(m*x)*deps(x) - eps(x)*dpsi(m*x) return (num/denom)[0:n] def b(): num = psi(m*x)*dpsi(x) - m*psi(x)*dpsi(m*x) denom = psi(m*x)*deps(x) - m*eps(x)*dpsi(m*x) return (num/denom)[0:n] return a(), b() from scipy.special import jv, yv def Mie_ab(m,x,n_max): # http://pymiescatt.readthedocs.io/en/latest/forward.html#Mie_ab mx = m*x nmax = np.real(np.round(2+x+4*(x**(1/3)))) nmx = np.round(max(nmax,np.abs(mx))+16) # print "NMAX:", nmax n = np.arange(1,np.real(nmax)+1) nu = n + 0.5 sx = np.sqrt(0.5*np.pi*x) px = sx*jv(nu,x) p1x = np.append(np.sin(x), px[0:int(nmax)-1]) chx = -sx*yv(nu,x) ch1x = np.append(np.cos(x), chx[0:int(nmax)-1]) gsx = px-(0+1j)*chx gs1x = p1x-(0+1j)*ch1x # B&H Equation 4.89 Dn = np.zeros(int(nmx),dtype=complex) for i in range(int(nmx)-1,1,-1): Dn[i-1] = (i/mx)-(1/(Dn[i]+i/mx)) D = Dn[1:int(nmax)+1] # Dn(mx), drop terms beyond nMax da = D/m+n/x db = m*D+n/x an = (da*px-p1x)/(da*gsx-gs1x) bn = (db*px-p1x)/(db*gsx-gs1x) return an, bn def make_rescaled_parameters(n_med,n_particle,r,wavelength): # :param r: radius of the sphere # :param wavelength: wavelength of illumination # :param n_sph: complex refractive index of the sphere # :param n_med: real refractive index of the dielectric medium x= n_med * (2*np.pi/wavelength) * r m = n_particle/n_med return x,m def calculate_pi_tau(mu,n_max): #calculates angle-dependent functions #see Absorption and scattering by small particles, Bohren & Huffman, page 94 pi_n = np.zeros(n_max+1) tau_n = np.zeros(n_max+1) pi_n[1] = 1.0 tau_n[1] = mu*pi_n[1] for n in range(2,n_max): pi_n[n] = ((2.0*n-1)/(n-1))*mu*pi_n[n-1] - ((n)/(n-1))*pi_n[n-2] tau_n[n] = n*mu*pi_n[n] - (n+1)*pi_n[n-1] pi_n = np.asarray(pi_n[1:]) tau_n = np.asarray(tau_n[1:]) return pi_n, tau_n def mie_S1_S2(m,x,mus,n_max): a,b = Mie_ab(m, x,n_max) S1s = [] S2s = [] for mu in mus: S1 = 0.0 S2 = 0.0 pi,tau = calculate_pi_tau(mu,n_max) for n in range(n_max): N = n+1 # print len(a),len(pi), len(b), len(tau) S1 = S1+(float(2.0*N+1)/(N**2+N))*(a[n]*pi[n] + b[n]*tau[n]) S2 = S2+(float(2.0*N+1)/(N**2+N))*(b[n]*pi[n] + a[n]*tau[n]) S1s.append(S1) S2s.append(S2) return [S1s,S2s] def get_refractive_index(target_wavelength, url): #pull in globals global WAVELENGTHS global REFRACTIVE_INDEX if WAVELENGTHS == None or REFRACTIVE_INDEX == None: import csv response = requests.get(url) reader = csv.reader(response._content) # for row in reader: # print row print(response._content) # content = ((response._content).replace('\r','\n')).replace('\n\n\n',"\n").replace('\t',",").replace("\n\n","\n") print(content) R = [v.split(",") for v in (content.split("\n"))] R=R[1:] wavelengths = [] ns = [] for row in R: try: w = float(row[0]) n = float(row[1])+1j*float(row[2]) wavelengths.append(w) ns.append(n) except: pass WAVELENGTHS = wavelengths REFRACTIVE_INDEX = ns print(target_wavelength) print(WAVELENGTHS) print(REFRACTIVE_INDEX) return np.interp(target_wavelength,WAVELENGTHS,REFRACTIVE_INDEX) def get_refractive_index_Au(target_wavelength): url = "https://refractiveindex.info/data_csv.php?datafile=data/main/Au/Johnson.yml" return get_refractive_index(target_wavelength,url=url) def get_refractive_index_Ag(target_wavelength): url = "https://refractiveindex.info/data_csv.php?datafile=data/main/Ag/Johnson.yml" return get_refractive_index(target_wavelength,url=url) def get_refractive_index_water(target_wavelength): url = "https://refractiveindex.info/data_csv.php?datafile=data/main/H2O/Hale.yml" return get_refractive_index(target_wavelength,url=url) def calculate_scattering_cross_section(m,x,r,n_max): k = x/r a,b = Mie_ab(m, x,n_max) a2 = np.abs(a)**2 b2 = np.abs(b)**2 # n = np.arange(1,n_max+1) # 2n1 = 2.0*n+1.0 total = 0.0 for n in range(len(a2)): N = n+1 total = total + (2*N+1)*(a2[n]+b2[n]) return ((2*np.pi)/k**2)*total def calculate_extinction_cross_section(m,x,r,n_max): k = x/r a,b = Mie_ab(m, x, n_max) a2,b2 = np.absolute(a)**2,np.absolute(b)**2 total = 0.0 for n in range(len(a)): N = n+1 real_ab = a[n].real+b[n].real # if real_ab < 0: # print "a",a # print "b",b total = total + (2*N+1)*real_ab return ((2*np.pi)/k**2)*total def main3(): n_medium = 1.3325 theta = np.pi/2.0 rs = np.linspace(1e-9,500e-9,50) rs = [20e-9,40e-9,] wavelengths = np.linspace(400e-9,1000e-9,600) for r in rs: print("r",r) Xs_sca = [] Xs_ext = [] for wavelength in wavelengths: n_particle = get_refractive_index_Au(wavelength/1e-9) print("N:",n_particle) x,m = make_rescaled_parameters(n_med=n_medium,n_particle=n_particle,r=r,wavelength=wavelength) print("X:{0},M:{1}".format(x,m)) n_max = 20 scatteringXc = calculate_scattering_cross_section(m,x,r,n_max) extinctionXc = calculate_extinction_cross_section(m,x,r,n_max) # [scatteringXc,extinctionXc,_,_] = small_mie(m,x) Xs_sca.append(scatteringXc) Xs_ext.append(extinctionXc) fig, ax1 = plt.subplots(1,figsize=(8,8)) Xs_sca = np.asarray(Xs_sca)/(np.pi*r**2) Xs_ext = np.asarray(Xs_ext)/(np.pi*r**2) Xs_abs = Xs_ext - Xs_sca # wavelengths = wavelengths/1e-9 ax1.plot(wavelengths/1e-9,Xs_sca, label="Scattering efficiency $Q_{sca} = \sigma_{sca}/\pi r^2$") ax1.plot(wavelengths/1e-9,Xs_ext, label="Extinction efficiency $Q_{ext} = \sigma_{ext}/\pi r^2$") ax1.plot(wavelengths/1e-9,Xs_abs, label="Absorption efficiency $Q_{abs} = \sigma_{abs}/\pi r^2$") ext_max =np.max(Xs_ext) lambda_max = wavelengths[np.where(np.abs(Xs_ext==ext_max))][0] ax1.set_xlabel("Size[nm]") ax1.set_ylabel("Amplitude") ax1.legend() plt.title("Radius [nm]: {0}, $\lambda$: {1}".format(r/1e-9, lambda_max/1e-9)) # plt.savefig("C:\Users\im354\Pictures\Mie\SEA\particle_{0}.png".format(r/1e-9)) plt.show() def main2(): wavelength = 633.0e-9 n_particle = get_refractive_index_Au(wavelength/1e-9) n_medium = 1.3325 theta = np.pi/2.0 rs = np.linspace(1e-9,5e-7,1000) Is = [] Xs_sca = [] Xs_ext = [] Qext = [] Qsca = [] Qback = [] G = [] for r in rs: x,m = make_rescaled_parameters(n_med=n_medium,n_particle=n_particle,r=r,wavelength=wavelength) n_max = 100 #int(x + 4.05 * x**0.33333 + 2.0)+1 scatteringXc = calculate_scattering_cross_section(m,x,r,n_max) extinctionXc = calculate_extinction_cross_section(m,x,r,n_max) i = I(r,np.asarray([theta]),n_medium,n_particle,wavelength) Xs_sca.append(scatteringXc) Xs_ext.append(extinctionXc) Is.append(i) [qext, qsca, qback, g] = mie_scalar(m, x,n_max) Qext.append(qext) Qsca.append(qsca) Qback.append(qback) G.append(g) fig, [ax1,ax2] = plt.subplots(2) ax1.plot(rs/1e-9,Xs_sca/(np.pi*rs**2), label="Scattering efficiency $Q_{sca} = \sigma_{sca}/\pi r^2$") ax1.plot(rs/1e-9,Xs_ext/(np.pi*rs**2), label="Extinction efficiency $Q_{ext} = \sigma_{ext}/\pi r^2$") ax1.set_xlabel("Size[nm]") ax1.set_ylabel("Amplitude") ax2.plot(rs/1e-9,Qsca,label="Scattering") ax2.plot(rs/1e-9,Qext,label="Extinction") # ax2.plot(rs/1e-9,Is, label="Scattering intensity") ax2.set_xlabel("Size[nm]") ax2.set_ylabel("Amplitude") ax1.legend() ax2.legend() plt.show() def main(): wavelength = 633.0e-9 n_particle = get_refractive_index_Au(wavelength/1e-9) n_medium = 1.3325 for r in np.linspace(1e-9,4e-7,50): fig = plt.figure(figsize=(16,8)) ax1 = fig.add_subplot(121,projection="polar") ax2 = fig.add_subplot(122) x,m = make_rescaled_parameters(n_med=n_medium,n_particle=n_particle,r=r,wavelength=wavelength) n_max = int(x + 4.05 * x**0.33333 + 2.0)+1 print("x:",x) print("m:",m) print("n_max", n_max) theta = np.linspace(-np.pi,np.pi, 360) mu = np.cos(theta) [S1,S2] = mie_S1_S2(m,x,mu,n_max) S11 = np.abs(S1)**2 + np.abs(S2)**2 S12 = np.abs(S1)**2 - np.abs(S2)**2 i_para = S11+S12 i_perp = S11-S12 i_total = i_para + i_perp ax1.plot(theta,i_para,label="parallel") ax1.plot(theta,i_perp,label="perp") ax1.plot(theta,i_total,label="total") ax2.plot(theta,i_para,label="parallel") ax2.plot(theta,i_perp,label="perp") ax2.plot(theta,i_total, label="total") ax1.set_xlabel("Angle $\\theta$ [rad]") ax1.set_ylabel("Amplitude") ax2.set_xlabel("Angle $\\theta$ [rad]") ax2.set_ylabel("Amplitude") ax1.legend() ax2.legend() plt.title("Particle radius [nm]:{0},x:{1},\nm:{2}, n_max:{3}".format(r/1e-9,x,m,n_max)) # plt.show() plt.savefig("C:\\Users\im354\Pictures\Mie\particle_{}.png".format(r/1e-9)) def scattering_cross_section(radius,wavelength): n_particle = gold_refractive_index(required_wavelength=wavelength) n_med = water_refractive_index(required_wavelength=wavelength) x,m = make_rescaled_parameters(n_med=n_med,n_particle=n_particle,r=radius,wavelength=wavelength) output = calculate_scattering_cross_section(m=np.asarray([m]),x=np.asarray([x]),r=np.asarray([radius]),n_max=40) return output def main4(): wavelength_range = np.asarray([1e-9*wl for wl in np.linspace(450,1000,550)]) radius_range = np.asarray([r*1e-9 for r in np.linspace(50,250,200)]) x,y= np.meshgrid(radius_range,wavelength_range,indexing="xy") f = np.vectorize(scattering_cross_section) z = f(x,y) fig = plt.figure() ax = fig.gca(projection='3d') zmin = np.min(z) surf = ax.plot_surface(x/1e-9, y/1e-9, z/zmin,cmap=cm.coolwarm) plt.xlabel("Radius [nm]") plt.ylabel("Wavelength [nm]") plt.title("Normalized scattering cross section\n Normalization: z/z_min, z_min = {}".format(zmin)) ratio_low = scattering_cross_section(radius = 120e-9,wavelength=450e-9)/scattering_cross_section(radius = 100e-9,wavelength=450e-9) ratio_high = scattering_cross_section(radius = 120e-9,wavelength=580e-9)/scattering_cross_section(radius = 100e-9,wavelength=580e-9) print("RATIO LOW: ", ratio_low) print("RATIO High: ", ratio_high) plt.show() if __name__ == "__main__": main4()
gpl-3.0
mortcanty/SARDocker
src/enlml.py
1
8467
#!/usr/bin/env python #****************************************************************************** # Name: enlml.py # Purpose: # Estimation of ENL for polSAR covariance images # using ML method with full covariance matrix (quad, dual or single) # Anfinsen et al. (2009) IEEE TGARS 47(11), 3795-3809 # Takes input from covariance matrix format images generated # from polsaringest.py # Usage: # python enl.py [OPTIONS] filename # # MIT License # # Copyright (c) 2016 Mort Canty # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in all # copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. import auxil.auxil as auxil import auxil.lookup as lookup import os, sys, getopt, time import numpy as np import matplotlib.pyplot as plt from osgeo import gdal from osgeo.gdalconst import GA_ReadOnly, GDT_Float32 def get_windex(j,cols): # first window for row j windex = np.zeros(49,dtype=int) six = np.array([0,1,2,3,4,5,6]) windex[0:7] = (j-3)*cols + six windex[7:14] = (j-2)*cols + six windex[14:21] = (j-1)*cols + six windex[21:28] = (j)*cols + six windex[28:35] = (j+1)*cols + six windex[35:42] = (j+2)*cols + six windex[42:49] = (j+3)*cols + six return windex def main(): usage = ''' Usage: ------------------------------------------------ Calculate the equivalent number of looks for a polarimetric matrix image python %s [OPTIONS] filename Options: -h this help -n suppress graphics output -d spatial subset list e.g. -d [0,0,400,400] An ENL image will be written to the same directory with '_enl' appended. ------------------------------------------------''' %sys.argv[0] options,args = getopt.getopt(sys.argv[1:],'hnd:') dims = None graphics = True for option, value in options: if option == '-h': print usage return elif option == '-d': dims = eval(value) elif option == '-n': graphics = False if len(args) != 1: print 'Incorrect number of arguments' print usage sys.exit(1) infile = args[0] path = os.path.abspath(infile) dirn = os.path.dirname(path) basename = os.path.basename(infile) root, ext = os.path.splitext(basename) outfile = dirn + '/' + root + '_enl' + ext gdal.AllRegister() inDataset = gdal.Open(infile,GA_ReadOnly) cols = inDataset.RasterXSize rows = inDataset.RasterYSize bands = inDataset.RasterCount if dims == None: dims = [0,0,cols,rows] x0,y0,cols,rows = dims print '=========================' print ' ENL Estimation' print '=========================' print time.asctime() print 'infile: %s'%infile if bands == 9: print 'Quad polarimetry' # T11 (k) band = inDataset.GetRasterBand(1) k = np.nan_to_num(band.ReadAsArray(x0,y0,cols,rows)).ravel() # T12 (a) band = inDataset.GetRasterBand(2) a = np.nan_to_num(band.ReadAsArray(x0,y0,cols,rows)).ravel() band = inDataset.GetRasterBand(3) im = np.nan_to_num(band.ReadAsArray(x0,y0,cols,rows)).ravel() a = a + 1j*im # T13 (rho) band = inDataset.GetRasterBand(4) rho = np.nan_to_num(band.ReadAsArray(x0,y0,cols,rows)).ravel() band = inDataset.GetRasterBand(5) im = np.nan_to_num(band.ReadAsArray(x0,y0,cols,rows)).ravel() rho = rho + 1j*im # T22 (xsi) band = inDataset.GetRasterBand(6) xsi = np.nan_to_num(band.ReadAsArray(x0,y0,cols,rows)).ravel() # T23 (b) band = inDataset.GetRasterBand(7) b = np.nan_to_num(band.ReadAsArray(x0,y0,cols,rows)).ravel() band = inDataset.GetRasterBand(8) im = np.nan_to_num(band.ReadAsArray(x0,y0,cols,rows)).ravel() b = b + 1j*im # T33 (zeta) band = inDataset.GetRasterBand(9) zeta = np.nan_to_num(band.ReadAsArray(x0,y0,cols,rows)).ravel() det = k*xsi*zeta + 2*np.real(a*b*np.conj(rho)) - xsi*(abs(rho)**2) - k*(abs(b)**2) - zeta*(abs(a)**2) d = 2 elif bands == 4: print 'Dual polarimetry' # C11 (k) band = inDataset.GetRasterBand(1) k = np.nan_to_num(band.ReadAsArray(x0,y0,cols,rows)).ravel() # C12 (a) band = inDataset.GetRasterBand(2) a = np.nan_to_num(band.ReadAsArray(x0,y0,cols,rows)).ravel() band = inDataset.GetRasterBand(3) im = np.nan_to_num(band.ReadAsArray(x0,y0,cols,rows)).ravel() a = a + 1j*im # C22 (xsi) band = inDataset.GetRasterBand(4) xsi = np.nan_to_num(band.ReadAsArray(x0,y0,cols,rows)).ravel() det = k*xsi - abs(a)**2 d = 1 elif bands == 1: print 'Single polarimetry' # C11 (k) band = inDataset.GetRasterBand(1) k = band.ReadAsArray(x0,y0,cols,rows).ravel() det = k d = 0 enl_ml = np.zeros((rows,cols), dtype= np.float32) lu = lookup.table() print 'filtering...' print 'row: ', sys.stdout.flush() start = time.time() for i in range(3,rows-3): if i%100 == 0: print '%i '%i, sys.stdout.flush() windex = get_windex(i,cols) for j in range(3,cols-3): detC = det[windex] if np.min(detC) > 0.0: avlogdetC = np.sum(np.log(detC))/49 if bands == 9: k1 = np.sum(k[windex])/49 a1 = np.sum(a[windex])/49 rho1 = np.sum(rho[windex])/49 xsi1 = np.sum(xsi[windex])/49 b1 = np.sum(b[windex])/49 zeta1 = np.sum(zeta[windex])/49 detavC = k1*xsi1*zeta1 + 2*np.real(a1*b1*np.conj(rho1)) - xsi1*(np.abs(rho1)**2) - k1*(np.abs(b1)**2) - zeta1*(np.abs(a1)**2) elif bands == 4: k1 = np.sum(k[windex])/49 xsi1 = np.sum(xsi[windex])/49 a1 = np.sum(a[windex])/49 detavC = k1*xsi1 - np.abs(a1)**2 else: detavC = np.sum(k[windex])/49 logdetavC = np.log(detavC) arr = avlogdetC - logdetavC + lu[:,d] ell = np.where(arr*np.roll(arr,1)<0)[0] if ell != []: enl_ml[i,j] = float(ell[-1])/10.0 windex += 1 driver = inDataset.GetDriver() outDataset = driver.Create(outfile,cols,rows,1,GDT_Float32) projection = inDataset.GetProjection() geotransform = inDataset.GetGeoTransform() if geotransform is not None: gt = list(geotransform) gt[0] = gt[0] + x0*gt[1] gt[3] = gt[3] + y0*gt[5] outDataset.SetGeoTransform(tuple(gt)) if projection is not None: outDataset.SetProjection(projection) outBand = outDataset.GetRasterBand(1) outBand.WriteArray(enl_ml,0,0) outBand.FlushCache() outDataset = None ya,xa = np.histogram(enl_ml,bins=500) ya[0] = 0 if graphics: plt.plot(xa[0:-1],ya) plt.title('Histogram ENL for %s'%infile) plt.show() print 'ENL image written to: %s'%outfile print 'elapsed time: '+str(time.time()-start) if __name__ == '__main__': main()
mit
themrmax/scikit-learn
sklearn/feature_extraction/dict_vectorizer.py
5
12516
# Authors: Lars Buitinck # Dan Blanchard <[email protected]> # License: BSD 3 clause from array import array from collections import Mapping from operator import itemgetter import numpy as np import scipy.sparse as sp from ..base import BaseEstimator, TransformerMixin from ..externals import six from ..externals.six.moves import xrange from ..utils import check_array, tosequence def _tosequence(X): """Turn X into a sequence or ndarray, avoiding a copy if possible.""" if isinstance(X, Mapping): # single sample return [X] else: return tosequence(X) class DictVectorizer(BaseEstimator, TransformerMixin): """Transforms lists of feature-value mappings to vectors. This transformer turns lists of mappings (dict-like objects) of feature names to feature values into Numpy arrays or scipy.sparse matrices for use with scikit-learn estimators. When feature values are strings, this transformer will do a binary one-hot (aka one-of-K) coding: one boolean-valued feature is constructed for each of the possible string values that the feature can take on. For instance, a feature "f" that can take on the values "ham" and "spam" will become two features in the output, one signifying "f=ham", the other "f=spam". However, note that this transformer will only do a binary one-hot encoding when feature values are of type string. If categorical features are represented as numeric values such as int, the DictVectorizer can be followed by OneHotEncoder to complete binary one-hot encoding. Features that do not occur in a sample (mapping) will have a zero value in the resulting array/matrix. Read more in the :ref:`User Guide <dict_feature_extraction>`. Parameters ---------- dtype : callable, optional The type of feature values. Passed to Numpy array/scipy.sparse matrix constructors as the dtype argument. separator : string, optional Separator string used when constructing new features for one-hot coding. sparse : boolean, optional. Whether transform should produce scipy.sparse matrices. True by default. sort : boolean, optional. Whether ``feature_names_`` and ``vocabulary_`` should be sorted when fitting. True by default. Attributes ---------- vocabulary_ : dict A dictionary mapping feature names to feature indices. feature_names_ : list A list of length n_features containing the feature names (e.g., "f=ham" and "f=spam"). Examples -------- >>> from sklearn.feature_extraction import DictVectorizer >>> v = DictVectorizer(sparse=False) >>> D = [{'foo': 1, 'bar': 2}, {'foo': 3, 'baz': 1}] >>> X = v.fit_transform(D) >>> X array([[ 2., 0., 1.], [ 0., 1., 3.]]) >>> v.inverse_transform(X) == \ [{'bar': 2.0, 'foo': 1.0}, {'baz': 1.0, 'foo': 3.0}] True >>> v.transform({'foo': 4, 'unseen_feature': 3}) array([[ 0., 0., 4.]]) See also -------- FeatureHasher : performs vectorization using only a hash function. sklearn.preprocessing.OneHotEncoder : handles nominal/categorical features encoded as columns of integers. """ def __init__(self, dtype=np.float64, separator="=", sparse=True, sort=True): self.dtype = dtype self.separator = separator self.sparse = sparse self.sort = sort def fit(self, X, y=None): """Learn a list of feature name -> indices mappings. Parameters ---------- X : Mapping or iterable over Mappings Dict(s) or Mapping(s) from feature names (arbitrary Python objects) to feature values (strings or convertible to dtype). y : (ignored) Returns ------- self """ feature_names = [] vocab = {} for x in X: for f, v in six.iteritems(x): if isinstance(v, six.string_types): f = "%s%s%s" % (f, self.separator, v) if f not in vocab: feature_names.append(f) vocab[f] = len(vocab) if self.sort: feature_names.sort() vocab = dict((f, i) for i, f in enumerate(feature_names)) self.feature_names_ = feature_names self.vocabulary_ = vocab return self def _transform(self, X, fitting): # Sanity check: Python's array has no way of explicitly requesting the # signed 32-bit integers that scipy.sparse needs, so we use the next # best thing: typecode "i" (int). However, if that gives larger or # smaller integers than 32-bit ones, np.frombuffer screws up. assert array("i").itemsize == 4, ( "sizeof(int) != 4 on your platform; please report this at" " https://github.com/scikit-learn/scikit-learn/issues and" " include the output from platform.platform() in your bug report") dtype = self.dtype if fitting: feature_names = [] vocab = {} else: feature_names = self.feature_names_ vocab = self.vocabulary_ # Process everything as sparse regardless of setting X = [X] if isinstance(X, Mapping) else X indices = array("i") indptr = array("i", [0]) # XXX we could change values to an array.array as well, but it # would require (heuristic) conversion of dtype to typecode... values = [] # collect all the possible feature names and build sparse matrix at # same time for x in X: for f, v in six.iteritems(x): if isinstance(v, six.string_types): f = "%s%s%s" % (f, self.separator, v) v = 1 if f in vocab: indices.append(vocab[f]) values.append(dtype(v)) else: if fitting: feature_names.append(f) vocab[f] = len(vocab) indices.append(vocab[f]) values.append(dtype(v)) indptr.append(len(indices)) if len(indptr) == 1: raise ValueError("Sample sequence X is empty.") indices = np.frombuffer(indices, dtype=np.intc) indptr = np.frombuffer(indptr, dtype=np.intc) shape = (len(indptr) - 1, len(vocab)) result_matrix = sp.csr_matrix((values, indices, indptr), shape=shape, dtype=dtype) # Sort everything if asked if fitting and self.sort: feature_names.sort() map_index = np.empty(len(feature_names), dtype=np.int32) for new_val, f in enumerate(feature_names): map_index[new_val] = vocab[f] vocab[f] = new_val result_matrix = result_matrix[:, map_index] if self.sparse: result_matrix.sort_indices() else: result_matrix = result_matrix.toarray() if fitting: self.feature_names_ = feature_names self.vocabulary_ = vocab return result_matrix def fit_transform(self, X, y=None): """Learn a list of feature name -> indices mappings and transform X. Like fit(X) followed by transform(X), but does not require materializing X in memory. Parameters ---------- X : Mapping or iterable over Mappings Dict(s) or Mapping(s) from feature names (arbitrary Python objects) to feature values (strings or convertible to dtype). y : (ignored) Returns ------- Xa : {array, sparse matrix} Feature vectors; always 2-d. """ return self._transform(X, fitting=True) def inverse_transform(self, X, dict_type=dict): """Transform array or sparse matrix X back to feature mappings. X must have been produced by this DictVectorizer's transform or fit_transform method; it may only have passed through transformers that preserve the number of features and their order. In the case of one-hot/one-of-K coding, the constructed feature names and values are returned rather than the original ones. Parameters ---------- X : {array-like, sparse matrix}, shape = [n_samples, n_features] Sample matrix. dict_type : callable, optional Constructor for feature mappings. Must conform to the collections.Mapping API. Returns ------- D : list of dict_type objects, length = n_samples Feature mappings for the samples in X. """ # COO matrix is not subscriptable X = check_array(X, accept_sparse=['csr', 'csc']) n_samples = X.shape[0] names = self.feature_names_ dicts = [dict_type() for _ in xrange(n_samples)] if sp.issparse(X): for i, j in zip(*X.nonzero()): dicts[i][names[j]] = X[i, j] else: for i, d in enumerate(dicts): for j, v in enumerate(X[i, :]): if v != 0: d[names[j]] = X[i, j] return dicts def transform(self, X, y=None): """Transform feature->value dicts to array or sparse matrix. Named features not encountered during fit or fit_transform will be silently ignored. Parameters ---------- X : Mapping or iterable over Mappings, length = n_samples Dict(s) or Mapping(s) from feature names (arbitrary Python objects) to feature values (strings or convertible to dtype). y : (ignored) Returns ------- Xa : {array, sparse matrix} Feature vectors; always 2-d. """ if self.sparse: return self._transform(X, fitting=False) else: dtype = self.dtype vocab = self.vocabulary_ X = _tosequence(X) Xa = np.zeros((len(X), len(vocab)), dtype=dtype) for i, x in enumerate(X): for f, v in six.iteritems(x): if isinstance(v, six.string_types): f = "%s%s%s" % (f, self.separator, v) v = 1 try: Xa[i, vocab[f]] = dtype(v) except KeyError: pass return Xa def get_feature_names(self): """Returns a list of feature names, ordered by their indices. If one-of-K coding is applied to categorical features, this will include the constructed feature names but not the original ones. """ return self.feature_names_ def restrict(self, support, indices=False): """Restrict the features to those in support using feature selection. This function modifies the estimator in-place. Parameters ---------- support : array-like Boolean mask or list of indices (as returned by the get_support member of feature selectors). indices : boolean, optional Whether support is a list of indices. Returns ------- self Examples -------- >>> from sklearn.feature_extraction import DictVectorizer >>> from sklearn.feature_selection import SelectKBest, chi2 >>> v = DictVectorizer() >>> D = [{'foo': 1, 'bar': 2}, {'foo': 3, 'baz': 1}] >>> X = v.fit_transform(D) >>> support = SelectKBest(chi2, k=2).fit(X, [0, 1]) >>> v.get_feature_names() ['bar', 'baz', 'foo'] >>> v.restrict(support.get_support()) # doctest: +ELLIPSIS DictVectorizer(dtype=..., separator='=', sort=True, sparse=True) >>> v.get_feature_names() ['bar', 'foo'] """ if not indices: support = np.where(support)[0] names = self.feature_names_ new_vocab = {} for i in support: new_vocab[names[i]] = len(new_vocab) self.vocabulary_ = new_vocab self.feature_names_ = [f for f, i in sorted(six.iteritems(new_vocab), key=itemgetter(1))] return self
bsd-3-clause
mwest1066/PrairieLearn
exampleCourse/questions/demoRandomPlot/server.py
5
1490
import matplotlib.pyplot as plt import io import random import numpy def file(data): if data['filename']=='figure.png': # Create the figure x = numpy.linspace(-5,5) f = data['params']['m']*x+data['params']['b'] fig = plt.figure() ax = fig.add_subplot(1,1,1) plt.plot(x,f) plt.xticks([x for x in range(-5,6,1)], fontsize=14) fmin = int(numpy.floor(min(f))-1) fmax = int(numpy.ceil(max(f))+1) if fmax-fmin>12: plt.yticks([y for y in range(fmin,fmax+4,4)], fontsize=14) plt.axes().set_yticks([y for y in range(fmin,fmax+1,1)], minor=True) plt.axes().yaxis.grid(True, 'minor') else: plt.yticks([y for y in range(fmin,fmax+1,1)], fontsize=14) plt.grid() plt.xlabel('$x$', fontsize=18) plt.ylabel('$f(x)$', fontsize=18) plt.autoscale(enable=True, tight=True) fig.set_tight_layout(True) # Save the figure and return it as a buffer buf = io.BytesIO() plt.savefig(buf,format='png') return buf def generate(data): # Pick a non-zero slope while(True): m = random.randint(-2,2) if m is not 0: break # Pick a y-intercept b = random.randint(-3,3) # Pick x x = random.randint(-5,5) # Find f(x) f = m*x+b data['params']['m'] = m data['params']['b'] = b data['params']['x'] = x data['correct_answers']['f'] = f
agpl-3.0
mtasende/Machine-Learning-Nanodegree-Capstone
recommender/agent_predictor.py
1
9382
import numpy as np import random import pandas as pd import predictor.feature_extraction as fe import utils.preprocessing as pp BASE_DAYS = 112 class AgentPredictor(object): """ Reinforcement learner. Will use Q learning, dyna Q, and some custom additions. (Initially based on the template for the Machine Learning for Trading course, by Tucker Balch)""" def __init__(self, num_states, num_actions, alpha=0.2, gamma=0.9, random_actions_rate=0.9, random_actions_decrease=0.999, dyna_iterations=0, verbose=False, name='NN', estimator_close=None, estimator_volume=None, env=None, prediction_window=BASE_DAYS): self.verbose = verbose # Dimensions of the problem self.num_states = num_states self.num_actions = num_actions # Parameters self.alpha = alpha self.gamma = gamma self.random_actions_rate = random_actions_rate self.random_actions_decrease = random_actions_decrease self.dyna_iterations = dyna_iterations # Initialization self.s = 0 self.a = 0 self.Q = 1.0 - 2*np.random.rand(num_states, num_actions) # QExplore keeps track of how many times the (s,a) pair was visited (with Q update) self.QExplore = np.ones((num_states, num_actions)) # T and R for the hallucination models # Probabilities of transition self.T = 0.00001*np.ones((num_states, num_actions, num_states)) # Expected immediate reward self.R = 1.0 - 2*np.random.rand(num_states, num_actions) self.name = name # For the dyna predictor self.estimator_close = estimator_close self.estimator_volume = estimator_volume self.history_df = None self.env = env self.prediction_window = prediction_window def random_action(self, s, actions=None): """ This function chooses a random action, but not uniformly. It addresses the problem that a totally random exploration is very slow. So it keeps track of the explored (state,action) pairs and looks for new things to do. :param s: the current state :param actions: A list of possible actions :return: action """ if actions is None: actions = range(self.num_actions) probas = 1/self.QExplore[s, actions] # Normalize probas /= np.sum(probas) action = np.random.choice(actions, p=probas) # action = random.randint(0, self.num_actions-1) return action def choose_action(self, s): """ Chooses an action. With "random_actions_rate" probability it returns a random action. If it doesn't, then it returns the best option from the Q table. It doesnt' update the Q table nor the random_actions_rate variable. :param s: is the current state :return: action """ do_explore = (random.random() < self.random_actions_rate) if do_explore: action = self.random_action(s) else: actions = range(self.num_actions) max_q = np.max(self.Q[s]) # Now, get all the actions that have Q == maxQ optimal_actions = [] for action_temp in actions: if self.Q[s, action_temp] == max_q: optimal_actions.append(action_temp) # Choose one of the optimal choices, at random # (I could use the QExplore to choose also...) action = random.choice(optimal_actions) return action def hallucinate(self, s): # Initialize the hallucinating states and actions (the real ones shouldn't change) # Should hallucinations be more random?? To test later... # h_radom_actions_rate = self.random_actions_rate h_s = s # if self.history_df is not None: h_history_df = self.history_df.copy() # Initially, it is filled with the real values h_history_df = h_history_df.append(self.predict_steps(h_history_df, self.dyna_iterations)) stacked_h_history_df = pd.DataFrame(h_history_df.stack(), columns=[self.env.symbol]) internal_env = self.env.clone_with_new_data(stacked_h_history_df) for i in range(self.dyna_iterations): # Get new action h_a = self.choose_action(h_s) # Simulate transitions and rewards '''print(i) print(internal_env.portfolio.current_date) print(h_history_df.shape) print(internal_env.data_df.shape) print(internal_env.data_df) print('-'*120)''' h_r, h_s_prime = internal_env.get_consequences_from_fraction_index(h_a) # Update Q # Get the best Q for h_s' max_q_prime = np.max(self.Q[h_s_prime]) # Now use the formula to update Q self.Q[h_s, h_a] = (1-self.alpha)*self.Q[h_s, h_a] + \ self.alpha*(h_r + self.gamma * max_q_prime) # Update the state h_s = h_s_prime def play_learned_response(self, new_state): """ This function does the same as "play", but without updating the Q table. Given a new state, it chooses an action according to the best learned policy, so far. It does update the state. :param new_state: The resulting state for the previous action, or the state that was externally set. :returns: The chosen action """ # Choose an action action = self.choose_action(new_state) # Update the state and action self.s = new_state self.a = action if self.verbose: print("s =", new_state, "a =", action) return action def play(self, reward, new_state): """ Given a new state, and a reward for the previous action, chooses an action, updating the Q table in the process. :param new_state: The resulting state for the previous action. :param reward: The reward for the previous action. :returns: The chosen action. """ # Update Q ------------------------------------------ # Get the best Q for s' maxQprime = np.max(self.Q[new_state]) # Now use the formula to update Q self.Q[self.s, self.a] = (1-self.alpha)*self.Q[self.s, self.a] + \ self.alpha*(reward + self.gamma * maxQprime) # Hallucinate some experience... # Update T self.T[self.s, self.a, new_state] += 1 # Update R self.R[self.s, self.a] = (1-self.alpha)*self.R[self.s, self.a] + self.alpha * reward # Update the historical data self.set_history() # Hallucinate! self.hallucinate(new_state) # End of Update Q ----------------------------------- # Choose an action and then update random_action_rate (!) action = self.choose_action(new_state) self.random_actions_rate *= self.random_actions_decrease # Update the state and action self.s = new_state self.a = action # Update QExplore self.QExplore[new_state, action] += 1.0 # Print some debugging messages if self.verbose: print("s = {} a = {} reward = {}".format(new_state, action, reward)) return action @staticmethod def generate_samples(data_df): start_date = data_df.index[0] close_sample = pd.DataFrame(data_df['Close'].values, columns=[start_date]).T close_sample = close_sample / close_sample.iloc[0, 0] volume_sample = pd.DataFrame(data_df['Volume'].values, columns=[start_date]).T volume_sample = volume_sample / volume_sample.mean(axis=1)[0] return close_sample, volume_sample def predict_one_step(self, h_history_df): close_sample, volume_sample = self.generate_samples(h_history_df) estimated_close = self.estimator_close.predict(close_sample).iloc[0, 0] * h_history_df['Close'].iloc[0] estimated_volume = self.estimator_volume.predict(volume_sample).iloc[0, 0] * \ h_history_df['Volume'].mean() predicted_date = fe.add_market_days(h_history_df.index[-1], 1) h_history_df = h_history_df.drop(h_history_df.index[0]) h_history_df.loc[predicted_date, :] = {'Close': estimated_close, 'Volume': estimated_volume} return h_history_df def predict_steps(self, h_history_df, n_steps): predicted_df = pd.DataFrame() for i in range(n_steps): h_history_df = self.predict_one_step(h_history_df.copy()) predicted_df = predicted_df.append(h_history_df.iloc[-1]) return predicted_df def set_history(self): data_in_df = self.env.data_df[self.env.symbol].unstack() current_index = data_in_df.index.get_loc(self.env.portfolio.current_date) window = self.prediction_window self.history_df = pp.fill_missing(data_in_df[['Close', 'Volume']]. iloc[current_index-window+1:current_index+1]) def __str__(self): return self.name __repr__ = __str__
mit
EmreAtes/spack
var/spack/repos/builtin/packages/pandaseq/package.py
3
2109
############################################################################## # Copyright (c) 2013-2018, Lawrence Livermore National Security, LLC. # Produced at the Lawrence Livermore National Laboratory. # # This file is part of Spack. # Created by Todd Gamblin, [email protected], All rights reserved. # LLNL-CODE-647188 # # For details, see https://github.com/spack/spack # Please also see the NOTICE and LICENSE files for our notice and the LGPL. # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU Lesser General Public License (as # published by the Free Software Foundation) version 2.1, February 1999. # # This program is distributed in the hope that it will be useful, but # WITHOUT ANY WARRANTY; without even the IMPLIED WARRANTY OF # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the terms and # conditions of the GNU Lesser General Public License for more details. # # You should have received a copy of the GNU Lesser General Public # License along with this program; if not, write to the Free Software # Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA ############################################################################## from spack import * class Pandaseq(AutotoolsPackage): """PANDASEQ is a program to align Illumina reads, optionally with PCR primers embedded in the sequence, and reconstruct an overlapping sequence.""" homepage = "https://github.com/neufeld/pandaseq" url = "https://github.com/neufeld/pandaseq/archive/v2.11.tar.gz" version('2.11', 'a8ae0e938bac592fc07dfa668147d80b') version('2.10', '5b5b04c9b693a999f10a9c9bd643f068') depends_on('autoconf', type='build') depends_on('automake', type='build') depends_on('libtool', type=('build', 'link')) depends_on('m4', type='build') depends_on('zlib', type='build') depends_on('pkg-config', type='build') depends_on('bzip2', type='link') def autoreconf(self, spec, prefix): bash = which('bash') bash('./autogen.sh')
lgpl-2.1
rjw57/openni-skeleton-export
examples/normalshade.py
1
3466
#!/usr/bin/env python # # An example script for shading user depth silhouettes with some simple "fake" # shading. """ Usage: normalshade.py (-h | --help) normalshade.py [--verbose] <logfile> <frame-prefix> Options: -h, --help Show a brief usage summary. -v, --verbose Increase verbosity of output. """ import logging import docopt import numpy as np import matplotlib.pyplot as plt from PIL import Image import scipy.ndimage as ndi import tables LOG = logging.getLogger() def main(): """Main entry point.""" opts = docopt.docopt(__doc__) logging.basicConfig( level=logging.INFO if opts['--verbose'] else logging.WARN ) LOG.info('Opening log file {0}'.format(opts['<logfile>'])) log_root = tables.open_file(opts['<logfile>']).root for frame in log_root.frames: frame_idx = frame._v_attrs.idx if frame_idx % 30 == 0: LOG.info('Processing frame {0}...'.format(frame_idx)) # Copy depth and label image to numpy array depth, label = frame.depth[:], frame.label[:] # Copy points to numpy array points = frame.points[:] # Create NxMx3 "point map" point_map = np.zeros(depth.shape + (3,)) point_map[depth != 0, :] = points # Overall normal image normals = np.zeros(depth.shape + (3,)) # Extract each user from the depth image for user in frame.users: user_mask = label == user._v_attrs.idx user_points = np.where(np.dstack((user_mask,)*3), point_map, 0) user_normals = compute_normals(user_points, user_mask) normals = np.where(np.dstack((user_mask,) * 3), user_normals, normals) # Compute a normal image light_im = 0.5 + 0.5 * normals Image.fromarray(np.clip(255*light_im, 0, 255).astype(np.uint8)).save( '{0}-{1:05d}.png'.format(opts['<frame-prefix>'], frame_idx)) def compute_normals(points, mask): """ Given a NxMx3 array of points, compute a NxMx3 array of computed normals. mask should be a NxM array of booleans which are true iff the corresponding pixels in points are valid. """ # Mask invalid points points = np.copy(points) for i in range(3): points[np.logical_not(mask), i] = points[..., i].min() # Use a dilation filter to "grow" each point grow_points = np.copy(points) for i in range(4): grow_points = np.where(np.dstack((mask,)*3), grow_points, ndi.filters.maximum_filter(grow_points, size=(3,3,1)) ) # Blur point image for i in range(3): grow_points[...,i] = ndi.filters.gaussian_filter(grow_points[...,i], 1) # Compute row-wise and col-wise gradients dxdu, dxdv = np.gradient(grow_points[...,0]) dydu, dydv = np.gradient(grow_points[...,1]) dzdu, dzdv = np.gradient(grow_points[...,2]) # Compute 3d tangent vectors row_tangents = np.dstack((dxdu, dydu, dzdu)) col_tangents = -np.dstack((dxdv, dydv, dzdv)) # NB: -ve since v points along -ve y # Take cross product to compute normal normals = np.cross(row_tangents, col_tangents) # Normalise normals norm_lens = np.sqrt(np.sum(normals ** 2, axis=-1)) norm_lens[norm_lens == 0] = 1 # Don't touch zero-length normals for i in range(3): normals[...,i] /= norm_lens normals[...,i] *= mask return normals if __name__ == '__main__': main()
apache-2.0
pablocarderam/genetargeter
gRNAScores/Rule_Set_2_scoring_v1/analysis/models/baselines.py
1
3429
from __future__ import print_function from builtins import range import numpy as np import sklearn from sklearn.svm import LinearSVC from sklearn.linear_model import LogisticRegression import sklearn.linear_model def mean_on_fold(feature_sets, train, test, y, y_all, inputs, dim, dimsum, learn_options): return np.ones((test.sum(), 1))*y[train].mean(), None def random_on_fold(feature_sets, train, test, y, y_all, inputs, dim, dimsum, learn_options): return np.random.randn(test.sum(), 1), None def doench_on_fold(feature_sets, train, test, y, y_all, X, dim, dimsum, learn_options): auto_class_weight = None # 'auto'/None verbose = False penalty = [0.005*pow(1.15, x) for x in range(0, 45)] # ian's code: tvals = [0.005*pow(1.15,x) for x in range(0,45)] y_bin = y_all[learn_options['binary target name']].values[:, None] label_encoder = sklearn.preprocessing.LabelEncoder() label_encoder.fit(y_all['Target gene'].values[train]) gene_classes = label_encoder.transform(y_all['Target gene'].values[train]) cv = sklearn.cross_validation.StratifiedKFold(gene_classes, n_folds=10, shuffle=True) best_penalty = None cv_results = np.zeros((10, len(penalty))) for j, split in enumerate(cv): train_inner, test_inner = split for i, c in enumerate(penalty): # fit an L1-penalized SVM classifier clf = LinearSVC(penalty='l1', C=c, dual=False, class_weight=auto_class_weight) clf.fit(X[train][train_inner], y_bin[train][train_inner].flatten()) # pass features with non-zero coeff to Logistic with l2 penalty (original code?) non_zero_coeff = (clf.coef_ != 0.0) if np.all(non_zero_coeff is False): # if all are zero, turn one on so as to be able to run the code. non_zero_coeff[0] = True clf = LogisticRegression(penalty='l2', class_weight=auto_class_weight) clf.fit(X[train][train_inner][:, non_zero_coeff.flatten()], y[train][train_inner].flatten()) y_test = clf.predict_proba(X[train][test_inner][:, non_zero_coeff.flatten()])[:, 1] fpr, tpr, _ = sklearn.metrics.roc_curve(y_bin[train][test_inner], y_test) assert np.nan not in fpr, "found nan fpr" assert np.nan not in tpr, "found nan tpr" roc_auc = sklearn.metrics.auc(fpr, tpr) if verbose: print(j, i, roc_auc) cv_results[j][i] = roc_auc best_penalty = penalty[np.argmax(np.mean(cv_results, axis=0))] print("best AUC for penalty: ", np.median(cv_results, axis=0)) clf = LinearSVC(penalty='l1', C=best_penalty, dual=False, class_weight=auto_class_weight) clf.fit(X[train], y_bin[train].flatten()) non_zero_coeff = (clf.coef_ != 0.0) clf = LogisticRegression(penalty='l2', class_weight=auto_class_weight) clf.fit(X[train][:, non_zero_coeff.flatten()], y[train].flatten()) y_pred = clf.predict_proba(X[test][:, non_zero_coeff.flatten()])[:, 1:2] return y_pred, clf def sgrna_from_doench_on_fold(feature_sets, train, test, y, y_all, X, dim, dimsum, learn_options): assert len(list(feature_sets.keys())) == 1, "should only use sgRNA Score here" assert list(feature_sets.keys())[0] == "sgRNA Score" y_pred = X[test][:, 0] return y_pred, None
mit
sealhuang/brainCodingToolbox
braincode/vim2/rfencoding.py
3
27156
# emacs: -*- mode: python; py-indent-offset: 4; indent-tabs-mode: nil -*- # vi: set ft=python sts=4 ts=4 sw=4 et: import os import numpy as np import tables from scipy import ndimage from scipy.misc import imsave import scipy.optimize as opt from sklearn.cross_decomposition import PLSCanonical from sklearn.linear_model import LassoCV from braincode.util import configParser from braincode.math import parallel_corr2_coef, corr2_coef, ridge from braincode.math import get_pls_components, rcca from braincode.math import LinearRegression from braincode.math.norm import zero_one_norm, zscore from braincode.pipeline import retinotopy from braincode.pipeline.base import random_cross_modal_corr from braincode.vim2 import util as vutil def check_path(dir_path): """Check whether the directory does exist, if not, create it.""" if not os.path.exists(dir_path): os.mkdir(dir_path, 0755) def retinotopic_mapping(corr_file, data_dir, vxl_idx=None, figout=False): """Make the retinotopic mapping using activation map from CNN.""" if figout: fig_dir = os.path.join(data_dir, 'fig') check_path(fig_dir) # load the cross-correlation matrix from file corr_mtx = np.load(corr_file, mmap_mode='r') # set voxel index if not isinstance(vxl_idx, np.ndarray): vxl_idx = np.arange(corr_mtx.shape[0]) elif len(vxl_idx) != corr_mtx.shape[0]: print 'mismatch on voxel number!' return else: print 'voxel index loaded.' img_size = 55.0 pos_mtx = np.zeros((73728, 2)) pos_mtx[:] = np.nan for i in range(len(vxl_idx)): print 'Iter %s of %s' %(i+1, len(vxl_idx)), tmp = corr_mtx[i, :] tmp = np.nan_to_num(np.array(tmp)) # significant threshold for one-tail test tmp[tmp <= 0.019257] = 0 if np.sum(tmp): mmtx = tmp.reshape(55, 55) #tmp = tmp.reshape(96, 27, 27) #mmtx = np.max(tmp, axis=0) print mmtx.min(), mmtx.max() if figout: fig_file = os.path.join(fig_dir, 'v'+str(vxl_idx[i])+'.png') imsave(fig_file, mmtx) # get indices of n maximum values max_n = 20 row_idx, col_idx = np.unravel_index( np.argsort(mmtx.ravel())[-1*max_n:], mmtx.shape) nmtx = np.zeros(mmtx.shape) nmtx[row_idx, col_idx] = mmtx[row_idx, col_idx] # center of mass x, y = ndimage.measurements.center_of_mass(nmtx) pos_mtx[vxl_idx[i], :] = [x, y] else: print ' ' #receptive_field_file = os.path.join(data_dir, 'receptive_field_pos.npy') #np.save(receptive_field_file, pos_mtx) #pos_mtx = np.load(receptive_field_file) # generate retinotopic mapping base_name = 'train_max' + str(max_n) prf2visual_angle(pos_mtx, img_size, data_dir, base_name) def prf2visual_angle(prf_mtx, img_size, out_dir, base_name): """Generate retinotopic mapping based on voxels' pRF parameters. `prf_mtx` is a #voxel x pRF-features matrix, pRF features can be 2 columns (row, col) of image or 3 columns which adding a third pRF size parameters. """ feature_size = prf_mtx.shape[1] pos_mtx = prf_mtx[:, :2] # eccentricity ecc = retinotopy.coord2ecc(pos_mtx, img_size, 20) vol = ecc.reshape(18, 64, 64) vutil.save2nifti(vol, os.path.join(out_dir, base_name+'_ecc.nii.gz')) # angle angle = retinotopy.coord2angle(pos_mtx, img_size) vol = angle.reshape(18, 64, 64) vutil.save2nifti(vol, os.path.join(out_dir, base_name+'_angle.nii.gz')) # pRF size if feature_size > 2: size_angle = retinotopy.get_prf_size(prf_mtx, 55, 20) vol = size_angle.reshape(18, 64, 64) vutil.save2nifti(vol, os.path.join(out_dir, base_name+'_size.nii.gz')) def visual_prf(corr_mtx, vxl_idx, prf_dir): """pRF visualization.""" check_path(prf_dir) prf = np.zeros_like(corr_mtx) for i in range(len(vxl_idx)): orig_mtx = corr_mtx[i, :].reshape(55, 55) orig_file = os.path.join(prf_dir, 'v'+str(vxl_idx[i])+'_orig.png') imsave(orig_file, orig_mtx) prf_mtx = orig_mtx.copy() prf_mtx[prf_mtx<prf_mtx.max()*0.8] = 0 prf_file = os.path.join(prf_dir, 'v'+str(vxl_idx[i])+'_prf.png') imsave(prf_file, prf_mtx) prf[i, :] = prf_mtx.flatten() np.save(os.path.join(prf_dir, 'prf.npy'), prf) def get_roi_idx(fmri_table, vxl_idx): """Get ROI label for each voxel.""" rois = ['v1lh', 'v1rh', 'v2lh', 'v2rh', 'v3lh', 'v3rh', 'v3alh', 'v3arh', 'v3blh', 'v3brh', 'v4lh', 'v4rh', 'MTlh', 'MTrh'] roi_dict = {} for roi in rois: roi_mask = fmri_table.get_node('/roi/%s'%(roi))[:].flatten() roi_idx = np.nonzero(roi_mask==1)[0] roi_idx = np.intersect1d(roi_idx, vxl_idx) if roi_idx.sum(): roi_ptr = np.array([np.where(vxl_idx==roi_idx[i])[0][0] for i in range(len(roi_idx))]) roi_dict[roi] = roi_ptr return roi_dict def roi_info(corr_mtx, wt_mtx, fmri_table, mask_idx, out_dir): """Get ROI info.""" roi_list = ['v1lh', 'v1rh', 'v2lh', 'v2rh', 'v3lh', 'v3rh', 'v3alh', 'v3arh', 'v3blh', 'v3brh', 'v4lh', 'v4rh', 'MTlh', 'MTrh', 'MTplh', 'MTprh'] fingerprints = np.zeros((wt_mtx.shape[2], len(roi_list))) for ridx in range(len(roi_list)): roi_mask = fmri_table.get_node('/roi/%s'%(roi_list[ridx]))[:].flatten() roi_idx = np.nonzero(roi_mask==1)[0] roi_idx = np.intersect1d(roi_idx, mask_idx) roi_ptr = np.array([np.where(mask_idx==roi_idx[i])[0][0] for i in range(len(roi_idx))]) #-- plot pRF for each voxel roi_dir = os.path.join(out_dir, roi_list[ridx]) os.system('mkdir %s'%(roi_dir)) for idx in roi_ptr: tmp = corr_mtx[:, idx] if np.sum(tmp): tmp = tmp.reshape(13, 13) vutil.save_imshow(tmp, os.path.join(roi_dir, '%s.png'%(mask_idx[idx]))) else: print 'Drop %s'%(idx) #-- get feature response figure print ele_num = 0 fp = np.zeros((fingerprints.shape[0])) for idx in roi_ptr: tmp = corr_mtx[:, idx] # conv1+optical : 0.17419 # norm1 : 0.15906 # norm2 : 0.14636 # conv3 : 0.14502 f = tmp>=0.14502 if f.sum(): ele_num += f.sum() fp += np.sum(wt_mtx[f, idx, :], axis=0) fp /= ele_num fingerprints[:, ridx] = fp #-- plot fingerprint for each roi #for i in range(len(roi_list)): # plt.bar(np.arange(96), fingerprints[:96, i], 0.35) # plt.savefig('%s.png'%(roi_list[i])) # plt.close() np.save(os.path.join(out_dir, 'roi_fingerprints.npy'), fingerprints) if __name__ == '__main__': """Main function.""" # config parser cf = configParser.Config('config') root_dir = cf.get('base', 'path') feat_dir = os.path.join(root_dir, 'sfeatures') db_dir = os.path.join(root_dir, 'subjects') # phrase 'test': analyses were only conducted within lV1 for code test # phrase 'work': for real analyses phrase = 'test' # subj config subj_id = 1 subj_dir = os.path.join(db_dir, 'vS%s'%(subj_id)) #-- load fmri data fmri_file = os.path.join(subj_dir, 'VoxelResponses.mat') tf = tables.open_file(fmri_file) #tf.list_nodes #-- roi mat to nii #roi_file = os.path.join(subj_dir, 'S%s_small_roi.nii.gz'%(subj_id)) #vutil.roi2nifti(tf, roi_file, mode='small') #-- get mean fmri responses #dataset = 'rt' #mean_file = os.path.join(subj_dir, 'S%s_mean_%s.nii.gz'%(subj_id, dataset)) #vutil.gen_mean_vol(tf, dataset, mean_file) #-- create mask train_fmri_ts = tf.get_node('/rt')[:] # data.shape = (73728, 7200) # get non-nan voxel indexs fmri_s = train_fmri_ts.sum(axis=1) non_nan_idx = np.nonzero(np.logical_not(np.isnan(fmri_s)))[0] if phrase=='test': lv1_mask = tf.get_node('/roi/v1lh')[:].flatten() vxl_idx = np.nonzero(lv1_mask==1)[0] # for vS1, lV1 contains 490 non-NaN voxels vxl_idx = np.intersect1d(vxl_idx, non_nan_idx) else: full_mask_file = os.path.join(subj_dir, 'S%s_mask.nii.gz'%(subj_id)) full_mask = vutil.data_swap(full_mask_file).flatten() full_vxl_idx = np.nonzero(full_mask==1)[0] vxl_idx = np.intersect1d(full_vxl_idx, non_nan_idx) #np.save(os.path.join(subj_dir, 'full_vxl_idx.npy'), vxl_idx) roi_dict = get_roi_idx(tf, vxl_idx) #np.save(os.path.join(subj_dir, 'roi_idx_pointer.npy'), roi_dict) #roi_dict = np.load(os.path.join(subj_dir, 'roi_idx_pointer.npy')).item() #-- load fmri response # data shape: (#voxel, 7200/540) train_fmri_ts = tf.get_node('/rt')[:] train_fmri_ts = np.nan_to_num(train_fmri_ts[vxl_idx]) val_fmri_ts = tf.get_node('/rv')[:] val_fmri_ts = np.nan_to_num(val_fmri_ts[vxl_idx]) #-- save masked data as npy file #train_file = os.path.join(subj_dir, 'S%s_train_fmri_lV1.npy'%(subj_id)) #val_file = os.path.join(subj_dir, 'S%s_val_fmri_lV1.npy'%(subj_id)) #np.save(train_file, train_fmri_ts) #np.save(val_file, val_fmri_ts) #-- load cnn activation data # data.shape = (feature_size, x, y, 7200/540) #train_feat_file = os.path.join(feat_dir, 'conv1_train_trs.npy') #train_feat_ts = np.load(train_feat_file, mmap_mode='r') #val_feat_file = os.path.join(feat_dir, 'conv1_val_trs.npy') #val_feat_ts = np.load(val_feat_file, mmap_mode='r') #-- 2d gaussian kernel based pRF estimate prf_dir = os.path.join(subj_dir, 'prf') check_path(prf_dir) # parameter config fwhms = np.arange(1, 11) # lasso linear regression vxl_idx = vxl_idx[:10] file_idx = -1 for i in range(30250): print '--------------------------' print 'Kernel %s'%(i+1) # load CNN features modulated by Gaussian kernels if i/550 > file_idx: train_feat_file = os.path.join(feat_dir, 'gaussian_kernels', 'gaussian_conv1_train_trs_%s.npy'%(i/550)) train_feat_ts = np.load(train_feat_file) val_feat_file = os.path.join(feat_dir, 'gaussian_kernels', 'gaussian_conv1_val_trs_%s.npy'%(i/550)) val_feat_ts = np.load(val_feat_file) file_idx = i/550 train_x = train_feat_ts[..., i%550] val_x = val_feat_ts[..., i%550] # shape of x : (96, 7200/540) train_x = zscore(train_x).T val_x = zscore(val_x).T # output vars paras = np.zeros((96, 30250, len(vxl_idx))) val_corr = np.zeros((30250, len(vxl_idx))) alphas = np.zeros((30250, len(vxl_idx))) for j in range(len(vxl_idx)): print 'Voxel %s'%(j+1) train_y = train_fmri_ts[j] val_y = val_fmri_ts[j] lasso_cv = LassoCV(cv=10, n_jobs=4) lasso_cv.fit(train_x, train_y) alphas[i, j] = lasso_cv.alpha_ paras[:, i, j] = lasso_cv.coef_ pred_y = lasso_cv.predict(val_x) val_corr[i, j] = np.corrcoef(val_y, pred_y)[0][1] print 'Alpha %s, prediction score %s'%(alphas[i, j], val_corr[i, j]) np.save(os.path.join(prf_dir, 'lassoreg_paras.npy'), paras) np.save(os.path.join(prf_dir, 'lassoreg_pred_corr.npy'), val_corr) np.save(os.path.join(prf_dir, 'lassoreg_alphas.npy'), alphas) #-- pRF to retinotopy #prf_mtx = np.load(os.path.join(prf_dir, 'vxl_prf.npy')) ## generate full voxel feature matrix #full_prf_mtx = np.zeros((73728, 3)) #full_prf_mtx[:] = np.nan #for i in range(len(vxl_idx)): # full_prf_mtx[vxl_idx[i], :] = prf_mtx[i, :] #prf2visual_angle(full_prf_mtx, 55, prf_dir, 'retinotopy') #-- feature temporal z-score #print 'CNN features temporal z-score ...' ## summary features across channels #train_feat_ts = train_feat_ts.mean(axis=0) #train_feat_m = train_feat_ts.mean(axis=2, keepdims=True) #train_feat_s = train_feat_ts.std(axis=2, keepdims=True) #train_feat_ts = (train_feat_ts-train_feat_m)/(1e-10+train_feat_s) #val_feat_ts = val_feat_ts.mean(axis=0) #val_feat_m = val_feat_ts.mean(axis=2, keepdims=True) #val_feat_s = val_feat_ts.std(axis=2, keepdims=True) #val_feat_ts = (val_feat_ts-val_feat_m)/(1e-10+val_feat_s) #print 'Salience features temporal z-score ...' #train_sal_m = train_sal_ts.mean(axis=2, keepdims=True) #train_sal_s = train_sal_ts.std(axis=2, keepdims=True) #train_sal_ts = (train_sal_ts-train_sal_m)/(1e-10+train_sal_s) #val_sal_m = val_sal_ts.mean(axis=2, keepdims=True) #val_sal_s = val_sal_ts.std(axis=2, keepdims=True) #val_sal_ts = (val_sal_ts-val_sal_m)/(1e-10+val_sal_s) #print 'Salience modulated features temporal z-score ...' #train_salfeat_ts = train_salfeat_ts.mean(axis=0) #train_salfeat_m = train_salfeat_ts.mean(axis=2, keepdims=True) #train_salfeat_s = train_salfeat_ts.std(axis=2, keepdims=True) #train_salfeat_ts=(train_salfeat_ts-train_salfeat_m)/(1e-10+train_salfeat_s) #val_salfeat_ts = val_salfeat_ts.mean(axis=0) #val_salfeat_m = val_salfeat_ts.mean(axis=2, keepdims=True) #val_salfeat_s = val_salfeat_ts.std(axis=2, keepdims=True) #val_salfeat_ts = (val_salfeat_ts-val_salfeat_m)/(1e-10+val_salfeat_s) #-- voxel-wise linear regression #cross_corr_dir = os.path.join(subj_dir, 'spatial_cross_corr', 'lv1') #reg_dir = os.path.join(cross_corr_dir, 'linreg_l1') #check_path(reg_dir) #corr_mtx = np.load(os.path.join(cross_corr_dir, 'train_conv1_corr.npy')) #corr_mtx = corr_mtx.reshape(470, 55, 55) ## voxel-wise linear regression #wts = np.zeros((470, 55, 55, 3)) #train_corr = np.zeros((470, 55, 55)) #val_corr = np.zeros((470, 55, 55)) #wts_mask = np.zeros((470, 3)) #statsp_mask = np.zeros((470, 3)) #train_corr_mask = np.zeros(470,) #val_corr_mask = np.zeros(470, ) #for i in range(len(vxl_idx)): # print 'Voxel %s of %s ...'%(i+1, len(vxl_idx)) # prf = corr_mtx[i, ...].copy() # prf = prf > prf.max()*0.8 # print '%s voxels selected'%(prf.sum()) # if not prf.sum(): # continue # pos = np.nonzero(prf) # wts_tmp = np.zeros((pos[0].shape[0], 3)) # statsp_tmp = np.zeros((pos[0].shape[0], 3)) # train_corr_tmp = np.zeros(pos[0].shape[0],) # val_corr_tmp = np.zeros(pos[0].shape[0],) # for j in range(pos[0].shape[0]): # train_Y = train_fmri_ts[i, :] # val_Y = val_fmri_ts[i, :] # train_X = np.zeros((7200, 3)) # train_X[:, 0] = train_feat_ts[pos[0][j], pos[1][j], :] # train_X[:, 1] = train_sal_ts[pos[0][j], pos[1][j], :] # train_X[:, 2] = train_salfeat_ts[pos[0][j], pos[1][j], :] # val_X = np.zeros((540, 3)) # val_X[:, 0] = val_feat_ts[pos[0][j], pos[1][j], :] # val_X[:, 1] = val_sal_ts[pos[0][j], pos[1][j], :] # val_X[:, 2] = val_salfeat_ts[pos[0][j], pos[1][j], :] # model = LinearRegression(fit_intercept=False) # model.fit(train_X, train_Y) # wts[i, pos[0][j], pos[1][j], :] = model.coef_ # ptrain_Y = model.predict(train_X) # tcorr = np.corrcoef(ptrain_Y, train_Y)[0][1] # train_corr[i, pos[0][j], pos[1][j]] = tcorr # pval_Y = model.predict(val_X) # vcorr = np.corrcoef(pval_Y, val_Y)[0][1] # val_corr[i, pos[0][j], pos[1][j]] = vcorr # wts_tmp[j, :] = model.coef_ # statsp_tmp[j, :] = model.p # train_corr_tmp[j] = tcorr # val_corr_tmp[j] = vcorr # wts_mask[i, :] = wts_tmp.mean(axis=0) # statsp_mask[i, :] = statsp_tmp.mean(axis=0) # train_corr_mask[i] = train_corr_tmp.mean() # val_corr_mask[i] = val_corr_tmp.mean() #np.save(os.path.join(reg_dir, 'wts.npy'), wts) #np.save(os.path.join(reg_dir, 'train_corr.npy'), train_corr) #np.save(os.path.join(reg_dir, 'val_corr.npy'), val_corr) #np.save(os.path.join(reg_dir, 'wts_mask.npy'), wts_mask) #np.save(os.path.join(reg_dir, 'stats_p_mask.npy'), statsp_mask) #np.save(os.path.join(reg_dir, 'train_corr_mask.npy'), train_corr_mask) #np.save(os.path.join(reg_dir, 'val_corr_mask.npy'), val_corr_mask) #-- Cross-modality mapping: voxel~CNN feature position correlation #cross_corr_dir = os.path.join(subj_dir, 'spatial_cross_corr') #check_path(cross_corr_dir) #-- features from CNN #corr_file = os.path.join(cross_corr_dir, 'train_conv1_corr.npy') #feat_ts = train_feat_ts.sum(axis=0).reshape(3025, 7200) #parallel_corr2_coef(train_fmri_ts, feat_ts, corr_file, block_size=55) #-- visual-pRF: select pixels which corr-coef greater than 1/2 maximum #corr_mtx = np.load(corr_file) #prf_dir = os.path.join(cross_corr_dir, 'prf') #visual_prf(corr_mtx, vxl_idx, prf_dir) #-- categorize voxels based on pRF types #corr_file = os.path.join(cross_corr_dir, 'train_conv1_corr.npy') #corr_mtx = np.load(corr_file) ## get pRF by remove non-significant pixels ## two-tailed p < 0.01: r > 0.0302 and r < -0.0302 #ncorr_mtx = corr_mtx.copy() #ncorr_mtx[(corr_mtx<=0.0302)&(corr_mtx>=-0.0302)] = 0 #prf_max = ncorr_mtx.max(axis=1) #prf_min = ncorr_mtx.min(axis=1) #prf_type = np.zeros(corr_mtx.shape[0]) #prf_type[(prf_max>0)&(prf_min>0)] = 1 #prf_type[(prf_max>0)&(prf_min==0)] = 2 #prf_type[(prf_max>0)&(prf_min<0)] = 3 #prf_type[(prf_max==0)&(prf_min<0)] = 4 #prf_type[(prf_max<0)&(prf_min<0)] = 5 #np.save(os.path.join(cross_corr_dir, 'prf_type.npy'), prf_type) #nii_file = os.path.join(cross_corr_dir, 'prf_type.nii.gz') #vutil.vxl_data2nifti(prf_type, vxl_idx, nii_file) #-- pRF stats and visualization for each ROI #prf_dir = os.path.join(cross_corr_dir, 'prf_figs') #check_path(prf_dir) #for roi in roi_dict: # print '------%s------'%(roi) # roi_idx = roi_dict[roi] # # pRF type stats in each ROI # roi_prf_type = prf_type[roi_idx] # print 'Voxel number: %s'%(roi_prf_type.shape[0]) # for i in range(5): # vxl_num = np.sum(roi_prf_type==(i+1)) # vxl_ratio = vxl_num * 100.0 / roi_prf_type.shape[0] # print '%s, %0.2f'%(vxl_num, vxl_ratio) # # save pRF as figs # roi_dir = os.path.join(prf_dir, roi) # check_path(roi_dir) # roi_corr_mtx = corr_mtx[roi_idx, :] # roi_min = roi_corr_mtx.min() # roi_max = roi_corr_mtx.max() # for i in roi_idx: # vxl_prf = corr_mtx[i, :].reshape(55, 55) # filename = 'v'+str(vxl_idx[i])+'_'+str(int(prf_type[i]))+'.png' # out_file = os.path.join(roi_dir, filename) # vutil.save_imshow(vxl_prf, out_file, val_range=(roi_min, roi_max)) #-- get pRF parameters based on 2D Gaussian curve using model fitting #corr_mtx = np.load(os.path.join(cross_corr_dir, 'train_conv1_corr.npy')) ## last column is curve fitting error based on squared-differnece #paras = np.zeros((corr_mtx.shape[0], 6)) #for i in range(corr_mtx.shape[0]): # print i, # y = corr_mtx[i, :] # if y.max() >= abs(y.min()): # x0, y0 = np.unravel_index(np.argmax(y.reshape(55, 55)), (55, 55)) # else: # x0, y0 = np.unravel_index(np.argmin(y.reshape(55, 55)), (55, 55)) # initial_guess = (x0, y0, 3, 0, 2) # try: # popt, pcov = opt.curve_fit(vutil.sugar_gaussian_f, 55, y, # p0=initial_guess) # #print popt # paras[i, :5] = popt # pred_y = vutil.sugar_gaussian_f(55, *popt) # paras[i, 5] = np.square(y-pred_y).sum() # except RuntimeError: # print 'Error - curve_fit failed' # paras[i, :] = np.nan #np.save(os.path.join(cross_corr_dir, 'curve_fit_paras.npy'), paras) #-- curve-fit pRF visualization for each ROI #prf_dir = os.path.join(cross_corr_dir, 'fit_prf_figs') #check_path(prf_dir) #paras = np.load(os.path.join(cross_corr_dir, 'curve_fit_paras.npy')) #corr_mtx = np.load(os.path.join(cross_corr_dir, 'train_conv1_corr.npy')) #prf_type = np.load(os.path.join(cross_corr_dir, 'prf_type.npy')) #for roi in roi_dict: # print '------%s------'%(roi) # roi_idx = roi_dict[roi] # # save pRF as figs # roi_dir = os.path.join(prf_dir, roi) # check_path(roi_dir) # roi_corr_mtx = corr_mtx[roi_idx, :] # roi_min = roi_corr_mtx.min() # roi_max = roi_corr_mtx.max() # for i in roi_idx: # if np.isnan(paras[i, 0]): # continue # p = paras[i, :] # vxl_prf = vutil.sugar_gaussian_f(55, *p).reshape(55, 55) # filename = 'v'+str(vxl_idx[i])+'_'+str(int(prf_type[i]))+'.png' # out_file = os.path.join(roi_dir, filename) # vutil.save_imshow(vxl_prf, out_file, val_range=(roi_min, roi_max)) #-- show pRF parameters on cortical surface #paras = np.load(os.path.join(cross_corr_dir, 'curve_fit_paras.npy')) #full_prf_mtx = np.zeros((73728, 3)) #full_prf_mtx[:] = np.nan #for i in range(len(vxl_idx)): # full_prf_mtx[vxl_idx[i], :] = paras[i, :3] #prf2visual_angle(full_prf_mtx, 55, cross_corr_dir, 'curve_fit') #err_file = os.path.join(cross_corr_dir, 'curve_fit_err.nii.gz') #vutil.vxl_data2nifti(paras[:, 5], vxl_idx, err_file) #-- Cross-modality mapping: voxel~CNN unit correlation #cross_corr_dir = os.path.join(subj_dir, 'cross_corr') #check_path(cross_corr_dir) # features from CNN #corr_file = os.path.join(cross_corr_dir, 'train_norm1_corr.npy') #feat_ts = train_feat_ts.reshape(69984, 7200) #parallel_corr2_coef(train_fmri_ts, feat_ts, corr_file, block_size=96) # features from optical flow #corr_file = os.path.join(cross_corr_dir, 'train_optic_mag_corr.npy') #feat_ts = tr_mag_ts.reshape(16384, 7200) #parallel_corr2_coef(train_fmri_ts, feat_ts, corr_file, block_size=55) #-- random cross-modal correlation #rand_corr_file = os.path.join(cross_corr_dir, 'rand_train_conv1_corr.npy') #feat_ts = tr_mag_ts.reshape(16384, 7200) #random_cross_modal_corr(train_fmri_ts, feat_ts, 1000, 1000, rand_corr_file) #permutation_stats(np.load(rand_corr_file)) #-- retinotopic mapping based on cross-correlation with norm1 #cross_corr_dir = os.path.join(subj_dir, 'cross_corr') #retino_dir = os.path.join(cross_corr_dir, 'retinotopic') #check_path(retino_dir) #corr_file = os.path.join(cross_corr_dir, 'train_norm1_corr.npy') #retinotopic_mapping(corr_file, retino_dir, vxl_idx, figout=False) #-- feature temporal z-score #print 'CNN features temporal z-score ...' #train_feat_m = train_feat_ts.mean(axis=3, keepdims=True) #train_feat_s = train_feat_ts.std(axis=3, keepdims=True) #train_feat_ts = (train_feat_ts-train_feat_m)/(1e-10+train_feat_s) #val_feat_ts = (val_feat_ts-train_feat_m)/(1e-10+train_feat_s) #tmp_train_file = os.path.join(feat_dir, 'train_conv1_trs_z.npy') #np.save(tmp_train_file, train_feat_ts) #del train_feat_ts #tmp_val_file = os.path.join(feat_dir, 'val_norm1_trs_z.npy') #np.save(tmp_val_file, val_feat_ts) #del val_feat_ts #train_feat_ts = np.load(tmp_train_file, mmap_mode='r') #train_feat_ts = train_feat_ts.reshape(69984, 7200) #val_feat_ts = np.load(tmp_val_file, mmap_mode='r') #val_feat_ts = val_feat_ts.reshape(69984, 540) #-- fmri data z-score #print 'fmri data temporal z-score' #m = np.mean(train_fmri_ts, axis=1, keepdims=True) #s = np.std(train_fmri_ts, axis=1, keepdims=True) #train_fmri_ts = (train_fmri_ts - m) / (1e-10 + s) #m = np.mean(val_fmri_ts, axis=1, keepdims=True) #s = np.std(val_fmri_ts, axis=1, keepdims=True) #val_fmri_ts = (val_fmri_ts - m) / (1e-10 + s) #-- Encoding: ridge regression #ridge_dir = os.path.join(subj_dir, 'ridge') #check_path(ridge_dir) #-- layer-wise ridge regression: select cnn units whose correlation with #-- the given voxel exceeded the half of the maximal correlation within #-- the layer. #cross_corr_dir = os.path.join(subj_dir, 'cross_corr') #cross_corr_file = os.path.join(cross_corr_dir, 'train_norm1_corr.npy') #cross_corr = np.load(cross_corr_file, mmap_mode='r') ## output config #ALPHA_NUM = 20 #BOOTS_NUM = 15 #full_vxl_num, feat_num = cross_corr.shape #vxl_num = len(vxl_idx) #wt_mtx = np.zeros((vxl_num, feat_num)) #alpha_mtx = np.zeros(vxl_num) #val_corr_mtx = np.zeros(vxl_num) ##bootstrap_corr_mtx = np.zeros((vxl_num, ALPHA_NUM, BOOTS_NUM)) #bootstrap_corr_mtx = np.zeros((vxl_num, BOOTS_NUM)) ## voxel-wise regression #for i in range(vxl_num): # print 'Voxel %s in %s'%(i+1, vxl_num) # v_corr = cross_corr[np.where(full_vxl_idx==vxl_idx[i])[0][0], :] # feat_idx = v_corr > (v_corr.max()/2) # print 'Select %s features'%(feat_idx.sum()) # vtrain_feat = train_feat_ts[feat_idx, :] # vval_feat = val_feat_ts[feat_idx, :] # vtrain_fmri = np.expand_dims(train_fmri_ts[i, :], axis=0) # vval_fmri = np.expand_dims(val_fmri_ts[i, :], axis=0) # wt, val_corr, alpha, bscores, valinds = ridge.bootstrap_ridge( # vtrain_feat.T, vtrain_fmri.T, # vval_feat.T, vval_fmri.T, # alphas=np.arange(100, 2001, 2001/ALPHA_NUM), # #alphas=np.logspace(-2, 3, ALPHA_NUM), # nboots=BOOTS_NUM, chunklen=72, nchunks=20, # single_alpha=False, use_corr=True) # print 'Alpha: %s'%(alpha) # print 'Val Corr: %s'%(val_corr) # wt_mtx[i, feat_idx] = wt.T # val_corr_mtx[i] = val_corr # alpha_mtx[i] = alpha # alpha_idx = np.where(np.arange(100, 2001, 2001/ALPHA_NUM)==alpha)[0][0] # #alpha_idx = np.where(np.logspace(-2, 3, ALPHA_NUM)==alpha)[0][0] # bootstrap_corr_mtx[i, :] = bscores[alpha_idx, 0, :] # #bootstrap_corr_mtx[i, ...] = bscores[:, 0, :] ## save output #wt_file = os.path.join(ridge_dir, 'norm1_wt.npy') #alpha_file = os.path.join(ridge_dir, 'norm1_alpha.npy') #val_corr_file = os.path.join(ridge_dir, 'norm1_val_corr.npy') #bootstrap_corr_file = os.path.join(ridge_dir, 'norm1_bootstrap_corr.npy') #np.save(wt_file, wt_mtx) #np.save(alpha_file, alpha_mtx) #np.save(val_corr_file, val_corr_mtx) #np.save(bootstrap_corr_file, bootstrap_corr_mtx)
bsd-3-clause
namccart/gnuradio
gr-digital/examples/example_timing.py
49
9180
#!/usr/bin/env python # # Copyright 2011-2013 Free Software Foundation, Inc. # # This file is part of GNU Radio # # GNU Radio is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 3, or (at your option) # any later version. # # GNU Radio is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with GNU Radio; see the file COPYING. If not, write to # the Free Software Foundation, Inc., 51 Franklin Street, # Boston, MA 02110-1301, USA. # from gnuradio import gr, digital, filter from gnuradio import blocks from gnuradio import channels from gnuradio import eng_notation from gnuradio.eng_option import eng_option from optparse import OptionParser import sys try: import scipy except ImportError: print "Error: could not import scipy (http://www.scipy.org/)" sys.exit(1) try: import pylab except ImportError: print "Error: could not import pylab (http://matplotlib.sourceforge.net/)" sys.exit(1) from scipy import fftpack class example_timing(gr.top_block): def __init__(self, N, sps, rolloff, ntaps, bw, noise, foffset, toffset, poffset, mode=0): gr.top_block.__init__(self) rrc_taps = filter.firdes.root_raised_cosine( sps, sps, 1.0, rolloff, ntaps) gain = bw nfilts = 32 rrc_taps_rx = filter.firdes.root_raised_cosine( nfilts, sps*nfilts, 1.0, rolloff, ntaps*nfilts) data = 2.0*scipy.random.randint(0, 2, N) - 1.0 data = scipy.exp(1j*poffset) * data self.src = blocks.vector_source_c(data.tolist(), False) self.rrc = filter.interp_fir_filter_ccf(sps, rrc_taps) self.chn = channels.channel_model(noise, foffset, toffset) self.off = filter.fractional_resampler_cc(0.20, 1.0) if mode == 0: self.clk = digital.pfb_clock_sync_ccf(sps, gain, rrc_taps_rx, nfilts, nfilts//2, 1) self.taps = self.clk.taps() self.dtaps = self.clk.diff_taps() self.delay = int(scipy.ceil(((len(rrc_taps)-1)/2 + (len(self.taps[0])-1)/2)/float(sps))) + 1 self.vsnk_err = blocks.vector_sink_f() self.vsnk_rat = blocks.vector_sink_f() self.vsnk_phs = blocks.vector_sink_f() self.connect((self.clk,1), self.vsnk_err) self.connect((self.clk,2), self.vsnk_rat) self.connect((self.clk,3), self.vsnk_phs) else: # mode == 1 mu = 0.5 gain_mu = bw gain_omega = 0.25*gain_mu*gain_mu omega_rel_lim = 0.02 self.clk = digital.clock_recovery_mm_cc(sps, gain_omega, mu, gain_mu, omega_rel_lim) self.vsnk_err = blocks.vector_sink_f() self.connect((self.clk,1), self.vsnk_err) self.vsnk_src = blocks.vector_sink_c() self.vsnk_clk = blocks.vector_sink_c() self.connect(self.src, self.rrc, self.chn, self.off, self.clk, self.vsnk_clk) self.connect(self.src, self.vsnk_src) def main(): parser = OptionParser(option_class=eng_option, conflict_handler="resolve") parser.add_option("-N", "--nsamples", type="int", default=2000, help="Set the number of samples to process [default=%default]") parser.add_option("-S", "--sps", type="int", default=4, help="Set the samples per symbol [default=%default]") parser.add_option("-r", "--rolloff", type="eng_float", default=0.35, help="Set the rolloff factor [default=%default]") parser.add_option("-W", "--bandwidth", type="eng_float", default=2*scipy.pi/100.0, help="Set the loop bandwidth (PFB) or gain (M&M) [default=%default]") parser.add_option("-n", "--ntaps", type="int", default=45, help="Set the number of taps in the filters [default=%default]") parser.add_option("", "--noise", type="eng_float", default=0.0, help="Set the simulation noise voltage [default=%default]") parser.add_option("-f", "--foffset", type="eng_float", default=0.0, help="Set the simulation's normalized frequency offset (in Hz) [default=%default]") parser.add_option("-t", "--toffset", type="eng_float", default=1.0, help="Set the simulation's timing offset [default=%default]") parser.add_option("-p", "--poffset", type="eng_float", default=0.0, help="Set the simulation's phase offset [default=%default]") parser.add_option("-M", "--mode", type="int", default=0, help="Set the recovery mode (0: polyphase, 1: M&M) [default=%default]") (options, args) = parser.parse_args () # Adjust N for the interpolation by sps options.nsamples = options.nsamples // options.sps # Set up the program-under-test put = example_timing(options.nsamples, options.sps, options.rolloff, options.ntaps, options.bandwidth, options.noise, options.foffset, options.toffset, options.poffset, options.mode) put.run() if options.mode == 0: data_src = scipy.array(put.vsnk_src.data()[20:]) data_clk = scipy.array(put.vsnk_clk.data()[20:]) data_err = scipy.array(put.vsnk_err.data()[20:]) data_rat = scipy.array(put.vsnk_rat.data()[20:]) data_phs = scipy.array(put.vsnk_phs.data()[20:]) f1 = pylab.figure(1, figsize=(12,10), facecolor='w') # Plot the IQ symbols s1 = f1.add_subplot(2,2,1) s1.plot(data_src.real, data_src.imag, "bo") s1.plot(data_clk.real, data_clk.imag, "ro") s1.set_title("IQ") s1.set_xlabel("Real part") s1.set_ylabel("Imag part") s1.set_xlim([-2, 2]) s1.set_ylim([-2, 2]) # Plot the symbols in time delay = put.delay m = len(data_clk.real) s2 = f1.add_subplot(2,2,2) s2.plot(data_src.real, "bs", markersize=10, label="Input") s2.plot(data_clk.real[delay:], "ro", label="Recovered") s2.set_title("Symbols") s2.set_xlabel("Samples") s2.set_ylabel("Real Part of Signals") s2.legend() # Plot the clock recovery loop's error s3 = f1.add_subplot(2,2,3) s3.plot(data_err, label="Error") s3.plot(data_rat, 'r', label="Update rate") s3.set_title("Clock Recovery Loop Error") s3.set_xlabel("Samples") s3.set_ylabel("Error") s3.set_ylim([-0.5, 0.5]) s3.legend() # Plot the clock recovery loop's error s4 = f1.add_subplot(2,2,4) s4.plot(data_phs) s4.set_title("Clock Recovery Loop Filter Phase") s4.set_xlabel("Samples") s4.set_ylabel("Filter Phase") diff_taps = put.dtaps ntaps = len(diff_taps[0]) nfilts = len(diff_taps) t = scipy.arange(0, ntaps*nfilts) f3 = pylab.figure(3, figsize=(12,10), facecolor='w') s31 = f3.add_subplot(2,1,1) s32 = f3.add_subplot(2,1,2) s31.set_title("Differential Filters") s32.set_title("FFT of Differential Filters") for i,d in enumerate(diff_taps): D = 20.0*scipy.log10(1e-20+abs(fftpack.fftshift(fftpack.fft(d, 10000)))) s31.plot(t[i::nfilts].real, d, "-o") s32.plot(D) s32.set_ylim([-120, 10]) # If testing the M&M clock recovery loop else: data_src = scipy.array(put.vsnk_src.data()[20:]) data_clk = scipy.array(put.vsnk_clk.data()[20:]) data_err = scipy.array(put.vsnk_err.data()[20:]) f1 = pylab.figure(1, figsize=(12,10), facecolor='w') # Plot the IQ symbols s1 = f1.add_subplot(2,2,1) s1.plot(data_src.real, data_src.imag, "o") s1.plot(data_clk.real, data_clk.imag, "ro") s1.set_title("IQ") s1.set_xlabel("Real part") s1.set_ylabel("Imag part") s1.set_xlim([-2, 2]) s1.set_ylim([-2, 2]) # Plot the symbols in time s2 = f1.add_subplot(2,2,2) s2.plot(data_src.real, "bs", markersize=10, label="Input") s2.plot(data_clk.real, "ro", label="Recovered") s2.set_title("Symbols") s2.set_xlabel("Samples") s2.set_ylabel("Real Part of Signals") s2.legend() # Plot the clock recovery loop's error s3 = f1.add_subplot(2,2,3) s3.plot(data_err) s3.set_title("Clock Recovery Loop Error") s3.set_xlabel("Samples") s3.set_ylabel("Error") pylab.show() if __name__ == "__main__": try: main() except KeyboardInterrupt: pass
gpl-3.0
PredictiveScienceLab/cluster-opt-bgo
pydes/_core.py
2
10321
""" Global Optimization of Expensive Functions. Author: Ilias Bilionis Date: 10/15/2014 01/29/2015 """ __all__ = ['expected_improvement', 'fb_expected_improvement', 'expected_information_gain', 'minimize', 'maximize', 'plot_summary', 'plot_summary_2d'] import GPy import GPy.inference.mcmc from GPy.inference.mcmc import HMC import numpy as np import math import scipy import scipy.stats as stats from scipy.integrate import quad #from choldate import choldowndate, cholupdate from statsmodels.sandbox.distributions.multivariate import mvnormcdf import math def remove(mu, S, i): """ Remove i element from mu and S. """ mu_ni = np.hstack([mu[:i], mu[i+1:]]) S_nini = np.array(np.bmat([[S[:i, :i], S[:i, i+1:]], [S[i+1:, :i], S[i+1:, i+1:]]])) return mu_ni, S_nini def maxpdf(x, mu, S): s = np.zeros(x.shape[0]) d = mu.shape[0] for i in xrange(d): mu_i = mu[i] S_ii = S[i, i] mu_ni, S_nini = remove(mu, S, i) S_ini = np.array(np.bmat([[S[:i, i], S[i+1:, i]]])) mu_nii = mu_ni[:, None] + np.dot(S_ini.T, x[None, :] - mu_i) / S_ii S_ninii = S_nini - np.dot(S_ini, S_ini.T) / S_ii phi_i = norm.pdf(x, loc=mu_i, scale=np.sqrt(S_ii)) Phi_i = np.array([mvnormcdf(x[j], mu_nii[:, j], S_ninii) for j in xrange(x.shape[0])]) s += phi_i * Phi_i return s def expected_improvement(X_design, model, mode='min'): """ Compute the Expected Improvement criterion at ``x``. """ y = model.Y.flatten() m_s, v_s = model.predict(X_design)[:2] m_s = m_s.flatten() v_s = v_s.flatten() s_s = np.sqrt(v_s) if mode == 'min': m_n = np.min(y) u = (m_n - m_s) / s_s elif mode == 'max': m_n = np.max(y) u = (m_s - m_n) / s_s else: raise NotImplementedError('I do not know what to do with mode %s' %mode) ei = s_s * (u * stats.norm.cdf(u) + stats.norm.pdf(u)) return ei def fb_expected_improvement(X_design, model, mode='min', stepsize=1e-2, num_samples=100): """ Compute the fully Bayesian expected improvement criterion. """ model.rbf.variance.set_prior(GPy.priors.LogGaussian(0., 1.)) model.rbf.lengthscale.set_prior(GPy.priors.LogGaussian(0., 0.1)) mcmc = HMC(model, stepsize=stepsize) params = mcmc.sample(num_samples=num_samples) ei_all = [] for i in xrange(params.shape[0]): model.rbf.variance = params[i, 0] model.rbf.lengthscale = params[i, 1] ei = expected_improvement(X_design, model, mode=mode) ei_all.append(ei) ei_all = np.array(ei_all) ei_fb = ei_all.mean(axis=0) return ei_fb def min_qoi(X_design, f): """ A QoI that corresponds to the min of the function. """ return np.argmin(f, axis=0) def kl_divergence(g1, g2): """ Compute the KL divergence. """ f = lambda(x): g1.evaluate([[x]]) * np.log(g1.evaluate([[x]]) / g2.evaluate([[x]])) return quad(f, 0, 6) def expected_information_gain(X_design, model, num_Omegas=1000, num_y=100, qoi=min_qoi, qoi_bins=None, qoi_num_bins=20): """ Compute the expected information gain criterion at ``x``. """ import matplotlib.pyplot as plt m_d, K_d = model.predict(X_design, full_cov=True)[:2] U_d = scipy.linalg.cholesky(K_d, lower=False) Omegas = np.random.randn(X_design.shape[0], num_Omegas) delta_y_i = np.random.randn(num_y) # Find the histogram of Q the current data S_d = m_d + np.dot(U_d.T, Omegas) Q_d = qoi(X_design, S_d) tmp = stats.itemfreq(Q_d) yy = model.posterior_samples(X_design, 10) plt.plot(X_design, yy, 'm', linewidth=2) plt.savefig('examples/samples.png') plt.clf() p_d = np.zeros((X_design.shape[0],)) p_d[np.array(tmp[:, 0], dtype='int')] = tmp[:, 1] / np.sum(tmp[:, 1]) if qoi_bins is None and qoi is min_qoi: #qoi_bins = np.linspace(np.min(Q_d), np.max(Q_d), qoi_num_bins)[None, :] qoi_bins = np.linspace(X_design[0, 0], X_design[-1, 0], qoi_num_bins)[None, :] H_d, e_d = np.histogramdd(Q_d, normed=True, bins=qoi_bins) delta_e_d = e_d[0][1] - e_d[0][0] #p_d = H_d * delta_e_d plt.plot(X_design, p_d) plt.plot(X_design, m_d) plt.plot(model.X, model.Y, 'ro', markersize=10) plt.hist(X_design[Q_d, 0], normed=True, alpha=0.5) plt.savefig('examples/kde_Q.png') plt.clf() print 'Entropy:', stats.entropy(p_d) G = np.zeros((X_design.shape[0],)) p_d += 1e-16 for i in xrange(X_design.shape[0]): u_di = K_d[:, i] / math.sqrt(K_d[i, i]) u_di = u_di[:, None] #K_dd = K_d - np.dot(u_di, u_di.T) #K_dd += np.eye(K_d.shape[0]) * 1e-6 choldowndate(U_d, u_di.flatten().copy()) #U_d = scipy.linalg.cholesky(K_dd, lower=False) # Pick a value for y: Omegas = np.random.randn(X_design.shape[0], num_Omegas) delta_y_i = np.random.randn(num_y) m_dgi = m_d + delta_y_i * u_di S_dgi = m_dgi[:, :, None] + np.dot(U_d.T, Omegas)[:, None, :] #for j in xrange(num_y): # print S_dgi[:, j, :] # plt.plot(X_design, S_dgi[:, j, :], 'm', linewidth=0.5) # plt.plot(model.X, model.likelihood.Y, 'ro', markersize=10) # plt.savefig('examples/ig_S_' + str(i).zfill(2) + '_' + str(j).zfill(2) + '.png') # plt.clf() Q_dgi = qoi(X_design, S_dgi) #print Q_dgi #quit() p_d_i = np.zeros((num_y, X_design.shape[0])) for j in xrange(num_y): tmp = stats.itemfreq(Q_dgi[j, :]) p_d_i[j, np.array(tmp[:, 0], dtype='int')] = tmp[:, 1] / np.sum(tmp[:, 1]) p_d_i += 1e-16 G[i] = np.mean([stats.entropy(p_d_i[j, :], p_d) for j in xrange(num_y)]) #G[i] = np.mean([-stats.entropy(p_d_i[j, :]) for j in xrange(num_y)]) #plt.plot(X_design, S_dgi[:, :, 0], 'm', linewidth=0.5) #plt.plot(X_design, m_d, 'r', linewidth=2) plt.plot(model.X, np.zeros((model.X.shape[0], 1)), 'ro', markersize=10) plt.plot(X_design, np.mean(p_d_i, axis=0), 'g', linewidth=2) plt.savefig('examples/ig_S_' + str(i).zfill(2) + '.png') plt.clf() print X_design[i, 0], G[i] cholupdate(U_d, u_di.flatten().copy()) plt.plot(X_design, G) plt.savefig('examples/ig_KL.png') plt.clf() return G def plot_summary(f, X_design, model, prefix, G, Gamma_name): """ Plot a summary of the current iteration. """ import matplotlib.pyplot as plt X = model.X y = model.Y m_s, k_s = model.predict(X_design, full_cov=True) m_05, m_95 = model.predict_quantiles(X_design) fig, ax1 = plt.subplots() ax1.plot(X_design, f(X_design), 'b', linewidth=2) ax1.plot(X, y, 'go', linewidth=2, markersize=10, markeredgewidth=2) ax1.plot(X_design, m_s, 'r--', linewidth=2) ax1.fill_between(X_design.flatten(), m_05.flatten(), m_95.flatten(), color='grey', alpha=0.5) ax1.set_ylabel('$f(x)$', fontsize=16) ax2 = ax1.twinx() ax2.plot(X_design, G, 'g', linewidth=2) ax2.set_ylabel('$%s(x)$' % Gamma_name, fontsize=16, color='g') #ax2.set_ylim([0., 3.]) plt.setp(ax2.get_yticklabels(), color='g') png_file = prefix + '.png' print 'Writing:', png_file plt.savefig(png_file) plt.clf() def plot_summary_2d(f, X_design, model, prefix, G, Gamma_name): """ Plot a summary of the current iteration. """ import matplotlib.pyplot as plt n = np.sqrt(X_design.shape[0]) X1, X2 = (X_design[:, i].reshape((n, n)) for i in range(2)) GG = G.reshape((n, n)) fig = plt.figure() ax = fig.add_subplot(111) cax = ax.contourf(X1, X2, GG) fig.colorbar(cax) ax.set_xlabel('$x_1$', fontsize=16) ax.set_ylabel('$x_2$', fontsize=16) plt.savefig(prefix + '_' + Gamma_name + '.png') plt.clf() X = model.X m_s, k_s = model.predict(X_design) M_s = m_s.reshape((n, n)) S_s = np.sqrt(k_s.reshape((n, n))) fig = plt.figure() ax = fig.add_subplot(111) cax = ax.contourf(X1, X2, M_s) fig.colorbar(cax) ax.plot(X[:, 0], X[:, 1], 'k.', markersize=10) ax.set_xlabel('$x_1$', fontsize=16) ax.set_ylabel('$x_2$', fontsize=16) plt.savefig(prefix + '_mean.png') plt.clf() fig = plt.figure() ax = fig.add_subplot(111) cax = ax.contourf(X1, X2, S_s) fig.colorbar(cax) ax.plot(X[:, 0], X[:, 1], 'k.', markersize=10) ax.set_xlabel('$x_1$', fontsize=16) ax.set_ylabel('$x_2$', fontsize=16) plt.savefig(prefix + '_std.png') plt.clf() def minimize(f, X_init, X_design, prefix="minimize", Gamma=expected_improvement, Gamma_name='EI', max_it=10, tol=1e-1, callback=None): """ Optimize f using a limited number of evaluations. """ X = X_init y = np.array([f(X[i, :]) for i in xrange(X.shape[0])]) k = GPy.kern.RBF(X.shape[1], ARD=True) for count in xrange(max_it): model = GPy.models.GPRegression(X, y, k) model.Gaussian_noise.variance.constrain_fixed(1e-6) model.optimize() print str(model) G = Gamma(X_design, model) if callback is not None: callback(f, X_design, model, prefix + '_' + str(count).zfill(2), G, Gamma_name) i = np.argmax(G) if G[i] < tol: print '*** converged' break print 'I am adding:', X_design[i:(i+1), :] print 'which has a G of', G[i] X = np.vstack([X, X_design[i:(i+1), :]]) y = np.vstack([y, f(X_design[i, :])]) print 'it =', count+1, ', min =', np.min(y), ' arg min =', X[np.argmin(y), :] return X, y def maximize(f, X_init, X_design, prefix='maximize', Gamma=expected_improvement, Gamma_name='EI', max_it=10, tol=1e-1, callback=None): """ Maximize the function ``f``. """ f_minus = lambda(x) : -f(x) return minimize(f_minus, X_init, X_design, prefix=prefix, Gamma=Gamma, Gamma_name=Gamma_name, max_it=max_it, tol=tol)
mit
saquiba2/numpy2
numpy/core/code_generators/ufunc_docstrings.py
14
90528
""" Docstrings for generated ufuncs The syntax is designed to look like the function add_newdoc is being called from numpy.lib, but in this file add_newdoc puts the docstrings in a dictionary. This dictionary is used in numpy/core/code_generators/generate_umath.py to generate the docstrings for the ufuncs in numpy.core at the C level when the ufuncs are created at compile time. """ from __future__ import division, absolute_import, print_function docdict = {} def get(name): return docdict.get(name) def add_newdoc(place, name, doc): docdict['.'.join((place, name))] = doc add_newdoc('numpy.core.umath', 'absolute', """ Calculate the absolute value element-wise. Parameters ---------- x : array_like Input array. Returns ------- absolute : ndarray An ndarray containing the absolute value of each element in `x`. For complex input, ``a + ib``, the absolute value is :math:`\\sqrt{ a^2 + b^2 }`. Examples -------- >>> x = np.array([-1.2, 1.2]) >>> np.absolute(x) array([ 1.2, 1.2]) >>> np.absolute(1.2 + 1j) 1.5620499351813308 Plot the function over ``[-10, 10]``: >>> import matplotlib.pyplot as plt >>> x = np.linspace(start=-10, stop=10, num=101) >>> plt.plot(x, np.absolute(x)) >>> plt.show() Plot the function over the complex plane: >>> xx = x + 1j * x[:, np.newaxis] >>> plt.imshow(np.abs(xx), extent=[-10, 10, -10, 10]) >>> plt.show() """) add_newdoc('numpy.core.umath', 'add', """ Add arguments element-wise. Parameters ---------- x1, x2 : array_like The arrays to be added. If ``x1.shape != x2.shape``, they must be broadcastable to a common shape (which may be the shape of one or the other). Returns ------- add : ndarray or scalar The sum of `x1` and `x2`, element-wise. Returns a scalar if both `x1` and `x2` are scalars. Notes ----- Equivalent to `x1` + `x2` in terms of array broadcasting. Examples -------- >>> np.add(1.0, 4.0) 5.0 >>> x1 = np.arange(9.0).reshape((3, 3)) >>> x2 = np.arange(3.0) >>> np.add(x1, x2) array([[ 0., 2., 4.], [ 3., 5., 7.], [ 6., 8., 10.]]) """) add_newdoc('numpy.core.umath', 'arccos', """ Trigonometric inverse cosine, element-wise. The inverse of `cos` so that, if ``y = cos(x)``, then ``x = arccos(y)``. Parameters ---------- x : array_like `x`-coordinate on the unit circle. For real arguments, the domain is [-1, 1]. out : ndarray, optional Array of the same shape as `a`, to store results in. See `doc.ufuncs` (Section "Output arguments") for more details. Returns ------- angle : ndarray The angle of the ray intersecting the unit circle at the given `x`-coordinate in radians [0, pi]. If `x` is a scalar then a scalar is returned, otherwise an array of the same shape as `x` is returned. See Also -------- cos, arctan, arcsin, emath.arccos Notes ----- `arccos` is a multivalued function: for each `x` there are infinitely many numbers `z` such that `cos(z) = x`. The convention is to return the angle `z` whose real part lies in `[0, pi]`. For real-valued input data types, `arccos` always returns real output. For each value that cannot be expressed as a real number or infinity, it yields ``nan`` and sets the `invalid` floating point error flag. For complex-valued input, `arccos` is a complex analytic function that has branch cuts `[-inf, -1]` and `[1, inf]` and is continuous from above on the former and from below on the latter. The inverse `cos` is also known as `acos` or cos^-1. References ---------- M. Abramowitz and I.A. Stegun, "Handbook of Mathematical Functions", 10th printing, 1964, pp. 79. http://www.math.sfu.ca/~cbm/aands/ Examples -------- We expect the arccos of 1 to be 0, and of -1 to be pi: >>> np.arccos([1, -1]) array([ 0. , 3.14159265]) Plot arccos: >>> import matplotlib.pyplot as plt >>> x = np.linspace(-1, 1, num=100) >>> plt.plot(x, np.arccos(x)) >>> plt.axis('tight') >>> plt.show() """) add_newdoc('numpy.core.umath', 'arccosh', """ Inverse hyperbolic cosine, element-wise. Parameters ---------- x : array_like Input array. out : ndarray, optional Array of the same shape as `x`, to store results in. See `doc.ufuncs` (Section "Output arguments") for details. Returns ------- arccosh : ndarray Array of the same shape as `x`. See Also -------- cosh, arcsinh, sinh, arctanh, tanh Notes ----- `arccosh` is a multivalued function: for each `x` there are infinitely many numbers `z` such that `cosh(z) = x`. The convention is to return the `z` whose imaginary part lies in `[-pi, pi]` and the real part in ``[0, inf]``. For real-valued input data types, `arccosh` always returns real output. For each value that cannot be expressed as a real number or infinity, it yields ``nan`` and sets the `invalid` floating point error flag. For complex-valued input, `arccosh` is a complex analytical function that has a branch cut `[-inf, 1]` and is continuous from above on it. References ---------- .. [1] M. Abramowitz and I.A. Stegun, "Handbook of Mathematical Functions", 10th printing, 1964, pp. 86. http://www.math.sfu.ca/~cbm/aands/ .. [2] Wikipedia, "Inverse hyperbolic function", http://en.wikipedia.org/wiki/Arccosh Examples -------- >>> np.arccosh([np.e, 10.0]) array([ 1.65745445, 2.99322285]) >>> np.arccosh(1) 0.0 """) add_newdoc('numpy.core.umath', 'arcsin', """ Inverse sine, element-wise. Parameters ---------- x : array_like `y`-coordinate on the unit circle. out : ndarray, optional Array of the same shape as `x`, in which to store the results. See `doc.ufuncs` (Section "Output arguments") for more details. Returns ------- angle : ndarray The inverse sine of each element in `x`, in radians and in the closed interval ``[-pi/2, pi/2]``. If `x` is a scalar, a scalar is returned, otherwise an array. See Also -------- sin, cos, arccos, tan, arctan, arctan2, emath.arcsin Notes ----- `arcsin` is a multivalued function: for each `x` there are infinitely many numbers `z` such that :math:`sin(z) = x`. The convention is to return the angle `z` whose real part lies in [-pi/2, pi/2]. For real-valued input data types, *arcsin* always returns real output. For each value that cannot be expressed as a real number or infinity, it yields ``nan`` and sets the `invalid` floating point error flag. For complex-valued input, `arcsin` is a complex analytic function that has, by convention, the branch cuts [-inf, -1] and [1, inf] and is continuous from above on the former and from below on the latter. The inverse sine is also known as `asin` or sin^{-1}. References ---------- Abramowitz, M. and Stegun, I. A., *Handbook of Mathematical Functions*, 10th printing, New York: Dover, 1964, pp. 79ff. http://www.math.sfu.ca/~cbm/aands/ Examples -------- >>> np.arcsin(1) # pi/2 1.5707963267948966 >>> np.arcsin(-1) # -pi/2 -1.5707963267948966 >>> np.arcsin(0) 0.0 """) add_newdoc('numpy.core.umath', 'arcsinh', """ Inverse hyperbolic sine element-wise. Parameters ---------- x : array_like Input array. out : ndarray, optional Array into which the output is placed. Its type is preserved and it must be of the right shape to hold the output. See `doc.ufuncs`. Returns ------- out : ndarray Array of of the same shape as `x`. Notes ----- `arcsinh` is a multivalued function: for each `x` there are infinitely many numbers `z` such that `sinh(z) = x`. The convention is to return the `z` whose imaginary part lies in `[-pi/2, pi/2]`. For real-valued input data types, `arcsinh` always returns real output. For each value that cannot be expressed as a real number or infinity, it returns ``nan`` and sets the `invalid` floating point error flag. For complex-valued input, `arccos` is a complex analytical function that has branch cuts `[1j, infj]` and `[-1j, -infj]` and is continuous from the right on the former and from the left on the latter. The inverse hyperbolic sine is also known as `asinh` or ``sinh^-1``. References ---------- .. [1] M. Abramowitz and I.A. Stegun, "Handbook of Mathematical Functions", 10th printing, 1964, pp. 86. http://www.math.sfu.ca/~cbm/aands/ .. [2] Wikipedia, "Inverse hyperbolic function", http://en.wikipedia.org/wiki/Arcsinh Examples -------- >>> np.arcsinh(np.array([np.e, 10.0])) array([ 1.72538256, 2.99822295]) """) add_newdoc('numpy.core.umath', 'arctan', """ Trigonometric inverse tangent, element-wise. The inverse of tan, so that if ``y = tan(x)`` then ``x = arctan(y)``. Parameters ---------- x : array_like Input values. `arctan` is applied to each element of `x`. Returns ------- out : ndarray Out has the same shape as `x`. Its real part is in ``[-pi/2, pi/2]`` (``arctan(+/-inf)`` returns ``+/-pi/2``). It is a scalar if `x` is a scalar. See Also -------- arctan2 : The "four quadrant" arctan of the angle formed by (`x`, `y`) and the positive `x`-axis. angle : Argument of complex values. Notes ----- `arctan` is a multi-valued function: for each `x` there are infinitely many numbers `z` such that tan(`z`) = `x`. The convention is to return the angle `z` whose real part lies in [-pi/2, pi/2]. For real-valued input data types, `arctan` always returns real output. For each value that cannot be expressed as a real number or infinity, it yields ``nan`` and sets the `invalid` floating point error flag. For complex-valued input, `arctan` is a complex analytic function that has [`1j, infj`] and [`-1j, -infj`] as branch cuts, and is continuous from the left on the former and from the right on the latter. The inverse tangent is also known as `atan` or tan^{-1}. References ---------- Abramowitz, M. and Stegun, I. A., *Handbook of Mathematical Functions*, 10th printing, New York: Dover, 1964, pp. 79. http://www.math.sfu.ca/~cbm/aands/ Examples -------- We expect the arctan of 0 to be 0, and of 1 to be pi/4: >>> np.arctan([0, 1]) array([ 0. , 0.78539816]) >>> np.pi/4 0.78539816339744828 Plot arctan: >>> import matplotlib.pyplot as plt >>> x = np.linspace(-10, 10) >>> plt.plot(x, np.arctan(x)) >>> plt.axis('tight') >>> plt.show() """) add_newdoc('numpy.core.umath', 'arctan2', """ Element-wise arc tangent of ``x1/x2`` choosing the quadrant correctly. The quadrant (i.e., branch) is chosen so that ``arctan2(x1, x2)`` is the signed angle in radians between the ray ending at the origin and passing through the point (1,0), and the ray ending at the origin and passing through the point (`x2`, `x1`). (Note the role reversal: the "`y`-coordinate" is the first function parameter, the "`x`-coordinate" is the second.) By IEEE convention, this function is defined for `x2` = +/-0 and for either or both of `x1` and `x2` = +/-inf (see Notes for specific values). This function is not defined for complex-valued arguments; for the so-called argument of complex values, use `angle`. Parameters ---------- x1 : array_like, real-valued `y`-coordinates. x2 : array_like, real-valued `x`-coordinates. `x2` must be broadcastable to match the shape of `x1` or vice versa. Returns ------- angle : ndarray Array of angles in radians, in the range ``[-pi, pi]``. See Also -------- arctan, tan, angle Notes ----- *arctan2* is identical to the `atan2` function of the underlying C library. The following special values are defined in the C standard: [1]_ ====== ====== ================ `x1` `x2` `arctan2(x1,x2)` ====== ====== ================ +/- 0 +0 +/- 0 +/- 0 -0 +/- pi > 0 +/-inf +0 / +pi < 0 +/-inf -0 / -pi +/-inf +inf +/- (pi/4) +/-inf -inf +/- (3*pi/4) ====== ====== ================ Note that +0 and -0 are distinct floating point numbers, as are +inf and -inf. References ---------- .. [1] ISO/IEC standard 9899:1999, "Programming language C." Examples -------- Consider four points in different quadrants: >>> x = np.array([-1, +1, +1, -1]) >>> y = np.array([-1, -1, +1, +1]) >>> np.arctan2(y, x) * 180 / np.pi array([-135., -45., 45., 135.]) Note the order of the parameters. `arctan2` is defined also when `x2` = 0 and at several other special points, obtaining values in the range ``[-pi, pi]``: >>> np.arctan2([1., -1.], [0., 0.]) array([ 1.57079633, -1.57079633]) >>> np.arctan2([0., 0., np.inf], [+0., -0., np.inf]) array([ 0. , 3.14159265, 0.78539816]) """) add_newdoc('numpy.core.umath', '_arg', """ DO NOT USE, ONLY FOR TESTING """) add_newdoc('numpy.core.umath', 'arctanh', """ Inverse hyperbolic tangent element-wise. Parameters ---------- x : array_like Input array. Returns ------- out : ndarray Array of the same shape as `x`. See Also -------- emath.arctanh Notes ----- `arctanh` is a multivalued function: for each `x` there are infinitely many numbers `z` such that `tanh(z) = x`. The convention is to return the `z` whose imaginary part lies in `[-pi/2, pi/2]`. For real-valued input data types, `arctanh` always returns real output. For each value that cannot be expressed as a real number or infinity, it yields ``nan`` and sets the `invalid` floating point error flag. For complex-valued input, `arctanh` is a complex analytical function that has branch cuts `[-1, -inf]` and `[1, inf]` and is continuous from above on the former and from below on the latter. The inverse hyperbolic tangent is also known as `atanh` or ``tanh^-1``. References ---------- .. [1] M. Abramowitz and I.A. Stegun, "Handbook of Mathematical Functions", 10th printing, 1964, pp. 86. http://www.math.sfu.ca/~cbm/aands/ .. [2] Wikipedia, "Inverse hyperbolic function", http://en.wikipedia.org/wiki/Arctanh Examples -------- >>> np.arctanh([0, -0.5]) array([ 0. , -0.54930614]) """) add_newdoc('numpy.core.umath', 'bitwise_and', """ Compute the bit-wise AND of two arrays element-wise. Computes the bit-wise AND of the underlying binary representation of the integers in the input arrays. This ufunc implements the C/Python operator ``&``. Parameters ---------- x1, x2 : array_like Only integer and boolean types are handled. Returns ------- out : array_like Result. See Also -------- logical_and bitwise_or bitwise_xor binary_repr : Return the binary representation of the input number as a string. Examples -------- The number 13 is represented by ``00001101``. Likewise, 17 is represented by ``00010001``. The bit-wise AND of 13 and 17 is therefore ``000000001``, or 1: >>> np.bitwise_and(13, 17) 1 >>> np.bitwise_and(14, 13) 12 >>> np.binary_repr(12) '1100' >>> np.bitwise_and([14,3], 13) array([12, 1]) >>> np.bitwise_and([11,7], [4,25]) array([0, 1]) >>> np.bitwise_and(np.array([2,5,255]), np.array([3,14,16])) array([ 2, 4, 16]) >>> np.bitwise_and([True, True], [False, True]) array([False, True], dtype=bool) """) add_newdoc('numpy.core.umath', 'bitwise_or', """ Compute the bit-wise OR of two arrays element-wise. Computes the bit-wise OR of the underlying binary representation of the integers in the input arrays. This ufunc implements the C/Python operator ``|``. Parameters ---------- x1, x2 : array_like Only integer and boolean types are handled. out : ndarray, optional Array into which the output is placed. Its type is preserved and it must be of the right shape to hold the output. See doc.ufuncs. Returns ------- out : array_like Result. See Also -------- logical_or bitwise_and bitwise_xor binary_repr : Return the binary representation of the input number as a string. Examples -------- The number 13 has the binaray representation ``00001101``. Likewise, 16 is represented by ``00010000``. The bit-wise OR of 13 and 16 is then ``000111011``, or 29: >>> np.bitwise_or(13, 16) 29 >>> np.binary_repr(29) '11101' >>> np.bitwise_or(32, 2) 34 >>> np.bitwise_or([33, 4], 1) array([33, 5]) >>> np.bitwise_or([33, 4], [1, 2]) array([33, 6]) >>> np.bitwise_or(np.array([2, 5, 255]), np.array([4, 4, 4])) array([ 6, 5, 255]) >>> np.array([2, 5, 255]) | np.array([4, 4, 4]) array([ 6, 5, 255]) >>> np.bitwise_or(np.array([2, 5, 255, 2147483647L], dtype=np.int32), ... np.array([4, 4, 4, 2147483647L], dtype=np.int32)) array([ 6, 5, 255, 2147483647]) >>> np.bitwise_or([True, True], [False, True]) array([ True, True], dtype=bool) """) add_newdoc('numpy.core.umath', 'bitwise_xor', """ Compute the bit-wise XOR of two arrays element-wise. Computes the bit-wise XOR of the underlying binary representation of the integers in the input arrays. This ufunc implements the C/Python operator ``^``. Parameters ---------- x1, x2 : array_like Only integer and boolean types are handled. Returns ------- out : array_like Result. See Also -------- logical_xor bitwise_and bitwise_or binary_repr : Return the binary representation of the input number as a string. Examples -------- The number 13 is represented by ``00001101``. Likewise, 17 is represented by ``00010001``. The bit-wise XOR of 13 and 17 is therefore ``00011100``, or 28: >>> np.bitwise_xor(13, 17) 28 >>> np.binary_repr(28) '11100' >>> np.bitwise_xor(31, 5) 26 >>> np.bitwise_xor([31,3], 5) array([26, 6]) >>> np.bitwise_xor([31,3], [5,6]) array([26, 5]) >>> np.bitwise_xor([True, True], [False, True]) array([ True, False], dtype=bool) """) add_newdoc('numpy.core.umath', 'ceil', """ Return the ceiling of the input, element-wise. The ceil of the scalar `x` is the smallest integer `i`, such that `i >= x`. It is often denoted as :math:`\\lceil x \\rceil`. Parameters ---------- x : array_like Input data. Returns ------- y : ndarray or scalar The ceiling of each element in `x`, with `float` dtype. See Also -------- floor, trunc, rint Examples -------- >>> a = np.array([-1.7, -1.5, -0.2, 0.2, 1.5, 1.7, 2.0]) >>> np.ceil(a) array([-1., -1., -0., 1., 2., 2., 2.]) """) add_newdoc('numpy.core.umath', 'trunc', """ Return the truncated value of the input, element-wise. The truncated value of the scalar `x` is the nearest integer `i` which is closer to zero than `x` is. In short, the fractional part of the signed number `x` is discarded. Parameters ---------- x : array_like Input data. Returns ------- y : ndarray or scalar The truncated value of each element in `x`. See Also -------- ceil, floor, rint Notes ----- .. versionadded:: 1.3.0 Examples -------- >>> a = np.array([-1.7, -1.5, -0.2, 0.2, 1.5, 1.7, 2.0]) >>> np.trunc(a) array([-1., -1., -0., 0., 1., 1., 2.]) """) add_newdoc('numpy.core.umath', 'conjugate', """ Return the complex conjugate, element-wise. The complex conjugate of a complex number is obtained by changing the sign of its imaginary part. Parameters ---------- x : array_like Input value. Returns ------- y : ndarray The complex conjugate of `x`, with same dtype as `y`. Examples -------- >>> np.conjugate(1+2j) (1-2j) >>> x = np.eye(2) + 1j * np.eye(2) >>> np.conjugate(x) array([[ 1.-1.j, 0.-0.j], [ 0.-0.j, 1.-1.j]]) """) add_newdoc('numpy.core.umath', 'cos', """ Cosine element-wise. Parameters ---------- x : array_like Input array in radians. out : ndarray, optional Output array of same shape as `x`. Returns ------- y : ndarray The corresponding cosine values. Raises ------ ValueError: invalid return array shape if `out` is provided and `out.shape` != `x.shape` (See Examples) Notes ----- If `out` is provided, the function writes the result into it, and returns a reference to `out`. (See Examples) References ---------- M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions. New York, NY: Dover, 1972. Examples -------- >>> np.cos(np.array([0, np.pi/2, np.pi])) array([ 1.00000000e+00, 6.12303177e-17, -1.00000000e+00]) >>> >>> # Example of providing the optional output parameter >>> out2 = np.cos([0.1], out1) >>> out2 is out1 True >>> >>> # Example of ValueError due to provision of shape mis-matched `out` >>> np.cos(np.zeros((3,3)),np.zeros((2,2))) Traceback (most recent call last): File "<stdin>", line 1, in <module> ValueError: invalid return array shape """) add_newdoc('numpy.core.umath', 'cosh', """ Hyperbolic cosine, element-wise. Equivalent to ``1/2 * (np.exp(x) + np.exp(-x))`` and ``np.cos(1j*x)``. Parameters ---------- x : array_like Input array. Returns ------- out : ndarray Output array of same shape as `x`. Examples -------- >>> np.cosh(0) 1.0 The hyperbolic cosine describes the shape of a hanging cable: >>> import matplotlib.pyplot as plt >>> x = np.linspace(-4, 4, 1000) >>> plt.plot(x, np.cosh(x)) >>> plt.show() """) add_newdoc('numpy.core.umath', 'degrees', """ Convert angles from radians to degrees. Parameters ---------- x : array_like Input array in radians. out : ndarray, optional Output array of same shape as x. Returns ------- y : ndarray of floats The corresponding degree values; if `out` was supplied this is a reference to it. See Also -------- rad2deg : equivalent function Examples -------- Convert a radian array to degrees >>> rad = np.arange(12.)*np.pi/6 >>> np.degrees(rad) array([ 0., 30., 60., 90., 120., 150., 180., 210., 240., 270., 300., 330.]) >>> out = np.zeros((rad.shape)) >>> r = degrees(rad, out) >>> np.all(r == out) True """) add_newdoc('numpy.core.umath', 'rad2deg', """ Convert angles from radians to degrees. Parameters ---------- x : array_like Angle in radians. out : ndarray, optional Array into which the output is placed. Its type is preserved and it must be of the right shape to hold the output. See doc.ufuncs. Returns ------- y : ndarray The corresponding angle in degrees. See Also -------- deg2rad : Convert angles from degrees to radians. unwrap : Remove large jumps in angle by wrapping. Notes ----- .. versionadded:: 1.3.0 rad2deg(x) is ``180 * x / pi``. Examples -------- >>> np.rad2deg(np.pi/2) 90.0 """) add_newdoc('numpy.core.umath', 'divide', """ Divide arguments element-wise. Parameters ---------- x1 : array_like Dividend array. x2 : array_like Divisor array. out : ndarray, optional Array into which the output is placed. Its type is preserved and it must be of the right shape to hold the output. See doc.ufuncs. Returns ------- y : ndarray or scalar The quotient ``x1/x2``, element-wise. Returns a scalar if both ``x1`` and ``x2`` are scalars. See Also -------- seterr : Set whether to raise or warn on overflow, underflow and division by zero. Notes ----- Equivalent to ``x1`` / ``x2`` in terms of array-broadcasting. Behavior on division by zero can be changed using ``seterr``. In Python 2, when both ``x1`` and ``x2`` are of an integer type, ``divide`` will behave like ``floor_divide``. In Python 3, it behaves like ``true_divide``. Examples -------- >>> np.divide(2.0, 4.0) 0.5 >>> x1 = np.arange(9.0).reshape((3, 3)) >>> x2 = np.arange(3.0) >>> np.divide(x1, x2) array([[ NaN, 1. , 1. ], [ Inf, 4. , 2.5], [ Inf, 7. , 4. ]]) Note the behavior with integer types (Python 2 only): >>> np.divide(2, 4) 0 >>> np.divide(2, 4.) 0.5 Division by zero always yields zero in integer arithmetic (again, Python 2 only), and does not raise an exception or a warning: >>> np.divide(np.array([0, 1], dtype=int), np.array([0, 0], dtype=int)) array([0, 0]) Division by zero can, however, be caught using ``seterr``: >>> old_err_state = np.seterr(divide='raise') >>> np.divide(1, 0) Traceback (most recent call last): File "<stdin>", line 1, in <module> FloatingPointError: divide by zero encountered in divide >>> ignored_states = np.seterr(**old_err_state) >>> np.divide(1, 0) 0 """) add_newdoc('numpy.core.umath', 'equal', """ Return (x1 == x2) element-wise. Parameters ---------- x1, x2 : array_like Input arrays of the same shape. Returns ------- out : ndarray or bool Output array of bools, or a single bool if x1 and x2 are scalars. See Also -------- not_equal, greater_equal, less_equal, greater, less Examples -------- >>> np.equal([0, 1, 3], np.arange(3)) array([ True, True, False], dtype=bool) What is compared are values, not types. So an int (1) and an array of length one can evaluate as True: >>> np.equal(1, np.ones(1)) array([ True], dtype=bool) """) add_newdoc('numpy.core.umath', 'exp', """ Calculate the exponential of all elements in the input array. Parameters ---------- x : array_like Input values. Returns ------- out : ndarray Output array, element-wise exponential of `x`. See Also -------- expm1 : Calculate ``exp(x) - 1`` for all elements in the array. exp2 : Calculate ``2**x`` for all elements in the array. Notes ----- The irrational number ``e`` is also known as Euler's number. It is approximately 2.718281, and is the base of the natural logarithm, ``ln`` (this means that, if :math:`x = \\ln y = \\log_e y`, then :math:`e^x = y`. For real input, ``exp(x)`` is always positive. For complex arguments, ``x = a + ib``, we can write :math:`e^x = e^a e^{ib}`. The first term, :math:`e^a`, is already known (it is the real argument, described above). The second term, :math:`e^{ib}`, is :math:`\\cos b + i \\sin b`, a function with magnitude 1 and a periodic phase. References ---------- .. [1] Wikipedia, "Exponential function", http://en.wikipedia.org/wiki/Exponential_function .. [2] M. Abramovitz and I. A. Stegun, "Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables," Dover, 1964, p. 69, http://www.math.sfu.ca/~cbm/aands/page_69.htm Examples -------- Plot the magnitude and phase of ``exp(x)`` in the complex plane: >>> import matplotlib.pyplot as plt >>> x = np.linspace(-2*np.pi, 2*np.pi, 100) >>> xx = x + 1j * x[:, np.newaxis] # a + ib over complex plane >>> out = np.exp(xx) >>> plt.subplot(121) >>> plt.imshow(np.abs(out), ... extent=[-2*np.pi, 2*np.pi, -2*np.pi, 2*np.pi]) >>> plt.title('Magnitude of exp(x)') >>> plt.subplot(122) >>> plt.imshow(np.angle(out), ... extent=[-2*np.pi, 2*np.pi, -2*np.pi, 2*np.pi]) >>> plt.title('Phase (angle) of exp(x)') >>> plt.show() """) add_newdoc('numpy.core.umath', 'exp2', """ Calculate `2**p` for all `p` in the input array. Parameters ---------- x : array_like Input values. out : ndarray, optional Array to insert results into. Returns ------- out : ndarray Element-wise 2 to the power `x`. See Also -------- power Notes ----- .. versionadded:: 1.3.0 Examples -------- >>> np.exp2([2, 3]) array([ 4., 8.]) """) add_newdoc('numpy.core.umath', 'expm1', """ Calculate ``exp(x) - 1`` for all elements in the array. Parameters ---------- x : array_like Input values. Returns ------- out : ndarray Element-wise exponential minus one: ``out = exp(x) - 1``. See Also -------- log1p : ``log(1 + x)``, the inverse of expm1. Notes ----- This function provides greater precision than ``exp(x) - 1`` for small values of ``x``. Examples -------- The true value of ``exp(1e-10) - 1`` is ``1.00000000005e-10`` to about 32 significant digits. This example shows the superiority of expm1 in this case. >>> np.expm1(1e-10) 1.00000000005e-10 >>> np.exp(1e-10) - 1 1.000000082740371e-10 """) add_newdoc('numpy.core.umath', 'fabs', """ Compute the absolute values element-wise. This function returns the absolute values (positive magnitude) of the data in `x`. Complex values are not handled, use `absolute` to find the absolute values of complex data. Parameters ---------- x : array_like The array of numbers for which the absolute values are required. If `x` is a scalar, the result `y` will also be a scalar. out : ndarray, optional Array into which the output is placed. Its type is preserved and it must be of the right shape to hold the output. See doc.ufuncs. Returns ------- y : ndarray or scalar The absolute values of `x`, the returned values are always floats. See Also -------- absolute : Absolute values including `complex` types. Examples -------- >>> np.fabs(-1) 1.0 >>> np.fabs([-1.2, 1.2]) array([ 1.2, 1.2]) """) add_newdoc('numpy.core.umath', 'floor', """ Return the floor of the input, element-wise. The floor of the scalar `x` is the largest integer `i`, such that `i <= x`. It is often denoted as :math:`\\lfloor x \\rfloor`. Parameters ---------- x : array_like Input data. Returns ------- y : ndarray or scalar The floor of each element in `x`. See Also -------- ceil, trunc, rint Notes ----- Some spreadsheet programs calculate the "floor-towards-zero", in other words ``floor(-2.5) == -2``. NumPy instead uses the definition of `floor` where `floor(-2.5) == -3`. Examples -------- >>> a = np.array([-1.7, -1.5, -0.2, 0.2, 1.5, 1.7, 2.0]) >>> np.floor(a) array([-2., -2., -1., 0., 1., 1., 2.]) """) add_newdoc('numpy.core.umath', 'floor_divide', """ Return the largest integer smaller or equal to the division of the inputs. Parameters ---------- x1 : array_like Numerator. x2 : array_like Denominator. Returns ------- y : ndarray y = floor(`x1`/`x2`) See Also -------- divide : Standard division. floor : Round a number to the nearest integer toward minus infinity. ceil : Round a number to the nearest integer toward infinity. Examples -------- >>> np.floor_divide(7,3) 2 >>> np.floor_divide([1., 2., 3., 4.], 2.5) array([ 0., 0., 1., 1.]) """) add_newdoc('numpy.core.umath', 'fmod', """ Return the element-wise remainder of division. This is the NumPy implementation of the C library function fmod, the remainder has the same sign as the dividend `x1`. It is equivalent to the Matlab(TM) ``rem`` function and should not be confused with the Python modulus operator ``x1 % x2``. Parameters ---------- x1 : array_like Dividend. x2 : array_like Divisor. Returns ------- y : array_like The remainder of the division of `x1` by `x2`. See Also -------- remainder : Equivalent to the Python ``%`` operator. divide Notes ----- The result of the modulo operation for negative dividend and divisors is bound by conventions. For `fmod`, the sign of result is the sign of the dividend, while for `remainder` the sign of the result is the sign of the divisor. The `fmod` function is equivalent to the Matlab(TM) ``rem`` function. Examples -------- >>> np.fmod([-3, -2, -1, 1, 2, 3], 2) array([-1, 0, -1, 1, 0, 1]) >>> np.remainder([-3, -2, -1, 1, 2, 3], 2) array([1, 0, 1, 1, 0, 1]) >>> np.fmod([5, 3], [2, 2.]) array([ 1., 1.]) >>> a = np.arange(-3, 3).reshape(3, 2) >>> a array([[-3, -2], [-1, 0], [ 1, 2]]) >>> np.fmod(a, [2,2]) array([[-1, 0], [-1, 0], [ 1, 0]]) """) add_newdoc('numpy.core.umath', 'greater', """ Return the truth value of (x1 > x2) element-wise. Parameters ---------- x1, x2 : array_like Input arrays. If ``x1.shape != x2.shape``, they must be broadcastable to a common shape (which may be the shape of one or the other). Returns ------- out : bool or ndarray of bool Array of bools, or a single bool if `x1` and `x2` are scalars. See Also -------- greater_equal, less, less_equal, equal, not_equal Examples -------- >>> np.greater([4,2],[2,2]) array([ True, False], dtype=bool) If the inputs are ndarrays, then np.greater is equivalent to '>'. >>> a = np.array([4,2]) >>> b = np.array([2,2]) >>> a > b array([ True, False], dtype=bool) """) add_newdoc('numpy.core.umath', 'greater_equal', """ Return the truth value of (x1 >= x2) element-wise. Parameters ---------- x1, x2 : array_like Input arrays. If ``x1.shape != x2.shape``, they must be broadcastable to a common shape (which may be the shape of one or the other). Returns ------- out : bool or ndarray of bool Array of bools, or a single bool if `x1` and `x2` are scalars. See Also -------- greater, less, less_equal, equal, not_equal Examples -------- >>> np.greater_equal([4, 2, 1], [2, 2, 2]) array([ True, True, False], dtype=bool) """) add_newdoc('numpy.core.umath', 'hypot', """ Given the "legs" of a right triangle, return its hypotenuse. Equivalent to ``sqrt(x1**2 + x2**2)``, element-wise. If `x1` or `x2` is scalar_like (i.e., unambiguously cast-able to a scalar type), it is broadcast for use with each element of the other argument. (See Examples) Parameters ---------- x1, x2 : array_like Leg of the triangle(s). out : ndarray, optional Array into which the output is placed. Its type is preserved and it must be of the right shape to hold the output. See doc.ufuncs. Returns ------- z : ndarray The hypotenuse of the triangle(s). Examples -------- >>> np.hypot(3*np.ones((3, 3)), 4*np.ones((3, 3))) array([[ 5., 5., 5.], [ 5., 5., 5.], [ 5., 5., 5.]]) Example showing broadcast of scalar_like argument: >>> np.hypot(3*np.ones((3, 3)), [4]) array([[ 5., 5., 5.], [ 5., 5., 5.], [ 5., 5., 5.]]) """) add_newdoc('numpy.core.umath', 'invert', """ Compute bit-wise inversion, or bit-wise NOT, element-wise. Computes the bit-wise NOT of the underlying binary representation of the integers in the input arrays. This ufunc implements the C/Python operator ``~``. For signed integer inputs, the two's complement is returned. In a two's-complement system negative numbers are represented by the two's complement of the absolute value. This is the most common method of representing signed integers on computers [1]_. A N-bit two's-complement system can represent every integer in the range :math:`-2^{N-1}` to :math:`+2^{N-1}-1`. Parameters ---------- x1 : array_like Only integer and boolean types are handled. Returns ------- out : array_like Result. See Also -------- bitwise_and, bitwise_or, bitwise_xor logical_not binary_repr : Return the binary representation of the input number as a string. Notes ----- `bitwise_not` is an alias for `invert`: >>> np.bitwise_not is np.invert True References ---------- .. [1] Wikipedia, "Two's complement", http://en.wikipedia.org/wiki/Two's_complement Examples -------- We've seen that 13 is represented by ``00001101``. The invert or bit-wise NOT of 13 is then: >>> np.invert(np.array([13], dtype=uint8)) array([242], dtype=uint8) >>> np.binary_repr(x, width=8) '00001101' >>> np.binary_repr(242, width=8) '11110010' The result depends on the bit-width: >>> np.invert(np.array([13], dtype=uint16)) array([65522], dtype=uint16) >>> np.binary_repr(x, width=16) '0000000000001101' >>> np.binary_repr(65522, width=16) '1111111111110010' When using signed integer types the result is the two's complement of the result for the unsigned type: >>> np.invert(np.array([13], dtype=int8)) array([-14], dtype=int8) >>> np.binary_repr(-14, width=8) '11110010' Booleans are accepted as well: >>> np.invert(array([True, False])) array([False, True], dtype=bool) """) add_newdoc('numpy.core.umath', 'isfinite', """ Test element-wise for finiteness (not infinity or not Not a Number). The result is returned as a boolean array. Parameters ---------- x : array_like Input values. out : ndarray, optional Array into which the output is placed. Its type is preserved and it must be of the right shape to hold the output. See `doc.ufuncs`. Returns ------- y : ndarray, bool For scalar input, the result is a new boolean with value True if the input is finite; otherwise the value is False (input is either positive infinity, negative infinity or Not a Number). For array input, the result is a boolean array with the same dimensions as the input and the values are True if the corresponding element of the input is finite; otherwise the values are False (element is either positive infinity, negative infinity or Not a Number). See Also -------- isinf, isneginf, isposinf, isnan Notes ----- Not a Number, positive infinity and negative infinity are considered to be non-finite. Numpy uses the IEEE Standard for Binary Floating-Point for Arithmetic (IEEE 754). This means that Not a Number is not equivalent to infinity. Also that positive infinity is not equivalent to negative infinity. But infinity is equivalent to positive infinity. Errors result if the second argument is also supplied when `x` is a scalar input, or if first and second arguments have different shapes. Examples -------- >>> np.isfinite(1) True >>> np.isfinite(0) True >>> np.isfinite(np.nan) False >>> np.isfinite(np.inf) False >>> np.isfinite(np.NINF) False >>> np.isfinite([np.log(-1.),1.,np.log(0)]) array([False, True, False], dtype=bool) >>> x = np.array([-np.inf, 0., np.inf]) >>> y = np.array([2, 2, 2]) >>> np.isfinite(x, y) array([0, 1, 0]) >>> y array([0, 1, 0]) """) add_newdoc('numpy.core.umath', 'isinf', """ Test element-wise for positive or negative infinity. Returns a boolean array of the same shape as `x`, True where ``x == +/-inf``, otherwise False. Parameters ---------- x : array_like Input values out : array_like, optional An array with the same shape as `x` to store the result. Returns ------- y : bool (scalar) or boolean ndarray For scalar input, the result is a new boolean with value True if the input is positive or negative infinity; otherwise the value is False. For array input, the result is a boolean array with the same shape as the input and the values are True where the corresponding element of the input is positive or negative infinity; elsewhere the values are False. If a second argument was supplied the result is stored there. If the type of that array is a numeric type the result is represented as zeros and ones, if the type is boolean then as False and True, respectively. The return value `y` is then a reference to that array. See Also -------- isneginf, isposinf, isnan, isfinite Notes ----- Numpy uses the IEEE Standard for Binary Floating-Point for Arithmetic (IEEE 754). Errors result if the second argument is supplied when the first argument is a scalar, or if the first and second arguments have different shapes. Examples -------- >>> np.isinf(np.inf) True >>> np.isinf(np.nan) False >>> np.isinf(np.NINF) True >>> np.isinf([np.inf, -np.inf, 1.0, np.nan]) array([ True, True, False, False], dtype=bool) >>> x = np.array([-np.inf, 0., np.inf]) >>> y = np.array([2, 2, 2]) >>> np.isinf(x, y) array([1, 0, 1]) >>> y array([1, 0, 1]) """) add_newdoc('numpy.core.umath', 'isnan', """ Test element-wise for NaN and return result as a boolean array. Parameters ---------- x : array_like Input array. Returns ------- y : ndarray or bool For scalar input, the result is a new boolean with value True if the input is NaN; otherwise the value is False. For array input, the result is a boolean array of the same dimensions as the input and the values are True if the corresponding element of the input is NaN; otherwise the values are False. See Also -------- isinf, isneginf, isposinf, isfinite Notes ----- Numpy uses the IEEE Standard for Binary Floating-Point for Arithmetic (IEEE 754). This means that Not a Number is not equivalent to infinity. Examples -------- >>> np.isnan(np.nan) True >>> np.isnan(np.inf) False >>> np.isnan([np.log(-1.),1.,np.log(0)]) array([ True, False, False], dtype=bool) """) add_newdoc('numpy.core.umath', 'left_shift', """ Shift the bits of an integer to the left. Bits are shifted to the left by appending `x2` 0s at the right of `x1`. Since the internal representation of numbers is in binary format, this operation is equivalent to multiplying `x1` by ``2**x2``. Parameters ---------- x1 : array_like of integer type Input values. x2 : array_like of integer type Number of zeros to append to `x1`. Has to be non-negative. Returns ------- out : array of integer type Return `x1` with bits shifted `x2` times to the left. See Also -------- right_shift : Shift the bits of an integer to the right. binary_repr : Return the binary representation of the input number as a string. Examples -------- >>> np.binary_repr(5) '101' >>> np.left_shift(5, 2) 20 >>> np.binary_repr(20) '10100' >>> np.left_shift(5, [1,2,3]) array([10, 20, 40]) """) add_newdoc('numpy.core.umath', 'less', """ Return the truth value of (x1 < x2) element-wise. Parameters ---------- x1, x2 : array_like Input arrays. If ``x1.shape != x2.shape``, they must be broadcastable to a common shape (which may be the shape of one or the other). Returns ------- out : bool or ndarray of bool Array of bools, or a single bool if `x1` and `x2` are scalars. See Also -------- greater, less_equal, greater_equal, equal, not_equal Examples -------- >>> np.less([1, 2], [2, 2]) array([ True, False], dtype=bool) """) add_newdoc('numpy.core.umath', 'less_equal', """ Return the truth value of (x1 =< x2) element-wise. Parameters ---------- x1, x2 : array_like Input arrays. If ``x1.shape != x2.shape``, they must be broadcastable to a common shape (which may be the shape of one or the other). Returns ------- out : bool or ndarray of bool Array of bools, or a single bool if `x1` and `x2` are scalars. See Also -------- greater, less, greater_equal, equal, not_equal Examples -------- >>> np.less_equal([4, 2, 1], [2, 2, 2]) array([False, True, True], dtype=bool) """) add_newdoc('numpy.core.umath', 'log', """ Natural logarithm, element-wise. The natural logarithm `log` is the inverse of the exponential function, so that `log(exp(x)) = x`. The natural logarithm is logarithm in base `e`. Parameters ---------- x : array_like Input value. Returns ------- y : ndarray The natural logarithm of `x`, element-wise. See Also -------- log10, log2, log1p, emath.log Notes ----- Logarithm is a multivalued function: for each `x` there is an infinite number of `z` such that `exp(z) = x`. The convention is to return the `z` whose imaginary part lies in `[-pi, pi]`. For real-valued input data types, `log` always returns real output. For each value that cannot be expressed as a real number or infinity, it yields ``nan`` and sets the `invalid` floating point error flag. For complex-valued input, `log` is a complex analytical function that has a branch cut `[-inf, 0]` and is continuous from above on it. `log` handles the floating-point negative zero as an infinitesimal negative number, conforming to the C99 standard. References ---------- .. [1] M. Abramowitz and I.A. Stegun, "Handbook of Mathematical Functions", 10th printing, 1964, pp. 67. http://www.math.sfu.ca/~cbm/aands/ .. [2] Wikipedia, "Logarithm". http://en.wikipedia.org/wiki/Logarithm Examples -------- >>> np.log([1, np.e, np.e**2, 0]) array([ 0., 1., 2., -Inf]) """) add_newdoc('numpy.core.umath', 'log10', """ Return the base 10 logarithm of the input array, element-wise. Parameters ---------- x : array_like Input values. Returns ------- y : ndarray The logarithm to the base 10 of `x`, element-wise. NaNs are returned where x is negative. See Also -------- emath.log10 Notes ----- Logarithm is a multivalued function: for each `x` there is an infinite number of `z` such that `10**z = x`. The convention is to return the `z` whose imaginary part lies in `[-pi, pi]`. For real-valued input data types, `log10` always returns real output. For each value that cannot be expressed as a real number or infinity, it yields ``nan`` and sets the `invalid` floating point error flag. For complex-valued input, `log10` is a complex analytical function that has a branch cut `[-inf, 0]` and is continuous from above on it. `log10` handles the floating-point negative zero as an infinitesimal negative number, conforming to the C99 standard. References ---------- .. [1] M. Abramowitz and I.A. Stegun, "Handbook of Mathematical Functions", 10th printing, 1964, pp. 67. http://www.math.sfu.ca/~cbm/aands/ .. [2] Wikipedia, "Logarithm". http://en.wikipedia.org/wiki/Logarithm Examples -------- >>> np.log10([1e-15, -3.]) array([-15., NaN]) """) add_newdoc('numpy.core.umath', 'log2', """ Base-2 logarithm of `x`. Parameters ---------- x : array_like Input values. Returns ------- y : ndarray Base-2 logarithm of `x`. See Also -------- log, log10, log1p, emath.log2 Notes ----- .. versionadded:: 1.3.0 Logarithm is a multivalued function: for each `x` there is an infinite number of `z` such that `2**z = x`. The convention is to return the `z` whose imaginary part lies in `[-pi, pi]`. For real-valued input data types, `log2` always returns real output. For each value that cannot be expressed as a real number or infinity, it yields ``nan`` and sets the `invalid` floating point error flag. For complex-valued input, `log2` is a complex analytical function that has a branch cut `[-inf, 0]` and is continuous from above on it. `log2` handles the floating-point negative zero as an infinitesimal negative number, conforming to the C99 standard. Examples -------- >>> x = np.array([0, 1, 2, 2**4]) >>> np.log2(x) array([-Inf, 0., 1., 4.]) >>> xi = np.array([0+1.j, 1, 2+0.j, 4.j]) >>> np.log2(xi) array([ 0.+2.26618007j, 0.+0.j , 1.+0.j , 2.+2.26618007j]) """) add_newdoc('numpy.core.umath', 'logaddexp', """ Logarithm of the sum of exponentiations of the inputs. Calculates ``log(exp(x1) + exp(x2))``. This function is useful in statistics where the calculated probabilities of events may be so small as to exceed the range of normal floating point numbers. In such cases the logarithm of the calculated probability is stored. This function allows adding probabilities stored in such a fashion. Parameters ---------- x1, x2 : array_like Input values. Returns ------- result : ndarray Logarithm of ``exp(x1) + exp(x2)``. See Also -------- logaddexp2: Logarithm of the sum of exponentiations of inputs in base 2. Notes ----- .. versionadded:: 1.3.0 Examples -------- >>> prob1 = np.log(1e-50) >>> prob2 = np.log(2.5e-50) >>> prob12 = np.logaddexp(prob1, prob2) >>> prob12 -113.87649168120691 >>> np.exp(prob12) 3.5000000000000057e-50 """) add_newdoc('numpy.core.umath', 'logaddexp2', """ Logarithm of the sum of exponentiations of the inputs in base-2. Calculates ``log2(2**x1 + 2**x2)``. This function is useful in machine learning when the calculated probabilities of events may be so small as to exceed the range of normal floating point numbers. In such cases the base-2 logarithm of the calculated probability can be used instead. This function allows adding probabilities stored in such a fashion. Parameters ---------- x1, x2 : array_like Input values. out : ndarray, optional Array to store results in. Returns ------- result : ndarray Base-2 logarithm of ``2**x1 + 2**x2``. See Also -------- logaddexp: Logarithm of the sum of exponentiations of the inputs. Notes ----- .. versionadded:: 1.3.0 Examples -------- >>> prob1 = np.log2(1e-50) >>> prob2 = np.log2(2.5e-50) >>> prob12 = np.logaddexp2(prob1, prob2) >>> prob1, prob2, prob12 (-166.09640474436813, -164.77447664948076, -164.28904982231052) >>> 2**prob12 3.4999999999999914e-50 """) add_newdoc('numpy.core.umath', 'log1p', """ Return the natural logarithm of one plus the input array, element-wise. Calculates ``log(1 + x)``. Parameters ---------- x : array_like Input values. Returns ------- y : ndarray Natural logarithm of `1 + x`, element-wise. See Also -------- expm1 : ``exp(x) - 1``, the inverse of `log1p`. Notes ----- For real-valued input, `log1p` is accurate also for `x` so small that `1 + x == 1` in floating-point accuracy. Logarithm is a multivalued function: for each `x` there is an infinite number of `z` such that `exp(z) = 1 + x`. The convention is to return the `z` whose imaginary part lies in `[-pi, pi]`. For real-valued input data types, `log1p` always returns real output. For each value that cannot be expressed as a real number or infinity, it yields ``nan`` and sets the `invalid` floating point error flag. For complex-valued input, `log1p` is a complex analytical function that has a branch cut `[-inf, -1]` and is continuous from above on it. `log1p` handles the floating-point negative zero as an infinitesimal negative number, conforming to the C99 standard. References ---------- .. [1] M. Abramowitz and I.A. Stegun, "Handbook of Mathematical Functions", 10th printing, 1964, pp. 67. http://www.math.sfu.ca/~cbm/aands/ .. [2] Wikipedia, "Logarithm". http://en.wikipedia.org/wiki/Logarithm Examples -------- >>> np.log1p(1e-99) 1e-99 >>> np.log(1 + 1e-99) 0.0 """) add_newdoc('numpy.core.umath', 'logical_and', """ Compute the truth value of x1 AND x2 element-wise. Parameters ---------- x1, x2 : array_like Input arrays. `x1` and `x2` must be of the same shape. Returns ------- y : ndarray or bool Boolean result with the same shape as `x1` and `x2` of the logical AND operation on corresponding elements of `x1` and `x2`. See Also -------- logical_or, logical_not, logical_xor bitwise_and Examples -------- >>> np.logical_and(True, False) False >>> np.logical_and([True, False], [False, False]) array([False, False], dtype=bool) >>> x = np.arange(5) >>> np.logical_and(x>1, x<4) array([False, False, True, True, False], dtype=bool) """) add_newdoc('numpy.core.umath', 'logical_not', """ Compute the truth value of NOT x element-wise. Parameters ---------- x : array_like Logical NOT is applied to the elements of `x`. Returns ------- y : bool or ndarray of bool Boolean result with the same shape as `x` of the NOT operation on elements of `x`. See Also -------- logical_and, logical_or, logical_xor Examples -------- >>> np.logical_not(3) False >>> np.logical_not([True, False, 0, 1]) array([False, True, True, False], dtype=bool) >>> x = np.arange(5) >>> np.logical_not(x<3) array([False, False, False, True, True], dtype=bool) """) add_newdoc('numpy.core.umath', 'logical_or', """ Compute the truth value of x1 OR x2 element-wise. Parameters ---------- x1, x2 : array_like Logical OR is applied to the elements of `x1` and `x2`. They have to be of the same shape. Returns ------- y : ndarray or bool Boolean result with the same shape as `x1` and `x2` of the logical OR operation on elements of `x1` and `x2`. See Also -------- logical_and, logical_not, logical_xor bitwise_or Examples -------- >>> np.logical_or(True, False) True >>> np.logical_or([True, False], [False, False]) array([ True, False], dtype=bool) >>> x = np.arange(5) >>> np.logical_or(x < 1, x > 3) array([ True, False, False, False, True], dtype=bool) """) add_newdoc('numpy.core.umath', 'logical_xor', """ Compute the truth value of x1 XOR x2, element-wise. Parameters ---------- x1, x2 : array_like Logical XOR is applied to the elements of `x1` and `x2`. They must be broadcastable to the same shape. Returns ------- y : bool or ndarray of bool Boolean result of the logical XOR operation applied to the elements of `x1` and `x2`; the shape is determined by whether or not broadcasting of one or both arrays was required. See Also -------- logical_and, logical_or, logical_not, bitwise_xor Examples -------- >>> np.logical_xor(True, False) True >>> np.logical_xor([True, True, False, False], [True, False, True, False]) array([False, True, True, False], dtype=bool) >>> x = np.arange(5) >>> np.logical_xor(x < 1, x > 3) array([ True, False, False, False, True], dtype=bool) Simple example showing support of broadcasting >>> np.logical_xor(0, np.eye(2)) array([[ True, False], [False, True]], dtype=bool) """) add_newdoc('numpy.core.umath', 'maximum', """ Element-wise maximum of array elements. Compare two arrays and returns a new array containing the element-wise maxima. If one of the elements being compared is a NaN, then that element is returned. If both elements are NaNs then the first is returned. The latter distinction is important for complex NaNs, which are defined as at least one of the real or imaginary parts being a NaN. The net effect is that NaNs are propagated. Parameters ---------- x1, x2 : array_like The arrays holding the elements to be compared. They must have the same shape, or shapes that can be broadcast to a single shape. Returns ------- y : ndarray or scalar The maximum of `x1` and `x2`, element-wise. Returns scalar if both `x1` and `x2` are scalars. See Also -------- minimum : Element-wise minimum of two arrays, propagates NaNs. fmax : Element-wise maximum of two arrays, ignores NaNs. amax : The maximum value of an array along a given axis, propagates NaNs. nanmax : The maximum value of an array along a given axis, ignores NaNs. fmin, amin, nanmin Notes ----- The maximum is equivalent to ``np.where(x1 >= x2, x1, x2)`` when neither x1 nor x2 are nans, but it is faster and does proper broadcasting. Examples -------- >>> np.maximum([2, 3, 4], [1, 5, 2]) array([2, 5, 4]) >>> np.maximum(np.eye(2), [0.5, 2]) # broadcasting array([[ 1. , 2. ], [ 0.5, 2. ]]) >>> np.maximum([np.nan, 0, np.nan], [0, np.nan, np.nan]) array([ NaN, NaN, NaN]) >>> np.maximum(np.Inf, 1) inf """) add_newdoc('numpy.core.umath', 'minimum', """ Element-wise minimum of array elements. Compare two arrays and returns a new array containing the element-wise minima. If one of the elements being compared is a NaN, then that element is returned. If both elements are NaNs then the first is returned. The latter distinction is important for complex NaNs, which are defined as at least one of the real or imaginary parts being a NaN. The net effect is that NaNs are propagated. Parameters ---------- x1, x2 : array_like The arrays holding the elements to be compared. They must have the same shape, or shapes that can be broadcast to a single shape. Returns ------- y : ndarray or scalar The minimum of `x1` and `x2`, element-wise. Returns scalar if both `x1` and `x2` are scalars. See Also -------- maximum : Element-wise maximum of two arrays, propagates NaNs. fmin : Element-wise minimum of two arrays, ignores NaNs. amin : The minimum value of an array along a given axis, propagates NaNs. nanmin : The minimum value of an array along a given axis, ignores NaNs. fmax, amax, nanmax Notes ----- The minimum is equivalent to ``np.where(x1 <= x2, x1, x2)`` when neither x1 nor x2 are NaNs, but it is faster and does proper broadcasting. Examples -------- >>> np.minimum([2, 3, 4], [1, 5, 2]) array([1, 3, 2]) >>> np.minimum(np.eye(2), [0.5, 2]) # broadcasting array([[ 0.5, 0. ], [ 0. , 1. ]]) >>> np.minimum([np.nan, 0, np.nan],[0, np.nan, np.nan]) array([ NaN, NaN, NaN]) >>> np.minimum(-np.Inf, 1) -inf """) add_newdoc('numpy.core.umath', 'fmax', """ Element-wise maximum of array elements. Compare two arrays and returns a new array containing the element-wise maxima. If one of the elements being compared is a NaN, then the non-nan element is returned. If both elements are NaNs then the first is returned. The latter distinction is important for complex NaNs, which are defined as at least one of the real or imaginary parts being a NaN. The net effect is that NaNs are ignored when possible. Parameters ---------- x1, x2 : array_like The arrays holding the elements to be compared. They must have the same shape. Returns ------- y : ndarray or scalar The maximum of `x1` and `x2`, element-wise. Returns scalar if both `x1` and `x2` are scalars. See Also -------- fmin : Element-wise minimum of two arrays, ignores NaNs. maximum : Element-wise maximum of two arrays, propagates NaNs. amax : The maximum value of an array along a given axis, propagates NaNs. nanmax : The maximum value of an array along a given axis, ignores NaNs. minimum, amin, nanmin Notes ----- .. versionadded:: 1.3.0 The fmax is equivalent to ``np.where(x1 >= x2, x1, x2)`` when neither x1 nor x2 are NaNs, but it is faster and does proper broadcasting. Examples -------- >>> np.fmax([2, 3, 4], [1, 5, 2]) array([ 2., 5., 4.]) >>> np.fmax(np.eye(2), [0.5, 2]) array([[ 1. , 2. ], [ 0.5, 2. ]]) >>> np.fmax([np.nan, 0, np.nan],[0, np.nan, np.nan]) array([ 0., 0., NaN]) """) add_newdoc('numpy.core.umath', 'fmin', """ Element-wise minimum of array elements. Compare two arrays and returns a new array containing the element-wise minima. If one of the elements being compared is a NaN, then the non-nan element is returned. If both elements are NaNs then the first is returned. The latter distinction is important for complex NaNs, which are defined as at least one of the real or imaginary parts being a NaN. The net effect is that NaNs are ignored when possible. Parameters ---------- x1, x2 : array_like The arrays holding the elements to be compared. They must have the same shape. Returns ------- y : ndarray or scalar The minimum of `x1` and `x2`, element-wise. Returns scalar if both `x1` and `x2` are scalars. See Also -------- fmax : Element-wise maximum of two arrays, ignores NaNs. minimum : Element-wise minimum of two arrays, propagates NaNs. amin : The minimum value of an array along a given axis, propagates NaNs. nanmin : The minimum value of an array along a given axis, ignores NaNs. maximum, amax, nanmax Notes ----- .. versionadded:: 1.3.0 The fmin is equivalent to ``np.where(x1 <= x2, x1, x2)`` when neither x1 nor x2 are NaNs, but it is faster and does proper broadcasting. Examples -------- >>> np.fmin([2, 3, 4], [1, 5, 2]) array([2, 5, 4]) >>> np.fmin(np.eye(2), [0.5, 2]) array([[ 1. , 2. ], [ 0.5, 2. ]]) >>> np.fmin([np.nan, 0, np.nan],[0, np.nan, np.nan]) array([ 0., 0., NaN]) """) add_newdoc('numpy.core.umath', 'modf', """ Return the fractional and integral parts of an array, element-wise. The fractional and integral parts are negative if the given number is negative. Parameters ---------- x : array_like Input array. Returns ------- y1 : ndarray Fractional part of `x`. y2 : ndarray Integral part of `x`. Notes ----- For integer input the return values are floats. Examples -------- >>> np.modf([0, 3.5]) (array([ 0. , 0.5]), array([ 0., 3.])) >>> np.modf(-0.5) (-0.5, -0) """) add_newdoc('numpy.core.umath', 'multiply', """ Multiply arguments element-wise. Parameters ---------- x1, x2 : array_like Input arrays to be multiplied. Returns ------- y : ndarray The product of `x1` and `x2`, element-wise. Returns a scalar if both `x1` and `x2` are scalars. Notes ----- Equivalent to `x1` * `x2` in terms of array broadcasting. Examples -------- >>> np.multiply(2.0, 4.0) 8.0 >>> x1 = np.arange(9.0).reshape((3, 3)) >>> x2 = np.arange(3.0) >>> np.multiply(x1, x2) array([[ 0., 1., 4.], [ 0., 4., 10.], [ 0., 7., 16.]]) """) add_newdoc('numpy.core.umath', 'negative', """ Numerical negative, element-wise. Parameters ---------- x : array_like or scalar Input array. Returns ------- y : ndarray or scalar Returned array or scalar: `y = -x`. Examples -------- >>> np.negative([1.,-1.]) array([-1., 1.]) """) add_newdoc('numpy.core.umath', 'not_equal', """ Return (x1 != x2) element-wise. Parameters ---------- x1, x2 : array_like Input arrays. out : ndarray, optional A placeholder the same shape as `x1` to store the result. See `doc.ufuncs` (Section "Output arguments") for more details. Returns ------- not_equal : ndarray bool, scalar bool For each element in `x1, x2`, return True if `x1` is not equal to `x2` and False otherwise. See Also -------- equal, greater, greater_equal, less, less_equal Examples -------- >>> np.not_equal([1.,2.], [1., 3.]) array([False, True], dtype=bool) >>> np.not_equal([1, 2], [[1, 3],[1, 4]]) array([[False, True], [False, True]], dtype=bool) """) add_newdoc('numpy.core.umath', '_ones_like', """ This function used to be the numpy.ones_like, but now a specific function for that has been written for consistency with the other *_like functions. It is only used internally in a limited fashion now. See Also -------- ones_like """) add_newdoc('numpy.core.umath', 'power', """ First array elements raised to powers from second array, element-wise. Raise each base in `x1` to the positionally-corresponding power in `x2`. `x1` and `x2` must be broadcastable to the same shape. Parameters ---------- x1 : array_like The bases. x2 : array_like The exponents. Returns ------- y : ndarray The bases in `x1` raised to the exponents in `x2`. Examples -------- Cube each element in a list. >>> x1 = range(6) >>> x1 [0, 1, 2, 3, 4, 5] >>> np.power(x1, 3) array([ 0, 1, 8, 27, 64, 125]) Raise the bases to different exponents. >>> x2 = [1.0, 2.0, 3.0, 3.0, 2.0, 1.0] >>> np.power(x1, x2) array([ 0., 1., 8., 27., 16., 5.]) The effect of broadcasting. >>> x2 = np.array([[1, 2, 3, 3, 2, 1], [1, 2, 3, 3, 2, 1]]) >>> x2 array([[1, 2, 3, 3, 2, 1], [1, 2, 3, 3, 2, 1]]) >>> np.power(x1, x2) array([[ 0, 1, 8, 27, 16, 5], [ 0, 1, 8, 27, 16, 5]]) """) add_newdoc('numpy.core.umath', 'radians', """ Convert angles from degrees to radians. Parameters ---------- x : array_like Input array in degrees. out : ndarray, optional Output array of same shape as `x`. Returns ------- y : ndarray The corresponding radian values. See Also -------- deg2rad : equivalent function Examples -------- Convert a degree array to radians >>> deg = np.arange(12.) * 30. >>> np.radians(deg) array([ 0. , 0.52359878, 1.04719755, 1.57079633, 2.0943951 , 2.61799388, 3.14159265, 3.66519143, 4.1887902 , 4.71238898, 5.23598776, 5.75958653]) >>> out = np.zeros((deg.shape)) >>> ret = np.radians(deg, out) >>> ret is out True """) add_newdoc('numpy.core.umath', 'deg2rad', """ Convert angles from degrees to radians. Parameters ---------- x : array_like Angles in degrees. Returns ------- y : ndarray The corresponding angle in radians. See Also -------- rad2deg : Convert angles from radians to degrees. unwrap : Remove large jumps in angle by wrapping. Notes ----- .. versionadded:: 1.3.0 ``deg2rad(x)`` is ``x * pi / 180``. Examples -------- >>> np.deg2rad(180) 3.1415926535897931 """) add_newdoc('numpy.core.umath', 'reciprocal', """ Return the reciprocal of the argument, element-wise. Calculates ``1/x``. Parameters ---------- x : array_like Input array. Returns ------- y : ndarray Return array. Notes ----- .. note:: This function is not designed to work with integers. For integer arguments with absolute value larger than 1 the result is always zero because of the way Python handles integer division. For integer zero the result is an overflow. Examples -------- >>> np.reciprocal(2.) 0.5 >>> np.reciprocal([1, 2., 3.33]) array([ 1. , 0.5 , 0.3003003]) """) add_newdoc('numpy.core.umath', 'remainder', """ Return element-wise remainder of division. Computes ``x1 - floor(x1 / x2) * x2``, the result has the same sign as the divisor `x2`. It is equivalent to the Python modulus operator ``x1 % x2`` and should not be confused with the Matlab(TM) ``rem`` function. Parameters ---------- x1 : array_like Dividend array. x2 : array_like Divisor array. out : ndarray, optional Array into which the output is placed. Its type is preserved and it must be of the right shape to hold the output. See doc.ufuncs. Returns ------- y : ndarray The remainder of the quotient ``x1/x2``, element-wise. Returns a scalar if both `x1` and `x2` are scalars. See Also -------- fmod : Equivalent of the Matlab(TM) ``rem`` function. divide, floor Notes ----- Returns 0 when `x2` is 0 and both `x1` and `x2` are (arrays of) integers. Examples -------- >>> np.remainder([4, 7], [2, 3]) array([0, 1]) >>> np.remainder(np.arange(7), 5) array([0, 1, 2, 3, 4, 0, 1]) """) add_newdoc('numpy.core.umath', 'right_shift', """ Shift the bits of an integer to the right. Bits are shifted to the right `x2`. Because the internal representation of numbers is in binary format, this operation is equivalent to dividing `x1` by ``2**x2``. Parameters ---------- x1 : array_like, int Input values. x2 : array_like, int Number of bits to remove at the right of `x1`. Returns ------- out : ndarray, int Return `x1` with bits shifted `x2` times to the right. See Also -------- left_shift : Shift the bits of an integer to the left. binary_repr : Return the binary representation of the input number as a string. Examples -------- >>> np.binary_repr(10) '1010' >>> np.right_shift(10, 1) 5 >>> np.binary_repr(5) '101' >>> np.right_shift(10, [1,2,3]) array([5, 2, 1]) """) add_newdoc('numpy.core.umath', 'rint', """ Round elements of the array to the nearest integer. Parameters ---------- x : array_like Input array. Returns ------- out : ndarray or scalar Output array is same shape and type as `x`. See Also -------- ceil, floor, trunc Examples -------- >>> a = np.array([-1.7, -1.5, -0.2, 0.2, 1.5, 1.7, 2.0]) >>> np.rint(a) array([-2., -2., -0., 0., 2., 2., 2.]) """) add_newdoc('numpy.core.umath', 'sign', """ Returns an element-wise indication of the sign of a number. The `sign` function returns ``-1 if x < 0, 0 if x==0, 1 if x > 0``. nan is returned for nan inputs. For complex inputs, the `sign` function returns ``sign(x.real) + 0j if x.real != 0 else sign(x.imag) + 0j``. complex(nan, 0) is returned for complex nan inputs. Parameters ---------- x : array_like Input values. Returns ------- y : ndarray The sign of `x`. Notes ----- There is more than one definition of sign in common use for complex numbers. The definition used here is equivalent to :math:`x/\\sqrt{x*x}` which is different from a common alternative, :math:`x/|x|`. Examples -------- >>> np.sign([-5., 4.5]) array([-1., 1.]) >>> np.sign(0) 0 >>> np.sign(5-2j) (1+0j) """) add_newdoc('numpy.core.umath', 'signbit', """ Returns element-wise True where signbit is set (less than zero). Parameters ---------- x : array_like The input value(s). out : ndarray, optional Array into which the output is placed. Its type is preserved and it must be of the right shape to hold the output. See `doc.ufuncs`. Returns ------- result : ndarray of bool Output array, or reference to `out` if that was supplied. Examples -------- >>> np.signbit(-1.2) True >>> np.signbit(np.array([1, -2.3, 2.1])) array([False, True, False], dtype=bool) """) add_newdoc('numpy.core.umath', 'copysign', """ Change the sign of x1 to that of x2, element-wise. If both arguments are arrays or sequences, they have to be of the same length. If `x2` is a scalar, its sign will be copied to all elements of `x1`. Parameters ---------- x1 : array_like Values to change the sign of. x2 : array_like The sign of `x2` is copied to `x1`. out : ndarray, optional Array into which the output is placed. Its type is preserved and it must be of the right shape to hold the output. See doc.ufuncs. Returns ------- out : array_like The values of `x1` with the sign of `x2`. Examples -------- >>> np.copysign(1.3, -1) -1.3 >>> 1/np.copysign(0, 1) inf >>> 1/np.copysign(0, -1) -inf >>> np.copysign([-1, 0, 1], -1.1) array([-1., -0., -1.]) >>> np.copysign([-1, 0, 1], np.arange(3)-1) array([-1., 0., 1.]) """) add_newdoc('numpy.core.umath', 'nextafter', """ Return the next floating-point value after x1 towards x2, element-wise. Parameters ---------- x1 : array_like Values to find the next representable value of. x2 : array_like The direction where to look for the next representable value of `x1`. out : ndarray, optional Array into which the output is placed. Its type is preserved and it must be of the right shape to hold the output. See `doc.ufuncs`. Returns ------- out : array_like The next representable values of `x1` in the direction of `x2`. Examples -------- >>> eps = np.finfo(np.float64).eps >>> np.nextafter(1, 2) == eps + 1 True >>> np.nextafter([1, 2], [2, 1]) == [eps + 1, 2 - eps] array([ True, True], dtype=bool) """) add_newdoc('numpy.core.umath', 'spacing', """ Return the distance between x and the nearest adjacent number. Parameters ---------- x1 : array_like Values to find the spacing of. Returns ------- out : array_like The spacing of values of `x1`. Notes ----- It can be considered as a generalization of EPS: ``spacing(np.float64(1)) == np.finfo(np.float64).eps``, and there should not be any representable number between ``x + spacing(x)`` and x for any finite x. Spacing of +- inf and NaN is NaN. Examples -------- >>> np.spacing(1) == np.finfo(np.float64).eps True """) add_newdoc('numpy.core.umath', 'sin', """ Trigonometric sine, element-wise. Parameters ---------- x : array_like Angle, in radians (:math:`2 \\pi` rad equals 360 degrees). Returns ------- y : array_like The sine of each element of x. See Also -------- arcsin, sinh, cos Notes ----- The sine is one of the fundamental functions of trigonometry (the mathematical study of triangles). Consider a circle of radius 1 centered on the origin. A ray comes in from the :math:`+x` axis, makes an angle at the origin (measured counter-clockwise from that axis), and departs from the origin. The :math:`y` coordinate of the outgoing ray's intersection with the unit circle is the sine of that angle. It ranges from -1 for :math:`x=3\\pi / 2` to +1 for :math:`\\pi / 2.` The function has zeroes where the angle is a multiple of :math:`\\pi`. Sines of angles between :math:`\\pi` and :math:`2\\pi` are negative. The numerous properties of the sine and related functions are included in any standard trigonometry text. Examples -------- Print sine of one angle: >>> np.sin(np.pi/2.) 1.0 Print sines of an array of angles given in degrees: >>> np.sin(np.array((0., 30., 45., 60., 90.)) * np.pi / 180. ) array([ 0. , 0.5 , 0.70710678, 0.8660254 , 1. ]) Plot the sine function: >>> import matplotlib.pylab as plt >>> x = np.linspace(-np.pi, np.pi, 201) >>> plt.plot(x, np.sin(x)) >>> plt.xlabel('Angle [rad]') >>> plt.ylabel('sin(x)') >>> plt.axis('tight') >>> plt.show() """) add_newdoc('numpy.core.umath', 'sinh', """ Hyperbolic sine, element-wise. Equivalent to ``1/2 * (np.exp(x) - np.exp(-x))`` or ``-1j * np.sin(1j*x)``. Parameters ---------- x : array_like Input array. out : ndarray, optional Output array of same shape as `x`. Returns ------- y : ndarray The corresponding hyperbolic sine values. Raises ------ ValueError: invalid return array shape if `out` is provided and `out.shape` != `x.shape` (See Examples) Notes ----- If `out` is provided, the function writes the result into it, and returns a reference to `out`. (See Examples) References ---------- M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions. New York, NY: Dover, 1972, pg. 83. Examples -------- >>> np.sinh(0) 0.0 >>> np.sinh(np.pi*1j/2) 1j >>> np.sinh(np.pi*1j) # (exact value is 0) 1.2246063538223773e-016j >>> # Discrepancy due to vagaries of floating point arithmetic. >>> # Example of providing the optional output parameter >>> out2 = np.sinh([0.1], out1) >>> out2 is out1 True >>> # Example of ValueError due to provision of shape mis-matched `out` >>> np.sinh(np.zeros((3,3)),np.zeros((2,2))) Traceback (most recent call last): File "<stdin>", line 1, in <module> ValueError: invalid return array shape """) add_newdoc('numpy.core.umath', 'sqrt', """ Return the positive square-root of an array, element-wise. Parameters ---------- x : array_like The values whose square-roots are required. out : ndarray, optional Alternate array object in which to put the result; if provided, it must have the same shape as `x` Returns ------- y : ndarray An array of the same shape as `x`, containing the positive square-root of each element in `x`. If any element in `x` is complex, a complex array is returned (and the square-roots of negative reals are calculated). If all of the elements in `x` are real, so is `y`, with negative elements returning ``nan``. If `out` was provided, `y` is a reference to it. See Also -------- lib.scimath.sqrt A version which returns complex numbers when given negative reals. Notes ----- *sqrt* has--consistent with common convention--as its branch cut the real "interval" [`-inf`, 0), and is continuous from above on it. A branch cut is a curve in the complex plane across which a given complex function fails to be continuous. Examples -------- >>> np.sqrt([1,4,9]) array([ 1., 2., 3.]) >>> np.sqrt([4, -1, -3+4J]) array([ 2.+0.j, 0.+1.j, 1.+2.j]) >>> np.sqrt([4, -1, numpy.inf]) array([ 2., NaN, Inf]) """) add_newdoc('numpy.core.umath', 'cbrt', """ Return the cube-root of an array, element-wise. .. versionadded:: 1.10.0 Parameters ---------- x : array_like The values whose cube-roots are required. out : ndarray, optional Alternate array object in which to put the result; if provided, it must have the same shape as `x` Returns ------- y : ndarray An array of the same shape as `x`, containing the cube cube-root of each element in `x`. If `out` was provided, `y` is a reference to it. Examples -------- >>> np.cbrt([1,8,27]) array([ 1., 2., 3.]) """) add_newdoc('numpy.core.umath', 'square', """ Return the element-wise square of the input. Parameters ---------- x : array_like Input data. Returns ------- out : ndarray Element-wise `x*x`, of the same shape and dtype as `x`. Returns scalar if `x` is a scalar. See Also -------- numpy.linalg.matrix_power sqrt power Examples -------- >>> np.square([-1j, 1]) array([-1.-0.j, 1.+0.j]) """) add_newdoc('numpy.core.umath', 'subtract', """ Subtract arguments, element-wise. Parameters ---------- x1, x2 : array_like The arrays to be subtracted from each other. Returns ------- y : ndarray The difference of `x1` and `x2`, element-wise. Returns a scalar if both `x1` and `x2` are scalars. Notes ----- Equivalent to ``x1 - x2`` in terms of array broadcasting. Examples -------- >>> np.subtract(1.0, 4.0) -3.0 >>> x1 = np.arange(9.0).reshape((3, 3)) >>> x2 = np.arange(3.0) >>> np.subtract(x1, x2) array([[ 0., 0., 0.], [ 3., 3., 3.], [ 6., 6., 6.]]) """) add_newdoc('numpy.core.umath', 'tan', """ Compute tangent element-wise. Equivalent to ``np.sin(x)/np.cos(x)`` element-wise. Parameters ---------- x : array_like Input array. out : ndarray, optional Output array of same shape as `x`. Returns ------- y : ndarray The corresponding tangent values. Raises ------ ValueError: invalid return array shape if `out` is provided and `out.shape` != `x.shape` (See Examples) Notes ----- If `out` is provided, the function writes the result into it, and returns a reference to `out`. (See Examples) References ---------- M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions. New York, NY: Dover, 1972. Examples -------- >>> from math import pi >>> np.tan(np.array([-pi,pi/2,pi])) array([ 1.22460635e-16, 1.63317787e+16, -1.22460635e-16]) >>> >>> # Example of providing the optional output parameter illustrating >>> # that what is returned is a reference to said parameter >>> out2 = np.cos([0.1], out1) >>> out2 is out1 True >>> >>> # Example of ValueError due to provision of shape mis-matched `out` >>> np.cos(np.zeros((3,3)),np.zeros((2,2))) Traceback (most recent call last): File "<stdin>", line 1, in <module> ValueError: invalid return array shape """) add_newdoc('numpy.core.umath', 'tanh', """ Compute hyperbolic tangent element-wise. Equivalent to ``np.sinh(x)/np.cosh(x)`` or ``-1j * np.tan(1j*x)``. Parameters ---------- x : array_like Input array. out : ndarray, optional Output array of same shape as `x`. Returns ------- y : ndarray The corresponding hyperbolic tangent values. Raises ------ ValueError: invalid return array shape if `out` is provided and `out.shape` != `x.shape` (See Examples) Notes ----- If `out` is provided, the function writes the result into it, and returns a reference to `out`. (See Examples) References ---------- .. [1] M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions. New York, NY: Dover, 1972, pg. 83. http://www.math.sfu.ca/~cbm/aands/ .. [2] Wikipedia, "Hyperbolic function", http://en.wikipedia.org/wiki/Hyperbolic_function Examples -------- >>> np.tanh((0, np.pi*1j, np.pi*1j/2)) array([ 0. +0.00000000e+00j, 0. -1.22460635e-16j, 0. +1.63317787e+16j]) >>> # Example of providing the optional output parameter illustrating >>> # that what is returned is a reference to said parameter >>> out2 = np.tanh([0.1], out1) >>> out2 is out1 True >>> # Example of ValueError due to provision of shape mis-matched `out` >>> np.tanh(np.zeros((3,3)),np.zeros((2,2))) Traceback (most recent call last): File "<stdin>", line 1, in <module> ValueError: invalid return array shape """) add_newdoc('numpy.core.umath', 'true_divide', """ Returns a true division of the inputs, element-wise. Instead of the Python traditional 'floor division', this returns a true division. True division adjusts the output type to present the best answer, regardless of input types. Parameters ---------- x1 : array_like Dividend array. x2 : array_like Divisor array. Returns ------- out : ndarray Result is scalar if both inputs are scalar, ndarray otherwise. Notes ----- The floor division operator ``//`` was added in Python 2.2 making ``//`` and ``/`` equivalent operators. The default floor division operation of ``/`` can be replaced by true division with ``from __future__ import division``. In Python 3.0, ``//`` is the floor division operator and ``/`` the true division operator. The ``true_divide(x1, x2)`` function is equivalent to true division in Python. Examples -------- >>> x = np.arange(5) >>> np.true_divide(x, 4) array([ 0. , 0.25, 0.5 , 0.75, 1. ]) >>> x/4 array([0, 0, 0, 0, 1]) >>> x//4 array([0, 0, 0, 0, 1]) >>> from __future__ import division >>> x/4 array([ 0. , 0.25, 0.5 , 0.75, 1. ]) >>> x//4 array([0, 0, 0, 0, 1]) """) add_newdoc('numpy.core.umath', 'frexp', """ Decompose the elements of x into mantissa and twos exponent. Returns (`mantissa`, `exponent`), where `x = mantissa * 2**exponent``. The mantissa is lies in the open interval(-1, 1), while the twos exponent is a signed integer. Parameters ---------- x : array_like Array of numbers to be decomposed. out1 : ndarray, optional Output array for the mantissa. Must have the same shape as `x`. out2 : ndarray, optional Output array for the exponent. Must have the same shape as `x`. Returns ------- (mantissa, exponent) : tuple of ndarrays, (float, int) `mantissa` is a float array with values between -1 and 1. `exponent` is an int array which represents the exponent of 2. See Also -------- ldexp : Compute ``y = x1 * 2**x2``, the inverse of `frexp`. Notes ----- Complex dtypes are not supported, they will raise a TypeError. Examples -------- >>> x = np.arange(9) >>> y1, y2 = np.frexp(x) >>> y1 array([ 0. , 0.5 , 0.5 , 0.75 , 0.5 , 0.625, 0.75 , 0.875, 0.5 ]) >>> y2 array([0, 1, 2, 2, 3, 3, 3, 3, 4]) >>> y1 * 2**y2 array([ 0., 1., 2., 3., 4., 5., 6., 7., 8.]) """) add_newdoc('numpy.core.umath', 'ldexp', """ Returns x1 * 2**x2, element-wise. The mantissas `x1` and twos exponents `x2` are used to construct floating point numbers ``x1 * 2**x2``. Parameters ---------- x1 : array_like Array of multipliers. x2 : array_like, int Array of twos exponents. out : ndarray, optional Output array for the result. Returns ------- y : ndarray or scalar The result of ``x1 * 2**x2``. See Also -------- frexp : Return (y1, y2) from ``x = y1 * 2**y2``, inverse to `ldexp`. Notes ----- Complex dtypes are not supported, they will raise a TypeError. `ldexp` is useful as the inverse of `frexp`, if used by itself it is more clear to simply use the expression ``x1 * 2**x2``. Examples -------- >>> np.ldexp(5, np.arange(4)) array([ 5., 10., 20., 40.], dtype=float32) >>> x = np.arange(6) >>> np.ldexp(*np.frexp(x)) array([ 0., 1., 2., 3., 4., 5.]) """)
bsd-3-clause
kastman/lyman
lyman/visualizations.py
1
27609
from __future__ import division from six import string_types import numpy as np import pandas as pd import matplotlib as mpl import matplotlib.pyplot as plt from scipy import ndimage, signal import nibabel as nib class Mosaic(object): def __init__(self, anat, stat=None, mask=None, n_col=9, step=2, tight=True, show_mask=True, slice_dir="axial", anat_lims=None): """Plot a mosaic of axial slices through an MRI volume. Parameters ---------- anat : filename, nibabel image, or array The anatomical image that will form the background of the mosaic. If only an array is passed, an identity matrix will be used as the affine and orientation could be incorrect. stat : filename, nibabel image, or array A statistical map to plot as an overlay (which happens by calling one of the methods). If only an array is passed, it is assumed to have the same orientation as the anatomy. mask : filename, nibabel image, or array A binary image where voxels included in the statistical analysis are True. This will be used to gray-out voxels in the anatomical image that are outside the field of view. If you want to overlay the mask itself, pass it to ``stat``. n_col : int Number of columns in the mosaic. This will also determine the size of the figure (1 inch per column). step : int Show every ``step`` slice along the slice_dir in the mosaic. tight : bool If True, try to crop panes to focus on the brain volume. show_mask : bool If True, gray-out voxels in the anat image that are outside of the mask image. slice_dir : axial | coronal | sagital Direction to slice the mosaic on. anat_lims : pair of floats Limits for the anatomical (background) image colormap """ # -- Load and reorient the anatomical image if isinstance(anat, string_types): anat_img = nib.load(anat) have_orientation = True elif isinstance(anat, nib.spatialimages.SpatialImage): anat_img = anat have_orientation = True elif isinstance(anat, np.ndarray): anat_img = nib.Nifti1Image(anat, np.eye(4)) have_orientation = False else: raise TypeError("anat type {} not understood".format(type(anat))) self.anat_img = nib.as_closest_canonical(anat_img) self.anat_data = self.anat_img.get_data() # -- Load and reorient the statistical image if isinstance(stat, string_types): stat_img = nib.load(stat) elif isinstance(stat, nib.spatialimages.SpatialImage): stat_img = stat elif isinstance(stat, np.ndarray): if stat.dtype is np.dtype("bool"): stat = stat.astype(np.int) stat_img = nib.Nifti1Image(stat, anat_img.affine, anat_img.header) elif stat is not None: raise TypeError("stat type {} not understood".format(type(stat))) else: stat_img = None if stat_img is not None: self.stat_img = nib.as_closest_canonical(stat_img) # -- Load and reorient the mask image if isinstance(mask, string_types): mask_img = nib.load(mask) elif isinstance(mask, nib.spatialimages.SpatialImage): mask_img = mask elif isinstance(mask, np.ndarray): if mask.dtype is np.dtype("bool"): mask = mask.astype(np.int) mask_img = nib.Nifti1Image(mask, anat_img.affine, anat_img.header) elif mask is not None: raise TypeError("mask type {} not understood".format(type(mask))) else: mask_img = None mask_data = None if mask is not None: self.mask_img = nib.as_closest_canonical(mask_img) mask_data = self.mask_img.get_data().astype(bool) if slice_dir[0] not in "sca": err = "Slice direction {} not understood".format(slice_dir) raise ValueError(err) # Find a field of view that tries to eliminate empty voxels anat_fov = self.anat_img.get_data() > 1e-5 if tight: self.fov = anat_fov if mask is not None: self.fov &= mask_data else: self.fov = np.ones_like(anat_fov, np.bool) # Save the mosaic parameters self.n_col = n_col self.step = step self.slice_dir = slice_dir # Define slice objects to crop to the volume slices, = ndimage.find_objects(self.fov) self.x_slice, self.y_slice, self.z_slice = slices # Update the slice on the mosiac axis with steps slice_ax = dict(s="x", c="y", a="z")[slice_dir[0]] ms = getattr(self, slice_ax + "_slice") mosaic_slice = slice(ms.start, ms.stop, step) setattr(self, slice_ax + "_slice", mosaic_slice) self.n_slices = (ms.stop - ms.start) // step # Initialize the figure and plot the constant info self._setup_figure() self._plot_anat(anat_lims) if mask is not None and show_mask: self._plot_inverse_mask() # Label the anatomy if have_orientation: l_label, r_label = dict(s="PA", c="LR", a="LR")[self.slice_dir[0]] self.fig.text(.01, .03, l_label, size=14, color="w", ha="left", va="center") self.fig.text(.99, .03, r_label, size=14, color="w", ha="right", va="center") def _setup_figure(self): """Initialize the figure and axes.""" n_row = np.ceil(self.n_slices / self.n_col) if self.slice_dir.startswith("s"): slc_i, slc_j = self.y_slice, self.z_slice elif self.slice_dir.startswith("c"): slc_i, slc_j = self.x_slice, self.z_slice elif self.slice_dir.startswith("a"): slc_i, slc_j = self.x_slice, self.y_slice nx, ny, _ = self.anat_data[slc_i, slc_j].shape figsize = self.n_col, (ny / nx) * n_row plot_kws = dict(nrows=int(n_row), ncols=int(self.n_col), figsize=figsize, facecolor="0", subplot_kw=dict(xticks=[], yticks=[])) self.fig, self.axes = plt.subplots(**plot_kws) [ax.set_axis_off() for ax in self.axes.flat] self.fig.subplots_adjust(0, 0, 1, 1, 0, 0) def _plot_anat(self, lims=None): """Plot the anatomy in grayscale.""" anat_data = self.anat_img.get_data() if lims is None: vmin, vmax = 0, np.percentile(anat_data[self.fov], 99) else: vmin, vmax = lims anat_fov = anat_data[self.x_slice, self.y_slice, self.z_slice] self._map("imshow", anat_fov, cmap="gray", vmin=vmin, vmax=vmax) empty_slices = len(self.axes.flat) - anat_fov.shape[2] if empty_slices > 0: i, j, _ = anat_fov.shape for ax in self.axes.flat[-empty_slices:]: ax.imshow(np.zeros((i, j)), cmap="gray", vmin=0, vmax=10) def _plot_inverse_mask(self): """Dim the voxels outside of the statistical analysis FOV.""" mask_data = self.mask_img.get_data().astype(np.bool) anat_data = self.anat_img.get_data() mask_data = np.where(mask_data | (anat_data < 1e-5), np.nan, 1) mask_fov = mask_data[self.x_slice, self.y_slice, self.z_slice] self._map("imshow", mask_fov, cmap="bone", vmin=0, vmax=3, interpolation="nearest", alpha=.5) def _map(self, func_name, data, ignore_value_error=False, **kwargs): """Apply a named function to a 3D volume of data on each axes.""" transpose_orders = dict(s=(0, 1, 2), c=(1, 0, 2), a=(2, 0, 1)) slice_key = self.slice_dir[0] slices = data.transpose(*transpose_orders[slice_key]) for slice, ax in zip(slices, self.axes.flat): func = getattr(ax, func_name) try: func(np.rot90(slice), **kwargs) except ValueError: if ignore_value_error: pass else: raise def plot_activation(self, thresh=2, vmin=None, vmax=None, vmax_perc=99, vfloor=None, pos_cmap="Reds_r", neg_cmap=None, alpha=1, fmt=".2g"): """Plot the stat image as uni- or bi-polar activation with a threshold. Parameters ---------- thresh : float Threshold value for the statistic; overlay will not be visible between -thresh and thresh. vmin, vmax : floats The anchor values for the colormap. The same values will be used for the positive and negative overlay. vmax_perc : int The percentile of the data (within the fov and above the threshold) at which to saturate the colormap by default. Overriden if a there is a specific value passed for vmax. vfloor : float or None If not None, this sets the vmax value, if the value at the provided vmax_perc does not exceed it. pos_cmap, neg_cmap : names of colormaps or colormap objects The colormapping for the positive and negative overlays. alpha : float The transparancy of the overlay. fmt : {}-style format key Format of the colormap annotation. """ stat_data = self.stat_img.get_data()[self.x_slice, self.y_slice, self.z_slice] pos_data = stat_data.copy() pos_data[pos_data < thresh] = np.nan if vmin is None: vmin = thresh if vmax is None: calc_data = stat_data[np.abs(stat_data) > thresh] if calc_data.any(): vmax = np.percentile(np.abs(calc_data), vmax_perc) else: vmax = vmin * 2 pos_cmap = self._get_cmap(pos_cmap) self._map("imshow", pos_data, cmap=pos_cmap, vmin=vmin, vmax=vmax, alpha=alpha) if neg_cmap is not None: thresh, nvmin, nvmax = -thresh, -vmax, -vmin neg_data = stat_data.copy() neg_data[neg_data > thresh] = np.nan neg_cmap = self._get_cmap(neg_cmap) self._map("imshow", neg_data, cmap=neg_cmap, vmin=nvmin, vmax=nvmax, alpha=alpha) self._add_double_colorbar(vmin, vmax, pos_cmap, neg_cmap, fmt) else: self._add_single_colorbar(vmin, vmax, pos_cmap, fmt) def plot_overlay(self, cmap, vmin=None, vmax=None, center=False, vmin_perc=1, vmax_perc=99, thresh=None, alpha=1, fmt=".2g", colorbar=True): """Plot the stat image as a single overlay with a threshold. Parameters ---------- cmap : name of colormap or colormap object The colormapping for the overlay. vmin, vmax : floats The anchor values for the colormap. The same values will be used for the positive and negative overlay. center : bool If true, center the colormap. This respects the larger absolute value from the other (vmin, vmax) arguments, but overrides the smaller one. vmin_perc, vmax_perc : ints The percentiles of the data (within fov and above threshold) that will be anchor points for the colormap by default. Overriden if specific values are passed for vmin or vmax. thresh : float Threshold value for the statistic; overlay will not be visible between -thresh and thresh. alpha : float The transparancy of the overlay. fmt : {}-style format string Format of the colormap annotation. colorbar : bool If true, add a colorbar. """ stat_data = self.stat_img.get_data()[self.x_slice, self.y_slice, self.z_slice] if hasattr(self, "mask_img"): fov = self.mask_img.get_data()[self.x_slice, self.y_slice, self.z_slice].astype(bool) else: fov = np.ones_like(stat_data).astype(bool) if vmin is None: vmin = np.percentile(stat_data[fov], vmin_perc) if vmax is None: if stat_data.any(): vmax = np.percentile(stat_data[fov], vmax_perc) else: vmax = vmin * 2 if center: vabs = max(np.abs(vmin), vmax) vmin, vmax = -vabs, vabs if thresh is not None: stat_data[stat_data < thresh] = np.nan stat_data[~fov] = np.nan cmap = self._get_cmap(cmap) self._map("imshow", stat_data, cmap=cmap, vmin=vmin, vmax=vmax, alpha=alpha) if colorbar: self._add_single_colorbar(vmin, vmax, cmap, fmt) def plot_mask(self, color="#dd2222", alpha=.66): """Plot the statistical volume as a binary mask.""" mask_data = self.stat_img.get_data()[self.x_slice, self.y_slice, self.z_slice] bool_mask = mask_data.astype(bool) mask_data = bool_mask.astype(np.float) mask_data[~bool_mask] = np.nan cmap = mpl.colors.ListedColormap([color]) self._map("imshow", mask_data, cmap=cmap, vmin=.5, vmax=1.5, interpolation="nearest", alpha=alpha) def plot_mask_edges(self, color="#dd2222", linewidth=1): """Plot the edges of possibly multiple masks to show overlap.""" cmap = mpl.colors.ListedColormap([color]) slices = self.stat_img.get_data()[self.x_slice, self.y_slice, self.z_slice] self._map("contour", slices, ignore_value_error=True, levels=[0, 1], cmap=cmap, vmin=0, vmax=1, linewidths=linewidth) def map(self, func_name, data, thresh=None, **kwargs): """Map a dataset across the mosaic of axes. Parameters ---------- func_name : str Name of a pyplot function. data : filename, nibabel image, or array Dataset to plot. thresh : float Don't map voxels in ``data`` below this threshold. kwargs : key, value mappings Other keyword arguments are passed to the plotting function. """ if isinstance(data, string_types): data_img = nib.load(data) elif isinstance(data, np.ndarray): data_img = nib.Nifti1Image(data, np.eye(4)) else: data_img = data data_img = nib.as_closest_canonical(data_img) data = data_img.get_data() data = data.astype(np.float) if thresh is not None: data[data < thresh] = np.nan data = data[self.x_slice, self.y_slice, self.z_slice] self._map(func_name, data, **kwargs) def _pad_for_cbar(self): """Add extra space to the bottom of the figure for the colorbars.""" w, h = self.fig.get_size_inches() cbar_inches = .3 self.fig.set_size_inches(w, h + cbar_inches) cbar_height = cbar_inches / (h + cbar_inches) self.fig.subplots_adjust(0, cbar_height, 1, 1) # Needed so things look nice in the notebook bg_ax = self.fig.add_axes([0, 0, 1, cbar_height]) bg_ax.set_axis_off() bg_ax.pcolormesh(np.array([[1]]), cmap="Greys", vmin=0, vmax=1) return cbar_height def _add_single_colorbar(self, vmin, vmax, cmap, fmt): """Add colorbars for a single overlay.""" cbar_height = self._pad_for_cbar() cbar_ax = self.fig.add_axes([.3, .01, .4, cbar_height - .01]) cbar_ax.set_axis_off() bar_data = np.linspace(0, 1, 256).reshape(1, 256) cbar_ax.pcolormesh(bar_data, cmap=cmap) if fmt is not None: fmt = "{:" + fmt + "}" kws = dict(y=.005 + cbar_height * .5, color="white", size=14, va="center") self.fig.text(.29, s=fmt.format(vmin), ha="right", **kws) self.fig.text(.71, s=fmt.format(vmax), ha="left", **kws) def _add_double_colorbar(self, vmin, vmax, pos_cmap, neg_cmap, fmt): """Add colorbars for a positive and a negative overlay.""" cbar_height = self._pad_for_cbar() bar_data = np.linspace(0, 1, 256).reshape(1, 256) pos_ax = self.fig.add_axes([.55, .01, .3, cbar_height - .01]) pos_ax.set_axis_off() pos_ax.pcolormesh(bar_data, cmap=pos_cmap) neg_ax = self.fig.add_axes([.15, .01, .3, cbar_height - .01]) neg_ax.set_axis_off() neg_ax.pcolormesh(bar_data, cmap=neg_cmap) if fmt is not None: fmt = "{:" + fmt + "}" kws = dict(y=.005 + cbar_height * .5, color="white", size=14, va="center") self.fig.text(.54, s=fmt.format(vmin), ha="right", **kws) self.fig.text(.86, s=fmt.format(vmax), ha="left", **kws) self.fig.text(.14, s=fmt.format(-vmax), ha="right", **kws) self.fig.text(.46, s=fmt.format(-vmin), ha="left", **kws) def _get_cmap(self, cmap): """Parse a string spec of a cubehelix palette.""" if isinstance(cmap, string_types): if cmap.startswith("cube"): if cmap.endswith("_r"): reverse = False cmap = cmap[:-2] else: reverse = True _, start, rot = cmap.split(":") cube_rgb = mpl._cm.cubehelix(s=float(start), r=float(rot)) cube_cmap = mpl.colors.LinearSegmentedColormap(cmap, cube_rgb) lut = cube_cmap(np.linspace(.95, 0, 256)) if reverse: lut = lut[::-1] cmap = mpl.colors.ListedColormap(lut) return cmap def savefig(self, fname, close=False, **kwargs): """Save the figure; optionally close it.""" self.fig.savefig(fname, facecolor="0", edgecolor="0", **kwargs) if close: self.close() def close(self): """Close the figure.""" plt.close(self.fig) class CarpetPlot(object): components = [ "cortex", "subgm", "brainstem", "cerebellum", "cortwm", "deepwm", "cerebwm", "csf" ] def __init__(self, data, seg, mc_params=None, smooth_fwhm=5, vlim=None, title=None): """Heatmap rendering of an fMRI timeseries for quality control. The Freesurfer segmentation is used to organize data by different components of the brain. Instantiating the class will load, preprocess, and plot the data. Parameters ---------- data : filename or nibabel image 4D time series data to plot. wmparc : filename or nibabel image Freesurfer wmparc image in functional space. mc_params : filename or DataFrame, optional Text file or array of realignment parameters. If present, the time series of framewise displacements will be shown at the top of the figure. smooth_fwhm : float or None, optional Size of the smoothing kernel, in mm, to apply. Smoothing is restricted within the mask for each component (cortex, cerebellum, etc.). Smoothing reduces white noise and makes global image artifacts much more apparent. Set to None to skip smoothing. vlim : None or int, optional Colormap limits (will be symmetric) in percent signal change units. title : string Title to show at the top of the plot. Attributes ---------- fig : matplotlib Figure axes : dict of matplotlib Axes segdata : dict of arrays with data in the main plot fd : 1d array of framewise displacements """ # TODO Accept mean_img and use that to convert to pct change if present # TODO accept a lut? (Also make the anat segmentation generate one) # Load the timeseries data if isinstance(data, str): img = nib.load(data) else: img = data data = img.get_data().astype(np.float) # Load the Freesurfer parcellation if isinstance(seg, str): seg = nib.load(seg).get_data() else: seg = seg.get_data() # Use header geometry to convert smoothing sigma from mm to voxels sx, sy, sz, _ = img.header.get_zooms() voxel_sizes = sx, sy, sz if smooth_fwhm is not None: if smooth_fwhm > 0: smooth_sigma = np.divide(smooth_fwhm / 2.355, voxel_sizes) else: smooth_sigma = None # Preprocess and segment the data masks, brain = self.define_masks(seg) data[brain] = self.percent_change(data[brain]) data[brain] = signal.detrend(data[brain]) data = self.smooth_data(data, masks, smooth_sigma) segdata = self.segment_data(data, masks) fd = self.framewise_displacement(mc_params) # Get a default limit for the colormap if vlim is None: sd = np.percentile(segdata["cortex"].std(axis=1), 95) vlim = int(np.round(sd)) # Make the plot fig, axes = self.setup_figure() self.fig, self.axes = fig, axes self.plot_fd(axes["motion"], fd) self.plot_data(axes, segdata, vlim) if title is not None: fig.suptitle(title) # Store useful attributes self.segdata = segdata self.fd = fd def savefig(self, fname, close=True, **kwargs): self.fig.savefig(fname, **kwargs) if close: self.close() def close(self): plt.close(self.fig) def percent_change(self, data): """Convert to percent signal change over the mean for each voxel.""" null = data.mean(axis=-1) == 0 with np.errstate(all="ignore"): data /= data.mean(axis=-1, keepdims=True) data -= 1 data *= 100 data[null] = 0 return data def define_masks(self, seg): """Create masks for anatomical components using Freesurfer labeling.""" masks = {c: seg == i for i, c in enumerate(self.components, 1)} brain = seg > 0 return masks, brain def smooth_data(self, data, masks, sigma): """Smooth the 4D image separately within each component.""" if sigma is None: return data for comp, mask in masks.items(): data[mask] = self._smooth_within_mask(data, mask, sigma) return data def _smooth_within_mask(self, data, mask, sigmas): """Smooth each with a Gaussian kernel, restricted to a mask.""" # TODO move this to a central lyman function? comp_data = data * np.expand_dims(mask, -1) for f in range(comp_data.shape[-1]): comp_data[..., f] = ndimage.gaussian_filter(comp_data[..., f], sigmas) smooth_mask = ndimage.gaussian_filter(mask.astype(float), sigmas) with np.errstate(all="ignore"): comp_data = comp_data / np.expand_dims(smooth_mask, -1) return comp_data[mask] def segment_data(self, data, masks): """Convert the 4D data image into a set of 2D matrices.""" segdata = {comp: data[mask] for comp, mask in masks.items()} return segdata def framewise_displacement(self, realign_params): """Compute the time series of framewise displacements.""" if isinstance(realign_params, str): rp = pd.read_csv(realign_params) elif isinstance(realign_params, pd.DataFrame): rp = realign_params else: return None r = rp.filter(regex="rot").values t = rp.filter(regex="trans").values s = r * 50 ad = np.hstack([s, t]) rd = np.abs(np.diff(ad, axis=0)) fd = np.sum(rd, axis=1) return fd def setup_figure(self): """Initialize and organize the matplotlib objects.""" width, height = 8, 10 f = plt.figure(figsize=(width, height), facecolor="0") gs = plt.GridSpec(nrows=2, ncols=2, left=.07, right=.98, bottom=.05, top=.96, wspace=0, hspace=.02, height_ratios=[.1, .9], width_ratios=[.01, .99]) ax_i = f.add_subplot(gs[1, 1]) ax_m = f.add_subplot(gs[0, 1], sharex=ax_i) ax_c = f.add_subplot(gs[1, 0], sharey=ax_i) ax_b = f.add_axes([.035, .35, .0125, .2]) ax_i.set(xlabel="Volume", yticks=[]) ax_m.set(ylabel="FD (mm)") ax_c.set(xticks=[]) axes = dict(image=ax_i, motion=ax_m, comp=ax_c, cbar=ax_b) return f, axes def plot_fd(self, ax, fd): """Show a line plot of the framewise displacement data.""" if fd is None: fd = [] ax.set(ylim=(0, .5)) ax.plot(np.arange(1, len(fd) + 1), fd, lw=1.5, color=".15") ax.set(ylabel="FD (mm)", ylim=(0, None)) for label in ax.get_xticklabels(): label.set_visible(False) def plot_data(self, axes, segdata, vlim): """Draw the elements corresponding to the image data.""" # Concatenate and plot the time series data plot_data = np.vstack([segdata[comp] for comp in self.components]) axes["image"].imshow(plot_data, cmap="gray", vmin=-vlim, vmax=vlim, aspect="auto", rasterized=True) # Separate the anatomical components sizes = [len(segdata[comp]) for comp in self.components] for y in np.cumsum(sizes)[:-1]: axes["image"].axhline(y, c="w", lw=1) # Add colors to identify the anatomical components comp_ids = np.vstack([ np.full((len(segdata[comp]), 1), i, dtype=np.int) for i, comp in enumerate(self.components, 1) ]) comp_colors = ['#3b5f8a', '#5b81b1', '#7ea3d1', '#a8c5e9', '#ce8186', '#b8676d', '#9b4e53', '#fbdd7a'] comp_cmap = mpl.colors.ListedColormap(comp_colors) axes["comp"].imshow(comp_ids, vmin=1, vmax=len(self.components), aspect="auto", rasterized=True, cmap=comp_cmap) # Add the colorbar xx = np.expand_dims(np.linspace(1, 0, 100), -1) ax = axes["cbar"] ax.imshow(xx, aspect="auto", cmap="gray") ax.set(xticks=[], yticks=[], ylabel="Percent signal change") ax.text(0, -2, "$+${}".format(vlim), ha="center", va="bottom", clip_on=False) ax.text(0, 103, "$-${}".format(vlim), ha="center", va="top", clip_on=False)
bsd-3-clause
kmather73/zipline
zipline/examples/pairtrade.py
16
5197
#!/usr/bin/env python # # Copyright 2013 Quantopian, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import logbook import matplotlib.pyplot as plt import numpy as np import statsmodels.api as sm from datetime import datetime import pytz from zipline.algorithm import TradingAlgorithm from zipline.transforms import batch_transform from zipline.utils.factory import load_from_yahoo @batch_transform def ols_transform(data, sid1, sid2): """Computes regression coefficient (slope and intercept) via Ordinary Least Squares between two SIDs. """ p0 = data.price[sid1] p1 = sm.add_constant(data.price[sid2], prepend=True) slope, intercept = sm.OLS(p0, p1).fit().params return slope, intercept class Pairtrade(TradingAlgorithm): """Pairtrading relies on cointegration of two stocks. The expectation is that once the two stocks drifted apart (i.e. there is spread), they will eventually revert again. Thus, if we short the upward drifting stock and long the downward drifting stock (in short, we buy the spread) once the spread widened we can sell the spread with profit once they converged again. A nice property of this algorithm is that we enter the market in a neutral position. This specific algorithm tries to exploit the cointegration of Pepsi and Coca Cola by estimating the correlation between the two. Divergence of the spread is evaluated by z-scoring. """ def initialize(self, window_length=100): self.spreads = [] self.invested = 0 self.window_length = window_length self.ols_transform = ols_transform(refresh_period=self.window_length, window_length=self.window_length) self.PEP = self.symbol('PEP') self.KO = self.symbol('KO') def handle_data(self, data): ###################################################### # 1. Compute regression coefficients between PEP and KO params = self.ols_transform.handle_data(data, self.PEP, self.KO) if params is None: return intercept, slope = params ###################################################### # 2. Compute spread and zscore zscore = self.compute_zscore(data, slope, intercept) self.record(zscores=zscore) ###################################################### # 3. Place orders self.place_orders(data, zscore) def compute_zscore(self, data, slope, intercept): """1. Compute the spread given slope and intercept. 2. zscore the spread. """ spread = (data[self.PEP].price - (slope * data[self.KO].price + intercept)) self.spreads.append(spread) spread_wind = self.spreads[-self.window_length:] zscore = (spread - np.mean(spread_wind)) / np.std(spread_wind) return zscore def place_orders(self, data, zscore): """Buy spread if zscore is > 2, sell if zscore < .5. """ if zscore >= 2.0 and not self.invested: self.order(self.PEP, int(100 / data[self.PEP].price)) self.order(self.KO, -int(100 / data[self.KO].price)) self.invested = True elif zscore <= -2.0 and not self.invested: self.order(self.PEP, -int(100 / data[self.PEP].price)) self.order(self.KO, int(100 / data[self.KO].price)) self.invested = True elif abs(zscore) < .5 and self.invested: self.sell_spread() self.invested = False def sell_spread(self): """ decrease exposure, regardless of position long/short. buy for a short position, sell for a long. """ ko_amount = self.portfolio.positions[self.KO].amount self.order(self.KO, -1 * ko_amount) pep_amount = self.portfolio.positions[self.PEP].amount self.order(self.PEP, -1 * pep_amount) if __name__ == '__main__': logbook.StderrHandler().push_application() start = datetime(2000, 1, 1, 0, 0, 0, 0, pytz.utc) end = datetime(2002, 1, 1, 0, 0, 0, 0, pytz.utc) data = load_from_yahoo(stocks=['PEP', 'KO'], indexes={}, start=start, end=end) pairtrade = Pairtrade() results = pairtrade.run(data) data['spreads'] = np.nan ax1 = plt.subplot(211) # TODO Bugged - indices are out of bounds # data[[pairtrade.PEPsid, pairtrade.KOsid]].plot(ax=ax1) plt.ylabel('price') plt.setp(ax1.get_xticklabels(), visible=False) ax2 = plt.subplot(212, sharex=ax1) results.zscores.plot(ax=ax2, color='r') plt.ylabel('zscored spread') plt.gcf().set_size_inches(18, 8)
apache-2.0
jmd-dk/concept
concept/tests/multigrid/analyze.py
1
7114
# This file has to be run in pure Python mode! # Imports from the CO𝘕CEPT code from commons import * plt = get_matplotlib().pyplot # Absolute path and name of the directory of this file this_dir = os.path.dirname(os.path.realpath(__file__)) this_test = os.path.basename(this_dir) masterprint(f'Analysing {this_test} data ...') ############################################ # Upstream/global (power spectrum) subtest # ############################################ subtest = 'upstream_global' subtest_dir = f'{this_dir}/{subtest}' masterprint(f'Analysing {subtest} data ...') # Read in power spectra powerspecs = {} for f in glob(f'{subtest_dir}/powerspec*'): if f.endswith('.png'): continue gridsize = int(os.path.basename(f).split('_')[1]) powerspecs[gridsize] = data = {} data['k'], data['modes'], data['P'] = np.loadtxt(f, unpack=True) powerspecs = {gridsize: powerspecs[gridsize] for gridsize in sorted(powerspecs.keys())} # Two power spectra should be identical up until the Nyquist frequency # of the spectrum with lower grid size. # Check that this is so for the power spectra with the # small and the medium grid sizes, and for the power spectra # with the medium and the large grid sizes. def check(data_small, data_large, gridsize_small): nyquist_small = gridsize_small//2 k_nyquist_small = 2*π/boxsize*nyquist_small n = sum(data_small['k'] < k_nyquist_small) - 1 for quantity in ('k', 'modes', 'P'): if any(data_large[quantity][:n] != data_small[quantity][:n]): abort( f'Found different {quantity} below Nyquist frequency ' f'of the power spectra in "{subtest_dir}". ' f'See the plots in "{subtest_dir}" for a visualization.' ) gen = iter(powerspecs.items()) gridsize_small, data_small = next(gen) gridsize_middl, data_middl = next(gen) gridsize_large, data_large = next(gen) check(data_small, data_middl, gridsize_small) check(data_middl, data_large, gridsize_middl) # Done analysing this subtest masterprint('done') ################################### # Phase shift (2D render) subtest # ################################### subtest = 'phaseshift' subtest_dir = f'{this_dir}/{subtest}' masterprint(f'Analyzing {subtest} data ...') # Read in 2D renders render2Ds = {} for f in glob(f'{subtest_dir}/render2D*'): if f.endswith('.png'): continue gridsize = int(os.path.basename(f).split('_')[1].removesuffix('.hdf5')) with open_hdf5(f, mode='r') as hdf5_file: render2Ds[gridsize] = hdf5_file['data'][...] # Convert from image to data coordinates render2Ds[gridsize] = render2Ds[gridsize][::-1, :].transpose() # Convert from mass to density render2Ds[gridsize] /= (boxsize/gridsize)**2*boxsize render2Ds = {gridsize: render2Ds[gridsize] for gridsize in sorted(render2Ds.keys())} # Check that the 2D renders are homogeneous along the y direction for gridsize, render2D in render2Ds.items(): for i in range(render2D.shape[0]): if len(set(render2D[i, :])) != 1: abort( f'2D render with grid size {gridsize} is ' f'inhomogeneous along the y direction. ' f'See the 2D renders in "{subtest_dir}" for a visualization.' ) # Plot the 1D cross sections of the 2D renders # along the x direction, revealing the sines. plot_file = f'{subtest_dir}/plot.png' sines = {} for (gridsize, render2D), linestyle in zip(render2Ds.items(), ('-', '--', ':')): x = (0.5 + arange(gridsize))*boxsize/gridsize y = render2D[:, 0] sines[gridsize] = (x, y) plt.plot(x, y, linestyle, label=f'gridsize {gridsize}') plt.xlabel(rf'$x\, [\mathrm{{{unit_length}}}]$') plt.ylabel( r'$\rho$ $\mathrm{{[{}\, m_{{\odot}}\, {}^{{-3}}]}}$' .format( significant_figures( 1/units.m_sun, 3, fmt='tex', incl_zeros=False, scientific=False, ), unit_length, ) ) plt.legend() plt.savefig(plot_file) # Check whether the sines are in phase rel_tol = 1e-9 extrema = {} for gridsize, (x, y) in sines.items(): # Find index of first trough safety = 1e-6 miny = min(y) height = max(y) - miny for index in range(gridsize): if y[index] <= miny*(1 + safety): break # Store height of troughs and peaks troughs = y[index::gridsize//2] peaks = y[index+gridsize//4::gridsize//2] extrema[gridsize] = (troughs, peaks) for troughs1, peaks1 in extrema.values(): break for gridsize, (troughs, peaks) in extrema.items(): if ( not np.allclose(troughs, troughs1, rel_tol, 0) or not np.allclose(peaks , peaks1 , rel_tol, 0) ): abort( f'Erroneous phase shift obtained through grid scaling. ' f'See the plot "{plot_file}" along with the 2D renders ' f'in "{subtest_dir}" for a visualization.' ) # Done analysing this subtest masterprint('done') ################################################### # Upstream/global/downstream (simulation) subtest # ################################################### subtest = 'upstream_global_downstream' subtest_dir = f'{this_dir}/{subtest}' masterprint(f'Analyzing {subtest} data ...') # Read in power spectra powerspecs = {} for f in glob(f'{subtest_dir}/powerspec*'): if f.endswith('.png'): continue gridsize = int(os.path.basename(f).split('_')[1]) powerspecs[gridsize] = np.loadtxt(f) powerspecs = {gridsize: powerspecs[gridsize] for gridsize in sorted(powerspecs.keys())} # Check that the power spectra are identical data0, data1 = powerspecs.values() data0[np.isnan(data0)] = -1 data1[np.isnan(data1)] = -1 if np.any(data0 != data1): abort( f'The two power spectra within "{subtest_dir}" ' f'should be identical but are not. ' f'See the plots in "{subtest_dir}" for a visualization.' ) # Done analyzing this subtest masterprint('done') ############################################ # Number of processes (simulation) subtest # ############################################ subtest = 'nprocs' subtest_dir = f'{this_dir}/{subtest}' masterprint(f'Analyzing {subtest} data ...') # Read in power spectra powerspecs = {} for f in glob(f'{subtest_dir}/*/powerspec*'): if f.endswith('.png'): continue n = int(os.path.basename(os.path.dirname(f))) powerspecs[n] = np.loadtxt(f) powerspecs = {n: powerspecs[n] for n in sorted(powerspecs.keys())} # Check that the power spectra are identical for powerspec1 in powerspecs.values(): break powerspec1[np.isnan(powerspec1)] = -1 for powerspec in powerspecs.values(): powerspec[np.isnan(powerspec)] = -1 if np.any(powerspec != powerspec1): abort( f'The power spectra of the different subdirectories ' f'within "{subtest_dir}" should all be identical but are not. ' f'See the plots in the subdirectories of "{subtest_dir}" ' f'for a visualization.' ) # Done analyzing this subtest masterprint('done') # Done analyzing masterprint('done')
gpl-3.0
pb-pravin/data-science-from-scratch
code/linear_algebra.py
49
3637
# -*- coding: iso-8859-15 -*- from __future__ import division # want 3 / 2 == 1.5 import re, math, random # regexes, math functions, random numbers import matplotlib.pyplot as plt # pyplot from collections import defaultdict, Counter from functools import partial # # functions for working with vectors # def vector_add(v, w): """adds two vectors componentwise""" return [v_i + w_i for v_i, w_i in zip(v,w)] def vector_subtract(v, w): """subtracts two vectors componentwise""" return [v_i - w_i for v_i, w_i in zip(v,w)] def vector_sum(vectors): return reduce(vector_add, vectors) def scalar_multiply(c, v): return [c * v_i for v_i in v] def vector_mean(vectors): """compute the vector whose i-th element is the mean of the i-th elements of the input vectors""" n = len(vectors) return scalar_multiply(1/n, vector_sum(vectors)) def dot(v, w): """v_1 * w_1 + ... + v_n * w_n""" return sum(v_i * w_i for v_i, w_i in zip(v, w)) def sum_of_squares(v): """v_1 * v_1 + ... + v_n * v_n""" return dot(v, v) def magnitude(v): return math.sqrt(sum_of_squares(v)) def squared_distance(v, w): return sum_of_squares(vector_subtract(v, w)) def distance(v, w): return math.sqrt(squared_distance(v, w)) # # functions for working with matrices # def shape(A): num_rows = len(A) num_cols = len(A[0]) if A else 0 return num_rows, num_cols def get_row(A, i): return A[i] def get_column(A, j): return [A_i[j] for A_i in A] def make_matrix(num_rows, num_cols, entry_fn): """returns a num_rows x num_cols matrix whose (i,j)-th entry is entry_fn(i, j)""" return [[entry_fn(i, j) for j in range(num_cols)] for i in range(num_rows)] def is_diagonal(i, j): """1's on the 'diagonal', 0's everywhere else""" return 1 if i == j else 0 identity_matrix = make_matrix(5, 5, is_diagonal) # user 0 1 2 3 4 5 6 7 8 9 # friendships = [[0, 1, 1, 0, 0, 0, 0, 0, 0, 0], # user 0 [1, 0, 1, 1, 0, 0, 0, 0, 0, 0], # user 1 [1, 1, 0, 1, 0, 0, 0, 0, 0, 0], # user 2 [0, 1, 1, 0, 1, 0, 0, 0, 0, 0], # user 3 [0, 0, 0, 1, 0, 1, 0, 0, 0, 0], # user 4 [0, 0, 0, 0, 1, 0, 1, 1, 0, 0], # user 5 [0, 0, 0, 0, 0, 1, 0, 0, 1, 0], # user 6 [0, 0, 0, 0, 0, 1, 0, 0, 1, 0], # user 7 [0, 0, 0, 0, 0, 0, 1, 1, 0, 1], # user 8 [0, 0, 0, 0, 0, 0, 0, 0, 1, 0]] # user 9 ##### # DELETE DOWN # def matrix_add(A, B): if shape(A) != shape(B): raise ArithmeticError("cannot add matrices with different shapes") num_rows, num_cols = shape(A) def entry_fn(i, j): return A[i][j] + B[i][j] return make_matrix(num_rows, num_cols, entry_fn) def make_graph_dot_product_as_vector_projection(plt): v = [2, 1] w = [math.sqrt(.25), math.sqrt(.75)] c = dot(v, w) vonw = scalar_multiply(c, w) o = [0,0] plt.arrow(0, 0, v[0], v[1], width=0.002, head_width=.1, length_includes_head=True) plt.annotate("v", v, xytext=[v[0] + 0.1, v[1]]) plt.arrow(0 ,0, w[0], w[1], width=0.002, head_width=.1, length_includes_head=True) plt.annotate("w", w, xytext=[w[0] - 0.1, w[1]]) plt.arrow(0, 0, vonw[0], vonw[1], length_includes_head=True) plt.annotate(u"(v•w)w", vonw, xytext=[vonw[0] - 0.1, vonw[1] + 0.1]) plt.arrow(v[0], v[1], vonw[0] - v[0], vonw[1] - v[1], linestyle='dotted', length_includes_head=True) plt.scatter(*zip(v,w,o),marker='.') plt.axis('equal') plt.show()
unlicense
zhuolinho/linphone
submodules/mswebrtc/webrtc/tools/cpu/cpu_mon.py
6
2057
#!/usr/bin/env python # # Copyright (c) 2014 The WebRTC project authors. All Rights Reserved. # # Use of this source code is governed by a BSD-style license # that can be found in the LICENSE file in the root of the source # tree. An additional intellectual property rights grant can be found # in the file PATENTS. All contributing project authors may # be found in the AUTHORS file in the root of the source tree. import psutil import sys import numpy from matplotlib import pyplot class CpuSnapshot(object): def __init__(self, label): self.label = label self.samples = [] def Capture(self, sample_count): print ('Capturing %d CPU samples for %s...' % ((sample_count - len(self.samples)), self.label)) while len(self.samples) < sample_count: self.samples.append(psutil.cpu_percent(1.0, False)) def Text(self): return ('%s: avg=%s, median=%s, min=%s, max=%s' % (self.label, numpy.average(self.samples), numpy.median(self.samples), numpy.min(self.samples), numpy.max(self.samples))) def Max(self): return numpy.max(self.samples) def GrabCpuSamples(sample_count): print 'Label for snapshot (enter to quit): ' label = raw_input().strip() if len(label) == 0: return None snapshot = CpuSnapshot(label) snapshot.Capture(sample_count) return snapshot def main(): print 'How many seconds to capture per snapshot (enter for 60)?' sample_count = raw_input().strip() if len(sample_count) > 0 and int(sample_count) > 0: sample_count = int(sample_count) else: print 'Defaulting to 60 samples.' sample_count = 60 snapshots = [] while True: snapshot = GrabCpuSamples(sample_count) if snapshot == None: break snapshots.append(snapshot) if len(snapshots) == 0: print 'no samples captured' return -1 pyplot.title('CPU usage') for s in snapshots: pyplot.plot(s.samples, label=s.Text(), linewidth=2) pyplot.legend() pyplot.show() return 0 if __name__ == '__main__': sys.exit(main())
gpl-2.0
theodoregoetz/colormap
cmap-generator.py
1
19669
import matplotlib as mpl mpl.use('wxAgg') import numpy as np import warnings import wx from copy import copy from matplotlib.backends.backend_wxagg import FigureCanvasWxAgg as Canvas from matplotlib.colors import LinearSegmentedColormap from matplotlib.figure import Figure, SubplotParams from numpy import random as rand from scipy import interpolate from skimage import color rand.seed(1) class OrderedBoundedPoints(object): def __init__(self, x, y, extent): self.xmin, self.xmax = extent[:2] self.ymin, self.ymax = extent[2:] self.x = self._clip_x(np.asarray(x)) self.y = self._clip_y(np.asarray(y)) self._reorder() self._cache = None def save_cache(self): self._cache = (self.x.copy(), self.y.copy()) def load_cache(self): if self._cache is None: return False else: self.x, self.y = self._cache self._cache = None return True def pick(self, x, y): i = ((self.x - x)**2 + (self.y - y)**2).argmin() return i, self.x[i], self.y[i] def move(self, i, x=None, y=None): if x is not None and i not in (0, len(self.x) - 1): self.x[i] = self._clip_x(x) if y is not None: self.y[i] = self._clip_y(y) self._redistribute() self._reorder() return self._moved_index(i) def add(self, x, y=None): self.x = np.concatenate([[self._clip_x(x)], self.x]) if y is None: y = 0.5 * (self.ymin + self.ymax) self.y = np.concatenate([[self._clip_y(y)], self.y]) self._redistribute() self._reorder() return self._moved_index(0) def delete(self, i): if i in (0, len(self.x) - 1): return False else: self.x = np.delete(self.x, i) self.y = np.delete(self.y, i) return True def _clip_x(self, x): return np.clip(x, self.xmin, self.xmax) def _clip_y(self, y): return np.clip(y, self.ymin, self.ymax) def _reorder(self): self._order = None if len(self.x) > 2: if any(self.x[:-1] > self.x[1:]): self._order = np.argsort(self.x) self.x = self.x[self._order] self.y = self.y[self._order] def _redistribute(self): if len(self.x) > 2: tol = 0.001 dmin = 0.01 * (self.xmax - self.xmin) close = np.isclose(self.x[:-1], self.x[1:]) if close[-1]: dx = tol * abs(self.x[-1] - self.x[-3]) self.x[-2] = self.x[-1] - max(dx, dmin) close = np.argwhere(close[:-1]).flatten() if len(close): dx = tol * np.abs(self.x[close + 2] - self.x[close]) self.x[close + 1] = self.x[close] + np.maximum(dx, dmin) def _moved_index(self, i): if self._order is None: return i else: inew = np.argwhere(self._order == i).flat return i if i in inew else inew[0] class BoundedSpline(OrderedBoundedPoints): def __init__(self, spline_npoints, *args, **kwargs): super().__init__(*args, **kwargs) self.spline_x = np.linspace(self.xmin, self.xmax, spline_npoints) self.update_spline() def update_spline(self): self.spline = interpolate.PchipInterpolator(self.x, self.y) #self.spline = interpolate.CubicSpline(self.x, self.y, bc_type='natural') @property def spline_y(self): return np.clip(self.spline(self.spline_x), self.ymin, self.ymax) def load_cache(self): ret = super().load_cache() if ret: self.update_spline() return ret def move(self, *args, **kwargs): ret = super().move(*args, **kwargs) self.update_spline() return ret def add(self, *args, **kwargs): ret = super().add(*args, **kwargs) self.update_spline() return ret def delete(self, *args, **kwargs): ret = super().delete(*args, **kwargs) if ret: self.update_spline() return ret def __call__(self, x): return self.spline(x) class ColorMap(object): def __init__(self, x, colors, delta_e=color.deltaE_ciede94, smoothing=0, npoints=256, imdim=(40, 64)): self.x = x self.colors = np.asarray(colors).reshape(3, -1) self.delta_e = delta_e self.smoothing = smoothing self.npoints = npoints self.imdim = imdim self.splines = [ BoundedSpline(npoints, self.x, self.colors[0], (0, 1, 0, 100)), BoundedSpline(npoints, self.x, self.colors[1], (0, 1, -128, 128)), BoundedSpline(npoints, self.x, self.colors[2], (0, 1, -128, 128))] ncorrpoints = 100 self._xx = np.linspace(0, 1, ncorrpoints) self._colors_uncorr = np.empty((ncorrpoints, 3)) for i in (0, 1, 2): self._update_uncorrected_colors(i) self._update_x_spline() self._cmap_x = np.linspace(0, 1, self.npoints) self._cmap_colors = np.empty((npoints, 1, 3)) self._ll = np.linspace( 0, 100, self.imdim[1]).reshape((-1,1)) self._aa = np.linspace(-128, 128, self.imdim[1]).reshape((-1,1)) self._bb = np.linspace(-128, 128, self.imdim[1]).reshape((-1,1)) self._imx = np.linspace(0, 1, self.imdim[0]) self._labdata = np.empty((3, self.imdim[1], self.imdim[0], 3)) self._rgbdata = np.empty((3, self.imdim[1], self.imdim[0], 3), dtype=np.uint8) self._labdata[0, :, :, 0] = self._ll self._labdata[1, :, :, 1] = self._aa self._labdata[2, :, :, 2] = self._bb def _update_uncorrected_colors(self, i): self._colors_uncorr[..., i] = self.splines[i](self._xx) def _update_x_spline(self): if self.delta_e is None: self._x_spline = lambda x: x else: de = self.delta_e(self._colors_uncorr[:-1], self._colors_uncorr[1:]) de[de < 0.001] = 0.001 de_csum = de.cumsum() - de[0] de_csum /= de_csum[-1] self._x_spline = interpolate.UnivariateSpline(de_csum, self._xx[1:], s=self.smoothing) def update(self): for i in (0,1,2): self._update_uncorrected_colors(i) self._update_x_spline() def rgb(self): for i, s in enumerate(self.splines): self._cmap_colors[..., 0, i] = s(self._x_spline(self._cmap_x)) with warnings.catch_warnings(): warnings.simplefilter("ignore") return color.lab2rgb(self._cmap_colors).squeeze() def imdata(self): with warnings.catch_warnings(): warnings.simplefilter("ignore") x = self._imx l = self.splines[0](x) a = self.splines[1](x) b = self.splines[2](x) self._labdata[0, :, :, 1] = a self._labdata[0, :, :, 2] = b self._rgbdata[0, :, :, :] = (color.lab2rgb(self._labdata[0]) * 0xff).astype(np.uint8) self._labdata[1, :, :, 0] = l self._labdata[1, :, :, 2] = b self._rgbdata[1, :, :, :] = (color.lab2rgb(self._labdata[1]) * 0xff).astype(np.uint8) self._labdata[2, :, :, 0] = l self._labdata[2, :, :, 1] = a self._rgbdata[2, :, :, :] = (color.lab2rgb(self._labdata[2]) * 0xff).astype(np.uint8) return self._rgbdata class SplinePlot(wx.Panel): def __init__(self, parent, spline, xlabel=None, ylabel=None): super().__init__(parent) self.parent = parent self.spline = spline self.init_canvas(xlabel, ylabel) self.layout() self.connect() def init_canvas(self, xlabel, ylabel): xdpi, ydpi = wx.ScreenDC().GetPPI() self.figure = Figure(figsize=(1, 1), dpi=xdpi, tight_layout=True, subplotpars=SubplotParams(left=0.01, right=0.99, bottom=0.01, top=0.99)) self.axes = self.figure.add_subplot(1,1,1) self.axes.set_xlabel(xlabel) self.axes.set_ylabel(ylabel) tol = 0.02 dx = tol * (self.spline.xmax - self.spline.xmin) dy = tol * (self.spline.ymax - self.spline.ymin) self.axes.set_xlim(self.spline.xmin - dx, self.spline.xmax + dx) self.axes.set_ylim(self.spline.ymin - dy, self.spline.ymax + dy) self.axes.autoscale(False) self.axes.xaxis.set_visible(False) self.axes.yaxis.set_ticks([]) self.axes.yaxis.set_ticklabels([]) self.plt, = self.axes.plot(self.spline.x, self.spline.y, linestyle='none', marker='o', color='black') self.spline_plt, = self.axes.plot(self.spline.spline_x, self.spline.spline_y, color='black') self.canvas = Canvas(self, wx.ID_ANY, self.figure) def layout(self): vbox = wx.BoxSizer(wx.VERTICAL) vbox.Add(self.canvas, 1, wx.ALL | wx.EXPAND, 0) self.SetSizerAndFit(vbox) def connect(self): self._dragging = False self._index = None self.canvas.mpl_connect('button_press_event', lambda e: self.on_button_press(e)) self.canvas.mpl_connect('motion_notify_event', lambda e: self.on_motion_notify(e)) self.canvas.mpl_connect('button_release_event', lambda e: self.on_button_release(e)) self.canvas.mpl_connect('figure_leave_event', lambda e: self.on_figure_leave(e)) def on_button_press(self, event): if event.inaxes: if event.button == 1: self.spline.save_cache() self._dragging = True self._index = self.pick(event) if self._index is None: self.add(event.xdata, event.ydata) else: self.on_motion_notify(event) elif event.button == 3: idx = self.pick(event) if idx is not None: self.delete(idx) def add(self, x, y=None): i = self.spline.add(x, y) if self._dragging: self._index = i self.update() def delete(self, idx): if self.spline.delete(idx): self.update() def on_motion_notify(self, event): if self._dragging: if self._index is not None: if event.inaxes: x, y = event.xdata, event.ydata else: x, y = self.axes.transData.inverted().transform((event.x, event.y)) ret = self._index, x, y self._index = self.spline.move(self._index, x, y) self.update() return ret def on_button_release(self, event): if self._dragging: self._dragging = False self._index = None def on_figure_leave(self, event): if self._dragging: self._dragging = False self._index = None if self.spline.load_cache(): self.update() def pick(self, event): ipick, xpick, ypick = self.spline.pick(event.xdata, event.ydata) xpx, ypx = self.axes.transData.transform((xpick, ypick)) distsq = (xpx - event.x)**2 + (ypx - event.y)**2 if distsq < 60**2: return ipick def update(self): self.plt.set_data(self.spline.x, self.spline.y) self.spline_plt.set_data(self.spline.spline_x, self.spline.spline_y) class ColorMapSplinePlot(SplinePlot): def on_button_press(self, event): if event.inaxes: if event.button == 1: for p in self.parent.plots: if self.GetId() != p.GetId(): p.spline.save_cache() ret = super().on_button_press(event) if event.button == 3: ret = super().on_button_press(event) self.parent.update() def add(self, x, y): super().add(x, y) for p in self.parent.plots: if self.GetId() != p.GetId(): SplinePlot.add(p, x) self.parent.update() def delete(self, idx): super().delete(idx) for p in self.parent.plots: if self.GetId() != p.GetId(): SplinePlot.delete(p, idx) self.parent.update() def on_motion_notify(self, event): res = super().on_motion_notify(event) if res is not None: idx, x, y = res for p in self.parent.plots: if self.GetId() != p.GetId(): p.spline.move(idx, x) p.update() self.parent.update() def on_figure_leave(self, event): if self._dragging: for p in self.parent.plots: if self.GetId() != p.GetId(): if p.spline.load_cache(): p.update() super().on_figure_leave(event) self.parent.update() class DECorrPlot(wx.Panel): def __init__(self, parent): super().__init__(parent) self.parent = parent self.init_canvas() self.layout() def init_canvas(self): xdpi, ydpi = wx.ScreenDC().GetPPI() self.figure = Figure(figsize=(1, 1), dpi=xdpi, tight_layout=True, subplotpars=SubplotParams(left=0.01, right=0.99, bottom=0.01, top=0.99)) self.axes = self.figure.add_subplot(1,1,1) self.axes.set_xlabel(r'uncorrected') self.axes.set_ylabel(r'corrected') self.axes.set_xlim(0, 1) self.axes.set_ylim(-0.1, 1.1) self.axes.autoscale(False) self.axes.xaxis.set_ticks([0,0.5,1]) self.axes.yaxis.set_ticks([0,0.5,1]) self._x = np.linspace(0, 1, 300) self.plot, = self.axes.plot((0,1), (0,1), color='black') self.canvas = Canvas(self, wx.ID_ANY, self.figure) self.update(lambda x: x) def layout(self): vbox = wx.BoxSizer(wx.VERTICAL) vbox.Add(self.canvas, 1, wx.ALL | wx.EXPAND, 0) self.SetSizerAndFit(vbox) self.Layout() def update(self, spline): self.plot.set_data(self._x, spline(self._x)) self.canvas.draw() class CombPlot(wx.Panel): def __init__(self, parent): super().__init__(parent) self.parent = parent self.init_canvas() self.layout() def init_canvas(self): xdpi, ydpi = wx.ScreenDC().GetPPI() self.figure = Figure(figsize=(1, 1), dpi=xdpi, tight_layout=True, subplotpars=SubplotParams(left=0.01, right=0.99, bottom=0.01, top=0.99)) self.axes = self.figure.add_subplot(1,1,1) nperiods, npoints, amplitude = 80, 50, 70 x = np.linspace(0, nperiods * 2 * np.pi, npoints * nperiods) y = np.linspace(0, amplitude, npoints * 10) X, Y = np.meshgrid(x, y) img = X + Y * np.sin(X) * (Y**2 / Y.max()**2) self.plot = self.axes.imshow(img, origin='lower', aspect='auto', vmin=x[0], vmax=x[-1]) self.axes.set_axis_off() self.canvas = Canvas(self, wx.ID_ANY, self.figure) def layout(self): vbox = wx.BoxSizer(wx.VERTICAL) vbox.Add(self.canvas, 1, wx.ALL | wx.EXPAND, 0) self.SetSizerAndFit(vbox) self.Layout() def update(self, cmap): self.plot.set_cmap(LinearSegmentedColormap.from_list('_', cmap.rgb())) self.canvas.draw() class ColorMapControlPlots(wx.Panel): def __init__(self, parent): super().__init__(parent) # Macaw colors = np.array( [[ 12, 0, 0], [ 57, -37, -2], [ 46, -32, 48], [ 65, 25, 70], [ 72, 18, 76], [ 81, 0, 0], [ 99, 0, 0]]).transpose() # Test #colors = np.array( # [[ 50, 0, 0], # [ 50, 0, 0], # [ 50, 0, 0], # [ 50, 0, 0], # [ 0, 0, 0], # [ 50, 0, 0], # [ 50, 0, 0], # [ 50, 0, 0], # [ 50, 0, 0], # [100, 0, 0], # [ 50, 0, 0], # [ 50, 0, 0], # [ 50, 0, 0], # [ 50, 0, 0]]).transpose() ## Test #colors = np.array( # [[ 0, 50, 0], # [ 50, 50, 0], # [100, 0, 50], # [ 50, -50, 50], # [ 0, -50, 50]]).transpose() x = np.linspace(0, 1, len(colors[0])) self.cmap = ColorMap(x, colors) self.plots = [ ColorMapSplinePlot(self, self.cmap.splines[0], ylabel='lightness'), ColorMapSplinePlot(self, self.cmap.splines[1], ylabel='green-red'), ColorMapSplinePlot(self, self.cmap.splines[2], ylabel='blue-yellow')] self.implots = [] for imdata, plot in zip(self.cmap.imdata(), self.plots): extent = list(plot.axes.get_xlim()) + list(plot.axes.get_ylim()) self.implots.append(plot.axes.imshow(imdata, extent=extent, origin='lower', aspect='auto', zorder=-1, interpolation='gaussian')) self.de_corr_plot = DECorrPlot(self) self.de_corr_plot.update(self.cmap._x_spline) self.comb_plot = CombPlot(self) self.comb_plot.update(self.cmap) self.layout() def layout(self): vbox0 = wx.BoxSizer(wx.VERTICAL) hbox0 = wx.BoxSizer(wx.HORIZONTAL) vbox1 = wx.BoxSizer(wx.VERTICAL) vbox1.Add(self.plots[0], 1, wx.ALL | wx.EXPAND) vbox1.Add(self.plots[1], 1, wx.ALL | wx.EXPAND) vbox1.Add(self.plots[2], 1, wx.ALL | wx.EXPAND) hbox0.Add(vbox1, 2, wx.ALL | wx.EXPAND) vbox2 = wx.BoxSizer(wx.VERTICAL) vbox2.Add(self.de_corr_plot, 1, wx.ALL | wx.EXPAND) vbox2.Add(wx.Panel(self), 2, wx.ALL | wx.EXPAND) hbox0.Add(vbox2, 1, wx.ALL | wx.EXPAND) vbox0.Add(hbox0, 3, wx.ALL | wx.EXPAND) vbox0.Add(self.comb_plot, 1, wx.ALL | wx.EXPAND) self.SetSizerAndFit(vbox0) self.Layout() def update(self): for im, data in zip(self.implots, self.cmap.imdata()): im.set_array(data) im.figure.canvas.draw() self.cmap.update() self.de_corr_plot.update(self.cmap._x_spline) self.comb_plot.update(self.cmap) class MainFrame(wx.Frame): def __init__(self): super().__init__(None, wx.ID_ANY, 'Main Window', size=(750, 600)) self.cmapctl = ColorMapControlPlots(self) self.layout() self.cmapctl.update() def layout(self): hbox = wx.BoxSizer(wx.HORIZONTAL) hbox.Add(self.cmapctl, 1, wx.ALL | wx.EXPAND) self.SetSizer(hbox) self.Layout() class Application(wx.App): def OnInit(self): mainFrame = MainFrame() mainFrame.Show(True) return True if __name__ == '__main__': app = Application(False) app.MainLoop()
gpl-3.0
rbalda/neural_ocr
env/lib/python2.7/site-packages/mpl_toolkits/mplot3d/art3d.py
7
25559
#!/usr/bin/python # art3d.py, original mplot3d version by John Porter # Parts rewritten by Reinier Heeres <[email protected]> # Minor additions by Ben Axelrod <[email protected]> ''' Module containing 3D artist code and functions to convert 2D artists into 3D versions which can be added to an Axes3D. ''' from __future__ import (absolute_import, division, print_function, unicode_literals) from matplotlib.externals import six from matplotlib.externals.six.moves import zip from matplotlib import lines, text as mtext, path as mpath, colors as mcolors from matplotlib import artist from matplotlib.collections import Collection, LineCollection, \ PolyCollection, PatchCollection, PathCollection from matplotlib.cm import ScalarMappable from matplotlib.patches import Patch from matplotlib.colors import Normalize from matplotlib.cbook import iterable import warnings import numpy as np import math from . import proj3d def norm_angle(a): """Return angle between -180 and +180""" a = (a + 360) % 360 if a > 180: a = a - 360 return a def norm_text_angle(a): """Return angle between -90 and +90""" a = (a + 180) % 180 if a > 90: a = a - 180 return a def get_dir_vector(zdir): if zdir == 'x': return np.array((1, 0, 0)) elif zdir == 'y': return np.array((0, 1, 0)) elif zdir == 'z': return np.array((0, 0, 1)) elif zdir is None: return np.array((0, 0, 0)) elif iterable(zdir) and len(zdir) == 3: return zdir else: raise ValueError("'x', 'y', 'z', None or vector of length 3 expected") class Text3D(mtext.Text): ''' Text object with 3D position and (in the future) direction. ''' def __init__(self, x=0, y=0, z=0, text='', zdir='z', **kwargs): ''' *x*, *y*, *z* Position of text *text* Text string to display *zdir* Direction of text Keyword arguments are passed onto :func:`~matplotlib.text.Text`. ''' mtext.Text.__init__(self, x, y, text, **kwargs) self.set_3d_properties(z, zdir) def set_3d_properties(self, z=0, zdir='z'): x, y = self.get_position() self._position3d = np.array((x, y, z)) self._dir_vec = get_dir_vector(zdir) self.stale = True def draw(self, renderer): proj = proj3d.proj_trans_points([self._position3d, \ self._position3d + self._dir_vec], renderer.M) dx = proj[0][1] - proj[0][0] dy = proj[1][1] - proj[1][0] if dx==0. and dy==0.: # atan2 raises ValueError: math domain error on 0,0 angle = 0. else: angle = math.degrees(math.atan2(dy, dx)) self.set_position((proj[0][0], proj[1][0])) self.set_rotation(norm_text_angle(angle)) mtext.Text.draw(self, renderer) self.stale = False def text_2d_to_3d(obj, z=0, zdir='z'): """Convert a Text to a Text3D object.""" obj.__class__ = Text3D obj.set_3d_properties(z, zdir) class Line3D(lines.Line2D): ''' 3D line object. ''' def __init__(self, xs, ys, zs, *args, **kwargs): ''' Keyword arguments are passed onto :func:`~matplotlib.lines.Line2D`. ''' lines.Line2D.__init__(self, [], [], *args, **kwargs) self._verts3d = xs, ys, zs def set_3d_properties(self, zs=0, zdir='z'): xs = self.get_xdata() ys = self.get_ydata() try: # If *zs* is a list or array, then this will fail and # just proceed to juggle_axes(). zs = float(zs) zs = [zs for x in xs] except TypeError: pass self._verts3d = juggle_axes(xs, ys, zs, zdir) self.stale = True def draw(self, renderer): xs3d, ys3d, zs3d = self._verts3d xs, ys, zs = proj3d.proj_transform(xs3d, ys3d, zs3d, renderer.M) self.set_data(xs, ys) lines.Line2D.draw(self, renderer) self.stale = False def line_2d_to_3d(line, zs=0, zdir='z'): ''' Convert a 2D line to 3D. ''' line.__class__ = Line3D line.set_3d_properties(zs, zdir) def path_to_3d_segment(path, zs=0, zdir='z'): '''Convert a path to a 3D segment.''' if not iterable(zs): zs = np.ones(len(path)) * zs seg = [] pathsegs = path.iter_segments(simplify=False, curves=False) for (((x, y), code), z) in zip(pathsegs, zs): seg.append((x, y, z)) seg3d = [juggle_axes(x, y, z, zdir) for (x, y, z) in seg] return seg3d def paths_to_3d_segments(paths, zs=0, zdir='z'): ''' Convert paths from a collection object to 3D segments. ''' if not iterable(zs): zs = np.ones(len(paths)) * zs segments = [] for path, pathz in zip(paths, zs): segments.append(path_to_3d_segment(path, pathz, zdir)) return segments def path_to_3d_segment_with_codes(path, zs=0, zdir='z'): '''Convert a path to a 3D segment with path codes.''' if not iterable(zs): zs = np.ones(len(path)) * zs seg = [] codes = [] pathsegs = path.iter_segments(simplify=False, curves=False) for (((x, y), code), z) in zip(pathsegs, zs): seg.append((x, y, z)) codes.append(code) seg3d = [juggle_axes(x, y, z, zdir) for (x, y, z) in seg] return seg3d, codes def paths_to_3d_segments_with_codes(paths, zs=0, zdir='z'): ''' Convert paths from a collection object to 3D segments with path codes. ''' if not iterable(zs): zs = np.ones(len(paths)) * zs segments = [] codes_list = [] for path, pathz in zip(paths, zs): segs, codes = path_to_3d_segment_with_codes(path, pathz, zdir) segments.append(segs) codes_list.append(codes) return segments, codes_list class Line3DCollection(LineCollection): ''' A collection of 3D lines. ''' def __init__(self, segments, *args, **kwargs): ''' Keyword arguments are passed onto :func:`~matplotlib.collections.LineCollection`. ''' LineCollection.__init__(self, segments, *args, **kwargs) def set_sort_zpos(self, val): '''Set the position to use for z-sorting.''' self._sort_zpos = val self.stale = True def set_segments(self, segments): ''' Set 3D segments ''' self._segments3d = np.asanyarray(segments) LineCollection.set_segments(self, []) def do_3d_projection(self, renderer): ''' Project the points according to renderer matrix. ''' xyslist = [ proj3d.proj_trans_points(points, renderer.M) for points in self._segments3d] segments_2d = [list(zip(xs, ys)) for (xs, ys, zs) in xyslist] LineCollection.set_segments(self, segments_2d) # FIXME minz = 1e9 for (xs, ys, zs) in xyslist: minz = min(minz, min(zs)) return minz def draw(self, renderer, project=False): if project: self.do_3d_projection(renderer) LineCollection.draw(self, renderer) def line_collection_2d_to_3d(col, zs=0, zdir='z'): """Convert a LineCollection to a Line3DCollection object.""" segments3d = paths_to_3d_segments(col.get_paths(), zs, zdir) col.__class__ = Line3DCollection col.set_segments(segments3d) class Patch3D(Patch): ''' 3D patch object. ''' def __init__(self, *args, **kwargs): zs = kwargs.pop('zs', []) zdir = kwargs.pop('zdir', 'z') Patch.__init__(self, *args, **kwargs) self.set_3d_properties(zs, zdir) def set_3d_properties(self, verts, zs=0, zdir='z'): if not iterable(zs): zs = np.ones(len(verts)) * zs self._segment3d = [juggle_axes(x, y, z, zdir) \ for ((x, y), z) in zip(verts, zs)] self._facecolor3d = Patch.get_facecolor(self) def get_path(self): return self._path2d def get_facecolor(self): return self._facecolor2d def do_3d_projection(self, renderer): s = self._segment3d xs, ys, zs = list(zip(*s)) vxs, vys,vzs, vis = proj3d.proj_transform_clip(xs, ys, zs, renderer.M) self._path2d = mpath.Path(list(zip(vxs, vys))) # FIXME: coloring self._facecolor2d = self._facecolor3d return min(vzs) def draw(self, renderer): Patch.draw(self, renderer) class PathPatch3D(Patch3D): ''' 3D PathPatch object. ''' def __init__(self, path, **kwargs): zs = kwargs.pop('zs', []) zdir = kwargs.pop('zdir', 'z') Patch.__init__(self, **kwargs) self.set_3d_properties(path, zs, zdir) def set_3d_properties(self, path, zs=0, zdir='z'): Patch3D.set_3d_properties(self, path.vertices, zs=zs, zdir=zdir) self._code3d = path.codes def do_3d_projection(self, renderer): s = self._segment3d xs, ys, zs = list(zip(*s)) vxs, vys,vzs, vis = proj3d.proj_transform_clip(xs, ys, zs, renderer.M) self._path2d = mpath.Path(list(zip(vxs, vys)), self._code3d) # FIXME: coloring self._facecolor2d = self._facecolor3d return min(vzs) def get_patch_verts(patch): """Return a list of vertices for the path of a patch.""" trans = patch.get_patch_transform() path = patch.get_path() polygons = path.to_polygons(trans) if len(polygons): return polygons[0] else: return [] def patch_2d_to_3d(patch, z=0, zdir='z'): """Convert a Patch to a Patch3D object.""" verts = get_patch_verts(patch) patch.__class__ = Patch3D patch.set_3d_properties(verts, z, zdir) def pathpatch_2d_to_3d(pathpatch, z=0, zdir='z'): """Convert a PathPatch to a PathPatch3D object.""" path = pathpatch.get_path() trans = pathpatch.get_patch_transform() mpath = trans.transform_path(path) pathpatch.__class__ = PathPatch3D pathpatch.set_3d_properties(mpath, z, zdir) class Patch3DCollection(PatchCollection): ''' A collection of 3D patches. ''' def __init__(self, *args, **kwargs): """ Create a collection of flat 3D patches with its normal vector pointed in *zdir* direction, and located at *zs* on the *zdir* axis. 'zs' can be a scalar or an array-like of the same length as the number of patches in the collection. Constructor arguments are the same as for :class:`~matplotlib.collections.PatchCollection`. In addition, keywords *zs=0* and *zdir='z'* are available. Also, the keyword argument "depthshade" is available to indicate whether or not to shade the patches in order to give the appearance of depth (default is *True*). This is typically desired in scatter plots. """ zs = kwargs.pop('zs', 0) zdir = kwargs.pop('zdir', 'z') self._depthshade = kwargs.pop('depthshade', True) PatchCollection.__init__(self, *args, **kwargs) self.set_3d_properties(zs, zdir) def set_sort_zpos(self, val): '''Set the position to use for z-sorting.''' self._sort_zpos = val self.stale = True def set_3d_properties(self, zs, zdir): # Force the collection to initialize the face and edgecolors # just in case it is a scalarmappable with a colormap. self.update_scalarmappable() offsets = self.get_offsets() if len(offsets) > 0: xs, ys = list(zip(*offsets)) else: xs = [] ys = [] self._offsets3d = juggle_axes(xs, ys, np.atleast_1d(zs), zdir) self._facecolor3d = self.get_facecolor() self._edgecolor3d = self.get_edgecolor() self.stale = True def do_3d_projection(self, renderer): xs, ys, zs = self._offsets3d vxs, vys, vzs, vis = proj3d.proj_transform_clip(xs, ys, zs, renderer.M) fcs = (zalpha(self._facecolor3d, vzs) if self._depthshade else self._facecolor3d) fcs = mcolors.colorConverter.to_rgba_array(fcs, self._alpha) self.set_facecolors(fcs) ecs = (zalpha(self._edgecolor3d, vzs) if self._depthshade else self._edgecolor3d) ecs = mcolors.colorConverter.to_rgba_array(ecs, self._alpha) self.set_edgecolors(ecs) PatchCollection.set_offsets(self, list(zip(vxs, vys))) if vzs.size > 0: return min(vzs) else: return np.nan class Path3DCollection(PathCollection): ''' A collection of 3D paths. ''' def __init__(self, *args, **kwargs): """ Create a collection of flat 3D paths with its normal vector pointed in *zdir* direction, and located at *zs* on the *zdir* axis. 'zs' can be a scalar or an array-like of the same length as the number of paths in the collection. Constructor arguments are the same as for :class:`~matplotlib.collections.PathCollection`. In addition, keywords *zs=0* and *zdir='z'* are available. Also, the keyword argument "depthshade" is available to indicate whether or not to shade the patches in order to give the appearance of depth (default is *True*). This is typically desired in scatter plots. """ zs = kwargs.pop('zs', 0) zdir = kwargs.pop('zdir', 'z') self._depthshade = kwargs.pop('depthshade', True) PathCollection.__init__(self, *args, **kwargs) self.set_3d_properties(zs, zdir) def set_sort_zpos(self, val): '''Set the position to use for z-sorting.''' self._sort_zpos = val self.stale = True def set_3d_properties(self, zs, zdir): # Force the collection to initialize the face and edgecolors # just in case it is a scalarmappable with a colormap. self.update_scalarmappable() offsets = self.get_offsets() if len(offsets) > 0: xs, ys = list(zip(*offsets)) else: xs = [] ys = [] self._offsets3d = juggle_axes(xs, ys, np.atleast_1d(zs), zdir) self._facecolor3d = self.get_facecolor() self._edgecolor3d = self.get_edgecolor() self.stale = True def do_3d_projection(self, renderer): xs, ys, zs = self._offsets3d vxs, vys, vzs, vis = proj3d.proj_transform_clip(xs, ys, zs, renderer.M) fcs = (zalpha(self._facecolor3d, vzs) if self._depthshade else self._facecolor3d) fcs = mcolors.colorConverter.to_rgba_array(fcs, self._alpha) self.set_facecolors(fcs) ecs = (zalpha(self._edgecolor3d, vzs) if self._depthshade else self._edgecolor3d) ecs = mcolors.colorConverter.to_rgba_array(ecs, self._alpha) self.set_edgecolors(ecs) PathCollection.set_offsets(self, list(zip(vxs, vys))) if vzs.size > 0 : return min(vzs) else : return np.nan def patch_collection_2d_to_3d(col, zs=0, zdir='z', depthshade=True): """ Convert a :class:`~matplotlib.collections.PatchCollection` into a :class:`Patch3DCollection` object (or a :class:`~matplotlib.collections.PathCollection` into a :class:`Path3DCollection` object). Keywords: *za* The location or locations to place the patches in the collection along the *zdir* axis. Defaults to 0. *zdir* The axis in which to place the patches. Default is "z". *depthshade* Whether to shade the patches to give a sense of depth. Defaults to *True*. """ if isinstance(col, PathCollection): col.__class__ = Path3DCollection elif isinstance(col, PatchCollection): col.__class__ = Patch3DCollection col._depthshade = depthshade col.set_3d_properties(zs, zdir) class Poly3DCollection(PolyCollection): ''' A collection of 3D polygons. ''' def __init__(self, verts, *args, **kwargs): ''' Create a Poly3DCollection. *verts* should contain 3D coordinates. Keyword arguments: zsort, see set_zsort for options. Note that this class does a bit of magic with the _facecolors and _edgecolors properties. ''' zsort = kwargs.pop('zsort', True) PolyCollection.__init__(self, verts, *args, **kwargs) self.set_zsort(zsort) self._codes3d = None _zsort_functions = { 'average': np.average, 'min': np.min, 'max': np.max, } def set_zsort(self, zsort): ''' Set z-sorting behaviour: boolean: if True use default 'average' string: 'average', 'min' or 'max' ''' if zsort is True: zsort = 'average' if zsort is not False: if zsort in self._zsort_functions: zsortfunc = self._zsort_functions[zsort] else: return False else: zsortfunc = None self._zsort = zsort self._sort_zpos = None self._zsortfunc = zsortfunc self.stale = True def get_vector(self, segments3d): """Optimize points for projection""" si = 0 ei = 0 segis = [] points = [] for p in segments3d: points.extend(p) ei = si+len(p) segis.append((si, ei)) si = ei if len(segments3d) > 0 : xs, ys, zs = list(zip(*points)) else : # We need this so that we can skip the bad unpacking from zip() xs, ys, zs = [], [], [] ones = np.ones(len(xs)) self._vec = np.array([xs, ys, zs, ones]) self._segis = segis def set_verts(self, verts, closed=True): '''Set 3D vertices.''' self.get_vector(verts) # 2D verts will be updated at draw time PolyCollection.set_verts(self, [], closed) def set_verts_and_codes(self, verts, codes): '''Sets 3D vertices with path codes''' # set vertices with closed=False to prevent PolyCollection from # setting path codes self.set_verts(verts, closed=False) # and set our own codes instead. self._codes3d = codes def set_3d_properties(self): # Force the collection to initialize the face and edgecolors # just in case it is a scalarmappable with a colormap. self.update_scalarmappable() self._sort_zpos = None self.set_zsort(True) self._facecolors3d = PolyCollection.get_facecolors(self) self._edgecolors3d = PolyCollection.get_edgecolors(self) self._alpha3d = PolyCollection.get_alpha(self) self.stale = True def set_sort_zpos(self,val): '''Set the position to use for z-sorting.''' self._sort_zpos = val self.stale = True def do_3d_projection(self, renderer): ''' Perform the 3D projection for this object. ''' # FIXME: This may no longer be needed? if self._A is not None: self.update_scalarmappable() self._facecolors3d = self._facecolors txs, tys, tzs = proj3d.proj_transform_vec(self._vec, renderer.M) xyzlist = [(txs[si:ei], tys[si:ei], tzs[si:ei]) for si, ei in self._segis] # This extra fuss is to re-order face / edge colors cface = self._facecolors3d cedge = self._edgecolors3d if len(cface) != len(xyzlist): cface = cface.repeat(len(xyzlist), axis=0) if len(cedge) != len(xyzlist): if len(cedge) == 0: cedge = cface cedge = cedge.repeat(len(xyzlist), axis=0) # if required sort by depth (furthest drawn first) if self._zsort: indices = range(len(xyzlist)) z_segments_2d = [(self._zsortfunc(zs), list(zip(xs, ys)), fc, ec, idx) for (xs, ys, zs), fc, ec, idx in zip(xyzlist, cface, cedge, indices)] z_segments_2d.sort(key=lambda x: x[0], reverse=True) else: raise ValueError("whoops") segments_2d = [s for z, s, fc, ec, idx in z_segments_2d] if self._codes3d is not None: codes = [self._codes3d[idx] for z, s, fc, ec, idx in z_segments_2d] PolyCollection.set_verts_and_codes(self, segments_2d, codes) else: PolyCollection.set_verts(self, segments_2d) self._facecolors2d = [fc for z, s, fc, ec, idx in z_segments_2d] if len(self._edgecolors3d) == len(cface): self._edgecolors2d = [ec for z, s, fc, ec, idx in z_segments_2d] else: self._edgecolors2d = self._edgecolors3d # Return zorder value if self._sort_zpos is not None: zvec = np.array([[0], [0], [self._sort_zpos], [1]]) ztrans = proj3d.proj_transform_vec(zvec, renderer.M) return ztrans[2][0] elif tzs.size > 0 : # FIXME: Some results still don't look quite right. # In particular, examine contourf3d_demo2.py # with az = -54 and elev = -45. return np.min(tzs) else : return np.nan def set_facecolor(self, colors): PolyCollection.set_facecolor(self, colors) self._facecolors3d = PolyCollection.get_facecolor(self) set_facecolors = set_facecolor def set_edgecolor(self, colors): PolyCollection.set_edgecolor(self, colors) self._edgecolors3d = PolyCollection.get_edgecolor(self) set_edgecolors = set_edgecolor def set_alpha(self, alpha): """ Set the alpha tranparencies of the collection. *alpha* must be a float or *None*. ACCEPTS: float or None """ if alpha is not None: try: float(alpha) except TypeError: raise TypeError('alpha must be a float or None') artist.Artist.set_alpha(self, alpha) try: self._facecolors = mcolors.colorConverter.to_rgba_array( self._facecolors3d, self._alpha) except (AttributeError, TypeError, IndexError): pass try: self._edgecolors = mcolors.colorConverter.to_rgba_array( self._edgecolors3d, self._alpha) except (AttributeError, TypeError, IndexError): pass self.stale = True def get_facecolors(self): return self._facecolors2d get_facecolor = get_facecolors def get_edgecolors(self): return self._edgecolors2d get_edgecolor = get_edgecolors def draw(self, renderer): return Collection.draw(self, renderer) def poly_collection_2d_to_3d(col, zs=0, zdir='z'): """Convert a PolyCollection to a Poly3DCollection object.""" segments_3d, codes = paths_to_3d_segments_with_codes(col.get_paths(), zs, zdir) col.__class__ = Poly3DCollection col.set_verts_and_codes(segments_3d, codes) col.set_3d_properties() def juggle_axes(xs, ys, zs, zdir): """ Reorder coordinates so that 2D xs, ys can be plotted in the plane orthogonal to zdir. zdir is normally x, y or z. However, if zdir starts with a '-' it is interpreted as a compensation for rotate_axes. """ if zdir == 'x': return zs, xs, ys elif zdir == 'y': return xs, zs, ys elif zdir[0] == '-': return rotate_axes(xs, ys, zs, zdir) else: return xs, ys, zs def rotate_axes(xs, ys, zs, zdir): """ Reorder coordinates so that the axes are rotated with zdir along the original z axis. Prepending the axis with a '-' does the inverse transform, so zdir can be x, -x, y, -y, z or -z """ if zdir == 'x': return ys, zs, xs elif zdir == '-x': return zs, xs, ys elif zdir == 'y': return zs, xs, ys elif zdir == '-y': return ys, zs, xs else: return xs, ys, zs def iscolor(c): try: if len(c) == 4 or len(c) == 3: if iterable(c[0]): return False if hasattr(c[0], '__float__'): return True except: return False return False def get_colors(c, num): """Stretch the color argument to provide the required number num""" if type(c) == type("string"): c = mcolors.colorConverter.to_rgba(c) if iscolor(c): return [c] * num if len(c) == num: return c elif iscolor(c): return [c] * num elif len(c) == 0: #if edgecolor or facecolor is specified as 'none' return [[0,0,0,0]] * num elif iscolor(c[0]): return [c[0]] * num else: raise ValueError('unknown color format %s' % c) def zalpha(colors, zs): """Modify the alphas of the color list according to depth""" # FIXME: This only works well if the points for *zs* are well-spaced # in all three dimensions. Otherwise, at certain orientations, # the min and max zs are very close together. # Should really normalize against the viewing depth. colors = get_colors(colors, len(zs)) if zs.size > 0 : norm = Normalize(min(zs), max(zs)) sats = 1 - norm(zs) * 0.7 colors = [(c[0], c[1], c[2], c[3] * s) for c, s in zip(colors, sats)] return colors
mit
jwkanggist/EveryBodyTensorFlow
lab11_runTFcheckDropOut_spiraldata.py
1
14842
#-*- coding: utf-8 -*- #! /usr/bin/env python ''' #------------------------------------------------------------ filename: lab11_runTFcheckDropOut_spiraldata.py This script wants to see how the Dropout technique can mitigate Gradient Vanishing problem in A Multi-Hidden Layers Fully Connected Neural Network. Applying "batch normalization" to the lab10 This example data set is using two class spiral data. written by Jaewook Kang @ Jan 2018 #------------------------------------------------------------ ''' from os import getcwd import matplotlib.pyplot as plt import numpy as np import pandas as pd from pandas import DataFrame from sklearn import metrics import tensorflow as tf from tensorflow.contrib.learn.python.learn import learn_io # reading data set from csv file ========================== xsize = 2 ysize = 2 data = pd.read_csv('./data/twospirals_N5000.csv') data.columns=['xdata1','xdata2','tdata'] permutation_index = np.random.permutation(data.index) permutated_data = data.reindex(permutation_index) permutated_data.columns=['xdata1','xdata2','tdata'] x_data = np.zeros([permutated_data.xdata1.size,xsize]) x_data[:,0] = permutated_data.xdata1.values x_data[:,1] = permutated_data.xdata2.values t_data = np.zeros([permutated_data.tdata.size,ysize]) t_data[:,0] = permutated_data.tdata.values t_data[:,1] = np.invert(permutated_data.tdata.values) + 2 total_size = permutated_data.xdata1.size training_size = int(np.floor(permutated_data.xdata1.size * 0.8)) validation_size = total_size - training_size # data dividing x_training_data = x_data[0:training_size,:] t_training_data = t_data[0:training_size,:] x_validation_data = x_data[training_size:-1,:] t_validation_data = t_data[training_size:-1,:] # configure training parameters ===================================== learning_rate = 5E-3 training_epochs = 5000 batch_size = 500 display_step = 1 total_batch = int(training_size / batch_size) # dropout_rate = 0 --> no dropout # dropout_rate = 1 --> no nodes to work dropoutrate_in_training = 0.2 # computational TF graph construction ================================ # Network Parameters n_hidden_1 = 10 # 1st layer number of neurons n_hidden_2 = 7 # 2nd layer number of neurons n_hidden_3 = 7 # 3rd layer number of neurons n_hidden_4 = 4 # 4rd layer number of neurons n_hidden_5 = 4 # 5rd layer number of neurons num_input = xsize # two-dimensional input X = [1x2] num_classes = ysize # 2 class #------------------------------- # tf Graph input X = tf.placeholder(tf.float32, [None, num_input]) Y = tf.placeholder(tf.float32, [None, num_classes]) # droprate must be given by placeholder # since the network in validation do not require dropout nodes in layers. dropoutrate_io = tf.placeholder(tf.float32) # Store layers weight & bias weights = { 'h1': tf.Variable(tf.random_normal([num_input, n_hidden_1])), 'h2': tf.Variable(tf.random_normal([n_hidden_1, n_hidden_2])), 'h3': tf.Variable(tf.random_normal([n_hidden_2, n_hidden_3])), 'h4': tf.Variable(tf.random_normal([n_hidden_3, n_hidden_4])), 'h5': tf.Variable(tf.random_normal([n_hidden_4, n_hidden_5])), 'out':tf.Variable(tf.random_normal([n_hidden_5, num_classes])) } biases = { 'b1': tf.Variable(tf.random_normal([n_hidden_1])), 'b2': tf.Variable(tf.random_normal([n_hidden_2])), 'b3': tf.Variable(tf.random_normal([n_hidden_3])), 'b4': tf.Variable(tf.random_normal([n_hidden_4])), 'b5': tf.Variable(tf.random_normal([n_hidden_5])), 'out': tf.Variable(tf.random_normal([num_classes])) } # Create model def neural_net(x,dropoutrate_io): # Input fully connected layer with 10 neurons layer_1 = tf.add(tf.matmul(x, weights['h1']), biases['b1']) layer_1 = tf.nn.relu(layer_1) # layer_1 = tf.nn.dropout(layer_1,keep_prob=dropoutrate_io) # Hidden fully connected layer with 7 neurons layer_2 = tf.add(tf.matmul(layer_1, weights['h2']), biases['b2']) layer_2 = tf.nn.relu(layer_2) layer_2 = tf.layers.dropout(inputs=layer_2,rate= dropoutrate_io) # Hidden fully connected layer with 7 neurons layer_3 = tf.add(tf.matmul(layer_2, weights['h3']), biases['b3']) layer_3 = tf.nn.relu(layer_3) layer_3 = tf.layers.dropout(inputs=layer_3,rate= dropoutrate_io) # Hidden fully connected layer with 4 neurons layer_4 = tf.add(tf.matmul(layer_3, weights['h4']), biases['b4']) layer_4 = tf.nn.relu(layer_4) layer_4 = tf.layers.dropout(inputs=layer_4,rate = dropoutrate_io) # Hidden fully connected layer with 4 neurons layer_5 = tf.add(tf.matmul(layer_4, weights['h5']), biases['b5']) layer_5 = tf.nn.relu(layer_5) layer_5 = tf.layers.dropout(inputs=layer_5, rate=dropoutrate_io) # Output fully connected layer with a neuron for each class out_layer = tf.matmul(layer_5, weights['out']) + biases['out'] return out_layer # Construct model logits = neural_net(x=X, \ dropoutrate_io= dropoutrate_io) prediction = tf.nn.softmax(logits) # Define loss and optimizer cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=logits, labels=Y)) optimizer = tf.train.GradientDescentOptimizer(learning_rate=learning_rate).minimize(cost) ## when you use AdamOptimizer, instead of SGD, the error rate immediately becomes near zero. # optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate).minimize(cost) # Evaluate model correct_pred = tf.equal(tf.argmax(prediction, 1), tf.argmax(Y, 1)) accuracy = tf.reduce_mean(tf.cast(correct_pred, tf.float32)) errRatebyTrainingSet = np.zeros(training_epochs) errRatebyValidationSet = np.zeros(training_epochs) # for visualization of vanishing gradient problem grad_wrt_weight_layer1_tensor = tf.gradients(cost,weights['h1'],\ name='grad_wrt_weight_layer1') grad_wrt_weight_layer2_tensor = tf.gradients(cost,weights['h2'],\ name='grad_wrt_weight_layer2') grad_wrt_weight_layer3_tensor = tf.gradients(cost,weights['h3'],\ name='grad_wrt_weight_layer3') grad_wrt_weight_layer4_tensor = tf.gradients(cost,weights['h4'],\ name='grad_wrt_weight_layer4') grad_wrt_weight_layer5_tensor = tf.gradients(cost,weights['h5'],\ name='grad_wrt_weight_layer5') grad_wrt_weight_layer1_iter = np.zeros([total_batch,1]) grad_wrt_weight_layer2_iter = np.zeros([total_batch,1]) grad_wrt_weight_layer3_iter = np.zeros([total_batch,1]) grad_wrt_weight_layer4_iter = np.zeros([total_batch,1]) grad_wrt_weight_layer5_iter = np.zeros([total_batch,1]) # Initialize the variables (i.e. assign their default value) init = tf.global_variables_initializer() # Start training =============================================== with tf.Session() as sess: # Run the initializer sess.run(init) print("--------------------------------------------") for epoch in range(training_epochs): avg_cost = 0. weight_array = list() for i in range(total_batch): data_start_index = i * batch_size data_end_index = (i + 1) * batch_size # feed traing data -------------------------- batch_xs = x_training_data[data_start_index:data_end_index, :] batch_ts = t_training_data[data_start_index:data_end_index, :] #---------------------------------------------- # Run optimization op (backprop) and cost op (to get loss value) # feedign training data _, local_batch_cost = sess.run([optimizer,cost], \ feed_dict={X: batch_xs,\ Y: batch_ts,\ dropoutrate_io: dropoutrate_in_training}) if epoch == training_epochs - 1: # print ('Gradient calculation to see gradient vanishing problem') _, grad_wrt_weight_layer1 = sess.run([optimizer,grad_wrt_weight_layer1_tensor], \ feed_dict={X: batch_xs,\ Y: batch_ts, \ dropoutrate_io: dropoutrate_in_training}) _, grad_wrt_weight_layer2 = sess.run([optimizer,grad_wrt_weight_layer2_tensor], \ feed_dict={X: batch_xs,\ Y: batch_ts, \ dropoutrate_io: dropoutrate_in_training}) _, grad_wrt_weight_layer3 = sess.run([optimizer,grad_wrt_weight_layer3_tensor], \ feed_dict={X: batch_xs,\ Y: batch_ts, \ dropoutrate_io: dropoutrate_in_training}) _, grad_wrt_weight_layer4 = sess.run([optimizer,grad_wrt_weight_layer4_tensor], \ feed_dict={X: batch_xs,\ Y: batch_ts, \ dropoutrate_io: dropoutrate_in_training}) _, grad_wrt_weight_layer5 = sess.run([optimizer,grad_wrt_weight_layer5_tensor], \ feed_dict={X: batch_xs,\ Y: batch_ts, \ dropoutrate_io: dropoutrate_in_training}) grad_wrt_weight_layer1 = np.array(grad_wrt_weight_layer1) grad_wrt_weight_layer2 = np.array(grad_wrt_weight_layer2) grad_wrt_weight_layer3 = np.array(grad_wrt_weight_layer3) grad_wrt_weight_layer4 = np.array(grad_wrt_weight_layer4) grad_wrt_weight_layer5 = np.array(grad_wrt_weight_layer5) grad_wrt_weight_layer1 = grad_wrt_weight_layer1.reshape(grad_wrt_weight_layer1.shape[1], grad_wrt_weight_layer1.shape[2]) grad_wrt_weight_layer2 = grad_wrt_weight_layer2.reshape(grad_wrt_weight_layer2.shape[1], grad_wrt_weight_layer2.shape[2]) grad_wrt_weight_layer3 = grad_wrt_weight_layer3.reshape(grad_wrt_weight_layer3.shape[1], grad_wrt_weight_layer3.shape[2]) grad_wrt_weight_layer4 = grad_wrt_weight_layer4.reshape(grad_wrt_weight_layer4.shape[1], grad_wrt_weight_layer4.shape[2]) grad_wrt_weight_layer5 = grad_wrt_weight_layer5.reshape(grad_wrt_weight_layer5.shape[1], grad_wrt_weight_layer5.shape[2]) grad_wrt_weight_layer1_iter[i] = grad_wrt_weight_layer1.mean() grad_wrt_weight_layer2_iter[i] = grad_wrt_weight_layer2.mean() grad_wrt_weight_layer3_iter[i] = grad_wrt_weight_layer3.mean() grad_wrt_weight_layer4_iter[i] = grad_wrt_weight_layer4.mean() grad_wrt_weight_layer5_iter[i] = grad_wrt_weight_layer5.mean() # Compute average loss avg_cost += local_batch_cost / total_batch # print ("At %d-th batch in %d-epoch, avg_cost = %f" % (i,epoch,avg_cost) ) # Display logs per epoch step if display_step == 0: continue elif (epoch + 1) % display_step == 0: # print("Iteration:", '%04d' % (epoch + 1), "cost=", "{:.9f}".format(avg_cost)) batch_train_xs = x_training_data batch_train_ys = t_training_data batch_valid_xs = x_validation_data batch_valid_ys = t_validation_data # for error rate evaluation, the dropout rate must be 1.0 errRatebyTrainingSet[epoch] = 1.0 - accuracy.eval(feed_dict={X: batch_train_xs, \ Y: batch_train_ys,\ dropoutrate_io: 0.0}, \ session=sess) errRatebyValidationSet[epoch] = 1.0 - accuracy.eval(feed_dict={X: batch_valid_xs, \ Y: batch_valid_ys,\ dropoutrate_io: 0.0},\ session=sess) print("Training set Err rate: %s" % errRatebyTrainingSet[epoch]) print("Validation set Err rate: %s" % errRatebyValidationSet[epoch]) print("--------------------------------------------") print("Optimization Finished!") # Calculate accuracy for test images ##------------------------------------------- # Training result visualization =============================================== hfig1= plt.figure(1,figsize=[10,10]) plt.scatter(data.xdata1.values[0:int(data.xdata1.size/2)],\ data.xdata2.values[0:int(data.xdata1.size/2)], \ color='b',label='class0') plt.scatter(data.xdata1.values[int(data.xdata1.size/2)+2:-1],\ data.xdata2.values[int(data.xdata1.size/2)+2:-1], \ color='r',label='class1') plt.title('Two Spiral data Example') plt.legend() hfig2 = plt.figure(2,figsize=(10,10)) batch_index = np.array([elem for elem in range(total_batch)]) plt.plot(batch_index,grad_wrt_weight_layer1_iter,label='layer1',color='b',marker='o') plt.plot(batch_index,grad_wrt_weight_layer4_iter,label='layer4',color='y',marker='o') plt.plot(batch_index,grad_wrt_weight_layer5_iter,label='layer5',color='r',marker='o') plt.legend() plt.title('Dropout = (%s), Weight Gradient over minibatch iter' % dropoutrate_in_training) plt.xlabel('minibatch iter') plt.ylabel('Weight Gradient') hfig3 = plt.figure(3,figsize=(10,10)) epoch_index = np.array([elem for elem in range(training_epochs)]) plt.plot(epoch_index,errRatebyTrainingSet,label='Training data',color='r',marker='o') plt.plot(epoch_index,errRatebyValidationSet,label='Validation data',color='b',marker='x') plt.legend() plt.title('Dropout = (%s), Train/Valid Err' % dropoutrate_in_training) plt.xlabel('Iteration epoch') plt.ylabel('error Rate') plt.show()
unlicense
daniaki/Enrich2
enrich2/libraries/barcodevariant.py
1
8178
# Copyright 2016-2017 Alan F Rubin, Daniel C Esposito # # This file is part of Enrich2. # # Enrich2 is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # Enrich2 is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with Enrich2. If not, see <http://www.gnu.org/licenses/>. """ Enrich2 libraries barcodevariant module ======================================= Contains the concrete class ``BcvSeqLib`` which represents a sequencing library containing variants which are also barcode sequences. """ import logging import pandas as pd from ..base.utils import compute_md5, log_message from ..libraries.barcodemap import BarcodeMap from .barcode import BarcodeSeqLib from .variant import VariantSeqLib __all__ = [ "BcvSeqLib" ] class BcvSeqLib(VariantSeqLib, BarcodeSeqLib): """ Class for counting variant data from barcoded sequencing libraries. Creating a :py:class:`~enrich2.libraries.barcodevariant.BcvSeqLib` requires a valid *config* object with an ``'barcodes'`` entry and information about the wild type sequence. The ``barcode_map`` keyword argument can be used to pass an existing :py:class:`~enrich2.libraries.barcodemap.BarcodeMap`. Ensuring this is the right BarcodeMap is the responsibility of the caller. Class Attributes ---------------- treeview_class_name : `str` String used to render object in the GUI. Attributes ---------- barcode_map : :py:class:`~enrich2.libraries.barcodemap.BarcodeMap` Barcode map associated with the library. Methods ------- configure Configures the object from an dictionary loaded from a configuration file. serialize Returns a `dict` with all configurable attributes stored that can be used to reconfigure a new instance. calculate Counts the barcodes and combines them into variant counts using a :py:class:`~enrich2.libraries.barcodemap.BarcodeMap` object. See Also -------- :py:class:`~enrich2.libraries.variant.VariantSeqLib` :py:class:`~enrich2.libraries.barcode.BarcodeSeqLib` """ treeview_class_name = "Barcoded Variant SeqLib" def __init__(self): VariantSeqLib.__init__(self) BarcodeSeqLib.__init__(self) self.barcode_map = None def configure(self, cfg, barcode_map=None): """ Set up the object using the config object *cfg*, usually derived from a ``.json`` file. Parameters ---------- cfg : `dict` or :py:class:`~enrich2.config.types.BcvSeqLibConfiguration` The object to configure this instance with. barcode_map : :py:class:`~enrich2.libraries.barcodemap.BarcodeMap` An existing barcode map associated with the library. """ from ..config.types import BcvSeqLibConfiguration if isinstance(cfg, dict): init_fastq = bool(cfg.get('fastq', {}).get("reads", "")) cfg = BcvSeqLibConfiguration(cfg, init_fastq) elif not isinstance(cfg, BcvSeqLibConfiguration): raise TypeError("`cfg` was neither a " "BcvSeqLibConfiguration or dict.") VariantSeqLib.configure(self, cfg) BarcodeSeqLib.configure(self, cfg) if barcode_map is not None: if barcode_map.filename == cfg.barcodes_cfg.map_file: self.barcode_map = barcode_map else: raise ValueError("Attempted to assign non-matching " "barcode map [{}]".format(self.name)) else: self.barcode_map = BarcodeMap( cfg.barcodes_cfg.map_file, is_variant=True ) def serialize(self): """ Format this object (and its children) as a config object suitable for dumping to a config file. Returns ------- `dict` Attributes of this instance and that of inherited classes in a dictionary. """ cfg = VariantSeqLib.serialize(self) cfg.update(BarcodeSeqLib.serialize(self)) # required for creating new objects in GUI if self.barcode_map is not None: cfg['barcodes']['map file'] = self.barcode_map.filename cfg['barcodes']['map file md5'] = compute_md5( self.barcode_map.filename) return cfg def calculate(self): """ Counts the barcodes using :py:meth:`BarcodeSeqLib.count` and combines them into variant counts using the :py:class:`~enrich2.libraries.barcodemap.BarcodeMap` """ if not self.check_store("/main/variants/counts"): BarcodeSeqLib.calculate(self) # count the barcodes df_dict = dict() barcode_variants = dict() log_message( logging_callback=logging.info, msg="Converting barcodes to variants", extra={'oname': self.name} ) # store mapped barcodes self.save_filtered_counts( label='barcodes', query="index in {} & count >= {}".format( list(self.barcode_map.keys()), self.barcode_min_count ) ) # count variants associated with the barcodes max_mut_barcodes = 0 max_mut_variants = 0 for bc, count in self.store['/main/barcodes/counts'].iterrows(): count = count['count'] variant = self.barcode_map[bc] mutations = self.count_variant(variant) if mutations is None: # variant has too many mutations max_mut_barcodes += 1 max_mut_variants += count if self.report_filtered: self.report_filtered_variant(variant, count) else: try: df_dict[mutations] += count except KeyError: df_dict[mutations] = count barcode_variants[bc] = mutations # save counts, filtering based on the min count counts = { k: v for k, v in df_dict.items() if v >= self.variant_min_count } self.save_counts('variants', counts, raw=False) del df_dict # write the active subset of the BarcodeMap to the store barcodes = list(barcode_variants.keys()) data = {'value': [barcode_variants[bc] for bc in barcodes]} barcode_variants = pd.DataFrame(data, index=barcodes) del barcodes barcode_variants.sort_values('value', inplace=True) self.store.put( key="/raw/barcodemap", value=barcode_variants, data_columns=barcode_variants.columns ) del barcode_variants if self.aligner is not None: log_message( logging_callback=logging.info, msg="Aligned {} variants".format(self.aligner.calls), extra={'oname': self.name} ) self.aligner_cache = None # self.report_filter_stats() log_message( logging_callback=logging.info, msg="Removed {} unique barcodes ({} total variants) with " "excess mutations".format( max_mut_barcodes, max_mut_variants), extra={'oname': self.name} ) self.save_filter_stats() self.count_synonymous()
gpl-3.0
jereze/scikit-learn
examples/plot_multioutput_face_completion.py
330
3019
""" ============================================== Face completion with a multi-output estimators ============================================== This example shows the use of multi-output estimator to complete images. The goal is to predict the lower half of a face given its upper half. The first column of images shows true faces. The next columns illustrate how extremely randomized trees, k nearest neighbors, linear regression and ridge regression complete the lower half of those faces. """ print(__doc__) import numpy as np import matplotlib.pyplot as plt from sklearn.datasets import fetch_olivetti_faces from sklearn.utils.validation import check_random_state from sklearn.ensemble import ExtraTreesRegressor from sklearn.neighbors import KNeighborsRegressor from sklearn.linear_model import LinearRegression from sklearn.linear_model import RidgeCV # Load the faces datasets data = fetch_olivetti_faces() targets = data.target data = data.images.reshape((len(data.images), -1)) train = data[targets < 30] test = data[targets >= 30] # Test on independent people # Test on a subset of people n_faces = 5 rng = check_random_state(4) face_ids = rng.randint(test.shape[0], size=(n_faces, )) test = test[face_ids, :] n_pixels = data.shape[1] X_train = train[:, :np.ceil(0.5 * n_pixels)] # Upper half of the faces y_train = train[:, np.floor(0.5 * n_pixels):] # Lower half of the faces X_test = test[:, :np.ceil(0.5 * n_pixels)] y_test = test[:, np.floor(0.5 * n_pixels):] # Fit estimators ESTIMATORS = { "Extra trees": ExtraTreesRegressor(n_estimators=10, max_features=32, random_state=0), "K-nn": KNeighborsRegressor(), "Linear regression": LinearRegression(), "Ridge": RidgeCV(), } y_test_predict = dict() for name, estimator in ESTIMATORS.items(): estimator.fit(X_train, y_train) y_test_predict[name] = estimator.predict(X_test) # Plot the completed faces image_shape = (64, 64) n_cols = 1 + len(ESTIMATORS) plt.figure(figsize=(2. * n_cols, 2.26 * n_faces)) plt.suptitle("Face completion with multi-output estimators", size=16) for i in range(n_faces): true_face = np.hstack((X_test[i], y_test[i])) if i: sub = plt.subplot(n_faces, n_cols, i * n_cols + 1) else: sub = plt.subplot(n_faces, n_cols, i * n_cols + 1, title="true faces") sub.axis("off") sub.imshow(true_face.reshape(image_shape), cmap=plt.cm.gray, interpolation="nearest") for j, est in enumerate(sorted(ESTIMATORS)): completed_face = np.hstack((X_test[i], y_test_predict[est][i])) if i: sub = plt.subplot(n_faces, n_cols, i * n_cols + 2 + j) else: sub = plt.subplot(n_faces, n_cols, i * n_cols + 2 + j, title=est) sub.axis("off") sub.imshow(completed_face.reshape(image_shape), cmap=plt.cm.gray, interpolation="nearest") plt.show()
bsd-3-clause
ibmets/toptrumps
training.py
1
5552
# external dependencies from sklearn import tree from timeit import default_timer as timer from random import randint, sample, shuffle from os.path import isfile import os import csv import pylru # local dependencies import bots import decks # how many can we fit into memory? ML_MODEL_CACHE_SIZE = 50 # cache of previously trained models in memory models = pylru.lrucache(ML_MODEL_CACHE_SIZE) # # train a new model using the training data collected # def trainModel (botname, deckname): global models # start timing, so we know how long we're spending doing training start = timer() # get the path of the CSV with the training data trainingdata = bots.getFileName(botname, deckname) # no training data available if isfile(trainingdata) == False: return None # train a decision tree data = [] target = [] headers = None trainingrecords = 0 with open(trainingdata, "rb") as trainingfile: reader = csv.reader(trainingfile, delimiter=",") headers = reader.next() for row in reader: data.append(row[:-1]) target.append(row[-1]) trainingrecords += 1 dt = tree.DecisionTreeClassifier() dt.fit(data, target) # stop timing end = timer() # cache the decision tree so we can reuse it without training models[trainingdata] = dt return { "model" : dt, "training" : { "time" : (end - start), "hands" : len(data) } } # # gets the predictive model - fetching a previously trained model # if one is available in the cache, or creating a new one otherwise def getModel (botname, deckname): global models trainingdata = bots.getFileName(botname, deckname) try: return models[trainingdata] except KeyError: newtraining = trainModel(botname, deckname) if newtraining is None: return None else: return newtraining["model"] def compareNumbers (first, second): if first > second: return 1 elif first < second: return -1 else: return 0 def sortChoices (first, second): if first["outcome"] == 1 and second["outcome"] == 1: return compareNumbers(first["confidence"], second["confidence"]) elif first["outcome"] == 1: return 1 elif second["outcome"] == 1: return -1 elif first["outcome"] == 0 and second["outcome"] == 0: return compareNumbers(second["confidence"], first["confidence"]) elif first["outcome"] == 0: return 1 elif second["outcome"] == 0: return -1 else: return compareNumbers(second["confidence"], first["confidence"]) def randomChoice (rules): choice = sample(rules.keys(), 1)[0] print "Computer chose : %s" % (choice) return choice def predict (botname, deckname, card): model = getModel(botname, deckname) deck = decks.get(deckname) rules = deck["rules"] if model is None: return { "confidence" : 0, "choice" : randomChoice(rules) } data = [] optionidx = 0 for option in rules.keys(): optionData = [] for attribute in rules.keys(): optionData.append(card[attribute]) optionData.append(optionidx) optionidx += 1 data.append(optionData) predictions = model.predict_proba(data) print predictions if len(predictions) != len(rules.keys()): print "Insufficient training. Resorting to random." return { "confidence" : 0, "choice" : randomChoice(rules) } choices = [] optionidx = 0 for option in rules.keys(): print option print len(predictions[optionidx]) # we need predictions for win/loss/draw # which only happen once all options have been # represented in the training data if len(predictions[optionidx]) != 3: print "Insufficient training. Resorting to random." return { "confidence" : 0, "choice" : randomChoice(rules) } loss_prob = predictions[optionidx][0] draw_prob = predictions[optionidx][1] win_prob = predictions[optionidx][2] print "probability of losing " + str(predictions[optionidx][0]) print "probability of drawing " + str(predictions[optionidx][1]) print "probability of winning " + str(predictions[optionidx][2]) if win_prob >= draw_prob and win_prob > loss_prob: choices.append({ "choice" : option, "outcome" : 1, "confidence" : win_prob * 100 }) elif (draw_prob > win_prob and draw_prob > loss_prob) or (win_prob == loss_prob and win_prob > draw_prob): choices.append({ "choice" : option, "outcome" : 0, "confidence" : draw_prob * 100 }) else: choices.append({ "choice" : option, "outcome" : -1, "confidence" : loss_prob * 100 }) optionidx += 1 sortedChoices = sorted(choices, cmp=sortChoices, reverse=True) choice = sortedChoices[0]["choice"] print "Computer chose : %s" % (choice) outcome = "" if sortedChoices[0]["outcome"] == 1: outcome = "win" elif sortedChoices[0]["outcome"] == 0: outcome = "at least draw" else: outcome = "draw" message = "(expecting that it would %s with %d percent confidence)" print message % (outcome, sortedChoices[0]["confidence"]) return sortedChoices[0]
mit
dmnfarrell/mirnaseq
setup.py
2
1729
from setuptools import setup import sys,os inst_requires = ['numpy>=1.10', 'pandas>=0.20', 'seaborn>=0.7', 'scikit-learn>=0.23.2', 'pyfaidx>=0.5.4', 'pysam>=0.10.0', 'HTSeq>=0.6', 'bx-python>=0.5', 'forgi==1.1', 'logging_exceptions'] major, minor, micro = sys.version_info[:3] if major == '2': inst_requires.append('future') setup( name = 'smallrnaseq', version = '0.6.0', description = 'Package for short RNA-seq analysis', long_description = 'smallrnaseq is a Python package for processing of small RNA seq data.', url='https://github.com/dmnfarrell/smallrnaseq', license='GPL v3', author = 'Damien Farrell', author_email = '[email protected]', packages = ['smallrnaseq'], package_data={'smallrnaseq': ['data/*.*','data/de_example/*','*.R']}, install_requires=inst_requires, entry_points = { 'console_scripts': [ 'smallrnaseq=smallrnaseq.app:main', 'mirdeep2=smallrnaseq.mirdeep2:main'] }, classifiers = ['Operating System :: OS Independent', 'Programming Language :: Python :: 3.4', 'Programming Language :: Python :: 2.7', 'Operating System :: MacOS :: MacOS X', 'Operating System :: Microsoft :: Windows', 'Operating System :: POSIX', 'License :: OSI Approved :: Apache Software License', 'Development Status :: 4 - Beta', 'Intended Audience :: Science/Research'], keywords = ['rna','sequencing','mirdeep2','biology','scientific'], )
gpl-3.0
rmkoesterer/uga
uga/RunSnvplot.py
1
32158
## Copyright (c) 2015 Ryan Koesterer GNU General Public License v3 ## ## This program is free software: you can redistribute it and/or modify ## it under the terms of the GNU General Public License as published by ## the Free Software Foundation, either version 3 of the License, or ## (at your option) any later version. ## ## This program is distributed in the hope that it will be useful, ## but WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the ## GNU General Public License for more details. ## ## You should have received a copy of the GNU General Public License ## along with this program. If not, see <http://www.gnu.org/licenses/>. import pandas as pd import numpy as np import scipy.stats as scipy from uga import Parse import pysam import math from uga import Process import readline import rpy2.robjects as ro from rpy2.robjects import pandas2ri import logging import re pd.options.mode.chained_assignment = None pandas2ri.activate() logging.basicConfig(format='%(asctime)s - %(processName)s - %(name)s - %(message)s',level=logging.DEBUG) logger = logging.getLogger("RunSnvplot") def RunSnvplot(args): cfg = Parse.generate_snvplot_cfg(args) Parse.print_snvplot_options(cfg) if not cfg['debug']: logging.disable(logging.CRITICAL) ro.r('suppressMessages(library(ggplot2))') ro.r('suppressMessages(library(grid))') ro.r('suppressMessages(library(RColorBrewer))') handle=pysam.TabixFile(filename=cfg['file'],parser=pysam.asVCF()) header = [x for x in handle.header] skip_rows = len(header)-1 cols = header[-1].split() pcols = cfg['pcol'].split(',') cols_extract = [cfg['chrcol'],cfg['bpcol']] + pcols if cfg['qq_strat_freq']: if cfg['freqcol'] not in cols: print(Process.Error("frequency column " + cfg['freqcol'] + " not found, unable to proceed with frequency stratified plots").out) return 1 else: cols_extract = cols_extract + [cfg['freqcol']] print("frequency column " + cfg['freqcol'] + " found") if cfg['qq_strat_mac']: if cfg['maccol'] not in cols: print(Process.Error("minor allele count column " + cfg['maccol'] + " not found, unable to proceed with minor allele count stratified plots").out) return 1 else: cols_extract = cols_extract + [cfg['maccol']] print("minor allele count column " + cfg['maccol'] + " found") print("importing data") r = pd.read_table(cfg['file'],sep='\t',skiprows=skip_rows,usecols=cols_extract,compression='gzip') print(str(r.shape[0]) + " total variants found") for pcol in pcols: print("plotting p-values for column " + pcol + " ...") extract_cols = [cfg['chrcol'],cfg['bpcol'],pcol] if cfg['freqcol'] in r: extract_cols = extract_cols + [cfg['freqcol']] if cfg['maccol'] in r: extract_cols = extract_cols + [cfg['maccol']] results = r[extract_cols] results.dropna(inplace=True) results = results[(results[pcol] > 0) & (results[pcol] <= 1)].reset_index(drop=True) print(" " + str(results.shape[0]) + " variants with plottable p-values") results['logp'] = -1 * np.log10(results[pcol]) + 0.0 ro.globalenv['results'] = results l = np.median(scipy.chi2.ppf([1-x for x in results[pcol].tolist()], df=1))/scipy.chi2.ppf(0.5,1) # in R: median(qchisq(results$p, df=1, lower.tail=FALSE))/qchisq(0.5,1) print(" genomic inflation (all variants) = " + str(l)) if cfg['qq']: print(" generating standard qq plot") print(" minimum p-value: " + str(np.min(results[pcol]))) a = -1 * np.log10(ro.r('ppoints(' + str(len(results.index)) + ')')) a.sort() results.sort_values(by=['logp'], inplace=True) print(" maximum -1*log10(p-value): " + str(np.max(results['logp']))) ci_upper = -1 * np.log10(scipy.beta.ppf(0.95, list(range(1,len(results[pcol]) + 1)), list(range(len(results[pcol]),0,-1)))) ci_upper.sort() ci_lower = -1 * np.log10(scipy.beta.ppf(0.05, list(range(1,len(results[pcol]) + 1)), list(range(len(results[pcol]),0,-1)))) ci_lower.sort() ro.globalenv['df'] = ro.DataFrame({'a': ro.FloatVector(a), 'b': ro.FloatVector(results['logp']), 'ci_lower': ro.FloatVector(ci_lower), 'ci_upper': ro.FloatVector(ci_upper)}) dftext_label = 'lambda %~~% ' + str(round(l,3)) ro.globalenv['dftext'] = ro.DataFrame({'x': ro.r('Inf'), 'y': 0.5, 'lab': dftext_label}) if cfg['ext'] == 'tiff': ggsave = 'ggsave(filename="%s",plot=pp,width=4,height=4,units="in",bg="white",compression="lzw",dpi=300)' % (cfg['out'] + '.' + pcol + '.qq.tiff') elif cfg['ext'] == 'png': ggsave = 'ggsave(filename="%s",plot=pp,width=4,height=4,units="in",bg="white",dpi=300)' % (cfg['out'] + '.' + pcol + '.qq.png') elif cfg['ext'] == 'eps': ggsave = 'ggsave(filename="%s",plot=pp,width=4,height=4,bg="white")' % (cfg['out'] + '.' + pcol + '.qq.eps') else: ggsave = 'ggsave(filename="%s",plot=pp,width=4,height=4,bg="white")' % (cfg['out'] + '.' + pcol + '.qq.pdf') ro.r(""" gp<-ggplot(df) pp<-gp + aes_string(x='a',y='b') + geom_ribbon(aes_string(x='a',ymin='ci_lower',ymax='ci_upper'), data=df, alpha=0.25, fill='black') + geom_point(size=2) + geom_abline(intercept=0, slope=1, alpha=0.5) + scale_x_discrete(expression(Expected~~-log[10](italic(p)))) + scale_y_discrete(expression(Observed~~-log[10](italic(p)))) + coord_fixed() + theme_bw(base_size = 12) + geom_text(aes_string(x='x', y='y', label='lab'), data = dftext, colour="black", vjust=0, hjust=1, size = 4, parse=TRUE) + theme(axis.title.x = element_text(vjust=-0.5,size=14), axis.title.y = element_text(vjust=1,angle=90,size=14), legend.position = 'none', panel.background = element_blank(), panel.border = element_blank(), panel.grid.minor = element_blank(), panel.grid.major = element_blank(), axis.line = element_line(colour="black"), axis.text = element_text(size=12)) %s """ % (ggsave)) if np.max(results['logp']) > cfg['crop']: print(" generating cropped standard qq plot") ro.r('df$b[df$b > ' + str(cfg['crop']) + ']<-' + str(cfg['crop'])) ro.r('df$shape<-0') ro.r('df$shape[df$b == ' + str(cfg['crop']) + ']<-1') if cfg['ext'] == 'tiff': ggsave = 'ggsave(filename="%s",plot=pp,width=4,height=4,units="in",bg="white",compression="lzw",dpi=300)' % (cfg['out'] + '.' + pcol + '.qq.cropped.tiff') elif cfg['ext'] == 'png': ggsave = 'ggsave(filename="%s",plot=pp,width=4,height=4,units="in",bg="white",dpi=300)' % (cfg['out'] + '.' + pcol + '.qq.cropped.png') elif cfg['ext'] == 'eps': ggsave = 'ggsave(filename="%s",plot=pp,width=4,height=4,bg="white")' % (cfg['out'] + '.' + pcol + '.qq.cropped.eps') else: ggsave = 'ggsave(filename="%s",plot=pp,width=4,height=4,bg="white")' % (cfg['out'] + '.' + pcol + '.qq.cropped.pdf') ro.r(""" gp<-ggplot(df) pp<-gp + aes_string(x='a',y='b') + geom_ribbon(aes_string(x='a',ymin='ci_lower',ymax='ci_upper'), data=df, alpha=0.25, fill='black') + geom_point(aes(shape=factor(shape)),size=2) + geom_abline(intercept=0, slope=1, alpha=0.5) + scale_x_discrete(expression(Expected~~-log[10](italic(p)))) + scale_y_discrete(expression(Observed~~-log[10](italic(p)))) + coord_fixed() + theme_bw(base_size = 12) + geom_text(aes_string(x='x', y='y', label='lab'), data = dftext, colour="black", vjust=0, hjust=1, size = 4, parse=TRUE) + theme(axis.title.x = element_text(vjust=-0.5,size=14), axis.title.y = element_text(vjust=1,angle=90,size=14), legend.position = 'none', panel.background = element_blank(), panel.border = element_blank(), panel.grid.minor = element_blank(), panel.grid.major = element_blank(), axis.line = element_line(colour="black"), axis.text = element_text(size=12)) %s """ % (ggsave)) def ppoints(n, a): try: n = np.float(len(n)) except TypeError: n = np.float(n) return (np.arange(n) + 1 - a)/(n + 1 - 2*a) if cfg['qq_strat_freq']: print(" generating frequency stratified qq plot") strat_ticks = np.sort([np.float(x) for x in cfg['freq_ticks'].split(',')]) results['UGA___QQ_BIN___'] = 0 for i in range(len(strat_ticks)): results.loc[(results[cfg['freqcol']] >= strat_ticks[i]) & (results[cfg['freqcol']] <= 1-strat_ticks[i]),'UGA___QQ_BIN___'] = i+1 bin_values = results['UGA___QQ_BIN___'].value_counts() for i in range(len(strat_ticks)+1): if i not in bin_values.index: bin_values[i] = 0 counts = pd.DataFrame(bin_values) counts['lambda'] = np.nan results['description'] = 'NA' for i in range(len(strat_ticks)+1): if counts.loc[i,'UGA___QQ_BIN___'] > 0: counts.loc[i,'lambda'] = np.median(scipy.chi2.ppf([1-x for x in results[pcol][results['UGA___QQ_BIN___'] == i].tolist()], df=1))/scipy.chi2.ppf(0.5,1) else: counts.loc[i,'lambda'] = np.nan if i == 0: results.loc[results['UGA___QQ_BIN___'] == i,'description'] = "(0," + str(strat_ticks[i]) + ") ~" + str(round(counts.loc[i,'lambda'],3)) print(" MAF (0," + str(strat_ticks[i]) + "): n=" + str(np.int(counts.loc[i,'UGA___QQ_BIN___'])) + ", lambda=" + str(counts.loc[i,'lambda'])) elif i < len(strat_ticks): results.loc[results['UGA___QQ_BIN___'] == i,'description'] = "[" + str(strat_ticks[i-1]) + "," + str(strat_ticks[i]) + ") ~" + str(round(counts.loc[i,'lambda'],3)) print(" MAF [" + str(strat_ticks[i-1]) + "," + str(strat_ticks[i]) + "): n=" + str(np.int(counts.loc[i,'UGA___QQ_BIN___'])) + ", lambda=" + str(counts.loc[i,'lambda'])) else: results.loc[results['UGA___QQ_BIN___'] == i,'description'] = "[" + str(strat_ticks[i-1]) + ",0.5] ~" + str(round(counts.loc[i,'lambda'],3)) print(" MAF [" + str(strat_ticks[i-1]) + ",0.5]: n=" + str(np.int(counts.loc[i,'UGA___QQ_BIN___'])) + ", lambda=" + str(counts.loc[i,'lambda'])) results.sort_values(['UGA___QQ_BIN___','logp'],inplace=True) results['expected'] = 0 for i in counts.index: if counts.loc[i,'UGA___QQ_BIN___'] > 0: results.loc[results['UGA___QQ_BIN___'] == i,'expected'] = np.sort(-1 * np.log10(ppoints(len(results.loc[results['UGA___QQ_BIN___'] == i,'expected']),0))) ro.globalenv['df'] = ro.DataFrame({'expected': ro.FloatVector(results['expected']), 'logp': ro.FloatVector(results['logp']), 'UGA___QQ_BIN___': ro.IntVector(results['UGA___QQ_BIN___']), 'description': ro.StrVector(results['description'])}) ro.r("df<-df[order(df$UGA___QQ_BIN___),]") ro.r("df$description<-ordered(df$description,levels=unique(df$description))") if cfg['ext'] == 'tiff': ggsave = 'ggsave(filename="%s",plot=gp,width=4,height=4,units="in",bg="white",compression="lzw",dpi=300)' % (cfg['out'] + '.' + pcol + '.qq_strat_freq.tiff') elif cfg['ext'] == 'png': ggsave = 'ggsave(filename="%s",plot=gp,width=4,height=4,units="in",bg="white",dpi=300)' % (cfg['out'] + '.' + pcol + '.qq_strat_freq.png') elif cfg['ext'] == 'eps': ggsave = 'ggsave(filename="%s",plot=gp,width=4,height=4,bg="white")' % (cfg['out'] + '.' + pcol + '.qq_strat_freq.eps') else: ggsave = 'ggsave(filename="%s",plot=gp,width=4,height=4,bg="white")' % (cfg['out'] + '.' + pcol + '.qq_strat_freq.pdf') ro.r(""" gp<-ggplot(df, aes_string(x='expected',y='logp')) + geom_point(aes_string(color='description'), size=2) + scale_colour_manual(values=colorRampPalette(brewer.pal(9,"Blues"))(length(unique(df$description))+2)[3:(length(unique(df$description))+2)]) + geom_abline(intercept=0, slope=1, alpha=0.5) + scale_x_discrete(expression(Expected~~-log[10](italic(p)))) + scale_y_discrete(expression(Observed~~-log[10](italic(p)))) + coord_fixed() + theme_bw(base_size = 12) + theme(axis.title.x = element_text(vjust=-0.5,size=14), axis.title.y = element_text(vjust=1,angle=90,size=14), legend.title = element_blank(), legend.key.height = unit(0.1,"in"), legend.text = element_text(size=6), legend.key = element_blank(), legend.justification = c(0,1), legend.position = c(0,1), panel.background = element_blank(), panel.border = element_blank(), panel.grid.minor = element_blank(), panel.grid.major = element_blank(), axis.line = element_line(colour="black"), axis.text = element_text(size=12)) %s """ % (ggsave)) if np.max(results['logp']) > cfg['crop']: print(" generating cropped frequency stratified qq plot") ro.r('df$logp[df$logp > ' + str(cfg['crop']) + ']<-' + str(cfg['crop'])) ro.r('df$shape<-0') ro.r('df$shape[df$logp == ' + str(cfg['crop']) + ']<-1') if cfg['ext'] == 'tiff': ggsave = 'ggsave(filename="%s",plot=gp,width=4,height=4,units="in",bg="white",compression="lzw",dpi=300)' % (cfg['out'] + '.' + pcol + '.qq_strat_freq.cropped.tiff') elif cfg['ext'] == 'png': ggsave = 'ggsave(filename="%s",plot=gp,width=4,height=4,units="in",bg="white",dpi=300)' % (cfg['out'] + '.' + pcol + '.qq_strat_freq.cropped.png') elif cfg['ext'] == 'eps': ggsave = 'ggsave(filename="%s",plot=gp,width=4,height=4,bg="white")' % (cfg['out'] + '.' + pcol + '.qq_strat_freq.cropped.eps') else: ggsave = 'ggsave(filename="%s",plot=gp,width=4,height=4,bg="white")' % (cfg['out'] + '.' + pcol + '.qq_strat_freq.cropped.pdf') ro.r(""" gp<-ggplot(df, aes_string(x='expected',y='logp')) + geom_point(aes(shape=factor(shape), color=description), size=2) + scale_colour_manual(values=colorRampPalette(brewer.pal(9,"Blues"))(length(unique(df$description))+2)[3:(length(unique(df$description))+2)]) + geom_abline(intercept=0, slope=1, alpha=0.5) + scale_x_discrete(expression(Expected~~-log[10](italic(p)))) + scale_y_discrete(expression(Observed~~-log[10](italic(p)))) + coord_fixed() + theme_bw(base_size = 12) + guides(shape=FALSE) + theme(axis.title.x = element_text(vjust=-0.5,size=14), axis.title.y = element_text(vjust=1,angle=90,size=14), legend.title = element_blank(), legend.key.height = unit(0.1,"in"), legend.text = element_text(size=6), legend.key = element_blank(), legend.justification = c(0,1), legend.position = c(0,1), panel.background = element_blank(), panel.border = element_blank(), panel.grid.minor = element_blank(), panel.grid.major = element_blank(), axis.line = element_line(colour="black"), axis.text = element_text(size=12)) %s """ % (ggsave)) if cfg['qq_strat_mac']: print(" generating minor allele count stratified qq plot") strat_ticks = np.sort([np.float(x) for x in cfg['mac_ticks'].split(',')]) results['UGA___QQ_BIN___'] = 0 for i in range(len(strat_ticks)): results.loc[results[cfg['maccol']] >= strat_ticks[i],'UGA___QQ_BIN___'] = i+1 bin_values = results['UGA___QQ_BIN___'].value_counts() for i in range(len(strat_ticks)+1): if i not in bin_values.index: bin_values[i] = 0 counts = pd.DataFrame(bin_values) counts['lambda'] = 0 results['description'] = 'NA' for i in np.sort(counts.index): if counts.loc[i,'UGA___QQ_BIN___'] > 0: counts.loc[i,'lambda'] = np.median(scipy.chi2.ppf([1-x for x in results[pcol][results['UGA___QQ_BIN___'] == i].tolist()], df=1))/scipy.chi2.ppf(0.5,1) else: counts.loc[i,'lambda'] = np.nan if i == 0: results.loc[results['UGA___QQ_BIN___'] == i,'description'] = "(0," + str(int(strat_ticks[i])) + ") ~" + str(round(counts.loc[i,'lambda'],3)) print(" MAC (0," + str(int(strat_ticks[i])) + "): n=" + str(np.int(counts.loc[i,'UGA___QQ_BIN___'])) + ", lambda=" + str(counts.loc[i,'lambda'])) elif i < len(strat_ticks): results.loc[results['UGA___QQ_BIN___'] == i,'description'] = "[" + str(int(strat_ticks[i-1])) + "," + str(int(strat_ticks[i])) + ") ~" + str(round(counts.loc[i,'lambda'],3)) print(" MAC [" + str(int(strat_ticks[i-1])) + "," + str(int(strat_ticks[i])) + "): n=" + str(np.int(counts.loc[i,'UGA___QQ_BIN___'])) + ", lambda=" + str(counts.loc[i,'lambda'])) else: results.loc[results['UGA___QQ_BIN___'] == i,'description'] = "[" + str(int(strat_ticks[i-1])) + ",...] ~" + str(round(counts.loc[i,'lambda'],3)) print(" MAC [" + str(int(strat_ticks[i-1])) + ",...]: n=" + str(np.int(counts.loc[i,'UGA___QQ_BIN___'])) + ", lambda=" + str(counts.loc[i,'lambda'])) results.sort_values(['UGA___QQ_BIN___','logp'],inplace=True) results['expected'] = 0 for i in counts.index: results.loc[results['UGA___QQ_BIN___'] == i,'expected'] = np.sort(-1 * np.log10(ppoints(len(results.loc[results['UGA___QQ_BIN___'] == i,'expected']),0))) ro.globalenv['df'] = ro.DataFrame({'expected': ro.FloatVector(results['expected']), 'logp': ro.FloatVector(results['logp']), 'UGA___QQ_BIN___': ro.IntVector(results['UGA___QQ_BIN___']), 'description': ro.StrVector(results['description'])}) ro.r("df<-df[order(df$UGA___QQ_BIN___),]") ro.r("df$description<-ordered(df$description,levels=unique(df$description))") if cfg['ext'] == 'tiff': ggsave = 'ggsave(filename="%s",plot=gp,width=4,height=4,units="in",bg="white",compression="lzw",dpi=300)' % (cfg['out'] + '.' + pcol + '.qq_strat_mac.tiff') elif cfg['ext'] == 'png': ggsave = 'ggsave(filename="%s",plot=gp,width=4,height=4,units="in",bg="white",dpi=300)' % (cfg['out'] + '.' + pcol + '.qq_strat_mac.png') elif cfg['ext'] == 'eps': ggsave = 'ggsave(filename="%s",plot=gp,width=4,height=4,bg="white")' % (cfg['out'] + '.' + pcol + '.qq_strat_mac.eps') else: ggsave = 'ggsave(filename="%s",plot=gp,width=4,height=4,bg="white")' % (cfg['out'] + '.' + pcol + '.qq_strat_mac.pdf') ro.r(""" gp<-ggplot(df, aes_string(x='expected',y='logp')) + geom_point(aes_string(color='description'), size=2) + scale_colour_manual(values=colorRampPalette(brewer.pal(9,"Blues"))(length(unique(df$description))+2)[3:(length(unique(df$description))+2)]) + geom_abline(intercept=0, slope=1, alpha=0.5) + scale_x_discrete(expression(Expected~~-log[10](italic(p)))) + scale_y_discrete(expression(Observed~~-log[10](italic(p)))) + coord_fixed() + theme_bw(base_size = 12) + theme(axis.title.x = element_text(vjust=-0.5,size=14), axis.title.y = element_text(vjust=1,angle=90,size=14), legend.title = element_blank(), legend.key.height = unit(0.1,"in"), legend.text = element_text(size=6), legend.key = element_blank(), legend.justification = c(0,1), legend.position = c(0,1), panel.background = element_blank(), panel.border = element_blank(), panel.grid.minor = element_blank(), panel.grid.major = element_blank(), axis.line = element_line(colour="black"), axis.text = element_text(size=12)) %s """ % (ggsave)) if np.max(results['logp']) > cfg['crop']: print(" generating cropped frequency stratified qq plot") ro.r('df$logp[df$logp > ' + str(cfg['crop']) + ']<-' + str(cfg['crop'])) ro.r('df$shape<-0') ro.r('df$shape[df$logp == ' + str(cfg['crop']) + ']<-1') if cfg['ext'] == 'tiff': ggsave = 'ggsave(filename="%s",plot=gp,width=4,height=4,units="in",bg="white",compression="lzw",dpi=300)' % (cfg['out'] + '.' + pcol + '.qq_strat_mac.cropped.tiff') elif cfg['ext'] == 'png': ggsave = 'ggsave(filename="%s",plot=gp,width=4,height=4,units="in",bg="white",dpi=300)' % (cfg['out'] + '.' + pcol + '.qq_strat_mac.cropped.png') elif cfg['ext'] == 'eps': ggsave = 'ggsave(filename="%s",plot=gp,width=4,height=4,bg="white")' % (cfg['out'] + '.' + pcol + '.qq_strat_mac.cropped.eps') else: ggsave = 'ggsave(filename="%s",plot=gp,width=4,height=4,bg="white")' % (cfg['out'] + '.' + pcol + '.qq_strat_mac.cropped.pdf') ro.r(""" gp<-ggplot(df, aes_string(x='expected',y='logp')) + geom_point(aes(shape=factor(shape), color=description), size=2) + scale_colour_manual(values=colorRampPalette(brewer.pal(9,"Blues"))(length(unique(df$description))+2)[3:(length(unique(df$description))+2)]) + geom_abline(intercept=0, slope=1, alpha=0.5) + scale_x_discrete(expression(Expected~~-log[10](italic(p)))) + scale_y_discrete(expression(Observed~~-log[10](italic(p)))) + coord_fixed() + theme_bw(base_size = 12) + guides(shape=FALSE) + theme(axis.title.x = element_text(vjust=-0.5,size=14), axis.title.y = element_text(vjust=1,angle=90,size=14), legend.title = element_blank(), legend.key.height = unit(0.1,"in"), legend.text = element_text(size=6), legend.key = element_blank(), legend.justification = c(0,1), legend.position = c(0,1), panel.background = element_blank(), panel.border = element_blank(), panel.grid.minor = element_blank(), panel.grid.major = element_blank(), axis.line = element_line(colour="black"), axis.text = element_text(size=12)) %s """ % (ggsave)) if cfg['mht']: print(" generating standard manhattan plot") print(" minimum p-value: " + str(np.min(results[pcol]))) print(" maximum -1*log10(p-value): " + str(np.max(results['logp']))) if cfg['gc'] and l > 1: print(" adjusting p-values for genomic inflation for p-value column " + pcol) results[pcol]=2 * scipy.norm.cdf(-1 * np.abs(scipy.norm.ppf(0.5*results[pcol]) / math.sqrt(l))) print(" minimum post-gc adjustment p-value: " + str(np.min(results[pcol]))) print(" maximum post-gc adjustment -1*log10(p-value): " + str(np.max(results['logp']))) else: print(" skipping genomic inflation correction") print(" calculating genomic positions") results.sort_values(by=[cfg['chrcol'],cfg['bpcol']], inplace=True) ticks = [] lastbase = 0 results['gpos'] = 0 nchr = len(list(np.unique(results[cfg['chrcol']].values))) chrs = np.unique(results[cfg['chrcol']].values) if cfg['color']: colours = ["#08306B","#41AB5D","#000000","#F16913","#3F007D","#EF3B2C","#08519C","#238B45","#252525","#D94801","#54278F","#CB181D","#2171B5","#006D2C","#525252","#A63603","#6A51A3","#A50F15","#4292C6","#00441B","#737373","#7F2704","#807DBA","#67000D"] else: colours = ["#08589e","#4eb3d3","#08589e","#4eb3d3","#08589e","#4eb3d3","#08589e","#4eb3d3","#08589e","#4eb3d3","#08589e","#4eb3d3","#08589e","#4eb3d3","#08589e","#4eb3d3","#08589e","#4eb3d3","#08589e","#4eb3d3","#08589e","#4eb3d3","#08589e","#4eb3d3"] if nchr == 1: results['gpos'] = results[cfg['bpcol']] results['colours'] = "#08589e" if results['gpos'].max() - results['gpos'].min() <= 1000: ticks = [x for x in range(results['gpos'].min(),results['gpos'].max()) if x % 100 == 0] elif results['gpos'].max() - results['gpos'].min() <= 10000: ticks = [x for x in range(results['gpos'].min(),results['gpos'].max()) if x % 1000 == 0] elif results['gpos'].max() - results['gpos'].min() <= 100000: ticks = [x for x in range(results['gpos'].min(),results['gpos'].max()) if x % 10000 == 0] elif results['gpos'].max() - results['gpos'].min() <= 200000: ticks = [x for x in range(results['gpos'].min(),results['gpos'].max()) if x % 20000 == 0] elif results['gpos'].max() - results['gpos'].min() <= 300000: ticks = [x for x in range(results['gpos'].min(),results['gpos'].max()) if x % 30000 == 0] elif results['gpos'].max() - results['gpos'].min() <= 400000: ticks = [x for x in range(results['gpos'].min(),results['gpos'].max()) if x % 40000 == 0] elif results['gpos'].max() - results['gpos'].min() <= 500000: ticks = [x for x in range(results['gpos'].min(),results['gpos'].max()) if x % 50000 == 0] elif results['gpos'].max() - results['gpos'].min() <= 600000: ticks = [x for x in range(results['gpos'].min(),results['gpos'].max()) if x % 60000 == 0] elif results['gpos'].max() - results['gpos'].min() <= 700000: ticks = [x for x in range(results['gpos'].min(),results['gpos'].max()) if x % 70000 == 0] elif results['gpos'].max() - results['gpos'].min() <= 800000: ticks = [x for x in range(results['gpos'].min(),results['gpos'].max()) if x % 80000 == 0] elif results['gpos'].max() - results['gpos'].min() <= 900000: ticks = [x for x in range(results['gpos'].min(),results['gpos'].max()) if x % 90000 == 0] elif results['gpos'].max() - results['gpos'].min() <= 1000000: ticks = [x for x in range(results['gpos'].min(),results['gpos'].max()) if x % 100000 == 0] elif results['gpos'].max() - results['gpos'].min() <= 10000000: ticks = [x for x in range(results['gpos'].min(),results['gpos'].max()) if x % 1000000 == 0] elif results['gpos'].max() - results['gpos'].min() <= 100000000: ticks = [x for x in range(results['gpos'].min(),results['gpos'].max()) if x % 10000000 == 0] elif results['gpos'].max() - results['gpos'].min() > 100000000: ticks = [x for x in range(results['gpos'].min(),results['gpos'].max()) if x % 25000000 == 0] else: results['colours'] = "#000000" for i in range(len(chrs)): print(" processed chromosome " + str(int(chrs[i]))) if i == 0: results.loc[results[cfg['chrcol']] == chrs[i],'gpos'] = results.loc[results[cfg['chrcol']] == chrs[i],cfg['bpcol']] else: lastbase = lastbase + results.loc[results[cfg['chrcol']] == chrs[i-1],cfg['bpcol']].iloc[-1] results.loc[results[cfg['chrcol']] == chrs[i],'gpos'] = (results.loc[results[cfg['chrcol']] == chrs[i],cfg['bpcol']]) + lastbase if results.loc[results[cfg['chrcol']] == chrs[i]].shape[0] > 1: ticks.append(results.loc[results[cfg['chrcol']] == chrs[i],'gpos'].iloc[0] + (results.loc[results[cfg['chrcol']] == chrs[i],'gpos'].iloc[-1] - results.loc[results[cfg['chrcol']] == chrs[i],'gpos'].iloc[0])/2) else: ticks.append(results.loc[results[cfg['chrcol']] == chrs[i],'gpos'].iloc[0]) results.loc[results[cfg['chrcol']] == chrs[i],'colours'] = colours[int(chrs[i])] results['logp'] = -1 * np.log10(results[pcol]) if results.shape[0] >= 1000000: sig = 5.4e-8 else: sig = 0.05 / results.shape[0] print(" significance level set to p-value = " + str(sig) + " (-1*log10(p-value) = " + str(-1 * np.log10(sig)) + ")") print(" " + str(len(results[pcol][results[pcol] <= sig])) + " genome wide significant variants") chr = results[cfg['chrcol']][0] maxy=int(max(np.ceil(-1 * np.log10(sig)),np.ceil(results['logp'].max()))) if maxy > 20: y_breaks = list(range(0,maxy,5)) y_labels = list(range(0,maxy,5)) else: y_breaks = list(range(0,maxy)) y_labels = list(range(0,maxy)) ro.globalenv['df'] = ro.DataFrame({'gpos': ro.FloatVector(results['gpos']), 'logp': ro.FloatVector(results['logp']), 'colours': ro.FactorVector(results['colours'])}) ro.globalenv['ticks'] = ro.FloatVector(ticks) ro.globalenv['labels'] = ro.Vector(["{:,}".format(x/1000) for x in ticks]) ro.globalenv['colours'] = ro.StrVector(colours) ro.globalenv['chrs'] = ro.FloatVector(chrs) ro.r('save.image("R.img")') print(" generating manhattan plot") if cfg['ext'] == 'tiff': ggsave = 'ggsave(filename="%s",plot=gp,width=16,height=4,units="in",bg="white",compression="lzw",dpi=300)' % (cfg['out'] + '.' + pcol + '.mht.tiff') elif cfg['ext'] == 'png': ggsave = 'ggsave(filename="%s",plot=gp,width=16,height=4,units="in",bg="white",dpi=300)' % (cfg['out'] + '.' + pcol + '.mht.png') elif cfg['ext'] == 'eps': ggsave = 'ggsave(filename="%s",plot=gp,width=16,height=4,bg="white")' % (cfg['out'] + '.' + pcol + '.mht.eps') else: ggsave = 'ggsave(filename="%s",plot=gp,width=16,height=4,bg="white")' % (cfg['out'] + '.' + pcol + '.mht.pdf') if nchr == 1: ro.r(""" gp<-ggplot(df, aes_string(x='gpos',y='logp')) + geom_hline(yintercept = -1 * log10(%g),colour="#B8860B", linetype=5, size = 0.25) + geom_point(size=1.5) + scale_x_continuous(expression(Chromosome~~%d~~(kb)),breaks=ticks,labels=labels) + \ scale_y_continuous(expression(-log[10](italic(p))),breaks=seq(0,%d,1),limits=c(0,%d)) + \ theme_bw(base_size = 8) + \ theme(axis.title.x = element_text(vjust=-0.5,size=14), axis.title.y = element_text(vjust=1,angle=90,size=14), panel.background = element_blank(), panel.border = element_blank(), panel.grid.minor = element_blank(), panel.grid.major = element_blank(), axis.line = element_line(colour="black"), axis.title = element_text(size=10), axis.text = element_text(size=12), legend.position = 'none') %s """ % (sig, chr, maxy, maxy, ggsave)) else: ro.r(""" gp = ggplot(df, aes_string(x='gpos',y='logp',colour='colours')) + geom_hline(yintercept = -1 * log10(%g),colour="#B8860B", linetype=5, size = 0.25) + geom_point(size=1.5) + scale_colour_manual(values=colours) + scale_x_continuous(expression(Chromosome),breaks=ticks,labels=chrs) + scale_y_continuous(expression(-log[10](italic(p))),breaks=seq(0,%d,1),limits=c(0,%d)) + theme_bw(base_size = 8) + theme(axis.title.x = element_text(vjust=-0.5,size=14), axis.title.y = element_text(vjust=1,angle=90,size=14), panel.background = element_blank(), panel.border = element_blank(), panel.grid.minor = element_blank(), panel.grid.major = element_blank(), axis.line = element_line(colour="black"), axis.title = element_text(size=10), axis.text = element_text(size=12), legend.position = 'none') %s """ % (sig, maxy, maxy, ggsave)) if maxy > cfg['crop']: maxy = cfg['crop'] ro.r('df$logp[df$logp > ' + str(cfg['crop']) + ']<-' + str(cfg['crop'])) ro.r('df$shape<-0') ro.r('df$shape[df$logp == ' + str(cfg['crop']) + ']<-1') print(" generating cropped manhattan plot") if cfg['ext'] == 'tiff': ggsave = 'ggsave(filename="%s",plot=gp,width=16,height=4,units="in",bg="white",compression="lzw",dpi=300)' % (cfg['out'] + '.' + pcol + '.mht.cropped.tiff') elif cfg['ext'] == 'png': ggsave = 'ggsave(filename="%s",plot=gp,width=16,height=4,units="in",bg="white",dpi=300)' % (cfg['out'] + '.' + pcol + '.mht.cropped.png') elif cfg['ext'] == 'eps': ggsave = 'ggsave(filename="%s",plot=gp,width=16,height=4,bg="white")' % (cfg['out'] + '.' + pcol + '.mht.cropped.eps') else: ggsave = 'ggsave(filename="%s",plot=gp,width=16,height=4,bg="white")' % (cfg['out'] + '.' + pcol + '.mht.cropped.pdf') if nchr == 1: ro.r(""" gp<-ggplot(df, aes_string(x='gpos',y='logp')) + geom_hline(yintercept = -1 * log10(%g),colour="#B8860B", linetype=5, size = 0.25) + geom_point(aes(shape=factor(shape)),size=1.5) + scale_x_continuous(expression(Chromosome~~%d~~(kb)),breaks=ticks,labels=labels) + scale_y_continuous(expression(-log[10](italic(p))),breaks=seq(0,%d,1),limits=c(0,%d)) + theme_bw(base_size = 8) + theme(axis.title.x = element_text(vjust=-0.5,size=14), axis.title.y = element_text(vjust=1,angle=90,size=14), panel.background = element_blank(), panel.border = element_blank(), panel.grid.minor = element_blank(), panel.grid.major = element_blank(), axis.line = element_line(colour="black"), axis.title = element_text(size=10), axis.text = element_text(size=12), legend.position = 'none') %s """ % (sig, chr, maxy, maxy, ggsave)) else: ro.r(""" gp = ggplot(df, aes_string(x='gpos',y='logp',colour='colours')) + geom_hline(yintercept = -1 * log10(%g),colour="#B8860B", linetype=5, size = 0.25) + geom_point(aes(shape=factor(shape)),size=1.5) + scale_colour_manual(values=colours) + scale_x_continuous(expression(Chromosome),breaks=ticks,labels=chrs) + scale_y_continuous(expression(-log[10](italic(p))),breaks=seq(0,%d,1),limits=c(0,%d)) + theme_bw(base_size = 8) + theme(axis.title.x = element_text(vjust=-0.5,size=14), axis.title.y = element_text(vjust=1,angle=90,size=14), panel.background = element_blank(), panel.border = element_blank(), panel.grid.minor = element_blank(), panel.grid.major = element_blank(), axis.line = element_line(colour="black"), axis.title = element_text(size=8), axis.text = element_text(size=12), legend.position = 'none') %s """ % (sig, maxy, maxy, ggsave)) print("process complete") return 0
gpl-3.0
alekz112/statsmodels
statsmodels/examples/tsa/arma_plots.py
33
2516
'''Plot acf and pacf for some ARMA(1,1) ''' from __future__ import print_function import numpy as np import matplotlib.pyplot as plt import statsmodels.tsa.arima_process as tsp from statsmodels.sandbox.tsa.fftarma import ArmaFft as FftArmaProcess import statsmodels.tsa.stattools as tss from statsmodels.graphics.tsaplots import plotacf np.set_printoptions(precision=2) arcoefs = [0.9, 0., -0.5] #[0.9, 0.5, 0.1, 0., -0.5] macoefs = [0.9, 0., -0.5] #[0.9, 0.5, 0.1, 0., -0.5] nsample = 1000 nburnin = 1000 sig = 1 fig = plt.figure(figsize=(8, 13)) fig.suptitle('ARMA: Autocorrelation (left) and Partial Autocorrelation (right)') subplotcount = 1 nrows = 4 for arcoef in arcoefs[:-1]: for macoef in macoefs[:-1]: ar = np.r_[1., -arcoef] ma = np.r_[1., macoef] #y = tsp.arma_generate_sample(ar,ma,nsample, sig, burnin) #armaprocess = FftArmaProcess(ar, ma, nsample) #TODO: make n optional #armaprocess.plot4() armaprocess = tsp.ArmaProcess(ar, ma) acf = armaprocess.acf(20)[:20] pacf = armaprocess.pacf(20)[:20] ax = fig.add_subplot(nrows, 2, subplotcount) plotacf(acf, ax=ax) ## ax.set_title('Autocorrelation \nar=%s, ma=%rs' % (ar, ma), ## size='xx-small') ax.text(0.7, 0.6, 'ar =%s \nma=%s' % (ar, ma), transform=ax.transAxes, horizontalalignment='left', #'right', size='xx-small') ax.set_xlim(-1,20) subplotcount +=1 ax = fig.add_subplot(nrows, 2, subplotcount) plotacf(pacf, ax=ax) ## ax.set_title('Partial Autocorrelation \nar=%s, ma=%rs' % (ar, ma), ## size='xx-small') ax.text(0.7, 0.6, 'ar =%s \nma=%s' % (ar, ma), transform=ax.transAxes, horizontalalignment='left', #'right', size='xx-small') ax.set_xlim(-1,20) subplotcount +=1 axs = fig.axes ### turn of the 2nd column y tick labels ##for ax in axs[1::2]:#[:,1].flat: ## for label in ax.get_yticklabels(): label.set_visible(False) # turn off all but the bottom xtick labels for ax in axs[:-2]:#[:-1,:].flat: for label in ax.get_xticklabels(): label.set_visible(False) # use a MaxNLocator on the first column y axis if you have a bunch of # rows to avoid bunching; example below uses at most 3 ticks import matplotlib.ticker as mticker for ax in axs: #[::2]:#[:,1].flat: ax.yaxis.set_major_locator( mticker.MaxNLocator(3 )) plt.show()
bsd-3-clause
mojoboss/scikit-learn
sklearn/neighbors/tests/test_nearest_centroid.py
305
4121
""" Testing for the nearest centroid module. """ import numpy as np from scipy import sparse as sp from numpy.testing import assert_array_equal from numpy.testing import assert_equal from sklearn.neighbors import NearestCentroid from sklearn import datasets from sklearn.metrics.pairwise import pairwise_distances # toy sample X = [[-2, -1], [-1, -1], [-1, -2], [1, 1], [1, 2], [2, 1]] X_csr = sp.csr_matrix(X) # Sparse matrix y = [-1, -1, -1, 1, 1, 1] T = [[-1, -1], [2, 2], [3, 2]] T_csr = sp.csr_matrix(T) true_result = [-1, 1, 1] # also load the iris dataset # and randomly permute it iris = datasets.load_iris() rng = np.random.RandomState(1) perm = rng.permutation(iris.target.size) iris.data = iris.data[perm] iris.target = iris.target[perm] def test_classification_toy(): # Check classification on a toy dataset, including sparse versions. clf = NearestCentroid() clf.fit(X, y) assert_array_equal(clf.predict(T), true_result) # Same test, but with a sparse matrix to fit and test. clf = NearestCentroid() clf.fit(X_csr, y) assert_array_equal(clf.predict(T_csr), true_result) # Fit with sparse, test with non-sparse clf = NearestCentroid() clf.fit(X_csr, y) assert_array_equal(clf.predict(T), true_result) # Fit with non-sparse, test with sparse clf = NearestCentroid() clf.fit(X, y) assert_array_equal(clf.predict(T_csr), true_result) # Fit and predict with non-CSR sparse matrices clf = NearestCentroid() clf.fit(X_csr.tocoo(), y) assert_array_equal(clf.predict(T_csr.tolil()), true_result) def test_precomputed(): clf = NearestCentroid(metric="precomputed") clf.fit(X, y) S = pairwise_distances(T, clf.centroids_) assert_array_equal(clf.predict(S), true_result) def test_iris(): # Check consistency on dataset iris. for metric in ('euclidean', 'cosine'): clf = NearestCentroid(metric=metric).fit(iris.data, iris.target) score = np.mean(clf.predict(iris.data) == iris.target) assert score > 0.9, "Failed with score = " + str(score) def test_iris_shrinkage(): # Check consistency on dataset iris, when using shrinkage. for metric in ('euclidean', 'cosine'): for shrink_threshold in [None, 0.1, 0.5]: clf = NearestCentroid(metric=metric, shrink_threshold=shrink_threshold) clf = clf.fit(iris.data, iris.target) score = np.mean(clf.predict(iris.data) == iris.target) assert score > 0.8, "Failed with score = " + str(score) def test_pickle(): import pickle # classification obj = NearestCentroid() obj.fit(iris.data, iris.target) score = obj.score(iris.data, iris.target) s = pickle.dumps(obj) obj2 = pickle.loads(s) assert_equal(type(obj2), obj.__class__) score2 = obj2.score(iris.data, iris.target) assert_array_equal(score, score2, "Failed to generate same score" " after pickling (classification).") def test_shrinkage_threshold_decoded_y(): clf = NearestCentroid(shrink_threshold=0.01) y_ind = np.asarray(y) y_ind[y_ind == -1] = 0 clf.fit(X, y_ind) centroid_encoded = clf.centroids_ clf.fit(X, y) assert_array_equal(centroid_encoded, clf.centroids_) def test_predict_translated_data(): # Test that NearestCentroid gives same results on translated data rng = np.random.RandomState(0) X = rng.rand(50, 50) y = rng.randint(0, 3, 50) noise = rng.rand(50) clf = NearestCentroid(shrink_threshold=0.1) clf.fit(X, y) y_init = clf.predict(X) clf = NearestCentroid(shrink_threshold=0.1) X_noise = X + noise clf.fit(X_noise, y) y_translate = clf.predict(X_noise) assert_array_equal(y_init, y_translate) def test_manhattan_metric(): # Test the manhattan metric. clf = NearestCentroid(metric='manhattan') clf.fit(X, y) dense_centroid = clf.centroids_ clf.fit(X_csr, y) assert_array_equal(clf.centroids_, dense_centroid) assert_array_equal(dense_centroid, [[-1, -1], [1, 1]])
bsd-3-clause
xiaohan2012/snpp
snpp/utils/matrix.py
1
2902
import numpy as np from scipy.sparse import csr_matrix, issparse, dok_matrix, isspmatrix_dok from sklearn.cross_validation import train_test_split def indexed_entries(sparse_matrix): """ Args: Return: list of (row_id, col_id, value) """ if not isspmatrix_dok(sparse_matrix): sparse_matrix = sparse_matrix.todok() return ((i, j, sparse_matrix[i, j]) for i, j in zip(*sparse_matrix.nonzero())) def zero(m): """return the zero-valued entries' indices """ return (m == 0).nonzero() def difference_ratio(M1, M2): assert M1.shape == M2.shape _, idx = np.nonzero(M1 != M2) return len(idx) / M1.size def difference_ratio_sparse(M1, M2): """different ratio on nonzero elements """ assert issparse(M1) assert issparse(M2) assert M1.shape == M2.shape assert M1.nnz == M2.nnz s1 = set(indexed_entries(M1)) s2 = set(indexed_entries(M2)) return 1 - len(s1.intersection(s2)) / M1.nnz def save_sparse_csr(filename, array): np.savez(filename, data=array.data, indices=array.indices, indptr=array.indptr, shape=array.shape) def load_sparse_csr(filename): loader = np.load(filename) return csr_matrix((loader['data'], loader['indices'], loader['indptr']), shape=loader['shape']) def _make_matrix(items, shape): idx1, idx2, data = zip(*items) return csr_matrix((data, (idx1, idx2)), shape=shape) def split_train_dev_test(m, weights=[0.8, 0.1, 0.1]): """ Returns: three matrices whose nnz satistify weights """ assert len(weights) == 3 assert abs(sum(weights) - 1.0) < 0.00001 assert issparse(m) entries = indexed_entries(m) remain_sum = np.sum(weights[1:]) train, dev_test = train_test_split(list(entries), train_size=weights[0], test_size=remain_sum) dev, test = train_test_split(dev_test, train_size=weights[1] / remain_sum, test_size=weights[2] / remain_sum) return (_make_matrix(train, m.shape), _make_matrix(dev, m.shape), _make_matrix(test, m.shape)) def split_train_test(m, weights=[0.9, 0.1]): assert len(weights) == 2 assert abs(sum(weights) - 1.0) < 0.00001 assert issparse(m) entries = indexed_entries(m) train, test = train_test_split(list(entries), train_size=weights[0], test_size=weights[1]) return (_make_matrix(train, m.shape), _make_matrix(test, m.shape)) def delete_csr_entries(m, idxs): """idxs: list of (row_id, col_id) to delete not inplace """ m_new = dok_matrix(m.shape) idxs = set(idxs) for i, j in zip(*m.nonzero()): if (i, j) not in idxs: m_new[i, j] = m[i, j] return m_new.tocsr()
mit
equialgo/scikit-learn
sklearn/base.py
7
19499
"""Base classes for all estimators.""" # Author: Gael Varoquaux <[email protected]> # License: BSD 3 clause import copy import warnings import numpy as np from scipy import sparse from .externals import six from .utils.fixes import signature from . import __version__ ############################################################################## def _first_and_last_element(arr): """Returns first and last element of numpy array or sparse matrix.""" if isinstance(arr, np.ndarray) or hasattr(arr, 'data'): # numpy array or sparse matrix with .data attribute data = arr.data if sparse.issparse(arr) else arr return data.flat[0], data.flat[-1] else: # Sparse matrices without .data attribute. Only dok_matrix at # the time of writing, in this case indexing is fast return arr[0, 0], arr[-1, -1] def clone(estimator, safe=True): """Constructs a new estimator with the same parameters. Clone does a deep copy of the model in an estimator without actually copying attached data. It yields a new estimator with the same parameters that has not been fit on any data. Parameters ---------- estimator : estimator object, or list, tuple or set of objects The estimator or group of estimators to be cloned safe : boolean, optional If safe is false, clone will fall back to a deepcopy on objects that are not estimators. """ estimator_type = type(estimator) # XXX: not handling dictionaries if estimator_type in (list, tuple, set, frozenset): return estimator_type([clone(e, safe=safe) for e in estimator]) elif not hasattr(estimator, 'get_params'): if not safe: return copy.deepcopy(estimator) else: raise TypeError("Cannot clone object '%s' (type %s): " "it does not seem to be a scikit-learn estimator " "as it does not implement a 'get_params' methods." % (repr(estimator), type(estimator))) klass = estimator.__class__ new_object_params = estimator.get_params(deep=False) for name, param in six.iteritems(new_object_params): new_object_params[name] = clone(param, safe=False) new_object = klass(**new_object_params) params_set = new_object.get_params(deep=False) # quick sanity check of the parameters of the clone for name in new_object_params: param1 = new_object_params[name] param2 = params_set[name] if param1 is param2: # this should always happen continue if isinstance(param1, np.ndarray): # For most ndarrays, we do not test for complete equality if not isinstance(param2, type(param1)): equality_test = False elif (param1.ndim > 0 and param1.shape[0] > 0 and isinstance(param2, np.ndarray) and param2.ndim > 0 and param2.shape[0] > 0): equality_test = ( param1.shape == param2.shape and param1.dtype == param2.dtype and (_first_and_last_element(param1) == _first_and_last_element(param2)) ) else: equality_test = np.all(param1 == param2) elif sparse.issparse(param1): # For sparse matrices equality doesn't work if not sparse.issparse(param2): equality_test = False elif param1.size == 0 or param2.size == 0: equality_test = ( param1.__class__ == param2.__class__ and param1.size == 0 and param2.size == 0 ) else: equality_test = ( param1.__class__ == param2.__class__ and (_first_and_last_element(param1) == _first_and_last_element(param2)) and param1.nnz == param2.nnz and param1.shape == param2.shape ) else: # fall back on standard equality equality_test = param1 == param2 if equality_test: warnings.warn("Estimator %s modifies parameters in __init__." " This behavior is deprecated as of 0.18 and " "support for this behavior will be removed in 0.20." % type(estimator).__name__, DeprecationWarning) else: raise RuntimeError('Cannot clone object %s, as the constructor ' 'does not seem to set parameter %s' % (estimator, name)) return new_object ############################################################################### def _pprint(params, offset=0, printer=repr): """Pretty print the dictionary 'params' Parameters ---------- params : dict The dictionary to pretty print offset : int The offset in characters to add at the begin of each line. printer : callable The function to convert entries to strings, typically the builtin str or repr """ # Do a multi-line justified repr: options = np.get_printoptions() np.set_printoptions(precision=5, threshold=64, edgeitems=2) params_list = list() this_line_length = offset line_sep = ',\n' + (1 + offset // 2) * ' ' for i, (k, v) in enumerate(sorted(six.iteritems(params))): if type(v) is float: # use str for representing floating point numbers # this way we get consistent representation across # architectures and versions. this_repr = '%s=%s' % (k, str(v)) else: # use repr of the rest this_repr = '%s=%s' % (k, printer(v)) if len(this_repr) > 500: this_repr = this_repr[:300] + '...' + this_repr[-100:] if i > 0: if (this_line_length + len(this_repr) >= 75 or '\n' in this_repr): params_list.append(line_sep) this_line_length = len(line_sep) else: params_list.append(', ') this_line_length += 2 params_list.append(this_repr) this_line_length += len(this_repr) np.set_printoptions(**options) lines = ''.join(params_list) # Strip trailing space to avoid nightmare in doctests lines = '\n'.join(l.rstrip(' ') for l in lines.split('\n')) return lines ############################################################################### class BaseEstimator(object): """Base class for all estimators in scikit-learn Notes ----- All estimators should specify all the parameters that can be set at the class level in their ``__init__`` as explicit keyword arguments (no ``*args`` or ``**kwargs``). """ @classmethod def _get_param_names(cls): """Get parameter names for the estimator""" # fetch the constructor or the original constructor before # deprecation wrapping if any init = getattr(cls.__init__, 'deprecated_original', cls.__init__) if init is object.__init__: # No explicit constructor to introspect return [] # introspect the constructor arguments to find the model parameters # to represent init_signature = signature(init) # Consider the constructor parameters excluding 'self' parameters = [p for p in init_signature.parameters.values() if p.name != 'self' and p.kind != p.VAR_KEYWORD] for p in parameters: if p.kind == p.VAR_POSITIONAL: raise RuntimeError("scikit-learn estimators should always " "specify their parameters in the signature" " of their __init__ (no varargs)." " %s with constructor %s doesn't " " follow this convention." % (cls, init_signature)) # Extract and sort argument names excluding 'self' return sorted([p.name for p in parameters]) def get_params(self, deep=True): """Get parameters for this estimator. Parameters ---------- deep : boolean, optional If True, will return the parameters for this estimator and contained subobjects that are estimators. Returns ------- params : mapping of string to any Parameter names mapped to their values. """ out = dict() for key in self._get_param_names(): # We need deprecation warnings to always be on in order to # catch deprecated param values. # This is set in utils/__init__.py but it gets overwritten # when running under python3 somehow. warnings.simplefilter("always", DeprecationWarning) try: with warnings.catch_warnings(record=True) as w: value = getattr(self, key, None) if len(w) and w[0].category == DeprecationWarning: # if the parameter is deprecated, don't show it continue finally: warnings.filters.pop(0) # XXX: should we rather test if instance of estimator? if deep and hasattr(value, 'get_params'): deep_items = value.get_params().items() out.update((key + '__' + k, val) for k, val in deep_items) out[key] = value return out def set_params(self, **params): """Set the parameters of this estimator. The method works on simple estimators as well as on nested objects (such as pipelines). The latter have parameters of the form ``<component>__<parameter>`` so that it's possible to update each component of a nested object. Returns ------- self """ if not params: # Simple optimisation to gain speed (inspect is slow) return self valid_params = self.get_params(deep=True) for key, value in six.iteritems(params): split = key.split('__', 1) if len(split) > 1: # nested objects case name, sub_name = split if name not in valid_params: raise ValueError('Invalid parameter %s for estimator %s. ' 'Check the list of available parameters ' 'with `estimator.get_params().keys()`.' % (name, self)) sub_object = valid_params[name] sub_object.set_params(**{sub_name: value}) else: # simple objects case if key not in valid_params: raise ValueError('Invalid parameter %s for estimator %s. ' 'Check the list of available parameters ' 'with `estimator.get_params().keys()`.' % (key, self.__class__.__name__)) setattr(self, key, value) return self def __repr__(self): class_name = self.__class__.__name__ return '%s(%s)' % (class_name, _pprint(self.get_params(deep=False), offset=len(class_name),),) def __getstate__(self): if type(self).__module__.startswith('sklearn.'): return dict(self.__dict__.items(), _sklearn_version=__version__) else: return dict(self.__dict__.items()) def __setstate__(self, state): if type(self).__module__.startswith('sklearn.'): pickle_version = state.pop("_sklearn_version", "pre-0.18") if pickle_version != __version__: warnings.warn( "Trying to unpickle estimator {0} from version {1} when " "using version {2}. This might lead to breaking code or " "invalid results. Use at your own risk.".format( self.__class__.__name__, pickle_version, __version__), UserWarning) self.__dict__.update(state) ############################################################################### class ClassifierMixin(object): """Mixin class for all classifiers in scikit-learn.""" _estimator_type = "classifier" def score(self, X, y, sample_weight=None): """Returns the mean accuracy on the given test data and labels. In multi-label classification, this is the subset accuracy which is a harsh metric since you require for each sample that each label set be correctly predicted. Parameters ---------- X : array-like, shape = (n_samples, n_features) Test samples. y : array-like, shape = (n_samples) or (n_samples, n_outputs) True labels for X. sample_weight : array-like, shape = [n_samples], optional Sample weights. Returns ------- score : float Mean accuracy of self.predict(X) wrt. y. """ from .metrics import accuracy_score return accuracy_score(y, self.predict(X), sample_weight=sample_weight) ############################################################################### class RegressorMixin(object): """Mixin class for all regression estimators in scikit-learn.""" _estimator_type = "regressor" def score(self, X, y, sample_weight=None): """Returns the coefficient of determination R^2 of the prediction. The coefficient R^2 is defined as (1 - u/v), where u is the regression sum of squares ((y_true - y_pred) ** 2).sum() and v is the residual sum of squares ((y_true - y_true.mean()) ** 2).sum(). Best possible score is 1.0 and it can be negative (because the model can be arbitrarily worse). A constant model that always predicts the expected value of y, disregarding the input features, would get a R^2 score of 0.0. Parameters ---------- X : array-like, shape = (n_samples, n_features) Test samples. y : array-like, shape = (n_samples) or (n_samples, n_outputs) True values for X. sample_weight : array-like, shape = [n_samples], optional Sample weights. Returns ------- score : float R^2 of self.predict(X) wrt. y. """ from .metrics import r2_score return r2_score(y, self.predict(X), sample_weight=sample_weight, multioutput='variance_weighted') ############################################################################### class ClusterMixin(object): """Mixin class for all cluster estimators in scikit-learn.""" _estimator_type = "clusterer" def fit_predict(self, X, y=None): """Performs clustering on X and returns cluster labels. Parameters ---------- X : ndarray, shape (n_samples, n_features) Input data. Returns ------- y : ndarray, shape (n_samples,) cluster labels """ # non-optimized default implementation; override when a better # method is possible for a given clustering algorithm self.fit(X) return self.labels_ class BiclusterMixin(object): """Mixin class for all bicluster estimators in scikit-learn""" @property def biclusters_(self): """Convenient way to get row and column indicators together. Returns the ``rows_`` and ``columns_`` members. """ return self.rows_, self.columns_ def get_indices(self, i): """Row and column indices of the i'th bicluster. Only works if ``rows_`` and ``columns_`` attributes exist. Returns ------- row_ind : np.array, dtype=np.intp Indices of rows in the dataset that belong to the bicluster. col_ind : np.array, dtype=np.intp Indices of columns in the dataset that belong to the bicluster. """ rows = self.rows_[i] columns = self.columns_[i] return np.nonzero(rows)[0], np.nonzero(columns)[0] def get_shape(self, i): """Shape of the i'th bicluster. Returns ------- shape : (int, int) Number of rows and columns (resp.) in the bicluster. """ indices = self.get_indices(i) return tuple(len(i) for i in indices) def get_submatrix(self, i, data): """Returns the submatrix corresponding to bicluster `i`. Works with sparse matrices. Only works if ``rows_`` and ``columns_`` attributes exist. """ from .utils.validation import check_array data = check_array(data, accept_sparse='csr') row_ind, col_ind = self.get_indices(i) return data[row_ind[:, np.newaxis], col_ind] ############################################################################### class TransformerMixin(object): """Mixin class for all transformers in scikit-learn.""" def fit_transform(self, X, y=None, **fit_params): """Fit to data, then transform it. Fits transformer to X and y with optional parameters fit_params and returns a transformed version of X. Parameters ---------- X : numpy array of shape [n_samples, n_features] Training set. y : numpy array of shape [n_samples] Target values. Returns ------- X_new : numpy array of shape [n_samples, n_features_new] Transformed array. """ # non-optimized default implementation; override when a better # method is possible for a given clustering algorithm if y is None: # fit method of arity 1 (unsupervised transformation) return self.fit(X, **fit_params).transform(X) else: # fit method of arity 2 (supervised transformation) return self.fit(X, y, **fit_params).transform(X) class DensityMixin(object): """Mixin class for all density estimators in scikit-learn.""" _estimator_type = "DensityEstimator" def score(self, X, y=None): """Returns the score of the model on the data X Parameters ---------- X : array-like, shape = (n_samples, n_features) Returns ------- score : float """ pass ############################################################################### class MetaEstimatorMixin(object): """Mixin class for all meta estimators in scikit-learn.""" # this is just a tag for the moment ############################################################################### def is_classifier(estimator): """Returns True if the given estimator is (probably) a classifier.""" return getattr(estimator, "_estimator_type", None) == "classifier" def is_regressor(estimator): """Returns True if the given estimator is (probably) a regressor.""" return getattr(estimator, "_estimator_type", None) == "regressor"
bsd-3-clause
nikitasingh981/scikit-learn
sklearn/linear_model/passive_aggressive.py
14
12060
# Authors: Rob Zinkov, Mathieu Blondel # License: BSD 3 clause from .stochastic_gradient import BaseSGDClassifier from .stochastic_gradient import BaseSGDRegressor from .stochastic_gradient import DEFAULT_EPSILON class PassiveAggressiveClassifier(BaseSGDClassifier): """Passive Aggressive Classifier Read more in the :ref:`User Guide <passive_aggressive>`. Parameters ---------- C : float Maximum step size (regularization). Defaults to 1.0. fit_intercept : bool, default=False Whether the intercept should be estimated or not. If False, the data is assumed to be already centered. n_iter : int, optional The number of passes over the training data (aka epochs). Defaults to 5. shuffle : bool, default=True Whether or not the training data should be shuffled after each epoch. random_state : int, RandomState instance or None, optional, default=None The seed of the pseudo random number generator to use when shuffling the data. If int, random_state is the seed used by the random number generator; If RandomState instance, random_state is the random number generator; If None, the random number generator is the RandomState instance used by `np.random`. verbose : integer, optional The verbosity level n_jobs : integer, optional The number of CPUs to use to do the OVA (One Versus All, for multi-class problems) computation. -1 means 'all CPUs'. Defaults to 1. loss : string, optional The loss function to be used: hinge: equivalent to PA-I in the reference paper. squared_hinge: equivalent to PA-II in the reference paper. warm_start : bool, optional When set to True, reuse the solution of the previous call to fit as initialization, otherwise, just erase the previous solution. class_weight : dict, {class_label: weight} or "balanced" or None, optional Preset for the class_weight fit parameter. Weights associated with classes. If not given, all classes are supposed to have weight one. The "balanced" mode uses the values of y to automatically adjust weights inversely proportional to class frequencies in the input data as ``n_samples / (n_classes * np.bincount(y))`` .. versionadded:: 0.17 parameter *class_weight* to automatically weight samples. average : bool or int, optional When set to True, computes the averaged SGD weights and stores the result in the ``coef_`` attribute. If set to an int greater than 1, averaging will begin once the total number of samples seen reaches average. So average=10 will begin averaging after seeing 10 samples. .. versionadded:: 0.19 parameter *average* to use weights averaging in SGD Attributes ---------- coef_ : array, shape = [1, n_features] if n_classes == 2 else [n_classes,\ n_features] Weights assigned to the features. intercept_ : array, shape = [1] if n_classes == 2 else [n_classes] Constants in decision function. See also -------- SGDClassifier Perceptron References ---------- Online Passive-Aggressive Algorithms <http://jmlr.csail.mit.edu/papers/volume7/crammer06a/crammer06a.pdf> K. Crammer, O. Dekel, J. Keshat, S. Shalev-Shwartz, Y. Singer - JMLR (2006) """ def __init__(self, C=1.0, fit_intercept=True, n_iter=5, shuffle=True, verbose=0, loss="hinge", n_jobs=1, random_state=None, warm_start=False, class_weight=None, average=False): super(PassiveAggressiveClassifier, self).__init__( penalty=None, fit_intercept=fit_intercept, n_iter=n_iter, shuffle=shuffle, verbose=verbose, random_state=random_state, eta0=1.0, warm_start=warm_start, class_weight=class_weight, average=average, n_jobs=n_jobs) self.C = C self.loss = loss def partial_fit(self, X, y, classes=None): """Fit linear model with Passive Aggressive algorithm. Parameters ---------- X : {array-like, sparse matrix}, shape = [n_samples, n_features] Subset of the training data y : numpy array of shape [n_samples] Subset of the target values classes : array, shape = [n_classes] Classes across all calls to partial_fit. Can be obtained by via `np.unique(y_all)`, where y_all is the target vector of the entire dataset. This argument is required for the first call to partial_fit and can be omitted in the subsequent calls. Note that y doesn't need to contain all labels in `classes`. Returns ------- self : returns an instance of self. """ if self.class_weight == 'balanced': raise ValueError("class_weight 'balanced' is not supported for " "partial_fit. For 'balanced' weights, use " "`sklearn.utils.compute_class_weight` with " "`class_weight='balanced'`. In place of y you " "can use a large enough subset of the full " "training set target to properly estimate the " "class frequency distributions. Pass the " "resulting weights as the class_weight " "parameter.") lr = "pa1" if self.loss == "hinge" else "pa2" return self._partial_fit(X, y, alpha=1.0, C=self.C, loss="hinge", learning_rate=lr, n_iter=1, classes=classes, sample_weight=None, coef_init=None, intercept_init=None) def fit(self, X, y, coef_init=None, intercept_init=None): """Fit linear model with Passive Aggressive algorithm. Parameters ---------- X : {array-like, sparse matrix}, shape = [n_samples, n_features] Training data y : numpy array of shape [n_samples] Target values coef_init : array, shape = [n_classes,n_features] The initial coefficients to warm-start the optimization. intercept_init : array, shape = [n_classes] The initial intercept to warm-start the optimization. Returns ------- self : returns an instance of self. """ lr = "pa1" if self.loss == "hinge" else "pa2" return self._fit(X, y, alpha=1.0, C=self.C, loss="hinge", learning_rate=lr, coef_init=coef_init, intercept_init=intercept_init) class PassiveAggressiveRegressor(BaseSGDRegressor): """Passive Aggressive Regressor Read more in the :ref:`User Guide <passive_aggressive>`. Parameters ---------- C : float Maximum step size (regularization). Defaults to 1.0. epsilon : float If the difference between the current prediction and the correct label is below this threshold, the model is not updated. fit_intercept : bool Whether the intercept should be estimated or not. If False, the data is assumed to be already centered. Defaults to True. n_iter : int, optional The number of passes over the training data (aka epochs). Defaults to 5. shuffle : bool, default=True Whether or not the training data should be shuffled after each epoch. random_state : int, RandomState instance or None, optional, default=None The seed of the pseudo random number generator to use when shuffling the data. If int, random_state is the seed used by the random number generator; If RandomState instance, random_state is the random number generator; If None, the random number generator is the RandomState instance used by `np.random`. verbose : integer, optional The verbosity level loss : string, optional The loss function to be used: epsilon_insensitive: equivalent to PA-I in the reference paper. squared_epsilon_insensitive: equivalent to PA-II in the reference paper. warm_start : bool, optional When set to True, reuse the solution of the previous call to fit as initialization, otherwise, just erase the previous solution. average : bool or int, optional When set to True, computes the averaged SGD weights and stores the result in the ``coef_`` attribute. If set to an int greater than 1, averaging will begin once the total number of samples seen reaches average. So average=10 will begin averaging after seeing 10 samples. .. versionadded:: 0.19 parameter *average* to use weights averaging in SGD Attributes ---------- coef_ : array, shape = [1, n_features] if n_classes == 2 else [n_classes,\ n_features] Weights assigned to the features. intercept_ : array, shape = [1] if n_classes == 2 else [n_classes] Constants in decision function. See also -------- SGDRegressor References ---------- Online Passive-Aggressive Algorithms <http://jmlr.csail.mit.edu/papers/volume7/crammer06a/crammer06a.pdf> K. Crammer, O. Dekel, J. Keshat, S. Shalev-Shwartz, Y. Singer - JMLR (2006) """ def __init__(self, C=1.0, fit_intercept=True, n_iter=5, shuffle=True, verbose=0, loss="epsilon_insensitive", epsilon=DEFAULT_EPSILON, random_state=None, warm_start=False, average=False): super(PassiveAggressiveRegressor, self).__init__( penalty=None, l1_ratio=0, epsilon=epsilon, eta0=1.0, fit_intercept=fit_intercept, n_iter=n_iter, shuffle=shuffle, verbose=verbose, random_state=random_state, warm_start=warm_start, average=average) self.C = C self.loss = loss def partial_fit(self, X, y): """Fit linear model with Passive Aggressive algorithm. Parameters ---------- X : {array-like, sparse matrix}, shape = [n_samples, n_features] Subset of training data y : numpy array of shape [n_samples] Subset of target values Returns ------- self : returns an instance of self. """ lr = "pa1" if self.loss == "epsilon_insensitive" else "pa2" return self._partial_fit(X, y, alpha=1.0, C=self.C, loss="epsilon_insensitive", learning_rate=lr, n_iter=1, sample_weight=None, coef_init=None, intercept_init=None) def fit(self, X, y, coef_init=None, intercept_init=None): """Fit linear model with Passive Aggressive algorithm. Parameters ---------- X : {array-like, sparse matrix}, shape = [n_samples, n_features] Training data y : numpy array of shape [n_samples] Target values coef_init : array, shape = [n_features] The initial coefficients to warm-start the optimization. intercept_init : array, shape = [1] The initial intercept to warm-start the optimization. Returns ------- self : returns an instance of self. """ lr = "pa1" if self.loss == "epsilon_insensitive" else "pa2" return self._fit(X, y, alpha=1.0, C=self.C, loss="epsilon_insensitive", learning_rate=lr, coef_init=coef_init, intercept_init=intercept_init)
bsd-3-clause
ashariati/rpg_svo
svo_analysis/src/svo_analysis/analyse_dataset.py
17
1178
# -*- coding: utf-8 -*- import associate import numpy as np import matplotlib.pyplot as plt import yaml def loadDataset(filename): file = open(filename) data = file.read() lines = data.replace(","," ").replace("\t"," ").split("\n") D = np.array([[v.strip() for v in line.split(" ") if v.strip()!=""] for line in lines if len(line)>0 and line[0]!="#"], dtype=np.float64) return D dataset_dir = '/home/cforster/Datasets/SlamBenchmark/px4_r2' trajectory_data = dataset_dir+'/groundtruth.txt' stepsize = 10 # load dataset data = loadDataset(trajectory_data) n = data.shape[0] steps = np.arange(0,n,stepsize) # compute trajectory length last_pos = data[0,1:4] trajectory_length = 0 for i in steps[1:]: new_pos = data[i,1:4] trajectory_length += np.linalg.norm(new_pos-last_pos) last_pos = new_pos print 'trajectory lenght = ' + str(trajectory_length) + 'm' print 'height mean = ' + str(np.mean(data[:,3])) + 'm' print 'height median = ' + str(np.median(data[:,3])) + 'm' print 'height std = ' + str(np.std(data[:,3])) + 'm' print 'duration = ' + str(data[-1,0]-data[0,0]) + 's' print 'speed = ' + str(trajectory_length/(data[-1,0]-data[0,0])) + 'm/s'
gpl-3.0
mkoledoye/mds_examples
core/mds.py
2
22924
''' Multi-dimensional Scaling (MDS) variant: -- classical -> _smacof_single -- anchored -> _smacof_with_anchors_single -- MDS-RFID -> _smacof_with_distance_recovery_single ''' from __future__ import division import operator import numpy as np import warnings from sklearn.base import BaseEstimator from sklearn.metrics import euclidean_distances from sklearn.utils import check_random_state, check_array, check_symmetric from sklearn.externals.joblib import Parallel from sklearn.externals.joblib import delayed from sklearn.isotonic import IsotonicRegression # modifications were made to the original code from sklearn.manifold.MDS ''' New BSD License Copyright (c) 2007-2016 The scikit-learn developers. All rights reserved. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: a. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. b. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. c. Neither the name of the Scikit-learn Developers nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. ''' def _smacof_with_anchors_single(config, similarities, metric=True, n_components=2, init=None, max_iter=300, verbose=0, eps=1e-3, random_state=None): """ Computes multidimensional scaling using SMACOF algorithm Parameters ---------- config : Config object configuration object for anchor-tag deployment parameters similarities: symmetric ndarray, shape [n * n] similarities between the points metric: boolean, optional, default: True compute metric or nonmetric SMACOF algorithm n_components: int, optional, default: 2 number of dimension in which to immerse the similarities overwritten if initial array is provided. init: {None or ndarray}, optional if None, randomly chooses the initial configuration if ndarray, initialize the SMACOF algorithm with this array max_iter: int, optional, default: 300 Maximum number of iterations of the SMACOF algorithm for a single run verbose: int, optional, default: 0 level of verbosity eps: float, optional, default: 1e-6 relative tolerance w.r.t stress to declare converge random_state: integer or numpy.RandomState, optional The generator used to initialize the centers. If an integer is given, it fixes the seed. Defaults to the global numpy random number generator. Returns ------- X: ndarray (n_samples, n_components), float coordinates of the n_samples points in a n_components-space stress_: float The final value of the stress (sum of squared distance of the disparities and the distances for all constrained points) n_iter : int Number of iterations run last_positions: ndarray [X1,...,Xn] An array of computed Xs. """ NO_OF_TAGS, NO_OF_ANCHORS = config.no_of_tags, config.no_of_anchors similarities = check_symmetric(similarities, raise_exception=True) n_samples = similarities.shape[0] random_state = check_random_state(random_state) sim_flat = ((1 - np.tri(n_samples)) * similarities).ravel() sim_flat_w = sim_flat[sim_flat != 0] if init is None: # Randomly choose initial configuration X = random_state.rand(n_samples * n_components) X = X.reshape((n_samples, n_components)) # uncomment the following if weight matrix W is not hollow #X[:-2] = Xa else: # overrides the parameter p n_components = init.shape[1] if n_samples != init.shape[0]: raise ValueError("init matrix should be of shape (%d, %d)" % (n_samples, n_components)) X = init old_stress = None ir = IsotonicRegression() # setup weight matrix weights = np.ones((n_samples, n_samples)) if getattr(config, 'missingdata', None): weights[-NO_OF_TAGS:, -NO_OF_TAGS:] = 0 diag = np.arange(n_samples) weights[diag, diag] = 0 last_n_configs = [] Xa = config.anchors for it in range(max_iter): # Compute distance and monotonic regression dis = euclidean_distances(X) if metric: disparities = similarities else: dis_flat = dis.ravel() # similarities with 0 are considered as missing values dis_flat_w = dis_flat[sim_flat != 0] # Compute the disparities using a monotonic regression disparities_flat = ir.fit_transform(sim_flat_w, dis_flat_w) disparities = dis_flat.copy() disparities[sim_flat != 0] = disparities_flat disparities = disparities.reshape((n_samples, n_samples)) disparities *= np.sqrt((n_samples * (n_samples - 1) / 2) / (disparities ** 2).sum()) # Compute stress stress = (weights.ravel()*(dis.ravel() - disparities.ravel()) ** 2).sum() / 2 #stress = ((dis[:-NO_OF_TAGS, -NO_OF_TAGS:].ravel() - disparities[:-NO_OF_TAGS, -NO_OF_TAGS:].ravel()) ** 2).sum() # Update X using the Guttman transform dis[dis == 0] = 1e5 ratio = weights*disparities / dis B = - ratio B[diag, diag] = 0 B[diag, diag] = -B.sum(axis=1) # Apply update to only tag configuration since anchor config is already known V = - weights V[diag, diag] += weights.sum(axis=1) # V_inv = np.linalg.pinv(V) V12 = V[-NO_OF_TAGS:, :-NO_OF_TAGS] B11 = B[-NO_OF_TAGS:, -NO_OF_TAGS:] Zu = X[-NO_OF_TAGS:] B12 = B[-NO_OF_TAGS:, :-NO_OF_TAGS] V11_inv = np.linalg.inv(V[-NO_OF_TAGS:, -NO_OF_TAGS:]) Xu = V11_inv.dot(B11.dot(Zu) + (B12 - V12).dot(Xa)) # merge known anchors config with new tags config X = np.concatenate((Xa, Xu)) last_n_configs.append(X) #X = (1/n_samples)*B.dot(X) #dis = np.sqrt((X ** 2).sum(axis=1)).sum() dis = (weights*dis**2).sum() / 2 if verbose >= 2: print('it: %d, stress %s' % (it, stress)) if old_stress is not None: if(old_stress - stress / dis) < eps: if verbose: print('breaking at iteration %d with stress %s' % (it, stress)) break old_stress = stress / dis return X, stress, it + 1, np.array(last_n_configs) def _smacof_single(config, similarities, metric=True, n_components=2, init=None, max_iter=300, verbose=0, eps=1e-3, random_state=None, estimated_dist_weights=0): """ Computes multidimensional scaling using SMACOF algorithm Parameters ---------- config : Config object configuration object for anchor-tag deployment parameters similarities: symmetric ndarray, shape [n * n] similarities between the points metric: boolean, optional, default: True compute metric or nonmetric SMACOF algorithm n_components: int, optional, default: 2 number of dimension in which to immerse the similarities overwritten if initial array is provided. init: {None or ndarray}, optional if None, randomly chooses the initial configuration if ndarray, initialize the SMACOF algorithm with this array max_iter: int, optional, default: 300 Maximum number of iterations of the SMACOF algorithm for a single run verbose: int, optional, default: 0 level of verbosity eps: float, optional, default: 1e-6 relative tolerance w.r.t stress to declare converge random_state: integer or numpy.RandomState, optional The generator used to initialize the centers. If an integer is given, it fixes the seed. Defaults to the global numpy random number generator. Returns ------- X: ndarray (n_samples, n_components), float coordinates of the n_samples points in a n_components-space stress_: float The final value of the stress (sum of squared distance of the disparities and the distances for all constrained points) n_iter : int Number of iterations run last_positions: ndarray [X1,...,Xn] An array of computed Xs. """ NO_OF_TAGS, NO_OF_ANCHORS = config.no_of_tags, config.no_of_anchors similarities = check_symmetric(similarities, raise_exception=True) n_samples = similarities.shape[0] random_state = check_random_state(random_state) sim_flat = ((1 - np.tri(n_samples)) * similarities).ravel() sim_flat_w = sim_flat[sim_flat != 0] if init is None: # Randomly choose initial configuration X = random_state.rand(n_samples * n_components) X = X.reshape((n_samples, n_components)) else: # overrides the parameter p n_components = init.shape[1] if n_samples != init.shape[0]: raise ValueError("init matrix should be of shape (%d, %d)" % (n_samples, n_components)) X = init old_stress = None ir = IsotonicRegression() # setup weight matrix weights = np.ones((n_samples, n_samples)) weights[-NO_OF_TAGS:, -NO_OF_TAGS:] = estimated_dist_weights diag = np.arange(n_samples) weights[diag, diag] = 0 last_n_configs = [] for it in range(max_iter): # Compute distance and monotonic regression dis = euclidean_distances(X) if metric: disparities = similarities else: dis_flat = dis.ravel() # similarities with 0 are considered as missing values dis_flat_w = dis_flat[sim_flat != 0] # Compute the disparities using a monotonic regression disparities_flat = ir.fit_transform(sim_flat_w, dis_flat_w) disparities = dis_flat.copy() disparities[sim_flat != 0] = disparities_flat disparities = disparities.reshape((n_samples, n_samples)) disparities *= np.sqrt((n_samples * (n_samples - 1) / 2) / (disparities ** 2).sum()) # Compute stress stress = (weights.ravel()*(dis.ravel() - disparities.ravel()) ** 2).sum() / 2 #print(((dis[-2:, -2:].ravel() - disparities[-2:, -2:].ravel()) ** 2).sum()) # Update X using the Guttman transform dis[dis == 0] = 1e5 ratio = disparities / dis B = - ratio B[diag, diag] += ratio.sum(axis=1) # Apply update to only tag configuration since anchor config is already known V = - weights V[diag, diag] += weights.sum(axis=1) V_inv = np.linalg.pinv(V) X = V_inv.dot(np.dot(B, X)) last_n_configs.append(X) stress = (weights.ravel()*(dis.ravel() - disparities.ravel()) ** 2).sum() / 2 #dis = np.sqrt((X ** 2).sum(axis=1)).sum() dis[np.arange(n_samples), np.arange(n_samples)] = 0 dis = (weights*dis**2).sum() / 2 #dis = np.sqrt((X ** 2).sum(axis=1)).sum() if verbose >= 2: print('it: %d, stress %s' % (it, stress)) if old_stress is not None: if(old_stress - stress / dis) < eps: if verbose: print('breaking at iteration %d with stress %s' % (it, stress)) break old_stress = stress / dis return X, stress, it + 1, np.array(last_n_configs) def _smacof_with_distance_recovery_single(config, similarities, *args, **kwargs): recover_tag_distances(config, similarities) return _smacof_single(config, similarities, estimated_dist_weights=0.7, *args, **kwargs) def _classical_mds_with_distance_recovery_single(config, prox_arr, *args, **kwargs): mds_RFID.recover_tag_distances(prox_arr) # Apply double centering sz = prox_arr.shape[0] cent_arr = np.eye(sz) - np.ones(sz)/sz B = -cent_arr.dot(prox_arr**2).dot(cent_arr)/2 # Determine the m largest eigenvalues and corresponding eigenvectors eig_vals, eig_vecs = np.linalg.eig(B) eig_vals_vecs = zip(*sorted(zip(eig_vals, eig_vecs.T), key=operator.itemgetter(0), reverse=True)[:M]) eig_vals, eig_vecs = map(np.array, eig_vals_vecs) # configuration X of n points/coordinates that optimise the cost function coords = eig_vecs.T.dot((np.eye(M)*eig_vals)**0.5) return coords, 0, 0, np.array([]) def recover_tag_distances(config, prox_arr): NO_OF_TAGS, NO_OF_ANCHORS = config.no_of_tags, config.no_of_anchors for j in range(NO_OF_ANCHORS, NO_OF_TAGS+NO_OF_ANCHORS): for i in range(j, NO_OF_TAGS+NO_OF_ANCHORS): if i == j: continue prox_arr[i, j] = prox_arr[j, i] = np.mean(np.absolute([prox_arr[i,a]-prox_arr[j,a] for a in range(NO_OF_ANCHORS)])) VARIANTS = {'_smacof_with_anchors_single': _smacof_with_anchors_single, '_smacof_single': _smacof_single, '_smacof_with_distance_recovery_single': _smacof_with_distance_recovery_single} def smacof(config, variant, similarities, metric=True, n_components=2, init=None, n_init=8, n_jobs=1, max_iter=300, verbose=0, eps=1e-3, random_state=None, return_n_iter=False): """ Computes multidimensional scaling using SMACOF (Scaling by Majorizing a Complicated Function) algorithm The SMACOF algorithm is a multidimensional scaling algorithm: it minimizes a objective function, the *stress*, using a majorization technique. The Stress Majorization, also known as the Guttman Transform, guarantees a monotone convergence of Stress, and is more powerful than traditional techniques such as gradient descent. The SMACOF algorithm for metric MDS can summarized by the following steps: 1. Set an initial start configuration, randomly or not. 2. Compute the stress 3. Compute the Guttman Transform 4. Iterate 2 and 3 until convergence. The nonmetric algorithm adds a monotonic regression steps before computing the stress. Parameters ---------- config : Config object configuration object for anchor-tag deployment parameters variant : str variant of MDS algorithm to be used for computing configuration similarities : symmetric ndarray, shape (n_samples, n_samples) similarities between the points metric : boolean, optional, default: True compute metric or nonmetric SMACOF algorithm n_components : int, optional, default: 2 number of dimension in which to immerse the similarities overridden if initial array is provided. init : {None or ndarray of shape (n_samples, n_components)}, optional if None, randomly chooses the initial configuration if ndarray, initialize the SMACOF algorithm with this array n_init : int, optional, default: 8 Number of time the smacof algorithm will be run with different initialisation. The final results will be the best output of the n_init consecutive runs in terms of stress. n_jobs : int, optional, default: 1 The number of jobs to use for the computation. This works by breaking down the pairwise matrix into n_jobs even slices and computing them in parallel. If -1 all CPUs are used. If 1 is given, no parallel computing code is used at all, which is useful for debugging. For n_jobs below -1, (n_cpus + 1 + n_jobs) are used. Thus for n_jobs = -2, all CPUs but one are used. max_iter : int, optional, default: 300 Maximum number of iterations of the SMACOF algorithm for a single run verbose : int, optional, default: 0 level of verbosity eps : float, optional, default: 1e-6 relative tolerance w.r.t stress to declare converge random_state : integer or numpy.RandomState, optional The generator used to initialize the centers. If an integer is given, it fixes the seed. Defaults to the global numpy random number generator. return_n_iter : bool Whether or not to return the number of iterations. Returns ------- X : ndarray (n_samples,n_components) Coordinates of the n_samples points in a n_components-space stress : float The final value of the stress (sum of squared distance of the disparities and the distances for all constrained points) n_iter : int The number of iterations corresponding to the best stress. Returned only if `return_n_iter` is set to True last_positions: ndarray [X1,...,Xn] An array of computed Xs from the selected mds/smacof variant, used displaying trails showing convergence in animation. Notes ----- "Modern Multidimensional Scaling - Theory and Applications" Borg, I.; Groenen P. Springer Series in Statistics (1997) "Nonmetric multidimensional scaling: a numerical method" Kruskal, J. Psychometrika, 29 (1964) "Multidimensional scaling by optimizing goodness of fit to a nonmetric hypothesis" Kruskal, J. Psychometrika, 29, (1964) """ similarities = check_array(similarities) random_state = check_random_state(random_state) if hasattr(init, '__array__'): init = np.asarray(init).copy() if not n_init == 1: warnings.warn( 'Explicit initial positions passed: ' 'performing only one init of the MDS instead of %d' % n_init) n_init = 1 best_pos, best_stress = None, None smacof_variant = VARIANTS[variant] if n_jobs == 1: for it in range(n_init): pos, stress, n_iter_, last_n_pos = smacof_variant( config, similarities, metric=metric, n_components=n_components, init=init, max_iter=max_iter, verbose=verbose, eps=eps, random_state=random_state) if best_stress is None or stress < best_stress: best_stress = stress best_pos = pos.copy() best_iter = n_iter_ best_last_n_pos = last_n_pos else: seeds = random_state.randint(np.iinfo(np.int32).max, size=n_init) results = Parallel(n_jobs=n_jobs, verbose=max(verbose - 1, 0))( delayed(smacof_variant)( config, similarities, metric=metric, n_components=n_components, init=init, max_iter=max_iter, verbose=verbose, eps=eps, random_state=seed) for seed in seeds) positions, stress, n_iters, last_n_pos = zip(*results) best = np.argmin(stress) best_stress = stress[best] best_pos = positions[best] best_iter = n_iters[best] best_last_n_pos = last_n_pos[best] if return_n_iter: return best_pos, best_stress, best_iter, best_last_n_pos else: return best_pos, best_stress, best_last_n_pos class MDS(BaseEstimator): """Multidimensional scaling Read more in the :ref:`User Guide <multidimensional_scaling>`. Parameters ---------- config : Config object configuration object for anchor-tag deployment parameters algorithm : str MDS algorithm to be used for computing configuration metric : boolean, optional, default: True compute metric or nonmetric SMACOF (Scaling by Majorizing a Complicated Function) algorithm n_components : int, optional, default: 2 number of dimension in which to immerse the similarities overridden if initial array is provided. n_init : int, optional, default: 4 Number of time the smacof algorithm will be run with different initialisation. The final results will be the best output of the n_init consecutive runs in terms of stress. max_iter : int, optional, default: 300 Maximum number of iterations of the SMACOF algorithm for a single run verbose : int, optional, default: 0 level of verbosity eps : float, optional, default: 1e-6 relative tolerance w.r.t stress to declare converge n_jobs : int, optional, default: 1 The number of jobs to use for the computation. This works by breaking down the pairwise matrix into n_jobs even slices and computing them in parallel. If -1 all CPUs are used. If 1 is given, no parallel computing code is used at all, which is useful for debugging. For n_jobs below -1, (n_cpus + 1 + n_jobs) are used. Thus for n_jobs = -2, all CPUs but one are used. random_state : integer or numpy.RandomState, optional The generator used to initialize the centers. If an integer is given, it fixes the seed. Defaults to the global numpy random number generator. dissimilarity : string Which dissimilarity measure to use. Supported are 'euclidean' and 'precomputed'. Attributes ---------- embedding_ : array-like, shape [n_components, n_samples] Stores the position of the dataset in the embedding space stress_ : float The final value of the stress (sum of squared distance of the disparities and the distances for all constrained points) References ---------- "Modern Multidimensional Scaling - Theory and Applications" Borg, I.; Groenen P. Springer Series in Statistics (1997) "Nonmetric multidimensional scaling: a numerical method" Kruskal, J. Psychometrika, 29 (1964) "Multidimensional scaling by optimizing goodness of fit to a nonmetric hypothesis" Kruskal, J. Psychometrika, 29, (1964) """ def __init__(self, config, algorithm, n_components=2, metric=True, n_init=4, max_iter=300, verbose=0, eps=1e-3, n_jobs=1, random_state=None, dissimilarity="euclidean"): self.n_components = n_components self.dissimilarity = dissimilarity self.metric = metric self.n_init = n_init self.max_iter = max_iter self.eps = eps self.verbose = verbose self.n_jobs = n_jobs self.random_state = random_state self.variant = algorithm self.config = config @property def _pairwise(self): return self.kernel == "precomputed" def fit(self, X, y=None, init=None): """ Computes the position of the points in the embedding space Parameters ---------- X : array, shape=[n_samples, n_features], or [n_samples, n_samples] \ if dissimilarity='precomputed' Input data. init : {None or ndarray, shape (n_samples,)}, optional If None, randomly chooses the initial configuration if ndarray, initialize the SMACOF algorithm with this array. """ self.fit_transform(X, init=init) return self def fit_transform(self, X, y=None, init=None): """ Fit the data from X, and returns the embedded coordinates Parameters ---------- X : array, shape=[n_samples, n_features], or [n_samples, n_samples] \ if dissimilarity='precomputed' Input data. init : {None or ndarray, shape (n_samples,)}, optional If None, randomly chooses the initial configuration if ndarray, initialize the SMACOF algorithm with this array. """ X = check_array(X) if X.shape[0] == X.shape[1] and self.dissimilarity != "precomputed": warnings.warn("The MDS API has changed. ``fit`` now constructs an" " dissimilarity matrix from data. To use a custom " "dissimilarity matrix, set " "``dissimilarity='precomputed'``.") if self.dissimilarity == "precomputed": self.dissimilarity_matrix_ = X elif self.dissimilarity == "euclidean": self.dissimilarity_matrix_ = euclidean_distances(X) else: raise ValueError("Proximity must be 'precomputed' or 'euclidean'." " Got %s instead" % str(self.dissimilarity)) self.embedding_, self.stress_, self.n_iter_, self.last_n_embeddings = smacof(self.config, self.variant, self.dissimilarity_matrix_, metric=self.metric, n_components=self.n_components, init=init, n_init=self.n_init, n_jobs=self.n_jobs, max_iter=self.max_iter, verbose=self.verbose, eps=self.eps, random_state=self.random_state, return_n_iter=True) return self.embedding_, self.last_n_embeddings
mit
marcsans/cnn-physics-perception
phy/lib/python2.7/site-packages/scipy/ndimage/filters.py
24
42327
# Copyright (C) 2003-2005 Peter J. Verveer # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions # are met: # # 1. Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above # copyright notice, this list of conditions and the following # disclaimer in the documentation and/or other materials provided # with the distribution. # # 3. The name of the author may not be used to endorse or promote # products derived from this software without specific prior # written permission. # # THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS # OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED # WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE # ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY # DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE # GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS # INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, # WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING # NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS # SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. from __future__ import division, print_function, absolute_import import math import numpy from . import _ni_support from . import _nd_image from scipy.misc import doccer from scipy._lib._version import NumpyVersion __all__ = ['correlate1d', 'convolve1d', 'gaussian_filter1d', 'gaussian_filter', 'prewitt', 'sobel', 'generic_laplace', 'laplace', 'gaussian_laplace', 'generic_gradient_magnitude', 'gaussian_gradient_magnitude', 'correlate', 'convolve', 'uniform_filter1d', 'uniform_filter', 'minimum_filter1d', 'maximum_filter1d', 'minimum_filter', 'maximum_filter', 'rank_filter', 'median_filter', 'percentile_filter', 'generic_filter1d', 'generic_filter'] _input_doc = \ """input : array_like Input array to filter.""" _axis_doc = \ """axis : int, optional The axis of `input` along which to calculate. Default is -1.""" _output_doc = \ """output : array, optional The `output` parameter passes an array in which to store the filter output.""" _size_foot_doc = \ """size : scalar or tuple, optional See footprint, below footprint : array, optional Either `size` or `footprint` must be defined. `size` gives the shape that is taken from the input array, at every element position, to define the input to the filter function. `footprint` is a boolean array that specifies (implicitly) a shape, but also which of the elements within this shape will get passed to the filter function. Thus ``size=(n,m)`` is equivalent to ``footprint=np.ones((n,m))``. We adjust `size` to the number of dimensions of the input array, so that, if the input array is shape (10,10,10), and `size` is 2, then the actual size used is (2,2,2). """ _mode_doc = \ """mode : {'reflect', 'constant', 'nearest', 'mirror', 'wrap'}, optional The `mode` parameter determines how the array borders are handled, where `cval` is the value when mode is equal to 'constant'. Default is 'reflect'""" _cval_doc = \ """cval : scalar, optional Value to fill past edges of input if `mode` is 'constant'. Default is 0.0""" _origin_doc = \ """origin : scalar, optional The `origin` parameter controls the placement of the filter. Default 0.0.""" _extra_arguments_doc = \ """extra_arguments : sequence, optional Sequence of extra positional arguments to pass to passed function""" _extra_keywords_doc = \ """extra_keywords : dict, optional dict of extra keyword arguments to pass to passed function""" docdict = { 'input': _input_doc, 'axis': _axis_doc, 'output': _output_doc, 'size_foot': _size_foot_doc, 'mode': _mode_doc, 'cval': _cval_doc, 'origin': _origin_doc, 'extra_arguments': _extra_arguments_doc, 'extra_keywords': _extra_keywords_doc, } docfiller = doccer.filldoc(docdict) @docfiller def correlate1d(input, weights, axis=-1, output=None, mode="reflect", cval=0.0, origin=0): """Calculate a one-dimensional correlation along the given axis. The lines of the array along the given axis are correlated with the given weights. Parameters ---------- %(input)s weights : array One-dimensional sequence of numbers. %(axis)s %(output)s %(mode)s %(cval)s %(origin)s """ input = numpy.asarray(input) if numpy.iscomplexobj(input): raise TypeError('Complex type not supported') output, return_value = _ni_support._get_output(output, input) weights = numpy.asarray(weights, dtype=numpy.float64) if weights.ndim != 1 or weights.shape[0] < 1: raise RuntimeError('no filter weights given') if not weights.flags.contiguous: weights = weights.copy() axis = _ni_support._check_axis(axis, input.ndim) if (len(weights) // 2 + origin < 0) or (len(weights) // 2 + origin > len(weights)): raise ValueError('invalid origin') mode = _ni_support._extend_mode_to_code(mode) _nd_image.correlate1d(input, weights, axis, output, mode, cval, origin) return return_value @docfiller def convolve1d(input, weights, axis=-1, output=None, mode="reflect", cval=0.0, origin=0): """Calculate a one-dimensional convolution along the given axis. The lines of the array along the given axis are convolved with the given weights. Parameters ---------- %(input)s weights : ndarray One-dimensional sequence of numbers. %(axis)s %(output)s %(mode)s %(cval)s %(origin)s Returns ------- convolve1d : ndarray Convolved array with same shape as input """ weights = weights[::-1] origin = -origin if not len(weights) & 1: origin -= 1 return correlate1d(input, weights, axis, output, mode, cval, origin) @docfiller def gaussian_filter1d(input, sigma, axis=-1, order=0, output=None, mode="reflect", cval=0.0, truncate=4.0): """One-dimensional Gaussian filter. Parameters ---------- %(input)s sigma : scalar standard deviation for Gaussian kernel %(axis)s order : {0, 1, 2, 3}, optional An order of 0 corresponds to convolution with a Gaussian kernel. An order of 1, 2, or 3 corresponds to convolution with the first, second or third derivatives of a Gaussian. Higher order derivatives are not implemented %(output)s %(mode)s %(cval)s truncate : float, optional Truncate the filter at this many standard deviations. Default is 4.0. Returns ------- gaussian_filter1d : ndarray """ if order not in range(4): raise ValueError('Order outside 0..3 not implemented') sd = float(sigma) # make the radius of the filter equal to truncate standard deviations lw = int(truncate * sd + 0.5) weights = [0.0] * (2 * lw + 1) weights[lw] = 1.0 sum = 1.0 sd = sd * sd # calculate the kernel: for ii in range(1, lw + 1): tmp = math.exp(-0.5 * float(ii * ii) / sd) weights[lw + ii] = tmp weights[lw - ii] = tmp sum += 2.0 * tmp for ii in range(2 * lw + 1): weights[ii] /= sum # implement first, second and third order derivatives: if order == 1: # first derivative weights[lw] = 0.0 for ii in range(1, lw + 1): x = float(ii) tmp = -x / sd * weights[lw + ii] weights[lw + ii] = -tmp weights[lw - ii] = tmp elif order == 2: # second derivative weights[lw] *= -1.0 / sd for ii in range(1, lw + 1): x = float(ii) tmp = (x * x / sd - 1.0) * weights[lw + ii] / sd weights[lw + ii] = tmp weights[lw - ii] = tmp elif order == 3: # third derivative weights[lw] = 0.0 sd2 = sd * sd for ii in range(1, lw + 1): x = float(ii) tmp = (3.0 - x * x / sd) * x * weights[lw + ii] / sd2 weights[lw + ii] = -tmp weights[lw - ii] = tmp return correlate1d(input, weights, axis, output, mode, cval, 0) @docfiller def gaussian_filter(input, sigma, order=0, output=None, mode="reflect", cval=0.0, truncate=4.0): """Multidimensional Gaussian filter. Parameters ---------- %(input)s sigma : scalar or sequence of scalars Standard deviation for Gaussian kernel. The standard deviations of the Gaussian filter are given for each axis as a sequence, or as a single number, in which case it is equal for all axes. order : {0, 1, 2, 3} or sequence from same set, optional The order of the filter along each axis is given as a sequence of integers, or as a single number. An order of 0 corresponds to convolution with a Gaussian kernel. An order of 1, 2, or 3 corresponds to convolution with the first, second or third derivatives of a Gaussian. Higher order derivatives are not implemented %(output)s %(mode)s %(cval)s truncate : float Truncate the filter at this many standard deviations. Default is 4.0. Returns ------- gaussian_filter : ndarray Returned array of same shape as `input`. Notes ----- The multidimensional filter is implemented as a sequence of one-dimensional convolution filters. The intermediate arrays are stored in the same data type as the output. Therefore, for output types with a limited precision, the results may be imprecise because intermediate results may be stored with insufficient precision. Examples -------- >>> from scipy.ndimage import gaussian_filter >>> a = np.arange(50, step=2).reshape((5,5)) >>> a array([[ 0, 2, 4, 6, 8], [10, 12, 14, 16, 18], [20, 22, 24, 26, 28], [30, 32, 34, 36, 38], [40, 42, 44, 46, 48]]) >>> gaussian_filter(a, sigma=1) array([[ 4, 6, 8, 9, 11], [10, 12, 14, 15, 17], [20, 22, 24, 25, 27], [29, 31, 33, 34, 36], [35, 37, 39, 40, 42]]) """ input = numpy.asarray(input) output, return_value = _ni_support._get_output(output, input) orders = _ni_support._normalize_sequence(order, input.ndim) if not set(orders).issubset(set(range(4))): raise ValueError('Order outside 0..4 not implemented') sigmas = _ni_support._normalize_sequence(sigma, input.ndim) axes = list(range(input.ndim)) axes = [(axes[ii], sigmas[ii], orders[ii]) for ii in range(len(axes)) if sigmas[ii] > 1e-15] if len(axes) > 0: for axis, sigma, order in axes: gaussian_filter1d(input, sigma, axis, order, output, mode, cval, truncate) input = output else: output[...] = input[...] return return_value @docfiller def prewitt(input, axis=-1, output=None, mode="reflect", cval=0.0): """Calculate a Prewitt filter. Parameters ---------- %(input)s %(axis)s %(output)s %(mode)s %(cval)s Examples -------- >>> from scipy import ndimage, misc >>> import matplotlib.pyplot as plt >>> ascent = misc.ascent() >>> result = ndimage.prewitt(ascent) >>> plt.gray() # show the filtered result in grayscale >>> plt.imshow(result) """ input = numpy.asarray(input) axis = _ni_support._check_axis(axis, input.ndim) output, return_value = _ni_support._get_output(output, input) correlate1d(input, [-1, 0, 1], axis, output, mode, cval, 0) axes = [ii for ii in range(input.ndim) if ii != axis] for ii in axes: correlate1d(output, [1, 1, 1], ii, output, mode, cval, 0,) return return_value @docfiller def sobel(input, axis=-1, output=None, mode="reflect", cval=0.0): """Calculate a Sobel filter. Parameters ---------- %(input)s %(axis)s %(output)s %(mode)s %(cval)s Examples -------- >>> from scipy import ndimage, misc >>> import matplotlib.pyplot as plt >>> ascent = misc.ascent() >>> result = ndimage.sobel(ascent) >>> plt.gray() # show the filtered result in grayscale >>> plt.imshow(result) """ input = numpy.asarray(input) axis = _ni_support._check_axis(axis, input.ndim) output, return_value = _ni_support._get_output(output, input) correlate1d(input, [-1, 0, 1], axis, output, mode, cval, 0) axes = [ii for ii in range(input.ndim) if ii != axis] for ii in axes: correlate1d(output, [1, 2, 1], ii, output, mode, cval, 0) return return_value @docfiller def generic_laplace(input, derivative2, output=None, mode="reflect", cval=0.0, extra_arguments=(), extra_keywords = None): """N-dimensional Laplace filter using a provided second derivative function Parameters ---------- %(input)s derivative2 : callable Callable with the following signature:: derivative2(input, axis, output, mode, cval, *extra_arguments, **extra_keywords) See `extra_arguments`, `extra_keywords` below. %(output)s %(mode)s %(cval)s %(extra_keywords)s %(extra_arguments)s """ if extra_keywords is None: extra_keywords = {} input = numpy.asarray(input) output, return_value = _ni_support._get_output(output, input) axes = list(range(input.ndim)) if len(axes) > 0: derivative2(input, axes[0], output, mode, cval, *extra_arguments, **extra_keywords) for ii in range(1, len(axes)): tmp = derivative2(input, axes[ii], output.dtype, mode, cval, *extra_arguments, **extra_keywords) output += tmp else: output[...] = input[...] return return_value @docfiller def laplace(input, output=None, mode="reflect", cval=0.0): """N-dimensional Laplace filter based on approximate second derivatives. Parameters ---------- %(input)s %(output)s %(mode)s %(cval)s Examples -------- >>> from scipy import ndimage, misc >>> import matplotlib.pyplot as plt >>> ascent = misc.ascent() >>> result = ndimage.laplace(ascent) >>> plt.gray() # show the filtered result in grayscale >>> plt.imshow(result) """ def derivative2(input, axis, output, mode, cval): return correlate1d(input, [1, -2, 1], axis, output, mode, cval, 0) return generic_laplace(input, derivative2, output, mode, cval) @docfiller def gaussian_laplace(input, sigma, output=None, mode="reflect", cval=0.0, **kwargs): """Multidimensional Laplace filter using gaussian second derivatives. Parameters ---------- %(input)s sigma : scalar or sequence of scalars The standard deviations of the Gaussian filter are given for each axis as a sequence, or as a single number, in which case it is equal for all axes. %(output)s %(mode)s %(cval)s Extra keyword arguments will be passed to gaussian_filter(). Examples -------- >>> from scipy import ndimage, misc >>> import matplotlib.pyplot as plt >>> ascent = misc.ascent() >>> fig = plt.figure() >>> plt.gray() # show the filtered result in grayscale >>> ax1 = fig.add_subplot(121) # left side >>> ax2 = fig.add_subplot(122) # right side >>> result = ndimage.gaussian_laplace(ascent, sigma=1) >>> ax1.imshow(result) >>> result = ndimage.gaussian_laplace(ascent, sigma=3) >>> ax2.imshow(result) >>> plt.show() """ input = numpy.asarray(input) def derivative2(input, axis, output, mode, cval, sigma, **kwargs): order = [0] * input.ndim order[axis] = 2 return gaussian_filter(input, sigma, order, output, mode, cval, **kwargs) return generic_laplace(input, derivative2, output, mode, cval, extra_arguments=(sigma,), extra_keywords=kwargs) @docfiller def generic_gradient_magnitude(input, derivative, output=None, mode="reflect", cval=0.0, extra_arguments=(), extra_keywords = None): """Gradient magnitude using a provided gradient function. Parameters ---------- %(input)s derivative : callable Callable with the following signature:: derivative(input, axis, output, mode, cval, *extra_arguments, **extra_keywords) See `extra_arguments`, `extra_keywords` below. `derivative` can assume that `input` and `output` are ndarrays. Note that the output from `derivative` is modified inplace; be careful to copy important inputs before returning them. %(output)s %(mode)s %(cval)s %(extra_keywords)s %(extra_arguments)s """ if extra_keywords is None: extra_keywords = {} input = numpy.asarray(input) output, return_value = _ni_support._get_output(output, input) axes = list(range(input.ndim)) if len(axes) > 0: derivative(input, axes[0], output, mode, cval, *extra_arguments, **extra_keywords) numpy.multiply(output, output, output) for ii in range(1, len(axes)): tmp = derivative(input, axes[ii], output.dtype, mode, cval, *extra_arguments, **extra_keywords) numpy.multiply(tmp, tmp, tmp) output += tmp # This allows the sqrt to work with a different default casting numpy.sqrt(output, output, casting='unsafe') else: output[...] = input[...] return return_value @docfiller def gaussian_gradient_magnitude(input, sigma, output=None, mode="reflect", cval=0.0, **kwargs): """Multidimensional gradient magnitude using Gaussian derivatives. Parameters ---------- %(input)s sigma : scalar or sequence of scalars The standard deviations of the Gaussian filter are given for each axis as a sequence, or as a single number, in which case it is equal for all axes.. %(output)s %(mode)s %(cval)s Extra keyword arguments will be passed to gaussian_filter(). """ input = numpy.asarray(input) def derivative(input, axis, output, mode, cval, sigma, **kwargs): order = [0] * input.ndim order[axis] = 1 return gaussian_filter(input, sigma, order, output, mode, cval, **kwargs) return generic_gradient_magnitude(input, derivative, output, mode, cval, extra_arguments=(sigma,), extra_keywords=kwargs) def _correlate_or_convolve(input, weights, output, mode, cval, origin, convolution): input = numpy.asarray(input) if numpy.iscomplexobj(input): raise TypeError('Complex type not supported') origins = _ni_support._normalize_sequence(origin, input.ndim) weights = numpy.asarray(weights, dtype=numpy.float64) wshape = [ii for ii in weights.shape if ii > 0] if len(wshape) != input.ndim: raise RuntimeError('filter weights array has incorrect shape.') if convolution: weights = weights[tuple([slice(None, None, -1)] * weights.ndim)] for ii in range(len(origins)): origins[ii] = -origins[ii] if not weights.shape[ii] & 1: origins[ii] -= 1 for origin, lenw in zip(origins, wshape): if (lenw // 2 + origin < 0) or (lenw // 2 + origin > lenw): raise ValueError('invalid origin') if not weights.flags.contiguous: weights = weights.copy() output, return_value = _ni_support._get_output(output, input) mode = _ni_support._extend_mode_to_code(mode) _nd_image.correlate(input, weights, output, mode, cval, origins) return return_value @docfiller def correlate(input, weights, output=None, mode='reflect', cval=0.0, origin=0): """ Multi-dimensional correlation. The array is correlated with the given kernel. Parameters ---------- input : array-like input array to filter weights : ndarray array of weights, same number of dimensions as input output : array, optional The ``output`` parameter passes an array in which to store the filter output. mode : {'reflect','constant','nearest','mirror', 'wrap'}, optional The ``mode`` parameter determines how the array borders are handled, where ``cval`` is the value when mode is equal to 'constant'. Default is 'reflect' cval : scalar, optional Value to fill past edges of input if ``mode`` is 'constant'. Default is 0.0 origin : scalar, optional The ``origin`` parameter controls the placement of the filter. Default 0 See Also -------- convolve : Convolve an image with a kernel. """ return _correlate_or_convolve(input, weights, output, mode, cval, origin, False) @docfiller def convolve(input, weights, output=None, mode='reflect', cval=0.0, origin=0): """ Multidimensional convolution. The array is convolved with the given kernel. Parameters ---------- input : array_like Input array to filter. weights : array_like Array of weights, same number of dimensions as input output : ndarray, optional The `output` parameter passes an array in which to store the filter output. mode : {'reflect','constant','nearest','mirror', 'wrap'}, optional the `mode` parameter determines how the array borders are handled. For 'constant' mode, values beyond borders are set to be `cval`. Default is 'reflect'. cval : scalar, optional Value to fill past edges of input if `mode` is 'constant'. Default is 0.0 origin : array_like, optional The `origin` parameter controls the placement of the filter, relative to the centre of the current element of the input. Default of 0 is equivalent to ``(0,)*input.ndim``. Returns ------- result : ndarray The result of convolution of `input` with `weights`. See Also -------- correlate : Correlate an image with a kernel. Notes ----- Each value in result is :math:`C_i = \\sum_j{I_{i+k-j} W_j}`, where W is the `weights` kernel, j is the n-D spatial index over :math:`W`, I is the `input` and k is the coordinate of the center of W, specified by `origin` in the input parameters. Examples -------- Perhaps the simplest case to understand is ``mode='constant', cval=0.0``, because in this case borders (i.e. where the `weights` kernel, centered on any one value, extends beyond an edge of `input`. >>> a = np.array([[1, 2, 0, 0], ... [5, 3, 0, 4], ... [0, 0, 0, 7], ... [9, 3, 0, 0]]) >>> k = np.array([[1,1,1],[1,1,0],[1,0,0]]) >>> from scipy import ndimage >>> ndimage.convolve(a, k, mode='constant', cval=0.0) array([[11, 10, 7, 4], [10, 3, 11, 11], [15, 12, 14, 7], [12, 3, 7, 0]]) Setting ``cval=1.0`` is equivalent to padding the outer edge of `input` with 1.0's (and then extracting only the original region of the result). >>> ndimage.convolve(a, k, mode='constant', cval=1.0) array([[13, 11, 8, 7], [11, 3, 11, 14], [16, 12, 14, 10], [15, 6, 10, 5]]) With ``mode='reflect'`` (the default), outer values are reflected at the edge of `input` to fill in missing values. >>> b = np.array([[2, 0, 0], ... [1, 0, 0], ... [0, 0, 0]]) >>> k = np.array([[0,1,0], [0,1,0], [0,1,0]]) >>> ndimage.convolve(b, k, mode='reflect') array([[5, 0, 0], [3, 0, 0], [1, 0, 0]]) This includes diagonally at the corners. >>> k = np.array([[1,0,0],[0,1,0],[0,0,1]]) >>> ndimage.convolve(b, k) array([[4, 2, 0], [3, 2, 0], [1, 1, 0]]) With ``mode='nearest'``, the single nearest value in to an edge in `input` is repeated as many times as needed to match the overlapping `weights`. >>> c = np.array([[2, 0, 1], ... [1, 0, 0], ... [0, 0, 0]]) >>> k = np.array([[0, 1, 0], ... [0, 1, 0], ... [0, 1, 0], ... [0, 1, 0], ... [0, 1, 0]]) >>> ndimage.convolve(c, k, mode='nearest') array([[7, 0, 3], [5, 0, 2], [3, 0, 1]]) """ return _correlate_or_convolve(input, weights, output, mode, cval, origin, True) @docfiller def uniform_filter1d(input, size, axis=-1, output=None, mode="reflect", cval=0.0, origin=0): """Calculate a one-dimensional uniform filter along the given axis. The lines of the array along the given axis are filtered with a uniform filter of given size. Parameters ---------- %(input)s size : int length of uniform filter %(axis)s %(output)s %(mode)s %(cval)s %(origin)s """ input = numpy.asarray(input) if numpy.iscomplexobj(input): raise TypeError('Complex type not supported') axis = _ni_support._check_axis(axis, input.ndim) if size < 1: raise RuntimeError('incorrect filter size') output, return_value = _ni_support._get_output(output, input) if (size // 2 + origin < 0) or (size // 2 + origin >= size): raise ValueError('invalid origin') mode = _ni_support._extend_mode_to_code(mode) _nd_image.uniform_filter1d(input, size, axis, output, mode, cval, origin) return return_value @docfiller def uniform_filter(input, size=3, output=None, mode="reflect", cval=0.0, origin=0): """Multi-dimensional uniform filter. Parameters ---------- %(input)s size : int or sequence of ints, optional The sizes of the uniform filter are given for each axis as a sequence, or as a single number, in which case the size is equal for all axes. %(output)s %(mode)s %(cval)s %(origin)s Notes ----- The multi-dimensional filter is implemented as a sequence of one-dimensional uniform filters. The intermediate arrays are stored in the same data type as the output. Therefore, for output types with a limited precision, the results may be imprecise because intermediate results may be stored with insufficient precision. """ input = numpy.asarray(input) output, return_value = _ni_support._get_output(output, input) sizes = _ni_support._normalize_sequence(size, input.ndim) origins = _ni_support._normalize_sequence(origin, input.ndim) axes = list(range(input.ndim)) axes = [(axes[ii], sizes[ii], origins[ii]) for ii in range(len(axes)) if sizes[ii] > 1] if len(axes) > 0: for axis, size, origin in axes: uniform_filter1d(input, int(size), axis, output, mode, cval, origin) input = output else: output[...] = input[...] return return_value @docfiller def minimum_filter1d(input, size, axis=-1, output=None, mode="reflect", cval=0.0, origin=0): """Calculate a one-dimensional minimum filter along the given axis. The lines of the array along the given axis are filtered with a minimum filter of given size. Parameters ---------- %(input)s size : int length along which to calculate 1D minimum %(axis)s %(output)s %(mode)s %(cval)s %(origin)s Notes ----- This function implements the MINLIST algorithm [1]_, as described by Richard Harter [2]_, and has a guaranteed O(n) performance, `n` being the `input` length, regardless of filter size. References ---------- .. [1] http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.42.2777 .. [2] http://www.richardhartersworld.com/cri/2001/slidingmin.html """ input = numpy.asarray(input) if numpy.iscomplexobj(input): raise TypeError('Complex type not supported') axis = _ni_support._check_axis(axis, input.ndim) if size < 1: raise RuntimeError('incorrect filter size') output, return_value = _ni_support._get_output(output, input) if (size // 2 + origin < 0) or (size // 2 + origin >= size): raise ValueError('invalid origin') mode = _ni_support._extend_mode_to_code(mode) _nd_image.min_or_max_filter1d(input, size, axis, output, mode, cval, origin, 1) return return_value @docfiller def maximum_filter1d(input, size, axis=-1, output=None, mode="reflect", cval=0.0, origin=0): """Calculate a one-dimensional maximum filter along the given axis. The lines of the array along the given axis are filtered with a maximum filter of given size. Parameters ---------- %(input)s size : int Length along which to calculate the 1-D maximum. %(axis)s %(output)s %(mode)s %(cval)s %(origin)s Returns ------- maximum1d : ndarray, None Maximum-filtered array with same shape as input. None if `output` is not None Notes ----- This function implements the MAXLIST algorithm [1]_, as described by Richard Harter [2]_, and has a guaranteed O(n) performance, `n` being the `input` length, regardless of filter size. References ---------- .. [1] http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.42.2777 .. [2] http://www.richardhartersworld.com/cri/2001/slidingmin.html """ input = numpy.asarray(input) if numpy.iscomplexobj(input): raise TypeError('Complex type not supported') axis = _ni_support._check_axis(axis, input.ndim) if size < 1: raise RuntimeError('incorrect filter size') output, return_value = _ni_support._get_output(output, input) if (size // 2 + origin < 0) or (size // 2 + origin >= size): raise ValueError('invalid origin') mode = _ni_support._extend_mode_to_code(mode) _nd_image.min_or_max_filter1d(input, size, axis, output, mode, cval, origin, 0) return return_value def _min_or_max_filter(input, size, footprint, structure, output, mode, cval, origin, minimum): if structure is None: if footprint is None: if size is None: raise RuntimeError("no footprint provided") separable = True else: footprint = numpy.asarray(footprint) footprint = footprint.astype(bool) if numpy.alltrue(numpy.ravel(footprint), axis=0): size = footprint.shape footprint = None separable = True else: separable = False else: structure = numpy.asarray(structure, dtype=numpy.float64) separable = False if footprint is None: footprint = numpy.ones(structure.shape, bool) else: footprint = numpy.asarray(footprint) footprint = footprint.astype(bool) input = numpy.asarray(input) if numpy.iscomplexobj(input): raise TypeError('Complex type not supported') output, return_value = _ni_support._get_output(output, input) origins = _ni_support._normalize_sequence(origin, input.ndim) if separable: sizes = _ni_support._normalize_sequence(size, input.ndim) axes = list(range(input.ndim)) axes = [(axes[ii], sizes[ii], origins[ii]) for ii in range(len(axes)) if sizes[ii] > 1] if minimum: filter_ = minimum_filter1d else: filter_ = maximum_filter1d if len(axes) > 0: for axis, size, origin in axes: filter_(input, int(size), axis, output, mode, cval, origin) input = output else: output[...] = input[...] else: fshape = [ii for ii in footprint.shape if ii > 0] if len(fshape) != input.ndim: raise RuntimeError('footprint array has incorrect shape.') for origin, lenf in zip(origins, fshape): if (lenf // 2 + origin < 0) or (lenf // 2 + origin >= lenf): raise ValueError('invalid origin') if not footprint.flags.contiguous: footprint = footprint.copy() if structure is not None: if len(structure.shape) != input.ndim: raise RuntimeError('structure array has incorrect shape') if not structure.flags.contiguous: structure = structure.copy() mode = _ni_support._extend_mode_to_code(mode) _nd_image.min_or_max_filter(input, footprint, structure, output, mode, cval, origins, minimum) return return_value @docfiller def minimum_filter(input, size=None, footprint=None, output=None, mode="reflect", cval=0.0, origin=0): """Calculates a multi-dimensional minimum filter. Parameters ---------- %(input)s %(size_foot)s %(output)s %(mode)s %(cval)s %(origin)s """ return _min_or_max_filter(input, size, footprint, None, output, mode, cval, origin, 1) @docfiller def maximum_filter(input, size=None, footprint=None, output=None, mode="reflect", cval=0.0, origin=0): """Calculates a multi-dimensional maximum filter. Parameters ---------- %(input)s %(size_foot)s %(output)s %(mode)s %(cval)s %(origin)s """ return _min_or_max_filter(input, size, footprint, None, output, mode, cval, origin, 0) @docfiller def _rank_filter(input, rank, size=None, footprint=None, output=None, mode="reflect", cval=0.0, origin=0, operation='rank'): input = numpy.asarray(input) if numpy.iscomplexobj(input): raise TypeError('Complex type not supported') origins = _ni_support._normalize_sequence(origin, input.ndim) if footprint is None: if size is None: raise RuntimeError("no footprint or filter size provided") sizes = _ni_support._normalize_sequence(size, input.ndim) footprint = numpy.ones(sizes, dtype=bool) else: footprint = numpy.asarray(footprint, dtype=bool) fshape = [ii for ii in footprint.shape if ii > 0] if len(fshape) != input.ndim: raise RuntimeError('filter footprint array has incorrect shape.') for origin, lenf in zip(origins, fshape): if (lenf // 2 + origin < 0) or (lenf // 2 + origin >= lenf): raise ValueError('invalid origin') if not footprint.flags.contiguous: footprint = footprint.copy() filter_size = numpy.where(footprint, 1, 0).sum() if operation == 'median': rank = filter_size // 2 elif operation == 'percentile': percentile = rank if percentile < 0.0: percentile += 100.0 if percentile < 0 or percentile > 100: raise RuntimeError('invalid percentile') if percentile == 100.0: rank = filter_size - 1 else: rank = int(float(filter_size) * percentile / 100.0) if rank < 0: rank += filter_size if rank < 0 or rank >= filter_size: raise RuntimeError('rank not within filter footprint size') if rank == 0: return minimum_filter(input, None, footprint, output, mode, cval, origins) elif rank == filter_size - 1: return maximum_filter(input, None, footprint, output, mode, cval, origins) else: output, return_value = _ni_support._get_output(output, input) mode = _ni_support._extend_mode_to_code(mode) _nd_image.rank_filter(input, rank, footprint, output, mode, cval, origins) return return_value @docfiller def rank_filter(input, rank, size=None, footprint=None, output=None, mode="reflect", cval=0.0, origin=0): """Calculates a multi-dimensional rank filter. Parameters ---------- %(input)s rank : int The rank parameter may be less then zero, i.e., rank = -1 indicates the largest element. %(size_foot)s %(output)s %(mode)s %(cval)s %(origin)s """ return _rank_filter(input, rank, size, footprint, output, mode, cval, origin, 'rank') @docfiller def median_filter(input, size=None, footprint=None, output=None, mode="reflect", cval=0.0, origin=0): """ Calculates a multidimensional median filter. Parameters ---------- %(input)s %(size_foot)s %(output)s %(mode)s %(cval)s %(origin)s Returns ------- median_filter : ndarray Return of same shape as `input`. """ return _rank_filter(input, 0, size, footprint, output, mode, cval, origin, 'median') @docfiller def percentile_filter(input, percentile, size=None, footprint=None, output=None, mode="reflect", cval=0.0, origin=0): """Calculates a multi-dimensional percentile filter. Parameters ---------- %(input)s percentile : scalar The percentile parameter may be less then zero, i.e., percentile = -20 equals percentile = 80 %(size_foot)s %(output)s %(mode)s %(cval)s %(origin)s """ return _rank_filter(input, percentile, size, footprint, output, mode, cval, origin, 'percentile') @docfiller def generic_filter1d(input, function, filter_size, axis=-1, output=None, mode="reflect", cval=0.0, origin=0, extra_arguments=(), extra_keywords = None): """Calculate a one-dimensional filter along the given axis. `generic_filter1d` iterates over the lines of the array, calling the given function at each line. The arguments of the line are the input line, and the output line. The input and output lines are 1D double arrays. The input line is extended appropriately according to the filter size and origin. The output line must be modified in-place with the result. Parameters ---------- %(input)s function : callable Function to apply along given axis. filter_size : scalar Length of the filter. %(axis)s %(output)s %(mode)s %(cval)s %(origin)s %(extra_arguments)s %(extra_keywords)s """ if extra_keywords is None: extra_keywords = {} input = numpy.asarray(input) if numpy.iscomplexobj(input): raise TypeError('Complex type not supported') output, return_value = _ni_support._get_output(output, input) if filter_size < 1: raise RuntimeError('invalid filter size') axis = _ni_support._check_axis(axis, input.ndim) if (filter_size // 2 + origin < 0) or (filter_size // 2 + origin >= filter_size): raise ValueError('invalid origin') mode = _ni_support._extend_mode_to_code(mode) _nd_image.generic_filter1d(input, function, filter_size, axis, output, mode, cval, origin, extra_arguments, extra_keywords) return return_value @docfiller def generic_filter(input, function, size=None, footprint=None, output=None, mode="reflect", cval=0.0, origin=0, extra_arguments=(), extra_keywords = None): """Calculates a multi-dimensional filter using the given function. At each element the provided function is called. The input values within the filter footprint at that element are passed to the function as a 1D array of double values. Parameters ---------- %(input)s function : callable Function to apply at each element. %(size_foot)s %(output)s %(mode)s %(cval)s %(origin)s %(extra_arguments)s %(extra_keywords)s """ if extra_keywords is None: extra_keywords = {} input = numpy.asarray(input) if numpy.iscomplexobj(input): raise TypeError('Complex type not supported') origins = _ni_support._normalize_sequence(origin, input.ndim) if footprint is None: if size is None: raise RuntimeError("no footprint or filter size provided") sizes = _ni_support._normalize_sequence(size, input.ndim) footprint = numpy.ones(sizes, dtype=bool) else: footprint = numpy.asarray(footprint) footprint = footprint.astype(bool) fshape = [ii for ii in footprint.shape if ii > 0] if len(fshape) != input.ndim: raise RuntimeError('filter footprint array has incorrect shape.') for origin, lenf in zip(origins, fshape): if (lenf // 2 + origin < 0) or (lenf // 2 + origin >= lenf): raise ValueError('invalid origin') if not footprint.flags.contiguous: footprint = footprint.copy() output, return_value = _ni_support._get_output(output, input) mode = _ni_support._extend_mode_to_code(mode) _nd_image.generic_filter(input, function, footprint, output, mode, cval, origins, extra_arguments, extra_keywords) return return_value
mit
rgommers/statsmodels
statsmodels/examples/tsa/arma_plots.py
33
2516
'''Plot acf and pacf for some ARMA(1,1) ''' from __future__ import print_function import numpy as np import matplotlib.pyplot as plt import statsmodels.tsa.arima_process as tsp from statsmodels.sandbox.tsa.fftarma import ArmaFft as FftArmaProcess import statsmodels.tsa.stattools as tss from statsmodels.graphics.tsaplots import plotacf np.set_printoptions(precision=2) arcoefs = [0.9, 0., -0.5] #[0.9, 0.5, 0.1, 0., -0.5] macoefs = [0.9, 0., -0.5] #[0.9, 0.5, 0.1, 0., -0.5] nsample = 1000 nburnin = 1000 sig = 1 fig = plt.figure(figsize=(8, 13)) fig.suptitle('ARMA: Autocorrelation (left) and Partial Autocorrelation (right)') subplotcount = 1 nrows = 4 for arcoef in arcoefs[:-1]: for macoef in macoefs[:-1]: ar = np.r_[1., -arcoef] ma = np.r_[1., macoef] #y = tsp.arma_generate_sample(ar,ma,nsample, sig, burnin) #armaprocess = FftArmaProcess(ar, ma, nsample) #TODO: make n optional #armaprocess.plot4() armaprocess = tsp.ArmaProcess(ar, ma) acf = armaprocess.acf(20)[:20] pacf = armaprocess.pacf(20)[:20] ax = fig.add_subplot(nrows, 2, subplotcount) plotacf(acf, ax=ax) ## ax.set_title('Autocorrelation \nar=%s, ma=%rs' % (ar, ma), ## size='xx-small') ax.text(0.7, 0.6, 'ar =%s \nma=%s' % (ar, ma), transform=ax.transAxes, horizontalalignment='left', #'right', size='xx-small') ax.set_xlim(-1,20) subplotcount +=1 ax = fig.add_subplot(nrows, 2, subplotcount) plotacf(pacf, ax=ax) ## ax.set_title('Partial Autocorrelation \nar=%s, ma=%rs' % (ar, ma), ## size='xx-small') ax.text(0.7, 0.6, 'ar =%s \nma=%s' % (ar, ma), transform=ax.transAxes, horizontalalignment='left', #'right', size='xx-small') ax.set_xlim(-1,20) subplotcount +=1 axs = fig.axes ### turn of the 2nd column y tick labels ##for ax in axs[1::2]:#[:,1].flat: ## for label in ax.get_yticklabels(): label.set_visible(False) # turn off all but the bottom xtick labels for ax in axs[:-2]:#[:-1,:].flat: for label in ax.get_xticklabels(): label.set_visible(False) # use a MaxNLocator on the first column y axis if you have a bunch of # rows to avoid bunching; example below uses at most 3 ticks import matplotlib.ticker as mticker for ax in axs: #[::2]:#[:,1].flat: ax.yaxis.set_major_locator( mticker.MaxNLocator(3 )) plt.show()
bsd-3-clause
asmitagupta/crowdsource-platform
fixtures/createJson.py
6
2462
__author__ = 'Megha' # Script to transfer csv containing data about various models to json # Input csv file constituting of the model data # Output json file representing the csv data as json object # Assumes model name to be first line # Field names of the model on the second line # Data seperated by __DELIM__ # Example: # L01 ModelName: registrationmodel # L02 FieldNames: user,activation_key,created_timestamp,last_updated # L03 Data: 1,qwer,2015-05-01T00:17:40.085Z,2015-05-01T00:17:40.085Z # L04 Data: 2,assd,2015-05-01T00:17:40.085Z,2015-05-01T00:17:40.085Z import numpy as np import pandas as pd import json as json __MODULE_NAME__ = 7 #Number of lines after which Model Name __INPUT_FILE__ = 'meghaWorkerData.csv' __OUTPUT_FILE__ = 'meghaWorkerData.json' __NEWLINE__ = '\n' __KEY1__ = 0 __KEY2__ = 0 __DELIM__ = ',' __APPEND__ = 'crowdsourcing.' __KEY_MODEL__ = 'model' __KEY_FIELDS__ = 'fields' __KEY_PK__ = 'pk' def create_dict(input_dict, module, data_collection): for key, value in input_dict.items(): data_dict = {} data_dict[__KEY_FIELDS__] = value data_dict[__KEY_PK__] = key data_dict[__KEY_MODEL__] = __APPEND__ + module data_collection.append(data_dict) return data_collection def create_data_json(__FILE__): in_fp = open(__INPUT_FILE__, 'rb') file_lines = in_fp.readlines() in_fp.close() data_collection = [] for line_no in range(0, len(file_lines)): if line_no % __MODULE_NAME__ == 0: columns = file_lines[line_no + 1].strip(__NEWLINE__).split(__DELIM__) instance1 = file_lines[line_no + 2].strip(__NEWLINE__).split(__DELIM__) instance2 = file_lines[line_no + 3].strip(__NEWLINE__).split(__DELIM__) instance3 = file_lines[line_no + 4].strip(__NEWLINE__).split(__DELIM__) instance4 = file_lines[line_no + 5].strip(__NEWLINE__).split(__DELIM__) instance5 = file_lines[line_no + 6].strip(__NEWLINE__).split(__DELIM__) data = np.array([instance1,instance2,instance3,instance4,instance5]) df = pd.DataFrame(data, columns = columns) create_dict(df.transpose().to_dict(), file_lines[line_no].strip(__NEWLINE__), data_collection) del(df) print data_collection out_fp = open(__OUTPUT_FILE__, 'wb') out_fp.write(json.dumps(data_collection, indent = 2)) out_fp.close() if __name__ == '__main__': create_data_json (__INPUT_FILE__)
mit
kaushiksk/DeepNLP
Training-Sessions/Session II - Word Embeddings/word2vec/run.py
2
2166
import random import numpy as np from cs224d.data_utils import * import matplotlib.pyplot as plt from word2vec import * from sgd import * # Reset the random seed to make sure that everyone gets the same results random.seed(314) dataset = StanfordSentiment() tokens = dataset.tokens() nWords = len(tokens) # We are going to train 10-dimensional vectors for this assignment dimVectors = 10 # Context size C = 5 # Reset the random seed to make sure that everyone gets the same results random.seed(31415) np.random.seed(9265) wordVectors = np.concatenate(((np.random.rand(nWords, dimVectors) - .5) / \ dimVectors, np.zeros((nWords, dimVectors))), axis=0) wordVectors0 = sgd( lambda vec: word2vec_sgd_wrapper(skipgram, tokens, vec, dataset, C, negSamplingCostAndGradient), wordVectors, 0.3, 40000, None, True, PRINT_EVERY=10) # It has already run for 40000 iterations. Theweights are stored in # saved_params_40000.npy # Run it for more iterations. It will resume from the 40000th. # Change 40000 above to a different number print "sanity check: cost at convergence should be around or below 10" # sum the input and output word vectors wordVectors = (wordVectors0[:nWords,:] + wordVectors0[nWords:,:]) # Visualize the word vectors you trained _, wordVectors0, _ = load_saved_params() wordVectors = (wordVectors0[:nWords,:] + wordVectors0[nWords:,:]) visualizeWords = ["the", "a", "an", ",", ".", "?", "!", "``", "''", "--", "good", "great", "cool", "brilliant", "wonderful", "well", "amazing", "worth", "sweet", "enjoyable", "boring", "bad", "waste", "dumb", "annoying"] visualizeIdx = [tokens[word] for word in visualizeWords] visualizeVecs = wordVectors[visualizeIdx, :] temp = (visualizeVecs - np.mean(visualizeVecs, axis=0)) covariance = 1.0 / len(visualizeIdx) * temp.T.dot(temp) U,S,V = np.linalg.svd(covariance) coord = temp.dot(U[:,0:2]) for i in xrange(len(visualizeWords)): plt.text(coord[i,0], coord[i,1], visualizeWords[i], bbox=dict(facecolor='green', alpha=0.1)) plt.xlim((np.min(coord[:,0]), np.max(coord[:,0]))) plt.ylim((np.min(coord[:,1]), np.max(coord[:,1]))) plt.savefig('q3_word_vectors.png') plt.show()
mit
kaslusimoes/SummerSchool2016
simulation-multiple-variations-random.py
1
4619
#! /bin/env python2 # coding: utf-8 import numpy as np import networkx as nx import matplotlib.pyplot as plt import random as rd from pickle import dump class Data: def __init__(self): self.m_list1 = [] self.m_list2 = [] N = 100 M = 100 MAX = N + M + 1 MAX_EDGE = 380 MAX_DEG = 450 ITERATIONS = 50000 S1 = 0. T1 = 1. S2 = 0. T2 = 1. beta = 0.5 NUMGRAPH = 10 NSIM = 10 NAME = "lucasmedeiros" # initial fraction of cooperators p1, p2 = .5, .5 # number of cooperators cc1, cc2 = 0, 0 # fraction of cooperators r1, r2 = np.zeros(ITERATIONS + 1, dtype=np.float), np.zeros(ITERATIONS + 1, dtype=np.float) payoff = np.array( [ [1, S1], [T1, 0] ] , dtype=np.float, ndmin=2) payoff2 = np.array( [ [1, S2], [T2, 0] ] , dtype=np.float, ndmin=2) def interaction(x, y): if x < N: return payoff[g.node[x]['strategy']][g.node[y]['strategy']] else: return payoff2[g.node[x]['strategy']][g.node[y]['strategy']] def change_prob(x, y): return 1. / (1 + np.exp(-beta * (y - x))) def complete(): return nx.complete_bipartite_graph(N, M) def random(): g = nx.Graph() g.add_nodes_from(np.arange(0, N + M, 1, dtype=np.int)) while g.number_of_edges() < MAX_EDGE: a, b = rd.randint(0, N - 1), rd.randint(N, N + M - 1) if b not in g[a]: g.add_edge(a, b) return g def set_initial_strategy(g): global cc1, cc2 coop = range(0, int(p1 * N), 1) + range(N, int(p2 * M) + N, 1) cc1 = int(p1 * N) defect = set(range(0, N + M, 1)) - set(coop) cc2 = int(p2 * M) coop = dict(zip(coop, len(coop) * [0])) defect = dict(zip(defect, len(defect) * [1])) nx.set_node_attributes(g, 'strategy', coop) nx.set_node_attributes(g, 'strategy', defect) def fitness(x): ret = 0 for i in g.neighbors(x): ret += interaction(x, i) return ret def simulate(): global cc1, cc2 it = 0 while it < ITERATIONS: it += 1 if it % 2: a = rd.randint(0, N - 1) else: a = rd.randint(N, N + M - 1) if len(g.neighbors(a)) == 0: it -= 1 continue b = g.neighbors(a)[rd.randint(0, len(g.neighbors(a)) - 1)] b = g.neighbors(b)[rd.randint(0, len(g.neighbors(b)) - 1)] if a == b: it -= 1 continue assert (a < N and b < N) or (a >= N and b >= N) if g.node[a]['strategy'] != g.node[b]['strategy']: fa, fb = fitness(a), fitness(b) l = np.random.random() p = change_prob(fa, fb) if l <= p: if a < N: if g.node[a]['strategy'] == 0: cc1 -= 1 else: cc1 += 1 else: if g.node[a]['strategy'] == 0: cc2 -= 1 else: cc2 += 1 nx.set_node_attributes(g, 'strategy', { a:g.node[b]['strategy'] }) r1[it] = float(cc1) / N r2[it] = float(cc2) / M nbins = 10 T1range = np.linspace(1,2,3) S1range = np.linspace(-1,0,3) T2range = np.linspace(1,2,nbins) S2range = np.linspace(-1,0,nbins) mag1 = np.zeros((nbins, nbins), dtype=np.float) mag2 = np.zeros((nbins, nbins), dtype=np.float) for G in xrange(NUMGRAPH): g = random() data = Data() for S1 in S1range: for T1 in T1range: global payoff, payoff2 mag1 = np.zeros((nbins, nbins), dtype=np.float) mag2 = np.zeros((nbins, nbins), dtype=np.float) i = 0 payoff = np.array([ [1, S1], [T1, 0]], dtype=np.float, ndmin=2) for S2 in S2range: j = 0 for T2 in T2range: payoff2 = np.array([ [1, S2], [T2, 0]], dtype=np.float, ndmin=2) for SS in xrange(NSIM): set_initial_strategy(g) simulate() mag1[i][j] = np.mean(r1[-1000:]) mag2[i][j] = np.mean(r2[-1000:]) j += 1 i += 1 mag1 /= NSIM mag2 /= NSIM data.m_list1.append((S1, T1, S2, T2, mag1)) data.m_list2.append((S1, T1, S2, T2, mag2)) f = open('random graph {1} {0}.grph'.format(G, NAME), 'w') dump(data,f,2) f.close() print("Finished Random Graph {0}".format(G))
apache-2.0
mhogg/BMDanalyse
BMDanalyse/MatplotlibWidget.py
1
1608
# -*- coding: utf-8 -*- # Copyright (C) 2016 Michael Hogg # This file is part of BMDanalyse - See LICENSE.txt for information on usage and redistribution # Fixes error in pyqtgraph when importing NavigationToolbar2QTAgg. This class is not available # in matplotlib any longer (since version?) from pyqtgraph.Qt import QtGui, QtCore, USE_PYSIDE import matplotlib if USE_PYSIDE: matplotlib.rcParams['backend.qt4']='PySide' from matplotlib.backends.backend_qt4agg import FigureCanvasQTAgg as FigureCanvas from matplotlib.backends.backend_qt4agg import NavigationToolbar2QT as NavigationToolbar #from matplotlib.backends.backend_qt4agg import NavigationToolbar2QTAgg as NavigationToolbar from matplotlib.figure import Figure class MatplotlibWidget(QtGui.QWidget): """ Implements a Matplotlib figure inside a QWidget. Use getFigure() and redraw() to interact with matplotlib. Example:: mw = MatplotlibWidget() subplot = mw.getFigure().add_subplot(111) subplot.plot(x,y) mw.draw() """ def __init__(self, size=(5.0, 4.0), dpi=100): QtGui.QWidget.__init__(self) self.fig = Figure(size, dpi=dpi) self.canvas = FigureCanvas(self.fig) self.canvas.setParent(self) self.toolbar = NavigationToolbar(self.canvas, self) self.vbox = QtGui.QVBoxLayout() self.vbox.addWidget(self.toolbar) self.vbox.addWidget(self.canvas) self.setLayout(self.vbox) def getFigure(self): return self.fig def draw(self): self.canvas.draw()
mit
andrewnc/scikit-learn
examples/linear_model/plot_sgd_comparison.py
77
1820
""" ================================== Comparing various online solvers ================================== An example showing how different online solvers perform on the hand-written digits dataset. """ # Author: Rob Zinkov <rob at zinkov dot com> # License: BSD 3 clause import numpy as np import matplotlib.pyplot as plt from sklearn import datasets from sklearn.cross_validation import train_test_split from sklearn.linear_model import SGDClassifier, Perceptron from sklearn.linear_model import PassiveAggressiveClassifier from sklearn.linear_model import LogisticRegression heldout = [0.95, 0.90, 0.75, 0.50, 0.01] rounds = 20 digits = datasets.load_digits() X, y = digits.data, digits.target classifiers = [ ("SGD", SGDClassifier()), ("ASGD", SGDClassifier(average=True)), ("Perceptron", Perceptron()), ("Passive-Aggressive I", PassiveAggressiveClassifier(loss='hinge', C=1.0)), ("Passive-Aggressive II", PassiveAggressiveClassifier(loss='squared_hinge', C=1.0)), ("SAG", LogisticRegression(solver='sag', tol=1e-1, C=1.e4 / X.shape[0])) ] xx = 1. - np.array(heldout) for name, clf in classifiers: print("training %s" % name) rng = np.random.RandomState(42) yy = [] for i in heldout: yy_ = [] for r in range(rounds): X_train, X_test, y_train, y_test = \ train_test_split(X, y, test_size=i, random_state=rng) clf.fit(X_train, y_train) y_pred = clf.predict(X_test) yy_.append(1 - np.mean(y_pred == y_test)) yy.append(np.mean(yy_)) plt.plot(xx, yy, label=name) plt.legend(loc="upper right") plt.xlabel("Proportion train") plt.ylabel("Test Error Rate") plt.show()
bsd-3-clause
harisbal/pandas
pandas/core/indexing.py
4
91629
# pylint: disable=W0223 import textwrap import warnings import numpy as np from pandas._libs.indexing import _NDFrameIndexerBase from pandas.util._decorators import Appender from pandas.errors import AbstractMethodError import pandas.compat as compat from pandas.compat import range, zip from pandas.core.dtypes.common import ( is_integer_dtype, is_integer, is_float, is_list_like, is_sequence, is_iterator, is_scalar, is_sparse, ensure_platform_int) from pandas.core.dtypes.generic import ABCDataFrame, ABCPanel, ABCSeries from pandas.core.dtypes.missing import isna, _infer_fill_value import pandas.core.common as com from pandas.core.index import Index, MultiIndex # the supported indexers def get_indexers_list(): return [ ('ix', _IXIndexer), ('iloc', _iLocIndexer), ('loc', _LocIndexer), ('at', _AtIndexer), ('iat', _iAtIndexer), ] # "null slice" _NS = slice(None, None) # the public IndexSlicerMaker class _IndexSlice(object): """ Create an object to more easily perform multi-index slicing See Also -------- MultiIndex.remove_unused_levels : New MultiIndex with no unused levels. Notes ----- See :ref:`Defined Levels <advanced.shown_levels>` for further info on slicing a MultiIndex. Examples -------- >>> midx = pd.MultiIndex.from_product([['A0','A1'], ['B0','B1','B2','B3']]) >>> columns = ['foo', 'bar'] >>> dfmi = pd.DataFrame(np.arange(16).reshape((len(midx), len(columns))), index=midx, columns=columns) Using the default slice command: >>> dfmi.loc[(slice(None), slice('B0', 'B1')), :] foo bar A0 B0 0 1 B1 2 3 A1 B0 8 9 B1 10 11 Using the IndexSlice class for a more intuitive command: >>> idx = pd.IndexSlice >>> dfmi.loc[idx[:, 'B0':'B1'], :] foo bar A0 B0 0 1 B1 2 3 A1 B0 8 9 B1 10 11 """ def __getitem__(self, arg): return arg IndexSlice = _IndexSlice() class IndexingError(Exception): pass class _NDFrameIndexer(_NDFrameIndexerBase): _valid_types = None _exception = KeyError axis = None def __call__(self, axis=None): # we need to return a copy of ourselves new_self = self.__class__(self.name, self.obj) if axis is not None: axis = self.obj._get_axis_number(axis) new_self.axis = axis return new_self def __iter__(self): raise NotImplementedError('ix is not iterable') def __getitem__(self, key): if type(key) is tuple: key = tuple(com.apply_if_callable(x, self.obj) for x in key) try: values = self.obj._get_value(*key) if is_scalar(values): return values except Exception: pass return self._getitem_tuple(key) else: # we by definition only have the 0th axis axis = self.axis or 0 key = com.apply_if_callable(key, self.obj) return self._getitem_axis(key, axis=axis) def _get_label(self, label, axis=None): if axis is None: axis = self.axis or 0 if self.ndim == 1: # for perf reasons we want to try _xs first # as its basically direct indexing # but will fail when the index is not present # see GH5667 return self.obj._xs(label, axis=axis) elif isinstance(label, tuple) and isinstance(label[axis], slice): raise IndexingError('no slices here, handle elsewhere') return self.obj._xs(label, axis=axis) def _get_loc(self, key, axis=None): if axis is None: axis = self.axis return self.obj._ixs(key, axis=axis) def _slice(self, obj, axis=None, kind=None): if axis is None: axis = self.axis return self.obj._slice(obj, axis=axis, kind=kind) def _get_setitem_indexer(self, key): if self.axis is not None: return self._convert_tuple(key, is_setter=True) axis = self.obj._get_axis(0) if isinstance(axis, MultiIndex) and self.name != 'iloc': try: return axis.get_loc(key) except Exception: pass if isinstance(key, tuple): try: return self._convert_tuple(key, is_setter=True) except IndexingError: pass if isinstance(key, range): return self._convert_range(key, is_setter=True) try: return self._convert_to_indexer(key, is_setter=True) except TypeError as e: # invalid indexer type vs 'other' indexing errors if 'cannot do' in str(e): raise raise IndexingError(key) def __setitem__(self, key, value): if isinstance(key, tuple): key = tuple(com.apply_if_callable(x, self.obj) for x in key) else: key = com.apply_if_callable(key, self.obj) indexer = self._get_setitem_indexer(key) self._setitem_with_indexer(indexer, value) def _validate_key(self, key, axis): """ Ensure that key is valid for current indexer. Parameters ---------- key : scalar, slice or list-like The key requested axis : int Dimension on which the indexing is being made Raises ------ TypeError If the key (or some element of it) has wrong type IndexError If the key (or some element of it) is out of bounds KeyError If the key was not found """ raise AbstractMethodError() def _has_valid_tuple(self, key): """ check the key for valid keys across my indexer """ for i, k in enumerate(key): if i >= self.obj.ndim: raise IndexingError('Too many indexers') try: self._validate_key(k, i) except ValueError: raise ValueError("Location based indexing can only have " "[{types}] types" .format(types=self._valid_types)) def _is_nested_tuple_indexer(self, tup): if any(isinstance(ax, MultiIndex) for ax in self.obj.axes): return any(is_nested_tuple(tup, ax) for ax in self.obj.axes) return False def _convert_tuple(self, key, is_setter=False): keyidx = [] if self.axis is not None: axis = self.obj._get_axis_number(self.axis) for i in range(self.ndim): if i == axis: keyidx.append(self._convert_to_indexer( key, axis=axis, is_setter=is_setter)) else: keyidx.append(slice(None)) else: for i, k in enumerate(key): if i >= self.obj.ndim: raise IndexingError('Too many indexers') idx = self._convert_to_indexer(k, axis=i, is_setter=is_setter) keyidx.append(idx) return tuple(keyidx) def _convert_range(self, key, is_setter=False): """ convert a range argument """ return list(key) def _convert_scalar_indexer(self, key, axis): # if we are accessing via lowered dim, use the last dim if axis is None: axis = 0 ax = self.obj._get_axis(min(axis, self.ndim - 1)) # a scalar return ax._convert_scalar_indexer(key, kind=self.name) def _convert_slice_indexer(self, key, axis): # if we are accessing via lowered dim, use the last dim ax = self.obj._get_axis(min(axis, self.ndim - 1)) return ax._convert_slice_indexer(key, kind=self.name) def _has_valid_setitem_indexer(self, indexer): return True def _has_valid_positional_setitem_indexer(self, indexer): """ validate that an positional indexer cannot enlarge its target will raise if needed, does not modify the indexer externally """ if isinstance(indexer, dict): raise IndexError("{0} cannot enlarge its target object" .format(self.name)) else: if not isinstance(indexer, tuple): indexer = self._tuplify(indexer) for ax, i in zip(self.obj.axes, indexer): if isinstance(i, slice): # should check the stop slice? pass elif is_list_like_indexer(i): # should check the elements? pass elif is_integer(i): if i >= len(ax): raise IndexError("{name} cannot enlarge its target " "object".format(name=self.name)) elif isinstance(i, dict): raise IndexError("{name} cannot enlarge its target object" .format(name=self.name)) return True def _setitem_with_indexer(self, indexer, value): self._has_valid_setitem_indexer(indexer) # also has the side effect of consolidating in-place from pandas import Series info_axis = self.obj._info_axis_number # maybe partial set take_split_path = self.obj._is_mixed_type # if there is only one block/type, still have to take split path # unless the block is one-dimensional or it can hold the value if not take_split_path and self.obj._data.blocks: blk, = self.obj._data.blocks if 1 < blk.ndim: # in case of dict, keys are indices val = list(value.values()) if isinstance(value, dict) else value take_split_path = not blk._can_hold_element(val) if isinstance(indexer, tuple) and len(indexer) == len(self.obj.axes): for i, ax in zip(indexer, self.obj.axes): # if we have any multi-indexes that have non-trivial slices # (not null slices) then we must take the split path, xref # GH 10360 if (isinstance(ax, MultiIndex) and not (is_integer(i) or com.is_null_slice(i))): take_split_path = True break if isinstance(indexer, tuple): nindexer = [] for i, idx in enumerate(indexer): if isinstance(idx, dict): # reindex the axis to the new value # and set inplace key, _ = convert_missing_indexer(idx) # if this is the items axes, then take the main missing # path first # this correctly sets the dtype and avoids cache issues # essentially this separates out the block that is needed # to possibly be modified if self.ndim > 1 and i == self.obj._info_axis_number: # add the new item, and set the value # must have all defined axes if we have a scalar # or a list-like on the non-info axes if we have a # list-like len_non_info_axes = [ len(_ax) for _i, _ax in enumerate(self.obj.axes) if _i != i ] if any(not l for l in len_non_info_axes): if not is_list_like_indexer(value): raise ValueError("cannot set a frame with no " "defined index and a scalar") self.obj[key] = value return self.obj # add a new item with the dtype setup self.obj[key] = _infer_fill_value(value) new_indexer = convert_from_missing_indexer_tuple( indexer, self.obj.axes) self._setitem_with_indexer(new_indexer, value) return self.obj # reindex the axis # make sure to clear the cache because we are # just replacing the block manager here # so the object is the same index = self.obj._get_axis(i) labels = index.insert(len(index), key) self.obj._data = self.obj.reindex(labels, axis=i)._data self.obj._maybe_update_cacher(clear=True) self.obj._is_copy = None nindexer.append(labels.get_loc(key)) else: nindexer.append(idx) indexer = tuple(nindexer) else: indexer, missing = convert_missing_indexer(indexer) if missing: # reindex the axis to the new value # and set inplace if self.ndim == 1: index = self.obj.index new_index = index.insert(len(index), indexer) # we have a coerced indexer, e.g. a float # that matches in an Int64Index, so # we will not create a duplicate index, rather # index to that element # e.g. 0.0 -> 0 # GH12246 if index.is_unique: new_indexer = index.get_indexer([new_index[-1]]) if (new_indexer != -1).any(): return self._setitem_with_indexer(new_indexer, value) # this preserves dtype of the value new_values = Series([value])._values if len(self.obj._values): try: new_values = np.concatenate([self.obj._values, new_values]) except TypeError: as_obj = self.obj.astype(object) new_values = np.concatenate([as_obj, new_values]) self.obj._data = self.obj._constructor( new_values, index=new_index, name=self.obj.name)._data self.obj._maybe_update_cacher(clear=True) return self.obj elif self.ndim == 2: # no columns and scalar if not len(self.obj.columns): raise ValueError("cannot set a frame with no defined " "columns") # append a Series if isinstance(value, Series): value = value.reindex(index=self.obj.columns, copy=True) value.name = indexer # a list-list else: # must have conforming columns if is_list_like_indexer(value): if len(value) != len(self.obj.columns): raise ValueError("cannot set a row with " "mismatched columns") value = Series(value, index=self.obj.columns, name=indexer) self.obj._data = self.obj.append(value)._data self.obj._maybe_update_cacher(clear=True) return self.obj # set using setitem (Panel and > dims) elif self.ndim >= 3: return self.obj.__setitem__(indexer, value) # set item_labels = self.obj._get_axis(info_axis) # align and set the values if take_split_path: if not isinstance(indexer, tuple): indexer = self._tuplify(indexer) if isinstance(value, ABCSeries): value = self._align_series(indexer, value) info_idx = indexer[info_axis] if is_integer(info_idx): info_idx = [info_idx] labels = item_labels[info_idx] # if we have a partial multiindex, then need to adjust the plane # indexer here if (len(labels) == 1 and isinstance(self.obj[labels[0]].axes[0], MultiIndex)): item = labels[0] obj = self.obj[item] index = obj.index idx = indexer[:info_axis][0] plane_indexer = tuple([idx]) + indexer[info_axis + 1:] lplane_indexer = length_of_indexer(plane_indexer[0], index) # require that we are setting the right number of values that # we are indexing if is_list_like_indexer(value) and np.iterable( value) and lplane_indexer != len(value): if len(obj[idx]) != len(value): raise ValueError("cannot set using a multi-index " "selection indexer with a different " "length than the value") # make sure we have an ndarray value = getattr(value, 'values', value).ravel() # we can directly set the series here # as we select a slice indexer on the mi idx = index._convert_slice_indexer(idx) obj._consolidate_inplace() obj = obj.copy() obj._data = obj._data.setitem(indexer=tuple([idx]), value=value) self.obj[item] = obj return # non-mi else: plane_indexer = indexer[:info_axis] + indexer[info_axis + 1:] if info_axis > 0: plane_axis = self.obj.axes[:info_axis][0] lplane_indexer = length_of_indexer(plane_indexer[0], plane_axis) else: lplane_indexer = 0 def setter(item, v): s = self.obj[item] pi = plane_indexer[0] if lplane_indexer == 1 else plane_indexer # perform the equivalent of a setitem on the info axis # as we have a null slice or a slice with full bounds # which means essentially reassign to the columns of a # multi-dim object # GH6149 (null slice), GH10408 (full bounds) if (isinstance(pi, tuple) and all(com.is_null_slice(idx) or com.is_full_slice(idx, len(self.obj)) for idx in pi)): s = v else: # set the item, possibly having a dtype change s._consolidate_inplace() s = s.copy() s._data = s._data.setitem(indexer=pi, value=v) s._maybe_update_cacher(clear=True) # reset the sliced object if unique self.obj[item] = s def can_do_equal_len(): """ return True if we have an equal len settable """ if (not len(labels) == 1 or not np.iterable(value) or is_scalar(plane_indexer[0])): return False item = labels[0] index = self.obj[item].index values_len = len(value) # equal len list/ndarray if len(index) == values_len: return True elif lplane_indexer == values_len: return True return False # we need an iterable, with a ndim of at least 1 # eg. don't pass through np.array(0) if is_list_like_indexer(value) and getattr(value, 'ndim', 1) > 0: # we have an equal len Frame if isinstance(value, ABCDataFrame) and value.ndim > 1: sub_indexer = list(indexer) multiindex_indexer = isinstance(labels, MultiIndex) for item in labels: if item in value: sub_indexer[info_axis] = item v = self._align_series( tuple(sub_indexer), value[item], multiindex_indexer) else: v = np.nan setter(item, v) # we have an equal len ndarray/convertible to our labels elif np.array(value).ndim == 2: # note that this coerces the dtype if we are mixed # GH 7551 value = np.array(value, dtype=object) if len(labels) != value.shape[1]: raise ValueError('Must have equal len keys and value ' 'when setting with an ndarray') for i, item in enumerate(labels): # setting with a list, recoerces setter(item, value[:, i].tolist()) # we have an equal len list/ndarray elif can_do_equal_len(): setter(labels[0], value) # per label values else: if len(labels) != len(value): raise ValueError('Must have equal len keys and value ' 'when setting with an iterable') for item, v in zip(labels, value): setter(item, v) else: # scalar for item in labels: setter(item, value) else: if isinstance(indexer, tuple): indexer = maybe_convert_ix(*indexer) # if we are setting on the info axis ONLY # set using those methods to avoid block-splitting # logic here if (len(indexer) > info_axis and is_integer(indexer[info_axis]) and all(com.is_null_slice(idx) for i, idx in enumerate(indexer) if i != info_axis) and item_labels.is_unique): self.obj[item_labels[indexer[info_axis]]] = value return if isinstance(value, (ABCSeries, dict)): # TODO(EA): ExtensionBlock.setitem this causes issues with # setting for extensionarrays that store dicts. Need to decide # if it's worth supporting that. value = self._align_series(indexer, Series(value)) elif isinstance(value, ABCDataFrame): value = self._align_frame(indexer, value) if isinstance(value, ABCPanel): value = self._align_panel(indexer, value) # check for chained assignment self.obj._check_is_chained_assignment_possible() # actually do the set self.obj._consolidate_inplace() self.obj._data = self.obj._data.setitem(indexer=indexer, value=value) self.obj._maybe_update_cacher(clear=True) def _align_series(self, indexer, ser, multiindex_indexer=False): """ Parameters ---------- indexer : tuple, slice, scalar The indexer used to get the locations that will be set to `ser` ser : pd.Series The values to assign to the locations specified by `indexer` multiindex_indexer : boolean, optional Defaults to False. Should be set to True if `indexer` was from a `pd.MultiIndex`, to avoid unnecessary broadcasting. Returns: -------- `np.array` of `ser` broadcast to the appropriate shape for assignment to the locations selected by `indexer` """ if isinstance(indexer, (slice, np.ndarray, list, Index)): indexer = tuple([indexer]) if isinstance(indexer, tuple): # flatten np.ndarray indexers def ravel(i): return i.ravel() if isinstance(i, np.ndarray) else i indexer = tuple(map(ravel, indexer)) aligners = [not com.is_null_slice(idx) for idx in indexer] sum_aligners = sum(aligners) single_aligner = sum_aligners == 1 is_frame = self.obj.ndim == 2 is_panel = self.obj.ndim >= 3 obj = self.obj # are we a single alignable value on a non-primary # dim (e.g. panel: 1,2, or frame: 0) ? # hence need to align to a single axis dimension # rather that find all valid dims # frame if is_frame: single_aligner = single_aligner and aligners[0] # panel elif is_panel: single_aligner = (single_aligner and (aligners[1] or aligners[2])) # we have a frame, with multiple indexers on both axes; and a # series, so need to broadcast (see GH5206) if (sum_aligners == self.ndim and all(is_sequence(_) for _ in indexer)): ser = ser.reindex(obj.axes[0][indexer[0]], copy=True)._values # single indexer if len(indexer) > 1 and not multiindex_indexer: len_indexer = len(indexer[1]) ser = np.tile(ser, len_indexer).reshape(len_indexer, -1).T return ser for i, idx in enumerate(indexer): ax = obj.axes[i] # multiple aligners (or null slices) if is_sequence(idx) or isinstance(idx, slice): if single_aligner and com.is_null_slice(idx): continue new_ix = ax[idx] if not is_list_like_indexer(new_ix): new_ix = Index([new_ix]) else: new_ix = Index(new_ix) if ser.index.equals(new_ix) or not len(new_ix): return ser._values.copy() return ser.reindex(new_ix)._values # 2 dims elif single_aligner and is_frame: # reindex along index ax = self.obj.axes[1] if ser.index.equals(ax) or not len(ax): return ser._values.copy() return ser.reindex(ax)._values # >2 dims elif single_aligner: broadcast = [] for n, labels in enumerate(self.obj._get_plane_axes(i)): # reindex along the matching dimensions if len(labels & ser.index): ser = ser.reindex(labels) else: broadcast.append((n, len(labels))) # broadcast along other dims ser = ser._values.copy() for (axis, l) in broadcast: shape = [-1] * (len(broadcast) + 1) shape[axis] = l ser = np.tile(ser, l).reshape(shape) if self.obj.ndim == 3: ser = ser.T return ser elif is_scalar(indexer): ax = self.obj._get_axis(1) if ser.index.equals(ax): return ser._values.copy() return ser.reindex(ax)._values raise ValueError('Incompatible indexer with Series') def _align_frame(self, indexer, df): is_frame = self.obj.ndim == 2 is_panel = self.obj.ndim >= 3 if isinstance(indexer, tuple): idx, cols = None, None sindexers = [] for i, ix in enumerate(indexer): ax = self.obj.axes[i] if is_sequence(ix) or isinstance(ix, slice): if isinstance(ix, np.ndarray): ix = ix.ravel() if idx is None: idx = ax[ix] elif cols is None: cols = ax[ix] else: break else: sindexers.append(i) # panel if is_panel: # need to conform to the convention # as we are not selecting on the items axis # and we have a single indexer # GH 7763 if len(sindexers) == 1 and sindexers[0] != 0: df = df.T if idx is None: idx = df.index if cols is None: cols = df.columns if idx is not None and cols is not None: if df.index.equals(idx) and df.columns.equals(cols): val = df.copy()._values else: val = df.reindex(idx, columns=cols)._values return val elif ((isinstance(indexer, slice) or is_list_like_indexer(indexer)) and is_frame): ax = self.obj.index[indexer] if df.index.equals(ax): val = df.copy()._values else: # we have a multi-index and are trying to align # with a particular, level GH3738 if (isinstance(ax, MultiIndex) and isinstance(df.index, MultiIndex) and ax.nlevels != df.index.nlevels): raise TypeError("cannot align on a multi-index with out " "specifying the join levels") val = df.reindex(index=ax)._values return val elif is_scalar(indexer) and is_panel: idx = self.obj.axes[1] cols = self.obj.axes[2] # by definition we are indexing on the 0th axis # a passed in dataframe which is actually a transpose # of what is needed if idx.equals(df.index) and cols.equals(df.columns): return df.copy()._values return df.reindex(idx, columns=cols)._values raise ValueError('Incompatible indexer with DataFrame') def _align_panel(self, indexer, df): raise NotImplementedError("cannot set using an indexer with a Panel " "yet!") def _getitem_tuple(self, tup): try: return self._getitem_lowerdim(tup) except IndexingError: pass # no multi-index, so validate all of the indexers self._has_valid_tuple(tup) # ugly hack for GH #836 if self._multi_take_opportunity(tup): return self._multi_take(tup) # no shortcut needed retval = self.obj for i, key in enumerate(tup): if i >= self.obj.ndim: raise IndexingError('Too many indexers') if com.is_null_slice(key): continue retval = getattr(retval, self.name)._getitem_axis(key, axis=i) return retval def _multi_take_opportunity(self, tup): """ Check whether there is the possibility to use ``_multi_take``. Currently the limit is that all axes being indexed must be indexed with list-likes. Parameters ---------- tup : tuple Tuple of indexers, one per axis Returns ------- boolean: Whether the current indexing can be passed through _multi_take """ if not all(is_list_like_indexer(x) for x in tup): return False # just too complicated if any(com.is_bool_indexer(x) for x in tup): return False return True def _multi_take(self, tup): """ Create the indexers for the passed tuple of keys, and execute the take operation. This allows the take operation to be executed all at once - rather than once for each dimension - improving efficiency. Parameters ---------- tup : tuple Tuple of indexers, one per axis Returns ------- values: same type as the object being indexed """ # GH 836 o = self.obj d = {axis: self._get_listlike_indexer(key, axis) for (key, axis) in zip(tup, o._AXIS_ORDERS)} return o._reindex_with_indexers(d, copy=True, allow_dups=True) def _convert_for_reindex(self, key, axis=None): return key def _handle_lowerdim_multi_index_axis0(self, tup): # we have an axis0 multi-index, handle or raise try: # fast path for series or for tup devoid of slices return self._get_label(tup, axis=self.axis) except TypeError: # slices are unhashable pass except Exception as e1: if isinstance(tup[0], (slice, Index)): raise IndexingError("Handle elsewhere") # raise the error if we are not sorted ax0 = self.obj._get_axis(0) if not ax0.is_lexsorted_for_tuple(tup): raise e1 return None def _getitem_lowerdim(self, tup): # we can directly get the axis result since the axis is specified if self.axis is not None: axis = self.obj._get_axis_number(self.axis) return self._getitem_axis(tup, axis=axis) # we may have a nested tuples indexer here if self._is_nested_tuple_indexer(tup): return self._getitem_nested_tuple(tup) # we maybe be using a tuple to represent multiple dimensions here ax0 = self.obj._get_axis(0) # ...but iloc should handle the tuple as simple integer-location # instead of checking it as multiindex representation (GH 13797) if isinstance(ax0, MultiIndex) and self.name != 'iloc': result = self._handle_lowerdim_multi_index_axis0(tup) if result is not None: return result if len(tup) > self.obj.ndim: raise IndexingError("Too many indexers. handle elsewhere") # to avoid wasted computation # df.ix[d1:d2, 0] -> columns first (True) # df.ix[0, ['C', 'B', A']] -> rows first (False) for i, key in enumerate(tup): if is_label_like(key) or isinstance(key, tuple): section = self._getitem_axis(key, axis=i) # we have yielded a scalar ? if not is_list_like_indexer(section): return section elif section.ndim == self.ndim: # we're in the middle of slicing through a MultiIndex # revise the key wrt to `section` by inserting an _NS new_key = tup[:i] + (_NS,) + tup[i + 1:] else: new_key = tup[:i] + tup[i + 1:] # unfortunately need an odious kludge here because of # DataFrame transposing convention if (isinstance(section, ABCDataFrame) and i > 0 and len(new_key) == 2): a, b = new_key new_key = b, a if len(new_key) == 1: new_key, = new_key # Slices should return views, but calling iloc/loc with a null # slice returns a new object. if com.is_null_slice(new_key): return section # This is an elided recursive call to iloc/loc/etc' return getattr(section, self.name)[new_key] raise IndexingError('not applicable') def _getitem_nested_tuple(self, tup): # we have a nested tuple so have at least 1 multi-index level # we should be able to match up the dimensionaility here # we have too many indexers for our dim, but have at least 1 # multi-index dimension, try to see if we have something like # a tuple passed to a series with a multi-index if len(tup) > self.ndim: result = self._handle_lowerdim_multi_index_axis0(tup) if result is not None: return result # this is a series with a multi-index specified a tuple of # selectors return self._getitem_axis(tup, axis=self.axis) # handle the multi-axis by taking sections and reducing # this is iterative obj = self.obj axis = 0 for i, key in enumerate(tup): if com.is_null_slice(key): axis += 1 continue current_ndim = obj.ndim obj = getattr(obj, self.name)._getitem_axis(key, axis=axis) axis += 1 # if we have a scalar, we are done if is_scalar(obj) or not hasattr(obj, 'ndim'): break # has the dim of the obj changed? # GH 7199 if obj.ndim < current_ndim: # GH 7516 # if had a 3 dim and are going to a 2d # axes are reversed on a DataFrame if i >= 1 and current_ndim == 3 and obj.ndim == 2: obj = obj.T axis -= 1 return obj def _getitem_axis(self, key, axis=None): if axis is None: axis = self.axis or 0 if is_iterator(key): key = list(key) self._validate_key(key, axis) labels = self.obj._get_axis(axis) if isinstance(key, slice): return self._get_slice_axis(key, axis=axis) elif (is_list_like_indexer(key) and not (isinstance(key, tuple) and isinstance(labels, MultiIndex))): if hasattr(key, 'ndim') and key.ndim > 1: raise ValueError('Cannot index with multidimensional key') return self._getitem_iterable(key, axis=axis) else: # maybe coerce a float scalar to integer key = labels._maybe_cast_indexer(key) if is_integer(key): if axis == 0 and isinstance(labels, MultiIndex): try: return self._get_label(key, axis=axis) except (KeyError, TypeError): if self.obj.index.levels[0].is_integer(): raise # this is the fallback! (for a non-float, non-integer index) if not labels.is_floating() and not labels.is_integer(): return self._get_loc(key, axis=axis) return self._get_label(key, axis=axis) def _get_listlike_indexer(self, key, axis, raise_missing=False): """ Transform a list-like of keys into a new index and an indexer. Parameters ---------- key : list-like Target labels axis: int Dimension on which the indexing is being made raise_missing: bool Whether to raise a KeyError if some labels are not found. Will be removed in the future, and then this method will always behave as if raise_missing=True. Raises ------ KeyError If at least one key was requested but none was found, and raise_missing=True. Returns ------- keyarr: Index New index (coinciding with 'key' if the axis is unique) values : array-like An indexer for the return object; -1 denotes keys not found """ o = self.obj ax = o._get_axis(axis) # Have the index compute an indexer or return None # if it cannot handle: indexer, keyarr = ax._convert_listlike_indexer(key, kind=self.name) # We only act on all found values: if indexer is not None and (indexer != -1).all(): self._validate_read_indexer(key, indexer, axis, raise_missing=raise_missing) return ax[indexer], indexer if ax.is_unique: # If we are trying to get actual keys from empty Series, we # patiently wait for a KeyError later on - otherwise, convert if len(ax) or not len(key): key = self._convert_for_reindex(key, axis) indexer = ax.get_indexer_for(key) keyarr = ax.reindex(keyarr)[0] else: keyarr, indexer, new_indexer = ax._reindex_non_unique(keyarr) self._validate_read_indexer(keyarr, indexer, o._get_axis_number(axis), raise_missing=raise_missing) return keyarr, indexer def _getitem_iterable(self, key, axis=None): """ Index current object with an an iterable key (which can be a boolean indexer, or a collection of keys). Parameters ---------- key : iterable Target labels, or boolean indexer axis: int, default None Dimension on which the indexing is being made Raises ------ KeyError If no key was found. Will change in the future to raise if not all keys were found. IndexingError If the boolean indexer is unalignable with the object being indexed. Returns ------- scalar, DataFrame, or Series: indexed value(s), """ if axis is None: axis = self.axis or 0 self._validate_key(key, axis) labels = self.obj._get_axis(axis) if com.is_bool_indexer(key): # A boolean indexer key = check_bool_indexer(labels, key) inds, = key.nonzero() return self.obj._take(inds, axis=axis) else: # A collection of keys keyarr, indexer = self._get_listlike_indexer(key, axis, raise_missing=False) return self.obj._reindex_with_indexers({axis: [keyarr, indexer]}, copy=True, allow_dups=True) def _validate_read_indexer(self, key, indexer, axis, raise_missing=False): """ Check that indexer can be used to return a result (e.g. at least one element was found, unless the list of keys was actually empty). Parameters ---------- key : list-like Target labels (only used to show correct error message) indexer: array-like of booleans Indices corresponding to the key (with -1 indicating not found) axis: int Dimension on which the indexing is being made raise_missing: bool Whether to raise a KeyError if some labels are not found. Will be removed in the future, and then this method will always behave as if raise_missing=True. Raises ------ KeyError If at least one key was requested but none was found, and raise_missing=True. """ ax = self.obj._get_axis(axis) if len(key) == 0: return # Count missing values: missing = (indexer < 0).sum() if missing: if missing == len(indexer): raise KeyError( u"None of [{key}] are in the [{axis}]".format( key=key, axis=self.obj._get_axis_name(axis))) # We (temporarily) allow for some missing keys with .loc, except in # some cases (e.g. setting) in which "raise_missing" will be False if not(self.name == 'loc' and not raise_missing): not_found = list(set(key) - set(ax)) raise KeyError("{} not in index".format(not_found)) # we skip the warning on Categorical/Interval # as this check is actually done (check for # non-missing values), but a bit later in the # code, so we want to avoid warning & then # just raising _missing_key_warning = textwrap.dedent(""" Passing list-likes to .loc or [] with any missing label will raise KeyError in the future, you can use .reindex() as an alternative. See the documentation here: https://pandas.pydata.org/pandas-docs/stable/indexing.html#deprecate-loc-reindex-listlike""") # noqa if not (ax.is_categorical() or ax.is_interval()): warnings.warn(_missing_key_warning, FutureWarning, stacklevel=6) def _convert_to_indexer(self, obj, axis=None, is_setter=False, raise_missing=False): """ Convert indexing key into something we can use to do actual fancy indexing on an ndarray Examples ix[:5] -> slice(0, 5) ix[[1,2,3]] -> [1,2,3] ix[['foo', 'bar', 'baz']] -> [i, j, k] (indices of foo, bar, baz) Going by Zen of Python? 'In the face of ambiguity, refuse the temptation to guess.' raise AmbiguousIndexError with integer labels? - No, prefer label-based indexing """ if axis is None: axis = self.axis or 0 labels = self.obj._get_axis(axis) if isinstance(obj, slice): return self._convert_slice_indexer(obj, axis) # try to find out correct indexer, if not type correct raise try: obj = self._convert_scalar_indexer(obj, axis) except TypeError: # but we will allow setting if is_setter: pass # see if we are positional in nature is_int_index = labels.is_integer() is_int_positional = is_integer(obj) and not is_int_index # if we are a label return me try: return labels.get_loc(obj) except LookupError: if isinstance(obj, tuple) and isinstance(labels, MultiIndex): if is_setter and len(obj) == labels.nlevels: return {'key': obj} raise except TypeError: pass except (ValueError): if not is_int_positional: raise # a positional if is_int_positional: # if we are setting and its not a valid location # its an insert which fails by definition if is_setter: # always valid if self.name == 'loc': return {'key': obj} # a positional if (obj >= self.obj.shape[axis] and not isinstance(labels, MultiIndex)): raise ValueError("cannot set by positional indexing with " "enlargement") return obj if is_nested_tuple(obj, labels): return labels.get_locs(obj) elif is_list_like_indexer(obj): if com.is_bool_indexer(obj): obj = check_bool_indexer(labels, obj) inds, = obj.nonzero() return inds else: # When setting, missing keys are not allowed, even with .loc: kwargs = {'raise_missing': True if is_setter else raise_missing} return self._get_listlike_indexer(obj, axis, **kwargs)[1] else: try: return labels.get_loc(obj) except LookupError: # allow a not found key only if we are a setter if not is_list_like_indexer(obj) and is_setter: return {'key': obj} raise def _tuplify(self, loc): tup = [slice(None, None) for _ in range(self.ndim)] tup[0] = loc return tuple(tup) def _get_slice_axis(self, slice_obj, axis=None): obj = self.obj if axis is None: axis = self.axis or 0 if not need_slice(slice_obj): return obj.copy(deep=False) indexer = self._convert_slice_indexer(slice_obj, axis) if isinstance(indexer, slice): return self._slice(indexer, axis=axis, kind='iloc') else: return self.obj._take(indexer, axis=axis) class _IXIndexer(_NDFrameIndexer): """A primarily label-location based indexer, with integer position fallback. Warning: Starting in 0.20.0, the .ix indexer is deprecated, in favor of the more strict .iloc and .loc indexers. ``.ix[]`` supports mixed integer and label based access. It is primarily label based, but will fall back to integer positional access unless the corresponding axis is of integer type. ``.ix`` is the most general indexer and will support any of the inputs in ``.loc`` and ``.iloc``. ``.ix`` also supports floating point label schemes. ``.ix`` is exceptionally useful when dealing with mixed positional and label based hierarchical indexes. However, when an axis is integer based, ONLY label based access and not positional access is supported. Thus, in such cases, it's usually better to be explicit and use ``.iloc`` or ``.loc``. See more at :ref:`Advanced Indexing <advanced>`. """ def __init__(self, name, obj): _ix_deprecation_warning = textwrap.dedent(""" .ix is deprecated. Please use .loc for label based indexing or .iloc for positional indexing See the documentation here: http://pandas.pydata.org/pandas-docs/stable/indexing.html#ix-indexer-is-deprecated""") # noqa warnings.warn(_ix_deprecation_warning, DeprecationWarning, stacklevel=2) super(_IXIndexer, self).__init__(name, obj) @Appender(_NDFrameIndexer._validate_key.__doc__) def _validate_key(self, key, axis): if isinstance(key, slice): return True elif com.is_bool_indexer(key): return True elif is_list_like_indexer(key): return True else: self._convert_scalar_indexer(key, axis) return True def _convert_for_reindex(self, key, axis=None): """ Transform a list of keys into a new array ready to be used as axis of the object we return (e.g. including NaNs). Parameters ---------- key : list-like Target labels axis: int Where the indexing is being made Returns ------- list-like of labels """ if axis is None: axis = self.axis or 0 labels = self.obj._get_axis(axis) if com.is_bool_indexer(key): key = check_bool_indexer(labels, key) return labels[key] if isinstance(key, Index): keyarr = labels._convert_index_indexer(key) else: # asarray can be unsafe, NumPy strings are weird keyarr = com.asarray_tuplesafe(key) if is_integer_dtype(keyarr): # Cast the indexer to uint64 if possible so # that the values returned from indexing are # also uint64. keyarr = labels._convert_arr_indexer(keyarr) if not labels.is_integer(): keyarr = ensure_platform_int(keyarr) return labels.take(keyarr) return keyarr class _LocationIndexer(_NDFrameIndexer): _exception = Exception def __getitem__(self, key): if type(key) is tuple: key = tuple(com.apply_if_callable(x, self.obj) for x in key) try: if self._is_scalar_access(key): return self._getitem_scalar(key) except (KeyError, IndexError, AttributeError): pass return self._getitem_tuple(key) else: # we by definition only have the 0th axis axis = self.axis or 0 maybe_callable = com.apply_if_callable(key, self.obj) return self._getitem_axis(maybe_callable, axis=axis) def _is_scalar_access(self, key): raise NotImplementedError() def _getitem_scalar(self, key): raise NotImplementedError() def _getitem_axis(self, key, axis=None): raise NotImplementedError() def _getbool_axis(self, key, axis=None): if axis is None: axis = self.axis or 0 labels = self.obj._get_axis(axis) key = check_bool_indexer(labels, key) inds, = key.nonzero() try: return self.obj._take(inds, axis=axis) except Exception as detail: raise self._exception(detail) def _get_slice_axis(self, slice_obj, axis=None): """ this is pretty simple as we just have to deal with labels """ if axis is None: axis = self.axis or 0 obj = self.obj if not need_slice(slice_obj): return obj.copy(deep=False) labels = obj._get_axis(axis) indexer = labels.slice_indexer(slice_obj.start, slice_obj.stop, slice_obj.step, kind=self.name) if isinstance(indexer, slice): return self._slice(indexer, axis=axis, kind='iloc') else: return self.obj._take(indexer, axis=axis) class _LocIndexer(_LocationIndexer): """ Access a group of rows and columns by label(s) or a boolean array. ``.loc[]`` is primarily label based, but may also be used with a boolean array. Allowed inputs are: - A single label, e.g. ``5`` or ``'a'``, (note that ``5`` is interpreted as a *label* of the index, and **never** as an integer position along the index). - A list or array of labels, e.g. ``['a', 'b', 'c']``. - A slice object with labels, e.g. ``'a':'f'``. .. warning:: Note that contrary to usual python slices, **both** the start and the stop are included - A boolean array of the same length as the axis being sliced, e.g. ``[True, False, True]``. - A ``callable`` function with one argument (the calling Series, DataFrame or Panel) and that returns valid output for indexing (one of the above) See more at :ref:`Selection by Label <indexing.label>` See Also -------- DataFrame.at : Access a single value for a row/column label pair DataFrame.iloc : Access group of rows and columns by integer position(s) DataFrame.xs : Returns a cross-section (row(s) or column(s)) from the Series/DataFrame. Series.loc : Access group of values using labels Examples -------- **Getting values** >>> df = pd.DataFrame([[1, 2], [4, 5], [7, 8]], ... index=['cobra', 'viper', 'sidewinder'], ... columns=['max_speed', 'shield']) >>> df max_speed shield cobra 1 2 viper 4 5 sidewinder 7 8 Single label. Note this returns the row as a Series. >>> df.loc['viper'] max_speed 4 shield 5 Name: viper, dtype: int64 List of labels. Note using ``[[]]`` returns a DataFrame. >>> df.loc[['viper', 'sidewinder']] max_speed shield viper 4 5 sidewinder 7 8 Single label for row and column >>> df.loc['cobra', 'shield'] 2 Slice with labels for row and single label for column. As mentioned above, note that both the start and stop of the slice are included. >>> df.loc['cobra':'viper', 'max_speed'] cobra 1 viper 4 Name: max_speed, dtype: int64 Boolean list with the same length as the row axis >>> df.loc[[False, False, True]] max_speed shield sidewinder 7 8 Conditional that returns a boolean Series >>> df.loc[df['shield'] > 6] max_speed shield sidewinder 7 8 Conditional that returns a boolean Series with column labels specified >>> df.loc[df['shield'] > 6, ['max_speed']] max_speed sidewinder 7 Callable that returns a boolean Series >>> df.loc[lambda df: df['shield'] == 8] max_speed shield sidewinder 7 8 **Setting values** Set value for all items matching the list of labels >>> df.loc[['viper', 'sidewinder'], ['shield']] = 50 >>> df max_speed shield cobra 1 2 viper 4 50 sidewinder 7 50 Set value for an entire row >>> df.loc['cobra'] = 10 >>> df max_speed shield cobra 10 10 viper 4 50 sidewinder 7 50 Set value for an entire column >>> df.loc[:, 'max_speed'] = 30 >>> df max_speed shield cobra 30 10 viper 30 50 sidewinder 30 50 Set value for rows matching callable condition >>> df.loc[df['shield'] > 35] = 0 >>> df max_speed shield cobra 30 10 viper 0 0 sidewinder 0 0 **Getting values on a DataFrame with an index that has integer labels** Another example using integers for the index >>> df = pd.DataFrame([[1, 2], [4, 5], [7, 8]], ... index=[7, 8, 9], columns=['max_speed', 'shield']) >>> df max_speed shield 7 1 2 8 4 5 9 7 8 Slice with integer labels for rows. As mentioned above, note that both the start and stop of the slice are included. >>> df.loc[7:9] max_speed shield 7 1 2 8 4 5 9 7 8 **Getting values with a MultiIndex** A number of examples using a DataFrame with a MultiIndex >>> tuples = [ ... ('cobra', 'mark i'), ('cobra', 'mark ii'), ... ('sidewinder', 'mark i'), ('sidewinder', 'mark ii'), ... ('viper', 'mark ii'), ('viper', 'mark iii') ... ] >>> index = pd.MultiIndex.from_tuples(tuples) >>> values = [[12, 2], [0, 4], [10, 20], ... [1, 4], [7, 1], [16, 36]] >>> df = pd.DataFrame(values, columns=['max_speed', 'shield'], index=index) >>> df max_speed shield cobra mark i 12 2 mark ii 0 4 sidewinder mark i 10 20 mark ii 1 4 viper mark ii 7 1 mark iii 16 36 Single label. Note this returns a DataFrame with a single index. >>> df.loc['cobra'] max_speed shield mark i 12 2 mark ii 0 4 Single index tuple. Note this returns a Series. >>> df.loc[('cobra', 'mark ii')] max_speed 0 shield 4 Name: (cobra, mark ii), dtype: int64 Single label for row and column. Similar to passing in a tuple, this returns a Series. >>> df.loc['cobra', 'mark i'] max_speed 12 shield 2 Name: (cobra, mark i), dtype: int64 Single tuple. Note using ``[[]]`` returns a DataFrame. >>> df.loc[[('cobra', 'mark ii')]] max_speed shield cobra mark ii 0 4 Single tuple for the index with a single label for the column >>> df.loc[('cobra', 'mark i'), 'shield'] 2 Slice from index tuple to single label >>> df.loc[('cobra', 'mark i'):'viper'] max_speed shield cobra mark i 12 2 mark ii 0 4 sidewinder mark i 10 20 mark ii 1 4 viper mark ii 7 1 mark iii 16 36 Slice from index tuple to index tuple >>> df.loc[('cobra', 'mark i'):('viper', 'mark ii')] max_speed shield cobra mark i 12 2 mark ii 0 4 sidewinder mark i 10 20 mark ii 1 4 viper mark ii 7 1 Raises ------ KeyError: when any items are not found """ _valid_types = ("labels (MUST BE IN THE INDEX), slices of labels (BOTH " "endpoints included! Can be slices of integers if the " "index is integers), listlike of labels, boolean") _exception = KeyError @Appender(_NDFrameIndexer._validate_key.__doc__) def _validate_key(self, key, axis): # valid for a collection of labels (we check their presence later) # slice of labels (where start-end in labels) # slice of integers (only if in the labels) # boolean if isinstance(key, slice): return if com.is_bool_indexer(key): return if not is_list_like_indexer(key): self._convert_scalar_indexer(key, axis) def _is_scalar_access(self, key): # this is a shortcut accessor to both .loc and .iloc # that provide the equivalent access of .at and .iat # a) avoid getting things via sections and (to minimize dtype changes) # b) provide a performant path if not hasattr(key, '__len__'): return False if len(key) != self.ndim: return False for i, k in enumerate(key): if not is_scalar(k): return False ax = self.obj.axes[i] if isinstance(ax, MultiIndex): return False if not ax.is_unique: return False return True def _getitem_scalar(self, key): # a fast-path to scalar access # if not, raise values = self.obj._get_value(*key) return values def _get_partial_string_timestamp_match_key(self, key, labels): """Translate any partial string timestamp matches in key, returning the new key (GH 10331)""" if isinstance(labels, MultiIndex): if (isinstance(key, compat.string_types) and labels.levels[0].is_all_dates): # Convert key '2016-01-01' to # ('2016-01-01'[, slice(None, None, None)]+) key = tuple([key] + [slice(None)] * (len(labels.levels) - 1)) if isinstance(key, tuple): # Convert (..., '2016-01-01', ...) in tuple to # (..., slice('2016-01-01', '2016-01-01', None), ...) new_key = [] for i, component in enumerate(key): if (isinstance(component, compat.string_types) and labels.levels[i].is_all_dates): new_key.append(slice(component, component, None)) else: new_key.append(component) key = tuple(new_key) return key def _getitem_axis(self, key, axis=None): if axis is None: axis = self.axis or 0 if is_iterator(key): key = list(key) labels = self.obj._get_axis(axis) key = self._get_partial_string_timestamp_match_key(key, labels) if isinstance(key, slice): self._validate_key(key, axis) return self._get_slice_axis(key, axis=axis) elif com.is_bool_indexer(key): return self._getbool_axis(key, axis=axis) elif is_list_like_indexer(key): # convert various list-like indexers # to a list of keys # we will use the *values* of the object # and NOT the index if its a PandasObject if isinstance(labels, MultiIndex): if isinstance(key, (ABCSeries, np.ndarray)) and key.ndim <= 1: # Series, or 0,1 ndim ndarray # GH 14730 key = list(key) elif isinstance(key, ABCDataFrame): # GH 15438 raise NotImplementedError("Indexing a MultiIndex with a " "DataFrame key is not " "implemented") elif hasattr(key, 'ndim') and key.ndim > 1: raise NotImplementedError("Indexing a MultiIndex with a " "multidimensional key is not " "implemented") if (not isinstance(key, tuple) and len(key) > 1 and not isinstance(key[0], tuple)): key = tuple([key]) # an iterable multi-selection if not (isinstance(key, tuple) and isinstance(labels, MultiIndex)): if hasattr(key, 'ndim') and key.ndim > 1: raise ValueError('Cannot index with multidimensional key') return self._getitem_iterable(key, axis=axis) # nested tuple slicing if is_nested_tuple(key, labels): locs = labels.get_locs(key) indexer = [slice(None)] * self.ndim indexer[axis] = locs return self.obj.iloc[tuple(indexer)] # fall thru to straight lookup self._validate_key(key, axis) return self._get_label(key, axis=axis) class _iLocIndexer(_LocationIndexer): """ Purely integer-location based indexing for selection by position. ``.iloc[]`` is primarily integer position based (from ``0`` to ``length-1`` of the axis), but may also be used with a boolean array. Allowed inputs are: - An integer, e.g. ``5``. - A list or array of integers, e.g. ``[4, 3, 0]``. - A slice object with ints, e.g. ``1:7``. - A boolean array. - A ``callable`` function with one argument (the calling Series, DataFrame or Panel) and that returns valid output for indexing (one of the above). This is useful in method chains, when you don't have a reference to the calling object, but would like to base your selection on some value. ``.iloc`` will raise ``IndexError`` if a requested indexer is out-of-bounds, except *slice* indexers which allow out-of-bounds indexing (this conforms with python/numpy *slice* semantics). See more at ref:`Selection by Position <indexing.integer>`. See Also -------- DataFrame.iat : Fast integer location scalar accessor. DataFrame.loc : Purely label-location based indexer for selection by label. Series.iloc : Purely integer-location based indexing for selection by position. Examples -------- >>> mydict = [{'a': 1, 'b': 2, 'c': 3, 'd': 4}, ... {'a': 100, 'b': 200, 'c': 300, 'd': 400}, ... {'a': 1000, 'b': 2000, 'c': 3000, 'd': 4000 }] >>> df = pd.DataFrame(mydict) >>> df a b c d 0 1 2 3 4 1 100 200 300 400 2 1000 2000 3000 4000 **Indexing just the rows** With a scalar integer. >>> type(df.iloc[0]) <class 'pandas.core.series.Series'> >>> df.iloc[0] a 1 b 2 c 3 d 4 Name: 0, dtype: int64 With a list of integers. >>> df.iloc[[0]] a b c d 0 1 2 3 4 >>> type(df.iloc[[0]]) <class 'pandas.core.frame.DataFrame'> >>> df.iloc[[0, 1]] a b c d 0 1 2 3 4 1 100 200 300 400 With a `slice` object. >>> df.iloc[:3] a b c d 0 1 2 3 4 1 100 200 300 400 2 1000 2000 3000 4000 With a boolean mask the same length as the index. >>> df.iloc[[True, False, True]] a b c d 0 1 2 3 4 2 1000 2000 3000 4000 With a callable, useful in method chains. The `x` passed to the ``lambda`` is the DataFrame being sliced. This selects the rows whose index label even. >>> df.iloc[lambda x: x.index % 2 == 0] a b c d 0 1 2 3 4 2 1000 2000 3000 4000 **Indexing both axes** You can mix the indexer types for the index and columns. Use ``:`` to select the entire axis. With scalar integers. >>> df.iloc[0, 1] 2 With lists of integers. >>> df.iloc[[0, 2], [1, 3]] b d 0 2 4 2 2000 4000 With `slice` objects. >>> df.iloc[1:3, 0:3] a b c 1 100 200 300 2 1000 2000 3000 With a boolean array whose length matches the columns. >>> df.iloc[:, [True, False, True, False]] a c 0 1 3 1 100 300 2 1000 3000 With a callable function that expects the Series or DataFrame. >>> df.iloc[:, lambda df: [0, 2]] a c 0 1 3 1 100 300 2 1000 3000 """ _valid_types = ("integer, integer slice (START point is INCLUDED, END " "point is EXCLUDED), listlike of integers, boolean array") _exception = IndexError def _validate_key(self, key, axis): if com.is_bool_indexer(key): if hasattr(key, 'index') and isinstance(key.index, Index): if key.index.inferred_type == 'integer': raise NotImplementedError("iLocation based boolean " "indexing on an integer type " "is not available") raise ValueError("iLocation based boolean indexing cannot use " "an indexable as a mask") return if isinstance(key, slice): return elif is_integer(key): self._validate_integer(key, axis) elif isinstance(key, tuple): # a tuple should already have been caught by this point # so don't treat a tuple as a valid indexer raise IndexingError('Too many indexers') elif is_list_like_indexer(key): # check that the key does not exceed the maximum size of the index arr = np.array(key) len_axis = len(self.obj._get_axis(axis)) if len(arr) and (arr.max() >= len_axis or arr.min() < -len_axis): raise IndexError("positional indexers are out-of-bounds") else: raise ValueError("Can only index by location with " "a [{types}]".format(types=self._valid_types)) def _has_valid_setitem_indexer(self, indexer): self._has_valid_positional_setitem_indexer(indexer) def _is_scalar_access(self, key): # this is a shortcut accessor to both .loc and .iloc # that provide the equivalent access of .at and .iat # a) avoid getting things via sections and (to minimize dtype changes) # b) provide a performant path if not hasattr(key, '__len__'): return False if len(key) != self.ndim: return False for i, k in enumerate(key): if not is_integer(k): return False ax = self.obj.axes[i] if not ax.is_unique: return False return True def _getitem_scalar(self, key): # a fast-path to scalar access # if not, raise values = self.obj._get_value(*key, takeable=True) return values def _validate_integer(self, key, axis): """ Check that 'key' is a valid position in the desired axis. Parameters ---------- key : int Requested position axis : int Desired axis Returns ------- None Raises ------ IndexError If 'key' is not a valid position in axis 'axis' """ len_axis = len(self.obj._get_axis(axis)) if key >= len_axis or key < -len_axis: raise IndexError("single positional indexer is out-of-bounds") def _getitem_tuple(self, tup): self._has_valid_tuple(tup) try: return self._getitem_lowerdim(tup) except IndexingError: pass retval = self.obj axis = 0 for i, key in enumerate(tup): if i >= self.obj.ndim: raise IndexingError('Too many indexers') if com.is_null_slice(key): axis += 1 continue retval = getattr(retval, self.name)._getitem_axis(key, axis=axis) # if the dim was reduced, then pass a lower-dim the next time if retval.ndim < self.ndim: axis -= 1 # try to get for the next axis axis += 1 return retval def _get_slice_axis(self, slice_obj, axis=None): if axis is None: axis = self.axis or 0 obj = self.obj if not need_slice(slice_obj): return obj.copy(deep=False) slice_obj = self._convert_slice_indexer(slice_obj, axis) if isinstance(slice_obj, slice): return self._slice(slice_obj, axis=axis, kind='iloc') else: return self.obj._take(slice_obj, axis=axis) def _get_list_axis(self, key, axis=None): """ Return Series values by list or array of integers Parameters ---------- key : list-like positional indexer axis : int (can only be zero) Returns ------- Series object """ if axis is None: axis = self.axis or 0 try: return self.obj._take(key, axis=axis) except IndexError: # re-raise with different error message raise IndexError("positional indexers are out-of-bounds") def _getitem_axis(self, key, axis=None): if axis is None: axis = self.axis or 0 if isinstance(key, slice): return self._get_slice_axis(key, axis=axis) if isinstance(key, list): key = np.asarray(key) if com.is_bool_indexer(key): self._validate_key(key, axis) return self._getbool_axis(key, axis=axis) # a list of integers elif is_list_like_indexer(key): return self._get_list_axis(key, axis=axis) # a single integer else: if not is_integer(key): raise TypeError("Cannot index by location index with a " "non-integer key") # validate the location self._validate_integer(key, axis) return self._get_loc(key, axis=axis) def _convert_to_indexer(self, obj, axis=None, is_setter=False): """ much simpler as we only have to deal with our valid types """ if axis is None: axis = self.axis or 0 # make need to convert a float key if isinstance(obj, slice): return self._convert_slice_indexer(obj, axis) elif is_float(obj): return self._convert_scalar_indexer(obj, axis) try: self._validate_key(obj, axis) return obj except ValueError: raise ValueError("Can only index by location with " "a [{types}]".format(types=self._valid_types)) class _ScalarAccessIndexer(_NDFrameIndexer): """ access scalars quickly """ def _convert_key(self, key, is_setter=False): return list(key) def __getitem__(self, key): if not isinstance(key, tuple): # we could have a convertible item here (e.g. Timestamp) if not is_list_like_indexer(key): key = tuple([key]) else: raise ValueError('Invalid call for scalar access (getting)!') key = self._convert_key(key) return self.obj._get_value(*key, takeable=self._takeable) def __setitem__(self, key, value): if isinstance(key, tuple): key = tuple(com.apply_if_callable(x, self.obj) for x in key) else: # scalar callable may return tuple key = com.apply_if_callable(key, self.obj) if not isinstance(key, tuple): key = self._tuplify(key) if len(key) != self.obj.ndim: raise ValueError('Not enough indexers for scalar access ' '(setting)!') key = list(self._convert_key(key, is_setter=True)) key.append(value) self.obj._set_value(*key, takeable=self._takeable) class _AtIndexer(_ScalarAccessIndexer): """ Access a single value for a row/column label pair. Similar to ``loc``, in that both provide label-based lookups. Use ``at`` if you only need to get or set a single value in a DataFrame or Series. See Also -------- DataFrame.iat : Access a single value for a row/column pair by integer position DataFrame.loc : Access a group of rows and columns by label(s) Series.at : Access a single value using a label Examples -------- >>> df = pd.DataFrame([[0, 2, 3], [0, 4, 1], [10, 20, 30]], ... index=[4, 5, 6], columns=['A', 'B', 'C']) >>> df A B C 4 0 2 3 5 0 4 1 6 10 20 30 Get value at specified row/column pair >>> df.at[4, 'B'] 2 Set value at specified row/column pair >>> df.at[4, 'B'] = 10 >>> df.at[4, 'B'] 10 Get value within a Series >>> df.loc[5].at['B'] 4 Raises ------ KeyError When label does not exist in DataFrame """ _takeable = False def _convert_key(self, key, is_setter=False): """ require they keys to be the same type as the index (so we don't fallback) """ # allow arbitrary setting if is_setter: return list(key) for ax, i in zip(self.obj.axes, key): if ax.is_integer(): if not is_integer(i): raise ValueError("At based indexing on an integer index " "can only have integer indexers") else: if is_integer(i) and not ax.holds_integer(): raise ValueError("At based indexing on an non-integer " "index can only have non-integer " "indexers") return key class _iAtIndexer(_ScalarAccessIndexer): """ Access a single value for a row/column pair by integer position. Similar to ``iloc``, in that both provide integer-based lookups. Use ``iat`` if you only need to get or set a single value in a DataFrame or Series. See Also -------- DataFrame.at : Access a single value for a row/column label pair DataFrame.loc : Access a group of rows and columns by label(s) DataFrame.iloc : Access a group of rows and columns by integer position(s) Examples -------- >>> df = pd.DataFrame([[0, 2, 3], [0, 4, 1], [10, 20, 30]], ... columns=['A', 'B', 'C']) >>> df A B C 0 0 2 3 1 0 4 1 2 10 20 30 Get value at specified row/column pair >>> df.iat[1, 2] 1 Set value at specified row/column pair >>> df.iat[1, 2] = 10 >>> df.iat[1, 2] 10 Get value within a series >>> df.loc[0].iat[1] 2 Raises ------ IndexError When integer position is out of bounds """ _takeable = True def _has_valid_setitem_indexer(self, indexer): self._has_valid_positional_setitem_indexer(indexer) def _convert_key(self, key, is_setter=False): """ require integer args (and convert to label arguments) """ for a, i in zip(self.obj.axes, key): if not is_integer(i): raise ValueError("iAt based indexing can only have integer " "indexers") return key def length_of_indexer(indexer, target=None): """return the length of a single non-tuple indexer which could be a slice """ if target is not None and isinstance(indexer, slice): target_len = len(target) start = indexer.start stop = indexer.stop step = indexer.step if start is None: start = 0 elif start < 0: start += target_len if stop is None or stop > target_len: stop = target_len elif stop < 0: stop += target_len if step is None: step = 1 elif step < 0: step = -step return (stop - start + step - 1) // step elif isinstance(indexer, (ABCSeries, Index, np.ndarray, list)): return len(indexer) elif not is_list_like_indexer(indexer): return 1 raise AssertionError("cannot find the length of the indexer") def convert_to_index_sliceable(obj, key): """if we are index sliceable, then return my slicer, otherwise return None """ idx = obj.index if isinstance(key, slice): return idx._convert_slice_indexer(key, kind='getitem') elif isinstance(key, compat.string_types): # we are an actual column if obj._data.items.contains(key): return None # We might have a datetimelike string that we can translate to a # slice here via partial string indexing if idx.is_all_dates: try: return idx._get_string_slice(key) except (KeyError, ValueError, NotImplementedError): return None return None def check_bool_indexer(ax, key): # boolean indexing, need to check that the data are aligned, otherwise # disallowed # this function assumes that is_bool_indexer(key) == True result = key if isinstance(key, ABCSeries) and not key.index.equals(ax): result = result.reindex(ax) mask = isna(result._values) if mask.any(): raise IndexingError('Unalignable boolean Series provided as ' 'indexer (index of the boolean Series and of ' 'the indexed object do not match') result = result.astype(bool)._values elif is_sparse(result): result = result.to_dense() result = np.asarray(result, dtype=bool) else: # is_bool_indexer has already checked for nulls in the case of an # object array key, so no check needed here result = np.asarray(result, dtype=bool) return result def check_setitem_lengths(indexer, value, values): """Validate that value and indexer are the same length. An special-case is allowed for when the indexer is a boolean array and the number of true values equals the length of ``value``. In this case, no exception is raised. Parameters ---------- indexer : sequence The key for the setitem value : array-like The value for the setitem values : array-like The values being set into Returns ------- None Raises ------ ValueError When the indexer is an ndarray or list and the lengths don't match. """ # boolean with truth values == len of the value is ok too if isinstance(indexer, (np.ndarray, list)): if is_list_like(value) and len(indexer) != len(value): if not (isinstance(indexer, np.ndarray) and indexer.dtype == np.bool_ and len(indexer[indexer]) == len(value)): raise ValueError("cannot set using a list-like indexer " "with a different length than the value") # slice elif isinstance(indexer, slice): if is_list_like(value) and len(values): if len(value) != length_of_indexer(indexer, values): raise ValueError("cannot set using a slice indexer with a " "different length than the value") def convert_missing_indexer(indexer): """ reverse convert a missing indexer, which is a dict return the scalar indexer and a boolean indicating if we converted """ if isinstance(indexer, dict): # a missing key (but not a tuple indexer) indexer = indexer['key'] if isinstance(indexer, bool): raise KeyError("cannot use a single bool to index into setitem") return indexer, True return indexer, False def convert_from_missing_indexer_tuple(indexer, axes): """ create a filtered indexer that doesn't have any missing indexers """ def get_indexer(_i, _idx): return (axes[_i].get_loc(_idx['key']) if isinstance(_idx, dict) else _idx) return tuple(get_indexer(_i, _idx) for _i, _idx in enumerate(indexer)) def maybe_convert_indices(indices, n): """ Attempt to convert indices into valid, positive indices. If we have negative indices, translate to positive here. If we have indices that are out-of-bounds, raise an IndexError. Parameters ---------- indices : array-like The array of indices that we are to convert. n : int The number of elements in the array that we are indexing. Returns ------- valid_indices : array-like An array-like of positive indices that correspond to the ones that were passed in initially to this function. Raises ------ IndexError : one of the converted indices either exceeded the number of elements (specified by `n`) OR was still negative. """ if isinstance(indices, list): indices = np.array(indices) if len(indices) == 0: # If list is empty, np.array will return float and cause indexing # errors. return np.empty(0, dtype=np.intp) mask = indices < 0 if mask.any(): indices = indices.copy() indices[mask] += n mask = (indices >= n) | (indices < 0) if mask.any(): raise IndexError("indices are out-of-bounds") return indices def validate_indices(indices, n): """Perform bounds-checking for an indexer. -1 is allowed for indicating missing values. Parameters ---------- indices : ndarray n : int length of the array being indexed Raises ------ ValueError Examples -------- >>> validate_indices([1, 2], 3) # OK >>> validate_indices([1, -2], 3) ValueError >>> validate_indices([1, 2, 3], 3) IndexError >>> validate_indices([-1, -1], 0) # OK >>> validate_indices([0, 1], 0) IndexError """ if len(indices): min_idx = indices.min() if min_idx < -1: msg = ("'indices' contains values less than allowed ({} < {})" .format(min_idx, -1)) raise ValueError(msg) max_idx = indices.max() if max_idx >= n: raise IndexError("indices are out-of-bounds") def maybe_convert_ix(*args): """ We likely want to take the cross-product """ ixify = True for arg in args: if not isinstance(arg, (np.ndarray, list, ABCSeries, Index)): ixify = False if ixify: return np.ix_(*args) else: return args def is_nested_tuple(tup, labels): # check for a compatible nested tuple and multiindexes among the axes if not isinstance(tup, tuple): return False for i, k in enumerate(tup): if is_list_like(k) or isinstance(k, slice): return isinstance(labels, MultiIndex) return False def is_list_like_indexer(key): # allow a list_like, but exclude NamedTuples which can be indexers return is_list_like(key) and not (isinstance(key, tuple) and type(key) is not tuple) def is_label_like(key): # select a label or row return not isinstance(key, slice) and not is_list_like_indexer(key) def need_slice(obj): return (obj.start is not None or obj.stop is not None or (obj.step is not None and obj.step != 1)) def maybe_droplevels(index, key): # drop levels original_index = index if isinstance(key, tuple): for _ in key: try: index = index.droplevel(0) except ValueError: # we have dropped too much, so back out return original_index else: try: index = index.droplevel(0) except ValueError: pass return index def _non_reducing_slice(slice_): """ Ensurse that a slice doesn't reduce to a Series or Scalar. Any user-paseed `subset` should have this called on it to make sure we're always working with DataFrames. """ # default to column slice, like DataFrame # ['A', 'B'] -> IndexSlices[:, ['A', 'B']] kinds = tuple(list(compat.string_types) + [ABCSeries, np.ndarray, Index, list]) if isinstance(slice_, kinds): slice_ = IndexSlice[:, slice_] def pred(part): # true when slice does *not* reduce return isinstance(part, slice) or is_list_like(part) if not is_list_like(slice_): if not isinstance(slice_, slice): # a 1-d slice, like df.loc[1] slice_ = [[slice_]] else: # slice(a, b, c) slice_ = [slice_] # to tuplize later else: slice_ = [part if pred(part) else [part] for part in slice_] return tuple(slice_) def _maybe_numeric_slice(df, slice_, include_bool=False): """ want nice defaults for background_gradient that don't break with non-numeric data. But if slice_ is passed go with that. """ if slice_ is None: dtypes = [np.number] if include_bool: dtypes.append(bool) slice_ = IndexSlice[:, df.select_dtypes(include=dtypes).columns] return slice_
bsd-3-clause
jlramalheira/sudoku
tests/io_tests.py
1
1224
import unittest import os.path import math import sudoku.io import networkx as nx import matplotlib.pyplot as plt class IoTests(unittest.TestCase): def test_read(self): filepath = os.path.join( os.path.dirname(__file__), '../rsc/9/sample-1.sdk') graph = sudoku.io.read(filepath) order = int(math.pow(len(graph.node), 1 / 4)) node_degree = (3 * (order ** 2)) - (2 * (order - 1)) - 3 nodes_degree = [len(graph.neighbors(n)) for n in graph.node] self.assertTrue( expr=all([d == nodes_degree[0] for d in nodes_degree]), msg='All vertexes must have the same degree.') self.assertTrue( expr=nodes_degree[0] == node_degree, msg='The vertex degree must be') def test_read_draw(self): filepath = os.path.join( os.path.dirname(__file__), '../rsc/9/sample-1.sdk') nx.draw_circular(graph) graph = sudoku.io.read(filepath) plt.show() def test_write(self): filepath = os.path.join( os.path.dirname(__file__), '../rsc/9/sample-1.sdk') graph = sudoku.io.read(filepath) sudoku.io.print(graph)
mit
ppries/tensorflow
tensorflow/examples/tutorials/word2vec/word2vec_basic.py
17
9144
# Copyright 2015 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== from __future__ import absolute_import from __future__ import division from __future__ import print_function import collections import math import os import random import zipfile import numpy as np from six.moves import urllib from six.moves import xrange # pylint: disable=redefined-builtin import tensorflow as tf # Step 1: Download the data. url = 'http://mattmahoney.net/dc/' def maybe_download(filename, expected_bytes): """Download a file if not present, and make sure it's the right size.""" if not os.path.exists(filename): filename, _ = urllib.request.urlretrieve(url + filename, filename) statinfo = os.stat(filename) if statinfo.st_size == expected_bytes: print('Found and verified', filename) else: print(statinfo.st_size) raise Exception( 'Failed to verify ' + filename + '. Can you get to it with a browser?') return filename filename = maybe_download('text8.zip', 31344016) # Read the data into a list of strings. def read_data(filename): """Extract the first file enclosed in a zip file as a list of words""" with zipfile.ZipFile(filename) as f: data = tf.compat.as_str(f.read(f.namelist()[0])).split() return data words = read_data(filename) print('Data size', len(words)) # Step 2: Build the dictionary and replace rare words with UNK token. vocabulary_size = 50000 def build_dataset(words): count = [['UNK', -1]] count.extend(collections.Counter(words).most_common(vocabulary_size - 1)) dictionary = dict() for word, _ in count: dictionary[word] = len(dictionary) data = list() unk_count = 0 for word in words: if word in dictionary: index = dictionary[word] else: index = 0 # dictionary['UNK'] unk_count += 1 data.append(index) count[0][1] = unk_count reverse_dictionary = dict(zip(dictionary.values(), dictionary.keys())) return data, count, dictionary, reverse_dictionary data, count, dictionary, reverse_dictionary = build_dataset(words) del words # Hint to reduce memory. print('Most common words (+UNK)', count[:5]) print('Sample data', data[:10], [reverse_dictionary[i] for i in data[:10]]) data_index = 0 # Step 3: Function to generate a training batch for the skip-gram model. def generate_batch(batch_size, num_skips, skip_window): global data_index assert batch_size % num_skips == 0 assert num_skips <= 2 * skip_window batch = np.ndarray(shape=(batch_size), dtype=np.int32) labels = np.ndarray(shape=(batch_size, 1), dtype=np.int32) span = 2 * skip_window + 1 # [ skip_window target skip_window ] buffer = collections.deque(maxlen=span) for _ in range(span): buffer.append(data[data_index]) data_index = (data_index + 1) % len(data) for i in range(batch_size // num_skips): target = skip_window # target label at the center of the buffer targets_to_avoid = [skip_window] for j in range(num_skips): while target in targets_to_avoid: target = random.randint(0, span - 1) targets_to_avoid.append(target) batch[i * num_skips + j] = buffer[skip_window] labels[i * num_skips + j, 0] = buffer[target] buffer.append(data[data_index]) data_index = (data_index + 1) % len(data) return batch, labels batch, labels = generate_batch(batch_size=8, num_skips=2, skip_window=1) for i in range(8): print(batch[i], reverse_dictionary[batch[i]], '->', labels[i, 0], reverse_dictionary[labels[i, 0]]) # Step 4: Build and train a skip-gram model. batch_size = 128 embedding_size = 128 # Dimension of the embedding vector. skip_window = 1 # How many words to consider left and right. num_skips = 2 # How many times to reuse an input to generate a label. # We pick a random validation set to sample nearest neighbors. Here we limit the # validation samples to the words that have a low numeric ID, which by # construction are also the most frequent. valid_size = 16 # Random set of words to evaluate similarity on. valid_window = 100 # Only pick dev samples in the head of the distribution. valid_examples = np.random.choice(valid_window, valid_size, replace=False) num_sampled = 64 # Number of negative examples to sample. graph = tf.Graph() with graph.as_default(): # Input data. train_inputs = tf.placeholder(tf.int32, shape=[batch_size]) train_labels = tf.placeholder(tf.int32, shape=[batch_size, 1]) valid_dataset = tf.constant(valid_examples, dtype=tf.int32) # Ops and variables pinned to the CPU because of missing GPU implementation with tf.device('/cpu:0'): # Look up embeddings for inputs. embeddings = tf.Variable( tf.random_uniform([vocabulary_size, embedding_size], -1.0, 1.0)) embed = tf.nn.embedding_lookup(embeddings, train_inputs) # Construct the variables for the NCE loss nce_weights = tf.Variable( tf.truncated_normal([vocabulary_size, embedding_size], stddev=1.0 / math.sqrt(embedding_size))) nce_biases = tf.Variable(tf.zeros([vocabulary_size])) # Compute the average NCE loss for the batch. # tf.nce_loss automatically draws a new sample of the negative labels each # time we evaluate the loss. loss = tf.reduce_mean( tf.nn.nce_loss(weights=nce_weights, biases=nce_biases, labels=train_labels, inputs=embed, num_sampled=num_sampled, num_classes=vocabulary_size)) # Construct the SGD optimizer using a learning rate of 1.0. optimizer = tf.train.GradientDescentOptimizer(1.0).minimize(loss) # Compute the cosine similarity between minibatch examples and all embeddings. norm = tf.sqrt(tf.reduce_sum(tf.square(embeddings), 1, keep_dims=True)) normalized_embeddings = embeddings / norm valid_embeddings = tf.nn.embedding_lookup( normalized_embeddings, valid_dataset) similarity = tf.matmul( valid_embeddings, normalized_embeddings, transpose_b=True) # Add variable initializer. init = tf.global_variables_initializer() # Step 5: Begin training. num_steps = 100001 with tf.Session(graph=graph) as session: # We must initialize all variables before we use them. init.run() print("Initialized") average_loss = 0 for step in xrange(num_steps): batch_inputs, batch_labels = generate_batch( batch_size, num_skips, skip_window) feed_dict = {train_inputs: batch_inputs, train_labels: batch_labels} # We perform one update step by evaluating the optimizer op (including it # in the list of returned values for session.run() _, loss_val = session.run([optimizer, loss], feed_dict=feed_dict) average_loss += loss_val if step % 2000 == 0: if step > 0: average_loss /= 2000 # The average loss is an estimate of the loss over the last 2000 batches. print("Average loss at step ", step, ": ", average_loss) average_loss = 0 # Note that this is expensive (~20% slowdown if computed every 500 steps) if step % 10000 == 0: sim = similarity.eval() for i in xrange(valid_size): valid_word = reverse_dictionary[valid_examples[i]] top_k = 8 # number of nearest neighbors nearest = (-sim[i, :]).argsort()[1:top_k + 1] log_str = "Nearest to %s:" % valid_word for k in xrange(top_k): close_word = reverse_dictionary[nearest[k]] log_str = "%s %s," % (log_str, close_word) print(log_str) final_embeddings = normalized_embeddings.eval() # Step 6: Visualize the embeddings. def plot_with_labels(low_dim_embs, labels, filename='tsne.png'): assert low_dim_embs.shape[0] >= len(labels), "More labels than embeddings" plt.figure(figsize=(18, 18)) # in inches for i, label in enumerate(labels): x, y = low_dim_embs[i, :] plt.scatter(x, y) plt.annotate(label, xy=(x, y), xytext=(5, 2), textcoords='offset points', ha='right', va='bottom') plt.savefig(filename) try: from sklearn.manifold import TSNE import matplotlib.pyplot as plt tsne = TSNE(perplexity=30, n_components=2, init='pca', n_iter=5000) plot_only = 500 low_dim_embs = tsne.fit_transform(final_embeddings[:plot_only, :]) labels = [reverse_dictionary[i] for i in xrange(plot_only)] plot_with_labels(low_dim_embs, labels) except ImportError: print("Please install sklearn, matplotlib, and scipy to visualize embeddings.")
apache-2.0
djgagne/scikit-learn
sklearn/linear_model/tests/test_sgd.py
68
43439
import pickle import unittest import numpy as np import scipy.sparse as sp from sklearn.utils.testing import assert_array_equal from sklearn.utils.testing import assert_almost_equal from sklearn.utils.testing import assert_array_almost_equal from sklearn.utils.testing import assert_greater from sklearn.utils.testing import assert_less from sklearn.utils.testing import raises from sklearn.utils.testing import assert_raises from sklearn.utils.testing import assert_false, assert_true from sklearn.utils.testing import assert_equal from sklearn.utils.testing import assert_raises_regexp from sklearn import linear_model, datasets, metrics from sklearn.base import clone from sklearn.linear_model import SGDClassifier, SGDRegressor from sklearn.preprocessing import LabelEncoder, scale, MinMaxScaler class SparseSGDClassifier(SGDClassifier): def fit(self, X, y, *args, **kw): X = sp.csr_matrix(X) return super(SparseSGDClassifier, self).fit(X, y, *args, **kw) def partial_fit(self, X, y, *args, **kw): X = sp.csr_matrix(X) return super(SparseSGDClassifier, self).partial_fit(X, y, *args, **kw) def decision_function(self, X): X = sp.csr_matrix(X) return super(SparseSGDClassifier, self).decision_function(X) def predict_proba(self, X): X = sp.csr_matrix(X) return super(SparseSGDClassifier, self).predict_proba(X) class SparseSGDRegressor(SGDRegressor): def fit(self, X, y, *args, **kw): X = sp.csr_matrix(X) return SGDRegressor.fit(self, X, y, *args, **kw) def partial_fit(self, X, y, *args, **kw): X = sp.csr_matrix(X) return SGDRegressor.partial_fit(self, X, y, *args, **kw) def decision_function(self, X, *args, **kw): X = sp.csr_matrix(X) return SGDRegressor.decision_function(self, X, *args, **kw) # Test Data # test sample 1 X = np.array([[-2, -1], [-1, -1], [-1, -2], [1, 1], [1, 2], [2, 1]]) Y = [1, 1, 1, 2, 2, 2] T = np.array([[-1, -1], [2, 2], [3, 2]]) true_result = [1, 2, 2] # test sample 2; string class labels X2 = np.array([[-1, 1], [-0.75, 0.5], [-1.5, 1.5], [1, 1], [0.75, 0.5], [1.5, 1.5], [-1, -1], [0, -0.5], [1, -1]]) Y2 = ["one"] * 3 + ["two"] * 3 + ["three"] * 3 T2 = np.array([[-1.5, 0.5], [1, 2], [0, -2]]) true_result2 = ["one", "two", "three"] # test sample 3 X3 = np.array([[1, 1, 0, 0, 0, 0], [1, 1, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0], [0, 0, 1, 0, 0, 0], [0, 0, 0, 0, 1, 1], [0, 0, 0, 0, 1, 1], [0, 0, 0, 1, 0, 0], [0, 0, 0, 1, 0, 0]]) Y3 = np.array([1, 1, 1, 1, 2, 2, 2, 2]) # test sample 4 - two more or less redundent feature groups X4 = np.array([[1, 0.9, 0.8, 0, 0, 0], [1, .84, .98, 0, 0, 0], [1, .96, .88, 0, 0, 0], [1, .91, .99, 0, 0, 0], [0, 0, 0, .89, .91, 1], [0, 0, 0, .79, .84, 1], [0, 0, 0, .91, .95, 1], [0, 0, 0, .93, 1, 1]]) Y4 = np.array([1, 1, 1, 1, 2, 2, 2, 2]) iris = datasets.load_iris() # test sample 5 - test sample 1 as binary classification problem X5 = np.array([[-2, -1], [-1, -1], [-1, -2], [1, 1], [1, 2], [2, 1]]) Y5 = [1, 1, 1, 2, 2, 2] true_result5 = [0, 1, 1] # Classification Test Case class CommonTest(object): def factory(self, **kwargs): if "random_state" not in kwargs: kwargs["random_state"] = 42 return self.factory_class(**kwargs) # a simple implementation of ASGD to use for testing # uses squared loss to find the gradient def asgd(self, X, y, eta, alpha, weight_init=None, intercept_init=0.0): if weight_init is None: weights = np.zeros(X.shape[1]) else: weights = weight_init average_weights = np.zeros(X.shape[1]) intercept = intercept_init average_intercept = 0.0 decay = 1.0 # sparse data has a fixed decay of .01 if (isinstance(self, SparseSGDClassifierTestCase) or isinstance(self, SparseSGDRegressorTestCase)): decay = .01 for i, entry in enumerate(X): p = np.dot(entry, weights) p += intercept gradient = p - y[i] weights *= 1.0 - (eta * alpha) weights += -(eta * gradient * entry) intercept += -(eta * gradient) * decay average_weights *= i average_weights += weights average_weights /= i + 1.0 average_intercept *= i average_intercept += intercept average_intercept /= i + 1.0 return average_weights, average_intercept def _test_warm_start(self, X, Y, lr): # Test that explicit warm restart... clf = self.factory(alpha=0.01, eta0=0.01, n_iter=5, shuffle=False, learning_rate=lr) clf.fit(X, Y) clf2 = self.factory(alpha=0.001, eta0=0.01, n_iter=5, shuffle=False, learning_rate=lr) clf2.fit(X, Y, coef_init=clf.coef_.copy(), intercept_init=clf.intercept_.copy()) # ... and implicit warm restart are equivalent. clf3 = self.factory(alpha=0.01, eta0=0.01, n_iter=5, shuffle=False, warm_start=True, learning_rate=lr) clf3.fit(X, Y) assert_equal(clf3.t_, clf.t_) assert_array_almost_equal(clf3.coef_, clf.coef_) clf3.set_params(alpha=0.001) clf3.fit(X, Y) assert_equal(clf3.t_, clf2.t_) assert_array_almost_equal(clf3.coef_, clf2.coef_) def test_warm_start_constant(self): self._test_warm_start(X, Y, "constant") def test_warm_start_invscaling(self): self._test_warm_start(X, Y, "invscaling") def test_warm_start_optimal(self): self._test_warm_start(X, Y, "optimal") def test_input_format(self): # Input format tests. clf = self.factory(alpha=0.01, n_iter=5, shuffle=False) clf.fit(X, Y) Y_ = np.array(Y)[:, np.newaxis] Y_ = np.c_[Y_, Y_] assert_raises(ValueError, clf.fit, X, Y_) def test_clone(self): # Test whether clone works ok. clf = self.factory(alpha=0.01, n_iter=5, penalty='l1') clf = clone(clf) clf.set_params(penalty='l2') clf.fit(X, Y) clf2 = self.factory(alpha=0.01, n_iter=5, penalty='l2') clf2.fit(X, Y) assert_array_equal(clf.coef_, clf2.coef_) def test_plain_has_no_average_attr(self): clf = self.factory(average=True, eta0=.01) clf.fit(X, Y) assert_true(hasattr(clf, 'average_coef_')) assert_true(hasattr(clf, 'average_intercept_')) assert_true(hasattr(clf, 'standard_intercept_')) assert_true(hasattr(clf, 'standard_coef_')) clf = self.factory() clf.fit(X, Y) assert_false(hasattr(clf, 'average_coef_')) assert_false(hasattr(clf, 'average_intercept_')) assert_false(hasattr(clf, 'standard_intercept_')) assert_false(hasattr(clf, 'standard_coef_')) def test_late_onset_averaging_not_reached(self): clf1 = self.factory(average=600) clf2 = self.factory() for _ in range(100): if isinstance(clf1, SGDClassifier): clf1.partial_fit(X, Y, classes=np.unique(Y)) clf2.partial_fit(X, Y, classes=np.unique(Y)) else: clf1.partial_fit(X, Y) clf2.partial_fit(X, Y) assert_array_almost_equal(clf1.coef_, clf2.coef_, decimal=16) assert_almost_equal(clf1.intercept_, clf2.intercept_, decimal=16) def test_late_onset_averaging_reached(self): eta0 = .001 alpha = .0001 Y_encode = np.array(Y) Y_encode[Y_encode == 1] = -1.0 Y_encode[Y_encode == 2] = 1.0 clf1 = self.factory(average=7, learning_rate="constant", loss='squared_loss', eta0=eta0, alpha=alpha, n_iter=2, shuffle=False) clf2 = self.factory(average=0, learning_rate="constant", loss='squared_loss', eta0=eta0, alpha=alpha, n_iter=1, shuffle=False) clf1.fit(X, Y_encode) clf2.fit(X, Y_encode) average_weights, average_intercept = \ self.asgd(X, Y_encode, eta0, alpha, weight_init=clf2.coef_.ravel(), intercept_init=clf2.intercept_) assert_array_almost_equal(clf1.coef_.ravel(), average_weights.ravel(), decimal=16) assert_almost_equal(clf1.intercept_, average_intercept, decimal=16) class DenseSGDClassifierTestCase(unittest.TestCase, CommonTest): """Test suite for the dense representation variant of SGD""" factory_class = SGDClassifier def test_sgd(self): # Check that SGD gives any results :-) for loss in ("hinge", "squared_hinge", "log", "modified_huber"): clf = self.factory(penalty='l2', alpha=0.01, fit_intercept=True, loss=loss, n_iter=10, shuffle=True) clf.fit(X, Y) # assert_almost_equal(clf.coef_[0], clf.coef_[1], decimal=7) assert_array_equal(clf.predict(T), true_result) @raises(ValueError) def test_sgd_bad_l1_ratio(self): # Check whether expected ValueError on bad l1_ratio self.factory(l1_ratio=1.1) @raises(ValueError) def test_sgd_bad_learning_rate_schedule(self): # Check whether expected ValueError on bad learning_rate self.factory(learning_rate="<unknown>") @raises(ValueError) def test_sgd_bad_eta0(self): # Check whether expected ValueError on bad eta0 self.factory(eta0=0, learning_rate="constant") @raises(ValueError) def test_sgd_bad_alpha(self): # Check whether expected ValueError on bad alpha self.factory(alpha=-.1) @raises(ValueError) def test_sgd_bad_penalty(self): # Check whether expected ValueError on bad penalty self.factory(penalty='foobar', l1_ratio=0.85) @raises(ValueError) def test_sgd_bad_loss(self): # Check whether expected ValueError on bad loss self.factory(loss="foobar") @raises(ValueError) def test_sgd_n_iter_param(self): # Test parameter validity check self.factory(n_iter=-10000) @raises(ValueError) def test_sgd_shuffle_param(self): # Test parameter validity check self.factory(shuffle="false") @raises(TypeError) def test_argument_coef(self): # Checks coef_init not allowed as model argument (only fit) # Provided coef_ does not match dataset. self.factory(coef_init=np.zeros((3,))).fit(X, Y) @raises(ValueError) def test_provide_coef(self): # Checks coef_init shape for the warm starts # Provided coef_ does not match dataset. self.factory().fit(X, Y, coef_init=np.zeros((3,))) @raises(ValueError) def test_set_intercept(self): # Checks intercept_ shape for the warm starts # Provided intercept_ does not match dataset. self.factory().fit(X, Y, intercept_init=np.zeros((3,))) def test_set_intercept_binary(self): # Checks intercept_ shape for the warm starts in binary case self.factory().fit(X5, Y5, intercept_init=0) def test_average_binary_computed_correctly(self): # Checks the SGDClassifier correctly computes the average weights eta = .1 alpha = 2. n_samples = 20 n_features = 10 rng = np.random.RandomState(0) X = rng.normal(size=(n_samples, n_features)) w = rng.normal(size=n_features) clf = self.factory(loss='squared_loss', learning_rate='constant', eta0=eta, alpha=alpha, fit_intercept=True, n_iter=1, average=True, shuffle=False) # simple linear function without noise y = np.dot(X, w) y = np.sign(y) clf.fit(X, y) average_weights, average_intercept = self.asgd(X, y, eta, alpha) average_weights = average_weights.reshape(1, -1) assert_array_almost_equal(clf.coef_, average_weights, decimal=14) assert_almost_equal(clf.intercept_, average_intercept, decimal=14) def test_set_intercept_to_intercept(self): # Checks intercept_ shape consistency for the warm starts # Inconsistent intercept_ shape. clf = self.factory().fit(X5, Y5) self.factory().fit(X5, Y5, intercept_init=clf.intercept_) clf = self.factory().fit(X, Y) self.factory().fit(X, Y, intercept_init=clf.intercept_) @raises(ValueError) def test_sgd_at_least_two_labels(self): # Target must have at least two labels self.factory(alpha=0.01, n_iter=20).fit(X2, np.ones(9)) def test_partial_fit_weight_class_balanced(self): # partial_fit with class_weight='balanced' not supported""" assert_raises_regexp(ValueError, "class_weight 'balanced' is not supported for " "partial_fit. In order to use 'balanced' weights, " "use compute_class_weight\('balanced', classes, y\). " "In place of y you can us a large enough sample " "of the full training set target to properly " "estimate the class frequency distributions. " "Pass the resulting weights as the class_weight " "parameter.", self.factory(class_weight='balanced').partial_fit, X, Y, classes=np.unique(Y)) def test_sgd_multiclass(self): # Multi-class test case clf = self.factory(alpha=0.01, n_iter=20).fit(X2, Y2) assert_equal(clf.coef_.shape, (3, 2)) assert_equal(clf.intercept_.shape, (3,)) assert_equal(clf.decision_function([[0, 0]]).shape, (1, 3)) pred = clf.predict(T2) assert_array_equal(pred, true_result2) def test_sgd_multiclass_average(self): eta = .001 alpha = .01 # Multi-class average test case clf = self.factory(loss='squared_loss', learning_rate='constant', eta0=eta, alpha=alpha, fit_intercept=True, n_iter=1, average=True, shuffle=False) np_Y2 = np.array(Y2) clf.fit(X2, np_Y2) classes = np.unique(np_Y2) for i, cl in enumerate(classes): y_i = np.ones(np_Y2.shape[0]) y_i[np_Y2 != cl] = -1 average_coef, average_intercept = self.asgd(X2, y_i, eta, alpha) assert_array_almost_equal(average_coef, clf.coef_[i], decimal=16) assert_almost_equal(average_intercept, clf.intercept_[i], decimal=16) def test_sgd_multiclass_with_init_coef(self): # Multi-class test case clf = self.factory(alpha=0.01, n_iter=20) clf.fit(X2, Y2, coef_init=np.zeros((3, 2)), intercept_init=np.zeros(3)) assert_equal(clf.coef_.shape, (3, 2)) assert_true(clf.intercept_.shape, (3,)) pred = clf.predict(T2) assert_array_equal(pred, true_result2) def test_sgd_multiclass_njobs(self): # Multi-class test case with multi-core support clf = self.factory(alpha=0.01, n_iter=20, n_jobs=2).fit(X2, Y2) assert_equal(clf.coef_.shape, (3, 2)) assert_equal(clf.intercept_.shape, (3,)) assert_equal(clf.decision_function([[0, 0]]).shape, (1, 3)) pred = clf.predict(T2) assert_array_equal(pred, true_result2) def test_set_coef_multiclass(self): # Checks coef_init and intercept_init shape for for multi-class # problems # Provided coef_ does not match dataset clf = self.factory() assert_raises(ValueError, clf.fit, X2, Y2, coef_init=np.zeros((2, 2))) # Provided coef_ does match dataset clf = self.factory().fit(X2, Y2, coef_init=np.zeros((3, 2))) # Provided intercept_ does not match dataset clf = self.factory() assert_raises(ValueError, clf.fit, X2, Y2, intercept_init=np.zeros((1,))) # Provided intercept_ does match dataset. clf = self.factory().fit(X2, Y2, intercept_init=np.zeros((3,))) def test_sgd_proba(self): # Check SGD.predict_proba # Hinge loss does not allow for conditional prob estimate. # We cannot use the factory here, because it defines predict_proba # anyway. clf = SGDClassifier(loss="hinge", alpha=0.01, n_iter=10).fit(X, Y) assert_false(hasattr(clf, "predict_proba")) assert_false(hasattr(clf, "predict_log_proba")) # log and modified_huber losses can output probability estimates # binary case for loss in ["log", "modified_huber"]: clf = self.factory(loss="modified_huber", alpha=0.01, n_iter=10) clf.fit(X, Y) p = clf.predict_proba([[3, 2]]) assert_true(p[0, 1] > 0.5) p = clf.predict_proba([[-1, -1]]) assert_true(p[0, 1] < 0.5) p = clf.predict_log_proba([[3, 2]]) assert_true(p[0, 1] > p[0, 0]) p = clf.predict_log_proba([[-1, -1]]) assert_true(p[0, 1] < p[0, 0]) # log loss multiclass probability estimates clf = self.factory(loss="log", alpha=0.01, n_iter=10).fit(X2, Y2) d = clf.decision_function([[.1, -.1], [.3, .2]]) p = clf.predict_proba([[.1, -.1], [.3, .2]]) assert_array_equal(np.argmax(p, axis=1), np.argmax(d, axis=1)) assert_almost_equal(p[0].sum(), 1) assert_true(np.all(p[0] >= 0)) p = clf.predict_proba([[-1, -1]]) d = clf.decision_function([[-1, -1]]) assert_array_equal(np.argsort(p[0]), np.argsort(d[0])) l = clf.predict_log_proba([[3, 2]]) p = clf.predict_proba([[3, 2]]) assert_array_almost_equal(np.log(p), l) l = clf.predict_log_proba([[-1, -1]]) p = clf.predict_proba([[-1, -1]]) assert_array_almost_equal(np.log(p), l) # Modified Huber multiclass probability estimates; requires a separate # test because the hard zero/one probabilities may destroy the # ordering present in decision_function output. clf = self.factory(loss="modified_huber", alpha=0.01, n_iter=10) clf.fit(X2, Y2) d = clf.decision_function([[3, 2]]) p = clf.predict_proba([[3, 2]]) if not isinstance(self, SparseSGDClassifierTestCase): assert_equal(np.argmax(d, axis=1), np.argmax(p, axis=1)) else: # XXX the sparse test gets a different X2 (?) assert_equal(np.argmin(d, axis=1), np.argmin(p, axis=1)) # the following sample produces decision_function values < -1, # which would cause naive normalization to fail (see comment # in SGDClassifier.predict_proba) x = X.mean(axis=0) d = clf.decision_function([x]) if np.all(d < -1): # XXX not true in sparse test case (why?) p = clf.predict_proba([x]) assert_array_almost_equal(p[0], [1 / 3.] * 3) def test_sgd_l1(self): # Test L1 regularization n = len(X4) rng = np.random.RandomState(13) idx = np.arange(n) rng.shuffle(idx) X = X4[idx, :] Y = Y4[idx] clf = self.factory(penalty='l1', alpha=.2, fit_intercept=False, n_iter=2000, shuffle=False) clf.fit(X, Y) assert_array_equal(clf.coef_[0, 1:-1], np.zeros((4,))) pred = clf.predict(X) assert_array_equal(pred, Y) # test sparsify with dense inputs clf.sparsify() assert_true(sp.issparse(clf.coef_)) pred = clf.predict(X) assert_array_equal(pred, Y) # pickle and unpickle with sparse coef_ clf = pickle.loads(pickle.dumps(clf)) assert_true(sp.issparse(clf.coef_)) pred = clf.predict(X) assert_array_equal(pred, Y) def test_class_weights(self): # Test class weights. X = np.array([[-1.0, -1.0], [-1.0, 0], [-.8, -1.0], [1.0, 1.0], [1.0, 0.0]]) y = [1, 1, 1, -1, -1] clf = self.factory(alpha=0.1, n_iter=1000, fit_intercept=False, class_weight=None) clf.fit(X, y) assert_array_equal(clf.predict([[0.2, -1.0]]), np.array([1])) # we give a small weights to class 1 clf = self.factory(alpha=0.1, n_iter=1000, fit_intercept=False, class_weight={1: 0.001}) clf.fit(X, y) # now the hyperplane should rotate clock-wise and # the prediction on this point should shift assert_array_equal(clf.predict([[0.2, -1.0]]), np.array([-1])) def test_equal_class_weight(self): # Test if equal class weights approx. equals no class weights. X = [[1, 0], [1, 0], [0, 1], [0, 1]] y = [0, 0, 1, 1] clf = self.factory(alpha=0.1, n_iter=1000, class_weight=None) clf.fit(X, y) X = [[1, 0], [0, 1]] y = [0, 1] clf_weighted = self.factory(alpha=0.1, n_iter=1000, class_weight={0: 0.5, 1: 0.5}) clf_weighted.fit(X, y) # should be similar up to some epsilon due to learning rate schedule assert_almost_equal(clf.coef_, clf_weighted.coef_, decimal=2) @raises(ValueError) def test_wrong_class_weight_label(self): # ValueError due to not existing class label. clf = self.factory(alpha=0.1, n_iter=1000, class_weight={0: 0.5}) clf.fit(X, Y) @raises(ValueError) def test_wrong_class_weight_format(self): # ValueError due to wrong class_weight argument type. clf = self.factory(alpha=0.1, n_iter=1000, class_weight=[0.5]) clf.fit(X, Y) def test_weights_multiplied(self): # Tests that class_weight and sample_weight are multiplicative class_weights = {1: .6, 2: .3} sample_weights = np.random.random(Y4.shape[0]) multiplied_together = np.copy(sample_weights) multiplied_together[Y4 == 1] *= class_weights[1] multiplied_together[Y4 == 2] *= class_weights[2] clf1 = self.factory(alpha=0.1, n_iter=20, class_weight=class_weights) clf2 = self.factory(alpha=0.1, n_iter=20) clf1.fit(X4, Y4, sample_weight=sample_weights) clf2.fit(X4, Y4, sample_weight=multiplied_together) assert_almost_equal(clf1.coef_, clf2.coef_) def test_balanced_weight(self): # Test class weights for imbalanced data""" # compute reference metrics on iris dataset that is quite balanced by # default X, y = iris.data, iris.target X = scale(X) idx = np.arange(X.shape[0]) rng = np.random.RandomState(6) rng.shuffle(idx) X = X[idx] y = y[idx] clf = self.factory(alpha=0.0001, n_iter=1000, class_weight=None, shuffle=False).fit(X, y) assert_almost_equal(metrics.f1_score(y, clf.predict(X), average='weighted'), 0.96, decimal=1) # make the same prediction using balanced class_weight clf_balanced = self.factory(alpha=0.0001, n_iter=1000, class_weight="balanced", shuffle=False).fit(X, y) assert_almost_equal(metrics.f1_score(y, clf_balanced.predict(X), average='weighted'), 0.96, decimal=1) # Make sure that in the balanced case it does not change anything # to use "balanced" assert_array_almost_equal(clf.coef_, clf_balanced.coef_, 6) # build an very very imbalanced dataset out of iris data X_0 = X[y == 0, :] y_0 = y[y == 0] X_imbalanced = np.vstack([X] + [X_0] * 10) y_imbalanced = np.concatenate([y] + [y_0] * 10) # fit a model on the imbalanced data without class weight info clf = self.factory(n_iter=1000, class_weight=None, shuffle=False) clf.fit(X_imbalanced, y_imbalanced) y_pred = clf.predict(X) assert_less(metrics.f1_score(y, y_pred, average='weighted'), 0.96) # fit a model with balanced class_weight enabled clf = self.factory(n_iter=1000, class_weight="balanced", shuffle=False) clf.fit(X_imbalanced, y_imbalanced) y_pred = clf.predict(X) assert_greater(metrics.f1_score(y, y_pred, average='weighted'), 0.96) # fit another using a fit parameter override clf = self.factory(n_iter=1000, class_weight="balanced", shuffle=False) clf.fit(X_imbalanced, y_imbalanced) y_pred = clf.predict(X) assert_greater(metrics.f1_score(y, y_pred, average='weighted'), 0.96) def test_sample_weights(self): # Test weights on individual samples X = np.array([[-1.0, -1.0], [-1.0, 0], [-.8, -1.0], [1.0, 1.0], [1.0, 0.0]]) y = [1, 1, 1, -1, -1] clf = self.factory(alpha=0.1, n_iter=1000, fit_intercept=False) clf.fit(X, y) assert_array_equal(clf.predict([[0.2, -1.0]]), np.array([1])) # we give a small weights to class 1 clf.fit(X, y, sample_weight=[0.001] * 3 + [1] * 2) # now the hyperplane should rotate clock-wise and # the prediction on this point should shift assert_array_equal(clf.predict([[0.2, -1.0]]), np.array([-1])) @raises(ValueError) def test_wrong_sample_weights(self): # Test if ValueError is raised if sample_weight has wrong shape clf = self.factory(alpha=0.1, n_iter=1000, fit_intercept=False) # provided sample_weight too long clf.fit(X, Y, sample_weight=np.arange(7)) @raises(ValueError) def test_partial_fit_exception(self): clf = self.factory(alpha=0.01) # classes was not specified clf.partial_fit(X3, Y3) def test_partial_fit_binary(self): third = X.shape[0] // 3 clf = self.factory(alpha=0.01) classes = np.unique(Y) clf.partial_fit(X[:third], Y[:third], classes=classes) assert_equal(clf.coef_.shape, (1, X.shape[1])) assert_equal(clf.intercept_.shape, (1,)) assert_equal(clf.decision_function([[0, 0]]).shape, (1, )) id1 = id(clf.coef_.data) clf.partial_fit(X[third:], Y[third:]) id2 = id(clf.coef_.data) # check that coef_ haven't been re-allocated assert_true(id1, id2) y_pred = clf.predict(T) assert_array_equal(y_pred, true_result) def test_partial_fit_multiclass(self): third = X2.shape[0] // 3 clf = self.factory(alpha=0.01) classes = np.unique(Y2) clf.partial_fit(X2[:third], Y2[:third], classes=classes) assert_equal(clf.coef_.shape, (3, X2.shape[1])) assert_equal(clf.intercept_.shape, (3,)) assert_equal(clf.decision_function([[0, 0]]).shape, (1, 3)) id1 = id(clf.coef_.data) clf.partial_fit(X2[third:], Y2[third:]) id2 = id(clf.coef_.data) # check that coef_ haven't been re-allocated assert_true(id1, id2) def test_fit_then_partial_fit(self): # Partial_fit should work after initial fit in the multiclass case. # Non-regression test for #2496; fit would previously produce a # Fortran-ordered coef_ that subsequent partial_fit couldn't handle. clf = self.factory() clf.fit(X2, Y2) clf.partial_fit(X2, Y2) # no exception here def _test_partial_fit_equal_fit(self, lr): for X_, Y_, T_ in ((X, Y, T), (X2, Y2, T2)): clf = self.factory(alpha=0.01, eta0=0.01, n_iter=2, learning_rate=lr, shuffle=False) clf.fit(X_, Y_) y_pred = clf.decision_function(T_) t = clf.t_ classes = np.unique(Y_) clf = self.factory(alpha=0.01, eta0=0.01, learning_rate=lr, shuffle=False) for i in range(2): clf.partial_fit(X_, Y_, classes=classes) y_pred2 = clf.decision_function(T_) assert_equal(clf.t_, t) assert_array_almost_equal(y_pred, y_pred2, decimal=2) def test_partial_fit_equal_fit_constant(self): self._test_partial_fit_equal_fit("constant") def test_partial_fit_equal_fit_optimal(self): self._test_partial_fit_equal_fit("optimal") def test_partial_fit_equal_fit_invscaling(self): self._test_partial_fit_equal_fit("invscaling") def test_regression_losses(self): clf = self.factory(alpha=0.01, learning_rate="constant", eta0=0.1, loss="epsilon_insensitive") clf.fit(X, Y) assert_equal(1.0, np.mean(clf.predict(X) == Y)) clf = self.factory(alpha=0.01, learning_rate="constant", eta0=0.1, loss="squared_epsilon_insensitive") clf.fit(X, Y) assert_equal(1.0, np.mean(clf.predict(X) == Y)) clf = self.factory(alpha=0.01, loss="huber") clf.fit(X, Y) assert_equal(1.0, np.mean(clf.predict(X) == Y)) clf = self.factory(alpha=0.01, learning_rate="constant", eta0=0.01, loss="squared_loss") clf.fit(X, Y) assert_equal(1.0, np.mean(clf.predict(X) == Y)) def test_warm_start_multiclass(self): self._test_warm_start(X2, Y2, "optimal") def test_multiple_fit(self): # Test multiple calls of fit w/ different shaped inputs. clf = self.factory(alpha=0.01, n_iter=5, shuffle=False) clf.fit(X, Y) assert_true(hasattr(clf, "coef_")) # Non-regression test: try fitting with a different label set. y = [["ham", "spam"][i] for i in LabelEncoder().fit_transform(Y)] clf.fit(X[:, :-1], y) class SparseSGDClassifierTestCase(DenseSGDClassifierTestCase): """Run exactly the same tests using the sparse representation variant""" factory_class = SparseSGDClassifier ############################################################################### # Regression Test Case class DenseSGDRegressorTestCase(unittest.TestCase, CommonTest): """Test suite for the dense representation variant of SGD""" factory_class = SGDRegressor def test_sgd(self): # Check that SGD gives any results. clf = self.factory(alpha=0.1, n_iter=2, fit_intercept=False) clf.fit([[0, 0], [1, 1], [2, 2]], [0, 1, 2]) assert_equal(clf.coef_[0], clf.coef_[1]) @raises(ValueError) def test_sgd_bad_penalty(self): # Check whether expected ValueError on bad penalty self.factory(penalty='foobar', l1_ratio=0.85) @raises(ValueError) def test_sgd_bad_loss(self): # Check whether expected ValueError on bad loss self.factory(loss="foobar") def test_sgd_averaged_computed_correctly(self): # Tests the average regressor matches the naive implementation eta = .001 alpha = .01 n_samples = 20 n_features = 10 rng = np.random.RandomState(0) X = rng.normal(size=(n_samples, n_features)) w = rng.normal(size=n_features) # simple linear function without noise y = np.dot(X, w) clf = self.factory(loss='squared_loss', learning_rate='constant', eta0=eta, alpha=alpha, fit_intercept=True, n_iter=1, average=True, shuffle=False) clf.fit(X, y) average_weights, average_intercept = self.asgd(X, y, eta, alpha) assert_array_almost_equal(clf.coef_, average_weights, decimal=16) assert_almost_equal(clf.intercept_, average_intercept, decimal=16) def test_sgd_averaged_partial_fit(self): # Tests whether the partial fit yields the same average as the fit eta = .001 alpha = .01 n_samples = 20 n_features = 10 rng = np.random.RandomState(0) X = rng.normal(size=(n_samples, n_features)) w = rng.normal(size=n_features) # simple linear function without noise y = np.dot(X, w) clf = self.factory(loss='squared_loss', learning_rate='constant', eta0=eta, alpha=alpha, fit_intercept=True, n_iter=1, average=True, shuffle=False) clf.partial_fit(X[:int(n_samples / 2)][:], y[:int(n_samples / 2)]) clf.partial_fit(X[int(n_samples / 2):][:], y[int(n_samples / 2):]) average_weights, average_intercept = self.asgd(X, y, eta, alpha) assert_array_almost_equal(clf.coef_, average_weights, decimal=16) assert_almost_equal(clf.intercept_[0], average_intercept, decimal=16) def test_average_sparse(self): # Checks the average weights on data with 0s eta = .001 alpha = .01 clf = self.factory(loss='squared_loss', learning_rate='constant', eta0=eta, alpha=alpha, fit_intercept=True, n_iter=1, average=True, shuffle=False) n_samples = Y3.shape[0] clf.partial_fit(X3[:int(n_samples / 2)][:], Y3[:int(n_samples / 2)]) clf.partial_fit(X3[int(n_samples / 2):][:], Y3[int(n_samples / 2):]) average_weights, average_intercept = self.asgd(X3, Y3, eta, alpha) assert_array_almost_equal(clf.coef_, average_weights, decimal=16) assert_almost_equal(clf.intercept_, average_intercept, decimal=16) def test_sgd_least_squares_fit(self): xmin, xmax = -5, 5 n_samples = 100 rng = np.random.RandomState(0) X = np.linspace(xmin, xmax, n_samples).reshape(n_samples, 1) # simple linear function without noise y = 0.5 * X.ravel() clf = self.factory(loss='squared_loss', alpha=0.1, n_iter=20, fit_intercept=False) clf.fit(X, y) score = clf.score(X, y) assert_greater(score, 0.99) # simple linear function with noise y = 0.5 * X.ravel() + rng.randn(n_samples, 1).ravel() clf = self.factory(loss='squared_loss', alpha=0.1, n_iter=20, fit_intercept=False) clf.fit(X, y) score = clf.score(X, y) assert_greater(score, 0.5) def test_sgd_epsilon_insensitive(self): xmin, xmax = -5, 5 n_samples = 100 X = np.linspace(xmin, xmax, n_samples).reshape(n_samples, 1) # simple linear function without noise y = 0.5 * X.ravel() clf = self.factory(loss='epsilon_insensitive', epsilon=0.01, alpha=0.1, n_iter=20, fit_intercept=False) clf.fit(X, y) score = clf.score(X, y) assert_true(score > 0.99) # simple linear function with noise y = 0.5 * X.ravel() \ + np.random.randn(n_samples, 1).ravel() clf = self.factory(loss='epsilon_insensitive', epsilon=0.01, alpha=0.1, n_iter=20, fit_intercept=False) clf.fit(X, y) score = clf.score(X, y) assert_true(score > 0.5) def test_sgd_huber_fit(self): xmin, xmax = -5, 5 n_samples = 100 rng = np.random.RandomState(0) X = np.linspace(xmin, xmax, n_samples).reshape(n_samples, 1) # simple linear function without noise y = 0.5 * X.ravel() clf = self.factory(loss="huber", epsilon=0.1, alpha=0.1, n_iter=20, fit_intercept=False) clf.fit(X, y) score = clf.score(X, y) assert_greater(score, 0.99) # simple linear function with noise y = 0.5 * X.ravel() + rng.randn(n_samples, 1).ravel() clf = self.factory(loss="huber", epsilon=0.1, alpha=0.1, n_iter=20, fit_intercept=False) clf.fit(X, y) score = clf.score(X, y) assert_greater(score, 0.5) def test_elasticnet_convergence(self): # Check that the SGD output is consistent with coordinate descent n_samples, n_features = 1000, 5 rng = np.random.RandomState(0) X = np.random.randn(n_samples, n_features) # ground_truth linear model that generate y from X and to which the # models should converge if the regularizer would be set to 0.0 ground_truth_coef = rng.randn(n_features) y = np.dot(X, ground_truth_coef) # XXX: alpha = 0.1 seems to cause convergence problems for alpha in [0.01, 0.001]: for l1_ratio in [0.5, 0.8, 1.0]: cd = linear_model.ElasticNet(alpha=alpha, l1_ratio=l1_ratio, fit_intercept=False) cd.fit(X, y) sgd = self.factory(penalty='elasticnet', n_iter=50, alpha=alpha, l1_ratio=l1_ratio, fit_intercept=False) sgd.fit(X, y) err_msg = ("cd and sgd did not converge to comparable " "results for alpha=%f and l1_ratio=%f" % (alpha, l1_ratio)) assert_almost_equal(cd.coef_, sgd.coef_, decimal=2, err_msg=err_msg) def test_partial_fit(self): third = X.shape[0] // 3 clf = self.factory(alpha=0.01) clf.partial_fit(X[:third], Y[:third]) assert_equal(clf.coef_.shape, (X.shape[1], )) assert_equal(clf.intercept_.shape, (1,)) assert_equal(clf.decision_function([[0, 0]]).shape, (1, )) id1 = id(clf.coef_.data) clf.partial_fit(X[third:], Y[third:]) id2 = id(clf.coef_.data) # check that coef_ haven't been re-allocated assert_true(id1, id2) def _test_partial_fit_equal_fit(self, lr): clf = self.factory(alpha=0.01, n_iter=2, eta0=0.01, learning_rate=lr, shuffle=False) clf.fit(X, Y) y_pred = clf.predict(T) t = clf.t_ clf = self.factory(alpha=0.01, eta0=0.01, learning_rate=lr, shuffle=False) for i in range(2): clf.partial_fit(X, Y) y_pred2 = clf.predict(T) assert_equal(clf.t_, t) assert_array_almost_equal(y_pred, y_pred2, decimal=2) def test_partial_fit_equal_fit_constant(self): self._test_partial_fit_equal_fit("constant") def test_partial_fit_equal_fit_optimal(self): self._test_partial_fit_equal_fit("optimal") def test_partial_fit_equal_fit_invscaling(self): self._test_partial_fit_equal_fit("invscaling") def test_loss_function_epsilon(self): clf = self.factory(epsilon=0.9) clf.set_params(epsilon=0.1) assert clf.loss_functions['huber'][1] == 0.1 class SparseSGDRegressorTestCase(DenseSGDRegressorTestCase): # Run exactly the same tests using the sparse representation variant factory_class = SparseSGDRegressor def test_l1_ratio(): # Test if l1 ratio extremes match L1 and L2 penalty settings. X, y = datasets.make_classification(n_samples=1000, n_features=100, n_informative=20, random_state=1234) # test if elasticnet with l1_ratio near 1 gives same result as pure l1 est_en = SGDClassifier(alpha=0.001, penalty='elasticnet', l1_ratio=0.9999999999, random_state=42).fit(X, y) est_l1 = SGDClassifier(alpha=0.001, penalty='l1', random_state=42).fit(X, y) assert_array_almost_equal(est_en.coef_, est_l1.coef_) # test if elasticnet with l1_ratio near 0 gives same result as pure l2 est_en = SGDClassifier(alpha=0.001, penalty='elasticnet', l1_ratio=0.0000000001, random_state=42).fit(X, y) est_l2 = SGDClassifier(alpha=0.001, penalty='l2', random_state=42).fit(X, y) assert_array_almost_equal(est_en.coef_, est_l2.coef_) def test_underflow_or_overlow(): with np.errstate(all='raise'): # Generate some weird data with hugely unscaled features rng = np.random.RandomState(0) n_samples = 100 n_features = 10 X = rng.normal(size=(n_samples, n_features)) X[:, :2] *= 1e300 assert_true(np.isfinite(X).all()) # Use MinMaxScaler to scale the data without introducing a numerical # instability (computing the standard deviation naively is not possible # on this data) X_scaled = MinMaxScaler().fit_transform(X) assert_true(np.isfinite(X_scaled).all()) # Define a ground truth on the scaled data ground_truth = rng.normal(size=n_features) y = (np.dot(X_scaled, ground_truth) > 0.).astype(np.int32) assert_array_equal(np.unique(y), [0, 1]) model = SGDClassifier(alpha=0.1, loss='squared_hinge', n_iter=500) # smoke test: model is stable on scaled data model.fit(X_scaled, y) assert_true(np.isfinite(model.coef_).all()) # model is numerically unstable on unscaled data msg_regxp = (r"Floating-point under-/overflow occurred at epoch #.*" " Scaling input data with StandardScaler or MinMaxScaler" " might help.") assert_raises_regexp(ValueError, msg_regxp, model.fit, X, y) def test_numerical_stability_large_gradient(): # Non regression test case for numerical stability on scaled problems # where the gradient can still explode with some losses model = SGDClassifier(loss='squared_hinge', n_iter=10, shuffle=True, penalty='elasticnet', l1_ratio=0.3, alpha=0.01, eta0=0.001, random_state=0) with np.errstate(all='raise'): model.fit(iris.data, iris.target) assert_true(np.isfinite(model.coef_).all()) def test_large_regularization(): # Non regression tests for numerical stability issues caused by large # regularization parameters for penalty in ['l2', 'l1', 'elasticnet']: model = SGDClassifier(alpha=1e5, learning_rate='constant', eta0=0.1, n_iter=5, penalty=penalty, shuffle=False) with np.errstate(all='raise'): model.fit(iris.data, iris.target) assert_array_almost_equal(model.coef_, np.zeros_like(model.coef_))
bsd-3-clause
ahoyosid/scikit-learn
sklearn/preprocessing/tests/test_label.py
48
18419
import numpy as np from scipy.sparse import issparse from scipy.sparse import coo_matrix from scipy.sparse import csc_matrix from scipy.sparse import csr_matrix from scipy.sparse import dok_matrix from scipy.sparse import lil_matrix from sklearn.utils.multiclass import type_of_target from sklearn.utils.testing import assert_array_equal from sklearn.utils.testing import assert_equal from sklearn.utils.testing import assert_raises from sklearn.utils.testing import ignore_warnings from sklearn.preprocessing.label import LabelBinarizer from sklearn.preprocessing.label import MultiLabelBinarizer from sklearn.preprocessing.label import LabelEncoder from sklearn.preprocessing.label import label_binarize from sklearn.preprocessing.label import _inverse_binarize_thresholding from sklearn.preprocessing.label import _inverse_binarize_multiclass from sklearn import datasets iris = datasets.load_iris() def toarray(a): if hasattr(a, "toarray"): a = a.toarray() return a def test_label_binarizer(): lb = LabelBinarizer() # one-class case defaults to negative label inp = ["pos", "pos", "pos", "pos"] expected = np.array([[0, 0, 0, 0]]).T got = lb.fit_transform(inp) assert_array_equal(lb.classes_, ["pos"]) assert_array_equal(expected, got) assert_array_equal(lb.inverse_transform(got), inp) # two-class case inp = ["neg", "pos", "pos", "neg"] expected = np.array([[0, 1, 1, 0]]).T got = lb.fit_transform(inp) assert_array_equal(lb.classes_, ["neg", "pos"]) assert_array_equal(expected, got) to_invert = np.array([[1, 0], [0, 1], [0, 1], [1, 0]]) assert_array_equal(lb.inverse_transform(to_invert), inp) # multi-class case inp = ["spam", "ham", "eggs", "ham", "0"] expected = np.array([[0, 0, 0, 1], [0, 0, 1, 0], [0, 1, 0, 0], [0, 0, 1, 0], [1, 0, 0, 0]]) got = lb.fit_transform(inp) assert_array_equal(lb.classes_, ['0', 'eggs', 'ham', 'spam']) assert_array_equal(expected, got) assert_array_equal(lb.inverse_transform(got), inp) def test_label_binarizer_unseen_labels(): lb = LabelBinarizer() expected = np.array([[1, 0, 0], [0, 1, 0], [0, 0, 1]]) got = lb.fit_transform(['b', 'd', 'e']) assert_array_equal(expected, got) expected = np.array([[0, 0, 0], [1, 0, 0], [0, 0, 0], [0, 1, 0], [0, 0, 1], [0, 0, 0]]) got = lb.transform(['a', 'b', 'c', 'd', 'e', 'f']) assert_array_equal(expected, got) @ignore_warnings def test_label_binarizer_column_y(): # first for binary classification vs multi-label with 1 possible class # lists are multi-label, array is multi-class :-/ inp_list = [[1], [2], [1]] inp_array = np.array(inp_list) multilabel_indicator = np.array([[1, 0], [0, 1], [1, 0]]) binaryclass_array = np.array([[0], [1], [0]]) lb_1 = LabelBinarizer() out_1 = lb_1.fit_transform(inp_list) lb_2 = LabelBinarizer() out_2 = lb_2.fit_transform(inp_array) assert_array_equal(out_1, multilabel_indicator) assert_array_equal(out_2, binaryclass_array) # second for multiclass classification vs multi-label with multiple # classes inp_list = [[1], [2], [1], [3]] inp_array = np.array(inp_list) # the indicator matrix output is the same in this case indicator = np.array([[1, 0, 0], [0, 1, 0], [1, 0, 0], [0, 0, 1]]) lb_1 = LabelBinarizer() out_1 = lb_1.fit_transform(inp_list) lb_2 = LabelBinarizer() out_2 = lb_2.fit_transform(inp_array) assert_array_equal(out_1, out_2) assert_array_equal(out_2, indicator) def test_label_binarizer_set_label_encoding(): lb = LabelBinarizer(neg_label=-2, pos_label=0) # two-class case with pos_label=0 inp = np.array([0, 1, 1, 0]) expected = np.array([[-2, 0, 0, -2]]).T got = lb.fit_transform(inp) assert_array_equal(expected, got) assert_array_equal(lb.inverse_transform(got), inp) lb = LabelBinarizer(neg_label=-2, pos_label=2) # multi-class case inp = np.array([3, 2, 1, 2, 0]) expected = np.array([[-2, -2, -2, +2], [-2, -2, +2, -2], [-2, +2, -2, -2], [-2, -2, +2, -2], [+2, -2, -2, -2]]) got = lb.fit_transform(inp) assert_array_equal(expected, got) assert_array_equal(lb.inverse_transform(got), inp) @ignore_warnings def test_label_binarizer_errors(): # Check that invalid arguments yield ValueError one_class = np.array([0, 0, 0, 0]) lb = LabelBinarizer().fit(one_class) multi_label = [(2, 3), (0,), (0, 2)] assert_raises(ValueError, lb.transform, multi_label) lb = LabelBinarizer() assert_raises(ValueError, lb.transform, []) assert_raises(ValueError, lb.inverse_transform, []) assert_raises(ValueError, LabelBinarizer, neg_label=2, pos_label=1) assert_raises(ValueError, LabelBinarizer, neg_label=2, pos_label=2) assert_raises(ValueError, LabelBinarizer, neg_label=1, pos_label=2, sparse_output=True) # Fail on y_type assert_raises(ValueError, _inverse_binarize_thresholding, y=csr_matrix([[1, 2], [2, 1]]), output_type="foo", classes=[1, 2], threshold=0) # Fail on the number of classes assert_raises(ValueError, _inverse_binarize_thresholding, y=csr_matrix([[1, 2], [2, 1]]), output_type="foo", classes=[1, 2, 3], threshold=0) # Fail on the dimension of 'binary' assert_raises(ValueError, _inverse_binarize_thresholding, y=np.array([[1, 2, 3], [2, 1, 3]]), output_type="binary", classes=[1, 2, 3], threshold=0) # Fail on multioutput data assert_raises(ValueError, LabelBinarizer().fit, np.array([[1, 3], [2, 1]])) assert_raises(ValueError, label_binarize, np.array([[1, 3], [2, 1]]), [1, 2, 3]) def test_label_encoder(): # Test LabelEncoder's transform and inverse_transform methods le = LabelEncoder() le.fit([1, 1, 4, 5, -1, 0]) assert_array_equal(le.classes_, [-1, 0, 1, 4, 5]) assert_array_equal(le.transform([0, 1, 4, 4, 5, -1, -1]), [1, 2, 3, 3, 4, 0, 0]) assert_array_equal(le.inverse_transform([1, 2, 3, 3, 4, 0, 0]), [0, 1, 4, 4, 5, -1, -1]) assert_raises(ValueError, le.transform, [0, 6]) def test_label_encoder_fit_transform(): # Test fit_transform le = LabelEncoder() ret = le.fit_transform([1, 1, 4, 5, -1, 0]) assert_array_equal(ret, [2, 2, 3, 4, 0, 1]) le = LabelEncoder() ret = le.fit_transform(["paris", "paris", "tokyo", "amsterdam"]) assert_array_equal(ret, [1, 1, 2, 0]) def test_label_encoder_errors(): # Check that invalid arguments yield ValueError le = LabelEncoder() assert_raises(ValueError, le.transform, []) assert_raises(ValueError, le.inverse_transform, []) def test_sparse_output_multilabel_binarizer(): # test input as iterable of iterables inputs = [ lambda: [(2, 3), (1,), (1, 2)], lambda: (set([2, 3]), set([1]), set([1, 2])), lambda: iter([iter((2, 3)), iter((1,)), set([1, 2])]), ] indicator_mat = np.array([[0, 1, 1], [1, 0, 0], [1, 1, 0]]) inverse = inputs[0]() for sparse_output in [True, False]: for inp in inputs: # With fit_tranform mlb = MultiLabelBinarizer(sparse_output=sparse_output) got = mlb.fit_transform(inp()) assert_equal(issparse(got), sparse_output) if sparse_output: got = got.toarray() assert_array_equal(indicator_mat, got) assert_array_equal([1, 2, 3], mlb.classes_) assert_equal(mlb.inverse_transform(got), inverse) # With fit mlb = MultiLabelBinarizer(sparse_output=sparse_output) got = mlb.fit(inp()).transform(inp()) assert_equal(issparse(got), sparse_output) if sparse_output: got = got.toarray() assert_array_equal(indicator_mat, got) assert_array_equal([1, 2, 3], mlb.classes_) assert_equal(mlb.inverse_transform(got), inverse) assert_raises(ValueError, mlb.inverse_transform, csr_matrix(np.array([[0, 1, 1], [2, 0, 0], [1, 1, 0]]))) def test_multilabel_binarizer(): # test input as iterable of iterables inputs = [ lambda: [(2, 3), (1,), (1, 2)], lambda: (set([2, 3]), set([1]), set([1, 2])), lambda: iter([iter((2, 3)), iter((1,)), set([1, 2])]), ] indicator_mat = np.array([[0, 1, 1], [1, 0, 0], [1, 1, 0]]) inverse = inputs[0]() for inp in inputs: # With fit_tranform mlb = MultiLabelBinarizer() got = mlb.fit_transform(inp()) assert_array_equal(indicator_mat, got) assert_array_equal([1, 2, 3], mlb.classes_) assert_equal(mlb.inverse_transform(got), inverse) # With fit mlb = MultiLabelBinarizer() got = mlb.fit(inp()).transform(inp()) assert_array_equal(indicator_mat, got) assert_array_equal([1, 2, 3], mlb.classes_) assert_equal(mlb.inverse_transform(got), inverse) def test_multilabel_binarizer_empty_sample(): mlb = MultiLabelBinarizer() y = [[1, 2], [1], []] Y = np.array([[1, 1], [1, 0], [0, 0]]) assert_array_equal(mlb.fit_transform(y), Y) def test_multilabel_binarizer_unknown_class(): mlb = MultiLabelBinarizer() y = [[1, 2]] assert_raises(KeyError, mlb.fit(y).transform, [[0]]) mlb = MultiLabelBinarizer(classes=[1, 2]) assert_raises(KeyError, mlb.fit_transform, [[0]]) def test_multilabel_binarizer_given_classes(): inp = [(2, 3), (1,), (1, 2)] indicator_mat = np.array([[0, 1, 1], [1, 0, 0], [1, 0, 1]]) # fit_transform() mlb = MultiLabelBinarizer(classes=[1, 3, 2]) assert_array_equal(mlb.fit_transform(inp), indicator_mat) assert_array_equal(mlb.classes_, [1, 3, 2]) # fit().transform() mlb = MultiLabelBinarizer(classes=[1, 3, 2]) assert_array_equal(mlb.fit(inp).transform(inp), indicator_mat) assert_array_equal(mlb.classes_, [1, 3, 2]) # ensure works with extra class mlb = MultiLabelBinarizer(classes=[4, 1, 3, 2]) assert_array_equal(mlb.fit_transform(inp), np.hstack(([[0], [0], [0]], indicator_mat))) assert_array_equal(mlb.classes_, [4, 1, 3, 2]) # ensure fit is no-op as iterable is not consumed inp = iter(inp) mlb = MultiLabelBinarizer(classes=[1, 3, 2]) assert_array_equal(mlb.fit(inp).transform(inp), indicator_mat) def test_multilabel_binarizer_same_length_sequence(): # Ensure sequences of the same length are not interpreted as a 2-d array inp = [[1], [0], [2]] indicator_mat = np.array([[0, 1, 0], [1, 0, 0], [0, 0, 1]]) # fit_transform() mlb = MultiLabelBinarizer() assert_array_equal(mlb.fit_transform(inp), indicator_mat) assert_array_equal(mlb.inverse_transform(indicator_mat), inp) # fit().transform() mlb = MultiLabelBinarizer() assert_array_equal(mlb.fit(inp).transform(inp), indicator_mat) assert_array_equal(mlb.inverse_transform(indicator_mat), inp) def test_multilabel_binarizer_non_integer_labels(): tuple_classes = np.empty(3, dtype=object) tuple_classes[:] = [(1,), (2,), (3,)] inputs = [ ([('2', '3'), ('1',), ('1', '2')], ['1', '2', '3']), ([('b', 'c'), ('a',), ('a', 'b')], ['a', 'b', 'c']), ([((2,), (3,)), ((1,),), ((1,), (2,))], tuple_classes), ] indicator_mat = np.array([[0, 1, 1], [1, 0, 0], [1, 1, 0]]) for inp, classes in inputs: # fit_transform() mlb = MultiLabelBinarizer() assert_array_equal(mlb.fit_transform(inp), indicator_mat) assert_array_equal(mlb.classes_, classes) assert_array_equal(mlb.inverse_transform(indicator_mat), inp) # fit().transform() mlb = MultiLabelBinarizer() assert_array_equal(mlb.fit(inp).transform(inp), indicator_mat) assert_array_equal(mlb.classes_, classes) assert_array_equal(mlb.inverse_transform(indicator_mat), inp) mlb = MultiLabelBinarizer() assert_raises(TypeError, mlb.fit_transform, [({}), ({}, {'a': 'b'})]) def test_multilabel_binarizer_non_unique(): inp = [(1, 1, 1, 0)] indicator_mat = np.array([[1, 1]]) mlb = MultiLabelBinarizer() assert_array_equal(mlb.fit_transform(inp), indicator_mat) def test_multilabel_binarizer_inverse_validation(): inp = [(1, 1, 1, 0)] mlb = MultiLabelBinarizer() mlb.fit_transform(inp) # Not binary assert_raises(ValueError, mlb.inverse_transform, np.array([[1, 3]])) # The following binary cases are fine, however mlb.inverse_transform(np.array([[0, 0]])) mlb.inverse_transform(np.array([[1, 1]])) mlb.inverse_transform(np.array([[1, 0]])) # Wrong shape assert_raises(ValueError, mlb.inverse_transform, np.array([[1]])) assert_raises(ValueError, mlb.inverse_transform, np.array([[1, 1, 1]])) def test_label_binarize_with_class_order(): out = label_binarize([1, 6], classes=[1, 2, 4, 6]) expected = np.array([[1, 0, 0, 0], [0, 0, 0, 1]]) assert_array_equal(out, expected) # Modified class order out = label_binarize([1, 6], classes=[1, 6, 4, 2]) expected = np.array([[1, 0, 0, 0], [0, 1, 0, 0]]) assert_array_equal(out, expected) out = label_binarize([0, 1, 2, 3], classes=[3, 2, 0, 1]) expected = np.array([[0, 0, 1, 0], [0, 0, 0, 1], [0, 1, 0, 0], [1, 0, 0, 0]]) assert_array_equal(out, expected) def check_binarized_results(y, classes, pos_label, neg_label, expected): for sparse_output in [True, False]: if ((pos_label == 0 or neg_label != 0) and sparse_output): assert_raises(ValueError, label_binarize, y, classes, neg_label=neg_label, pos_label=pos_label, sparse_output=sparse_output) continue # check label_binarize binarized = label_binarize(y, classes, neg_label=neg_label, pos_label=pos_label, sparse_output=sparse_output) assert_array_equal(toarray(binarized), expected) assert_equal(issparse(binarized), sparse_output) # check inverse y_type = type_of_target(y) if y_type == "multiclass": inversed = _inverse_binarize_multiclass(binarized, classes=classes) else: inversed = _inverse_binarize_thresholding(binarized, output_type=y_type, classes=classes, threshold=((neg_label + pos_label) / 2.)) assert_array_equal(toarray(inversed), toarray(y)) # Check label binarizer lb = LabelBinarizer(neg_label=neg_label, pos_label=pos_label, sparse_output=sparse_output) binarized = lb.fit_transform(y) assert_array_equal(toarray(binarized), expected) assert_equal(issparse(binarized), sparse_output) inverse_output = lb.inverse_transform(binarized) assert_array_equal(toarray(inverse_output), toarray(y)) assert_equal(issparse(inverse_output), issparse(y)) def test_label_binarize_binary(): y = [0, 1, 0] classes = [0, 1] pos_label = 2 neg_label = -1 expected = np.array([[2, -1], [-1, 2], [2, -1]])[:, 1].reshape((-1, 1)) yield check_binarized_results, y, classes, pos_label, neg_label, expected # Binary case where sparse_output = True will not result in a ValueError y = [0, 1, 0] classes = [0, 1] pos_label = 3 neg_label = 0 expected = np.array([[3, 0], [0, 3], [3, 0]])[:, 1].reshape((-1, 1)) yield check_binarized_results, y, classes, pos_label, neg_label, expected def test_label_binarize_multiclass(): y = [0, 1, 2] classes = [0, 1, 2] pos_label = 2 neg_label = 0 expected = 2 * np.eye(3) yield check_binarized_results, y, classes, pos_label, neg_label, expected assert_raises(ValueError, label_binarize, y, classes, neg_label=-1, pos_label=pos_label, sparse_output=True) def test_label_binarize_multilabel(): y_ind = np.array([[0, 1, 0], [1, 1, 1], [0, 0, 0]]) classes = [0, 1, 2] pos_label = 2 neg_label = 0 expected = pos_label * y_ind y_sparse = [sparse_matrix(y_ind) for sparse_matrix in [coo_matrix, csc_matrix, csr_matrix, dok_matrix, lil_matrix]] for y in [y_ind] + y_sparse: yield (check_binarized_results, y, classes, pos_label, neg_label, expected) assert_raises(ValueError, label_binarize, y, classes, neg_label=-1, pos_label=pos_label, sparse_output=True) def test_invalid_input_label_binarize(): assert_raises(ValueError, label_binarize, [0, 2], classes=[0, 2], pos_label=0, neg_label=1) def test_inverse_binarize_multiclass(): got = _inverse_binarize_multiclass(csr_matrix([[0, 1, 0], [-1, 0, -1], [0, 0, 0]]), np.arange(3)) assert_array_equal(got, np.array([1, 1, 0]))
bsd-3-clause
njustesen/coep-starcraft
broodwar_strategy_evolver/evolution/evolution_timing.py
1
2950
import numpy as np import tqdm from broodwar_strategy_evolver.starcraft.unit_repository import UnitRepository from broodwar_strategy_evolver.starcraft.starcraft import Race, Type from broodwar_strategy_evolver.starcraft.forward_model import ForwardModel, GameState from broodwar_strategy_evolver.evolution.evolution import Evolution from broodwar_strategy_evolver.evolution.evolution import CrossoverMethod import matplotlib.pyplot as plt import time unit_repo = UnitRepository() own_units = np.zeros(len(unit_repo.units)) own_units[unit_repo.get_by_name("Probe").id] = 18 own_units[unit_repo.get_by_name("Assimilator").id] = 1 own_units[unit_repo.get_by_name("Gateway").id] = 1 own_units[unit_repo.get_by_name("Cybernetics Core").id] = 1 own_units[unit_repo.get_by_name("Nexus").id] = 1 own_units[unit_repo.get_by_name("Pylon").id] = 3 ''' opp_units = np.zeros(len(unit_repo.units)) opp_units[unit_repo.get_by_name("Nexus").id] = 1 opp_units[unit_repo.get_by_name("Probe").id] = 4 opp_units[unit_repo.get_by_name("Zealot").id] = 0 opp_units[unit_repo.get_by_name("Dragoon").id] = 12 ''' opp_units = np.zeros(len(unit_repo.units)) opp_units[unit_repo.get_by_name("Drone").id] = 18 opp_units[unit_repo.get_by_name("Zergling").id] = 0 opp_units[unit_repo.get_by_name("Overlord").id] = 3 opp_units[unit_repo.get_by_name("Spawning Pool").id] = 1 opp_units[unit_repo.get_by_name("Hatchery").id] = 1 own_techs = np.zeros(len(unit_repo.techs)) own_upgrades = np.zeros(len(unit_repo.upgrades)) gamestate = GameState(own_race=Race.PROTOSS, opp_race=Race.ZERG, own_units=own_units, opp_units=opp_units, own_techs=own_techs, own_upgrades=own_upgrades, own_units_under_construction=[], own_techs_under_construction=[], own_upgrades_under_construction=[]) gamestate.frame = 24 * 60 * 4 minutes = 8 horizon = int(24*60*minutes) print("Horizon=" + str(horizon)) evolution_a = None tests = 50 generations = 100 timing = [] for test in tqdm.trange(tests): evolution_a = Evolution(gamestate=gamestate, pop_size=64, horizon=horizon, crossover_method=CrossoverMethod.TWO_POINT, bellman=2, add_mutate_prob=0.5, remove_mutate_prob=0.5, swap_mutate_prob=0.5, clone_mutate_prob=0.5, chain_mutate_prob=0.0, survival_rate=0.25) for gen in range(generations): start = millis = int(round(time.time() * 1000)) evolution_a.update() t = int(round(time.time() * 1000)) - start timing.append(t) print("Avg: + " + str(np.average(timing)) + ", +/- " + str(np.std(timing)))
gpl-3.0
alsrgv/tensorflow
tensorflow/contrib/metrics/python/ops/metric_ops_test.py
5
282544
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for metric_ops.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import math import numpy as np from six.moves import xrange # pylint: disable=redefined-builtin from tensorflow.contrib import metrics as metrics_lib from tensorflow.contrib.metrics.python.ops import metric_ops from tensorflow.python.framework import constant_op from tensorflow.python.framework import dtypes as dtypes_lib from tensorflow.python.framework import errors_impl from tensorflow.python.framework import ops from tensorflow.python.framework import sparse_tensor from tensorflow.python.ops import array_ops from tensorflow.python.ops import data_flow_ops from tensorflow.python.ops import math_ops from tensorflow.python.ops import random_ops from tensorflow.python.ops import variables from tensorflow.python.platform import test NAN = float('nan') metrics = metrics_lib def _enqueue_vector(sess, queue, values, shape=None): if not shape: shape = (1, len(values)) dtype = queue.dtypes[0] sess.run( queue.enqueue(constant_op.constant(values, dtype=dtype, shape=shape))) def _binary_2d_label_to_sparse_value(labels): """Convert dense 2D binary indicator tensor to sparse tensor. Only 1 values in `labels` are included in result. Args: labels: Dense 2D binary indicator tensor. Returns: `SparseTensorValue` whose values are indices along the last dimension of `labels`. """ indices = [] values = [] batch = 0 for row in labels: label = 0 xi = 0 for x in row: if x == 1: indices.append([batch, xi]) values.append(label) xi += 1 else: assert x == 0 label += 1 batch += 1 shape = [len(labels), len(labels[0])] return sparse_tensor.SparseTensorValue( np.array(indices, np.int64), np.array(values, np.int64), np.array(shape, np.int64)) def _binary_2d_label_to_sparse(labels): """Convert dense 2D binary indicator tensor to sparse tensor. Only 1 values in `labels` are included in result. Args: labels: Dense 2D binary indicator tensor. Returns: `SparseTensor` whose values are indices along the last dimension of `labels`. """ return sparse_tensor.SparseTensor.from_value( _binary_2d_label_to_sparse_value(labels)) def _binary_3d_label_to_sparse_value(labels): """Convert dense 3D binary indicator tensor to sparse tensor. Only 1 values in `labels` are included in result. Args: labels: Dense 2D binary indicator tensor. Returns: `SparseTensorValue` whose values are indices along the last dimension of `labels`. """ indices = [] values = [] for d0, labels_d0 in enumerate(labels): for d1, labels_d1 in enumerate(labels_d0): d2 = 0 for class_id, label in enumerate(labels_d1): if label == 1: values.append(class_id) indices.append([d0, d1, d2]) d2 += 1 else: assert label == 0 shape = [len(labels), len(labels[0]), len(labels[0][0])] return sparse_tensor.SparseTensorValue( np.array(indices, np.int64), np.array(values, np.int64), np.array(shape, np.int64)) def _binary_3d_label_to_sparse(labels): """Convert dense 3D binary indicator tensor to sparse tensor. Only 1 values in `labels` are included in result. Args: labels: Dense 2D binary indicator tensor. Returns: `SparseTensor` whose values are indices along the last dimension of `labels`. """ return sparse_tensor.SparseTensor.from_value( _binary_3d_label_to_sparse_value(labels)) def _assert_nan(test_case, actual): test_case.assertTrue(math.isnan(actual), 'Expected NAN, got %s.' % actual) def _assert_metric_variables(test_case, expected): test_case.assertEquals( set(expected), set(v.name for v in variables.local_variables())) test_case.assertEquals( set(expected), set(v.name for v in ops.get_collection(ops.GraphKeys.METRIC_VARIABLES))) class StreamingMeanTest(test.TestCase): def setUp(self): ops.reset_default_graph() def testVars(self): metrics.streaming_mean(array_ops.ones([4, 3])) _assert_metric_variables(self, ('mean/count:0', 'mean/total:0')) def testMetricsCollection(self): my_collection_name = '__metrics__' mean, _ = metrics.streaming_mean( array_ops.ones([4, 3]), metrics_collections=[my_collection_name]) self.assertListEqual(ops.get_collection(my_collection_name), [mean]) def testUpdatesCollection(self): my_collection_name = '__updates__' _, update_op = metrics.streaming_mean( array_ops.ones([4, 3]), updates_collections=[my_collection_name]) self.assertListEqual(ops.get_collection(my_collection_name), [update_op]) def testBasic(self): with self.cached_session() as sess: values_queue = data_flow_ops.FIFOQueue( 4, dtypes=dtypes_lib.float32, shapes=(1, 2)) _enqueue_vector(sess, values_queue, [0, 1]) _enqueue_vector(sess, values_queue, [-4.2, 9.1]) _enqueue_vector(sess, values_queue, [6.5, 0]) _enqueue_vector(sess, values_queue, [-3.2, 4.0]) values = values_queue.dequeue() mean, update_op = metrics.streaming_mean(values) sess.run(variables.local_variables_initializer()) for _ in range(4): sess.run(update_op) self.assertAlmostEqual(1.65, sess.run(mean), 5) def testUpdateOpsReturnsCurrentValue(self): with self.cached_session() as sess: values_queue = data_flow_ops.FIFOQueue( 4, dtypes=dtypes_lib.float32, shapes=(1, 2)) _enqueue_vector(sess, values_queue, [0, 1]) _enqueue_vector(sess, values_queue, [-4.2, 9.1]) _enqueue_vector(sess, values_queue, [6.5, 0]) _enqueue_vector(sess, values_queue, [-3.2, 4.0]) values = values_queue.dequeue() mean, update_op = metrics.streaming_mean(values) sess.run(variables.local_variables_initializer()) self.assertAlmostEqual(0.5, sess.run(update_op), 5) self.assertAlmostEqual(1.475, sess.run(update_op), 5) self.assertAlmostEqual(12.4 / 6.0, sess.run(update_op), 5) self.assertAlmostEqual(1.65, sess.run(update_op), 5) self.assertAlmostEqual(1.65, sess.run(mean), 5) def test1dWeightedValues(self): with self.cached_session() as sess: # Create the queue that populates the values. values_queue = data_flow_ops.FIFOQueue( 4, dtypes=dtypes_lib.float32, shapes=(1, 2)) _enqueue_vector(sess, values_queue, [0, 1]) _enqueue_vector(sess, values_queue, [-4.2, 9.1]) _enqueue_vector(sess, values_queue, [6.5, 0]) _enqueue_vector(sess, values_queue, [-3.2, 4.0]) values = values_queue.dequeue() # Create the queue that populates the weighted labels. weights_queue = data_flow_ops.FIFOQueue( 4, dtypes=dtypes_lib.float32, shapes=(1, 1)) _enqueue_vector(sess, weights_queue, [1]) _enqueue_vector(sess, weights_queue, [0]) _enqueue_vector(sess, weights_queue, [0]) _enqueue_vector(sess, weights_queue, [1]) weights = weights_queue.dequeue() mean, update_op = metrics.streaming_mean(values, weights) variables.local_variables_initializer().run() for _ in range(4): update_op.eval() self.assertAlmostEqual((0 + 1 - 3.2 + 4.0) / 4.0, mean.eval(), 5) def test1dWeightedValues_placeholders(self): with self.cached_session() as sess: # Create the queue that populates the values. feed_values = ((0, 1), (-4.2, 9.1), (6.5, 0), (-3.2, 4.0)) values = array_ops.placeholder(dtype=dtypes_lib.float32) # Create the queue that populates the weighted labels. weights_queue = data_flow_ops.FIFOQueue( 4, dtypes=dtypes_lib.float32, shapes=(1,)) _enqueue_vector(sess, weights_queue, 1, shape=(1,)) _enqueue_vector(sess, weights_queue, 0, shape=(1,)) _enqueue_vector(sess, weights_queue, 0, shape=(1,)) _enqueue_vector(sess, weights_queue, 1, shape=(1,)) weights = weights_queue.dequeue() mean, update_op = metrics.streaming_mean(values, weights) variables.local_variables_initializer().run() for i in range(4): update_op.eval(feed_dict={values: feed_values[i]}) self.assertAlmostEqual((0 + 1 - 3.2 + 4.0) / 4.0, mean.eval(), 5) def test2dWeightedValues(self): with self.cached_session() as sess: # Create the queue that populates the values. values_queue = data_flow_ops.FIFOQueue( 4, dtypes=dtypes_lib.float32, shapes=(1, 2)) _enqueue_vector(sess, values_queue, [0, 1]) _enqueue_vector(sess, values_queue, [-4.2, 9.1]) _enqueue_vector(sess, values_queue, [6.5, 0]) _enqueue_vector(sess, values_queue, [-3.2, 4.0]) values = values_queue.dequeue() # Create the queue that populates the weighted labels. weights_queue = data_flow_ops.FIFOQueue( 4, dtypes=dtypes_lib.float32, shapes=(1, 2)) _enqueue_vector(sess, weights_queue, [1, 1]) _enqueue_vector(sess, weights_queue, [1, 0]) _enqueue_vector(sess, weights_queue, [0, 1]) _enqueue_vector(sess, weights_queue, [0, 0]) weights = weights_queue.dequeue() mean, update_op = metrics.streaming_mean(values, weights) variables.local_variables_initializer().run() for _ in range(4): update_op.eval() self.assertAlmostEqual((0 + 1 - 4.2 + 0) / 4.0, mean.eval(), 5) def test2dWeightedValues_placeholders(self): with self.cached_session() as sess: # Create the queue that populates the values. feed_values = ((0, 1), (-4.2, 9.1), (6.5, 0), (-3.2, 4.0)) values = array_ops.placeholder(dtype=dtypes_lib.float32) # Create the queue that populates the weighted labels. weights_queue = data_flow_ops.FIFOQueue( 4, dtypes=dtypes_lib.float32, shapes=(2,)) _enqueue_vector(sess, weights_queue, [1, 1], shape=(2,)) _enqueue_vector(sess, weights_queue, [1, 0], shape=(2,)) _enqueue_vector(sess, weights_queue, [0, 1], shape=(2,)) _enqueue_vector(sess, weights_queue, [0, 0], shape=(2,)) weights = weights_queue.dequeue() mean, update_op = metrics.streaming_mean(values, weights) variables.local_variables_initializer().run() for i in range(4): update_op.eval(feed_dict={values: feed_values[i]}) self.assertAlmostEqual((0 + 1 - 4.2 + 0) / 4.0, mean.eval(), 5) class StreamingMeanTensorTest(test.TestCase): def setUp(self): ops.reset_default_graph() def testVars(self): metrics.streaming_mean_tensor(array_ops.ones([4, 3])) _assert_metric_variables(self, ('mean/total_tensor:0', 'mean/count_tensor:0')) def testMetricsCollection(self): my_collection_name = '__metrics__' mean, _ = metrics.streaming_mean_tensor( array_ops.ones([4, 3]), metrics_collections=[my_collection_name]) self.assertListEqual(ops.get_collection(my_collection_name), [mean]) def testUpdatesCollection(self): my_collection_name = '__updates__' _, update_op = metrics.streaming_mean_tensor( array_ops.ones([4, 3]), updates_collections=[my_collection_name]) self.assertListEqual(ops.get_collection(my_collection_name), [update_op]) def testBasic(self): with self.cached_session() as sess: values_queue = data_flow_ops.FIFOQueue( 4, dtypes=dtypes_lib.float32, shapes=(1, 2)) _enqueue_vector(sess, values_queue, [0, 1]) _enqueue_vector(sess, values_queue, [-4.2, 9.1]) _enqueue_vector(sess, values_queue, [6.5, 0]) _enqueue_vector(sess, values_queue, [-3.2, 4.0]) values = values_queue.dequeue() mean, update_op = metrics.streaming_mean_tensor(values) sess.run(variables.local_variables_initializer()) for _ in range(4): sess.run(update_op) self.assertAllClose([[-0.9 / 4., 3.525]], sess.run(mean)) def testMultiDimensional(self): with self.cached_session() as sess: values_queue = data_flow_ops.FIFOQueue( 2, dtypes=dtypes_lib.float32, shapes=(2, 2, 2)) _enqueue_vector( sess, values_queue, [[[1, 2], [1, 2]], [[1, 2], [1, 2]]], shape=(2, 2, 2)) _enqueue_vector( sess, values_queue, [[[1, 2], [1, 2]], [[3, 4], [9, 10]]], shape=(2, 2, 2)) values = values_queue.dequeue() mean, update_op = metrics.streaming_mean_tensor(values) sess.run(variables.local_variables_initializer()) for _ in range(2): sess.run(update_op) self.assertAllClose([[[1, 2], [1, 2]], [[2, 3], [5, 6]]], sess.run(mean)) def testUpdateOpsReturnsCurrentValue(self): with self.cached_session() as sess: values_queue = data_flow_ops.FIFOQueue( 4, dtypes=dtypes_lib.float32, shapes=(1, 2)) _enqueue_vector(sess, values_queue, [0, 1]) _enqueue_vector(sess, values_queue, [-4.2, 9.1]) _enqueue_vector(sess, values_queue, [6.5, 0]) _enqueue_vector(sess, values_queue, [-3.2, 4.0]) values = values_queue.dequeue() mean, update_op = metrics.streaming_mean_tensor(values) sess.run(variables.local_variables_initializer()) self.assertAllClose([[0, 1]], sess.run(update_op), 5) self.assertAllClose([[-2.1, 5.05]], sess.run(update_op), 5) self.assertAllClose([[2.3 / 3., 10.1 / 3.]], sess.run(update_op), 5) self.assertAllClose([[-0.9 / 4., 3.525]], sess.run(update_op), 5) self.assertAllClose([[-0.9 / 4., 3.525]], sess.run(mean), 5) def testWeighted1d(self): with self.cached_session() as sess: # Create the queue that populates the values. values_queue = data_flow_ops.FIFOQueue( 4, dtypes=dtypes_lib.float32, shapes=(1, 2)) _enqueue_vector(sess, values_queue, [0, 1]) _enqueue_vector(sess, values_queue, [-4.2, 9.1]) _enqueue_vector(sess, values_queue, [6.5, 0]) _enqueue_vector(sess, values_queue, [-3.2, 4.0]) values = values_queue.dequeue() # Create the queue that populates the weights. weights_queue = data_flow_ops.FIFOQueue( 4, dtypes=dtypes_lib.float32, shapes=(1, 1)) _enqueue_vector(sess, weights_queue, [[1]]) _enqueue_vector(sess, weights_queue, [[0]]) _enqueue_vector(sess, weights_queue, [[1]]) _enqueue_vector(sess, weights_queue, [[0]]) weights = weights_queue.dequeue() mean, update_op = metrics.streaming_mean_tensor(values, weights) sess.run(variables.local_variables_initializer()) for _ in range(4): sess.run(update_op) self.assertAllClose([[3.25, 0.5]], sess.run(mean), 5) def testWeighted2d_1(self): with self.cached_session() as sess: # Create the queue that populates the values. values_queue = data_flow_ops.FIFOQueue( 4, dtypes=dtypes_lib.float32, shapes=(1, 2)) _enqueue_vector(sess, values_queue, [0, 1]) _enqueue_vector(sess, values_queue, [-4.2, 9.1]) _enqueue_vector(sess, values_queue, [6.5, 0]) _enqueue_vector(sess, values_queue, [-3.2, 4.0]) values = values_queue.dequeue() # Create the queue that populates the weights. weights_queue = data_flow_ops.FIFOQueue( 4, dtypes=dtypes_lib.float32, shapes=(1, 2)) _enqueue_vector(sess, weights_queue, [1, 1]) _enqueue_vector(sess, weights_queue, [1, 0]) _enqueue_vector(sess, weights_queue, [0, 1]) _enqueue_vector(sess, weights_queue, [0, 0]) weights = weights_queue.dequeue() mean, update_op = metrics.streaming_mean_tensor(values, weights) sess.run(variables.local_variables_initializer()) for _ in range(4): sess.run(update_op) self.assertAllClose([[-2.1, 0.5]], sess.run(mean), 5) def testWeighted2d_2(self): with self.cached_session() as sess: # Create the queue that populates the values. values_queue = data_flow_ops.FIFOQueue( 4, dtypes=dtypes_lib.float32, shapes=(1, 2)) _enqueue_vector(sess, values_queue, [0, 1]) _enqueue_vector(sess, values_queue, [-4.2, 9.1]) _enqueue_vector(sess, values_queue, [6.5, 0]) _enqueue_vector(sess, values_queue, [-3.2, 4.0]) values = values_queue.dequeue() # Create the queue that populates the weights. weights_queue = data_flow_ops.FIFOQueue( 4, dtypes=dtypes_lib.float32, shapes=(1, 2)) _enqueue_vector(sess, weights_queue, [0, 1]) _enqueue_vector(sess, weights_queue, [0, 0]) _enqueue_vector(sess, weights_queue, [0, 1]) _enqueue_vector(sess, weights_queue, [0, 0]) weights = weights_queue.dequeue() mean, update_op = metrics.streaming_mean_tensor(values, weights) sess.run(variables.local_variables_initializer()) for _ in range(4): sess.run(update_op) self.assertAllClose([[0, 0.5]], sess.run(mean), 5) class StreamingAccuracyTest(test.TestCase): def setUp(self): ops.reset_default_graph() def testVars(self): metrics.streaming_accuracy( predictions=array_ops.ones((10, 1)), labels=array_ops.ones((10, 1)), name='my_accuracy') _assert_metric_variables(self, ('my_accuracy/count:0', 'my_accuracy/total:0')) def testMetricsCollection(self): my_collection_name = '__metrics__' mean, _ = metrics.streaming_accuracy( predictions=array_ops.ones((10, 1)), labels=array_ops.ones((10, 1)), metrics_collections=[my_collection_name]) self.assertListEqual(ops.get_collection(my_collection_name), [mean]) def testUpdatesCollection(self): my_collection_name = '__updates__' _, update_op = metrics.streaming_accuracy( predictions=array_ops.ones((10, 1)), labels=array_ops.ones((10, 1)), updates_collections=[my_collection_name]) self.assertListEqual(ops.get_collection(my_collection_name), [update_op]) def testPredictionsAndLabelsOfDifferentSizeRaisesValueError(self): predictions = array_ops.ones((10, 3)) labels = array_ops.ones((10, 4)) with self.assertRaises(ValueError): metrics.streaming_accuracy(predictions, labels) def testPredictionsAndWeightsOfDifferentSizeRaisesValueError(self): predictions = array_ops.ones((10, 3)) labels = array_ops.ones((10, 3)) weights = array_ops.ones((9, 3)) with self.assertRaises(ValueError): metrics.streaming_accuracy(predictions, labels, weights) def testValueTensorIsIdempotent(self): predictions = random_ops.random_uniform( (10, 3), maxval=3, dtype=dtypes_lib.int64, seed=1) labels = random_ops.random_uniform( (10, 3), maxval=3, dtype=dtypes_lib.int64, seed=2) accuracy, update_op = metrics.streaming_accuracy(predictions, labels) with self.cached_session() as sess: sess.run(variables.local_variables_initializer()) # Run several updates. for _ in range(10): sess.run(update_op) # Then verify idempotency. initial_accuracy = accuracy.eval() for _ in range(10): self.assertEqual(initial_accuracy, accuracy.eval()) def testMultipleUpdates(self): with self.cached_session() as sess: # Create the queue that populates the predictions. preds_queue = data_flow_ops.FIFOQueue( 4, dtypes=dtypes_lib.float32, shapes=(1, 1)) _enqueue_vector(sess, preds_queue, [0]) _enqueue_vector(sess, preds_queue, [1]) _enqueue_vector(sess, preds_queue, [2]) _enqueue_vector(sess, preds_queue, [1]) predictions = preds_queue.dequeue() # Create the queue that populates the labels. labels_queue = data_flow_ops.FIFOQueue( 4, dtypes=dtypes_lib.float32, shapes=(1, 1)) _enqueue_vector(sess, labels_queue, [0]) _enqueue_vector(sess, labels_queue, [1]) _enqueue_vector(sess, labels_queue, [1]) _enqueue_vector(sess, labels_queue, [2]) labels = labels_queue.dequeue() accuracy, update_op = metrics.streaming_accuracy(predictions, labels) sess.run(variables.local_variables_initializer()) for _ in xrange(3): sess.run(update_op) self.assertEqual(0.5, sess.run(update_op)) self.assertEqual(0.5, accuracy.eval()) def testEffectivelyEquivalentSizes(self): predictions = array_ops.ones((40, 1)) labels = array_ops.ones((40,)) with self.cached_session() as sess: accuracy, update_op = metrics.streaming_accuracy(predictions, labels) sess.run(variables.local_variables_initializer()) self.assertEqual(1.0, update_op.eval()) self.assertEqual(1.0, accuracy.eval()) def testEffectivelyEquivalentSizesWithStaicShapedWeight(self): predictions = ops.convert_to_tensor([1, 1, 1]) # shape 3, labels = array_ops.expand_dims(ops.convert_to_tensor([1, 0, 0]), 1) # shape 3, 1 weights = array_ops.expand_dims(ops.convert_to_tensor([100, 1, 1]), 1) # shape 3, 1 with self.cached_session() as sess: accuracy, update_op = metrics.streaming_accuracy(predictions, labels, weights) sess.run(variables.local_variables_initializer()) # if streaming_accuracy does not flatten the weight, accuracy would be # 0.33333334 due to an intended broadcast of weight. Due to flattening, # it will be higher than .95 self.assertGreater(update_op.eval(), .95) self.assertGreater(accuracy.eval(), .95) def testEffectivelyEquivalentSizesWithDynamicallyShapedWeight(self): predictions = ops.convert_to_tensor([1, 1, 1]) # shape 3, labels = array_ops.expand_dims(ops.convert_to_tensor([1, 0, 0]), 1) # shape 3, 1 weights = [[100], [1], [1]] # shape 3, 1 weights_placeholder = array_ops.placeholder( dtype=dtypes_lib.int32, name='weights') feed_dict = {weights_placeholder: weights} with self.cached_session() as sess: accuracy, update_op = metrics.streaming_accuracy(predictions, labels, weights_placeholder) sess.run(variables.local_variables_initializer()) # if streaming_accuracy does not flatten the weight, accuracy would be # 0.33333334 due to an intended broadcast of weight. Due to flattening, # it will be higher than .95 self.assertGreater(update_op.eval(feed_dict=feed_dict), .95) self.assertGreater(accuracy.eval(feed_dict=feed_dict), .95) def testMultipleUpdatesWithWeightedValues(self): with self.cached_session() as sess: # Create the queue that populates the predictions. preds_queue = data_flow_ops.FIFOQueue( 4, dtypes=dtypes_lib.float32, shapes=(1, 1)) _enqueue_vector(sess, preds_queue, [0]) _enqueue_vector(sess, preds_queue, [1]) _enqueue_vector(sess, preds_queue, [2]) _enqueue_vector(sess, preds_queue, [1]) predictions = preds_queue.dequeue() # Create the queue that populates the labels. labels_queue = data_flow_ops.FIFOQueue( 4, dtypes=dtypes_lib.float32, shapes=(1, 1)) _enqueue_vector(sess, labels_queue, [0]) _enqueue_vector(sess, labels_queue, [1]) _enqueue_vector(sess, labels_queue, [1]) _enqueue_vector(sess, labels_queue, [2]) labels = labels_queue.dequeue() # Create the queue that populates the weights. weights_queue = data_flow_ops.FIFOQueue( 4, dtypes=dtypes_lib.int64, shapes=(1, 1)) _enqueue_vector(sess, weights_queue, [1]) _enqueue_vector(sess, weights_queue, [1]) _enqueue_vector(sess, weights_queue, [0]) _enqueue_vector(sess, weights_queue, [0]) weights = weights_queue.dequeue() accuracy, update_op = metrics.streaming_accuracy(predictions, labels, weights) sess.run(variables.local_variables_initializer()) for _ in xrange(3): sess.run(update_op) self.assertEqual(1.0, sess.run(update_op)) self.assertEqual(1.0, accuracy.eval()) class StreamingTruePositivesTest(test.TestCase): def setUp(self): np.random.seed(1) ops.reset_default_graph() def testVars(self): metrics.streaming_true_positives((0, 1, 0), (0, 1, 1)) _assert_metric_variables(self, ('true_positives/count:0',)) def testUnweighted(self): for expand_predictions in [True, False]: for expand_labels in [True, False]: for dtype in (dtypes_lib.bool, dtypes_lib.int32, dtypes_lib.float32): predictions = math_ops.cast( constant_op.constant(((1, 0, 1, 0), (0, 1, 1, 1), (0, 0, 0, 0))), dtype=dtype) if expand_predictions: predictions = array_ops.expand_dims(predictions, 2) labels = math_ops.cast( constant_op.constant(((0, 1, 1, 0), (1, 0, 0, 0), (0, 0, 0, 0))), dtype=dtype) if expand_labels: labels = array_ops.expand_dims(labels, 2) tp, tp_update_op = metrics.streaming_true_positives( predictions, labels) with self.cached_session() as sess: sess.run(variables.local_variables_initializer()) self.assertEqual(0, tp.eval()) self.assertEqual(1, tp_update_op.eval()) self.assertEqual(1, tp.eval()) def testWeighted(self): for dtype in (dtypes_lib.bool, dtypes_lib.int32, dtypes_lib.float32): predictions = math_ops.cast( constant_op.constant(((1, 0, 1, 0), (0, 1, 1, 1), (0, 0, 0, 0))), dtype=dtype) labels = math_ops.cast( constant_op.constant(((0, 1, 1, 0), (1, 0, 0, 0), (0, 0, 0, 0))), dtype=dtype) tp, tp_update_op = metrics.streaming_true_positives( predictions, labels, weights=37.0) with self.cached_session() as sess: sess.run(variables.local_variables_initializer()) self.assertEqual(0, tp.eval()) self.assertEqual(37.0, tp_update_op.eval()) self.assertEqual(37.0, tp.eval()) class StreamingFalseNegativesTest(test.TestCase): def setUp(self): np.random.seed(1) ops.reset_default_graph() def testVars(self): metrics.streaming_false_negatives((0, 1, 0), (0, 1, 1)) _assert_metric_variables(self, ('false_negatives/count:0',)) def testUnweighted(self): for expand_predictions in [True, False]: for expand_labels in [True, False]: for dtype in (dtypes_lib.bool, dtypes_lib.int32, dtypes_lib.float32): predictions = math_ops.cast( constant_op.constant(((1, 0, 1, 0), (0, 1, 1, 1), (0, 0, 0, 0))), dtype=dtype) if expand_predictions: predictions = array_ops.expand_dims(predictions, 2) labels = math_ops.cast( constant_op.constant(((0, 1, 1, 0), (1, 0, 0, 0), (0, 0, 0, 0))), dtype=dtype) if expand_labels: labels = array_ops.expand_dims(labels, 2) fn, fn_update_op = metrics.streaming_false_negatives( predictions, labels) with self.cached_session() as sess: sess.run(variables.local_variables_initializer()) self.assertEqual(0, fn.eval()) self.assertEqual(2, fn_update_op.eval()) self.assertEqual(2, fn.eval()) def testWeighted(self): for dtype in (dtypes_lib.bool, dtypes_lib.int32, dtypes_lib.float32): predictions = math_ops.cast( constant_op.constant(((1, 0, 1, 0), (0, 1, 1, 1), (0, 0, 0, 0))), dtype=dtype) labels = math_ops.cast( constant_op.constant(((0, 1, 1, 0), (1, 0, 0, 0), (0, 0, 0, 0))), dtype=dtype) fn, fn_update_op = metrics.streaming_false_negatives( predictions, labels, weights=((3.0,), (5.0,), (7.0,))) with self.cached_session() as sess: sess.run(variables.local_variables_initializer()) self.assertEqual(0, fn.eval()) self.assertEqual(8.0, fn_update_op.eval()) self.assertEqual(8.0, fn.eval()) class StreamingFalsePositivesTest(test.TestCase): def setUp(self): np.random.seed(1) ops.reset_default_graph() def testVars(self): metrics.streaming_false_positives((0, 1, 0), (0, 1, 1)) _assert_metric_variables(self, ('false_positives/count:0',)) def testUnweighted(self): for expand_predictions in [True, False]: for expand_labels in [True, False]: for dtype in (dtypes_lib.bool, dtypes_lib.int32, dtypes_lib.float32): predictions = math_ops.cast( constant_op.constant(((1, 0, 1, 0), (0, 1, 1, 1), (0, 0, 0, 0))), dtype=dtype) if expand_predictions: predictions = array_ops.expand_dims(predictions, 2) labels = math_ops.cast( constant_op.constant(((0, 1, 1, 0), (1, 0, 0, 0), (0, 0, 0, 0))), dtype=dtype) if expand_labels: labels = array_ops.expand_dims(labels, 2) fp, fp_update_op = metrics.streaming_false_positives( predictions, labels) with self.cached_session() as sess: sess.run(variables.local_variables_initializer()) self.assertEqual(0, fp.eval()) self.assertEqual(4, fp_update_op.eval()) self.assertEqual(4, fp.eval()) def testWeighted(self): for dtype in (dtypes_lib.bool, dtypes_lib.int32, dtypes_lib.float32): predictions = math_ops.cast( constant_op.constant(((1, 0, 1, 0), (0, 1, 1, 1), (0, 0, 0, 0))), dtype=dtype) labels = math_ops.cast( constant_op.constant(((0, 1, 1, 0), (1, 0, 0, 0), (0, 0, 0, 0))), dtype=dtype) fp, fp_update_op = metrics.streaming_false_positives( predictions, labels, weights=((1.0, 2.0, 3.0, 5.0), (7.0, 11.0, 13.0, 17.0), (19.0, 23.0, 29.0, 31.0))) with self.cached_session() as sess: sess.run(variables.local_variables_initializer()) self.assertEqual(0, fp.eval()) self.assertEqual(42.0, fp_update_op.eval()) self.assertEqual(42.0, fp.eval()) class StreamingTrueNegativesTest(test.TestCase): def setUp(self): np.random.seed(1) ops.reset_default_graph() def testVars(self): metrics.streaming_true_negatives((0, 1, 0), (0, 1, 1)) _assert_metric_variables(self, ('true_negatives/count:0',)) def testUnweighted(self): for expand_predictions in [True, False]: for expand_labels in [True, False]: for dtype in (dtypes_lib.bool, dtypes_lib.int32, dtypes_lib.float32): predictions = math_ops.cast( constant_op.constant(((1, 0, 1, 0), (0, 1, 1, 1), (0, 0, 0, 0))), dtype=dtype) if expand_predictions: predictions = array_ops.expand_dims(predictions, 2) labels = math_ops.cast( constant_op.constant(((0, 1, 1, 0), (1, 0, 0, 0), (0, 0, 0, 0))), dtype=dtype) if expand_labels: labels = array_ops.expand_dims(labels, 2) tn, tn_update_op = metrics.streaming_true_negatives( predictions, labels) with self.cached_session() as sess: sess.run(variables.local_variables_initializer()) self.assertEqual(0, tn.eval()) self.assertEqual(5, tn_update_op.eval()) self.assertEqual(5, tn.eval()) def testWeighted(self): for dtype in (dtypes_lib.bool, dtypes_lib.int32, dtypes_lib.float32): predictions = math_ops.cast( constant_op.constant(((1, 0, 1, 0), (0, 1, 1, 1), (0, 0, 0, 0))), dtype=dtype) labels = math_ops.cast( constant_op.constant(((0, 1, 1, 0), (1, 0, 0, 0), (0, 0, 0, 0))), dtype=dtype) tn, tn_update_op = metrics.streaming_true_negatives( predictions, labels, weights=((0.0, 2.0, 3.0, 5.0),)) with self.cached_session() as sess: sess.run(variables.local_variables_initializer()) self.assertEqual(0, tn.eval()) self.assertEqual(15.0, tn_update_op.eval()) self.assertEqual(15.0, tn.eval()) class StreamingTruePositivesAtThresholdsTest(test.TestCase): def setUp(self): np.random.seed(1) ops.reset_default_graph() def testVars(self): metrics.streaming_true_positives_at_thresholds( (0.0, 1.0, 0.0), (0, 1, 1), thresholds=(0.15, 0.5, 0.85)) _assert_metric_variables(self, ('true_positives:0',)) def testUnweighted(self): predictions = constant_op.constant( ((0.9, 0.2, 0.8, 0.1), (0.2, 0.9, 0.7, 0.6), (0.1, 0.2, 0.4, 0.3))) labels = constant_op.constant(((0, 1, 1, 0), (1, 0, 0, 0), (0, 0, 0, 0))) tp, tp_update_op = metrics.streaming_true_positives_at_thresholds( predictions, labels, thresholds=(0.15, 0.5, 0.85)) with self.cached_session() as sess: sess.run(variables.local_variables_initializer()) self.assertAllEqual((0, 0, 0), tp.eval()) self.assertAllEqual((3, 1, 0), tp_update_op.eval()) self.assertAllEqual((3, 1, 0), tp.eval()) def testWeighted(self): predictions = constant_op.constant( ((0.9, 0.2, 0.8, 0.1), (0.2, 0.9, 0.7, 0.6), (0.1, 0.2, 0.4, 0.3))) labels = constant_op.constant(((0, 1, 1, 0), (1, 0, 0, 0), (0, 0, 0, 0))) tp, tp_update_op = metrics.streaming_true_positives_at_thresholds( predictions, labels, weights=37.0, thresholds=(0.15, 0.5, 0.85)) with self.cached_session() as sess: sess.run(variables.local_variables_initializer()) self.assertAllEqual((0.0, 0.0, 0.0), tp.eval()) self.assertAllEqual((111.0, 37.0, 0.0), tp_update_op.eval()) self.assertAllEqual((111.0, 37.0, 0.0), tp.eval()) class StreamingFalseNegativesAtThresholdsTest(test.TestCase): def setUp(self): np.random.seed(1) ops.reset_default_graph() def testVars(self): metrics.streaming_false_negatives_at_thresholds( (0.0, 1.0, 0.0), (0, 1, 1), thresholds=( 0.15, 0.5, 0.85, )) _assert_metric_variables(self, ('false_negatives:0',)) def testUnweighted(self): predictions = constant_op.constant( ((0.9, 0.2, 0.8, 0.1), (0.2, 0.9, 0.7, 0.6), (0.1, 0.2, 0.4, 0.3))) labels = constant_op.constant(((0, 1, 1, 0), (1, 0, 0, 0), (0, 0, 0, 0))) fn, fn_update_op = metrics.streaming_false_negatives_at_thresholds( predictions, labels, thresholds=(0.15, 0.5, 0.85)) with self.cached_session() as sess: sess.run(variables.local_variables_initializer()) self.assertAllEqual((0, 0, 0), fn.eval()) self.assertAllEqual((0, 2, 3), fn_update_op.eval()) self.assertAllEqual((0, 2, 3), fn.eval()) def testWeighted(self): predictions = constant_op.constant( ((0.9, 0.2, 0.8, 0.1), (0.2, 0.9, 0.7, 0.6), (0.1, 0.2, 0.4, 0.3))) labels = constant_op.constant(((0, 1, 1, 0), (1, 0, 0, 0), (0, 0, 0, 0))) fn, fn_update_op = metrics.streaming_false_negatives_at_thresholds( predictions, labels, weights=((3.0,), (5.0,), (7.0,)), thresholds=(0.15, 0.5, 0.85)) with self.cached_session() as sess: sess.run(variables.local_variables_initializer()) self.assertAllEqual((0.0, 0.0, 0.0), fn.eval()) self.assertAllEqual((0.0, 8.0, 11.0), fn_update_op.eval()) self.assertAllEqual((0.0, 8.0, 11.0), fn.eval()) class StreamingFalsePositivesAtThresholdsTest(test.TestCase): def setUp(self): np.random.seed(1) ops.reset_default_graph() def testVars(self): metrics.streaming_false_positives_at_thresholds( (0.0, 1.0, 0.0), (0, 1, 1), thresholds=(0.15, 0.5, 0.85)) _assert_metric_variables(self, ('false_positives:0',)) def testUnweighted(self): predictions = constant_op.constant( ((0.9, 0.2, 0.8, 0.1), (0.2, 0.9, 0.7, 0.6), (0.1, 0.2, 0.4, 0.3))) labels = constant_op.constant(((0, 1, 1, 0), (1, 0, 0, 0), (0, 0, 0, 0))) fp, fp_update_op = metrics.streaming_false_positives_at_thresholds( predictions, labels, thresholds=(0.15, 0.5, 0.85)) with self.cached_session() as sess: sess.run(variables.local_variables_initializer()) self.assertAllEqual((0, 0, 0), fp.eval()) self.assertAllEqual((7, 4, 2), fp_update_op.eval()) self.assertAllEqual((7, 4, 2), fp.eval()) def testWeighted(self): predictions = constant_op.constant( ((0.9, 0.2, 0.8, 0.1), (0.2, 0.9, 0.7, 0.6), (0.1, 0.2, 0.4, 0.3))) labels = constant_op.constant(((0, 1, 1, 0), (1, 0, 0, 0), (0, 0, 0, 0))) fp, fp_update_op = metrics.streaming_false_positives_at_thresholds( predictions, labels, weights=((1.0, 2.0, 3.0, 5.0), (7.0, 11.0, 13.0, 17.0), (19.0, 23.0, 29.0, 31.0)), thresholds=(0.15, 0.5, 0.85)) with self.cached_session() as sess: sess.run(variables.local_variables_initializer()) self.assertAllEqual((0.0, 0.0, 0.0), fp.eval()) self.assertAllEqual((125.0, 42.0, 12.0), fp_update_op.eval()) self.assertAllEqual((125.0, 42.0, 12.0), fp.eval()) class StreamingTrueNegativesAtThresholdsTest(test.TestCase): def setUp(self): np.random.seed(1) ops.reset_default_graph() def testVars(self): metrics.streaming_true_negatives_at_thresholds( (0.0, 1.0, 0.0), (0, 1, 1), thresholds=(0.15, 0.5, 0.85)) _assert_metric_variables(self, ('true_negatives:0',)) def testUnweighted(self): predictions = constant_op.constant( ((0.9, 0.2, 0.8, 0.1), (0.2, 0.9, 0.7, 0.6), (0.1, 0.2, 0.4, 0.3))) labels = constant_op.constant(((0, 1, 1, 0), (1, 0, 0, 0), (0, 0, 0, 0))) tn, tn_update_op = metrics.streaming_true_negatives_at_thresholds( predictions, labels, thresholds=(0.15, 0.5, 0.85)) with self.cached_session() as sess: sess.run(variables.local_variables_initializer()) self.assertAllEqual((0, 0, 0), tn.eval()) self.assertAllEqual((2, 5, 7), tn_update_op.eval()) self.assertAllEqual((2, 5, 7), tn.eval()) def testWeighted(self): predictions = constant_op.constant( ((0.9, 0.2, 0.8, 0.1), (0.2, 0.9, 0.7, 0.6), (0.1, 0.2, 0.4, 0.3))) labels = constant_op.constant(((0, 1, 1, 0), (1, 0, 0, 0), (0, 0, 0, 0))) tn, tn_update_op = metrics.streaming_true_negatives_at_thresholds( predictions, labels, weights=((0.0, 2.0, 3.0, 5.0),), thresholds=(0.15, 0.5, 0.85)) with self.cached_session() as sess: sess.run(variables.local_variables_initializer()) self.assertAllEqual((0.0, 0.0, 0.0), tn.eval()) self.assertAllEqual((5.0, 15.0, 23.0), tn_update_op.eval()) self.assertAllEqual((5.0, 15.0, 23.0), tn.eval()) class StreamingPrecisionTest(test.TestCase): def setUp(self): np.random.seed(1) ops.reset_default_graph() def testVars(self): metrics.streaming_precision( predictions=array_ops.ones((10, 1)), labels=array_ops.ones((10, 1))) _assert_metric_variables(self, ('precision/false_positives/count:0', 'precision/true_positives/count:0')) def testMetricsCollection(self): my_collection_name = '__metrics__' mean, _ = metrics.streaming_precision( predictions=array_ops.ones((10, 1)), labels=array_ops.ones((10, 1)), metrics_collections=[my_collection_name]) self.assertListEqual(ops.get_collection(my_collection_name), [mean]) def testUpdatesCollection(self): my_collection_name = '__updates__' _, update_op = metrics.streaming_precision( predictions=array_ops.ones((10, 1)), labels=array_ops.ones((10, 1)), updates_collections=[my_collection_name]) self.assertListEqual(ops.get_collection(my_collection_name), [update_op]) def testValueTensorIsIdempotent(self): predictions = random_ops.random_uniform( (10, 3), maxval=1, dtype=dtypes_lib.int64, seed=1) labels = random_ops.random_uniform( (10, 3), maxval=2, dtype=dtypes_lib.int64, seed=2) precision, update_op = metrics.streaming_precision(predictions, labels) with self.cached_session() as sess: sess.run(variables.local_variables_initializer()) # Run several updates. for _ in range(10): sess.run(update_op) # Then verify idempotency. initial_precision = precision.eval() for _ in range(10): self.assertEqual(initial_precision, precision.eval()) def testAllCorrect(self): inputs = np.random.randint(0, 2, size=(100, 1)) predictions = constant_op.constant(inputs) labels = constant_op.constant(inputs) precision, update_op = metrics.streaming_precision(predictions, labels) with self.cached_session() as sess: sess.run(variables.local_variables_initializer()) self.assertAlmostEqual(1, sess.run(update_op)) self.assertAlmostEqual(1, precision.eval()) def testSomeCorrect(self): predictions = constant_op.constant([1, 0, 1, 0], shape=(1, 4)) labels = constant_op.constant([0, 1, 1, 0], shape=(1, 4)) precision, update_op = metrics.streaming_precision(predictions, labels) with self.cached_session() as sess: sess.run(variables.local_variables_initializer()) self.assertAlmostEqual(0.5, update_op.eval()) self.assertAlmostEqual(0.5, precision.eval()) def testWeighted1d(self): predictions = constant_op.constant([[1, 0, 1, 0], [1, 0, 1, 0]]) labels = constant_op.constant([[0, 1, 1, 0], [1, 0, 0, 1]]) precision, update_op = metrics.streaming_precision( predictions, labels, weights=constant_op.constant([[2], [5]])) with self.cached_session(): variables.local_variables_initializer().run() weighted_tp = 2.0 + 5.0 weighted_positives = (2.0 + 2.0) + (5.0 + 5.0) expected_precision = weighted_tp / weighted_positives self.assertAlmostEqual(expected_precision, update_op.eval()) self.assertAlmostEqual(expected_precision, precision.eval()) def testWeighted1d_placeholders(self): predictions = array_ops.placeholder(dtype=dtypes_lib.float32) labels = array_ops.placeholder(dtype=dtypes_lib.float32) feed_dict = { predictions: ((1, 0, 1, 0), (1, 0, 1, 0)), labels: ((0, 1, 1, 0), (1, 0, 0, 1)) } precision, update_op = metrics.streaming_precision( predictions, labels, weights=constant_op.constant([[2], [5]])) with self.cached_session(): variables.local_variables_initializer().run() weighted_tp = 2.0 + 5.0 weighted_positives = (2.0 + 2.0) + (5.0 + 5.0) expected_precision = weighted_tp / weighted_positives self.assertAlmostEqual( expected_precision, update_op.eval(feed_dict=feed_dict)) self.assertAlmostEqual( expected_precision, precision.eval(feed_dict=feed_dict)) def testWeighted2d(self): predictions = constant_op.constant([[1, 0, 1, 0], [1, 0, 1, 0]]) labels = constant_op.constant([[0, 1, 1, 0], [1, 0, 0, 1]]) precision, update_op = metrics.streaming_precision( predictions, labels, weights=constant_op.constant([[1, 2, 3, 4], [4, 3, 2, 1]])) with self.cached_session(): variables.local_variables_initializer().run() weighted_tp = 3.0 + 4.0 weighted_positives = (1.0 + 3.0) + (4.0 + 2.0) expected_precision = weighted_tp / weighted_positives self.assertAlmostEqual(expected_precision, update_op.eval()) self.assertAlmostEqual(expected_precision, precision.eval()) def testWeighted2d_placeholders(self): predictions = array_ops.placeholder(dtype=dtypes_lib.float32) labels = array_ops.placeholder(dtype=dtypes_lib.float32) feed_dict = { predictions: ((1, 0, 1, 0), (1, 0, 1, 0)), labels: ((0, 1, 1, 0), (1, 0, 0, 1)) } precision, update_op = metrics.streaming_precision( predictions, labels, weights=constant_op.constant([[1, 2, 3, 4], [4, 3, 2, 1]])) with self.cached_session(): variables.local_variables_initializer().run() weighted_tp = 3.0 + 4.0 weighted_positives = (1.0 + 3.0) + (4.0 + 2.0) expected_precision = weighted_tp / weighted_positives self.assertAlmostEqual( expected_precision, update_op.eval(feed_dict=feed_dict)) self.assertAlmostEqual( expected_precision, precision.eval(feed_dict=feed_dict)) def testAllIncorrect(self): inputs = np.random.randint(0, 2, size=(100, 1)) predictions = constant_op.constant(inputs) labels = constant_op.constant(1 - inputs) precision, update_op = metrics.streaming_precision(predictions, labels) with self.cached_session() as sess: sess.run(variables.local_variables_initializer()) sess.run(update_op) self.assertAlmostEqual(0, precision.eval()) def testZeroTrueAndFalsePositivesGivesZeroPrecision(self): predictions = constant_op.constant([0, 0, 0, 0]) labels = constant_op.constant([0, 0, 0, 0]) precision, update_op = metrics.streaming_precision(predictions, labels) with self.cached_session() as sess: sess.run(variables.local_variables_initializer()) sess.run(update_op) self.assertEqual(0.0, precision.eval()) class StreamingRecallTest(test.TestCase): def setUp(self): np.random.seed(1) ops.reset_default_graph() def testVars(self): metrics.streaming_recall( predictions=array_ops.ones((10, 1)), labels=array_ops.ones((10, 1))) _assert_metric_variables( self, ('recall/false_negatives/count:0', 'recall/true_positives/count:0')) def testMetricsCollection(self): my_collection_name = '__metrics__' mean, _ = metrics.streaming_recall( predictions=array_ops.ones((10, 1)), labels=array_ops.ones((10, 1)), metrics_collections=[my_collection_name]) self.assertListEqual(ops.get_collection(my_collection_name), [mean]) def testUpdatesCollection(self): my_collection_name = '__updates__' _, update_op = metrics.streaming_recall( predictions=array_ops.ones((10, 1)), labels=array_ops.ones((10, 1)), updates_collections=[my_collection_name]) self.assertListEqual(ops.get_collection(my_collection_name), [update_op]) def testValueTensorIsIdempotent(self): predictions = random_ops.random_uniform( (10, 3), maxval=1, dtype=dtypes_lib.int64, seed=1) labels = random_ops.random_uniform( (10, 3), maxval=2, dtype=dtypes_lib.int64, seed=2) recall, update_op = metrics.streaming_recall(predictions, labels) with self.cached_session() as sess: sess.run(variables.local_variables_initializer()) # Run several updates. for _ in range(10): sess.run(update_op) # Then verify idempotency. initial_recall = recall.eval() for _ in range(10): self.assertEqual(initial_recall, recall.eval()) def testAllCorrect(self): np_inputs = np.random.randint(0, 2, size=(100, 1)) predictions = constant_op.constant(np_inputs) labels = constant_op.constant(np_inputs) recall, update_op = metrics.streaming_recall(predictions, labels) with self.cached_session() as sess: sess.run(variables.local_variables_initializer()) sess.run(update_op) self.assertEqual(1, recall.eval()) def testSomeCorrect(self): predictions = constant_op.constant([1, 0, 1, 0], shape=(1, 4)) labels = constant_op.constant([0, 1, 1, 0], shape=(1, 4)) recall, update_op = metrics.streaming_recall(predictions, labels) with self.cached_session() as sess: sess.run(variables.local_variables_initializer()) self.assertAlmostEqual(0.5, update_op.eval()) self.assertAlmostEqual(0.5, recall.eval()) def testWeighted1d(self): predictions = constant_op.constant([[1, 0, 1, 0], [0, 1, 0, 1]]) labels = constant_op.constant([[0, 1, 1, 0], [1, 0, 0, 1]]) weights = constant_op.constant([[2], [5]]) recall, update_op = metrics.streaming_recall( predictions, labels, weights=weights) with self.cached_session() as sess: sess.run(variables.local_variables_initializer()) weighted_tp = 2.0 + 5.0 weighted_t = (2.0 + 2.0) + (5.0 + 5.0) expected_precision = weighted_tp / weighted_t self.assertAlmostEqual(expected_precision, update_op.eval()) self.assertAlmostEqual(expected_precision, recall.eval()) def testWeighted2d(self): predictions = constant_op.constant([[1, 0, 1, 0], [0, 1, 0, 1]]) labels = constant_op.constant([[0, 1, 1, 0], [1, 0, 0, 1]]) weights = constant_op.constant([[1, 2, 3, 4], [4, 3, 2, 1]]) recall, update_op = metrics.streaming_recall( predictions, labels, weights=weights) with self.cached_session() as sess: sess.run(variables.local_variables_initializer()) weighted_tp = 3.0 + 1.0 weighted_t = (2.0 + 3.0) + (4.0 + 1.0) expected_precision = weighted_tp / weighted_t self.assertAlmostEqual(expected_precision, update_op.eval()) self.assertAlmostEqual(expected_precision, recall.eval()) def testAllIncorrect(self): np_inputs = np.random.randint(0, 2, size=(100, 1)) predictions = constant_op.constant(np_inputs) labels = constant_op.constant(1 - np_inputs) recall, update_op = metrics.streaming_recall(predictions, labels) with self.cached_session() as sess: sess.run(variables.local_variables_initializer()) sess.run(update_op) self.assertEqual(0, recall.eval()) def testZeroTruePositivesAndFalseNegativesGivesZeroRecall(self): predictions = array_ops.zeros((1, 4)) labels = array_ops.zeros((1, 4)) recall, update_op = metrics.streaming_recall(predictions, labels) with self.cached_session() as sess: sess.run(variables.local_variables_initializer()) sess.run(update_op) self.assertEqual(0, recall.eval()) class StreamingFPRTest(test.TestCase): def setUp(self): np.random.seed(1) ops.reset_default_graph() def testVars(self): metrics.streaming_false_positive_rate( predictions=array_ops.ones((10, 1)), labels=array_ops.ones((10, 1))) _assert_metric_variables(self, ('false_positive_rate/false_positives/count:0', 'false_positive_rate/true_negatives/count:0')) def testMetricsCollection(self): my_collection_name = '__metrics__' mean, _ = metrics.streaming_false_positive_rate( predictions=array_ops.ones((10, 1)), labels=array_ops.ones((10, 1)), metrics_collections=[my_collection_name]) self.assertListEqual(ops.get_collection(my_collection_name), [mean]) def testUpdatesCollection(self): my_collection_name = '__updates__' _, update_op = metrics.streaming_false_positive_rate( predictions=array_ops.ones((10, 1)), labels=array_ops.ones((10, 1)), updates_collections=[my_collection_name]) self.assertListEqual(ops.get_collection(my_collection_name), [update_op]) def testValueTensorIsIdempotent(self): predictions = random_ops.random_uniform( (10, 3), maxval=1, dtype=dtypes_lib.int64, seed=1) labels = random_ops.random_uniform( (10, 3), maxval=2, dtype=dtypes_lib.int64, seed=2) fpr, update_op = metrics.streaming_false_positive_rate(predictions, labels) with self.cached_session() as sess: sess.run(variables.local_variables_initializer()) # Run several updates. for _ in range(10): sess.run(update_op) # Then verify idempotency. initial_fpr = fpr.eval() for _ in range(10): self.assertEqual(initial_fpr, fpr.eval()) def testAllCorrect(self): np_inputs = np.random.randint(0, 2, size=(100, 1)) predictions = constant_op.constant(np_inputs) labels = constant_op.constant(np_inputs) fpr, update_op = metrics.streaming_false_positive_rate(predictions, labels) with self.cached_session() as sess: sess.run(variables.local_variables_initializer()) sess.run(update_op) self.assertEqual(0, fpr.eval()) def testSomeCorrect(self): predictions = constant_op.constant([1, 0, 1, 0], shape=(1, 4)) labels = constant_op.constant([0, 1, 1, 0], shape=(1, 4)) fpr, update_op = metrics.streaming_false_positive_rate(predictions, labels) with self.cached_session() as sess: sess.run(variables.local_variables_initializer()) self.assertAlmostEqual(0.5, update_op.eval()) self.assertAlmostEqual(0.5, fpr.eval()) def testWeighted1d(self): predictions = constant_op.constant([[1, 0, 1, 0], [0, 1, 0, 1]]) labels = constant_op.constant([[0, 1, 1, 0], [1, 0, 0, 1]]) weights = constant_op.constant([[2], [5]]) fpr, update_op = metrics.streaming_false_positive_rate( predictions, labels, weights=weights) with self.cached_session() as sess: sess.run(variables.local_variables_initializer()) weighted_fp = 2.0 + 5.0 weighted_f = (2.0 + 2.0) + (5.0 + 5.0) expected_fpr = weighted_fp / weighted_f self.assertAlmostEqual(expected_fpr, update_op.eval()) self.assertAlmostEqual(expected_fpr, fpr.eval()) def testWeighted2d(self): predictions = constant_op.constant([[1, 0, 1, 0], [0, 1, 0, 1]]) labels = constant_op.constant([[0, 1, 1, 0], [1, 0, 0, 1]]) weights = constant_op.constant([[1, 2, 3, 4], [4, 3, 2, 1]]) fpr, update_op = metrics.streaming_false_positive_rate( predictions, labels, weights=weights) with self.cached_session() as sess: sess.run(variables.local_variables_initializer()) weighted_fp = 1.0 + 3.0 weighted_f = (1.0 + 4.0) + (2.0 + 3.0) expected_fpr = weighted_fp / weighted_f self.assertAlmostEqual(expected_fpr, update_op.eval()) self.assertAlmostEqual(expected_fpr, fpr.eval()) def testAllIncorrect(self): np_inputs = np.random.randint(0, 2, size=(100, 1)) predictions = constant_op.constant(np_inputs) labels = constant_op.constant(1 - np_inputs) fpr, update_op = metrics.streaming_false_positive_rate(predictions, labels) with self.cached_session() as sess: sess.run(variables.local_variables_initializer()) sess.run(update_op) self.assertEqual(1, fpr.eval()) def testZeroFalsePositivesAndTrueNegativesGivesZeroFPR(self): predictions = array_ops.ones((1, 4)) labels = array_ops.ones((1, 4)) fpr, update_op = metrics.streaming_false_positive_rate(predictions, labels) with self.cached_session() as sess: sess.run(variables.local_variables_initializer()) sess.run(update_op) self.assertEqual(0, fpr.eval()) class StreamingFNRTest(test.TestCase): def setUp(self): np.random.seed(1) ops.reset_default_graph() def testVars(self): metrics.streaming_false_negative_rate( predictions=array_ops.ones((10, 1)), labels=array_ops.ones((10, 1))) _assert_metric_variables(self, ('false_negative_rate/false_negatives/count:0', 'false_negative_rate/true_positives/count:0')) def testMetricsCollection(self): my_collection_name = '__metrics__' mean, _ = metrics.streaming_false_negative_rate( predictions=array_ops.ones((10, 1)), labels=array_ops.ones((10, 1)), metrics_collections=[my_collection_name]) self.assertListEqual(ops.get_collection(my_collection_name), [mean]) def testUpdatesCollection(self): my_collection_name = '__updates__' _, update_op = metrics.streaming_false_negative_rate( predictions=array_ops.ones((10, 1)), labels=array_ops.ones((10, 1)), updates_collections=[my_collection_name]) self.assertListEqual(ops.get_collection(my_collection_name), [update_op]) def testValueTensorIsIdempotent(self): predictions = random_ops.random_uniform( (10, 3), maxval=1, dtype=dtypes_lib.int64, seed=1) labels = random_ops.random_uniform( (10, 3), maxval=2, dtype=dtypes_lib.int64, seed=2) fnr, update_op = metrics.streaming_false_negative_rate(predictions, labels) with self.cached_session() as sess: sess.run(variables.local_variables_initializer()) # Run several updates. for _ in range(10): sess.run(update_op) # Then verify idempotency. initial_fnr = fnr.eval() for _ in range(10): self.assertEqual(initial_fnr, fnr.eval()) def testAllCorrect(self): np_inputs = np.random.randint(0, 2, size=(100, 1)) predictions = constant_op.constant(np_inputs) labels = constant_op.constant(np_inputs) fnr, update_op = metrics.streaming_false_negative_rate(predictions, labels) with self.cached_session() as sess: sess.run(variables.local_variables_initializer()) sess.run(update_op) self.assertEqual(0, fnr.eval()) def testSomeCorrect(self): predictions = constant_op.constant([1, 0, 1, 0], shape=(1, 4)) labels = constant_op.constant([0, 1, 1, 0], shape=(1, 4)) fnr, update_op = metrics.streaming_false_negative_rate(predictions, labels) with self.cached_session() as sess: sess.run(variables.local_variables_initializer()) self.assertAlmostEqual(0.5, update_op.eval()) self.assertAlmostEqual(0.5, fnr.eval()) def testWeighted1d(self): predictions = constant_op.constant([[1, 0, 1, 0], [0, 1, 0, 1]]) labels = constant_op.constant([[0, 1, 1, 0], [1, 0, 0, 1]]) weights = constant_op.constant([[2], [5]]) fnr, update_op = metrics.streaming_false_negative_rate( predictions, labels, weights=weights) with self.cached_session() as sess: sess.run(variables.local_variables_initializer()) weighted_fn = 2.0 + 5.0 weighted_t = (2.0 + 2.0) + (5.0 + 5.0) expected_fnr = weighted_fn / weighted_t self.assertAlmostEqual(expected_fnr, update_op.eval()) self.assertAlmostEqual(expected_fnr, fnr.eval()) def testWeighted2d(self): predictions = constant_op.constant([[1, 0, 1, 0], [0, 1, 0, 1]]) labels = constant_op.constant([[0, 1, 1, 0], [1, 0, 0, 1]]) weights = constant_op.constant([[1, 2, 3, 4], [4, 3, 2, 1]]) fnr, update_op = metrics.streaming_false_negative_rate( predictions, labels, weights=weights) with self.cached_session() as sess: sess.run(variables.local_variables_initializer()) weighted_fn = 2.0 + 4.0 weighted_t = (2.0 + 3.0) + (1.0 + 4.0) expected_fnr = weighted_fn / weighted_t self.assertAlmostEqual(expected_fnr, update_op.eval()) self.assertAlmostEqual(expected_fnr, fnr.eval()) def testAllIncorrect(self): np_inputs = np.random.randint(0, 2, size=(100, 1)) predictions = constant_op.constant(np_inputs) labels = constant_op.constant(1 - np_inputs) fnr, update_op = metrics.streaming_false_negative_rate(predictions, labels) with self.cached_session() as sess: sess.run(variables.local_variables_initializer()) sess.run(update_op) self.assertEqual(1, fnr.eval()) def testZeroFalseNegativesAndTruePositivesGivesZeroFNR(self): predictions = array_ops.zeros((1, 4)) labels = array_ops.zeros((1, 4)) fnr, update_op = metrics.streaming_false_negative_rate(predictions, labels) with self.cached_session() as sess: sess.run(variables.local_variables_initializer()) sess.run(update_op) self.assertEqual(0, fnr.eval()) class StreamingCurvePointsTest(test.TestCase): def setUp(self): np.random.seed(1) ops.reset_default_graph() def testVars(self): metric_ops.streaming_curve_points( predictions=array_ops.ones((10, 1)), labels=array_ops.ones((10, 1))) _assert_metric_variables( self, ('curve_points/true_positives:0', 'curve_points/false_negatives:0', 'curve_points/false_positives:0', 'curve_points/true_negatives:0')) def testMetricsCollection(self): my_collection_name = '__metrics__' points, _ = metric_ops.streaming_curve_points( labels=array_ops.ones((10, 1)), predictions=array_ops.ones((10, 1)), metrics_collections=[my_collection_name]) self.assertListEqual(ops.get_collection(my_collection_name), [points]) def testUpdatesCollection(self): my_collection_name = '__updates__' _, update_op = metric_ops.streaming_curve_points( labels=array_ops.ones((10, 1)), predictions=array_ops.ones((10, 1)), updates_collections=[my_collection_name]) self.assertListEqual(ops.get_collection(my_collection_name), [update_op]) def _testValueTensorIsIdempotent(self, curve): predictions = constant_op.constant( np.random.uniform(size=(10, 3)), dtype=dtypes_lib.float32) labels = constant_op.constant( np.random.uniform(high=2, size=(10, 3)), dtype=dtypes_lib.float32) points, update_op = metric_ops.streaming_curve_points( labels, predictions=predictions, curve=curve) with self.cached_session() as sess: sess.run(variables.local_variables_initializer()) sess.run(update_op) initial_points = points.eval() sess.run(update_op) self.assertAllClose(initial_points, points.eval()) def testValueTensorIsIdempotentROC(self): self._testValueTensorIsIdempotent(curve='ROC') def testValueTensorIsIdempotentPR(self): self._testValueTensorIsIdempotent(curve='PR') def _testCase(self, labels, predictions, curve, expected_points): with self.cached_session() as sess: predictions_tensor = constant_op.constant( predictions, dtype=dtypes_lib.float32) labels_tensor = constant_op.constant(labels, dtype=dtypes_lib.float32) points, update_op = metric_ops.streaming_curve_points( labels=labels_tensor, predictions=predictions_tensor, num_thresholds=3, curve=curve) sess.run(variables.local_variables_initializer()) sess.run(update_op) self.assertAllClose(expected_points, points.eval()) def testEdgeCasesROC(self): self._testCase([[1]], [[1]], 'ROC', [[0, 1], [0, 1], [0, 0]]) self._testCase([[0]], [[0]], 'ROC', [[1, 1], [0, 1], [0, 1]]) self._testCase([[0]], [[1]], 'ROC', [[1, 1], [1, 1], [0, 1]]) self._testCase([[1]], [[0]], 'ROC', [[0, 1], [0, 0], [0, 0]]) def testManyValuesROC(self): self._testCase([[1.0, 0.0, 0.0, 1.0, 1.0, 1.0]], [[0.2, 0.3, 0.4, 0.6, 0.7, 0.8]], 'ROC', [[1.0, 1.0], [0.0, 0.75], [0.0, 0.0]]) def testEdgeCasesPR(self): self._testCase([[1]], [[1]], 'PR', [[1, 1], [1, 1], [0, 1]]) self._testCase([[0]], [[0]], 'PR', [[1, 0], [1, 1], [1, 1]]) self._testCase([[0]], [[1]], 'PR', [[1, 0], [1, 0], [1, 1]]) self._testCase([[1]], [[0]], 'PR', [[1, 1], [0, 1], [0, 1]]) def testManyValuesPR(self): self._testCase([[1.0, 0.0, 0.0, 1.0, 1.0, 1.0]], [[0.2, 0.3, 0.4, 0.6, 0.7, 0.8]], 'PR', [[1.0, 4.0 / 6.0], [0.75, 1.0], [0.0, 1.0]]) def _np_auc(predictions, labels, weights=None): """Computes the AUC explicitly using Numpy. Args: predictions: an ndarray with shape [N]. labels: an ndarray with shape [N]. weights: an ndarray with shape [N]. Returns: the area under the ROC curve. """ if weights is None: weights = np.ones(np.size(predictions)) is_positive = labels > 0 num_positives = np.sum(weights[is_positive]) num_negatives = np.sum(weights[~is_positive]) # Sort descending: inds = np.argsort(-predictions) sorted_labels = labels[inds] sorted_weights = weights[inds] is_positive = sorted_labels > 0 tp = np.cumsum(sorted_weights * is_positive) / num_positives return np.sum((sorted_weights * tp)[~is_positive]) / num_negatives class StreamingAUCTest(test.TestCase): def setUp(self): np.random.seed(1) ops.reset_default_graph() def testVars(self): metrics.streaming_auc( predictions=array_ops.ones((10, 1)), labels=array_ops.ones((10, 1))) _assert_metric_variables(self, ('auc/true_positives:0', 'auc/false_negatives:0', 'auc/false_positives:0', 'auc/true_negatives:0')) def testMetricsCollection(self): my_collection_name = '__metrics__' mean, _ = metrics.streaming_auc( predictions=array_ops.ones((10, 1)), labels=array_ops.ones((10, 1)), metrics_collections=[my_collection_name]) self.assertListEqual(ops.get_collection(my_collection_name), [mean]) def testUpdatesCollection(self): my_collection_name = '__updates__' _, update_op = metrics.streaming_auc( predictions=array_ops.ones((10, 1)), labels=array_ops.ones((10, 1)), updates_collections=[my_collection_name]) self.assertListEqual(ops.get_collection(my_collection_name), [update_op]) def testValueTensorIsIdempotent(self): predictions = random_ops.random_uniform( (10, 3), maxval=1, dtype=dtypes_lib.float32, seed=1) labels = random_ops.random_uniform( (10, 3), maxval=2, dtype=dtypes_lib.int64, seed=2) auc, update_op = metrics.streaming_auc(predictions, labels) with self.cached_session() as sess: sess.run(variables.local_variables_initializer()) # Run several updates. for _ in range(10): sess.run(update_op) # Then verify idempotency. initial_auc = auc.eval() for _ in range(10): self.assertAlmostEqual(initial_auc, auc.eval(), 5) def testPredictionsOutOfRange(self): with self.cached_session() as sess: predictions = constant_op.constant( [1, -1, 1, -1], shape=(1, 4), dtype=dtypes_lib.float32) labels = constant_op.constant([0, 1, 1, 0], shape=(1, 4)) _, update_op = metrics.streaming_auc(predictions, labels) sess.run(variables.local_variables_initializer()) self.assertRaises(errors_impl.InvalidArgumentError, update_op.eval) def testAllCorrect(self): self.allCorrectAsExpected('ROC') def allCorrectAsExpected(self, curve): inputs = np.random.randint(0, 2, size=(100, 1)) with self.cached_session() as sess: predictions = constant_op.constant(inputs, dtype=dtypes_lib.float32) labels = constant_op.constant(inputs) auc, update_op = metrics.streaming_auc(predictions, labels, curve=curve) sess.run(variables.local_variables_initializer()) self.assertEqual(1, sess.run(update_op)) self.assertEqual(1, auc.eval()) def testSomeCorrect(self): with self.cached_session() as sess: predictions = constant_op.constant( [1, 0, 1, 0], shape=(1, 4), dtype=dtypes_lib.float32) labels = constant_op.constant([0, 1, 1, 0], shape=(1, 4)) auc, update_op = metrics.streaming_auc(predictions, labels) sess.run(variables.local_variables_initializer()) self.assertAlmostEqual(0.5, sess.run(update_op)) self.assertAlmostEqual(0.5, auc.eval()) def testWeighted1d(self): with self.cached_session() as sess: predictions = constant_op.constant( [1, 0, 1, 0], shape=(1, 4), dtype=dtypes_lib.float32) labels = constant_op.constant([0, 1, 1, 0], shape=(1, 4)) weights = constant_op.constant([2], shape=(1, 1)) auc, update_op = metrics.streaming_auc( predictions, labels, weights=weights) sess.run(variables.local_variables_initializer()) self.assertAlmostEqual(0.5, sess.run(update_op), 5) self.assertAlmostEqual(0.5, auc.eval(), 5) def testWeighted2d(self): with self.cached_session() as sess: predictions = constant_op.constant( [1, 0, 1, 0], shape=(1, 4), dtype=dtypes_lib.float32) labels = constant_op.constant([0, 1, 1, 0], shape=(1, 4)) weights = constant_op.constant([1, 2, 3, 4], shape=(1, 4)) auc, update_op = metrics.streaming_auc( predictions, labels, weights=weights) sess.run(variables.local_variables_initializer()) self.assertAlmostEqual(0.7, sess.run(update_op), 5) self.assertAlmostEqual(0.7, auc.eval(), 5) def testAUCPRSpecialCase(self): with self.cached_session() as sess: predictions = constant_op.constant( [0.1, 0.4, 0.35, 0.8], shape=(1, 4), dtype=dtypes_lib.float32) labels = constant_op.constant([0, 0, 1, 1], shape=(1, 4)) auc, update_op = metrics.streaming_auc(predictions, labels, curve='PR') sess.run(variables.local_variables_initializer()) self.assertAlmostEqual(0.79166, sess.run(update_op), delta=1e-3) self.assertAlmostEqual(0.79166, auc.eval(), delta=1e-3) def testAnotherAUCPRSpecialCase(self): with self.cached_session() as sess: predictions = constant_op.constant( [0.1, 0.4, 0.35, 0.8, 0.1, 0.135, 0.81], shape=(1, 7), dtype=dtypes_lib.float32) labels = constant_op.constant([0, 0, 1, 0, 1, 0, 1], shape=(1, 7)) auc, update_op = metrics.streaming_auc(predictions, labels, curve='PR') sess.run(variables.local_variables_initializer()) self.assertAlmostEqual(0.610317, sess.run(update_op), delta=1e-3) self.assertAlmostEqual(0.610317, auc.eval(), delta=1e-3) def testThirdAUCPRSpecialCase(self): with self.cached_session() as sess: predictions = constant_op.constant( [0.0, 0.1, 0.2, 0.33, 0.3, 0.4, 0.5], shape=(1, 7), dtype=dtypes_lib.float32) labels = constant_op.constant([0, 0, 0, 0, 1, 1, 1], shape=(1, 7)) auc, update_op = metrics.streaming_auc(predictions, labels, curve='PR') sess.run(variables.local_variables_initializer()) self.assertAlmostEqual(0.90277, sess.run(update_op), delta=1e-3) self.assertAlmostEqual(0.90277, auc.eval(), delta=1e-3) def testAllIncorrect(self): inputs = np.random.randint(0, 2, size=(100, 1)) with self.cached_session() as sess: predictions = constant_op.constant(inputs, dtype=dtypes_lib.float32) labels = constant_op.constant(1 - inputs, dtype=dtypes_lib.float32) auc, update_op = metrics.streaming_auc(predictions, labels) sess.run(variables.local_variables_initializer()) self.assertAlmostEqual(0, sess.run(update_op)) self.assertAlmostEqual(0, auc.eval()) def testZeroTruePositivesAndFalseNegativesGivesOneAUC(self): with self.cached_session() as sess: predictions = array_ops.zeros([4], dtype=dtypes_lib.float32) labels = array_ops.zeros([4]) auc, update_op = metrics.streaming_auc(predictions, labels) sess.run(variables.local_variables_initializer()) self.assertAlmostEqual(1, sess.run(update_op), 6) self.assertAlmostEqual(1, auc.eval(), 6) def testRecallOneAndPrecisionOneGivesOnePRAUC(self): with self.cached_session() as sess: predictions = array_ops.ones([4], dtype=dtypes_lib.float32) labels = array_ops.ones([4]) auc, update_op = metrics.streaming_auc(predictions, labels, curve='PR') sess.run(variables.local_variables_initializer()) self.assertAlmostEqual(1, sess.run(update_op), 6) self.assertAlmostEqual(1, auc.eval(), 6) def testWithMultipleUpdates(self): num_samples = 1000 batch_size = 10 num_batches = int(num_samples / batch_size) # Create the labels and data. labels = np.random.randint(0, 2, size=num_samples) noise = np.random.normal(0.0, scale=0.2, size=num_samples) predictions = 0.4 + 0.2 * labels + noise predictions[predictions > 1] = 1 predictions[predictions < 0] = 0 def _enqueue_as_batches(x, enqueue_ops): x_batches = x.astype(np.float32).reshape((num_batches, batch_size)) x_queue = data_flow_ops.FIFOQueue( num_batches, dtypes=dtypes_lib.float32, shapes=(batch_size,)) for i in range(num_batches): enqueue_ops[i].append(x_queue.enqueue(x_batches[i, :])) return x_queue.dequeue() for weights in (None, np.ones(num_samples), np.random.exponential(scale=1.0, size=num_samples)): expected_auc = _np_auc(predictions, labels, weights) with self.cached_session() as sess: enqueue_ops = [[] for i in range(num_batches)] tf_predictions = _enqueue_as_batches(predictions, enqueue_ops) tf_labels = _enqueue_as_batches(labels, enqueue_ops) tf_weights = ( _enqueue_as_batches(weights, enqueue_ops) if weights is not None else None) for i in range(num_batches): sess.run(enqueue_ops[i]) auc, update_op = metrics.streaming_auc( tf_predictions, tf_labels, curve='ROC', num_thresholds=500, weights=tf_weights) sess.run(variables.local_variables_initializer()) for i in range(num_batches): sess.run(update_op) # Since this is only approximate, we can't expect a 6 digits match. # Although with higher number of samples/thresholds we should see the # accuracy improving self.assertAlmostEqual(expected_auc, auc.eval(), 2) class StreamingDynamicAUCTest(test.TestCase): def setUp(self): super(StreamingDynamicAUCTest, self).setUp() np.random.seed(1) ops.reset_default_graph() def testUnknownCurve(self): with self.assertRaisesRegexp( ValueError, 'curve must be either ROC or PR, TEST_CURVE unknown'): metrics.streaming_dynamic_auc( labels=array_ops.ones((10, 1)), predictions=array_ops.ones((10, 1)), curve='TEST_CURVE') def testVars(self): metrics.streaming_dynamic_auc( labels=array_ops.ones((10, 1)), predictions=array_ops.ones((10, 1))) _assert_metric_variables(self, [ 'dynamic_auc/concat_labels/array:0', 'dynamic_auc/concat_labels/size:0', 'dynamic_auc/concat_preds/array:0', 'dynamic_auc/concat_preds/size:0' ]) def testMetricsCollection(self): my_collection_name = '__metrics__' auc, _ = metrics.streaming_dynamic_auc( labels=array_ops.ones((10, 1)), predictions=array_ops.ones((10, 1)), metrics_collections=[my_collection_name]) self.assertEqual(ops.get_collection(my_collection_name), [auc]) def testUpdatesCollection(self): my_collection_name = '__updates__' _, update_op = metrics.streaming_dynamic_auc( labels=array_ops.ones((10, 1)), predictions=array_ops.ones((10, 1)), updates_collections=[my_collection_name]) self.assertEqual(ops.get_collection(my_collection_name), [update_op]) def testValueTensorIsIdempotent(self): predictions = random_ops.random_uniform( (10, 3), maxval=1, dtype=dtypes_lib.float32, seed=1) labels = random_ops.random_uniform( (10, 3), maxval=2, dtype=dtypes_lib.int64, seed=2) auc, update_op = metrics.streaming_dynamic_auc(labels, predictions) with self.cached_session() as sess: sess.run(variables.local_variables_initializer()) # Run several updates. for _ in xrange(10): sess.run(update_op) # Then verify idempotency. initial_auc = auc.eval() for _ in xrange(10): self.assertAlmostEqual(initial_auc, auc.eval(), 5) def testAllLabelsOnes(self): with self.cached_session() as sess: predictions = constant_op.constant([1., 1., 1.]) labels = constant_op.constant([1, 1, 1]) auc, update_op = metrics.streaming_dynamic_auc(labels, predictions) sess.run(variables.local_variables_initializer()) sess.run(update_op) self.assertEqual(0, auc.eval()) def testAllLabelsZeros(self): with self.cached_session() as sess: predictions = constant_op.constant([1., 1., 1.]) labels = constant_op.constant([0, 0, 0]) auc, update_op = metrics.streaming_dynamic_auc(labels, predictions) sess.run(variables.local_variables_initializer()) sess.run(update_op) self.assertEqual(0, auc.eval()) def testNonZeroOnePredictions(self): with self.cached_session() as sess: predictions = constant_op.constant( [2.5, -2.5, 2.5, -2.5], dtype=dtypes_lib.float32) labels = constant_op.constant([1, 0, 1, 0]) auc, update_op = metrics.streaming_dynamic_auc(labels, predictions) sess.run(variables.local_variables_initializer()) sess.run(update_op) self.assertAlmostEqual(auc.eval(), 1.0) def testAllCorrect(self): inputs = np.random.randint(0, 2, size=(100, 1)) with self.cached_session() as sess: predictions = constant_op.constant(inputs) labels = constant_op.constant(inputs) auc, update_op = metrics.streaming_dynamic_auc(labels, predictions) sess.run(variables.local_variables_initializer()) sess.run(update_op) self.assertEqual(1, auc.eval()) def testSomeCorrect(self): with self.cached_session() as sess: predictions = constant_op.constant([1, 0, 1, 0]) labels = constant_op.constant([0, 1, 1, 0]) auc, update_op = metrics.streaming_dynamic_auc(labels, predictions) sess.run(variables.local_variables_initializer()) sess.run(update_op) self.assertAlmostEqual(0.5, auc.eval()) def testAllIncorrect(self): inputs = np.random.randint(0, 2, size=(100, 1)) with self.cached_session() as sess: predictions = constant_op.constant(inputs, dtype=dtypes_lib.float32) labels = constant_op.constant(1 - inputs, dtype=dtypes_lib.float32) auc, update_op = metrics.streaming_dynamic_auc(labels, predictions) sess.run(variables.local_variables_initializer()) sess.run(update_op) self.assertAlmostEqual(0, auc.eval()) def testExceptionOnIncompatibleShapes(self): with self.cached_session() as sess: predictions = array_ops.ones([5]) labels = array_ops.zeros([6]) with self.assertRaisesRegexp(ValueError, 'Shapes .* are incompatible'): _, update_op = metrics.streaming_dynamic_auc(labels, predictions) sess.run(variables.local_variables_initializer()) sess.run(update_op) def testExceptionOnGreaterThanOneLabel(self): with self.cached_session() as sess: predictions = constant_op.constant([1, 0.5, 0], dtypes_lib.float32) labels = constant_op.constant([2, 1, 0]) _, update_op = metrics.streaming_dynamic_auc(labels, predictions) sess.run(variables.local_variables_initializer()) with self.assertRaisesRegexp( errors_impl.InvalidArgumentError, '.*labels must be 0 or 1, at least one is >1.*'): sess.run(update_op) def testExceptionOnNegativeLabel(self): with self.cached_session() as sess: predictions = constant_op.constant([1, 0.5, 0], dtypes_lib.float32) labels = constant_op.constant([1, 0, -1]) _, update_op = metrics.streaming_dynamic_auc(labels, predictions) sess.run(variables.local_variables_initializer()) with self.assertRaisesRegexp( errors_impl.InvalidArgumentError, '.*labels must be 0 or 1, at least one is <0.*'): sess.run(update_op) def testWithMultipleUpdates(self): batch_size = 10 num_batches = 100 labels = np.array([]) predictions = np.array([]) tf_labels = variables.VariableV1( array_ops.ones(batch_size, dtypes_lib.int32), collections=[ops.GraphKeys.LOCAL_VARIABLES], dtype=dtypes_lib.int32) tf_predictions = variables.VariableV1( array_ops.ones(batch_size), collections=[ops.GraphKeys.LOCAL_VARIABLES], dtype=dtypes_lib.float32) auc, update_op = metrics.streaming_dynamic_auc(tf_labels, tf_predictions) with self.cached_session() as sess: sess.run(variables.local_variables_initializer()) for _ in xrange(num_batches): new_labels = np.random.randint(0, 2, size=batch_size) noise = np.random.normal(0.0, scale=0.2, size=batch_size) new_predictions = 0.4 + 0.2 * new_labels + noise labels = np.concatenate([labels, new_labels]) predictions = np.concatenate([predictions, new_predictions]) sess.run(tf_labels.assign(new_labels)) sess.run(tf_predictions.assign(new_predictions)) sess.run(update_op) expected_auc = _np_auc(predictions, labels) self.assertAlmostEqual(expected_auc, auc.eval()) def testAUCPRReverseIncreasingPredictions(self): with self.cached_session() as sess: predictions = constant_op.constant( [0.1, 0.4, 0.35, 0.8], dtype=dtypes_lib.float32) labels = constant_op.constant([0, 0, 1, 1]) auc, update_op = metrics.streaming_dynamic_auc( labels, predictions, curve='PR') sess.run(variables.local_variables_initializer()) sess.run(update_op) self.assertAlmostEqual(0.79166, auc.eval(), delta=1e-5) def testAUCPRJumbledPredictions(self): with self.cached_session() as sess: predictions = constant_op.constant( [0.1, 0.4, 0.35, 0.8, 0.1, 0.135, 0.81], dtypes_lib.float32) labels = constant_op.constant([0, 0, 1, 0, 1, 0, 1]) auc, update_op = metrics.streaming_dynamic_auc( labels, predictions, curve='PR') sess.run(variables.local_variables_initializer()) sess.run(update_op) self.assertAlmostEqual(0.610317, auc.eval(), delta=1e-6) def testAUCPRPredictionsLessThanHalf(self): with self.cached_session() as sess: predictions = constant_op.constant( [0.0, 0.1, 0.2, 0.33, 0.3, 0.4, 0.5], shape=(1, 7), dtype=dtypes_lib.float32) labels = constant_op.constant([0, 0, 0, 0, 1, 1, 1], shape=(1, 7)) auc, update_op = metrics.streaming_dynamic_auc( labels, predictions, curve='PR') sess.run(variables.local_variables_initializer()) sess.run(update_op) self.assertAlmostEqual(0.90277, auc.eval(), delta=1e-5) def testWithWeights(self): batch_size = 10 num_batches = 100 labels = np.array([]) predictions = np.array([]) weights = np.array([]) tf_labels = variables.VariableV1( array_ops.ones(batch_size, dtypes_lib.int32), collections=[ops.GraphKeys.LOCAL_VARIABLES], dtype=dtypes_lib.int32) tf_predictions = variables.VariableV1( array_ops.ones(batch_size), collections=[ops.GraphKeys.LOCAL_VARIABLES], dtype=dtypes_lib.float32) tf_weights = variables.VariableV1( array_ops.ones(batch_size), collections=[ops.GraphKeys.LOCAL_VARIABLES], dtype=dtypes_lib.float32) auc, update_op = metrics.streaming_dynamic_auc(tf_labels, tf_predictions, weights=tf_weights) with self.cached_session() as sess: sess.run(variables.local_variables_initializer()) for _ in xrange(num_batches): new_labels = np.random.randint(0, 2, size=batch_size) noise = np.random.uniform(-0.2, 0.2, size=batch_size) new_predictions = 0.4 + 0.2 * new_labels + noise new_weights = np.random.uniform(0.0, 3.0, size=batch_size) labels = np.concatenate([labels, new_labels]) predictions = np.concatenate([predictions, new_predictions]) weights = np.concatenate([weights, new_weights]) sess.run([tf_labels.assign(new_labels), tf_predictions.assign(new_predictions), tf_weights.assign(new_weights)]) sess.run(update_op) expected_auc = _np_auc(predictions, labels, weights) self.assertAlmostEqual(expected_auc, auc.eval()) class AucWithConfidenceIntervalsTest(test.TestCase): def setUp(self): np.random.seed(1) ops.reset_default_graph() def _testResultsEqual(self, expected_dict, gotten_result): """Tests that 2 results (dicts) represent the same data. Args: expected_dict: A dictionary with keys that are the names of properties of PrecisionRecallData and whose values are lists of floats. gotten_result: A AucWithConfidenceIntervalData object. """ gotten_dict = {k: t.eval() for k, t in gotten_result._asdict().items()} self.assertItemsEqual( list(expected_dict.keys()), list(gotten_dict.keys())) for key, expected_values in expected_dict.items(): self.assertAllClose(expected_values, gotten_dict[key]) def _testCase(self, predictions, labels, expected_result, weights=None): """Performs a test given a certain scenario of labels, predictions, weights. Args: predictions: The predictions tensor. Of type float32. labels: The labels tensor. Of type bool. expected_result: The expected result (dict) that maps to tensors. weights: Optional weights tensor. """ with self.cached_session() as sess: predictions_tensor = constant_op.constant( predictions, dtype=dtypes_lib.float32) labels_tensor = constant_op.constant(labels, dtype=dtypes_lib.int64) weights_tensor = None if weights: weights_tensor = constant_op.constant(weights, dtype=dtypes_lib.float32) gotten_result, update_op = ( metric_ops.auc_with_confidence_intervals( labels=labels_tensor, predictions=predictions_tensor, weights=weights_tensor)) sess.run(variables.local_variables_initializer()) sess.run(update_op) self._testResultsEqual(expected_result, gotten_result) def testAucAllCorrect(self): self._testCase( predictions=[0., 0.2, 0.3, 0.3, 0.4, 0.5, 0.6, 0.6, 0.8, 1.0], labels=[0, 0, 1, 0, 0, 1, 0, 1, 1, 0], expected_result={ 'auc': 0.66666667, 'lower': 0.27826795, 'upper': 0.91208512, }) def testAucUnorderedInput(self): self._testCase( predictions=[1.0, 0.6, 0., 0.3, 0.4, 0.2, 0.5, 0.3, 0.6, 0.8], labels=[0, 1, 0, 1, 0, 0, 1, 0, 0, 1], expected_result={ 'auc': 0.66666667, 'lower': 0.27826795, 'upper': 0.91208512, }) def testAucWithWeights(self): self._testCase( predictions=[0., 0.2, 0.3, 0.3, 0.4, 0.5, 0.6, 0.6, 0.8, 1.0], labels=[0, 0, 1, 0, 0, 1, 0, 1, 1, 0], weights=[0.5, 0.6, 1.2, 1.5, 2.0, 2.0, 1.5, 1.2, 0.6, 0.5], expected_result={ 'auc': 0.65151515, 'lower': 0.28918604, 'upper': 0.89573906, }) def testAucEqualOne(self): self._testCase( predictions=[0, 0.2, 0.3, 0.3, 0.4, 0.5, 0.6, 0.6, 0.8, 1.0], labels=[0, 0, 0, 0, 0, 1, 1, 1, 1, 1], expected_result={ 'auc': 1.0, 'lower': 1.0, 'upper': 1.0, }) def testAucEqualZero(self): self._testCase( predictions=[0, 0.2, 0.3, 0.3, 0.4, 0.5, 0.6, 0.6, 0.8, 1.0], labels=[1, 1, 1, 1, 1, 0, 0, 0, 0, 0], expected_result={ 'auc': 0.0, 'lower': 0.0, 'upper': 0.0, }) def testNonZeroOnePredictions(self): self._testCase( predictions=[2.5, -2.5, .5, -.5, 1], labels=[1, 0, 1, 0, 0], expected_result={ 'auc': 0.83333333, 'lower': 0.15229267, 'upper': 0.99286517, }) def testAllLabelsOnes(self): self._testCase( predictions=[1., 1., 1., 1., 1.], labels=[1, 1, 1, 1, 1], expected_result={ 'auc': 0., 'lower': 0., 'upper': 0., }) def testAllLabelsZeros(self): self._testCase( predictions=[0., 0., 0., 0., 0.], labels=[0, 0, 0, 0, 0], expected_result={ 'auc': 0., 'lower': 0., 'upper': 0., }) def testWeightSumLessThanOneAll(self): self._testCase( predictions=[1., 1., 0., 1., 0., 0.], labels=[1, 1, 1, 0, 0, 0], weights=[0.1, 0.1, 0.1, 0.1, 0.1, 0.1], expected_result={ 'auc': 0., 'lower': 0., 'upper': 0., }) def testWithMultipleUpdates(self): batch_size = 50 num_batches = 100 labels = np.array([]) predictions = np.array([]) tf_labels = variables.VariableV1( array_ops.ones(batch_size, dtypes_lib.int32), collections=[ops.GraphKeys.LOCAL_VARIABLES], dtype=dtypes_lib.int32) tf_predictions = variables.VariableV1( array_ops.ones(batch_size), collections=[ops.GraphKeys.LOCAL_VARIABLES], dtype=dtypes_lib.float32) auc, update_op = metrics.auc_with_confidence_intervals(tf_labels, tf_predictions) with self.cached_session() as sess: sess.run(variables.local_variables_initializer()) for _ in xrange(num_batches): new_labels = np.random.randint(0, 2, size=batch_size) noise = np.random.normal(0.0, scale=0.2, size=batch_size) new_predictions = 0.4 + 0.2 * new_labels + noise labels = np.concatenate([labels, new_labels]) predictions = np.concatenate([predictions, new_predictions]) sess.run(tf_labels.assign(new_labels)) sess.run(tf_predictions.assign(new_predictions)) sess.run(update_op) expected_auc = _np_auc(predictions, labels) self.assertAllClose(expected_auc, auc.auc.eval()) def testExceptionOnFloatLabels(self): with self.cached_session() as sess: predictions = constant_op.constant([1, 0.5, 0, 1, 0], dtypes_lib.float32) labels = constant_op.constant([0.7, 0, 1, 0, 1]) _, update_op = metrics.auc_with_confidence_intervals(labels, predictions) sess.run(variables.local_variables_initializer()) self.assertRaises(TypeError, sess.run(update_op)) def testExceptionOnGreaterThanOneLabel(self): with self.cached_session() as sess: predictions = constant_op.constant([1, 0.5, 0, 1, 0], dtypes_lib.float32) labels = constant_op.constant([2, 1, 0, 1, 0]) _, update_op = metrics.auc_with_confidence_intervals(labels, predictions) sess.run(variables.local_variables_initializer()) with self.assertRaisesRegexp( errors_impl.InvalidArgumentError, '.*labels must be 0 or 1, at least one is >1.*'): sess.run(update_op) def testExceptionOnNegativeLabel(self): with self.cached_session() as sess: predictions = constant_op.constant([1, 0.5, 0, 1, 0], dtypes_lib.float32) labels = constant_op.constant([1, 0, -1, 1, 0]) _, update_op = metrics.auc_with_confidence_intervals(labels, predictions) sess.run(variables.local_variables_initializer()) with self.assertRaisesRegexp( errors_impl.InvalidArgumentError, '.*labels must be 0 or 1, at least one is <0.*'): sess.run(update_op) class StreamingPrecisionRecallAtEqualThresholdsTest(test.TestCase): def setUp(self): np.random.seed(1) ops.reset_default_graph() def _testResultsEqual(self, expected_dict, gotten_result, eps=None): """Tests that 2 results (dicts) represent the same data. Args: expected_dict: A dictionary with keys that are the names of properties of PrecisionRecallData and whose values are lists of floats. gotten_result: A PrecisionRecallData object. eps: Epsilon value to use for testing output values. If unspecified, use default from assertAllClose. """ gotten_dict = {k: t.eval() for k, t in gotten_result._asdict().items()} self.assertItemsEqual(list(expected_dict.keys()), list(gotten_dict.keys())) for key, expected_values in expected_dict.items(): if eps is not None: self.assertAllClose(expected_values, gotten_dict[key], atol=eps) else: self.assertAllClose(expected_values, gotten_dict[key]) def testVars(self): metric_ops.precision_recall_at_equal_thresholds( labels=constant_op.constant([True], dtype=dtypes_lib.bool), predictions=constant_op.constant([0.42], dtype=dtypes_lib.float32)) _assert_metric_variables( self, ('precision_recall_at_equal_thresholds/variables/tp_buckets:0', 'precision_recall_at_equal_thresholds/variables/fp_buckets:0')) def testVarsWithName(self): metric_ops.precision_recall_at_equal_thresholds( labels=constant_op.constant([True], dtype=dtypes_lib.bool), predictions=constant_op.constant([0.42], dtype=dtypes_lib.float32), name='foo') _assert_metric_variables( self, ('foo/variables/tp_buckets:0', 'foo/variables/fp_buckets:0')) def testValuesAreIdempotent(self): predictions = constant_op.constant( np.random.uniform(size=(10, 3)), dtype=dtypes_lib.float32) labels = constant_op.constant( np.random.uniform(size=(10, 3)) > 0.5, dtype=dtypes_lib.bool) result, update_op = metric_ops.precision_recall_at_equal_thresholds( labels=labels, predictions=predictions) with self.cached_session() as sess: # Run several updates. sess.run(variables.local_variables_initializer()) for _ in range(3): sess.run(update_op) # Then verify idempotency. initial_result = { k: value.eval().tolist() for k, value in result._asdict().items() } for _ in range(3): self._testResultsEqual(initial_result, result) def _testCase(self, predictions, labels, expected_result, dtype=dtypes_lib.float32, eps=None, weights=None): """Performs a test given a certain scenario of labels, predictions, weights. Args: predictions: The predictions tensor. Of type dtype. labels: The labels tensor. Of type bool. expected_result: The expected result (dict) that maps to tensors. dtype: Data type to use for predictions and weights tensor. Default is float32. eps: Epsilon value to use for testing output values. If unspecified, use default from assertAllClose. weights: Optional weights tensor. """ with self.cached_session() as sess: predictions_tensor = constant_op.constant(predictions, dtype=dtype) labels_tensor = constant_op.constant(labels, dtype=dtypes_lib.bool) weights_tensor = None if weights: weights_tensor = constant_op.constant(weights, dtype=dtype) gotten_result, update_op = ( metric_ops.precision_recall_at_equal_thresholds( labels=labels_tensor, predictions=predictions_tensor, weights=weights_tensor, num_thresholds=3)) self.assertEqual(gotten_result.tp.dtype, dtype) self.assertEqual(gotten_result.fp.dtype, dtype) self.assertEqual(gotten_result.tn.dtype, dtype) self.assertEqual(gotten_result.fn.dtype, dtype) self.assertEqual(gotten_result.precision.dtype, dtype) self.assertEqual(gotten_result.recall.dtype, dtype) self.assertEqual(gotten_result.thresholds.dtype, dtype) sess.run(variables.local_variables_initializer()) sess.run(update_op) self._testResultsEqual(expected_result, gotten_result, eps=eps) def testAllTruePositives(self): self._testCase( [[1]], [[True]], { 'tp': [1, 1, 1], 'fp': [0, 0, 0], 'tn': [0, 0, 0], 'fn': [0, 0, 0], 'precision': [1.0, 1.0, 1.0], 'recall': [1.0, 1.0, 1.0], 'thresholds': [0.0, 0.5, 1.0], }) def testAllTrueNegatives(self): self._testCase( [[0]], [[False]], { 'tp': [0, 0, 0], 'fp': [1, 0, 0], 'tn': [0, 1, 1], 'fn': [0, 0, 0], 'precision': [0.0, 0.0, 0.0], 'recall': [0.0, 0.0, 0.0], 'thresholds': [0.0, 0.5, 1.0], }) def testAllFalsePositives(self): self._testCase( [[1]], [[False]], { 'tp': [0, 0, 0], 'fp': [1, 1, 1], 'tn': [0, 0, 0], 'fn': [0, 0, 0], 'precision': [0.0, 0.0, 0.0], 'recall': [0.0, 0.0, 0.0], 'thresholds': [0.0, 0.5, 1.0], }) def testAllFalseNegatives(self): self._testCase( [[0]], [[True]], { 'tp': [1, 0, 0], 'fp': [0, 0, 0], 'tn': [0, 0, 0], 'fn': [0, 1, 1], 'precision': [1.0, 0.0, 0.0], 'recall': [1.0, 0.0, 0.0], 'thresholds': [0.0, 0.5, 1.0], }) def testManyValues(self): self._testCase( [[0.2, 0.3, 0.4, 0.6, 0.7, 0.8]], [[True, False, False, True, True, True]], { 'tp': [4, 3, 0], 'fp': [2, 0, 0], 'tn': [0, 2, 2], 'fn': [0, 1, 4], 'precision': [2.0 / 3.0, 1.0, 0.0], 'recall': [1.0, 0.75, 0.0], 'thresholds': [0.0, 0.5, 1.0], }) def testManyValuesWithWeights(self): self._testCase( [[0.2, 0.3, 0.4, 0.6, 0.7, 0.8]], [[True, False, False, True, True, True]], { 'tp': [1.5, 1.5, 0.0], 'fp': [2.5, 0.0, 0.0], 'tn': [0.0, 2.5, 2.5], 'fn': [0.0, 0.0, 1.5], 'precision': [0.375, 1.0, 0.0], 'recall': [1.0, 1.0, 0.0], 'thresholds': [0.0, 0.5, 1.0], }, weights=[[0.0, 0.5, 2.0, 0.0, 0.5, 1.0]]) def testFloat64(self): self._testCase( [[0.2, 0.3, 0.4, 0.6, 0.7, 0.8]], [[True, False, False, True, True, True]], { 'tp': [4, 3, 0], 'fp': [2, 0, 0], 'tn': [0, 2, 2], 'fn': [0, 1, 4], 'precision': [2.0 / 3.0, 1.0, 0.0], 'recall': [1.0, 0.75, 0.0], 'thresholds': [0.0, 0.5, 1.0], }, dtype=dtypes_lib.float64) def testFloat16(self): self._testCase( [[0.2, 0.3, 0.4, 0.6, 0.7, 0.8]], [[True, False, False, True, True, True]], { 'tp': [4, 3, 0], 'fp': [2, 0, 0], 'tn': [0, 2, 2], 'fn': [0, 1, 4], 'precision': [2.0 / 3.0, 1.0, 0.0], 'recall': [1.0, 0.75, 0.0], 'thresholds': [0.0, 0.5, 1.0], }, dtype=dtypes_lib.float16, eps=1e-3) class StreamingSpecificityAtSensitivityTest(test.TestCase): def setUp(self): np.random.seed(1) ops.reset_default_graph() def testVars(self): metrics.streaming_specificity_at_sensitivity( predictions=array_ops.ones((10, 1)), labels=array_ops.ones((10, 1)), sensitivity=0.7) _assert_metric_variables(self, ('specificity_at_sensitivity/true_positives:0', 'specificity_at_sensitivity/false_negatives:0', 'specificity_at_sensitivity/false_positives:0', 'specificity_at_sensitivity/true_negatives:0')) def testMetricsCollection(self): my_collection_name = '__metrics__' mean, _ = metrics.streaming_specificity_at_sensitivity( predictions=array_ops.ones((10, 1)), labels=array_ops.ones((10, 1)), sensitivity=0.7, metrics_collections=[my_collection_name]) self.assertListEqual(ops.get_collection(my_collection_name), [mean]) def testUpdatesCollection(self): my_collection_name = '__updates__' _, update_op = metrics.streaming_specificity_at_sensitivity( predictions=array_ops.ones((10, 1)), labels=array_ops.ones((10, 1)), sensitivity=0.7, updates_collections=[my_collection_name]) self.assertListEqual(ops.get_collection(my_collection_name), [update_op]) def testValueTensorIsIdempotent(self): predictions = random_ops.random_uniform( (10, 3), maxval=1, dtype=dtypes_lib.float32, seed=1) labels = random_ops.random_uniform( (10, 3), maxval=2, dtype=dtypes_lib.int64, seed=2) specificity, update_op = metrics.streaming_specificity_at_sensitivity( predictions, labels, sensitivity=0.7) with self.cached_session() as sess: sess.run(variables.local_variables_initializer()) # Run several updates. for _ in range(10): sess.run(update_op) # Then verify idempotency. initial_specificity = specificity.eval() for _ in range(10): self.assertAlmostEqual(initial_specificity, specificity.eval(), 5) def testAllCorrect(self): inputs = np.random.randint(0, 2, size=(100, 1)) predictions = constant_op.constant(inputs, dtype=dtypes_lib.float32) labels = constant_op.constant(inputs) specificity, update_op = metrics.streaming_specificity_at_sensitivity( predictions, labels, sensitivity=0.7) with self.cached_session() as sess: sess.run(variables.local_variables_initializer()) self.assertEqual(1, sess.run(update_op)) self.assertEqual(1, specificity.eval()) def testSomeCorrectHighSensitivity(self): predictions_values = [0.1, 0.2, 0.4, 0.3, 0.0, 0.1, 0.45, 0.5, 0.8, 0.9] labels_values = [0, 0, 0, 0, 0, 1, 1, 1, 1, 1] predictions = constant_op.constant( predictions_values, dtype=dtypes_lib.float32) labels = constant_op.constant(labels_values) specificity, update_op = metrics.streaming_specificity_at_sensitivity( predictions, labels, sensitivity=0.8) with self.cached_session() as sess: sess.run(variables.local_variables_initializer()) self.assertAlmostEqual(1.0, sess.run(update_op)) self.assertAlmostEqual(1.0, specificity.eval()) def testSomeCorrectLowSensitivity(self): predictions_values = [0.1, 0.2, 0.4, 0.3, 0.0, 0.1, 0.2, 0.2, 0.26, 0.26] labels_values = [0, 0, 0, 0, 0, 1, 1, 1, 1, 1] predictions = constant_op.constant( predictions_values, dtype=dtypes_lib.float32) labels = constant_op.constant(labels_values) specificity, update_op = metrics.streaming_specificity_at_sensitivity( predictions, labels, sensitivity=0.4) with self.cached_session() as sess: sess.run(variables.local_variables_initializer()) self.assertAlmostEqual(0.6, sess.run(update_op)) self.assertAlmostEqual(0.6, specificity.eval()) def testWeighted1d(self): predictions_values = [0.1, 0.2, 0.4, 0.3, 0.0, 0.1, 0.2, 0.2, 0.26, 0.26] labels_values = [0, 0, 0, 0, 0, 1, 1, 1, 1, 1] weights_values = [3] predictions = constant_op.constant( predictions_values, dtype=dtypes_lib.float32) labels = constant_op.constant(labels_values) weights = constant_op.constant(weights_values) specificity, update_op = metrics.streaming_specificity_at_sensitivity( predictions, labels, weights=weights, sensitivity=0.4) with self.cached_session() as sess: sess.run(variables.local_variables_initializer()) self.assertAlmostEqual(0.6, sess.run(update_op)) self.assertAlmostEqual(0.6, specificity.eval()) def testWeighted2d(self): predictions_values = [0.1, 0.2, 0.4, 0.3, 0.0, 0.1, 0.2, 0.2, 0.26, 0.26] labels_values = [0, 0, 0, 0, 0, 1, 1, 1, 1, 1] weights_values = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] predictions = constant_op.constant( predictions_values, dtype=dtypes_lib.float32) labels = constant_op.constant(labels_values) weights = constant_op.constant(weights_values) specificity, update_op = metrics.streaming_specificity_at_sensitivity( predictions, labels, weights=weights, sensitivity=0.4) with self.cached_session() as sess: sess.run(variables.local_variables_initializer()) self.assertAlmostEqual(8.0 / 15.0, sess.run(update_op)) self.assertAlmostEqual(8.0 / 15.0, specificity.eval()) class StreamingSensitivityAtSpecificityTest(test.TestCase): def setUp(self): np.random.seed(1) ops.reset_default_graph() def testVars(self): metrics.streaming_sensitivity_at_specificity( predictions=array_ops.ones((10, 1)), labels=array_ops.ones((10, 1)), specificity=0.7) _assert_metric_variables(self, ('sensitivity_at_specificity/true_positives:0', 'sensitivity_at_specificity/false_negatives:0', 'sensitivity_at_specificity/false_positives:0', 'sensitivity_at_specificity/true_negatives:0')) def testMetricsCollection(self): my_collection_name = '__metrics__' mean, _ = metrics.streaming_sensitivity_at_specificity( predictions=array_ops.ones((10, 1)), labels=array_ops.ones((10, 1)), specificity=0.7, metrics_collections=[my_collection_name]) self.assertListEqual(ops.get_collection(my_collection_name), [mean]) def testUpdatesCollection(self): my_collection_name = '__updates__' _, update_op = metrics.streaming_sensitivity_at_specificity( predictions=array_ops.ones((10, 1)), labels=array_ops.ones((10, 1)), specificity=0.7, updates_collections=[my_collection_name]) self.assertListEqual(ops.get_collection(my_collection_name), [update_op]) def testValueTensorIsIdempotent(self): predictions = random_ops.random_uniform( (10, 3), maxval=1, dtype=dtypes_lib.float32, seed=1) labels = random_ops.random_uniform( (10, 3), maxval=2, dtype=dtypes_lib.int64, seed=2) sensitivity, update_op = metrics.streaming_sensitivity_at_specificity( predictions, labels, specificity=0.7) with self.cached_session() as sess: sess.run(variables.local_variables_initializer()) # Run several updates. for _ in range(10): sess.run(update_op) # Then verify idempotency. initial_sensitivity = sensitivity.eval() for _ in range(10): self.assertAlmostEqual(initial_sensitivity, sensitivity.eval(), 5) def testAllCorrect(self): inputs = np.random.randint(0, 2, size=(100, 1)) predictions = constant_op.constant(inputs, dtype=dtypes_lib.float32) labels = constant_op.constant(inputs) specificity, update_op = metrics.streaming_sensitivity_at_specificity( predictions, labels, specificity=0.7) with self.cached_session() as sess: sess.run(variables.local_variables_initializer()) self.assertEqual(1, sess.run(update_op)) self.assertEqual(1, specificity.eval()) def testSomeCorrectHighSpecificity(self): predictions_values = [0.0, 0.1, 0.2, 0.3, 0.4, 0.1, 0.45, 0.5, 0.8, 0.9] labels_values = [0, 0, 0, 0, 0, 1, 1, 1, 1, 1] predictions = constant_op.constant( predictions_values, dtype=dtypes_lib.float32) labels = constant_op.constant(labels_values) specificity, update_op = metrics.streaming_sensitivity_at_specificity( predictions, labels, specificity=0.8) with self.cached_session() as sess: sess.run(variables.local_variables_initializer()) self.assertAlmostEqual(0.8, sess.run(update_op)) self.assertAlmostEqual(0.8, specificity.eval()) def testSomeCorrectLowSpecificity(self): predictions_values = [0.0, 0.1, 0.2, 0.3, 0.4, 0.01, 0.02, 0.25, 0.26, 0.26] labels_values = [0, 0, 0, 0, 0, 1, 1, 1, 1, 1] predictions = constant_op.constant( predictions_values, dtype=dtypes_lib.float32) labels = constant_op.constant(labels_values) specificity, update_op = metrics.streaming_sensitivity_at_specificity( predictions, labels, specificity=0.4) with self.cached_session() as sess: sess.run(variables.local_variables_initializer()) self.assertAlmostEqual(0.6, sess.run(update_op)) self.assertAlmostEqual(0.6, specificity.eval()) def testWeighted(self): predictions_values = [0.0, 0.1, 0.2, 0.3, 0.4, 0.01, 0.02, 0.25, 0.26, 0.26] labels_values = [0, 0, 0, 0, 0, 1, 1, 1, 1, 1] weights_values = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] predictions = constant_op.constant( predictions_values, dtype=dtypes_lib.float32) labels = constant_op.constant(labels_values) weights = constant_op.constant(weights_values) specificity, update_op = metrics.streaming_sensitivity_at_specificity( predictions, labels, weights=weights, specificity=0.4) with self.cached_session() as sess: sess.run(variables.local_variables_initializer()) self.assertAlmostEqual(0.675, sess.run(update_op)) self.assertAlmostEqual(0.675, specificity.eval()) # TODO(nsilberman): Break this up into two sets of tests. class StreamingPrecisionRecallThresholdsTest(test.TestCase): def setUp(self): np.random.seed(1) ops.reset_default_graph() def testVars(self): metrics.streaming_precision_at_thresholds( predictions=array_ops.ones((10, 1)), labels=array_ops.ones((10, 1)), thresholds=[0, 0.5, 1.0]) _assert_metric_variables(self, ( 'precision_at_thresholds/true_positives:0', 'precision_at_thresholds/false_positives:0', )) def testMetricsCollection(self): my_collection_name = '__metrics__' prec, _ = metrics.streaming_precision_at_thresholds( predictions=array_ops.ones((10, 1)), labels=array_ops.ones((10, 1)), thresholds=[0, 0.5, 1.0], metrics_collections=[my_collection_name]) rec, _ = metrics.streaming_recall_at_thresholds( predictions=array_ops.ones((10, 1)), labels=array_ops.ones((10, 1)), thresholds=[0, 0.5, 1.0], metrics_collections=[my_collection_name]) self.assertListEqual(ops.get_collection(my_collection_name), [prec, rec]) def testUpdatesCollection(self): my_collection_name = '__updates__' _, precision_op = metrics.streaming_precision_at_thresholds( predictions=array_ops.ones((10, 1)), labels=array_ops.ones((10, 1)), thresholds=[0, 0.5, 1.0], updates_collections=[my_collection_name]) _, recall_op = metrics.streaming_recall_at_thresholds( predictions=array_ops.ones((10, 1)), labels=array_ops.ones((10, 1)), thresholds=[0, 0.5, 1.0], updates_collections=[my_collection_name]) self.assertListEqual( ops.get_collection(my_collection_name), [precision_op, recall_op]) def testValueTensorIsIdempotent(self): predictions = random_ops.random_uniform( (10, 3), maxval=1, dtype=dtypes_lib.float32, seed=1) labels = random_ops.random_uniform( (10, 3), maxval=2, dtype=dtypes_lib.int64, seed=2) thresholds = [0, 0.5, 1.0] prec, prec_op = metrics.streaming_precision_at_thresholds( predictions, labels, thresholds) rec, rec_op = metrics.streaming_recall_at_thresholds( predictions, labels, thresholds) with self.cached_session() as sess: sess.run(variables.local_variables_initializer()) # Run several updates. for _ in range(10): sess.run([prec_op, rec_op]) # Then verify idempotency. initial_prec = prec.eval() initial_rec = rec.eval() for _ in range(10): self.assertAllClose(initial_prec, prec.eval()) self.assertAllClose(initial_rec, rec.eval()) # TODO(nsilberman): fix tests (passing but incorrect). def testAllCorrect(self): inputs = np.random.randint(0, 2, size=(100, 1)) with self.cached_session() as sess: predictions = constant_op.constant(inputs, dtype=dtypes_lib.float32) labels = constant_op.constant(inputs) thresholds = [0.5] prec, prec_op = metrics.streaming_precision_at_thresholds( predictions, labels, thresholds) rec, rec_op = metrics.streaming_recall_at_thresholds( predictions, labels, thresholds) sess.run(variables.local_variables_initializer()) sess.run([prec_op, rec_op]) self.assertEqual(1, prec.eval()) self.assertEqual(1, rec.eval()) def testSomeCorrect(self): with self.cached_session() as sess: predictions = constant_op.constant( [1, 0, 1, 0], shape=(1, 4), dtype=dtypes_lib.float32) labels = constant_op.constant([0, 1, 1, 0], shape=(1, 4)) thresholds = [0.5] prec, prec_op = metrics.streaming_precision_at_thresholds( predictions, labels, thresholds) rec, rec_op = metrics.streaming_recall_at_thresholds( predictions, labels, thresholds) sess.run(variables.local_variables_initializer()) sess.run([prec_op, rec_op]) self.assertAlmostEqual(0.5, prec.eval()) self.assertAlmostEqual(0.5, rec.eval()) def testAllIncorrect(self): inputs = np.random.randint(0, 2, size=(100, 1)) with self.cached_session() as sess: predictions = constant_op.constant(inputs, dtype=dtypes_lib.float32) labels = constant_op.constant(1 - inputs, dtype=dtypes_lib.float32) thresholds = [0.5] prec, prec_op = metrics.streaming_precision_at_thresholds( predictions, labels, thresholds) rec, rec_op = metrics.streaming_recall_at_thresholds( predictions, labels, thresholds) sess.run(variables.local_variables_initializer()) sess.run([prec_op, rec_op]) self.assertAlmostEqual(0, prec.eval()) self.assertAlmostEqual(0, rec.eval()) def testWeights1d(self): with self.cached_session() as sess: predictions = constant_op.constant( [[1, 0], [1, 0]], shape=(2, 2), dtype=dtypes_lib.float32) labels = constant_op.constant([[0, 1], [1, 0]], shape=(2, 2)) weights = constant_op.constant( [[0], [1]], shape=(2, 1), dtype=dtypes_lib.float32) thresholds = [0.5, 1.1] prec, prec_op = metrics.streaming_precision_at_thresholds( predictions, labels, thresholds, weights=weights) rec, rec_op = metrics.streaming_recall_at_thresholds( predictions, labels, thresholds, weights=weights) prec_low = prec[0] prec_high = prec[1] rec_low = rec[0] rec_high = rec[1] sess.run(variables.local_variables_initializer()) sess.run([prec_op, rec_op]) self.assertAlmostEqual(1.0, prec_low.eval(), places=5) self.assertAlmostEqual(0.0, prec_high.eval(), places=5) self.assertAlmostEqual(1.0, rec_low.eval(), places=5) self.assertAlmostEqual(0.0, rec_high.eval(), places=5) def testWeights2d(self): with self.cached_session() as sess: predictions = constant_op.constant( [[1, 0], [1, 0]], shape=(2, 2), dtype=dtypes_lib.float32) labels = constant_op.constant([[0, 1], [1, 0]], shape=(2, 2)) weights = constant_op.constant( [[0, 0], [1, 1]], shape=(2, 2), dtype=dtypes_lib.float32) thresholds = [0.5, 1.1] prec, prec_op = metrics.streaming_precision_at_thresholds( predictions, labels, thresholds, weights=weights) rec, rec_op = metrics.streaming_recall_at_thresholds( predictions, labels, thresholds, weights=weights) prec_low = prec[0] prec_high = prec[1] rec_low = rec[0] rec_high = rec[1] sess.run(variables.local_variables_initializer()) sess.run([prec_op, rec_op]) self.assertAlmostEqual(1.0, prec_low.eval(), places=5) self.assertAlmostEqual(0.0, prec_high.eval(), places=5) self.assertAlmostEqual(1.0, rec_low.eval(), places=5) self.assertAlmostEqual(0.0, rec_high.eval(), places=5) def testExtremeThresholds(self): with self.cached_session() as sess: predictions = constant_op.constant( [1, 0, 1, 0], shape=(1, 4), dtype=dtypes_lib.float32) labels = constant_op.constant([0, 1, 1, 1], shape=(1, 4)) thresholds = [-1.0, 2.0] # lower/higher than any values prec, prec_op = metrics.streaming_precision_at_thresholds( predictions, labels, thresholds) rec, rec_op = metrics.streaming_recall_at_thresholds( predictions, labels, thresholds) prec_low = prec[0] prec_high = prec[1] rec_low = rec[0] rec_high = rec[1] sess.run(variables.local_variables_initializer()) sess.run([prec_op, rec_op]) self.assertAlmostEqual(0.75, prec_low.eval()) self.assertAlmostEqual(0.0, prec_high.eval()) self.assertAlmostEqual(1.0, rec_low.eval()) self.assertAlmostEqual(0.0, rec_high.eval()) def testZeroLabelsPredictions(self): with self.cached_session() as sess: predictions = array_ops.zeros([4], dtype=dtypes_lib.float32) labels = array_ops.zeros([4]) thresholds = [0.5] prec, prec_op = metrics.streaming_precision_at_thresholds( predictions, labels, thresholds) rec, rec_op = metrics.streaming_recall_at_thresholds( predictions, labels, thresholds) sess.run(variables.local_variables_initializer()) sess.run([prec_op, rec_op]) self.assertAlmostEqual(0, prec.eval(), 6) self.assertAlmostEqual(0, rec.eval(), 6) def testWithMultipleUpdates(self): num_samples = 1000 batch_size = 10 num_batches = int(num_samples / batch_size) # Create the labels and data. labels = np.random.randint(0, 2, size=(num_samples, 1)) noise = np.random.normal(0.0, scale=0.2, size=(num_samples, 1)) predictions = 0.4 + 0.2 * labels + noise predictions[predictions > 1] = 1 predictions[predictions < 0] = 0 thresholds = [0.3] tp = 0 fp = 0 fn = 0 tn = 0 for i in range(num_samples): if predictions[i] > thresholds[0]: if labels[i] == 1: tp += 1 else: fp += 1 else: if labels[i] == 1: fn += 1 else: tn += 1 epsilon = 1e-7 expected_prec = tp / (epsilon + tp + fp) expected_rec = tp / (epsilon + tp + fn) labels = labels.astype(np.float32) predictions = predictions.astype(np.float32) with self.cached_session() as sess: # Reshape the data so its easy to queue up: predictions_batches = predictions.reshape((batch_size, num_batches)) labels_batches = labels.reshape((batch_size, num_batches)) # Enqueue the data: predictions_queue = data_flow_ops.FIFOQueue( num_batches, dtypes=dtypes_lib.float32, shapes=(batch_size,)) labels_queue = data_flow_ops.FIFOQueue( num_batches, dtypes=dtypes_lib.float32, shapes=(batch_size,)) for i in range(int(num_batches)): tf_prediction = constant_op.constant(predictions_batches[:, i]) tf_label = constant_op.constant(labels_batches[:, i]) sess.run([ predictions_queue.enqueue(tf_prediction), labels_queue.enqueue(tf_label) ]) tf_predictions = predictions_queue.dequeue() tf_labels = labels_queue.dequeue() prec, prec_op = metrics.streaming_precision_at_thresholds( tf_predictions, tf_labels, thresholds) rec, rec_op = metrics.streaming_recall_at_thresholds( tf_predictions, tf_labels, thresholds) sess.run(variables.local_variables_initializer()) for _ in range(int(num_samples / batch_size)): sess.run([prec_op, rec_op]) # Since this is only approximate, we can't expect a 6 digits match. # Although with higher number of samples/thresholds we should see the # accuracy improving self.assertAlmostEqual(expected_prec, prec.eval(), 2) self.assertAlmostEqual(expected_rec, rec.eval(), 2) class StreamingFPRThresholdsTest(test.TestCase): def setUp(self): np.random.seed(1) ops.reset_default_graph() def testVars(self): metrics.streaming_false_positive_rate_at_thresholds( predictions=array_ops.ones((10, 1)), labels=array_ops.ones((10, 1)), thresholds=[0, 0.5, 1.0]) _assert_metric_variables(self, ( 'false_positive_rate_at_thresholds/false_positives:0', 'false_positive_rate_at_thresholds/true_negatives:0', )) def testMetricsCollection(self): my_collection_name = '__metrics__' fpr, _ = metrics.streaming_false_positive_rate_at_thresholds( predictions=array_ops.ones((10, 1)), labels=array_ops.ones((10, 1)), thresholds=[0, 0.5, 1.0], metrics_collections=[my_collection_name]) self.assertListEqual(ops.get_collection(my_collection_name), [fpr]) def testUpdatesCollection(self): my_collection_name = '__updates__' _, update_op = metrics.streaming_false_positive_rate_at_thresholds( predictions=array_ops.ones((10, 1)), labels=array_ops.ones((10, 1)), thresholds=[0, 0.5, 1.0], updates_collections=[my_collection_name]) self.assertListEqual(ops.get_collection(my_collection_name), [update_op]) def testValueTensorIsIdempotent(self): predictions = random_ops.random_uniform( (10, 3), maxval=1, dtype=dtypes_lib.float32, seed=1) labels = random_ops.random_uniform( (10, 3), maxval=2, dtype=dtypes_lib.int64, seed=2) thresholds = [0, 0.5, 1.0] fpr, fpr_op = metrics.streaming_false_positive_rate_at_thresholds( predictions, labels, thresholds) with self.cached_session() as sess: sess.run(variables.local_variables_initializer()) # Run several updates. for _ in range(10): sess.run(fpr_op) # Then verify idempotency. initial_fpr = fpr.eval() for _ in range(10): self.assertAllClose(initial_fpr, fpr.eval()) def testAllCorrect(self): inputs = np.random.randint(0, 2, size=(100, 1)) with self.cached_session() as sess: predictions = constant_op.constant(inputs, dtype=dtypes_lib.float32) labels = constant_op.constant(inputs) thresholds = [0.5] fpr, fpr_op = metrics.streaming_false_positive_rate_at_thresholds( predictions, labels, thresholds) sess.run(variables.local_variables_initializer()) sess.run(fpr_op) self.assertEqual(0, fpr.eval()) def testSomeCorrect(self): with self.cached_session() as sess: predictions = constant_op.constant( [1, 0, 1, 0], shape=(1, 4), dtype=dtypes_lib.float32) labels = constant_op.constant([0, 1, 1, 0], shape=(1, 4)) thresholds = [0.5] fpr, fpr_op = metrics.streaming_false_positive_rate_at_thresholds( predictions, labels, thresholds) sess.run(variables.local_variables_initializer()) sess.run(fpr_op) self.assertAlmostEqual(0.5, fpr.eval()) def testAllIncorrect(self): inputs = np.random.randint(0, 2, size=(100, 1)) with self.cached_session() as sess: predictions = constant_op.constant(inputs, dtype=dtypes_lib.float32) labels = constant_op.constant(1 - inputs, dtype=dtypes_lib.float32) thresholds = [0.5] fpr, fpr_op = metrics.streaming_false_positive_rate_at_thresholds( predictions, labels, thresholds) sess.run(variables.local_variables_initializer()) sess.run(fpr_op) self.assertAlmostEqual(1, fpr.eval()) def testWeights1d(self): with self.cached_session() as sess: predictions = constant_op.constant( [[1, 0], [1, 0]], shape=(2, 2), dtype=dtypes_lib.float32) labels = constant_op.constant([[0, 1], [1, 0]], shape=(2, 2)) weights = constant_op.constant( [[0], [1]], shape=(2, 1), dtype=dtypes_lib.float32) thresholds = [0.5, 1.1] fpr, fpr_op = metrics.streaming_false_positive_rate_at_thresholds( predictions, labels, thresholds, weights=weights) fpr_low = fpr[0] fpr_high = fpr[1] sess.run(variables.local_variables_initializer()) sess.run(fpr_op) self.assertAlmostEqual(0.0, fpr_low.eval(), places=5) self.assertAlmostEqual(0.0, fpr_high.eval(), places=5) def testWeights2d(self): with self.cached_session() as sess: predictions = constant_op.constant( [[1, 0], [1, 0]], shape=(2, 2), dtype=dtypes_lib.float32) labels = constant_op.constant([[0, 1], [1, 0]], shape=(2, 2)) weights = constant_op.constant( [[0, 0], [1, 1]], shape=(2, 2), dtype=dtypes_lib.float32) thresholds = [0.5, 1.1] fpr, fpr_op = metrics.streaming_false_positive_rate_at_thresholds( predictions, labels, thresholds, weights=weights) fpr_low = fpr[0] fpr_high = fpr[1] sess.run(variables.local_variables_initializer()) sess.run(fpr_op) self.assertAlmostEqual(0.0, fpr_low.eval(), places=5) self.assertAlmostEqual(0.0, fpr_high.eval(), places=5) def testExtremeThresholds(self): with self.cached_session() as sess: predictions = constant_op.constant( [1, 0, 1, 0], shape=(1, 4), dtype=dtypes_lib.float32) labels = constant_op.constant([0, 1, 1, 1], shape=(1, 4)) thresholds = [-1.0, 2.0] # lower/higher than any values fpr, fpr_op = metrics.streaming_false_positive_rate_at_thresholds( predictions, labels, thresholds) fpr_low = fpr[0] fpr_high = fpr[1] sess.run(variables.local_variables_initializer()) sess.run(fpr_op) self.assertAlmostEqual(1.0, fpr_low.eval(), places=5) self.assertAlmostEqual(0.0, fpr_high.eval(), places=5) def testZeroLabelsPredictions(self): with self.cached_session() as sess: predictions = array_ops.zeros([4], dtype=dtypes_lib.float32) labels = array_ops.zeros([4]) thresholds = [0.5] fpr, fpr_op = metrics.streaming_false_positive_rate_at_thresholds( predictions, labels, thresholds) sess.run(variables.local_variables_initializer()) sess.run(fpr_op) self.assertAlmostEqual(0, fpr.eval(), 6) def testWithMultipleUpdates(self): num_samples = 1000 batch_size = 10 num_batches = int(num_samples / batch_size) # Create the labels and data. labels = np.random.randint(0, 2, size=(num_samples, 1)) noise = np.random.normal(0.0, scale=0.2, size=(num_samples, 1)) predictions = 0.4 + 0.2 * labels + noise predictions[predictions > 1] = 1 predictions[predictions < 0] = 0 thresholds = [0.3] fp = 0 tn = 0 for i in range(num_samples): if predictions[i] > thresholds[0]: if labels[i] == 0: fp += 1 else: if labels[i] == 0: tn += 1 epsilon = 1e-7 expected_fpr = fp / (epsilon + fp + tn) labels = labels.astype(np.float32) predictions = predictions.astype(np.float32) with self.cached_session() as sess: # Reshape the data so its easy to queue up: predictions_batches = predictions.reshape((batch_size, num_batches)) labels_batches = labels.reshape((batch_size, num_batches)) # Enqueue the data: predictions_queue = data_flow_ops.FIFOQueue( num_batches, dtypes=dtypes_lib.float32, shapes=(batch_size,)) labels_queue = data_flow_ops.FIFOQueue( num_batches, dtypes=dtypes_lib.float32, shapes=(batch_size,)) for i in range(int(num_batches)): tf_prediction = constant_op.constant(predictions_batches[:, i]) tf_label = constant_op.constant(labels_batches[:, i]) sess.run([ predictions_queue.enqueue(tf_prediction), labels_queue.enqueue(tf_label) ]) tf_predictions = predictions_queue.dequeue() tf_labels = labels_queue.dequeue() fpr, fpr_op = metrics.streaming_false_positive_rate_at_thresholds( tf_predictions, tf_labels, thresholds) sess.run(variables.local_variables_initializer()) for _ in range(int(num_samples / batch_size)): sess.run(fpr_op) # Since this is only approximate, we can't expect a 6 digits match. # Although with higher number of samples/thresholds we should see the # accuracy improving self.assertAlmostEqual(expected_fpr, fpr.eval(), 2) class RecallAtPrecisionTest(test.TestCase): def setUp(self): np.random.seed(1) ops.reset_default_graph() def testVars(self): metrics.recall_at_precision( predictions=array_ops.ones((10, 1)), labels=array_ops.ones((10, 1)), precision=0.7) _assert_metric_variables(self, ('recall_at_precision/true_positives:0', 'recall_at_precision/false_negatives:0', 'recall_at_precision/false_positives:0', 'recall_at_precision/true_negatives:0')) def testMetricsCollection(self): my_collection_name = '__metrics__' mean, _ = metrics.recall_at_precision( predictions=array_ops.ones((10, 1)), labels=array_ops.ones((10, 1)), precision=0.7, metrics_collections=[my_collection_name]) self.assertListEqual(ops.get_collection(my_collection_name), [mean]) def testUpdatesCollection(self): my_collection_name = '__updates__' _, update_op = metrics.recall_at_precision( predictions=array_ops.ones((10, 1)), labels=array_ops.ones((10, 1)), precision=0.7, updates_collections=[my_collection_name]) self.assertListEqual(ops.get_collection(my_collection_name), [update_op]) def testValueTensorIsIdempotent(self): predictions = random_ops.random_uniform( (10, 3), maxval=1, dtype=dtypes_lib.float32, seed=1) labels = random_ops.random_uniform( (10, 3), maxval=2, dtype=dtypes_lib.int64, seed=2) recall, update_op = metrics.recall_at_precision( labels, predictions, precision=0.7) with self.cached_session() as sess: sess.run(variables.local_variables_initializer()) # Run several updates. for _ in range(10): sess.run(update_op) # Then verify idempotency. initial_recall = recall.eval() for _ in range(10): self.assertAlmostEqual(initial_recall, recall.eval(), 5) def testAllCorrect(self): inputs = np.random.randint(0, 2, size=(100, 1)) predictions = constant_op.constant(inputs, dtype=dtypes_lib.float32) labels = constant_op.constant(inputs) recall, update_op = metrics.recall_at_precision( labels, predictions, precision=1.0) with self.cached_session() as sess: sess.run(variables.local_variables_initializer()) self.assertEqual(1, sess.run(update_op)) self.assertEqual(1, recall.eval()) def testSomeCorrectHighPrecision(self): predictions_values = [1, .9, .8, .7, .6, .5, .4, .3] labels_values = [1, 1, 1, 1, 0, 0, 0, 1] predictions = constant_op.constant( predictions_values, dtype=dtypes_lib.float32) labels = constant_op.constant(labels_values) recall, update_op = metrics.recall_at_precision( labels, predictions, precision=0.8) with self.cached_session() as sess: sess.run(variables.local_variables_initializer()) self.assertAlmostEqual(0.8, sess.run(update_op)) self.assertAlmostEqual(0.8, recall.eval()) def testSomeCorrectLowPrecision(self): predictions_values = [1, .9, .8, .7, .6, .5, .4, .3, .2, .1] labels_values = [1, 1, 0, 0, 0, 0, 0, 0, 0, 1] predictions = constant_op.constant( predictions_values, dtype=dtypes_lib.float32) labels = constant_op.constant(labels_values) recall, update_op = metrics.recall_at_precision( labels, predictions, precision=0.4) with self.cached_session() as sess: sess.run(variables.local_variables_initializer()) target_recall = 2.0 / 3.0 self.assertAlmostEqual(target_recall, sess.run(update_op)) self.assertAlmostEqual(target_recall, recall.eval()) def testWeighted(self): predictions_values = [1, .9, .8, .7, .6] labels_values = [1, 1, 0, 0, 1] weights_values = [1, 1, 3, 4, 1] predictions = constant_op.constant( predictions_values, dtype=dtypes_lib.float32) labels = constant_op.constant(labels_values) weights = constant_op.constant(weights_values) recall, update_op = metrics.recall_at_precision( labels, predictions, weights=weights, precision=0.4) with self.cached_session() as sess: sess.run(variables.local_variables_initializer()) target_recall = 2.0 / 3.0 self.assertAlmostEqual(target_recall, sess.run(update_op)) self.assertAlmostEqual(target_recall, recall.eval()) def _test_strict_mode(self, strict_mode, target_precision, expected_recall): num_thresholds = 11 predictions_values = [.2, .3, .5, .6, .7, .8, .9, .9, .9, .1] labels_values = [1, 1, 0, 0, 0, 0, 0, 0, 0, 1] # Resulting thresholds and the corresponding precision and recall values at # each threshold: # Thresholds [0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9] # precisions: [0.3 0.2 0.1 0 0 0 0 0 0] # recalls: [1.0 0.7 0.3 0 0 0 0 0 0] predictions = constant_op.constant( predictions_values, dtype=dtypes_lib.float32) labels = constant_op.constant(labels_values) recall, update_op = metrics.recall_at_precision( labels, predictions, num_thresholds=num_thresholds, precision=target_precision, strict_mode=strict_mode) with self.cached_session() as sess: sess.run(variables.local_variables_initializer()) self.assertAlmostEqual(expected_recall, sess.run(update_op)) self.assertAlmostEqual(expected_recall, recall.eval()) def testStrictMode_Off(self): # strict_mode is turned off and return the recall at the threshold where the # precision (0.3) is closest to target precision (0.9). The recall # corresponding to the threshold is 1.0. self._test_strict_mode( strict_mode=False, target_precision=0.9, expected_recall=1.0) def testStrictMode_OnAndFail(self): # strict_mode is turned on and we fail to reach the target precision at any # threshold. # Target precision: 0.9 # Diff: [-0.6 -0.7 -0.8 -0.9 -0.9 -0.9 -0.9 -0.9 -0.9] # Reciprocal: [-1.6 -1.4 -1.3 -1.1 -1.1 -1.1 -1.1 -1.1 -1.1] # Max index: 3 and corresponding precision is: 0 which is smaller than # target precsion 0.9. As a result, the expected recall is 0. self._test_strict_mode( strict_mode=True, target_precision=0.9, expected_recall=.0) def testStrictMode_OnAndSucceed(self): # strict_mode is on and we can reach the target precision at certain # threshold. # Target precision: 0.2 # Diff: [0.1 0 -0.1 -0.2 -0.2 -0.2 -0.2 -0.2 -0.2] # Reciprocal: [10 infty -10.0 -5.0 -5.0 -5.0 -5.0 -5.0 -5.0] # Max index: 1 and corresponding precision is: 0.2 which is no smaller than # target precsion 0.2. In this case, we return the recall at index 1, which # is 2.0/3 (0.7). self._test_strict_mode( strict_mode=True, target_precision=0.2, expected_recall=2.0 / 3) class PrecisionAtRecallTest(test.TestCase): def setUp(self): np.random.seed(1) ops.reset_default_graph() def testVars(self): metrics.precision_at_recall( predictions=array_ops.ones((10, 1)), labels=array_ops.ones((10, 1)), target_recall=0.7) _assert_metric_variables(self, ('precision_at_recall/true_positives:0', 'precision_at_recall/false_negatives:0', 'precision_at_recall/false_positives:0', 'precision_at_recall/true_negatives:0')) def testMetricsCollection(self): my_collection_name = '__metrics__' mean, _ = metrics.precision_at_recall( predictions=array_ops.ones((10, 1)), labels=array_ops.ones((10, 1)), target_recall=0.7, metrics_collections=[my_collection_name]) self.assertListEqual(ops.get_collection(my_collection_name), [mean]) def testUpdatesCollection(self): my_collection_name = '__updates__' _, update_op = metrics.precision_at_recall( predictions=array_ops.ones((10, 1)), labels=array_ops.ones((10, 1)), target_recall=0.7, updates_collections=[my_collection_name]) self.assertListEqual(ops.get_collection(my_collection_name), [update_op]) def testValueTensorIsIdempotent(self): predictions = random_ops.random_uniform( (10, 3), maxval=1, dtype=dtypes_lib.float32, seed=1) labels = random_ops.random_uniform( (10, 3), maxval=2, dtype=dtypes_lib.int64, seed=1) precision, update_op = metrics.precision_at_recall( labels, predictions, target_recall=0.7) with self.cached_session() as sess: sess.run(variables.local_variables_initializer()) # Run several updates. for _ in range(10): sess.run(update_op) # Then verify idempotency. initial_precision = precision.eval() for _ in range(10): self.assertAlmostEqual(initial_precision, precision.eval(), places=5) def testAllCorrect(self): inputs = np.random.randint(0, 2, size=(100, 1)) predictions = constant_op.constant(inputs, dtype=dtypes_lib.float32) labels = constant_op.constant(inputs) precision, update_op = metrics.precision_at_recall( labels, predictions, target_recall=0.7) with self.cached_session() as sess: sess.run(variables.local_variables_initializer()) self.assertEqual(1, sess.run(update_op)) self.assertEqual(1, precision.eval()) def testAllIncorrect(self): inputs = np.random.randint(0, 2, size=(100, 1)) predictions = constant_op.constant(inputs, dtype=dtypes_lib.float32) labels = 1.0 - predictions label_prior = math_ops.reduce_mean(labels) precision, update_op = metrics.precision_at_recall( labels, predictions, target_recall=0.2) with self.cached_session() as sess: sess.run(variables.local_variables_initializer()) self.assertEqual(sess.run(label_prior), sess.run(update_op)) self.assertEqual(sess.run(label_prior), precision.eval()) def testSomeCorrectHighRecall(self): predictions_values = [0.1, 0.2, 0.5, 0.3, 0.0, 0.1, 0.45, 0.5, 0.8, 0.9] labels_values = [0, 0, 0, 0, 0, 1, 1, 1, 1, 1] predictions = constant_op.constant( predictions_values, dtype=dtypes_lib.float32) labels = constant_op.constant(labels_values) precision, update_op = metrics.precision_at_recall( labels, predictions, target_recall=0.8) with self.cached_session() as sess: sess.run(variables.local_variables_initializer()) self.assertAlmostEqual(0.8, sess.run(update_op)) self.assertAlmostEqual(0.8, precision.eval()) def testSomeCorrectLowRecall(self): predictions_values = [0.1, 0.2, 0.7, 0.3, 0.0, 0.1, 0.45, 0.5, 0.6, 0.9] labels_values = [0, 0, 0, 0, 0, 1, 1, 1, 1, 1] predictions = constant_op.constant( predictions_values, dtype=dtypes_lib.float32) labels = constant_op.constant(labels_values) precision, update_op = metrics.precision_at_recall( labels, predictions, target_recall=0.4) with self.cached_session() as sess: sess.run(variables.local_variables_initializer()) self.assertAlmostEqual(2.0/3, sess.run(update_op)) self.assertAlmostEqual(2.0/3, precision.eval()) def testWeighted_multipleLabelDtypes(self): for label_dtype in (dtypes_lib.bool, dtypes_lib.int32, dtypes_lib.float32): predictions_values = [ 0.0, 0.1, 0.2, 0.3, 0.4, 0.1, 0.22, 0.25, 0.31, 0.35] labels_values = [0, 0, 0, 0, 0, 1, 1, 1, 1, 1] weights_values = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] predictions = constant_op.constant( predictions_values, dtype=dtypes_lib.float32) labels = math_ops.cast(labels_values, dtype=label_dtype) weights = constant_op.constant(weights_values) precision, update_op = metrics.precision_at_recall( labels, predictions, target_recall=0.8, weights=weights) with self.cached_session() as sess: sess.run(variables.local_variables_initializer()) self.assertAlmostEqual(34.0/43, sess.run(update_op)) self.assertAlmostEqual(34.0/43, precision.eval()) class StreamingFNRThresholdsTest(test.TestCase): def setUp(self): np.random.seed(1) ops.reset_default_graph() def testVars(self): metrics.streaming_false_negative_rate_at_thresholds( predictions=array_ops.ones((10, 1)), labels=array_ops.ones((10, 1)), thresholds=[0, 0.5, 1.0]) _assert_metric_variables(self, ( 'false_negative_rate_at_thresholds/false_negatives:0', 'false_negative_rate_at_thresholds/true_positives:0', )) def testMetricsCollection(self): my_collection_name = '__metrics__' fnr, _ = metrics.streaming_false_negative_rate_at_thresholds( predictions=array_ops.ones((10, 1)), labels=array_ops.ones((10, 1)), thresholds=[0, 0.5, 1.0], metrics_collections=[my_collection_name]) self.assertListEqual(ops.get_collection(my_collection_name), [fnr]) def testUpdatesCollection(self): my_collection_name = '__updates__' _, update_op = metrics.streaming_false_negative_rate_at_thresholds( predictions=array_ops.ones((10, 1)), labels=array_ops.ones((10, 1)), thresholds=[0, 0.5, 1.0], updates_collections=[my_collection_name]) self.assertListEqual(ops.get_collection(my_collection_name), [update_op]) def testValueTensorIsIdempotent(self): predictions = random_ops.random_uniform( (10, 3), maxval=1, dtype=dtypes_lib.float32, seed=1) labels = random_ops.random_uniform( (10, 3), maxval=2, dtype=dtypes_lib.int64, seed=2) thresholds = [0, 0.5, 1.0] fnr, fnr_op = metrics.streaming_false_negative_rate_at_thresholds( predictions, labels, thresholds) with self.cached_session() as sess: sess.run(variables.local_variables_initializer()) # Run several updates. for _ in range(10): sess.run(fnr_op) # Then verify idempotency. initial_fnr = fnr.eval() for _ in range(10): self.assertAllClose(initial_fnr, fnr.eval()) def testAllCorrect(self): inputs = np.random.randint(0, 2, size=(100, 1)) with self.cached_session() as sess: predictions = constant_op.constant(inputs, dtype=dtypes_lib.float32) labels = constant_op.constant(inputs) thresholds = [0.5] fnr, fnr_op = metrics.streaming_false_negative_rate_at_thresholds( predictions, labels, thresholds) sess.run(variables.local_variables_initializer()) sess.run(fnr_op) self.assertEqual(0, fnr.eval()) def testSomeCorrect(self): with self.cached_session() as sess: predictions = constant_op.constant( [1, 0, 1, 0], shape=(1, 4), dtype=dtypes_lib.float32) labels = constant_op.constant([0, 1, 1, 0], shape=(1, 4)) thresholds = [0.5] fnr, fnr_op = metrics.streaming_false_negative_rate_at_thresholds( predictions, labels, thresholds) sess.run(variables.local_variables_initializer()) sess.run(fnr_op) self.assertAlmostEqual(0.5, fnr.eval()) def testAllIncorrect(self): inputs = np.random.randint(0, 2, size=(100, 1)) with self.cached_session() as sess: predictions = constant_op.constant(inputs, dtype=dtypes_lib.float32) labels = constant_op.constant(1 - inputs, dtype=dtypes_lib.float32) thresholds = [0.5] fnr, fnr_op = metrics.streaming_false_negative_rate_at_thresholds( predictions, labels, thresholds) sess.run(variables.local_variables_initializer()) sess.run(fnr_op) self.assertAlmostEqual(1, fnr.eval()) def testWeights1d(self): with self.cached_session() as sess: predictions = constant_op.constant( [[1, 0], [1, 0]], shape=(2, 2), dtype=dtypes_lib.float32) labels = constant_op.constant([[0, 1], [1, 0]], shape=(2, 2)) weights = constant_op.constant( [[0], [1]], shape=(2, 1), dtype=dtypes_lib.float32) thresholds = [0.5, 1.1] fnr, fnr_op = metrics.streaming_false_negative_rate_at_thresholds( predictions, labels, thresholds, weights=weights) fnr_low = fnr[0] fnr_high = fnr[1] sess.run(variables.local_variables_initializer()) sess.run(fnr_op) self.assertAlmostEqual(0.0, fnr_low.eval(), places=5) self.assertAlmostEqual(1.0, fnr_high.eval(), places=5) def testWeights2d(self): with self.cached_session() as sess: predictions = constant_op.constant( [[1, 0], [1, 0]], shape=(2, 2), dtype=dtypes_lib.float32) labels = constant_op.constant([[0, 1], [1, 0]], shape=(2, 2)) weights = constant_op.constant( [[0, 0], [1, 1]], shape=(2, 2), dtype=dtypes_lib.float32) thresholds = [0.5, 1.1] fnr, fnr_op = metrics.streaming_false_negative_rate_at_thresholds( predictions, labels, thresholds, weights=weights) fnr_low = fnr[0] fnr_high = fnr[1] sess.run(variables.local_variables_initializer()) sess.run(fnr_op) self.assertAlmostEqual(0.0, fnr_low.eval(), places=5) self.assertAlmostEqual(1.0, fnr_high.eval(), places=5) def testExtremeThresholds(self): with self.cached_session() as sess: predictions = constant_op.constant( [1, 0, 1, 0], shape=(1, 4), dtype=dtypes_lib.float32) labels = constant_op.constant([0, 1, 1, 1], shape=(1, 4)) thresholds = [-1.0, 2.0] # lower/higher than any values fnr, fnr_op = metrics.streaming_false_negative_rate_at_thresholds( predictions, labels, thresholds) fnr_low = fnr[0] fnr_high = fnr[1] sess.run(variables.local_variables_initializer()) sess.run(fnr_op) self.assertAlmostEqual(0.0, fnr_low.eval()) self.assertAlmostEqual(1.0, fnr_high.eval()) def testZeroLabelsPredictions(self): with self.cached_session() as sess: predictions = array_ops.zeros([4], dtype=dtypes_lib.float32) labels = array_ops.zeros([4]) thresholds = [0.5] fnr, fnr_op = metrics.streaming_false_negative_rate_at_thresholds( predictions, labels, thresholds) sess.run(variables.local_variables_initializer()) sess.run(fnr_op) self.assertAlmostEqual(0, fnr.eval(), 6) def testWithMultipleUpdates(self): num_samples = 1000 batch_size = 10 num_batches = int(num_samples / batch_size) # Create the labels and data. labels = np.random.randint(0, 2, size=(num_samples, 1)) noise = np.random.normal(0.0, scale=0.2, size=(num_samples, 1)) predictions = 0.4 + 0.2 * labels + noise predictions[predictions > 1] = 1 predictions[predictions < 0] = 0 thresholds = [0.3] fn = 0 tp = 0 for i in range(num_samples): if predictions[i] > thresholds[0]: if labels[i] == 1: tp += 1 else: if labels[i] == 1: fn += 1 epsilon = 1e-7 expected_fnr = fn / (epsilon + fn + tp) labels = labels.astype(np.float32) predictions = predictions.astype(np.float32) with self.cached_session() as sess: # Reshape the data so its easy to queue up: predictions_batches = predictions.reshape((batch_size, num_batches)) labels_batches = labels.reshape((batch_size, num_batches)) # Enqueue the data: predictions_queue = data_flow_ops.FIFOQueue( num_batches, dtypes=dtypes_lib.float32, shapes=(batch_size,)) labels_queue = data_flow_ops.FIFOQueue( num_batches, dtypes=dtypes_lib.float32, shapes=(batch_size,)) for i in range(int(num_batches)): tf_prediction = constant_op.constant(predictions_batches[:, i]) tf_label = constant_op.constant(labels_batches[:, i]) sess.run([ predictions_queue.enqueue(tf_prediction), labels_queue.enqueue(tf_label) ]) tf_predictions = predictions_queue.dequeue() tf_labels = labels_queue.dequeue() fnr, fnr_op = metrics.streaming_false_negative_rate_at_thresholds( tf_predictions, tf_labels, thresholds) sess.run(variables.local_variables_initializer()) for _ in range(int(num_samples / batch_size)): sess.run(fnr_op) # Since this is only approximate, we can't expect a 6 digits match. # Although with higher number of samples/thresholds we should see the # accuracy improving self.assertAlmostEqual(expected_fnr, fnr.eval(), 2) # TODO(ptucker): Remove when we remove `streaming_recall_at_k`. # This op will be deprecated soon in favor of `streaming_sparse_recall_at_k`. # Until then, this test validates that both ops yield the same results. class StreamingRecallAtKTest(test.TestCase): def setUp(self): np.random.seed(1) ops.reset_default_graph() self._batch_size = 4 self._num_classes = 3 self._np_predictions = np.matrix(('0.1 0.2 0.7;' '0.6 0.2 0.2;' '0.0 0.9 0.1;' '0.2 0.0 0.8')) self._np_labels = [0, 0, 0, 0] def testVars(self): metrics.streaming_recall_at_k( predictions=array_ops.ones((self._batch_size, self._num_classes)), labels=array_ops.ones((self._batch_size,), dtype=dtypes_lib.int32), k=1) _assert_metric_variables(self, ('recall_at_1/count:0', 'recall_at_1/total:0')) def testMetricsCollection(self): my_collection_name = '__metrics__' mean, _ = metrics.streaming_recall_at_k( predictions=array_ops.ones((self._batch_size, self._num_classes)), labels=array_ops.ones((self._batch_size,), dtype=dtypes_lib.int32), k=1, metrics_collections=[my_collection_name]) self.assertListEqual(ops.get_collection(my_collection_name), [mean]) def testUpdatesCollection(self): my_collection_name = '__updates__' _, update_op = metrics.streaming_recall_at_k( predictions=array_ops.ones((self._batch_size, self._num_classes)), labels=array_ops.ones((self._batch_size,), dtype=dtypes_lib.int32), k=1, updates_collections=[my_collection_name]) self.assertListEqual(ops.get_collection(my_collection_name), [update_op]) def testSingleUpdateKIs1(self): predictions = constant_op.constant( self._np_predictions, shape=(self._batch_size, self._num_classes), dtype=dtypes_lib.float32) labels = constant_op.constant( self._np_labels, shape=(self._batch_size,), dtype=dtypes_lib.int64) recall, update_op = metrics.streaming_recall_at_k(predictions, labels, k=1) sp_recall, sp_update_op = metrics.streaming_sparse_recall_at_k( predictions, array_ops.reshape(labels, (self._batch_size, 1)), k=1) with self.cached_session() as sess: sess.run(variables.local_variables_initializer()) self.assertEqual(0.25, sess.run(update_op)) self.assertEqual(0.25, recall.eval()) self.assertEqual(0.25, sess.run(sp_update_op)) self.assertEqual(0.25, sp_recall.eval()) def testSingleUpdateKIs2(self): predictions = constant_op.constant( self._np_predictions, shape=(self._batch_size, self._num_classes), dtype=dtypes_lib.float32) labels = constant_op.constant( self._np_labels, shape=(self._batch_size,), dtype=dtypes_lib.int64) recall, update_op = metrics.streaming_recall_at_k(predictions, labels, k=2) sp_recall, sp_update_op = metrics.streaming_sparse_recall_at_k( predictions, array_ops.reshape(labels, (self._batch_size, 1)), k=2) with self.cached_session() as sess: sess.run(variables.local_variables_initializer()) self.assertEqual(0.5, sess.run(update_op)) self.assertEqual(0.5, recall.eval()) self.assertEqual(0.5, sess.run(sp_update_op)) self.assertEqual(0.5, sp_recall.eval()) def testSingleUpdateKIs3(self): predictions = constant_op.constant( self._np_predictions, shape=(self._batch_size, self._num_classes), dtype=dtypes_lib.float32) labels = constant_op.constant( self._np_labels, shape=(self._batch_size,), dtype=dtypes_lib.int64) recall, update_op = metrics.streaming_recall_at_k(predictions, labels, k=3) sp_recall, sp_update_op = metrics.streaming_sparse_recall_at_k( predictions, array_ops.reshape(labels, (self._batch_size, 1)), k=3) with self.cached_session() as sess: sess.run(variables.local_variables_initializer()) self.assertEqual(1.0, sess.run(update_op)) self.assertEqual(1.0, recall.eval()) self.assertEqual(1.0, sess.run(sp_update_op)) self.assertEqual(1.0, sp_recall.eval()) def testSingleUpdateSomeMissingKIs2(self): predictions = constant_op.constant( self._np_predictions, shape=(self._batch_size, self._num_classes), dtype=dtypes_lib.float32) labels = constant_op.constant( self._np_labels, shape=(self._batch_size,), dtype=dtypes_lib.int64) weights = constant_op.constant( [0, 1, 0, 1], shape=(self._batch_size,), dtype=dtypes_lib.float32) recall, update_op = metrics.streaming_recall_at_k( predictions, labels, k=2, weights=weights) sp_recall, sp_update_op = metrics.streaming_sparse_recall_at_k( predictions, array_ops.reshape(labels, (self._batch_size, 1)), k=2, weights=weights) with self.cached_session() as sess: sess.run(variables.local_variables_initializer()) self.assertEqual(1.0, sess.run(update_op)) self.assertEqual(1.0, recall.eval()) self.assertEqual(1.0, sess.run(sp_update_op)) self.assertEqual(1.0, sp_recall.eval()) class StreamingSparsePrecisionTest(test.TestCase): def _test_streaming_sparse_precision_at_k(self, predictions, labels, k, expected, class_id=None, weights=None): with ops.Graph().as_default() as g, self.session(g): if weights is not None: weights = constant_op.constant(weights, dtypes_lib.float32) metric, update = metrics.streaming_sparse_precision_at_k( predictions=constant_op.constant(predictions, dtypes_lib.float32), labels=labels, k=k, class_id=class_id, weights=weights) # Fails without initialized vars. self.assertRaises(errors_impl.OpError, metric.eval) self.assertRaises(errors_impl.OpError, update.eval) variables.variables_initializer(variables.local_variables()).run() # Run per-step op and assert expected values. if math.isnan(expected): _assert_nan(self, update.eval()) _assert_nan(self, metric.eval()) else: self.assertEqual(expected, update.eval()) self.assertEqual(expected, metric.eval()) def _test_streaming_sparse_precision_at_top_k(self, top_k_predictions, labels, expected, class_id=None, weights=None): with ops.Graph().as_default() as g, self.session(g): if weights is not None: weights = constant_op.constant(weights, dtypes_lib.float32) metric, update = metrics.streaming_sparse_precision_at_top_k( top_k_predictions=constant_op.constant(top_k_predictions, dtypes_lib.int32), labels=labels, class_id=class_id, weights=weights) # Fails without initialized vars. self.assertRaises(errors_impl.OpError, metric.eval) self.assertRaises(errors_impl.OpError, update.eval) variables.variables_initializer(variables.local_variables()).run() # Run per-step op and assert expected values. if math.isnan(expected): self.assertTrue(math.isnan(update.eval())) self.assertTrue(math.isnan(metric.eval())) else: self.assertEqual(expected, update.eval()) self.assertEqual(expected, metric.eval()) def _test_streaming_sparse_average_precision_at_k(self, predictions, labels, k, expected, weights=None): with ops.Graph().as_default() as g, self.session(g): if weights is not None: weights = constant_op.constant(weights, dtypes_lib.float32) predictions = constant_op.constant(predictions, dtypes_lib.float32) metric, update = metrics.streaming_sparse_average_precision_at_k( predictions, labels, k, weights=weights) # Fails without initialized vars. self.assertRaises(errors_impl.OpError, metric.eval) self.assertRaises(errors_impl.OpError, update.eval) local_variables = variables.local_variables() variables.variables_initializer(local_variables).run() # Run per-step op and assert expected values. if math.isnan(expected): _assert_nan(self, update.eval()) _assert_nan(self, metric.eval()) else: self.assertAlmostEqual(expected, update.eval()) self.assertAlmostEqual(expected, metric.eval()) def _test_streaming_sparse_average_precision_at_top_k(self, top_k_predictions, labels, expected, weights=None): with ops.Graph().as_default() as g, self.session(g): if weights is not None: weights = constant_op.constant(weights, dtypes_lib.float32) metric, update = metrics.streaming_sparse_average_precision_at_top_k( top_k_predictions, labels, weights=weights) # Fails without initialized vars. self.assertRaises(errors_impl.OpError, metric.eval) self.assertRaises(errors_impl.OpError, update.eval) local_variables = variables.local_variables() variables.variables_initializer(local_variables).run() # Run per-step op and assert expected values. if math.isnan(expected): _assert_nan(self, update.eval()) _assert_nan(self, metric.eval()) else: self.assertAlmostEqual(expected, update.eval()) self.assertAlmostEqual(expected, metric.eval()) def test_top_k_rank_invalid(self): with self.cached_session(): # top_k_predictions has rank < 2. top_k_predictions = [9, 4, 6, 2, 0] sp_labels = sparse_tensor.SparseTensorValue( indices=np.array([[ 0, ], [ 1, ], [ 2, ]], np.int64), values=np.array([2, 7, 8], np.int64), dense_shape=np.array([ 10, ], np.int64)) with self.assertRaises(ValueError): precision, _ = metrics.streaming_sparse_precision_at_top_k( top_k_predictions=constant_op.constant(top_k_predictions, dtypes_lib.int64), labels=sp_labels) variables.variables_initializer(variables.local_variables()).run() precision.eval() def test_average_precision(self): # Example 1. # Matches example here: # fastml.com/what-you-wanted-to-know-about-mean-average-precision labels_ex1 = (0, 1, 2, 3, 4) labels = np.array([labels_ex1], dtype=np.int64) predictions_ex1 = (0.2, 0.1, 0.0, 0.4, 0.0, 0.5, 0.3) predictions = (predictions_ex1,) predictions_top_k_ex1 = (5, 3, 6, 0, 1, 2) precision_ex1 = (0.0 / 1, 1.0 / 2, 1.0 / 3, 2.0 / 4) avg_precision_ex1 = (0.0 / 1, precision_ex1[1] / 2, precision_ex1[1] / 3, (precision_ex1[1] + precision_ex1[3]) / 4) for i in xrange(4): k = i + 1 self._test_streaming_sparse_precision_at_k( predictions, labels, k, expected=precision_ex1[i]) self._test_streaming_sparse_precision_at_top_k( (predictions_top_k_ex1[:k],), labels, expected=precision_ex1[i]) self._test_streaming_sparse_average_precision_at_k( predictions, labels, k, expected=avg_precision_ex1[i]) self._test_streaming_sparse_average_precision_at_top_k( (predictions_top_k_ex1[:k],), labels, expected=avg_precision_ex1[i]) # Example 2. labels_ex2 = (0, 2, 4, 5, 6) labels = np.array([labels_ex2], dtype=np.int64) predictions_ex2 = (0.3, 0.5, 0.0, 0.4, 0.0, 0.1, 0.2) predictions = (predictions_ex2,) predictions_top_k_ex2 = (1, 3, 0, 6, 5) precision_ex2 = (0.0 / 1, 0.0 / 2, 1.0 / 3, 2.0 / 4) avg_precision_ex2 = (0.0 / 1, 0.0 / 2, precision_ex2[2] / 3, (precision_ex2[2] + precision_ex2[3]) / 4) for i in xrange(4): k = i + 1 self._test_streaming_sparse_precision_at_k( predictions, labels, k, expected=precision_ex2[i]) self._test_streaming_sparse_precision_at_top_k( (predictions_top_k_ex2[:k],), labels, expected=precision_ex2[i]) self._test_streaming_sparse_average_precision_at_k( predictions, labels, k, expected=avg_precision_ex2[i]) self._test_streaming_sparse_average_precision_at_top_k( (predictions_top_k_ex2[:k],), labels, expected=avg_precision_ex2[i]) # Both examples, we expect both precision and average precision to be the # average of the 2 examples. labels = np.array([labels_ex1, labels_ex2], dtype=np.int64) predictions = (predictions_ex1, predictions_ex2) streaming_precision = [ (ex1 + ex2) / 2 for ex1, ex2 in zip(precision_ex1, precision_ex2) ] streaming_average_precision = [ (ex1 + ex2) / 2 for ex1, ex2 in zip(avg_precision_ex1, avg_precision_ex2) ] for i in xrange(4): k = i + 1 self._test_streaming_sparse_precision_at_k( predictions, labels, k, expected=streaming_precision[i]) predictions_top_k = (predictions_top_k_ex1[:k], predictions_top_k_ex2[:k]) self._test_streaming_sparse_precision_at_top_k( predictions_top_k, labels, expected=streaming_precision[i]) self._test_streaming_sparse_average_precision_at_k( predictions, labels, k, expected=streaming_average_precision[i]) self._test_streaming_sparse_average_precision_at_top_k( predictions_top_k, labels, expected=streaming_average_precision[i]) # Weighted examples, we expect streaming average precision to be the # weighted average of the 2 examples. weights = (0.3, 0.6) streaming_average_precision = [ (weights[0] * ex1 + weights[1] * ex2) / (weights[0] + weights[1]) for ex1, ex2 in zip(avg_precision_ex1, avg_precision_ex2) ] for i in xrange(4): k = i + 1 self._test_streaming_sparse_average_precision_at_k( predictions, labels, k, expected=streaming_average_precision[i], weights=weights) self._test_streaming_sparse_average_precision_at_top_k( (predictions_top_k_ex1[:k], predictions_top_k_ex2[:k]), labels, expected=streaming_average_precision[i], weights=weights) def test_average_precision_some_labels_out_of_range(self): """Tests that labels outside the [0, n_classes) range are ignored.""" labels_ex1 = (-1, 0, 1, 2, 3, 4, 7) labels = np.array([labels_ex1], dtype=np.int64) predictions_ex1 = (0.2, 0.1, 0.0, 0.4, 0.0, 0.5, 0.3) predictions = (predictions_ex1,) predictions_top_k_ex1 = (5, 3, 6, 0, 1, 2) precision_ex1 = (0.0 / 1, 1.0 / 2, 1.0 / 3, 2.0 / 4) avg_precision_ex1 = (0.0 / 1, precision_ex1[1] / 2, precision_ex1[1] / 3, (precision_ex1[1] + precision_ex1[3]) / 4) for i in xrange(4): k = i + 1 self._test_streaming_sparse_precision_at_k( predictions, labels, k, expected=precision_ex1[i]) self._test_streaming_sparse_precision_at_top_k( (predictions_top_k_ex1[:k],), labels, expected=precision_ex1[i]) self._test_streaming_sparse_average_precision_at_k( predictions, labels, k, expected=avg_precision_ex1[i]) self._test_streaming_sparse_average_precision_at_top_k( (predictions_top_k_ex1[:k],), labels, expected=avg_precision_ex1[i]) def test_average_precision_at_top_k_static_shape_check(self): predictions_top_k = array_ops.placeholder( shape=(2, None), dtype=dtypes_lib.int64) labels = np.array(((1,), (2,)), dtype=np.int64) # Fails due to non-static predictions_idx shape. with self.assertRaises(ValueError): metric_ops.streaming_sparse_average_precision_at_top_k( predictions_top_k, labels) predictions_top_k = (2, 1) # Fails since rank of predictions_idx is less than one. with self.assertRaises(ValueError): metric_ops.streaming_sparse_average_precision_at_top_k( predictions_top_k, labels) predictions_top_k = ((2,), (1,)) # Valid static shape. metric_ops.streaming_sparse_average_precision_at_top_k( predictions_top_k, labels) def test_one_label_at_k1_nan(self): predictions = [[0.1, 0.3, 0.2, 0.4], [0.1, 0.2, 0.3, 0.4]] top_k_predictions = [[3], [3]] sparse_labels = _binary_2d_label_to_sparse_value([[0, 0, 0, 1], [0, 0, 1, 0]]) dense_labels = np.array([[3], [2]], dtype=np.int64) for labels in (sparse_labels, dense_labels): # Classes 0,1,2 have 0 predictions, classes -1 and 4 are out of range. for class_id in (-1, 0, 1, 2, 4): self._test_streaming_sparse_precision_at_k( predictions, labels, k=1, expected=NAN, class_id=class_id) self._test_streaming_sparse_precision_at_top_k( top_k_predictions, labels, expected=NAN, class_id=class_id) def test_one_label_at_k1(self): predictions = [[0.1, 0.3, 0.2, 0.4], [0.1, 0.2, 0.3, 0.4]] top_k_predictions = [[3], [3]] sparse_labels = _binary_2d_label_to_sparse_value([[0, 0, 0, 1], [0, 0, 1, 0]]) dense_labels = np.array([[3], [2]], dtype=np.int64) for labels in (sparse_labels, dense_labels): # Class 3: 1 label, 2 predictions, 1 correct. self._test_streaming_sparse_precision_at_k( predictions, labels, k=1, expected=1.0 / 2, class_id=3) self._test_streaming_sparse_precision_at_top_k( top_k_predictions, labels, expected=1.0 / 2, class_id=3) # All classes: 2 labels, 2 predictions, 1 correct. self._test_streaming_sparse_precision_at_k( predictions, labels, k=1, expected=1.0 / 2) self._test_streaming_sparse_precision_at_top_k( top_k_predictions, labels, expected=1.0 / 2) def test_three_labels_at_k5_no_predictions(self): predictions = [[0.5, 0.1, 0.6, 0.3, 0.8, 0.0, 0.7, 0.2, 0.4, 0.9], [0.3, 0.0, 0.7, 0.2, 0.4, 0.9, 0.5, 0.8, 0.1, 0.6]] top_k_predictions = [ [9, 4, 6, 2, 0], [5, 7, 2, 9, 6], ] sparse_labels = _binary_2d_label_to_sparse_value( [[0, 0, 1, 0, 0, 0, 0, 1, 1, 0], [0, 1, 1, 0, 0, 1, 0, 0, 0, 0]]) dense_labels = np.array([[2, 7, 8], [1, 2, 5]], dtype=np.int64) for labels in (sparse_labels, dense_labels): # Classes 1,3,8 have 0 predictions, classes -1 and 10 are out of range. for class_id in (-1, 1, 3, 8, 10): self._test_streaming_sparse_precision_at_k( predictions, labels, k=5, expected=NAN, class_id=class_id) self._test_streaming_sparse_precision_at_top_k( top_k_predictions, labels, expected=NAN, class_id=class_id) def test_three_labels_at_k5_no_labels(self): predictions = [[0.5, 0.1, 0.6, 0.3, 0.8, 0.0, 0.7, 0.2, 0.4, 0.9], [0.3, 0.0, 0.7, 0.2, 0.4, 0.9, 0.5, 0.8, 0.1, 0.6]] top_k_predictions = [ [9, 4, 6, 2, 0], [5, 7, 2, 9, 6], ] sparse_labels = _binary_2d_label_to_sparse_value( [[0, 0, 1, 0, 0, 0, 0, 1, 1, 0], [0, 1, 1, 0, 0, 1, 0, 0, 0, 0]]) dense_labels = np.array([[2, 7, 8], [1, 2, 5]], dtype=np.int64) for labels in (sparse_labels, dense_labels): # Classes 0,4,6,9: 0 labels, >=1 prediction. for class_id in (0, 4, 6, 9): self._test_streaming_sparse_precision_at_k( predictions, labels, k=5, expected=0.0, class_id=class_id) self._test_streaming_sparse_precision_at_top_k( top_k_predictions, labels, expected=0.0, class_id=class_id) def test_three_labels_at_k5(self): predictions = [[0.5, 0.1, 0.6, 0.3, 0.8, 0.0, 0.7, 0.2, 0.4, 0.9], [0.3, 0.0, 0.7, 0.2, 0.4, 0.9, 0.5, 0.8, 0.1, 0.6]] top_k_predictions = [ [9, 4, 6, 2, 0], [5, 7, 2, 9, 6], ] sparse_labels = _binary_2d_label_to_sparse_value( [[0, 0, 1, 0, 0, 0, 0, 1, 1, 0], [0, 1, 1, 0, 0, 1, 0, 0, 0, 0]]) dense_labels = np.array([[2, 7, 8], [1, 2, 5]], dtype=np.int64) for labels in (sparse_labels, dense_labels): # Class 2: 2 labels, 2 correct predictions. self._test_streaming_sparse_precision_at_k( predictions, labels, k=5, expected=2.0 / 2, class_id=2) self._test_streaming_sparse_precision_at_top_k( top_k_predictions, labels, expected=2.0 / 2, class_id=2) # Class 5: 1 label, 1 correct prediction. self._test_streaming_sparse_precision_at_k( predictions, labels, k=5, expected=1.0 / 1, class_id=5) self._test_streaming_sparse_precision_at_top_k( top_k_predictions, labels, expected=1.0 / 1, class_id=5) # Class 7: 1 label, 1 incorrect prediction. self._test_streaming_sparse_precision_at_k( predictions, labels, k=5, expected=0.0 / 1, class_id=7) self._test_streaming_sparse_precision_at_top_k( top_k_predictions, labels, expected=0.0 / 1, class_id=7) # All classes: 10 predictions, 3 correct. self._test_streaming_sparse_precision_at_k( predictions, labels, k=5, expected=3.0 / 10) self._test_streaming_sparse_precision_at_top_k( top_k_predictions, labels, expected=3.0 / 10) def test_three_labels_at_k5_some_out_of_range(self): """Tests that labels outside the [0, n_classes) range are ignored.""" predictions = [[0.5, 0.1, 0.6, 0.3, 0.8, 0.0, 0.7, 0.2, 0.4, 0.9], [0.3, 0.0, 0.7, 0.2, 0.4, 0.9, 0.5, 0.8, 0.1, 0.6]] top_k_predictions = [ [9, 4, 6, 2, 0], [5, 7, 2, 9, 6], ] sp_labels = sparse_tensor.SparseTensorValue( indices=[[0, 0], [0, 1], [0, 2], [0, 3], [1, 0], [1, 1], [1, 2], [1, 3]], # values -1 and 10 are outside the [0, n_classes) range and are ignored. values=np.array([2, 7, -1, 8, 1, 2, 5, 10], np.int64), dense_shape=[2, 4]) # Class 2: 2 labels, 2 correct predictions. self._test_streaming_sparse_precision_at_k( predictions, sp_labels, k=5, expected=2.0 / 2, class_id=2) self._test_streaming_sparse_precision_at_top_k( top_k_predictions, sp_labels, expected=2.0 / 2, class_id=2) # Class 5: 1 label, 1 correct prediction. self._test_streaming_sparse_precision_at_k( predictions, sp_labels, k=5, expected=1.0 / 1, class_id=5) self._test_streaming_sparse_precision_at_top_k( top_k_predictions, sp_labels, expected=1.0 / 1, class_id=5) # Class 7: 1 label, 1 incorrect prediction. self._test_streaming_sparse_precision_at_k( predictions, sp_labels, k=5, expected=0.0 / 1, class_id=7) self._test_streaming_sparse_precision_at_top_k( top_k_predictions, sp_labels, expected=0.0 / 1, class_id=7) # All classes: 10 predictions, 3 correct. self._test_streaming_sparse_precision_at_k( predictions, sp_labels, k=5, expected=3.0 / 10) self._test_streaming_sparse_precision_at_top_k( top_k_predictions, sp_labels, expected=3.0 / 10) def test_3d_nan(self): predictions = [[[0.5, 0.1, 0.6, 0.3, 0.8, 0.0, 0.7, 0.2, 0.4, 0.9], [0.3, 0.0, 0.7, 0.2, 0.4, 0.9, 0.5, 0.8, 0.1, 0.6]], [[0.3, 0.0, 0.7, 0.2, 0.4, 0.9, 0.5, 0.8, 0.1, 0.6], [0.5, 0.1, 0.6, 0.3, 0.8, 0.0, 0.7, 0.2, 0.4, 0.9]]] top_k_predictions = [[ [9, 4, 6, 2, 0], [5, 7, 2, 9, 6], ], [ [5, 7, 2, 9, 6], [9, 4, 6, 2, 0], ]] labels = _binary_3d_label_to_sparse_value( [[[0, 0, 1, 0, 0, 0, 0, 1, 1, 0], [0, 1, 1, 0, 0, 1, 0, 0, 0, 0]], [[0, 1, 1, 0, 0, 1, 0, 1, 0, 0], [0, 0, 1, 0, 0, 0, 0, 0, 1, 0]]]) # Classes 1,3,8 have 0 predictions, classes -1 and 10 are out of range. for class_id in (-1, 1, 3, 8, 10): self._test_streaming_sparse_precision_at_k( predictions, labels, k=5, expected=NAN, class_id=class_id) self._test_streaming_sparse_precision_at_top_k( top_k_predictions, labels, expected=NAN, class_id=class_id) def test_3d_no_labels(self): predictions = [[[0.5, 0.1, 0.6, 0.3, 0.8, 0.0, 0.7, 0.2, 0.4, 0.9], [0.3, 0.0, 0.7, 0.2, 0.4, 0.9, 0.5, 0.8, 0.1, 0.6]], [[0.3, 0.0, 0.7, 0.2, 0.4, 0.9, 0.5, 0.8, 0.1, 0.6], [0.5, 0.1, 0.6, 0.3, 0.8, 0.0, 0.7, 0.2, 0.4, 0.9]]] top_k_predictions = [[ [9, 4, 6, 2, 0], [5, 7, 2, 9, 6], ], [ [5, 7, 2, 9, 6], [9, 4, 6, 2, 0], ]] labels = _binary_3d_label_to_sparse_value( [[[0, 0, 1, 0, 0, 0, 0, 1, 1, 0], [0, 1, 1, 0, 0, 1, 0, 0, 0, 0]], [[0, 1, 1, 0, 0, 1, 0, 1, 0, 0], [0, 0, 1, 0, 0, 0, 0, 0, 1, 0]]]) # Classes 0,4,6,9: 0 labels, >=1 prediction. for class_id in (0, 4, 6, 9): self._test_streaming_sparse_precision_at_k( predictions, labels, k=5, expected=0.0, class_id=class_id) self._test_streaming_sparse_precision_at_top_k( top_k_predictions, labels, expected=0.0, class_id=class_id) def test_3d(self): predictions = [[[0.5, 0.1, 0.6, 0.3, 0.8, 0.0, 0.7, 0.2, 0.4, 0.9], [0.3, 0.0, 0.7, 0.2, 0.4, 0.9, 0.5, 0.8, 0.1, 0.6]], [[0.3, 0.0, 0.7, 0.2, 0.4, 0.9, 0.5, 0.8, 0.1, 0.6], [0.5, 0.1, 0.6, 0.3, 0.8, 0.0, 0.7, 0.2, 0.4, 0.9]]] top_k_predictions = [[ [9, 4, 6, 2, 0], [5, 7, 2, 9, 6], ], [ [5, 7, 2, 9, 6], [9, 4, 6, 2, 0], ]] labels = _binary_3d_label_to_sparse_value( [[[0, 0, 1, 0, 0, 0, 0, 1, 1, 0], [0, 1, 1, 0, 0, 1, 0, 0, 0, 0]], [[0, 1, 1, 0, 0, 1, 0, 1, 0, 0], [0, 0, 1, 0, 0, 0, 0, 0, 1, 0]]]) # Class 2: 4 predictions, all correct. self._test_streaming_sparse_precision_at_k( predictions, labels, k=5, expected=4.0 / 4, class_id=2) self._test_streaming_sparse_precision_at_top_k( top_k_predictions, labels, expected=4.0 / 4, class_id=2) # Class 5: 2 predictions, both correct. self._test_streaming_sparse_precision_at_k( predictions, labels, k=5, expected=2.0 / 2, class_id=5) self._test_streaming_sparse_precision_at_top_k( top_k_predictions, labels, expected=2.0 / 2, class_id=5) # Class 7: 2 predictions, 1 correct. self._test_streaming_sparse_precision_at_k( predictions, labels, k=5, expected=1.0 / 2, class_id=7) self._test_streaming_sparse_precision_at_top_k( top_k_predictions, labels, expected=1.0 / 2, class_id=7) # All classes: 20 predictions, 7 correct. self._test_streaming_sparse_precision_at_k( predictions, labels, k=5, expected=7.0 / 20) self._test_streaming_sparse_precision_at_top_k( top_k_predictions, labels, expected=7.0 / 20) def test_3d_ignore_all(self): predictions = [[[0.5, 0.1, 0.6, 0.3, 0.8, 0.0, 0.7, 0.2, 0.4, 0.9], [0.3, 0.0, 0.7, 0.2, 0.4, 0.9, 0.5, 0.8, 0.1, 0.6]], [[0.3, 0.0, 0.7, 0.2, 0.4, 0.9, 0.5, 0.8, 0.1, 0.6], [0.5, 0.1, 0.6, 0.3, 0.8, 0.0, 0.7, 0.2, 0.4, 0.9]]] top_k_predictions = [[ [9, 4, 6, 2, 0], [5, 7, 2, 9, 6], ], [ [5, 7, 2, 9, 6], [9, 4, 6, 2, 0], ]] labels = _binary_3d_label_to_sparse_value( [[[0, 0, 1, 0, 0, 0, 0, 1, 1, 0], [0, 1, 1, 0, 0, 1, 0, 0, 0, 0]], [[0, 1, 1, 0, 0, 1, 0, 1, 0, 0], [0, 0, 1, 0, 0, 0, 0, 0, 1, 0]]]) for class_id in xrange(10): self._test_streaming_sparse_precision_at_k( predictions, labels, k=5, expected=NAN, class_id=class_id, weights=[[0], [0]]) self._test_streaming_sparse_precision_at_top_k( top_k_predictions, labels, expected=NAN, class_id=class_id, weights=[[0], [0]]) self._test_streaming_sparse_precision_at_k( predictions, labels, k=5, expected=NAN, class_id=class_id, weights=[[0, 0], [0, 0]]) self._test_streaming_sparse_precision_at_top_k( top_k_predictions, labels, expected=NAN, class_id=class_id, weights=[[0, 0], [0, 0]]) self._test_streaming_sparse_precision_at_k( predictions, labels, k=5, expected=NAN, weights=[[0], [0]]) self._test_streaming_sparse_precision_at_top_k( top_k_predictions, labels, expected=NAN, weights=[[0], [0]]) self._test_streaming_sparse_precision_at_k( predictions, labels, k=5, expected=NAN, weights=[[0, 0], [0, 0]]) self._test_streaming_sparse_precision_at_top_k( top_k_predictions, labels, expected=NAN, weights=[[0, 0], [0, 0]]) def test_3d_ignore_some(self): predictions = [[[0.5, 0.1, 0.6, 0.3, 0.8, 0.0, 0.7, 0.2, 0.4, 0.9], [0.3, 0.0, 0.7, 0.2, 0.4, 0.9, 0.5, 0.8, 0.1, 0.6]], [[0.3, 0.0, 0.7, 0.2, 0.4, 0.9, 0.5, 0.8, 0.1, 0.6], [0.5, 0.1, 0.6, 0.3, 0.8, 0.0, 0.7, 0.2, 0.4, 0.9]]] top_k_predictions = [[ [9, 4, 6, 2, 0], [5, 7, 2, 9, 6], ], [ [5, 7, 2, 9, 6], [9, 4, 6, 2, 0], ]] labels = _binary_3d_label_to_sparse_value( [[[0, 0, 1, 0, 0, 0, 0, 1, 1, 0], [0, 1, 1, 0, 0, 1, 0, 0, 0, 0]], [[0, 1, 1, 0, 0, 1, 0, 1, 0, 0], [0, 0, 1, 0, 0, 0, 0, 0, 1, 0]]]) # Class 2: 2 predictions, both correct. self._test_streaming_sparse_precision_at_k( predictions, labels, k=5, expected=2.0 / 2.0, class_id=2, weights=[[1], [0]]) self._test_streaming_sparse_precision_at_top_k( top_k_predictions, labels, expected=2.0 / 2.0, class_id=2, weights=[[1], [0]]) # Class 2: 2 predictions, both correct. self._test_streaming_sparse_precision_at_k( predictions, labels, k=5, expected=2.0 / 2.0, class_id=2, weights=[[0], [1]]) self._test_streaming_sparse_precision_at_top_k( top_k_predictions, labels, expected=2.0 / 2.0, class_id=2, weights=[[0], [1]]) # Class 7: 1 incorrect prediction. self._test_streaming_sparse_precision_at_k( predictions, labels, k=5, expected=0.0 / 1.0, class_id=7, weights=[[1], [0]]) self._test_streaming_sparse_precision_at_top_k( top_k_predictions, labels, expected=0.0 / 1.0, class_id=7, weights=[[1], [0]]) # Class 7: 1 correct prediction. self._test_streaming_sparse_precision_at_k( predictions, labels, k=5, expected=1.0 / 1.0, class_id=7, weights=[[0], [1]]) self._test_streaming_sparse_precision_at_top_k( top_k_predictions, labels, expected=1.0 / 1.0, class_id=7, weights=[[0], [1]]) # Class 7: no predictions. self._test_streaming_sparse_precision_at_k( predictions, labels, k=5, expected=NAN, class_id=7, weights=[[1, 0], [0, 1]]) self._test_streaming_sparse_precision_at_top_k( top_k_predictions, labels, expected=NAN, class_id=7, weights=[[1, 0], [0, 1]]) # Class 7: 2 predictions, 1 correct. self._test_streaming_sparse_precision_at_k( predictions, labels, k=5, expected=1.0 / 2.0, class_id=7, weights=[[0, 1], [1, 0]]) self._test_streaming_sparse_precision_at_top_k( top_k_predictions, labels, expected=1.0 / 2.0, class_id=7, weights=[[0, 1], [1, 0]]) def test_sparse_tensor_value(self): predictions = [[0.1, 0.3, 0.2, 0.4], [0.1, 0.2, 0.3, 0.4]] labels = [[0, 0, 0, 1], [0, 0, 1, 0]] expected_precision = 0.5 with self.cached_session(): _, precision = metrics.streaming_sparse_precision_at_k( predictions=constant_op.constant(predictions, dtypes_lib.float32), labels=_binary_2d_label_to_sparse_value(labels), k=1) variables.variables_initializer(variables.local_variables()).run() self.assertEqual(expected_precision, precision.eval()) class StreamingSparseRecallTest(test.TestCase): def _test_streaming_sparse_recall_at_k(self, predictions, labels, k, expected, class_id=None, weights=None): with ops.Graph().as_default() as g, self.session(g): if weights is not None: weights = constant_op.constant(weights, dtypes_lib.float32) metric, update = metrics.streaming_sparse_recall_at_k( predictions=constant_op.constant(predictions, dtypes_lib.float32), labels=labels, k=k, class_id=class_id, weights=weights) # Fails without initialized vars. self.assertRaises(errors_impl.OpError, metric.eval) self.assertRaises(errors_impl.OpError, update.eval) variables.variables_initializer(variables.local_variables()).run() # Run per-step op and assert expected values. if math.isnan(expected): _assert_nan(self, update.eval()) _assert_nan(self, metric.eval()) else: self.assertEqual(expected, update.eval()) self.assertEqual(expected, metric.eval()) def _test_sparse_recall_at_top_k(self, labels, top_k_predictions, expected, class_id=None, weights=None): with ops.Graph().as_default() as g, self.session(g): if weights is not None: weights = constant_op.constant(weights, dtypes_lib.float32) metric, update = metric_ops.sparse_recall_at_top_k( labels=labels, top_k_predictions=constant_op.constant(top_k_predictions, dtypes_lib.int32), class_id=class_id, weights=weights) # Fails without initialized vars. self.assertRaises(errors_impl.OpError, metric.eval) self.assertRaises(errors_impl.OpError, update.eval) variables.variables_initializer(variables.local_variables()).run() # Run per-step op and assert expected values. if math.isnan(expected): self.assertTrue(math.isnan(update.eval())) self.assertTrue(math.isnan(metric.eval())) else: self.assertEqual(expected, update.eval()) self.assertEqual(expected, metric.eval()) def test_one_label_at_k1_nan(self): predictions = [[0.1, 0.3, 0.2, 0.4], [0.1, 0.2, 0.3, 0.4]] top_k_predictions = [[3], [3]] sparse_labels = _binary_2d_label_to_sparse_value([[0, 0, 0, 1], [0, 0, 1, 0]]) dense_labels = np.array([[3], [2]], dtype=np.int64) # Classes 0,1 have 0 labels, 0 predictions, classes -1 and 4 are out of # range. for labels in (sparse_labels, dense_labels): for class_id in (-1, 0, 1, 4): self._test_streaming_sparse_recall_at_k( predictions, labels, k=1, expected=NAN, class_id=class_id) self._test_sparse_recall_at_top_k( labels, top_k_predictions, expected=NAN, class_id=class_id) def test_one_label_at_k1_no_predictions(self): predictions = [[0.1, 0.3, 0.2, 0.4], [0.1, 0.2, 0.3, 0.4]] top_k_predictions = [[3], [3]] sparse_labels = _binary_2d_label_to_sparse_value([[0, 0, 0, 1], [0, 0, 1, 0]]) dense_labels = np.array([[3], [2]], dtype=np.int64) for labels in (sparse_labels, dense_labels): # Class 2: 0 predictions. self._test_streaming_sparse_recall_at_k( predictions, labels, k=1, expected=0.0, class_id=2) self._test_sparse_recall_at_top_k( labels, top_k_predictions, expected=0.0, class_id=2) def test_one_label_at_k1(self): predictions = [[0.1, 0.3, 0.2, 0.4], [0.1, 0.2, 0.3, 0.4]] top_k_predictions = [[3], [3]] sparse_labels = _binary_2d_label_to_sparse_value([[0, 0, 0, 1], [0, 0, 1, 0]]) dense_labels = np.array([[3], [2]], dtype=np.int64) for labels in (sparse_labels, dense_labels): # Class 3: 1 label, 2 predictions, 1 correct. self._test_streaming_sparse_recall_at_k( predictions, labels, k=1, expected=1.0 / 1, class_id=3) self._test_sparse_recall_at_top_k( labels, top_k_predictions, expected=1.0 / 1, class_id=3) # All classes: 2 labels, 2 predictions, 1 correct. self._test_streaming_sparse_recall_at_k( predictions, labels, k=1, expected=1.0 / 2) self._test_sparse_recall_at_top_k( labels, top_k_predictions, expected=1.0 / 2) def _test_one_label_at_k1_weighted(self, labels): predictions = [[0.1, 0.3, 0.2, 0.4], [0.1, 0.2, 0.3, 0.4]] top_k_predictions = [[3], [3]] # Class 3: 1 label, 2 predictions, 1 correct. self._test_streaming_sparse_recall_at_k( predictions, labels, k=1, expected=NAN, class_id=3, weights=(0.0,)) self._test_sparse_recall_at_top_k( labels, top_k_predictions, expected=NAN, class_id=3, weights=(0.0,)) self._test_streaming_sparse_recall_at_k( predictions, labels, k=1, expected=1.0 / 1, class_id=3, weights=(1.0,)) self._test_sparse_recall_at_top_k( labels, top_k_predictions, expected=1.0 / 1, class_id=3, weights=(1.0,)) self._test_streaming_sparse_recall_at_k( predictions, labels, k=1, expected=1.0 / 1, class_id=3, weights=(2.0,)) self._test_sparse_recall_at_top_k( labels, top_k_predictions, expected=1.0 / 1, class_id=3, weights=(2.0,)) self._test_streaming_sparse_recall_at_k( predictions, labels, k=1, expected=NAN, class_id=3, weights=(0.0, 0.0)) self._test_sparse_recall_at_top_k( labels, top_k_predictions, expected=NAN, class_id=3, weights=(0.0, 0.0)) self._test_streaming_sparse_recall_at_k( predictions, labels, k=1, expected=NAN, class_id=3, weights=(0.0, 1.0)) self._test_sparse_recall_at_top_k( labels, top_k_predictions, expected=NAN, class_id=3, weights=(0.0, 1.0)) self._test_streaming_sparse_recall_at_k( predictions, labels, k=1, expected=1.0 / 1, class_id=3, weights=(1.0, 0.0)) self._test_sparse_recall_at_top_k( labels, top_k_predictions, expected=1.0 / 1, class_id=3, weights=(1.0, 0.0)) self._test_streaming_sparse_recall_at_k( predictions, labels, k=1, expected=1.0 / 1, class_id=3, weights=(1.0, 1.0)) self._test_sparse_recall_at_top_k( labels, top_k_predictions, expected=1.0 / 1, class_id=3, weights=(1.0, 1.0)) self._test_streaming_sparse_recall_at_k( predictions, labels, k=1, expected=2.0 / 2, class_id=3, weights=(2.0, 3.0)) self._test_sparse_recall_at_top_k( labels, top_k_predictions, expected=2.0 / 2, class_id=3, weights=(2.0, 3.0)) self._test_streaming_sparse_recall_at_k( predictions, labels, k=1, expected=3.0 / 3, class_id=3, weights=(3.0, 2.0)) self._test_sparse_recall_at_top_k( labels, top_k_predictions, expected=3.0 / 3, class_id=3, weights=(3.0, 2.0)) self._test_streaming_sparse_recall_at_k( predictions, labels, k=1, expected=0.3 / 0.3, class_id=3, weights=(0.3, 0.6)) self._test_sparse_recall_at_top_k( labels, top_k_predictions, expected=0.3 / 0.3, class_id=3, weights=(0.3, 0.6)) self._test_streaming_sparse_recall_at_k( predictions, labels, k=1, expected=0.6 / 0.6, class_id=3, weights=(0.6, 0.3)) self._test_sparse_recall_at_top_k( labels, top_k_predictions, expected=0.6 / 0.6, class_id=3, weights=(0.6, 0.3)) # All classes: 2 labels, 2 predictions, 1 correct. self._test_streaming_sparse_recall_at_k( predictions, labels, k=1, expected=NAN, weights=(0.0,)) self._test_sparse_recall_at_top_k( labels, top_k_predictions, expected=NAN, weights=(0.0,)) self._test_streaming_sparse_recall_at_k( predictions, labels, k=1, expected=1.0 / 2, weights=(1.0,)) self._test_sparse_recall_at_top_k( labels, top_k_predictions, expected=1.0 / 2, weights=(1.0,)) self._test_streaming_sparse_recall_at_k( predictions, labels, k=1, expected=1.0 / 2, weights=(2.0,)) self._test_sparse_recall_at_top_k( labels, top_k_predictions, expected=1.0 / 2, weights=(2.0,)) self._test_streaming_sparse_recall_at_k( predictions, labels, k=1, expected=1.0 / 1, weights=(1.0, 0.0)) self._test_sparse_recall_at_top_k( labels, top_k_predictions, expected=1.0 / 1, weights=(1.0, 0.0)) self._test_streaming_sparse_recall_at_k( predictions, labels, k=1, expected=0.0 / 1, weights=(0.0, 1.0)) self._test_sparse_recall_at_top_k( labels, top_k_predictions, expected=0.0 / 1, weights=(0.0, 1.0)) self._test_streaming_sparse_recall_at_k( predictions, labels, k=1, expected=1.0 / 2, weights=(1.0, 1.0)) self._test_sparse_recall_at_top_k( labels, top_k_predictions, expected=1.0 / 2, weights=(1.0, 1.0)) self._test_streaming_sparse_recall_at_k( predictions, labels, k=1, expected=2.0 / 5, weights=(2.0, 3.0)) self._test_sparse_recall_at_top_k( labels, top_k_predictions, expected=2.0 / 5, weights=(2.0, 3.0)) self._test_streaming_sparse_recall_at_k( predictions, labels, k=1, expected=3.0 / 5, weights=(3.0, 2.0)) self._test_sparse_recall_at_top_k( labels, top_k_predictions, expected=3.0 / 5, weights=(3.0, 2.0)) self._test_streaming_sparse_recall_at_k( predictions, labels, k=1, expected=0.3 / 0.9, weights=(0.3, 0.6)) self._test_sparse_recall_at_top_k( labels, top_k_predictions, expected=0.3 / 0.9, weights=(0.3, 0.6)) self._test_streaming_sparse_recall_at_k( predictions, labels, k=1, expected=0.6 / 0.9, weights=(0.6, 0.3)) self._test_sparse_recall_at_top_k( labels, top_k_predictions, expected=0.6 / 0.9, weights=(0.6, 0.3)) def test_one_label_at_k1_weighted_sparse_labels(self): sparse_labels = _binary_2d_label_to_sparse_value([[0, 0, 0, 1], [0, 0, 1, 0]]) self._test_one_label_at_k1_weighted(sparse_labels) def test_one_label_at_k1_weighted_dense_labels(self): dense_labels = np.array([[3], [2]], dtype=np.int64) self._test_one_label_at_k1_weighted(dense_labels) def test_three_labels_at_k5_nan(self): predictions = [[0.5, 0.1, 0.6, 0.3, 0.8, 0.0, 0.7, 0.2, 0.4, 0.9], [0.3, 0.0, 0.7, 0.2, 0.4, 0.9, 0.5, 0.8, 0.1, 0.6]] top_k_predictions = [ [9, 4, 6, 2, 0], [5, 7, 2, 9, 6], ] sparse_labels = _binary_2d_label_to_sparse_value( [[0, 0, 1, 0, 0, 0, 0, 1, 1, 0], [0, 1, 1, 0, 0, 1, 0, 0, 0, 0]]) dense_labels = np.array([[2, 7, 8], [1, 2, 5]], dtype=np.int64) for labels in (sparse_labels, dense_labels): # Classes 0,3,4,6,9 have 0 labels, class 10 is out of range. for class_id in (0, 3, 4, 6, 9, 10): self._test_streaming_sparse_recall_at_k( predictions, labels, k=5, expected=NAN, class_id=class_id) self._test_sparse_recall_at_top_k( labels, top_k_predictions, expected=NAN, class_id=class_id) def test_three_labels_at_k5_no_predictions(self): predictions = [[0.5, 0.1, 0.6, 0.3, 0.8, 0.0, 0.7, 0.2, 0.4, 0.9], [0.3, 0.0, 0.7, 0.2, 0.4, 0.9, 0.5, 0.8, 0.1, 0.6]] top_k_predictions = [ [9, 4, 6, 2, 0], [5, 7, 2, 9, 6], ] sparse_labels = _binary_2d_label_to_sparse_value( [[0, 0, 1, 0, 0, 0, 0, 1, 1, 0], [0, 1, 1, 0, 0, 1, 0, 0, 0, 0]]) dense_labels = np.array([[2, 7, 8], [1, 2, 5]], dtype=np.int64) for labels in (sparse_labels, dense_labels): # Class 8: 1 label, no predictions. self._test_streaming_sparse_recall_at_k( predictions, labels, k=5, expected=0.0 / 1, class_id=8) self._test_sparse_recall_at_top_k( labels, top_k_predictions, expected=0.0 / 1, class_id=8) def test_three_labels_at_k5(self): predictions = [[0.5, 0.1, 0.6, 0.3, 0.8, 0.0, 0.7, 0.2, 0.4, 0.9], [0.3, 0.0, 0.7, 0.2, 0.4, 0.9, 0.5, 0.8, 0.1, 0.6]] top_k_predictions = [ [9, 4, 6, 2, 0], [5, 7, 2, 9, 6], ] sparse_labels = _binary_2d_label_to_sparse_value( [[0, 0, 1, 0, 0, 0, 0, 1, 1, 0], [0, 1, 1, 0, 0, 1, 0, 0, 0, 0]]) dense_labels = np.array([[2, 7, 8], [1, 2, 5]], dtype=np.int64) for labels in (sparse_labels, dense_labels): # Class 2: 2 labels, both correct. self._test_streaming_sparse_recall_at_k( predictions, labels, k=5, expected=2.0 / 2, class_id=2) self._test_sparse_recall_at_top_k( labels, top_k_predictions, expected=2.0 / 2, class_id=2) # Class 5: 1 label, incorrect. self._test_streaming_sparse_recall_at_k( predictions, labels, k=5, expected=1.0 / 1, class_id=5) self._test_sparse_recall_at_top_k( labels, top_k_predictions, expected=1.0 / 1, class_id=5) # Class 7: 1 label, incorrect. self._test_streaming_sparse_recall_at_k( predictions, labels, k=5, expected=0.0 / 1, class_id=7) self._test_sparse_recall_at_top_k( labels, top_k_predictions, expected=0.0 / 1, class_id=7) # All classes: 6 labels, 3 correct. self._test_streaming_sparse_recall_at_k( predictions, labels, k=5, expected=3.0 / 6) self._test_sparse_recall_at_top_k( labels, top_k_predictions, expected=3.0 / 6) def test_three_labels_at_k5_some_out_of_range(self): """Tests that labels outside the [0, n_classes) count in denominator.""" predictions = [[0.5, 0.1, 0.6, 0.3, 0.8, 0.0, 0.7, 0.2, 0.4, 0.9], [0.3, 0.0, 0.7, 0.2, 0.4, 0.9, 0.5, 0.8, 0.1, 0.6]] top_k_predictions = [ [9, 4, 6, 2, 0], [5, 7, 2, 9, 6], ] sp_labels = sparse_tensor.SparseTensorValue( indices=[[0, 0], [0, 1], [0, 2], [0, 3], [1, 0], [1, 1], [1, 2], [1, 3]], # values -1 and 10 are outside the [0, n_classes) range. values=np.array([2, 7, -1, 8, 1, 2, 5, 10], np.int64), dense_shape=[2, 4]) # Class 2: 2 labels, both correct. self._test_streaming_sparse_recall_at_k( predictions=predictions, labels=sp_labels, k=5, expected=2.0 / 2, class_id=2) self._test_sparse_recall_at_top_k( sp_labels, top_k_predictions, expected=2.0 / 2, class_id=2) # Class 5: 1 label, incorrect. self._test_streaming_sparse_recall_at_k( predictions=predictions, labels=sp_labels, k=5, expected=1.0 / 1, class_id=5) self._test_sparse_recall_at_top_k( sp_labels, top_k_predictions, expected=1.0 / 1, class_id=5) # Class 7: 1 label, incorrect. self._test_streaming_sparse_recall_at_k( predictions=predictions, labels=sp_labels, k=5, expected=0.0 / 1, class_id=7) self._test_sparse_recall_at_top_k( sp_labels, top_k_predictions, expected=0.0 / 1, class_id=7) # All classes: 8 labels, 3 correct. self._test_streaming_sparse_recall_at_k( predictions=predictions, labels=sp_labels, k=5, expected=3.0 / 8) self._test_sparse_recall_at_top_k( sp_labels, top_k_predictions, expected=3.0 / 8) def test_3d_nan(self): predictions = [[[0.5, 0.1, 0.6, 0.3, 0.8, 0.0, 0.7, 0.2, 0.4, 0.9], [0.3, 0.0, 0.7, 0.2, 0.4, 0.9, 0.5, 0.8, 0.1, 0.6]], [[0.3, 0.0, 0.7, 0.2, 0.4, 0.9, 0.5, 0.8, 0.1, 0.6], [0.5, 0.1, 0.6, 0.3, 0.8, 0.0, 0.7, 0.2, 0.4, 0.9]]] top_k_predictions = [[ [9, 4, 6, 2, 0], [5, 7, 2, 9, 6], ], [ [5, 7, 2, 9, 6], [9, 4, 6, 2, 0], ]] sparse_labels = _binary_3d_label_to_sparse_value( [[[0, 0, 1, 0, 0, 0, 0, 1, 1, 0], [0, 1, 1, 0, 0, 1, 0, 0, 0, 0]], [[0, 1, 1, 0, 0, 1, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0, 1, 1, 0]]]) dense_labels = np.array( [[[2, 7, 8], [1, 2, 5]], [ [1, 2, 5], [2, 7, 8], ]], dtype=np.int64) for labels in (sparse_labels, dense_labels): # Classes 0,3,4,6,9 have 0 labels, class 10 is out of range. for class_id in (0, 3, 4, 6, 9, 10): self._test_streaming_sparse_recall_at_k( predictions, labels, k=5, expected=NAN, class_id=class_id) self._test_sparse_recall_at_top_k( labels, top_k_predictions, expected=NAN, class_id=class_id) def test_3d_no_predictions(self): predictions = [[[0.5, 0.1, 0.6, 0.3, 0.8, 0.0, 0.7, 0.2, 0.4, 0.9], [0.3, 0.0, 0.7, 0.2, 0.4, 0.9, 0.5, 0.8, 0.1, 0.6]], [[0.3, 0.0, 0.7, 0.2, 0.4, 0.9, 0.5, 0.8, 0.1, 0.6], [0.5, 0.1, 0.6, 0.3, 0.8, 0.0, 0.7, 0.2, 0.4, 0.9]]] top_k_predictions = [[ [9, 4, 6, 2, 0], [5, 7, 2, 9, 6], ], [ [5, 7, 2, 9, 6], [9, 4, 6, 2, 0], ]] sparse_labels = _binary_3d_label_to_sparse_value( [[[0, 0, 1, 0, 0, 0, 0, 1, 1, 0], [0, 1, 1, 0, 0, 1, 0, 0, 0, 0]], [[0, 1, 1, 0, 0, 1, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0, 1, 1, 0]]]) dense_labels = np.array( [[[2, 7, 8], [1, 2, 5]], [ [1, 2, 5], [2, 7, 8], ]], dtype=np.int64) for labels in (sparse_labels, dense_labels): # Classes 1,8 have 0 predictions, >=1 label. for class_id in (1, 8): self._test_streaming_sparse_recall_at_k( predictions, labels, k=5, expected=0.0, class_id=class_id) self._test_sparse_recall_at_top_k( labels, top_k_predictions, expected=0.0, class_id=class_id) def test_3d(self): predictions = [[[0.5, 0.1, 0.6, 0.3, 0.8, 0.0, 0.7, 0.2, 0.4, 0.9], [0.3, 0.0, 0.7, 0.2, 0.4, 0.9, 0.5, 0.8, 0.1, 0.6]], [[0.3, 0.0, 0.7, 0.2, 0.4, 0.9, 0.5, 0.8, 0.1, 0.6], [0.5, 0.1, 0.6, 0.3, 0.8, 0.0, 0.7, 0.2, 0.4, 0.9]]] top_k_predictions = [[ [9, 4, 6, 2, 0], [5, 7, 2, 9, 6], ], [ [5, 7, 2, 9, 6], [9, 4, 6, 2, 0], ]] labels = _binary_3d_label_to_sparse_value( [[[0, 0, 1, 0, 0, 0, 0, 1, 1, 0], [0, 1, 1, 0, 0, 1, 0, 0, 0, 0]], [[0, 1, 1, 0, 0, 1, 0, 1, 0, 0], [0, 0, 1, 0, 0, 0, 0, 0, 1, 0]]]) # Class 2: 4 labels, all correct. self._test_streaming_sparse_recall_at_k( predictions, labels, k=5, expected=4.0 / 4, class_id=2) self._test_sparse_recall_at_top_k( labels, top_k_predictions, expected=4.0 / 4, class_id=2) # Class 5: 2 labels, both correct. self._test_streaming_sparse_recall_at_k( predictions, labels, k=5, expected=2.0 / 2, class_id=5) self._test_sparse_recall_at_top_k( labels, top_k_predictions, expected=2.0 / 2, class_id=5) # Class 7: 2 labels, 1 incorrect. self._test_streaming_sparse_recall_at_k( predictions, labels, k=5, expected=1.0 / 2, class_id=7) self._test_sparse_recall_at_top_k( labels, top_k_predictions, expected=1.0 / 2, class_id=7) # All classes: 12 labels, 7 correct. self._test_streaming_sparse_recall_at_k( predictions, labels, k=5, expected=7.0 / 12) self._test_sparse_recall_at_top_k( labels, top_k_predictions, expected=7.0 / 12) def test_3d_ignore_all(self): predictions = [[[0.5, 0.1, 0.6, 0.3, 0.8, 0.0, 0.7, 0.2, 0.4, 0.9], [0.3, 0.0, 0.7, 0.2, 0.4, 0.9, 0.5, 0.8, 0.1, 0.6]], [[0.3, 0.0, 0.7, 0.2, 0.4, 0.9, 0.5, 0.8, 0.1, 0.6], [0.5, 0.1, 0.6, 0.3, 0.8, 0.0, 0.7, 0.2, 0.4, 0.9]]] top_k_predictions = [[ [9, 4, 6, 2, 0], [5, 7, 2, 9, 6], ], [ [5, 7, 2, 9, 6], [9, 4, 6, 2, 0], ]] labels = _binary_3d_label_to_sparse_value( [[[0, 0, 1, 0, 0, 0, 0, 1, 1, 0], [0, 1, 1, 0, 0, 1, 0, 0, 0, 0]], [[0, 1, 1, 0, 0, 1, 0, 1, 0, 0], [0, 0, 1, 0, 0, 0, 0, 0, 1, 0]]]) for class_id in xrange(10): self._test_streaming_sparse_recall_at_k( predictions, labels, k=5, expected=NAN, class_id=class_id, weights=[[0], [0]]) self._test_sparse_recall_at_top_k( labels, top_k_predictions, expected=NAN, class_id=class_id, weights=[[0], [0]]) self._test_streaming_sparse_recall_at_k( predictions, labels, k=5, expected=NAN, class_id=class_id, weights=[[0, 0], [0, 0]]) self._test_sparse_recall_at_top_k( labels, top_k_predictions, expected=NAN, class_id=class_id, weights=[[0, 0], [0, 0]]) self._test_streaming_sparse_recall_at_k( predictions, labels, k=5, expected=NAN, weights=[[0], [0]]) self._test_sparse_recall_at_top_k( labels, top_k_predictions, expected=NAN, weights=[[0], [0]]) self._test_streaming_sparse_recall_at_k( predictions, labels, k=5, expected=NAN, weights=[[0, 0], [0, 0]]) self._test_sparse_recall_at_top_k( labels, top_k_predictions, expected=NAN, weights=[[0, 0], [0, 0]]) def test_3d_ignore_some(self): predictions = [[[0.5, 0.1, 0.6, 0.3, 0.8, 0.0, 0.7, 0.2, 0.4, 0.9], [0.3, 0.0, 0.7, 0.2, 0.4, 0.9, 0.5, 0.8, 0.1, 0.6]], [[0.3, 0.0, 0.7, 0.2, 0.4, 0.9, 0.5, 0.8, 0.1, 0.6], [0.5, 0.1, 0.6, 0.3, 0.8, 0.0, 0.7, 0.2, 0.4, 0.9]]] top_k_predictions = [[ [9, 4, 6, 2, 0], [5, 7, 2, 9, 6], ], [ [5, 7, 2, 9, 6], [9, 4, 6, 2, 0], ]] labels = _binary_3d_label_to_sparse_value( [[[0, 0, 1, 0, 0, 0, 0, 1, 1, 0], [0, 1, 1, 0, 0, 1, 0, 0, 0, 0]], [[0, 1, 1, 0, 0, 1, 0, 1, 0, 0], [0, 0, 1, 0, 0, 0, 0, 0, 1, 0]]]) # Class 2: 2 labels, both correct. self._test_streaming_sparse_recall_at_k( predictions, labels, k=5, expected=2.0 / 2.0, class_id=2, weights=[[1], [0]]) self._test_sparse_recall_at_top_k( labels, top_k_predictions, expected=2.0 / 2.0, class_id=2, weights=[[1], [0]]) # Class 2: 2 labels, both correct. self._test_streaming_sparse_recall_at_k( predictions, labels, k=5, expected=2.0 / 2.0, class_id=2, weights=[[0], [1]]) self._test_sparse_recall_at_top_k( labels, top_k_predictions, expected=2.0 / 2.0, class_id=2, weights=[[0], [1]]) # Class 7: 1 label, correct. self._test_streaming_sparse_recall_at_k( predictions, labels, k=5, expected=1.0 / 1.0, class_id=7, weights=[[0], [1]]) self._test_sparse_recall_at_top_k( labels, top_k_predictions, expected=1.0 / 1.0, class_id=7, weights=[[0], [1]]) # Class 7: 1 label, incorrect. self._test_streaming_sparse_recall_at_k( predictions, labels, k=5, expected=0.0 / 1.0, class_id=7, weights=[[1], [0]]) self._test_sparse_recall_at_top_k( labels, top_k_predictions, expected=0.0 / 1.0, class_id=7, weights=[[1], [0]]) # Class 7: 2 labels, 1 correct. self._test_streaming_sparse_recall_at_k( predictions, labels, k=5, expected=1.0 / 2.0, class_id=7, weights=[[1, 0], [1, 0]]) self._test_sparse_recall_at_top_k( labels, top_k_predictions, expected=1.0 / 2.0, class_id=7, weights=[[1, 0], [1, 0]]) # Class 7: No labels. self._test_streaming_sparse_recall_at_k( predictions, labels, k=5, expected=NAN, class_id=7, weights=[[0, 1], [0, 1]]) self._test_sparse_recall_at_top_k( labels, top_k_predictions, expected=NAN, class_id=7, weights=[[0, 1], [0, 1]]) def test_sparse_tensor_value(self): predictions = [[0.1, 0.3, 0.2, 0.4], [0.1, 0.2, 0.3, 0.4]] labels = [[0, 0, 1, 0], [0, 0, 0, 1]] expected_recall = 0.5 with self.cached_session(): _, recall = metrics.streaming_sparse_recall_at_k( predictions=constant_op.constant(predictions, dtypes_lib.float32), labels=_binary_2d_label_to_sparse_value(labels), k=1) variables.variables_initializer(variables.local_variables()).run() self.assertEqual(expected_recall, recall.eval()) class StreamingMeanAbsoluteErrorTest(test.TestCase): def setUp(self): ops.reset_default_graph() def testVars(self): metrics.streaming_mean_absolute_error( predictions=array_ops.ones((10, 1)), labels=array_ops.ones((10, 1))) _assert_metric_variables( self, ('mean_absolute_error/count:0', 'mean_absolute_error/total:0')) def testMetricsCollection(self): my_collection_name = '__metrics__' mean, _ = metrics.streaming_mean_absolute_error( predictions=array_ops.ones((10, 1)), labels=array_ops.ones((10, 1)), metrics_collections=[my_collection_name]) self.assertListEqual(ops.get_collection(my_collection_name), [mean]) def testUpdatesCollection(self): my_collection_name = '__updates__' _, update_op = metrics.streaming_mean_absolute_error( predictions=array_ops.ones((10, 1)), labels=array_ops.ones((10, 1)), updates_collections=[my_collection_name]) self.assertListEqual(ops.get_collection(my_collection_name), [update_op]) def testValueTensorIsIdempotent(self): predictions = random_ops.random_normal((10, 3), seed=1) labels = random_ops.random_normal((10, 3), seed=2) error, update_op = metrics.streaming_mean_absolute_error( predictions, labels) with self.cached_session() as sess: sess.run(variables.local_variables_initializer()) # Run several updates. for _ in range(10): sess.run(update_op) # Then verify idempotency. initial_error = error.eval() for _ in range(10): self.assertEqual(initial_error, error.eval()) def testSingleUpdateWithErrorAndWeights(self): predictions = constant_op.constant( [2, 4, 6, 8], shape=(1, 4), dtype=dtypes_lib.float32) labels = constant_op.constant( [1, 3, 2, 3], shape=(1, 4), dtype=dtypes_lib.float32) weights = constant_op.constant([0, 1, 0, 1], shape=(1, 4)) error, update_op = metrics.streaming_mean_absolute_error( predictions, labels, weights) with self.cached_session() as sess: sess.run(variables.local_variables_initializer()) self.assertEqual(3, sess.run(update_op)) self.assertEqual(3, error.eval()) class StreamingMeanRelativeErrorTest(test.TestCase): def setUp(self): ops.reset_default_graph() def testVars(self): metrics.streaming_mean_relative_error( predictions=array_ops.ones((10, 1)), labels=array_ops.ones((10, 1)), normalizer=array_ops.ones((10, 1))) _assert_metric_variables( self, ('mean_relative_error/count:0', 'mean_relative_error/total:0')) def testMetricsCollection(self): my_collection_name = '__metrics__' mean, _ = metrics.streaming_mean_relative_error( predictions=array_ops.ones((10, 1)), labels=array_ops.ones((10, 1)), normalizer=array_ops.ones((10, 1)), metrics_collections=[my_collection_name]) self.assertListEqual(ops.get_collection(my_collection_name), [mean]) def testUpdatesCollection(self): my_collection_name = '__updates__' _, update_op = metrics.streaming_mean_relative_error( predictions=array_ops.ones((10, 1)), labels=array_ops.ones((10, 1)), normalizer=array_ops.ones((10, 1)), updates_collections=[my_collection_name]) self.assertListEqual(ops.get_collection(my_collection_name), [update_op]) def testValueTensorIsIdempotent(self): predictions = random_ops.random_normal((10, 3), seed=1) labels = random_ops.random_normal((10, 3), seed=2) normalizer = random_ops.random_normal((10, 3), seed=3) error, update_op = metrics.streaming_mean_relative_error( predictions, labels, normalizer) with self.cached_session() as sess: sess.run(variables.local_variables_initializer()) # Run several updates. for _ in range(10): sess.run(update_op) # Then verify idempotency. initial_error = error.eval() for _ in range(10): self.assertEqual(initial_error, error.eval()) def testSingleUpdateNormalizedByLabels(self): np_predictions = np.asarray([2, 4, 6, 8], dtype=np.float32) np_labels = np.asarray([1, 3, 2, 3], dtype=np.float32) expected_error = np.mean( np.divide(np.absolute(np_predictions - np_labels), np_labels)) predictions = constant_op.constant( np_predictions, shape=(1, 4), dtype=dtypes_lib.float32) labels = constant_op.constant(np_labels, shape=(1, 4)) error, update_op = metrics.streaming_mean_relative_error( predictions, labels, normalizer=labels) with self.cached_session() as sess: sess.run(variables.local_variables_initializer()) self.assertEqual(expected_error, sess.run(update_op)) self.assertEqual(expected_error, error.eval()) def testSingleUpdateNormalizedByZeros(self): np_predictions = np.asarray([2, 4, 6, 8], dtype=np.float32) predictions = constant_op.constant( np_predictions, shape=(1, 4), dtype=dtypes_lib.float32) labels = constant_op.constant( [1, 3, 2, 3], shape=(1, 4), dtype=dtypes_lib.float32) error, update_op = metrics.streaming_mean_relative_error( predictions, labels, normalizer=array_ops.zeros_like(labels)) with self.cached_session() as sess: sess.run(variables.local_variables_initializer()) self.assertEqual(0.0, sess.run(update_op)) self.assertEqual(0.0, error.eval()) class StreamingMeanSquaredErrorTest(test.TestCase): def setUp(self): ops.reset_default_graph() def testVars(self): metrics.streaming_mean_squared_error( predictions=array_ops.ones((10, 1)), labels=array_ops.ones((10, 1))) _assert_metric_variables( self, ('mean_squared_error/count:0', 'mean_squared_error/total:0')) def testMetricsCollection(self): my_collection_name = '__metrics__' mean, _ = metrics.streaming_mean_squared_error( predictions=array_ops.ones((10, 1)), labels=array_ops.ones((10, 1)), metrics_collections=[my_collection_name]) self.assertListEqual(ops.get_collection(my_collection_name), [mean]) def testUpdatesCollection(self): my_collection_name = '__updates__' _, update_op = metrics.streaming_mean_squared_error( predictions=array_ops.ones((10, 1)), labels=array_ops.ones((10, 1)), updates_collections=[my_collection_name]) self.assertListEqual(ops.get_collection(my_collection_name), [update_op]) def testValueTensorIsIdempotent(self): predictions = random_ops.random_normal((10, 3), seed=1) labels = random_ops.random_normal((10, 3), seed=2) error, update_op = metrics.streaming_mean_squared_error(predictions, labels) with self.cached_session() as sess: sess.run(variables.local_variables_initializer()) # Run several updates. for _ in range(10): sess.run(update_op) # Then verify idempotency. initial_error = error.eval() for _ in range(10): self.assertEqual(initial_error, error.eval()) def testSingleUpdateZeroError(self): predictions = array_ops.zeros((1, 3), dtype=dtypes_lib.float32) labels = array_ops.zeros((1, 3), dtype=dtypes_lib.float32) error, update_op = metrics.streaming_mean_squared_error(predictions, labels) with self.cached_session() as sess: sess.run(variables.local_variables_initializer()) self.assertEqual(0, sess.run(update_op)) self.assertEqual(0, error.eval()) def testSingleUpdateWithError(self): predictions = constant_op.constant( [2, 4, 6], shape=(1, 3), dtype=dtypes_lib.float32) labels = constant_op.constant( [1, 3, 2], shape=(1, 3), dtype=dtypes_lib.float32) error, update_op = metrics.streaming_mean_squared_error(predictions, labels) with self.cached_session() as sess: sess.run(variables.local_variables_initializer()) self.assertEqual(6, sess.run(update_op)) self.assertEqual(6, error.eval()) def testSingleUpdateWithErrorAndWeights(self): predictions = constant_op.constant( [2, 4, 6, 8], shape=(1, 4), dtype=dtypes_lib.float32) labels = constant_op.constant( [1, 3, 2, 3], shape=(1, 4), dtype=dtypes_lib.float32) weights = constant_op.constant([0, 1, 0, 1], shape=(1, 4)) error, update_op = metrics.streaming_mean_squared_error( predictions, labels, weights) with self.cached_session() as sess: sess.run(variables.local_variables_initializer()) self.assertEqual(13, sess.run(update_op)) self.assertEqual(13, error.eval()) def testMultipleBatchesOfSizeOne(self): with self.cached_session() as sess: # Create the queue that populates the predictions. preds_queue = data_flow_ops.FIFOQueue( 2, dtypes=dtypes_lib.float32, shapes=(1, 3)) _enqueue_vector(sess, preds_queue, [10, 8, 6]) _enqueue_vector(sess, preds_queue, [-4, 3, -1]) predictions = preds_queue.dequeue() # Create the queue that populates the labels. labels_queue = data_flow_ops.FIFOQueue( 2, dtypes=dtypes_lib.float32, shapes=(1, 3)) _enqueue_vector(sess, labels_queue, [1, 3, 2]) _enqueue_vector(sess, labels_queue, [2, 4, 6]) labels = labels_queue.dequeue() error, update_op = metrics.streaming_mean_squared_error( predictions, labels) sess.run(variables.local_variables_initializer()) sess.run(update_op) self.assertAlmostEqual(208.0 / 6, sess.run(update_op), 5) self.assertAlmostEqual(208.0 / 6, error.eval(), 5) def testMetricsComputedConcurrently(self): with self.cached_session() as sess: # Create the queue that populates one set of predictions. preds_queue0 = data_flow_ops.FIFOQueue( 2, dtypes=dtypes_lib.float32, shapes=(1, 3)) _enqueue_vector(sess, preds_queue0, [10, 8, 6]) _enqueue_vector(sess, preds_queue0, [-4, 3, -1]) predictions0 = preds_queue0.dequeue() # Create the queue that populates one set of predictions. preds_queue1 = data_flow_ops.FIFOQueue( 2, dtypes=dtypes_lib.float32, shapes=(1, 3)) _enqueue_vector(sess, preds_queue1, [0, 1, 1]) _enqueue_vector(sess, preds_queue1, [1, 1, 0]) predictions1 = preds_queue1.dequeue() # Create the queue that populates one set of labels. labels_queue0 = data_flow_ops.FIFOQueue( 2, dtypes=dtypes_lib.float32, shapes=(1, 3)) _enqueue_vector(sess, labels_queue0, [1, 3, 2]) _enqueue_vector(sess, labels_queue0, [2, 4, 6]) labels0 = labels_queue0.dequeue() # Create the queue that populates another set of labels. labels_queue1 = data_flow_ops.FIFOQueue( 2, dtypes=dtypes_lib.float32, shapes=(1, 3)) _enqueue_vector(sess, labels_queue1, [-5, -3, -1]) _enqueue_vector(sess, labels_queue1, [5, 4, 3]) labels1 = labels_queue1.dequeue() mse0, update_op0 = metrics.streaming_mean_squared_error( predictions0, labels0, name='msd0') mse1, update_op1 = metrics.streaming_mean_squared_error( predictions1, labels1, name='msd1') sess.run(variables.local_variables_initializer()) sess.run([update_op0, update_op1]) sess.run([update_op0, update_op1]) mse0, mse1 = sess.run([mse0, mse1]) self.assertAlmostEqual(208.0 / 6, mse0, 5) self.assertAlmostEqual(79.0 / 6, mse1, 5) def testMultipleMetricsOnMultipleBatchesOfSizeOne(self): with self.cached_session() as sess: # Create the queue that populates the predictions. preds_queue = data_flow_ops.FIFOQueue( 2, dtypes=dtypes_lib.float32, shapes=(1, 3)) _enqueue_vector(sess, preds_queue, [10, 8, 6]) _enqueue_vector(sess, preds_queue, [-4, 3, -1]) predictions = preds_queue.dequeue() # Create the queue that populates the labels. labels_queue = data_flow_ops.FIFOQueue( 2, dtypes=dtypes_lib.float32, shapes=(1, 3)) _enqueue_vector(sess, labels_queue, [1, 3, 2]) _enqueue_vector(sess, labels_queue, [2, 4, 6]) labels = labels_queue.dequeue() mae, ma_update_op = metrics.streaming_mean_absolute_error( predictions, labels) mse, ms_update_op = metrics.streaming_mean_squared_error( predictions, labels) sess.run(variables.local_variables_initializer()) sess.run([ma_update_op, ms_update_op]) sess.run([ma_update_op, ms_update_op]) self.assertAlmostEqual(32.0 / 6, mae.eval(), 5) self.assertAlmostEqual(208.0 / 6, mse.eval(), 5) class StreamingRootMeanSquaredErrorTest(test.TestCase): def setUp(self): ops.reset_default_graph() def testVars(self): metrics.streaming_root_mean_squared_error( predictions=array_ops.ones((10, 1)), labels=array_ops.ones((10, 1))) _assert_metric_variables( self, ('root_mean_squared_error/count:0', 'root_mean_squared_error/total:0')) def testMetricsCollection(self): my_collection_name = '__metrics__' mean, _ = metrics.streaming_root_mean_squared_error( predictions=array_ops.ones((10, 1)), labels=array_ops.ones((10, 1)), metrics_collections=[my_collection_name]) self.assertListEqual(ops.get_collection(my_collection_name), [mean]) def testUpdatesCollection(self): my_collection_name = '__updates__' _, update_op = metrics.streaming_root_mean_squared_error( predictions=array_ops.ones((10, 1)), labels=array_ops.ones((10, 1)), updates_collections=[my_collection_name]) self.assertListEqual(ops.get_collection(my_collection_name), [update_op]) def testValueTensorIsIdempotent(self): predictions = random_ops.random_normal((10, 3), seed=1) labels = random_ops.random_normal((10, 3), seed=2) error, update_op = metrics.streaming_root_mean_squared_error( predictions, labels) with self.cached_session() as sess: sess.run(variables.local_variables_initializer()) # Run several updates. for _ in range(10): sess.run(update_op) # Then verify idempotency. initial_error = error.eval() for _ in range(10): self.assertEqual(initial_error, error.eval()) def testSingleUpdateZeroError(self): with self.cached_session() as sess: predictions = constant_op.constant( 0.0, shape=(1, 3), dtype=dtypes_lib.float32) labels = constant_op.constant(0.0, shape=(1, 3), dtype=dtypes_lib.float32) rmse, update_op = metrics.streaming_root_mean_squared_error( predictions, labels) sess.run(variables.local_variables_initializer()) self.assertEqual(0, sess.run(update_op)) self.assertEqual(0, rmse.eval()) def testSingleUpdateWithError(self): with self.cached_session() as sess: predictions = constant_op.constant( [2, 4, 6], shape=(1, 3), dtype=dtypes_lib.float32) labels = constant_op.constant( [1, 3, 2], shape=(1, 3), dtype=dtypes_lib.float32) rmse, update_op = metrics.streaming_root_mean_squared_error( predictions, labels) sess.run(variables.local_variables_initializer()) self.assertAlmostEqual(math.sqrt(6), update_op.eval(), 5) self.assertAlmostEqual(math.sqrt(6), rmse.eval(), 5) def testSingleUpdateWithErrorAndWeights(self): with self.cached_session() as sess: predictions = constant_op.constant( [2, 4, 6, 8], shape=(1, 4), dtype=dtypes_lib.float32) labels = constant_op.constant( [1, 3, 2, 3], shape=(1, 4), dtype=dtypes_lib.float32) weights = constant_op.constant([0, 1, 0, 1], shape=(1, 4)) rmse, update_op = metrics.streaming_root_mean_squared_error( predictions, labels, weights) sess.run(variables.local_variables_initializer()) self.assertAlmostEqual(math.sqrt(13), sess.run(update_op)) self.assertAlmostEqual(math.sqrt(13), rmse.eval(), 5) class StreamingCovarianceTest(test.TestCase): def setUp(self): ops.reset_default_graph() def testVars(self): metrics.streaming_covariance( predictions=math_ops.cast(math_ops.range(10), dtypes_lib.float32) + array_ops.ones([10, 10]), labels=(math_ops.cast(math_ops.range(10), dtypes_lib.float32) + array_ops.ones([10, 10]))) _assert_metric_variables(self, ( 'covariance/comoment:0', 'covariance/count:0', 'covariance/mean_label:0', 'covariance/mean_prediction:0', )) def testMetricsCollection(self): my_collection_name = '__metrics__' cov, _ = metrics.streaming_covariance( predictions=math_ops.cast(math_ops.range(10), dtypes_lib.float32) + array_ops.ones([10, 10]), labels=(math_ops.cast(math_ops.range(10), dtypes_lib.float32) + array_ops.ones([10, 10])), metrics_collections=[my_collection_name]) self.assertListEqual(ops.get_collection(my_collection_name), [cov]) def testUpdatesCollection(self): my_collection_name = '__updates__' _, update_op = metrics.streaming_covariance( predictions=math_ops.cast(math_ops.range(10), dtypes_lib.float32) + array_ops.ones([10, 10]), labels=(math_ops.cast(math_ops.range(10), dtypes_lib.float32) + array_ops.ones([10, 10])), updates_collections=[my_collection_name]) self.assertListEqual(ops.get_collection(my_collection_name), [update_op]) def testValueTensorIsIdempotent(self): labels = random_ops.random_normal((10, 3), seed=2) predictions = labels * 0.5 + random_ops.random_normal((10, 3), seed=1) * 0.5 cov, update_op = metrics.streaming_covariance(predictions, labels) with self.cached_session() as sess: sess.run(variables.local_variables_initializer()) # Run several updates. for _ in range(10): sess.run(update_op) # Then verify idempotency. initial_cov = cov.eval() for _ in range(10): self.assertEqual(initial_cov, cov.eval()) def testSingleUpdateIdentical(self): with self.cached_session() as sess: predictions = math_ops.cast(math_ops.range(10), dtypes_lib.float32) labels = math_ops.cast(math_ops.range(10), dtypes_lib.float32) cov, update_op = metrics.streaming_covariance(predictions, labels) expected_cov = np.cov(np.arange(10), np.arange(10))[0, 1] sess.run(variables.local_variables_initializer()) self.assertAlmostEqual(expected_cov, sess.run(update_op), 5) self.assertAlmostEqual(expected_cov, cov.eval(), 5) def testSingleUpdateNonIdentical(self): with self.cached_session() as sess: predictions = constant_op.constant( [2, 4, 6], shape=(1, 3), dtype=dtypes_lib.float32) labels = constant_op.constant( [1, 3, 2], shape=(1, 3), dtype=dtypes_lib.float32) cov, update_op = metrics.streaming_covariance(predictions, labels) expected_cov = np.cov([2, 4, 6], [1, 3, 2])[0, 1] sess.run(variables.local_variables_initializer()) self.assertAlmostEqual(expected_cov, update_op.eval()) self.assertAlmostEqual(expected_cov, cov.eval()) def testSingleUpdateWithErrorAndWeights(self): with self.cached_session() as sess: predictions = constant_op.constant( [2, 4, 6, 8], shape=(1, 4), dtype=dtypes_lib.float32) labels = constant_op.constant( [1, 3, 2, 7], shape=(1, 4), dtype=dtypes_lib.float32) weights = constant_op.constant( [0, 1, 3, 1], shape=(1, 4), dtype=dtypes_lib.float32) cov, update_op = metrics.streaming_covariance( predictions, labels, weights=weights) expected_cov = np.cov( [2, 4, 6, 8], [1, 3, 2, 7], fweights=[0, 1, 3, 1])[0, 1] sess.run(variables.local_variables_initializer()) self.assertAlmostEqual(expected_cov, sess.run(update_op)) self.assertAlmostEqual(expected_cov, cov.eval()) def testMultiUpdateWithErrorNoWeights(self): with self.cached_session() as sess: np.random.seed(123) n = 100 predictions = np.random.randn(n) labels = 0.5 * predictions + np.random.randn(n) stride = 10 predictions_t = array_ops.placeholder(dtypes_lib.float32, [stride]) labels_t = array_ops.placeholder(dtypes_lib.float32, [stride]) cov, update_op = metrics.streaming_covariance(predictions_t, labels_t) sess.run(variables.local_variables_initializer()) prev_expected_cov = NAN for i in range(n // stride): feed_dict = { predictions_t: predictions[stride * i:stride * (i + 1)], labels_t: labels[stride * i:stride * (i + 1)] } self.assertEqual( np.isnan(prev_expected_cov), np.isnan(sess.run(cov, feed_dict=feed_dict))) if not np.isnan(prev_expected_cov): self.assertAlmostEqual(prev_expected_cov, sess.run(cov, feed_dict=feed_dict), 5) expected_cov = np.cov(predictions[:stride * (i + 1)], labels[:stride * (i + 1)])[0, 1] self.assertAlmostEqual(expected_cov, sess.run(update_op, feed_dict=feed_dict), 5) self.assertAlmostEqual(expected_cov, sess.run(cov, feed_dict=feed_dict), 5) prev_expected_cov = expected_cov def testMultiUpdateWithErrorAndWeights(self): with self.cached_session() as sess: np.random.seed(123) n = 100 predictions = np.random.randn(n) labels = 0.5 * predictions + np.random.randn(n) weights = np.tile(np.arange(n // 10), n // 10) np.random.shuffle(weights) stride = 10 predictions_t = array_ops.placeholder(dtypes_lib.float32, [stride]) labels_t = array_ops.placeholder(dtypes_lib.float32, [stride]) weights_t = array_ops.placeholder(dtypes_lib.float32, [stride]) cov, update_op = metrics.streaming_covariance( predictions_t, labels_t, weights=weights_t) sess.run(variables.local_variables_initializer()) prev_expected_cov = NAN for i in range(n // stride): feed_dict = { predictions_t: predictions[stride * i:stride * (i + 1)], labels_t: labels[stride * i:stride * (i + 1)], weights_t: weights[stride * i:stride * (i + 1)] } self.assertEqual( np.isnan(prev_expected_cov), np.isnan(sess.run(cov, feed_dict=feed_dict))) if not np.isnan(prev_expected_cov): self.assertAlmostEqual(prev_expected_cov, sess.run(cov, feed_dict=feed_dict), 5) expected_cov = np.cov( predictions[:stride * (i + 1)], labels[:stride * (i + 1)], fweights=weights[:stride * (i + 1)])[0, 1] self.assertAlmostEqual(expected_cov, sess.run(update_op, feed_dict=feed_dict), 5) self.assertAlmostEqual(expected_cov, sess.run(cov, feed_dict=feed_dict), 5) prev_expected_cov = expected_cov class StreamingPearsonRTest(test.TestCase): def setUp(self): ops.reset_default_graph() def testVars(self): metrics.streaming_pearson_correlation( predictions=math_ops.cast(math_ops.range(10), dtypes_lib.float32) + array_ops.ones([10, 10]), labels=(math_ops.cast(math_ops.range(10), dtypes_lib.float32) + array_ops.ones([10, 10]))) _assert_metric_variables(self, ( 'pearson_r/covariance/comoment:0', 'pearson_r/covariance/count:0', 'pearson_r/covariance/mean_label:0', 'pearson_r/covariance/mean_prediction:0', 'pearson_r/variance_labels/count:0', 'pearson_r/variance_labels/comoment:0', 'pearson_r/variance_labels/mean_label:0', 'pearson_r/variance_labels/mean_prediction:0', 'pearson_r/variance_predictions/comoment:0', 'pearson_r/variance_predictions/count:0', 'pearson_r/variance_predictions/mean_label:0', 'pearson_r/variance_predictions/mean_prediction:0', )) def testMetricsCollection(self): my_collection_name = '__metrics__' pearson_r, _ = metrics.streaming_pearson_correlation( predictions=math_ops.cast(math_ops.range(10), dtypes_lib.float32) + array_ops.ones([10, 10]), labels=(math_ops.cast(math_ops.range(10), dtypes_lib.float32) + array_ops.ones([10, 10])), metrics_collections=[my_collection_name]) self.assertListEqual(ops.get_collection(my_collection_name), [pearson_r]) def testUpdatesCollection(self): my_collection_name = '__updates__' _, update_op = metrics.streaming_pearson_correlation( predictions=math_ops.cast(math_ops.range(10), dtypes_lib.float32) + array_ops.ones([10, 10]), labels=(math_ops.cast(math_ops.range(10), dtypes_lib.float32) + array_ops.ones([10, 10])), updates_collections=[my_collection_name]) self.assertListEqual(ops.get_collection(my_collection_name), [update_op]) def testValueTensorIsIdempotent(self): labels = random_ops.random_normal((10, 3), seed=2) predictions = labels * 0.5 + random_ops.random_normal((10, 3), seed=1) * 0.5 pearson_r, update_op = metrics.streaming_pearson_correlation( predictions, labels) with self.cached_session() as sess: sess.run(variables.local_variables_initializer()) # Run several updates. for _ in range(10): sess.run(update_op) # Then verify idempotency. initial_r = pearson_r.eval() for _ in range(10): self.assertEqual(initial_r, pearson_r.eval()) def testSingleUpdateIdentical(self): with self.cached_session() as sess: predictions = math_ops.cast(math_ops.range(10), dtypes_lib.float32) labels = math_ops.cast(math_ops.range(10), dtypes_lib.float32) pearson_r, update_op = metrics.streaming_pearson_correlation( predictions, labels) expected_r = np.corrcoef(np.arange(10), np.arange(10))[0, 1] sess.run(variables.local_variables_initializer()) self.assertAlmostEqual(expected_r, sess.run(update_op), 5) self.assertAlmostEqual(expected_r, pearson_r.eval(), 5) def testSingleUpdateNonIdentical(self): with self.cached_session() as sess: predictions = constant_op.constant( [2, 4, 6], shape=(1, 3), dtype=dtypes_lib.float32) labels = constant_op.constant( [1, 3, 2], shape=(1, 3), dtype=dtypes_lib.float32) pearson_r, update_op = metrics.streaming_pearson_correlation( predictions, labels) expected_r = np.corrcoef([2, 4, 6], [1, 3, 2])[0, 1] sess.run(variables.local_variables_initializer()) self.assertAlmostEqual(expected_r, update_op.eval()) self.assertAlmostEqual(expected_r, pearson_r.eval()) def testSingleUpdateWithErrorAndWeights(self): with self.cached_session() as sess: predictions = np.array([2, 4, 6, 8]) labels = np.array([1, 3, 2, 7]) weights = np.array([0, 1, 3, 1]) predictions_t = constant_op.constant( predictions, shape=(1, 4), dtype=dtypes_lib.float32) labels_t = constant_op.constant( labels, shape=(1, 4), dtype=dtypes_lib.float32) weights_t = constant_op.constant( weights, shape=(1, 4), dtype=dtypes_lib.float32) pearson_r, update_op = metrics.streaming_pearson_correlation( predictions_t, labels_t, weights=weights_t) cmat = np.cov(predictions, labels, fweights=weights) expected_r = cmat[0, 1] / np.sqrt(cmat[0, 0] * cmat[1, 1]) sess.run(variables.local_variables_initializer()) self.assertAlmostEqual(expected_r, sess.run(update_op)) self.assertAlmostEqual(expected_r, pearson_r.eval()) def testMultiUpdateWithErrorNoWeights(self): with self.cached_session() as sess: np.random.seed(123) n = 100 predictions = np.random.randn(n) labels = 0.5 * predictions + np.random.randn(n) stride = 10 predictions_t = array_ops.placeholder(dtypes_lib.float32, [stride]) labels_t = array_ops.placeholder(dtypes_lib.float32, [stride]) pearson_r, update_op = metrics.streaming_pearson_correlation( predictions_t, labels_t) sess.run(variables.local_variables_initializer()) prev_expected_r = NAN for i in range(n // stride): feed_dict = { predictions_t: predictions[stride * i:stride * (i + 1)], labels_t: labels[stride * i:stride * (i + 1)] } self.assertEqual( np.isnan(prev_expected_r), np.isnan(sess.run(pearson_r, feed_dict=feed_dict))) if not np.isnan(prev_expected_r): self.assertAlmostEqual(prev_expected_r, sess.run(pearson_r, feed_dict=feed_dict), 5) expected_r = np.corrcoef(predictions[:stride * (i + 1)], labels[:stride * (i + 1)])[0, 1] self.assertAlmostEqual(expected_r, sess.run(update_op, feed_dict=feed_dict), 5) self.assertAlmostEqual(expected_r, sess.run(pearson_r, feed_dict=feed_dict), 5) prev_expected_r = expected_r def testMultiUpdateWithErrorAndWeights(self): with self.cached_session() as sess: np.random.seed(123) n = 100 predictions = np.random.randn(n) labels = 0.5 * predictions + np.random.randn(n) weights = np.tile(np.arange(n // 10), n // 10) np.random.shuffle(weights) stride = 10 predictions_t = array_ops.placeholder(dtypes_lib.float32, [stride]) labels_t = array_ops.placeholder(dtypes_lib.float32, [stride]) weights_t = array_ops.placeholder(dtypes_lib.float32, [stride]) pearson_r, update_op = metrics.streaming_pearson_correlation( predictions_t, labels_t, weights=weights_t) sess.run(variables.local_variables_initializer()) prev_expected_r = NAN for i in range(n // stride): feed_dict = { predictions_t: predictions[stride * i:stride * (i + 1)], labels_t: labels[stride * i:stride * (i + 1)], weights_t: weights[stride * i:stride * (i + 1)] } self.assertEqual( np.isnan(prev_expected_r), np.isnan(sess.run(pearson_r, feed_dict=feed_dict))) if not np.isnan(prev_expected_r): self.assertAlmostEqual(prev_expected_r, sess.run(pearson_r, feed_dict=feed_dict), 5) cmat = np.cov( predictions[:stride * (i + 1)], labels[:stride * (i + 1)], fweights=weights[:stride * (i + 1)]) expected_r = cmat[0, 1] / np.sqrt(cmat[0, 0] * cmat[1, 1]) self.assertAlmostEqual(expected_r, sess.run(update_op, feed_dict=feed_dict), 5) self.assertAlmostEqual(expected_r, sess.run(pearson_r, feed_dict=feed_dict), 5) prev_expected_r = expected_r def testMultiUpdateWithErrorAndSingletonBatches(self): with self.cached_session() as sess: np.random.seed(123) n = 100 predictions = np.random.randn(n) labels = 0.5 * predictions + np.random.randn(n) stride = 10 weights = (np.arange(n).reshape(n // stride, stride) % stride == 0) for row in weights: np.random.shuffle(row) # Now, weights is one-hot by row - one item per batch has non-zero weight. weights = weights.reshape((n,)) predictions_t = array_ops.placeholder(dtypes_lib.float32, [stride]) labels_t = array_ops.placeholder(dtypes_lib.float32, [stride]) weights_t = array_ops.placeholder(dtypes_lib.float32, [stride]) pearson_r, update_op = metrics.streaming_pearson_correlation( predictions_t, labels_t, weights=weights_t) sess.run(variables.local_variables_initializer()) for i in range(n // stride): feed_dict = { predictions_t: predictions[stride * i:stride * (i + 1)], labels_t: labels[stride * i:stride * (i + 1)], weights_t: weights[stride * i:stride * (i + 1)] } cmat = np.cov( predictions[:stride * (i + 1)], labels[:stride * (i + 1)], fweights=weights[:stride * (i + 1)]) expected_r = cmat[0, 1] / np.sqrt(cmat[0, 0] * cmat[1, 1]) actual_r = sess.run(update_op, feed_dict=feed_dict) self.assertEqual(np.isnan(expected_r), np.isnan(actual_r)) self.assertEqual( np.isnan(expected_r), np.isnan(sess.run(pearson_r, feed_dict=feed_dict))) if not np.isnan(expected_r): self.assertAlmostEqual(expected_r, actual_r, 5) self.assertAlmostEqual(expected_r, sess.run(pearson_r, feed_dict=feed_dict), 5) class StreamingMeanCosineDistanceTest(test.TestCase): def setUp(self): ops.reset_default_graph() def testVars(self): metrics.streaming_mean_cosine_distance( predictions=array_ops.ones((10, 3)), labels=array_ops.ones((10, 3)), dim=1) _assert_metric_variables(self, ( 'mean_cosine_distance/count:0', 'mean_cosine_distance/total:0', )) def testMetricsCollection(self): my_collection_name = '__metrics__' mean, _ = metrics.streaming_mean_cosine_distance( predictions=array_ops.ones((10, 3)), labels=array_ops.ones((10, 3)), dim=1, metrics_collections=[my_collection_name]) self.assertListEqual(ops.get_collection(my_collection_name), [mean]) def testUpdatesCollection(self): my_collection_name = '__updates__' _, update_op = metrics.streaming_mean_cosine_distance( predictions=array_ops.ones((10, 3)), labels=array_ops.ones((10, 3)), dim=1, updates_collections=[my_collection_name]) self.assertListEqual(ops.get_collection(my_collection_name), [update_op]) def testValueTensorIsIdempotent(self): predictions = random_ops.random_normal((10, 3), seed=1) labels = random_ops.random_normal((10, 3), seed=2) error, update_op = metrics.streaming_mean_cosine_distance( predictions, labels, dim=1) with self.cached_session() as sess: sess.run(variables.local_variables_initializer()) # Run several updates. for _ in range(10): sess.run(update_op) # Then verify idempotency. initial_error = error.eval() for _ in range(10): self.assertEqual(initial_error, error.eval()) def testSingleUpdateZeroError(self): np_labels = np.matrix(('1 0 0;' '0 0 1;' '0 1 0')) predictions = constant_op.constant( np_labels, shape=(1, 3, 3), dtype=dtypes_lib.float32) labels = constant_op.constant( np_labels, shape=(1, 3, 3), dtype=dtypes_lib.float32) error, update_op = metrics.streaming_mean_cosine_distance( predictions, labels, dim=2) with self.cached_session() as sess: sess.run(variables.local_variables_initializer()) self.assertEqual(0, sess.run(update_op)) self.assertEqual(0, error.eval()) def testSingleUpdateWithError1(self): np_labels = np.matrix(('1 0 0;' '0 0 1;' '0 1 0')) np_predictions = np.matrix(('1 0 0;' '0 0 -1;' '1 0 0')) predictions = constant_op.constant( np_predictions, shape=(3, 1, 3), dtype=dtypes_lib.float32) labels = constant_op.constant( np_labels, shape=(3, 1, 3), dtype=dtypes_lib.float32) error, update_op = metrics.streaming_mean_cosine_distance( predictions, labels, dim=2) with self.cached_session() as sess: sess.run(variables.local_variables_initializer()) self.assertAlmostEqual(1, sess.run(update_op), 5) self.assertAlmostEqual(1, error.eval(), 5) def testSingleUpdateWithError2(self): np_predictions = np.matrix( ('0.819031913261206 0.567041924552012 0.087465312324590;' '-0.665139432070255 -0.739487441769973 -0.103671883216994;' '0.707106781186548 -0.707106781186548 0')) np_labels = np.matrix( ('0.819031913261206 0.567041924552012 0.087465312324590;' '0.665139432070255 0.739487441769973 0.103671883216994;' '0.707106781186548 0.707106781186548 0')) predictions = constant_op.constant( np_predictions, shape=(3, 1, 3), dtype=dtypes_lib.float32) labels = constant_op.constant( np_labels, shape=(3, 1, 3), dtype=dtypes_lib.float32) error, update_op = metrics.streaming_mean_cosine_distance( predictions, labels, dim=2) with self.cached_session() as sess: sess.run(variables.local_variables_initializer()) self.assertAlmostEqual(1.0, sess.run(update_op), 5) self.assertAlmostEqual(1.0, error.eval(), 5) def testSingleUpdateWithErrorAndWeights1(self): np_predictions = np.matrix(('1 0 0;' '0 0 -1;' '1 0 0')) np_labels = np.matrix(('1 0 0;' '0 0 1;' '0 1 0')) predictions = constant_op.constant( np_predictions, shape=(3, 1, 3), dtype=dtypes_lib.float32) labels = constant_op.constant( np_labels, shape=(3, 1, 3), dtype=dtypes_lib.float32) weights = constant_op.constant( [1, 0, 0], shape=(3, 1, 1), dtype=dtypes_lib.float32) error, update_op = metrics.streaming_mean_cosine_distance( predictions, labels, dim=2, weights=weights) with self.cached_session() as sess: sess.run(variables.local_variables_initializer()) self.assertEqual(0, sess.run(update_op)) self.assertEqual(0, error.eval()) def testSingleUpdateWithErrorAndWeights2(self): np_predictions = np.matrix(('1 0 0;' '0 0 -1;' '1 0 0')) np_labels = np.matrix(('1 0 0;' '0 0 1;' '0 1 0')) predictions = constant_op.constant( np_predictions, shape=(3, 1, 3), dtype=dtypes_lib.float32) labels = constant_op.constant( np_labels, shape=(3, 1, 3), dtype=dtypes_lib.float32) weights = constant_op.constant( [0, 1, 1], shape=(3, 1, 1), dtype=dtypes_lib.float32) error, update_op = metrics.streaming_mean_cosine_distance( predictions, labels, dim=2, weights=weights) with self.cached_session() as sess: sess.run(variables.local_variables_initializer()) self.assertEqual(1.5, update_op.eval()) self.assertEqual(1.5, error.eval()) class PcntBelowThreshTest(test.TestCase): def setUp(self): ops.reset_default_graph() def testVars(self): metrics.streaming_percentage_less(values=array_ops.ones((10,)), threshold=2) _assert_metric_variables(self, ( 'percentage_below_threshold/count:0', 'percentage_below_threshold/total:0', )) def testMetricsCollection(self): my_collection_name = '__metrics__' mean, _ = metrics.streaming_percentage_less( values=array_ops.ones((10,)), threshold=2, metrics_collections=[my_collection_name]) self.assertListEqual(ops.get_collection(my_collection_name), [mean]) def testUpdatesCollection(self): my_collection_name = '__updates__' _, update_op = metrics.streaming_percentage_less( values=array_ops.ones((10,)), threshold=2, updates_collections=[my_collection_name]) self.assertListEqual(ops.get_collection(my_collection_name), [update_op]) def testOneUpdate(self): with self.cached_session() as sess: values = constant_op.constant( [2, 4, 6, 8], shape=(1, 4), dtype=dtypes_lib.float32) pcnt0, update_op0 = metrics.streaming_percentage_less( values, 100, name='high') pcnt1, update_op1 = metrics.streaming_percentage_less( values, 7, name='medium') pcnt2, update_op2 = metrics.streaming_percentage_less( values, 1, name='low') sess.run(variables.local_variables_initializer()) sess.run([update_op0, update_op1, update_op2]) pcnt0, pcnt1, pcnt2 = sess.run([pcnt0, pcnt1, pcnt2]) self.assertAlmostEqual(1.0, pcnt0, 5) self.assertAlmostEqual(0.75, pcnt1, 5) self.assertAlmostEqual(0.0, pcnt2, 5) def testSomePresentOneUpdate(self): with self.cached_session() as sess: values = constant_op.constant( [2, 4, 6, 8], shape=(1, 4), dtype=dtypes_lib.float32) weights = constant_op.constant( [1, 0, 0, 1], shape=(1, 4), dtype=dtypes_lib.float32) pcnt0, update_op0 = metrics.streaming_percentage_less( values, 100, weights=weights, name='high') pcnt1, update_op1 = metrics.streaming_percentage_less( values, 7, weights=weights, name='medium') pcnt2, update_op2 = metrics.streaming_percentage_less( values, 1, weights=weights, name='low') sess.run(variables.local_variables_initializer()) self.assertListEqual([1.0, 0.5, 0.0], sess.run([update_op0, update_op1, update_op2])) pcnt0, pcnt1, pcnt2 = sess.run([pcnt0, pcnt1, pcnt2]) self.assertAlmostEqual(1.0, pcnt0, 5) self.assertAlmostEqual(0.5, pcnt1, 5) self.assertAlmostEqual(0.0, pcnt2, 5) class StreamingMeanIOUTest(test.TestCase): def setUp(self): np.random.seed(1) ops.reset_default_graph() def testVars(self): metrics.streaming_mean_iou( predictions=array_ops.ones([10, 1]), labels=array_ops.ones([10, 1]), num_classes=2) _assert_metric_variables(self, ('mean_iou/total_confusion_matrix:0',)) def testMetricsCollections(self): my_collection_name = '__metrics__' mean_iou, _ = metrics.streaming_mean_iou( predictions=array_ops.ones([10, 1]), labels=array_ops.ones([10, 1]), num_classes=2, metrics_collections=[my_collection_name]) self.assertListEqual(ops.get_collection(my_collection_name), [mean_iou]) def testUpdatesCollection(self): my_collection_name = '__updates__' _, update_op = metrics.streaming_mean_iou( predictions=array_ops.ones([10, 1]), labels=array_ops.ones([10, 1]), num_classes=2, updates_collections=[my_collection_name]) self.assertListEqual(ops.get_collection(my_collection_name), [update_op]) def testPredictionsAndLabelsOfDifferentSizeRaisesValueError(self): predictions = array_ops.ones([10, 3]) labels = array_ops.ones([10, 4]) with self.assertRaises(ValueError): metrics.streaming_mean_iou(predictions, labels, num_classes=2) def testLabelsAndWeightsOfDifferentSizeRaisesValueError(self): predictions = array_ops.ones([10]) labels = array_ops.ones([10]) weights = array_ops.zeros([9]) with self.assertRaises(ValueError): metrics.streaming_mean_iou( predictions, labels, num_classes=2, weights=weights) def testValueTensorIsIdempotent(self): num_classes = 3 predictions = random_ops.random_uniform( [10], maxval=num_classes, dtype=dtypes_lib.int64, seed=1) labels = random_ops.random_uniform( [10], maxval=num_classes, dtype=dtypes_lib.int64, seed=2) miou, update_op = metrics.streaming_mean_iou( predictions, labels, num_classes=num_classes) with self.cached_session() as sess: sess.run(variables.local_variables_initializer()) # Run several updates. for _ in range(10): sess.run(update_op) # Then verify idempotency. initial_miou = miou.eval() for _ in range(10): self.assertEqual(initial_miou, miou.eval()) def testMultipleUpdates(self): num_classes = 3 with self.cached_session() as sess: # Create the queue that populates the predictions. preds_queue = data_flow_ops.FIFOQueue( 5, dtypes=dtypes_lib.int32, shapes=(1, 1)) _enqueue_vector(sess, preds_queue, [0]) _enqueue_vector(sess, preds_queue, [1]) _enqueue_vector(sess, preds_queue, [2]) _enqueue_vector(sess, preds_queue, [1]) _enqueue_vector(sess, preds_queue, [0]) predictions = preds_queue.dequeue() # Create the queue that populates the labels. labels_queue = data_flow_ops.FIFOQueue( 5, dtypes=dtypes_lib.int32, shapes=(1, 1)) _enqueue_vector(sess, labels_queue, [0]) _enqueue_vector(sess, labels_queue, [1]) _enqueue_vector(sess, labels_queue, [1]) _enqueue_vector(sess, labels_queue, [2]) _enqueue_vector(sess, labels_queue, [1]) labels = labels_queue.dequeue() miou, update_op = metrics.streaming_mean_iou(predictions, labels, num_classes) sess.run(variables.local_variables_initializer()) for _ in range(5): sess.run(update_op) desired_output = np.mean([1.0 / 2.0, 1.0 / 4.0, 0.]) self.assertEqual(desired_output, miou.eval()) def testMultipleUpdatesWithWeights(self): num_classes = 2 with self.cached_session() as sess: # Create the queue that populates the predictions. preds_queue = data_flow_ops.FIFOQueue( 6, dtypes=dtypes_lib.int32, shapes=(1, 1)) _enqueue_vector(sess, preds_queue, [0]) _enqueue_vector(sess, preds_queue, [1]) _enqueue_vector(sess, preds_queue, [0]) _enqueue_vector(sess, preds_queue, [1]) _enqueue_vector(sess, preds_queue, [0]) _enqueue_vector(sess, preds_queue, [1]) predictions = preds_queue.dequeue() # Create the queue that populates the labels. labels_queue = data_flow_ops.FIFOQueue( 6, dtypes=dtypes_lib.int32, shapes=(1, 1)) _enqueue_vector(sess, labels_queue, [0]) _enqueue_vector(sess, labels_queue, [1]) _enqueue_vector(sess, labels_queue, [1]) _enqueue_vector(sess, labels_queue, [0]) _enqueue_vector(sess, labels_queue, [0]) _enqueue_vector(sess, labels_queue, [1]) labels = labels_queue.dequeue() # Create the queue that populates the weights. weights_queue = data_flow_ops.FIFOQueue( 6, dtypes=dtypes_lib.float32, shapes=(1, 1)) _enqueue_vector(sess, weights_queue, [1.0]) _enqueue_vector(sess, weights_queue, [1.0]) _enqueue_vector(sess, weights_queue, [1.0]) _enqueue_vector(sess, weights_queue, [0.0]) _enqueue_vector(sess, weights_queue, [1.0]) _enqueue_vector(sess, weights_queue, [0.0]) weights = weights_queue.dequeue() miou, update_op = metrics.streaming_mean_iou( predictions, labels, num_classes, weights=weights) sess.run(variables.local_variables_initializer()) for _ in range(6): sess.run(update_op) desired_output = np.mean([2.0 / 3.0, 1.0 / 2.0]) self.assertAlmostEqual(desired_output, miou.eval()) def testMultipleUpdatesWithMissingClass(self): # Test the case where there are no predicions and labels for # one class, and thus there is one row and one column with # zero entries in the confusion matrix. num_classes = 3 with self.cached_session() as sess: # Create the queue that populates the predictions. # There is no prediction for class 2. preds_queue = data_flow_ops.FIFOQueue( 5, dtypes=dtypes_lib.int32, shapes=(1, 1)) _enqueue_vector(sess, preds_queue, [0]) _enqueue_vector(sess, preds_queue, [1]) _enqueue_vector(sess, preds_queue, [1]) _enqueue_vector(sess, preds_queue, [1]) _enqueue_vector(sess, preds_queue, [0]) predictions = preds_queue.dequeue() # Create the queue that populates the labels. # There is label for class 2. labels_queue = data_flow_ops.FIFOQueue( 5, dtypes=dtypes_lib.int32, shapes=(1, 1)) _enqueue_vector(sess, labels_queue, [0]) _enqueue_vector(sess, labels_queue, [1]) _enqueue_vector(sess, labels_queue, [1]) _enqueue_vector(sess, labels_queue, [0]) _enqueue_vector(sess, labels_queue, [1]) labels = labels_queue.dequeue() miou, update_op = metrics.streaming_mean_iou(predictions, labels, num_classes) sess.run(variables.local_variables_initializer()) for _ in range(5): sess.run(update_op) desired_output = np.mean([1.0 / 3.0, 2.0 / 4.0]) self.assertAlmostEqual(desired_output, miou.eval()) def testUpdateOpEvalIsAccumulatedConfusionMatrix(self): predictions = array_ops.concat([ constant_op.constant(0, shape=[5]), constant_op.constant(1, shape=[5]) ], 0) labels = array_ops.concat([ constant_op.constant(0, shape=[3]), constant_op.constant(1, shape=[7]) ], 0) num_classes = 2 with self.cached_session() as sess: miou, update_op = metrics.streaming_mean_iou(predictions, labels, num_classes) sess.run(variables.local_variables_initializer()) confusion_matrix = update_op.eval() self.assertAllEqual([[3, 0], [2, 5]], confusion_matrix) desired_miou = np.mean([3. / 5., 5. / 7.]) self.assertAlmostEqual(desired_miou, miou.eval()) def testAllCorrect(self): predictions = array_ops.zeros([40]) labels = array_ops.zeros([40]) num_classes = 1 with self.cached_session() as sess: miou, update_op = metrics.streaming_mean_iou(predictions, labels, num_classes) sess.run(variables.local_variables_initializer()) self.assertEqual(40, update_op.eval()[0]) self.assertEqual(1.0, miou.eval()) def testAllWrong(self): predictions = array_ops.zeros([40]) labels = array_ops.ones([40]) num_classes = 2 with self.cached_session() as sess: miou, update_op = metrics.streaming_mean_iou(predictions, labels, num_classes) sess.run(variables.local_variables_initializer()) self.assertAllEqual([[0, 0], [40, 0]], update_op.eval()) self.assertEqual(0., miou.eval()) def testResultsWithSomeMissing(self): predictions = array_ops.concat([ constant_op.constant(0, shape=[5]), constant_op.constant(1, shape=[5]) ], 0) labels = array_ops.concat([ constant_op.constant(0, shape=[3]), constant_op.constant(1, shape=[7]) ], 0) num_classes = 2 weights = array_ops.concat([ constant_op.constant(0, shape=[1]), constant_op.constant(1, shape=[8]), constant_op.constant(0, shape=[1]) ], 0) with self.cached_session() as sess: miou, update_op = metrics.streaming_mean_iou( predictions, labels, num_classes, weights=weights) sess.run(variables.local_variables_initializer()) self.assertAllEqual([[2, 0], [2, 4]], update_op.eval()) desired_miou = np.mean([2. / 4., 4. / 6.]) self.assertAlmostEqual(desired_miou, miou.eval()) def testMissingClassInLabels(self): labels = constant_op.constant([[[0, 0, 1, 1, 0, 0], [1, 0, 0, 0, 0, 1]], [[1, 1, 1, 1, 1, 1], [0, 0, 0, 0, 0, 0]]]) predictions = constant_op.constant( [[[0, 0, 2, 1, 1, 0], [0, 1, 2, 2, 0, 1]], [[0, 0, 2, 1, 1, 1], [1, 1, 2, 0, 0, 0]]]) num_classes = 3 with self.cached_session() as sess: miou, update_op = metrics.streaming_mean_iou(predictions, labels, num_classes) sess.run(variables.local_variables_initializer()) self.assertAllEqual([[7, 4, 3], [3, 5, 2], [0, 0, 0]], update_op.eval()) self.assertAlmostEqual(1 / 3 * (7 / (7 + 3 + 7) + 5 / (5 + 4 + 5) + 0 / (0 + 5 + 0)), miou.eval()) def testMissingClassOverallSmall(self): labels = constant_op.constant([0]) predictions = constant_op.constant([0]) num_classes = 2 with self.cached_session() as sess: miou, update_op = metrics.streaming_mean_iou(predictions, labels, num_classes) sess.run(variables.local_variables_initializer()) self.assertAllEqual([[1, 0], [0, 0]], update_op.eval()) self.assertAlmostEqual(1, miou.eval()) def testMissingClassOverallLarge(self): labels = constant_op.constant([[[0, 0, 1, 1, 0, 0], [1, 0, 0, 0, 0, 1]], [[1, 1, 1, 1, 1, 1], [0, 0, 0, 0, 0, 0]]]) predictions = constant_op.constant( [[[0, 0, 1, 1, 0, 0], [1, 1, 0, 0, 1, 1]], [[0, 0, 0, 1, 1, 1], [1, 1, 1, 0, 0, 0]]]) num_classes = 3 with self.cached_session() as sess: miou, update_op = metrics.streaming_mean_iou(predictions, labels, num_classes) sess.run(variables.local_variables_initializer()) self.assertAllEqual([[9, 5, 0], [3, 7, 0], [0, 0, 0]], update_op.eval()) self.assertAlmostEqual(1 / 2 * (9 / (9 + 3 + 5) + 7 / (7 + 5 + 3)), miou.eval()) class StreamingConcatTest(test.TestCase): def setUp(self): ops.reset_default_graph() def testVars(self): metrics.streaming_concat(values=array_ops.ones((10,))) _assert_metric_variables(self, ( 'streaming_concat/array:0', 'streaming_concat/size:0', )) def testMetricsCollection(self): my_collection_name = '__metrics__' value, _ = metrics.streaming_concat( values=array_ops.ones((10,)), metrics_collections=[my_collection_name]) self.assertListEqual(ops.get_collection(my_collection_name), [value]) def testUpdatesCollection(self): my_collection_name = '__updates__' _, update_op = metrics.streaming_concat( values=array_ops.ones((10,)), updates_collections=[my_collection_name]) self.assertListEqual(ops.get_collection(my_collection_name), [update_op]) def testNextArraySize(self): next_array_size = metric_ops._next_array_size # pylint: disable=protected-access with self.cached_session(): self.assertEqual(next_array_size(2, growth_factor=2).eval(), 2) self.assertEqual(next_array_size(3, growth_factor=2).eval(), 4) self.assertEqual(next_array_size(4, growth_factor=2).eval(), 4) self.assertEqual(next_array_size(5, growth_factor=2).eval(), 8) self.assertEqual(next_array_size(6, growth_factor=2).eval(), 8) def testStreamingConcat(self): with self.cached_session() as sess: values = array_ops.placeholder(dtypes_lib.int32, [None]) concatenated, update_op = metrics.streaming_concat(values) sess.run(variables.local_variables_initializer()) self.assertAllEqual([], concatenated.eval()) sess.run([update_op], feed_dict={values: [0, 1, 2]}) self.assertAllEqual([0, 1, 2], concatenated.eval()) sess.run([update_op], feed_dict={values: [3, 4]}) self.assertAllEqual([0, 1, 2, 3, 4], concatenated.eval()) sess.run([update_op], feed_dict={values: [5, 6, 7, 8, 9]}) self.assertAllEqual(np.arange(10), concatenated.eval()) def testStreamingConcatStringValues(self): with self.cached_session() as sess: values = array_ops.placeholder(dtypes_lib.string, [None]) concatenated, update_op = metrics.streaming_concat(values) sess.run(variables.local_variables_initializer()) self.assertItemsEqual([], concatenated.eval()) sess.run([update_op], feed_dict={values: ['a', 'b', 'c']}) self.assertItemsEqual([b'a', b'b', b'c'], concatenated.eval()) sess.run([update_op], feed_dict={values: ['d', 'e']}) self.assertItemsEqual([b'a', b'b', b'c', b'd', b'e'], concatenated.eval()) sess.run([update_op], feed_dict={values: ['f', 'g', 'h', 'i', 'j']}) self.assertItemsEqual( [b'a', b'b', b'c', b'd', b'e', b'f', b'g', b'h', b'i', b'j'], concatenated.eval()) def testStreamingConcatMaxSize(self): with self.cached_session() as sess: values = math_ops.range(3) concatenated, update_op = metrics.streaming_concat(values, max_size=5) sess.run(variables.local_variables_initializer()) self.assertAllEqual([], concatenated.eval()) sess.run([update_op]) self.assertAllEqual([0, 1, 2], concatenated.eval()) sess.run([update_op]) self.assertAllEqual([0, 1, 2, 0, 1], concatenated.eval()) sess.run([update_op]) self.assertAllEqual([0, 1, 2, 0, 1], concatenated.eval()) def testStreamingConcat2D(self): with self.cached_session() as sess: values = array_ops.reshape(math_ops.range(3), (3, 1)) concatenated, update_op = metrics.streaming_concat(values, axis=-1) sess.run(variables.local_variables_initializer()) for _ in range(10): sess.run([update_op]) self.assertAllEqual([[0] * 10, [1] * 10, [2] * 10], concatenated.eval()) def testStreamingConcatErrors(self): with self.assertRaises(ValueError): metrics.streaming_concat(array_ops.placeholder(dtypes_lib.float32)) values = array_ops.zeros((2, 3)) with self.assertRaises(ValueError): metrics.streaming_concat(values, axis=-3, max_size=3) with self.assertRaises(ValueError): metrics.streaming_concat(values, axis=2, max_size=3) with self.assertRaises(ValueError): metrics.streaming_concat( array_ops.placeholder(dtypes_lib.float32, [None, None])) def testStreamingConcatReset(self): with self.cached_session() as sess: values = array_ops.placeholder(dtypes_lib.int32, [None]) concatenated, update_op = metrics.streaming_concat(values) sess.run(variables.local_variables_initializer()) self.assertAllEqual([], concatenated.eval()) sess.run([update_op], feed_dict={values: [0, 1, 2]}) self.assertAllEqual([0, 1, 2], concatenated.eval()) sess.run(variables.local_variables_initializer()) sess.run([update_op], feed_dict={values: [3, 4]}) self.assertAllEqual([3, 4], concatenated.eval()) class AggregateMetricsTest(test.TestCase): def testAggregateNoMetricsRaisesValueError(self): with self.assertRaises(ValueError): metrics.aggregate_metrics() def testAggregateSingleMetricReturnsOneItemLists(self): values = array_ops.ones((10, 4)) value_tensors, update_ops = metrics.aggregate_metrics( metrics.streaming_mean(values)) self.assertEqual(len(value_tensors), 1) self.assertEqual(len(update_ops), 1) with self.cached_session() as sess: sess.run(variables.local_variables_initializer()) self.assertEqual(1, update_ops[0].eval()) self.assertEqual(1, value_tensors[0].eval()) def testAggregateMultipleMetricsReturnsListsInOrder(self): predictions = array_ops.ones((10, 4)) labels = array_ops.ones((10, 4)) * 3 value_tensors, update_ops = metrics.aggregate_metrics( metrics.streaming_mean_absolute_error(predictions, labels), metrics.streaming_mean_squared_error(predictions, labels)) self.assertEqual(len(value_tensors), 2) self.assertEqual(len(update_ops), 2) with self.cached_session() as sess: sess.run(variables.local_variables_initializer()) self.assertEqual(2, update_ops[0].eval()) self.assertEqual(4, update_ops[1].eval()) self.assertEqual(2, value_tensors[0].eval()) self.assertEqual(4, value_tensors[1].eval()) class AggregateMetricMapTest(test.TestCase): def testAggregateMultipleMetricsReturnsListsInOrder(self): predictions = array_ops.ones((10, 4)) labels = array_ops.ones((10, 4)) * 3 names_to_values, names_to_updates = metrics.aggregate_metric_map({ 'm1': metrics.streaming_mean_absolute_error(predictions, labels), 'm2': metrics.streaming_mean_squared_error(predictions, labels), }) self.assertEqual(2, len(names_to_values)) self.assertEqual(2, len(names_to_updates)) with self.cached_session() as sess: sess.run(variables.local_variables_initializer()) self.assertEqual(2, names_to_updates['m1'].eval()) self.assertEqual(4, names_to_updates['m2'].eval()) self.assertEqual(2, names_to_values['m1'].eval()) self.assertEqual(4, names_to_values['m2'].eval()) class CountTest(test.TestCase): def setUp(self): ops.reset_default_graph() def testVars(self): metrics.count(array_ops.ones([4, 3])) _assert_metric_variables(self, ['count/count:0']) def testMetricsCollection(self): my_collection_name = '__metrics__' mean, _ = metrics.count( array_ops.ones([4, 3]), metrics_collections=[my_collection_name]) self.assertListEqual(ops.get_collection(my_collection_name), [mean]) def testUpdatesCollection(self): my_collection_name = '__updates__' _, update_op = metrics.count( array_ops.ones([4, 3]), updates_collections=[my_collection_name]) self.assertListEqual(ops.get_collection(my_collection_name), [update_op]) def testReturnType(self): c, op = metrics.count(array_ops.ones([4, 3])) self.assertTrue(isinstance(c, ops.Tensor)) self.assertTrue(isinstance(op, ops.Operation) or isinstance(op, ops.Tensor)) def testBasic(self): with self.cached_session() as sess: values_queue = data_flow_ops.FIFOQueue( 4, dtypes=dtypes_lib.float32, shapes=(1, 2)) _enqueue_vector(sess, values_queue, [0, 1]) _enqueue_vector(sess, values_queue, [-4.2, 9.1]) _enqueue_vector(sess, values_queue, [6.5, 0]) _enqueue_vector(sess, values_queue, [-3.2, 4.0]) values = values_queue.dequeue() result, update_op = metrics.count(values) sess.run(variables.local_variables_initializer()) for _ in range(4): sess.run(update_op) self.assertAlmostEqual(8.0, sess.run(result), 5) def testUpdateOpsReturnsCurrentValue(self): with self.cached_session() as sess: values_queue = data_flow_ops.FIFOQueue( 4, dtypes=dtypes_lib.float32, shapes=(1, 2)) _enqueue_vector(sess, values_queue, [0, 1]) _enqueue_vector(sess, values_queue, [-4.2, 9.1]) _enqueue_vector(sess, values_queue, [6.5, 0]) _enqueue_vector(sess, values_queue, [-3.2, 4.0]) values = values_queue.dequeue() result, update_op = metrics.count(values) sess.run(variables.local_variables_initializer()) self.assertAlmostEqual(2.0, sess.run(update_op), 5) self.assertAlmostEqual(4.0, sess.run(update_op), 5) self.assertAlmostEqual(6.0, sess.run(update_op), 5) self.assertAlmostEqual(8.0, sess.run(update_op), 5) self.assertAlmostEqual(8.0, sess.run(result), 5) def test1dWeightedValues(self): with self.cached_session() as sess: # Create the queue that populates the values. values_queue = data_flow_ops.FIFOQueue( 4, dtypes=dtypes_lib.float32, shapes=(1, 2)) _enqueue_vector(sess, values_queue, [0, 1]) _enqueue_vector(sess, values_queue, [-4.2, 9.1]) _enqueue_vector(sess, values_queue, [6.5, 0]) _enqueue_vector(sess, values_queue, [-3.2, 4.0]) values = values_queue.dequeue() # Create the queue that populates the weighted labels. weights_queue = data_flow_ops.FIFOQueue( 4, dtypes=dtypes_lib.float32, shapes=(1, 1)) _enqueue_vector(sess, weights_queue, [0.5]) _enqueue_vector(sess, weights_queue, [0]) _enqueue_vector(sess, weights_queue, [0]) _enqueue_vector(sess, weights_queue, [1.2]) weights = weights_queue.dequeue() result, update_op = metrics.count(values, weights) variables.local_variables_initializer().run() for _ in range(4): update_op.eval() self.assertAlmostEqual(3.4, result.eval(), 5) def test1dWeightedValues_placeholders(self): with self.cached_session() as sess: # Create the queue that populates the values. feed_values = ((0, 1), (-4.2, 9.1), (6.5, 0), (-3.2, 4.0)) values = array_ops.placeholder(dtype=dtypes_lib.float32) # Create the queue that populates the weighted labels. weights_queue = data_flow_ops.FIFOQueue( 4, dtypes=dtypes_lib.float32, shapes=(1,)) _enqueue_vector(sess, weights_queue, 0.5, shape=(1,)) _enqueue_vector(sess, weights_queue, 0, shape=(1,)) _enqueue_vector(sess, weights_queue, 0, shape=(1,)) _enqueue_vector(sess, weights_queue, 1.2, shape=(1,)) weights = weights_queue.dequeue() result, update_op = metrics.count(values, weights) variables.local_variables_initializer().run() for i in range(4): update_op.eval(feed_dict={values: feed_values[i]}) self.assertAlmostEqual(3.4, result.eval(), 5) def test2dWeightedValues(self): with self.cached_session() as sess: # Create the queue that populates the values. values_queue = data_flow_ops.FIFOQueue( 4, dtypes=dtypes_lib.float32, shapes=(1, 2)) _enqueue_vector(sess, values_queue, [0, 1]) _enqueue_vector(sess, values_queue, [-4.2, 9.1]) _enqueue_vector(sess, values_queue, [6.5, 0]) _enqueue_vector(sess, values_queue, [-3.2, 4.0]) values = values_queue.dequeue() # Create the queue that populates the weighted labels. weights_queue = data_flow_ops.FIFOQueue( 4, dtypes=dtypes_lib.float32, shapes=(1, 2)) _enqueue_vector(sess, weights_queue, [1.1, 1]) _enqueue_vector(sess, weights_queue, [1, 0]) _enqueue_vector(sess, weights_queue, [0, 1]) _enqueue_vector(sess, weights_queue, [0, 0]) weights = weights_queue.dequeue() result, update_op = metrics.count(values, weights) variables.local_variables_initializer().run() for _ in range(4): update_op.eval() self.assertAlmostEqual(4.1, result.eval(), 5) def test2dWeightedValues_placeholders(self): with self.cached_session() as sess: # Create the queue that populates the values. feed_values = ((0, 1), (-4.2, 9.1), (6.5, 0), (-3.2, 4.0)) values = array_ops.placeholder(dtype=dtypes_lib.float32) # Create the queue that populates the weighted labels. weights_queue = data_flow_ops.FIFOQueue( 4, dtypes=dtypes_lib.float32, shapes=(2,)) _enqueue_vector(sess, weights_queue, [1.1, 1], shape=(2,)) _enqueue_vector(sess, weights_queue, [1, 0], shape=(2,)) _enqueue_vector(sess, weights_queue, [0, 1], shape=(2,)) _enqueue_vector(sess, weights_queue, [0, 0], shape=(2,)) weights = weights_queue.dequeue() result, update_op = metrics.count(values, weights) variables.local_variables_initializer().run() for i in range(4): update_op.eval(feed_dict={values: feed_values[i]}) self.assertAlmostEqual(4.1, result.eval(), 5) class CohenKappaTest(test.TestCase): def _confusion_matrix_to_samples(self, confusion_matrix): x, y = confusion_matrix.shape pairs = [] for label in range(x): for feature in range(y): pairs += [label, feature] * confusion_matrix[label, feature] pairs = np.array(pairs).reshape((-1, 2)) return pairs[:, 0], pairs[:, 1] def setUp(self): np.random.seed(1) ops.reset_default_graph() def testVars(self): metrics.cohen_kappa( predictions_idx=array_ops.ones((10, 1)), labels=array_ops.ones((10, 1)), num_classes=2) _assert_metric_variables(self, ( 'cohen_kappa/po:0', 'cohen_kappa/pe_row:0', 'cohen_kappa/pe_col:0', )) def testMetricsCollection(self): my_collection_name = '__metrics__' kappa, _ = metrics.cohen_kappa( predictions_idx=array_ops.ones((10, 1)), labels=array_ops.ones((10, 1)), num_classes=2, metrics_collections=[my_collection_name]) self.assertListEqual(ops.get_collection(my_collection_name), [kappa]) def testUpdatesCollection(self): my_collection_name = '__updates__' _, update_op = metrics.cohen_kappa( predictions_idx=array_ops.ones((10, 1)), labels=array_ops.ones((10, 1)), num_classes=2, updates_collections=[my_collection_name]) self.assertListEqual(ops.get_collection(my_collection_name), [update_op]) def testValueTensorIsIdempotent(self): predictions = random_ops.random_uniform( (10, 1), maxval=3, dtype=dtypes_lib.int64, seed=1) labels = random_ops.random_uniform( (10, 1), maxval=3, dtype=dtypes_lib.int64, seed=2) kappa, update_op = metrics.cohen_kappa(labels, predictions, 3) with self.cached_session() as sess: sess.run(variables.local_variables_initializer()) # Run several updates. for _ in range(10): sess.run(update_op) # Then verify idempotency. initial_kappa = kappa.eval() for _ in range(10): self.assertAlmostEqual(initial_kappa, kappa.eval(), 5) def testBasic(self): confusion_matrix = np.array([[9, 3, 1], [4, 8, 2], [2, 1, 6]]) # overall total = 36 # po = [9, 8, 6], sum(po) = 23 # pe_row = [15, 12, 9], pe_col = [13, 14, 9], so pe = [5.42, 4.67, 2.25] # finally, kappa = (sum(po) - sum(pe)) / (N - sum(pe)) # = (23 - 12.34) / (36 - 12.34) # = 0.45 # see: http://psych.unl.edu/psycrs/handcomp/hckappa.PDF expect = 0.45 labels, predictions = self._confusion_matrix_to_samples(confusion_matrix) dtypes = [dtypes_lib.int16, dtypes_lib.int32, dtypes_lib.int64] shapes = [ (len(labels,)), # 1-dim (len(labels), 1) ] # 2-dim weights = [None, np.ones_like(labels)] for dtype in dtypes: for shape in shapes: for weight in weights: with self.cached_session() as sess: predictions_tensor = constant_op.constant( np.reshape(predictions, shape), dtype=dtype) labels_tensor = constant_op.constant( np.reshape(labels, shape), dtype=dtype) kappa, update_op = metrics.cohen_kappa( labels_tensor, predictions_tensor, 3, weights=weight) sess.run(variables.local_variables_initializer()) self.assertAlmostEqual(expect, sess.run(update_op), 2) self.assertAlmostEqual(expect, kappa.eval(), 2) def testAllCorrect(self): inputs = np.arange(0, 100) % 4 # confusion matrix # [[25, 0, 0], # [0, 25, 0], # [0, 0, 25]] # Calculated by v0.19: sklearn.metrics.cohen_kappa_score(inputs, inputs) expect = 1.0 with self.cached_session() as sess: predictions = constant_op.constant(inputs, dtype=dtypes_lib.float32) labels = constant_op.constant(inputs) kappa, update_op = metrics.cohen_kappa(labels, predictions, 4) sess.run(variables.local_variables_initializer()) self.assertAlmostEqual(expect, sess.run(update_op), 5) self.assertAlmostEqual(expect, kappa.eval(), 5) def testAllIncorrect(self): labels = np.arange(0, 100) % 4 predictions = (labels + 1) % 4 # confusion matrix # [[0, 25, 0], # [0, 0, 25], # [25, 0, 0]] # Calculated by v0.19: sklearn.metrics.cohen_kappa_score(labels, predictions) expect = -0.333333333333 with self.cached_session() as sess: predictions = constant_op.constant(predictions, dtype=dtypes_lib.float32) labels = constant_op.constant(labels) kappa, update_op = metrics.cohen_kappa(labels, predictions, 4) sess.run(variables.local_variables_initializer()) self.assertAlmostEqual(expect, sess.run(update_op), 5) self.assertAlmostEqual(expect, kappa.eval(), 5) def testWeighted(self): confusion_matrix = np.array([[9, 3, 1], [4, 8, 2], [2, 1, 6]]) labels, predictions = self._confusion_matrix_to_samples(confusion_matrix) num_samples = np.sum(confusion_matrix, dtype=np.int32) weights = (np.arange(0, num_samples) % 5) / 5.0 # Calculated by v0.19: sklearn.metrics.cohen_kappa_score( # labels, predictions, sample_weight=weights) expect = 0.453466583385 with self.cached_session() as sess: predictions = constant_op.constant(predictions, dtype=dtypes_lib.float32) labels = constant_op.constant(labels) kappa, update_op = metrics.cohen_kappa( labels, predictions, 4, weights=weights) sess.run(variables.local_variables_initializer()) self.assertAlmostEqual(expect, sess.run(update_op), 5) self.assertAlmostEqual(expect, kappa.eval(), 5) def testWithMultipleUpdates(self): confusion_matrix = np.array([[90, 30, 10, 20], [40, 80, 20, 30], [20, 10, 60, 35], [15, 25, 30, 25]]) labels, predictions = self._confusion_matrix_to_samples(confusion_matrix) num_samples = np.sum(confusion_matrix, dtype=np.int32) weights = (np.arange(0, num_samples) % 5) / 5.0 num_classes = confusion_matrix.shape[0] batch_size = num_samples // 10 predictions_t = array_ops.placeholder( dtypes_lib.float32, shape=(batch_size,)) labels_t = array_ops.placeholder(dtypes_lib.int32, shape=(batch_size,)) weights_t = array_ops.placeholder(dtypes_lib.float32, shape=(batch_size,)) kappa, update_op = metrics.cohen_kappa( labels_t, predictions_t, num_classes, weights=weights_t) with self.cached_session() as sess: sess.run(variables.local_variables_initializer()) for idx in range(0, num_samples, batch_size): batch_start, batch_end = idx, idx + batch_size sess.run( update_op, feed_dict={ labels_t: labels[batch_start:batch_end], predictions_t: predictions[batch_start:batch_end], weights_t: weights[batch_start:batch_end] }) # Calculated by v0.19: sklearn.metrics.cohen_kappa_score( # labels_np, predictions_np, sample_weight=weights_np) expect = 0.289965397924 self.assertAlmostEqual(expect, kappa.eval(), 5) def testInvalidNumClasses(self): predictions = array_ops.placeholder(dtypes_lib.float32, shape=(4, 1)) labels = array_ops.placeholder(dtypes_lib.int32, shape=(4, 1)) with self.assertRaisesRegexp(ValueError, 'num_classes'): metrics.cohen_kappa(labels, predictions, 1) def testInvalidDimension(self): predictions = array_ops.placeholder(dtypes_lib.float32, shape=(4, 1)) invalid_labels = array_ops.placeholder(dtypes_lib.int32, shape=(4, 2)) with self.assertRaises(ValueError): metrics.cohen_kappa(invalid_labels, predictions, 3) invalid_predictions = array_ops.placeholder( dtypes_lib.float32, shape=(4, 2)) labels = array_ops.placeholder(dtypes_lib.int32, shape=(4, 1)) with self.assertRaises(ValueError): metrics.cohen_kappa(labels, invalid_predictions, 3) def testConditionalPackingOptimization(self): placeholder = array_ops.placeholder(dtypes_lib.float32, [None]) values, update_op = metric_ops.streaming_concat(placeholder) with self.cached_session() as sess: sess.run(variables.local_variables_initializer()) for feed in range(10): sess.run(update_op, feed_dict={placeholder: [feed]}) print(sess.run(values)) if __name__ == '__main__': test.main()
apache-2.0
trevstanhope/agri-vision
agrivision.py
1
27286
""" Agri-Vision Precision Agriculture and Soil Sensing Group (PASS) McGill University, Department of Bioresource Engineering IDEAS: - Rotation compensation --> take Hough Line of plants to estimate row angle """ __author__ = 'Tsevor Stanhope' __version__ = '2.01' ## Libraries import cv2, cv import serial import pymongo from bson import json_util from pymongo import MongoClient import json import numpy as np from matplotlib import pyplot as plt import thread import gps import time import sys from datetime import datetime import ast import os ## Constants try: CONFIG_FILE = '%s' % sys.argv[1] except Exception as err: settings = open('settings.cfg').read() CONFIG_FILE = settings.rstrip() def pretty_print(task, msg, *args): date = datetime.strftime(datetime.now(), "%Y-%m-%d %H:%M:%S.%f") print "%s\t%s\t%s" % (date, task, msg) ## Class class AgriVision: def __init__(self, config_file): # Load Config pretty_print("CONFIG", "Loading %s" % config_file) self.config = json.loads(open(config_file).read()) for key in self.config: try: getattr(self, key) except AttributeError as error: setattr(self, key, self.config[key]) # Initializers self.init_log() # it's best to run the log first to catch all events self.init_cameras() self.init_controller() self.init_pid() self.init_db() self.init_gps() if self.DISPLAY_ON: self.init_display() # Initialize Cameras def init_cameras(self): # Setting variables pretty_print('CAM', 'Initializing CV Variables') if self.CAMERA_ROTATED: self.CAMERA_HEIGHT, self.CAMERA_WIDTH = self.CAMERA_WIDTH, self.CAMERA_HEIGHT # flip dimensions if rotated self.CAMERA_CENTER = self.CAMERA_WIDTH / 2 if self.VERBOSE: pretty_print('CAM', 'Camera Width: %d px' % self.CAMERA_WIDTH) pretty_print('CAM', 'Camera Height: %d px' % self.CAMERA_HEIGHT) pretty_print('CAM', 'Camera Center: %d px' % self.CAMERA_CENTER) pretty_print('CAM', 'Camera Depth: %d cm' % self.CAMERA_DEPTH) pretty_print('CAM', 'Camera FOV: %f rad' % self.CAMERA_FOV) if self.VERBOSE: pretty_print('INIT', 'Image Center: %d px' % self.CAMERA_CENTER) self.GROUND_WIDTH = 2 * self.CAMERA_DEPTH * np.tan(self.CAMERA_FOV / 2.0) pretty_print('CAM', 'Ground Width: %d cm' % self.GROUND_WIDTH) pretty_print('CAM', 'Error Tolerance: +/- %d cm' % self.ERROR_TOLERANCE) self.PIXEL_PER_CM = self.CAMERA_WIDTH / self.GROUND_WIDTH pretty_print('CAM', 'Pixel-per-cm: %d px/cm' % self.PIXEL_PER_CM) self.PIXEL_RANGE = int(self.PIXEL_PER_CM * self.ERROR_TOLERANCE) pretty_print('CAM', 'Pixel Range: +/- %d px' % self.PIXEL_RANGE) self.PIXEL_MIN = self.CAMERA_CENTER - self.PIXEL_RANGE self.PIXEL_MAX = self.CAMERA_CENTER + self.PIXEL_RANGE # Set Thresholds self.threshold_min = np.array([self.HUE_MIN, self.SAT_MIN, self.VAL_MIN], np.uint8) self.threshold_max = np.array([self.HUE_MAX, self.SAT_MAX, self.VAL_MAX], np.uint8) # Attempt to set each camera index/name pretty_print('CAM', 'Initializing Cameras') self.cameras = [] self.images = [] for i in range(self.CAMERAS): try: if self.VERBOSE: pretty_print('CAM', 'Attaching Camera #%d' % i) cam = cv2.VideoCapture(i) cam.set(cv.CV_CAP_PROP_SATURATION, self.CAMERA_SATURATION) cam.set(cv.CV_CAP_PROP_BRIGHTNESS, self.CAMERA_BRIGHTNESS) cam.set(cv.CV_CAP_PROP_CONTRAST, self.CAMERA_CONTRAST) cam.set(cv.CV_CAP_PROP_FPS, self.CAMERA_FPS) if not self.CAMERA_ROTATED: cam.set(cv.CV_CAP_PROP_FRAME_WIDTH, self.CAMERA_WIDTH) cam.set(cv.CV_CAP_PROP_FRAME_HEIGHT, self.CAMERA_HEIGHT) else: cam.set(cv.CV_CAP_PROP_FRAME_WIDTH, self.CAMERA_HEIGHT) cam.set(cv.CV_CAP_PROP_FRAME_HEIGHT, self.CAMERA_WIDTH) self.cameras.append(cam) self.images.append(np.zeros((self.CAMERA_HEIGHT, self.CAMERA_WIDTH, 3), np.uint8)) if self.VERBOSE: pretty_print('CAM', 'Camera #%d OK' % i) except Exception as error: pretty_print('CAM', 'ERROR: %s' % str(error)) # Initialize Database def init_db(self): self.LOG_NAME = datetime.strftime(datetime.now(), self.LOG_FORMAT) self.MONGO_NAME = datetime.strftime(datetime.now(), self.MONGO_FORMAT) if self.VERBOSE: pretty_print('DB', 'Initializing MongoDB') if self.VERBOSE: pretty_print('DB', 'Connecting to MongoDB: %s' % self.MONGO_NAME) if self.VERBOSE: pretty_print('DB', 'New session: %s' % self.LOG_NAME) try: self.client = MongoClient() self.database = self.client[self.MONGO_NAME] self.collection = self.database[self.LOG_NAME] if self.VERBOSE: pretty_print('DB', 'Setup OK') except Exception as error: pretty_print('DB', 'ERROR: %s' % str(error)) # Initialize PID Controller def init_pid(self): if self.VERBOSE: pretty_print('PID', 'Initialing Electro-Hydraulics') if self.VERBOSE: pretty_print('PID', 'PWM Minimum: %d' % self.PWM_MIN) if self.VERBOSE: pretty_print('PID', 'PWM Maximum: %d' % self.PWM_MAX) self.CENTER_PWM = int(self.PWM_MIN + self.PWM_MAX / 2.0) if self.VERBOSE: pretty_print('PID', 'PWM Center: %d' % self.CENTER_PWM) try: if self.VERBOSE: pretty_print('PID', 'Default Number of Averages: %d' % self.NUM_AVERAGES) self.offset_history = [self.CAMERA_CENTER] * self.NUM_AVERAGES if self.VERBOSE: pretty_print('PID', 'Setup OK') except Exception as error: pretty_print('PID', 'ERROR: %s' % str(error)) self.average = 0 self.estimated = 0 self.pwm = 0 # Initialize Log def init_log(self): if self.VERBOSE: pretty_print('LOG', 'Initializing Log') self.LOG_NAME = datetime.strftime(datetime.now(), self.LOG_FORMAT) if self.VERBOSE: pretty_print('LOG', 'New log file: %s' % self.LOG_NAME) try: self.log = open('logs/' + self.LOG_NAME + '.csv', 'w') self.log.write(','.join(['time', 'lat', 'long', 'speed', 'cam0', 'cam1', 'estimate', 'average', 'pwm','\n'])) if self.VERBOSE: pretty_print('LOG', 'Setup OK') except Exception as error: pretty_print('ERROR', str(error)) # Initialize Controller def init_controller(self): if self.VERBOSE: pretty_print('CTRL', 'Initializing controller ...') try: if self.VERBOSE: pretty_print('CTRL', 'Device: %s' % str(self.SERIAL_DEVICE)) if self.VERBOSE: pretty_print('CTRL', 'Baud Rate: %s' % str(self.SERIAL_BAUD)) self.controller = serial.Serial(self.SERIAL_DEVICE, self.SERIAL_BAUD) pretty_print('CTRL', 'Setup OK') except Exception as error: pretty_print('CTRL', 'ERROR: %s' % str(error)) # Initialize GPS def init_gps(self): if self.VERBOSE: pretty_print('GPS', 'Initializing GPS ...') self.latitude = 0 self.longitude = 0 self.speed = 0 try: if self.VERBOSE: pretty_print('GPS', 'Enabing GPS ...') self.gpsd = gps.gps() self.gpsd.stream(gps.WATCH_ENABLE) thread.start_new_thread(self.update_gps, ()) except Exception as err: pretty_print('GPS', 'WARNING: GPS not available! %s' % str(err)) # Display def init_display(self): if self.VERBOSE: pretty_print('INIT', 'Initializing Display') try: self.updating = False if self.DISPLAY_ON: thread.start_new_thread(self.update_display, ()) except Exception as error: pretty_print('DISP', 'ERROR: %s' % str(error)) ## Rotate image def rotate_image(self, bgr): bgr = cv2.transpose(bgr) return bgr def capture_images(self): a = time.time() pretty_print('CAM', 'Capturing Images ...') images = [] for i in range(self.CAMERAS): pretty_print('CAM', 'Attempting on Camera #%d' % i) try: (s, bgr) = self.cameras[i].read() if s and (self.images[i] is not None): if self.CAMERA_ROTATED: bgr = self.rotate_image(bgr) if np.all(bgr==self.images[i]): images.append(None) pretty_print('CAM', 'ERROR: Frozen frame') else: pretty_print('CAM', 'Capture successful: %s' % str(bgr.shape)) images.append(bgr) else: pretty_print('CAM', 'ERROR: Capture failed') self.images[i] = np.zeros((self.CAMERA_HEIGHT, self.CAMERA_WIDTH, 3), np.uint8) except KeyboardInterrupt: raise KeyboardInterrupt except: images.append(None) b = time.time() pretty_print('CAM', '... %.2f ms' % ((b - a) * 1000)) return images ## Plant Segmentation Filter """ 1. RBG --> HSV 2. Set minimum saturation equal to the mean saturation 3. Set minimum value equal to the mean value 4. Take hues within range from green-yellow to green-blue """ def plant_filter(self, images): pretty_print('BPPD', 'Filtering for plants ...') a = time.time() masks = [] for bgr in images: if bgr is not None: try: hsv = cv2.cvtColor(bgr, cv2.COLOR_BGR2HSV) self.threshold_min[1] = np.percentile(hsv[:,:,1], 100 * self.SAT_MIN / 255.0) # overwrite the saturation minima self.threshold_min[2] = np.percentile(hsv[:,:,2], 100 * self.VAL_MIN / 255.0) # overwrite the value minima self.threshold_max[1] = 255 self.threshold_max[2] = np.percentile(hsv[:,:,2], 100 * self.VAL_MAX / 255.0) mask = cv2.inRange(hsv, self.threshold_min, self.threshold_max) masks.append(mask) if self.VERBOSE: pretty_print('BPPD', 'Mask Number #%d was successful' % len(masks)) except Exception as error: pretty_print('BPPD', str(error)) else: if self.VERBOSE: pretty_print('BPPD', 'Mask Number #%d is blank' % len(masks)) masks.append(None) b = time.time() if self.VERBOSE: pretty_print('BPPD', '... %.2f ms' % ((b - a) * 1000)) return masks ## Find Plants """ 1. Calculates the column summation of the mask 2. Calculates the 95th percentile threshold of the column sum array 3. Finds indicies which are greater than or equal to the threshold 4. Finds the median of this array of indices 5. Repeat for each mask """ def find_offset(self, masks): a = time.time() offsets = [] sums = [] for mask in masks: if mask is not None: try: column_sum = mask.sum(axis=0) # vertical summation threshold = np.percentile(column_sum, self.THRESHOLD_PERCENTILE) probable = np.nonzero(column_sum >= threshold) # returns 1 length tuble if self.DEBUG: fig = plt.figure() plt.plot(range(self.CAMERA_WIDTH), column_sum) plt.show() time.sleep(0.1) plt.close(fig) num_probable = len(probable[0]) if (num_probable == self.CAMERA_WIDTH * self.THRESHOLD_PERCENTILE / 100.0): print "WARNING" time.sleep(1) best = int(np.median(probable[0])) sum = column_sum[best] centroid = best - self.CAMERA_CENTER offsets.append(centroid) sums.append(sum) except Exception as error: pretty_print('OFF', '%s' % str(error)) if self.VERBOSE: pretty_print('OFF', 'Detected offsets: %s' % str(offsets)) b = time.time() if self.VERBOSE: pretty_print('OFF', '... %.2f ms' % ((b - a) * 1000)) return offsets, sums ## Best Guess for row based on multiple offsets from indices """ 1. If outside bounds, default to edges 2. If inside, use mean of detected indices from both cameras 1. Takes the current assumed offset and number of averages 2. Calculate weights of previous offset 3. Estimate the weighted position of the crop row (in pixels) """ def estimate_row(self, indices, sums): a = time.time() if self.VERBOSE: pretty_print('ROW', 'Smoothing offset estimation ...') try: indices = np.array(indices) sums = np.array(sums) est = indices[np.argmax(sums)] except Exception as error: pretty_print('ROW', 'ERROR: %s' % str(error)) est = self.CAMERA_CENTER self.offset_history.append(est) while len(self.offset_history) > self.NUM_AVERAGES: self.offset_history.pop(0) avg = int(np.mean(self.offset_history)) #!TODO diff = est - avg #!TODO can be a little more clever e.g. np.gradient, np.convolve if self.VERBOSE: pretty_print('ROW', 'Est = %.2f' % est) pretty_print('ROW', 'Avg = %.2f' % avg) pretty_print('ROW', 'Diff.= %.2f' % diff) b = time.time() if self.VERBOSE: pretty_print('ROW', '... %.2f ms' % ((b - a) * 1000)) return est, avg, diff ## Control Hydraulics """ Calculates the PID output for the PWM controller Arguments: est, avg, diff Requires: PWM_MAX, PWM_MIN, CENTER_PWM Returns: PWM """ def calculate_output(self, estimate, average, diff): a = time.time() if self.VERBOSE: pretty_print('PID', 'Calculating PID Output ...') try: p = estimate * self.P_COEF i = average * self.I_COEF d = diff * self.D_COEF if self.VERBOSE: pretty_print('PID', "P = %.1f" % p) if self.VERBOSE: pretty_print('PID', "I = %.1f" % i) if self.VERBOSE: pretty_print('PID', "D = %.1f" % d) pwm = int(p + i + d + self.CENTER_PWM) # offset to zero if pwm > self.PWM_MAX: pwm = self.PWM_MAX elif pwm < self.PWM_MIN: pwm = self.PWM_MIN volts = round((pwm * (self.MAX_VOLTAGE - self.MIN_VOLTAGE) / (self.PWM_MAX - self.PWM_MIN) + self.MIN_VOLTAGE), 2) if pwm > self.PWM_MAX: pwm = self.PWM_MAX elif pwm < self.PWM_MIN: pwm = self.PWM_MIN if self.VERBOSE: pretty_print('PID', 'PWM = %d (%.2f V)' % (pwm, volts)) except Exception as error: pretty_print('PID', 'ERROR: %s' % str(error)) pwm = self.CENTER_PWM b = time.time() if self.VERBOSE: pretty_print('PID', '... %.2f ms' % ((b - a) * 1000)) return pwm, volts ## Control Hydraulics """ 1. Get PWM response corresponding to average offset 2. Send PWM response over serial to controller """ def set_controller(self, pwm): a = time.time() if self.VERBOSE: pretty_print('CTRL', 'Setting controller state ...') try: try: assert self.controller is not None self.controller.write(str(pwm) + '\n') # Write to PWM adaptor if self.VERBOSE: pretty_print('CTRL', 'Wrote successfully') except Exception as error: pretty_print('CTRL', 'ERROR: %s' % str(error)) except Exception as error: pretty_print('CTRL', 'ERROR: %s' % str(error)) b = time.time() if self.VERBOSE: pretty_print('CTRL', '... %.2f ms' % ((b - a) * 1000)) ## Log to Mongo """ 1. Log results to the database 2. Returns Doc ID """ def log_db(self, sample): if self.VERBOSE: pretty_print('DB', 'Logging to Database ...') try: assert self.collection is not None doc_id = self.collection.insert(sample) if self.VERBOSE: pretty_print('DB', 'Doc ID: %s' % str(doc_id)) except Exception as error: pretty_print('DB', 'ERROR: %s' % str(error)) return doc_id ## Log to File """ 1. Open new text file 2. For each document in session, print parameters to file """ def log_file(self, sample): if self.VERBOSE: pretty_print('LOG', 'Logging to File') try: assert self.log is not None time = str(sample['time']) latitude = str(sample['lat']) longitude = str(sample['long']) speed = str(sample['speed']) estimate = str(sample['estimate']) average = str(sample['average']) pwm = str(sample['pwm']) self.log.write(','.join([time, latitude, longitude, speed, estimate, average, pwm,'\n'])) except Exception as error: pretty_print('LOG', 'ERROR: %s' % str(error)) ## Update the Display """ 0. Check for concurrent update process 1. Draw lines on RGB images 2. Draw lines on ABP masks 3. Output GUI display """ def update_display(self): a = time.time() if self.updating: return # if the display is already updating, wait and exit (puts less harm on the CPU) else: self.updating = True if self.VERBOSE: pretty_print('DISP', 'Displaying Images ...') try: pwm = self.pwm average = self.average + self.CAMERA_CENTER estimated = self.estimated + self.CAMERA_CENTER masks = self.masks images = self.images volts = self.volts output_images = [] distance = round((average - self.CAMERA_CENTER) / float(self.PIXEL_PER_CM), 1) if self.VERBOSE: pretty_print('DISP', 'Offset Distance: %d' % distance) for i in xrange(self.CAMERAS): try: if self.VERBOSE: pretty_print('DISP', 'Image #%d' % (i+1)) img = images[i] mask = masks[i] if img is None: img = np.zeros((self.CAMERA_HEIGHT, self.CAMERA_WIDTH, 3), np.uint8) if mask is None: mask = np.zeros((self.CAMERA_HEIGHT, self.CAMERA_WIDTH), np.uint8) (h, w, d) = img.shape if self.VERBOSE: pretty_print('DISP', 'Mask shape: %s' % str(mask.shape)) if self.VERBOSE: pretty_print('DISP', 'Img shape: %s' % str(img.shape)) if self.HIGHLIGHT: img = np.dstack((mask, mask, mask)) img[:, self.PIXEL_MIN, 2] = 255 img[:, self.PIXEL_MAX, 2] = 255 img[:, self.CAMERA_CENTER, 1] = 255 img[:, average, 0] = 255 if self.VERBOSE: pretty_print('DISP', 'Highlighted detected plants') else: cv2.line(img, (self.PIXEL_MIN, 0), (self.PIXEL_MIN, self.CAMERA_HEIGHT), (0,0,255), 1) cv2.line(img, (self.PIXEL_MAX, 0), (self.PIXEL_MAX, self.CAMERA_HEIGHT), (0,0,255), 1) cv2.line(img, (average, 0), (average, self.CAMERA_HEIGHT), (0,255,0), 2) cv2.line(img, (self.CAMERA_CENTER, 0), (self.CAMERA_CENTER, self.CAMERA_HEIGHT), (255,255,255), 1) output_images.append(img) except Exception as error: pretty_print('DISP', 'ERROR: %s' % str(error)) if self.VERBOSE: pretty_print('DISP', 'Stacking images ...') output_small = np.hstack(output_images) pad = np.zeros((self.CAMERA_HEIGHT * 0.1, self.CAMERAS * self.CAMERA_WIDTH, 3), np.uint8) # add blank space output_padded = np.vstack([output_small, pad]) if self.VERBOSE: pretty_print('DISP', 'Padded image') output_large = cv2.resize(output_padded, (self.DISPLAY_WIDTH, self.DISPLAY_HEIGHT)) # Offset Distance if average - self.CAMERA_CENTER >= 0: distance_str = str("+%2.1f cm" % distance) elif average - self.CAMERA_CENTER< 0: distance_str = str("%2.1f cm" % distance) cv2.putText(output_large, distance_str, (int(self.DISPLAY_WIDTH * 0.01), int(self.DISPLAY_WIDTH * 0.74)), cv2.FONT_HERSHEY_SIMPLEX, 2, (255,255,255), 4) # Output Voltage volts_str = str("%2.1f V" % volts) cv2.putText(output_large, volts_str, (int(self.DISPLAY_WIDTH * 0.82), int(self.DISPLAY_WIDTH * 0.74)), cv2.FONT_HERSHEY_SIMPLEX, 2, (255,255,255), 4) # Arrow if average - self.CAMERA_CENTER >= 0: p = (int(self.DISPLAY_WIDTH * 0.45), int(self.DISPLAY_WIDTH * 0.72)) q = (int(self.DISPLAY_WIDTH * 0.55), int(self.DISPLAY_WIDTH * 0.72)) elif average - self.CAMERA_CENTER< 0: p = (int(self.DISPLAY_WIDTH * 0.55), int(self.DISPLAY_WIDTH * 0.72)) q = (int(self.DISPLAY_WIDTH * 0.45), int(self.DISPLAY_WIDTH * 0.72)) color = (255,255,255) thickness = 8 line_type = 8 shift = 0 arrow_magnitude=20 cv2.line(output_large, p, q, color, thickness, line_type, shift) # draw arrow tail angle = np.arctan2(p[1]-q[1], p[0]-q[0]) p = (int(q[0] + arrow_magnitude * np.cos(angle + np.pi/4)), # starting point of first line of arrow head int(q[1] + arrow_magnitude * np.sin(angle + np.pi/4))) cv2.line(output_large, p, q, color, thickness, line_type, shift) # draw first half of arrow head p = (int(q[0] + arrow_magnitude * np.cos(angle - np.pi/4)), # starting point of second line of arrow head int(q[1] + arrow_magnitude * np.sin(angle - np.pi/4))) cv2.line(output_large, p, q, color, thickness, line_type, shift) # draw second half of arrow head # Draw GUI cv2.namedWindow('Agri-Vision', cv2.WINDOW_NORMAL) if self.FULLSCREEN: cv2.setWindowProperty('Agri-Vision', cv2.WND_PROP_FULLSCREEN, cv2.cv.CV_WINDOW_FULLSCREEN) if self.VERBOSE: pretty_print('DISP', 'Output shape: %s' % str(output_large.shape)) cv2.imshow('Agri-Vision', output_large) if cv2.waitKey(5) == 0: pass except Exception as error: pretty_print('DISP', str(error)) self.updating = False b = time.time() if self.VERBOSE: pretty_print('DISP', '... %.2f ms' % ((b - a) * 1000)) ## Update GPS """ 1. Get the most recent GPS data 2. Set global variables for lat, long and speed """ def update_gps(self): while True: time.sleep(1) # GPS update time self.gpsd.next() self.latitude = self.gpsd.fix.latitude self.longitude = self.gpsd.fix.longitude self.speed = self.gpsd.fix.speed pretty_print('GPS', '%d N %d E' % (self.latitude, self.longitude)) ## Close """ Function to shutdown application safely 1. Close windows 2. Disable controller 3. Release capture interfaces """ def close(self): if self.VERBOSE: pretty_print('SYSTEM', 'Shutting Down ...') time.sleep(1) try: if self.VERBOSE: pretty_print('CTRL', 'Closing Controller ...') self.controller.close() ## Disable controller time.sleep(0.5) except Exception as error: pretty_print('CTRL', 'ERROR: %s' % str(error)) for i in range(len(self.cameras)): try: if self.VERBOSE: pretty_print('CAM', 'Closing Camera #%d ...' % i) self.cameras[i].release() ## Disable cameras time.sleep(0.5) except Exception as error: pretty_print('CAM', 'ERROR: %s' % str(error)) cv2.destroyAllWindows() ## Close windows ## Run """ Function for Run-time loop 1. Get initial time 2. Capture images 3. Generate mask filter for plant matter 4. Calculate indices of rows 5. Estimate row from both images 6. Get number of averages 7. Calculate moving average 8. Send PWM response to controller 9. Throttle to desired frequency 10. Log results to DB 11. Display results """ def run(self): while True: try: images = self.capture_images() masks = self.plant_filter(images) offsets, sums = self.find_offset(masks) (est, avg, diff) = self.estimate_row(offsets, sums) pwm, volts = self.calculate_output(est, avg, diff) err = self.set_controller(pwm) sample = { 'offsets' : offsets, 'estimated' : est, 'average' : avg, 'differential' : diff, 'pwm': pwm, 'time' : datetime.strftime(datetime.now(), self.TIME_FORMAT), 'long' : self.longitude, 'lat' : self.latitude, 'speed' : self.speed, } self.pwm = pwm self.images = images self.masks = masks self.average = avg self.estimated = est self.volts = volts if self.MONGO_ON: doc_id = self.log_db(sample) if self.LOGFILE_ON: self.log_file(sample) if self.DISPLAY_ON: try: os.environ['DISPLAY'] thread.start_new_thread(self.update_display, ()) except Exception as error: pretty_print('SYS', 'ERROR: %s' % str(error)) except KeyboardInterrupt as error: self.close() break except UnboundLocalError as error: pass ## Main if __name__ == '__main__': session = AgriVision(CONFIG_FILE) session.run()
mit
vrkrishn/FBHacks
src/Backend/VideoDB.py
1
3435
import numpy as np from scipy.ndimage import gaussian_filter1d class VideoSelect(object): def smoothFeature(self, feature, sigma): return gaussian_filter1d(feature, sigma) def normalizeFeature(self, feature): scale = np.max(feature) - np.min(feature) return (feature - np.min(feature))/float(scale) def getLocalMaxima(self, feature, times): maxima = [] for i in xrange(len(feature)): leftMaxima = (i == 0) or (feature[i] > feature[i-1]) rightMaxima = (i == len(feature) - 1) or (feature[i] > feature[i+1]) if (leftMaxima and rightMaxima): maxima.append((times[i], feature[i])) return maxima def getSmoothedIntervals(self, maxima, windowSize, sigma): if (len(maxima) == 0): return [] nClusters = 1 clusters = [0 for i in xrange(len(maxima))] for i in xrange(1,len(maxima)): last_time, last_value = maxima[i-1] time, value = maxima[i] if (abs(time - last_time) <= windowSize): clusters[i] = clusters[i-1] else: clusters[i] = clusters[i-1] + 1 nClusters = nClusters + 1 intervals = [] # Get the start time for the first maxima currentCluster = 0 startMaxima = maxima[0] endMaxima = maxima[0] maxValue = maxima[0][1] for i in xrange(1, len(clusters)): if (clusters[i] == currentCluster): #increment the interval time endMaxima = maxima[i] if (maxima[i][1] > maxValue): maxValue = maxima[i][1] else: # Create interval between maxima[startCluster] and maxima[i-1] # interval is (start time, endtime, max_value) intervals.append((startMaxima[0]-windowSize/2, endMaxima[0]+windowSize/2, maxValue)) startMaxima = maxima[i] endMaxima = maxima[i] maxValue = maxima[i][1] intervals.append((startMaxima[0]-windowSize/2, endMaxima[0]+windowSize/2, maxValue)) return intervals def sortIntervalsByValue(self, intervals): return sorted(intervals, key=lambda interval: -interval[2]) def getTopKVideoClips(self, sortedIntervals, k): if (k > len(sortedIntervals)): return sortedIntervals else: return sortedIntervals[:k] def processFeature(self, times, feature, windowSize, k, sigma): smoothed = self.smoothFeature(feature, sigma) normalized = self.normalizeFeature(smoothed) maxima = self.getLocalMaxima(normalized, times) intervals = self.getSmoothedIntervals(maxima, windowSize,sigma) sortedIntervals = self.sortIntervalsByValue(intervals) topK = self.getTopKVideoClips(sortedIntervals, k) return topK if __name__ == '__main__': import matplotlib.pyplot as plt V = VideoSelect() n = 100 data = np.random.rand(n) #data[10] = 20 #data[15] = 30 times = np.array(range(n)) k = 3 sigma = 2 windows = [3, 5,10] plt.subplot(len(windows)+3,1,1) plt.plot(times, data) smoothed = V.smoothFeature(data, sigma) plt.subplot(len(windows)+3,1,2) plt.plot(times, smoothed) normalized = V.normalizeFeature(smoothed) maxima = V.getLocalMaxima(normalized, times) plt.subplot(len(windows)+3,1,3) plt.plot([m[0] for m in maxima], [m[1] for m in maxima]) for i in xrange(len(windows)): w = windows[i] topInterval = V.processFeature(times, data, w, k, sigma) plt.subplot(len(windows)+3,1,4+i) print(len(topInterval)) for interval in topInterval: plt.plot([interval[0], interval[1]], [interval[2], interval[2]]) plt.axis([min(times), max(times), 0, 2]) plt.show()
mit
f3r/scikit-learn
doc/sphinxext/numpy_ext/docscrape_sphinx.py
408
8061
import re import inspect import textwrap import pydoc from .docscrape import NumpyDocString from .docscrape import FunctionDoc from .docscrape import ClassDoc class SphinxDocString(NumpyDocString): def __init__(self, docstring, config=None): config = {} if config is None else config self.use_plots = config.get('use_plots', False) NumpyDocString.__init__(self, docstring, config=config) # string conversion routines def _str_header(self, name, symbol='`'): return ['.. rubric:: ' + name, ''] def _str_field_list(self, name): return [':' + name + ':'] def _str_indent(self, doc, indent=4): out = [] for line in doc: out += [' ' * indent + line] return out def _str_signature(self): return [''] if self['Signature']: return ['``%s``' % self['Signature']] + [''] else: return [''] def _str_summary(self): return self['Summary'] + [''] def _str_extended_summary(self): return self['Extended Summary'] + [''] def _str_param_list(self, name): out = [] if self[name]: out += self._str_field_list(name) out += [''] for param, param_type, desc in self[name]: out += self._str_indent(['**%s** : %s' % (param.strip(), param_type)]) out += [''] out += self._str_indent(desc, 8) out += [''] return out @property def _obj(self): if hasattr(self, '_cls'): return self._cls elif hasattr(self, '_f'): return self._f return None def _str_member_list(self, name): """ Generate a member listing, autosummary:: table where possible, and a table where not. """ out = [] if self[name]: out += ['.. rubric:: %s' % name, ''] prefix = getattr(self, '_name', '') if prefix: prefix = '~%s.' % prefix autosum = [] others = [] for param, param_type, desc in self[name]: param = param.strip() if not self._obj or hasattr(self._obj, param): autosum += [" %s%s" % (prefix, param)] else: others.append((param, param_type, desc)) if autosum: # GAEL: Toctree commented out below because it creates # hundreds of sphinx warnings # out += ['.. autosummary::', ' :toctree:', ''] out += ['.. autosummary::', ''] out += autosum if others: maxlen_0 = max([len(x[0]) for x in others]) maxlen_1 = max([len(x[1]) for x in others]) hdr = "=" * maxlen_0 + " " + "=" * maxlen_1 + " " + "=" * 10 fmt = '%%%ds %%%ds ' % (maxlen_0, maxlen_1) n_indent = maxlen_0 + maxlen_1 + 4 out += [hdr] for param, param_type, desc in others: out += [fmt % (param.strip(), param_type)] out += self._str_indent(desc, n_indent) out += [hdr] out += [''] return out def _str_section(self, name): out = [] if self[name]: out += self._str_header(name) out += [''] content = textwrap.dedent("\n".join(self[name])).split("\n") out += content out += [''] return out def _str_see_also(self, func_role): out = [] if self['See Also']: see_also = super(SphinxDocString, self)._str_see_also(func_role) out = ['.. seealso::', ''] out += self._str_indent(see_also[2:]) return out def _str_warnings(self): out = [] if self['Warnings']: out = ['.. warning::', ''] out += self._str_indent(self['Warnings']) return out def _str_index(self): idx = self['index'] out = [] if len(idx) == 0: return out out += ['.. index:: %s' % idx.get('default', '')] for section, references in idx.iteritems(): if section == 'default': continue elif section == 'refguide': out += [' single: %s' % (', '.join(references))] else: out += [' %s: %s' % (section, ','.join(references))] return out def _str_references(self): out = [] if self['References']: out += self._str_header('References') if isinstance(self['References'], str): self['References'] = [self['References']] out.extend(self['References']) out += [''] # Latex collects all references to a separate bibliography, # so we need to insert links to it import sphinx # local import to avoid test dependency if sphinx.__version__ >= "0.6": out += ['.. only:: latex', ''] else: out += ['.. latexonly::', ''] items = [] for line in self['References']: m = re.match(r'.. \[([a-z0-9._-]+)\]', line, re.I) if m: items.append(m.group(1)) out += [' ' + ", ".join(["[%s]_" % item for item in items]), ''] return out def _str_examples(self): examples_str = "\n".join(self['Examples']) if (self.use_plots and 'import matplotlib' in examples_str and 'plot::' not in examples_str): out = [] out += self._str_header('Examples') out += ['.. plot::', ''] out += self._str_indent(self['Examples']) out += [''] return out else: return self._str_section('Examples') def __str__(self, indent=0, func_role="obj"): out = [] out += self._str_signature() out += self._str_index() + [''] out += self._str_summary() out += self._str_extended_summary() for param_list in ('Parameters', 'Returns', 'Raises', 'Attributes'): out += self._str_param_list(param_list) out += self._str_warnings() out += self._str_see_also(func_role) out += self._str_section('Notes') out += self._str_references() out += self._str_examples() for param_list in ('Methods',): out += self._str_member_list(param_list) out = self._str_indent(out, indent) return '\n'.join(out) class SphinxFunctionDoc(SphinxDocString, FunctionDoc): def __init__(self, obj, doc=None, config={}): self.use_plots = config.get('use_plots', False) FunctionDoc.__init__(self, obj, doc=doc, config=config) class SphinxClassDoc(SphinxDocString, ClassDoc): def __init__(self, obj, doc=None, func_doc=None, config={}): self.use_plots = config.get('use_plots', False) ClassDoc.__init__(self, obj, doc=doc, func_doc=None, config=config) class SphinxObjDoc(SphinxDocString): def __init__(self, obj, doc=None, config=None): self._f = obj SphinxDocString.__init__(self, doc, config=config) def get_doc_object(obj, what=None, doc=None, config={}): if what is None: if inspect.isclass(obj): what = 'class' elif inspect.ismodule(obj): what = 'module' elif callable(obj): what = 'function' else: what = 'object' if what == 'class': return SphinxClassDoc(obj, func_doc=SphinxFunctionDoc, doc=doc, config=config) elif what in ('function', 'method'): return SphinxFunctionDoc(obj, doc=doc, config=config) else: if doc is None: doc = pydoc.getdoc(obj) return SphinxObjDoc(obj, doc, config=config)
bsd-3-clause
gph82/PyEMMA
pyemma/coordinates/clustering/interface.py
1
13210
# This file is part of PyEMMA. # # Copyright (c) 2015, 2014 Computational Molecular Biology Group, Freie Universitaet Berlin (GER) # # PyEMMA is free software: you can redistribute it and/or modify # it under the terms of the GNU Lesser General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU Lesser General Public License # along with this program. If not, see <http://www.gnu.org/licenses/>. ''' Created on 18.02.2015 @author: marscher ''' from __future__ import absolute_import import os from pyemma._base.model import Model from pyemma._ext.sklearn.base import ClusterMixin from pyemma.coordinates.clustering import regspatial from pyemma.coordinates.transform.transformer import StreamingTransformer from pyemma.util.discrete_trajectories import index_states, sample_indexes_by_state from pyemma.util.files import mkdir_p from six.moves import range, zip import numpy as np class AbstractClustering(StreamingTransformer, Model, ClusterMixin): """ provides a common interface for cluster algorithms. Parameters ---------- metric: str, default='euclidean' metric to pass to c extension n_jobs: int or None, default=None How much threads to use during assignment If None, all available CPUs will be used. """ def __init__(self, metric='euclidean', n_jobs=None): super(AbstractClustering, self).__init__() self.metric = metric self._clustercenters = None self._previous_stride = -1 self._dtrajs = [] self._overwrite_dtrajs = False self._index_states = [] self.n_jobs = n_jobs @property def n_jobs(self): """ Returns number of jobs/threads to use during assignment of data. Returns ------- If None it will return number of processors /or cores or the setting of 'OMP_NUM_THREADS' env variable. Notes ----- By setting the environment variable 'OMP_NUM_THREADS' to an integer, one will override the default argument of n_jobs (currently None). """ assert isinstance(self._n_jobs, int) return self._n_jobs @n_jobs.setter def n_jobs(self, val): """ set number of jobs/threads to use via assignment of data. Parameters ---------- val: int or None a positive int for the number of jobs. Or None to usage all available resources. Notes ----- """ from pyemma.util.reflection import get_default_args def_args = get_default_args(self.__init__) # default value from constructor? if val == def_args['n_jobs']: omp_threads_from_env = os.getenv('OMP_NUM_THREADS', None) import psutil n_cpus = psutil.cpu_count() if omp_threads_from_env: try: self._n_jobs = int(omp_threads_from_env) self.logger.info("number of threads obtained from env variable" " 'OMP_NUM_THREADS'=%s" % omp_threads_from_env) except ValueError as ve: self.logger.warning("could not parse env variable 'OMP_NUM_THREADS'." "Value='%s'. Error=%s" % (omp_threads_from_env, ve)) self._n_jobs = n_cpus else: self._n_jobs = n_cpus else: self._n_jobs = int(val) @property def clustercenters(self): """ Array containing the coordinates of the calculated cluster centers. """ return self._clustercenters @clustercenters.setter def clustercenters(self, val): val = np.asarray(val, dtype='float32', order='C') self._clustercenters = val @property def overwrite_dtrajs(self): """ Should existing dtraj files be overwritten. Set this property to True to overwrite. """ return self._overwrite_dtrajs @overwrite_dtrajs.setter def overwrite_dtrajs(self, value): self._overwrite_dtrajs = value @property def dtrajs(self): """Discrete trajectories (assigned data to cluster centers).""" if len(self._dtrajs) == 0: # nothing assigned yet, doing that now self._dtrajs = self.assign(stride=1) return self._dtrajs # returning what we have saved @property def index_clusters(self): """Returns trajectory/time indexes for all the clusters Returns ------- indexes : list of ndarray( (N_i, 2) ) For each state, all trajectory and time indexes where this cluster occurs. Each matrix has a number of rows equal to the number of occurrences of the corresponding state, with rows consisting of a tuple (i, t), where i is the index of the trajectory and t is the time index within the trajectory. """ if len(self._dtrajs) == 0: # nothing assigned yet, doing that now self._dtrajs = self.assign() if len(self._index_states) == 0: # has never been run self._index_states = index_states(self._dtrajs) return self._index_states def sample_indexes_by_cluster(self, clusters, nsample, replace=True): """Samples trajectory/time indexes according to the given sequence of states. Parameters ---------- clusters : iterable of integers It contains the cluster indexes to be sampled nsample : int Number of samples per cluster. If replace = False, the number of returned samples per cluster could be smaller if less than nsample indexes are available for a cluster. replace : boolean, optional Whether the sample is with or without replacement Returns ------- indexes : list of ndarray( (N, 2) ) List of the sampled indices by cluster. Each element is an index array with a number of rows equal to N=len(sequence), with rows consisting of a tuple (i, t), where i is the index of the trajectory and t is the time index within the trajectory. """ # Check if the catalogue (index_states) if len(self._index_states) == 0: # has never been run self._index_states = index_states(self.dtrajs) return sample_indexes_by_state(self._index_states[clusters], nsample, replace=replace) def _transform_array(self, X): """get closest index of point in :attr:`clustercenters` to x.""" dtraj = np.empty(X.shape[0], dtype=self.output_type()) regspatial.assign(X.astype(np.float32, order='C', copy=False), self.clustercenters, dtraj, self.metric, self.n_jobs) res = dtraj[:, None] # always return a column vector in this function return res def dimension(self): """output dimension of clustering algorithm (always 1).""" return 1 def output_type(self): return np.int32 def assign(self, X=None, stride=1): """ Assigns the given trajectory or list of trajectories to cluster centers by using the discretization defined by this clustering method (usually a Voronoi tesselation). You can assign multiple times with different strides. The last result of assign will be saved and is available as the attribute :func:`dtrajs`. Parameters ---------- X : ndarray(T, n) or list of ndarray(T_i, n), optional, default = None Optional input data to map, where T is the number of time steps and n is the number of dimensions. When a list is provided they can have differently many time steps, but the number of dimensions need to be consistent. When X is not provided, the result of assign is identical to get_output(), i.e. the data used for clustering will be assigned. If X is given, the stride argument is not accepted. stride : int, optional, default = 1 If set to 1, all frames of the input data will be assigned. Note that this could cause this calculation to be very slow for large data sets. Since molecular dynamics data is usually correlated at short timescales, it is often sufficient to obtain the discretization at a longer stride. Note that the stride option used to conduct the clustering is independent of the assign stride. This argument is only accepted if X is not given. Returns ------- Y : ndarray(T, dtype=int) or list of ndarray(T_i, dtype=int) The discretized trajectory: int-array with the indexes of the assigned clusters, or list of such int-arrays. If called with a list of trajectories, Y will also be a corresponding list of discrete trajectories """ if X is None: # if the stride did not change and the discrete trajectory is already present, # just return it if self._previous_stride is stride and len(self._dtrajs) > 0: return self._dtrajs self._previous_stride = stride # map to column vectors mapped = self.get_output(stride=stride, chunk=self.chunksize) # flatten and save self._dtrajs = [np.transpose(m)[0] for m in mapped] # return return self._dtrajs else: if stride != 1: raise ValueError('assign accepts either X or stride parameters, but not both. If you want to map '+ 'only a subset of your data, extract the subset yourself and pass it as X.') # map to column vector(s) mapped = self.transform(X) # flatten if isinstance(mapped, np.ndarray): mapped = np.transpose(mapped)[0] else: mapped = [np.transpose(m)[0] for m in mapped] # return return mapped def save_dtrajs(self, trajfiles=None, prefix='', output_dir='.', output_format='ascii', extension='.dtraj'): """saves calculated discrete trajectories. Filenames are taken from given reader. If data comes from memory dtrajs are written to a default filename. Parameters ---------- trajfiles : list of str (optional) names of input trajectory files, will be used generate output files. prefix : str prepend prefix to filenames. output_dir : str save files to this directory. output_format : str if format is 'ascii' dtrajs will be written as csv files, otherwise they will be written as NumPy .npy files. extension : str file extension to append (eg. '.itraj') """ if extension[0] != '.': extension = '.' + extension # obtain filenames from input (if possible, reader is a featurereader) if output_format == 'ascii': from msmtools.dtraj import write_discrete_trajectory as write_dtraj else: from msmtools.dtraj import save_discrete_trajectory as write_dtraj import os.path as path output_files = [] if trajfiles is not None: # have filenames available? for f in trajfiles: p, n = path.split(f) # path and file basename, _ = path.splitext(n) if prefix != '': name = "%s_%s%s" % (prefix, basename, extension) else: name = "%s%s" % (basename, extension) # name = path.join(p, name) output_files.append(name) else: for i in range(len(self.dtrajs)): if prefix is not '': name = "%s_%i%s" % (prefix, i, extension) else: name = str(i) + extension output_files.append(name) assert len(self.dtrajs) == len(output_files) if not os.path.exists(output_dir): mkdir_p(output_dir) for filename, dtraj in zip(output_files, self.dtrajs): dest = path.join(output_dir, filename) self._logger.debug('writing dtraj to "%s"' % dest) try: if path.exists(dest) and not self.overwrite_dtrajs: raise EnvironmentError('Attempted to write dtraj "%s" which already existed. To automatically' ' overwrite existing files, set source.overwrite_dtrajs=True.' % dest) write_dtraj(dest, dtraj) except IOError: self._logger.exception('Exception during writing dtraj to "%s"' % dest)
lgpl-3.0
chenyyx/scikit-learn-doc-zh
examples/zh/linear_model/plot_lasso_lars.py
363
1080
#!/usr/bin/env python """ ===================== Lasso path using LARS ===================== Computes Lasso Path along the regularization parameter using the LARS algorithm on the diabetes dataset. Each color represents a different feature of the coefficient vector, and this is displayed as a function of the regularization parameter. """ print(__doc__) # Author: Fabian Pedregosa <[email protected]> # Alexandre Gramfort <[email protected]> # License: BSD 3 clause import numpy as np import matplotlib.pyplot as plt from sklearn import linear_model from sklearn import datasets diabetes = datasets.load_diabetes() X = diabetes.data y = diabetes.target print("Computing regularization path using the LARS ...") alphas, _, coefs = linear_model.lars_path(X, y, method='lasso', verbose=True) xx = np.sum(np.abs(coefs.T), axis=1) xx /= xx[-1] plt.plot(xx, coefs.T) ymin, ymax = plt.ylim() plt.vlines(xx, ymin, ymax, linestyle='dashed') plt.xlabel('|coef| / max|coef|') plt.ylabel('Coefficients') plt.title('LASSO Path') plt.axis('tight') plt.show()
gpl-3.0
mhostetter/gnuradio
gr-filter/examples/fir_filter_fff.py
47
4014
#!/usr/bin/env python # # Copyright 2013 Free Software Foundation, Inc. # # This file is part of GNU Radio # # GNU Radio is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 3, or (at your option) # any later version. # # GNU Radio is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with GNU Radio; see the file COPYING. If not, write to # the Free Software Foundation, Inc., 51 Franklin Street, # Boston, MA 02110-1301, USA. # from gnuradio import gr, filter from gnuradio import analog from gnuradio import blocks from gnuradio import eng_notation from gnuradio.eng_option import eng_option from optparse import OptionParser import sys try: import scipy except ImportError: print "Error: could not import scipy (http://www.scipy.org/)" sys.exit(1) try: import pylab except ImportError: print "Error: could not import pylab (http://matplotlib.sourceforge.net/)" sys.exit(1) class example_fir_filter_fff(gr.top_block): def __init__(self, N, fs, bw, tw, atten, D): gr.top_block.__init__(self) self._nsamps = N self._fs = fs self._bw = bw self._tw = tw self._at = atten self._decim = D taps = filter.firdes.low_pass_2(1, self._fs, self._bw, self._tw, self._at) print "Num. Taps: ", len(taps) self.src = analog.noise_source_f(analog.GR_GAUSSIAN, 1) self.head = blocks.head(gr.sizeof_float, self._nsamps) self.filt0 = filter.fir_filter_fff(self._decim, taps) self.vsnk_src = blocks.vector_sink_f() self.vsnk_out = blocks.vector_sink_f() self.connect(self.src, self.head, self.vsnk_src) self.connect(self.head, self.filt0, self.vsnk_out) def main(): parser = OptionParser(option_class=eng_option, conflict_handler="resolve") parser.add_option("-N", "--nsamples", type="int", default=10000, help="Number of samples to process [default=%default]") parser.add_option("-s", "--samplerate", type="eng_float", default=8000, help="System sample rate [default=%default]") parser.add_option("-B", "--bandwidth", type="eng_float", default=1000, help="Filter bandwidth [default=%default]") parser.add_option("-T", "--transition", type="eng_float", default=100, help="Transition band [default=%default]") parser.add_option("-A", "--attenuation", type="eng_float", default=80, help="Stopband attenuation [default=%default]") parser.add_option("-D", "--decimation", type="int", default=1, help="Decmation factor [default=%default]") (options, args) = parser.parse_args () put = example_fir_filter_fff(options.nsamples, options.samplerate, options.bandwidth, options.transition, options.attenuation, options.decimation) put.run() data_src = scipy.array(put.vsnk_src.data()) data_snk = scipy.array(put.vsnk_out.data()) # Plot the signals PSDs nfft = 1024 f1 = pylab.figure(1, figsize=(12,10)) s1 = f1.add_subplot(1,1,1) s1.psd(data_src, NFFT=nfft, noverlap=nfft/4, Fs=options.samplerate) s1.psd(data_snk, NFFT=nfft, noverlap=nfft/4, Fs=options.samplerate) f2 = pylab.figure(2, figsize=(12,10)) s2 = f2.add_subplot(1,1,1) s2.plot(data_src) s2.plot(data_snk.real, 'g') pylab.show() if __name__ == "__main__": try: main() except KeyboardInterrupt: pass
gpl-3.0
saketkc/statsmodels
statsmodels/tools/print_version.py
23
7951
#!/usr/bin/env python from __future__ import print_function from statsmodels.compat.python import reduce import sys from os.path import dirname def safe_version(module, attr='__version__'): if not isinstance(attr, list): attr = [attr] try: return reduce(getattr, [module] + attr) except AttributeError: return "Cannot detect version" def _show_versions_only(): print("\nINSTALLED VERSIONS") print("------------------") print("Python: %d.%d.%d.%s.%s" % sys.version_info[:]) try: import os (sysname, nodename, release, version, machine) = os.uname() print("OS: %s %s %s %s" % (sysname, release, version, machine)) print("byteorder: %s" % sys.byteorder) print("LC_ALL: %s" % os.environ.get('LC_ALL', "None")) print("LANG: %s" % os.environ.get('LANG', "None")) except: pass try: from statsmodels import version has_sm = True except ImportError: has_sm = False print('\nStatsmodels\n===========\n') if has_sm: print('Installed: %s' % safe_version(version, 'full_version')) else: print('Not installed') print("\nRequired Dependencies\n=====================\n") try: import Cython print("cython: %s" % safe_version(Cython)) except ImportError: print("cython: Not installed") try: import numpy print("numpy: %s" % safe_version(numpy, ['version', 'version'])) except ImportError: print("numpy: Not installed") try: import scipy print("scipy: %s" % safe_version(scipy, ['version', 'version'])) except ImportError: print("scipy: Not installed") try: import pandas print("pandas: %s" % safe_version(pandas, ['version', 'version'])) except ImportError: print("pandas: Not installed") try: import dateutil print(" dateutil: %s" % safe_version(dateutil)) except ImportError: print(" dateutil: not installed") try: import patsy print("patsy: %s" % safe_version(patsy)) except ImportError: print("patsy: Not installed") print("\nOptional Dependencies\n=====================\n") try: import matplotlib as mpl print("matplotlib: %s" % safe_version(mpl)) except ImportError: print("matplotlib: Not installed") try: from cvxopt import info print("cvxopt: %s" % safe_version(info, 'version')) except ImportError: print("cvxopt: Not installed") print("\nDeveloper Tools\n================\n") try: import IPython print("IPython: %s" % safe_version(IPython)) except ImportError: print("IPython: Not installed") try: import jinja2 print(" jinja2: %s" % safe_version(jinja2)) except ImportError: print(" jinja2: Not installed") try: import sphinx print("sphinx: %s" % safe_version(sphinx)) except ImportError: print("sphinx: Not installed") try: import pygments print(" pygments: %s" % safe_version(pygments)) except ImportError: print(" pygments: Not installed") try: import nose print("nose: %s" % safe_version(nose)) except ImportError: print("nose: Not installed") try: import virtualenv print("virtualenv: %s" % safe_version(virtualenv)) except ImportError: print("virtualenv: Not installed") print("\n") def show_versions(show_dirs=True): if not show_dirs: _show_versions_only() print("\nINSTALLED VERSIONS") print("------------------") print("Python: %d.%d.%d.%s.%s" % sys.version_info[:]) try: import os (sysname, nodename, release, version, machine) = os.uname() print("OS: %s %s %s %s" % (sysname, release, version, machine)) print("byteorder: %s" % sys.byteorder) print("LC_ALL: %s" % os.environ.get('LC_ALL', "None")) print("LANG: %s" % os.environ.get('LANG', "None")) except: pass try: import statsmodels from statsmodels import version has_sm = True except ImportError: has_sm = False print('\nStatsmodels\n===========\n') if has_sm: print('Installed: %s (%s)' % (safe_version(version, 'full_version'), dirname(statsmodels.__file__))) else: print('Not installed') print("\nRequired Dependencies\n=====================\n") try: import Cython print("cython: %s (%s)" % (safe_version(Cython), dirname(Cython.__file__))) except ImportError: print("cython: Not installed") try: import numpy print("numpy: %s (%s)" % (safe_version(numpy, ['version', 'version']), dirname(numpy.__file__))) except ImportError: print("numpy: Not installed") try: import scipy print("scipy: %s (%s)" % (safe_version(scipy, ['version', 'version']), dirname(scipy.__file__))) except ImportError: print("scipy: Not installed") try: import pandas print("pandas: %s (%s)" % (safe_version(pandas, ['version', 'version']), dirname(pandas.__file__))) except ImportError: print("pandas: Not installed") try: import dateutil print(" dateutil: %s (%s)" % (safe_version(dateutil), dirname(dateutil.__file__))) except ImportError: print(" dateutil: not installed") try: import patsy print("patsy: %s (%s)" % (safe_version(patsy), dirname(patsy.__file__))) except ImportError: print("patsy: Not installed") print("\nOptional Dependencies\n=====================\n") try: import matplotlib as mpl print("matplotlib: %s (%s)" % (safe_version(mpl), dirname(mpl.__file__))) except ImportError: print("matplotlib: Not installed") try: from cvxopt import info print("cvxopt: %s (%s)" % (safe_version(info, 'version'), dirname(info.__file__))) except ImportError: print("cvxopt: Not installed") print("\nDeveloper Tools\n================\n") try: import IPython print("IPython: %s (%s)" % (safe_version(IPython), dirname(IPython.__file__))) except ImportError: print("IPython: Not installed") try: import jinja2 print(" jinja2: %s (%s)" % (safe_version(jinja2), dirname(jinja2.__file__))) except ImportError: print(" jinja2: Not installed") try: import sphinx print("sphinx: %s (%s)" % (safe_version(sphinx), dirname(sphinx.__file__))) except ImportError: print("sphinx: Not installed") try: import pygments print(" pygments: %s (%s)" % (safe_version(pygments), dirname(pygments.__file__))) except ImportError: print(" pygments: Not installed") try: import nose print("nose: %s (%s)" % (safe_version(nose), dirname(nose.__file__))) except ImportError: print("nose: Not installed") try: import virtualenv print("virtualenv: %s (%s)" % (safe_version(virtualenv), dirname(virtualenv.__file__))) except ImportError: print("virtualenv: Not installed") print("\n") if __name__ == "__main__": show_versions()
bsd-3-clause
simonelanucara/script
k_meam_multiple_raster.py
1
1805
import os import glob import gdal import numpy as np from sklearn import cluster directory_to_check = "/home/jovyan/work/ClippingFeatures/" # Which directory do you want to start with? def my_function(directory): # get rasters' file names fnames = glob.glob('*_max_values_ndvi.tif') # read general properties of the first raster (assuming all the rasters share these properties) ds = gdal.Open(fnames[0], 0) gt = ds.GetGeoTransform() sr = ds.GetProjection() xsize = ds.RasterXSize ysize = ds.RasterYSize nd = ds.GetRasterBand(1).GetNoDataValue() del ds arrays = [] for fn in fnames: ds = gdal.Open(fn, 0) arr = ds.ReadAsArray() # 2D array (rows by columns) arrays.append(arr) del ds # arr = np.stack(arrays) # 3D array (date by rows by columns) X = arr.reshape((-1,1)) #calculate k_means k_means = cluster.KMeans(n_clusters=4) k_means.fit(X) X_cluster = k_means.labels_ X_cluster = X_cluster.reshape(arr.shape) [cols, rows] = arr.shape # create the output raster out_fn = ('k_means_max_values_ndvi.tif') driver = gdal.GetDriverByName('GTiff') out_ds = driver.Create(out_fn, rows, cols, 1, gdal.GDT_Byte) # you might want to change the pixel type out_ds.SetGeoTransform(gt) out_ds.SetProjection(sr) out_band = out_ds.GetRasterBand(1) out_band.SetNoDataValue(nd) out_band.WriteArray(X_cluster) # outDataRaster.GetRasterBand(1).WriteArray(X_cluster) directories = [os.path.abspath(x[0]) for x in os.walk(directory_to_check)] directories.remove(os.path.abspath(directory_to_check)) # If you don't want your main directory included for i in directories: os.chdir(i) # Change working Directory my_function(i) # Run your function
gpl-3.0
Ginkgo-Biloba/Misc-Python
sklearn/SKLearn3KNNForR.py
1
1126
# coding = utf-8 """ 3.9 将 kNN 用于回归 http://git.oschina.net/wizardforcel/sklearn-cb/blob/master/3.md """ import numpy as np from sklearn import datasets iris = datasets.load_iris() print(iris.feature_names) x = iris.data[:, [0, 1]] y = iris.data[:, 2] # 使用线性回归做对比 from sklearn.linear_model import LinearRegression lr = LinearRegression() lr.fit(x, y) lrPred = lr.predict(x) print("lr MSE: {:f}".format(np.power(y - lrPred, 2).mean())) # 使用 kNN 回归 from sklearn.neighbors import KNeighborsRegressor knnr = KNeighborsRegressor(n_neighbors=10) knnr.fit(x, y) knnrPred = knnr.predict(x) print("knnr MSE: {:f}".format(np.power(y - knnrPred, 2).mean())) # 使用最近的 10 个点用于回归 from matplotlib import pyplot as plt plt.style.use("ggplot") (fig, ax) = plt.subplots(nrows=2, ncols=1, sharex=True, figsize=(7, 7)) ax[0].scatter(x[:, 0], x[:, 1], s=lrPred*10, label="线性回归预测", color="orange") ax[0].legend() ax[0].set_title("预测") ax[1].scatter(x[:, 0], x[:, 1], s=knnrPred*10, label="$k$-NN 回归预测", color="green") ax[1].legend() fig.tight_layout() fig.show()
gpl-3.0
GrumpyNounours/PySeidon
pyseidon/validationClass/valTable.py
2
3469
#!/usr/bin/python2.7 # encoding: utf-8 import pandas as pd # Custom error from pyseidon.utilities.pyseidon_error import PyseidonError # ALTERNATE VERSION FOR ANDY def valTable(struct, filename, vars, save_csv=False, debug=False, debug_plot=False): ''' Takes validation data from the struct and saves it into a .csv file . Takes a single argument, a dictionary ''' # initialize lists kind, name, ovORun, RMSE, CF, SD, POF, NOF, MDPO, MDNO, skill, r2, phase = \ [], [], [], [], [], [], [], [], [], [], [], [], [] bias, pbias, NRMSE, NSE, corr, SI, gear = [], [], [], [], [], [], [] # append to the lists the stats from each site for each variable for var in vars: (kind, name, ovORun, RMSE, CF, SD, POF, NOF, MDPO, MDNO, skill, r2, phase, bias, pbias, NRMSE, NSE, corr, SI, gear) \ = siteStats(struct, var, kind, name, ovORun, RMSE, CF, SD, POF, NOF, MDPO, MDNO, skill, r2, phase, bias, pbias, NRMSE, NSE, corr, SI, gear, debug=False, debug_plot=False) # put stats into dict and create dataframe val_dict = {'Type':kind, 'ovORun':ovORun, 'RMSE':RMSE, 'CF':CF, 'SD':SD, 'POF':POF, 'NOF':NOF, 'MDPO':MDPO, 'MDNO':MDNO, 'skill':skill, 'r2':r2, 'phase':phase, 'bias':bias, 'pbias':pbias,'NRMSE':NRMSE, 'NSE':NSE, 'corr':corr, 'SI':SI, 'gear':gear} table = pd.DataFrame(data=val_dict, index=name, columns=val_dict.keys()) # export as .csv file if save_csv: out_file = '{}_val.csv'.format(filename) table.to_csv(out_file) return table def siteStats(site, variable, type, name, ovORun, RMSE, CF, SD, POF, NOF, MDPO, MDNO, skill, r2, phase, bias, pbias, NRMSE, NSE, corr, SI, gear, debug=False, debug_plot=False): """ Takes in the run (an array of dictionaries) and the type of the run (a string). Also takes in the list representing each statistic. """ if debug: print "siteStats..." # check if it's a tidegauge site if ((site['type'] != 'TideGauge') and (variable != 'tg')): stats = site['{}_val'.format(variable)] type.append(variable) name.append(site['name'].split('/')[-1].split('.')[0]) elif ((site['type'] == 'TideGauge') and (variable == 'tg')): stats = site['tg_val'] type.append('elev') name.append(site['name'].split('/')[-1].split('.')[0]) # do nothing if a tidegauge is encountered but variable isn't tg else: raise PyseidonError("---The variable tg is missing---") # add the statistics to the list, round to 2 decimal places ovORun.append(stats['ovORun']) RMSE.append(round(stats['RMSE'], 2)) CF.append(round(stats['CF'], 2)) SD.append(round(stats['SD'], 2)) POF.append(round(stats['POF'], 2)) NOF.append(round(stats['NOF'], 2)) MDPO.append(stats['MDPO']) MDNO.append(stats['MDNO']) skill.append(round(stats['skill'], 2)) r2.append(round(stats['r_squared'], 2)) phase.append(stats['phase']) bias.append(round(stats['bias'], 2)) pbias.append(round(stats['pbias'], 2)) NRMSE.append(round(stats['NRMSE'], 2)) NSE.append(round(stats['NSE'], 2)) corr.append(round(stats['CORR'], 2)) SI.append(round(stats['SI'], 2)) gear.append(site['type']) if debug: print "...siteStats done." return (type, name, ovORun, RMSE, CF, SD, POF, NOF, MDPO, MDNO, skill, r2, phase, bias, pbias, NRMSE, NSE, corr, SI, gear)
agpl-3.0
BIDS-collaborative/EDAM
data/LH/meanshift.py
1
4584
import pandas as pd, numpy as np, warnings, sklearn from sklearn.cluster import AffinityPropagation, DBSCAN, MeanShift, estimate_bandwidth from sklearn.decomposition import PCA from sklearn import metrics import matplotlib.pyplot as plt from itertools import cycle def load_data(fileName, dropFirstColumn = True): df = pd.read_csv(fileName) if dropFirstColumn: df = df.drop(df[[0]], axis = 1) return df.as_matrix() def predictAffinityPropagation(X, labels_true): #ranX, ranY = shuffle(X, y, random_state=0) af = AffinityPropagation(preference=-50).fit(X) cluster_centers_indices = af.cluster_centers_indices_ labels = af.labels_ n_clusters_ = len(cluster_centers_indices) print('Estimated number of clusters: %d' % n_clusters_) print("Homogeneity: %0.3f" % metrics.homogeneity_score(labels_true, labels)) print("Completeness: %0.3f" % metrics.completeness_score(labels_true, labels)) print("V-measure: %0.3f" % metrics.v_measure_score(labels_true, labels)) print("Adjusted Rand Index: %0.3f" % metrics.adjusted_rand_score(labels_true, labels)) print("Adjusted Mutual Information: %0.3f" % metrics.adjusted_mutual_info_score(labels_true, labels)) print("Silhouette Coefficient: %0.3f" % metrics.silhouette_score(X, labels, metric='sqeuclidean')) plt.close('all') plt.figure(1) plt.clf() colors = cycle('bgrcmykbgrcmykbgrcmykbgrcmyk') for k, col in zip(range(n_clusters_), colors): class_members = labels == k cluster_center = X[cluster_centers_indices[k]] plt.plot(X[class_members, 0], X[class_members, 1], col + '.') plt.plot(cluster_center[0], cluster_center[1], 'o', markerfacecolor=col, markeredgecolor='k', markersize=14) for x in X[class_members]: plt.plot([cluster_center[0], x[0]], [cluster_center[1], x[1]], col) plt.title('Estimated number of clusters: %d' % n_clusters_) plt.show() def predictDBSCAN(X, labels_true): db = DBSCAN(eps=0.3, min_samples=10).fit(X) core_samples_mask = np.zeros_like(db.labels_, dtype=bool) core_samples_mask[db.core_sample_indices_] = True labels = db.labels_ # Number of clusters in labels, ignoring noise if present. n_clusters_ = len(set(labels)) - (1 if -1 in labels else 0) # print('Estimated number of clusters: %d' % n_clusters_) # print("Homogeneity: %0.3f" % metrics.homogeneity_score(labels_true, labels)) # print("Completeness: %0.3f" % metrics.completeness_score(labels_true, labels)) # print("V-measure: %0.3f" % metrics.v_measure_score(labels_true, labels)) # print("Adjusted Rand Index: %0.3f" # % metrics.adjusted_rand_score(labels_true, labels)) # print("Adjusted Mutual Information: %0.3f" # % metrics.adjusted_mutual_info_score(labels_true, labels)) # print("Silhouette Coefficient: %0.3f" # % metrics.silhouette_score(X, labels)) # Black removed and is used for noise instead. unique_labels = set(labels) colors = plt.cm.Spectral(np.linspace(0, 1, len(unique_labels))) for k, col in zip(unique_labels, colors): if k == -1: # Black used for noise. col = 'k' class_member_mask = (labels == k) xy = X[class_member_mask & core_samples_mask] plt.plot(xy[:, 0], xy[:, 1], 'o', markerfacecolor=col, markeredgecolor='k', markersize=14) xy = X[class_member_mask & ~core_samples_mask] plt.plot(xy[:, 0], xy[:, 1], 'o', markerfacecolor=col, markeredgecolor='k', markersize=6) plt.title('Estimated number of clusters: %d' % n_clusters_) plt.show() def predictMeanShift(X, labels): # The following bandwidth can be automatically detected using bandwidth = estimate_bandwidth(X, quantile=0.2, n_samples=500) ms = MeanShift(bandwidth=bandwidth, bin_seeding=True) results = ms.fit_predict(X) print list(results) labels = ms.labels_ cluster_centers = ms.cluster_centers_ labels_unique = np.unique(labels) n_clusters_ = len(labels_unique) print("number of estimated clusters : %d" % n_clusters_) # Create a PCA model. pca_2 = PCA(2) # Fit the PCA model on the numeric columns from earlier. plot_columns = pca_2.fit_transform(X) # Make a scatter plot of each game, shaded according to cluster assignment. plt.scatter(x=plot_columns[:,0], y=plot_columns[:,1], c=results) plt.title("Mean Shift- 4 clusters") # Show the plot. plt.show() warnings.filterwarnings('ignore') X = load_data("pier_ne_data.csv") col_mean = np.nanmean(X,axis=0) inds = np.where(np.isnan(X)) X[inds]=np.take(col_mean,inds[1]) y = np.divide(np.ravel(load_data("pier_ne_labels.csv", False)), 2) print predictMeanShift(X, y)
bsd-2-clause
lavanyag9713/ml_lab_ecsc_306
labwork/lab7/sci-learn/plot_pca_3d.py
354
2432
#!/usr/bin/python # -*- coding: utf-8 -*- """ ========================================================= Principal components analysis (PCA) ========================================================= These figures aid in illustrating how a point cloud can be very flat in one direction--which is where PCA comes in to choose a direction that is not flat. """ print(__doc__) # Authors: Gael Varoquaux # Jaques Grobler # Kevin Hughes # License: BSD 3 clause from sklearn.decomposition import PCA from mpl_toolkits.mplot3d import Axes3D import numpy as np import matplotlib.pyplot as plt from scipy import stats ############################################################################### # Create the data e = np.exp(1) np.random.seed(4) def pdf(x): return 0.5 * (stats.norm(scale=0.25 / e).pdf(x) + stats.norm(scale=4 / e).pdf(x)) y = np.random.normal(scale=0.5, size=(30000)) x = np.random.normal(scale=0.5, size=(30000)) z = np.random.normal(scale=0.1, size=len(x)) density = pdf(x) * pdf(y) pdf_z = pdf(5 * z) density *= pdf_z a = x + y b = 2 * y c = a - b + z norm = np.sqrt(a.var() + b.var()) a /= norm b /= norm ############################################################################### # Plot the figures def plot_figs(fig_num, elev, azim): fig = plt.figure(fig_num, figsize=(4, 3)) plt.clf() ax = Axes3D(fig, rect=[0, 0, .95, 1], elev=elev, azim=azim) ax.scatter(a[::10], b[::10], c[::10], c=density[::10], marker='+', alpha=.4) Y = np.c_[a, b, c] # Using SciPy's SVD, this would be: # _, pca_score, V = scipy.linalg.svd(Y, full_matrices=False) pca = PCA(n_components=3) pca.fit(Y) pca_score = pca.explained_variance_ratio_ V = pca.components_ x_pca_axis, y_pca_axis, z_pca_axis = V.T * pca_score / pca_score.min() x_pca_axis, y_pca_axis, z_pca_axis = 3 * V.T x_pca_plane = np.r_[x_pca_axis[:2], - x_pca_axis[1::-1]] y_pca_plane = np.r_[y_pca_axis[:2], - y_pca_axis[1::-1]] z_pca_plane = np.r_[z_pca_axis[:2], - z_pca_axis[1::-1]] x_pca_plane.shape = (2, 2) y_pca_plane.shape = (2, 2) z_pca_plane.shape = (2, 2) ax.plot_surface(x_pca_plane, y_pca_plane, z_pca_plane) ax.w_xaxis.set_ticklabels([]) ax.w_yaxis.set_ticklabels([]) ax.w_zaxis.set_ticklabels([]) elev = -40 azim = -80 plot_figs(1, elev, azim) elev = 30 azim = 20 plot_figs(2, elev, azim) plt.show()
apache-2.0
LiaoPan/scikit-learn
sklearn/cluster/bicluster.py
211
19443
"""Spectral biclustering algorithms. Authors : Kemal Eren License: BSD 3 clause """ from abc import ABCMeta, abstractmethod import numpy as np from scipy.sparse import dia_matrix from scipy.sparse import issparse from . import KMeans, MiniBatchKMeans from ..base import BaseEstimator, BiclusterMixin from ..externals import six from ..utils.arpack import eigsh, svds from ..utils.extmath import (make_nonnegative, norm, randomized_svd, safe_sparse_dot) from ..utils.validation import assert_all_finite, check_array __all__ = ['SpectralCoclustering', 'SpectralBiclustering'] def _scale_normalize(X): """Normalize ``X`` by scaling rows and columns independently. Returns the normalized matrix and the row and column scaling factors. """ X = make_nonnegative(X) row_diag = np.asarray(1.0 / np.sqrt(X.sum(axis=1))).squeeze() col_diag = np.asarray(1.0 / np.sqrt(X.sum(axis=0))).squeeze() row_diag = np.where(np.isnan(row_diag), 0, row_diag) col_diag = np.where(np.isnan(col_diag), 0, col_diag) if issparse(X): n_rows, n_cols = X.shape r = dia_matrix((row_diag, [0]), shape=(n_rows, n_rows)) c = dia_matrix((col_diag, [0]), shape=(n_cols, n_cols)) an = r * X * c else: an = row_diag[:, np.newaxis] * X * col_diag return an, row_diag, col_diag def _bistochastic_normalize(X, max_iter=1000, tol=1e-5): """Normalize rows and columns of ``X`` simultaneously so that all rows sum to one constant and all columns sum to a different constant. """ # According to paper, this can also be done more efficiently with # deviation reduction and balancing algorithms. X = make_nonnegative(X) X_scaled = X dist = None for _ in range(max_iter): X_new, _, _ = _scale_normalize(X_scaled) if issparse(X): dist = norm(X_scaled.data - X.data) else: dist = norm(X_scaled - X_new) X_scaled = X_new if dist is not None and dist < tol: break return X_scaled def _log_normalize(X): """Normalize ``X`` according to Kluger's log-interactions scheme.""" X = make_nonnegative(X, min_value=1) if issparse(X): raise ValueError("Cannot compute log of a sparse matrix," " because log(x) diverges to -infinity as x" " goes to 0.") L = np.log(X) row_avg = L.mean(axis=1)[:, np.newaxis] col_avg = L.mean(axis=0) avg = L.mean() return L - row_avg - col_avg + avg class BaseSpectral(six.with_metaclass(ABCMeta, BaseEstimator, BiclusterMixin)): """Base class for spectral biclustering.""" @abstractmethod def __init__(self, n_clusters=3, svd_method="randomized", n_svd_vecs=None, mini_batch=False, init="k-means++", n_init=10, n_jobs=1, random_state=None): self.n_clusters = n_clusters self.svd_method = svd_method self.n_svd_vecs = n_svd_vecs self.mini_batch = mini_batch self.init = init self.n_init = n_init self.n_jobs = n_jobs self.random_state = random_state def _check_parameters(self): legal_svd_methods = ('randomized', 'arpack') if self.svd_method not in legal_svd_methods: raise ValueError("Unknown SVD method: '{0}'. svd_method must be" " one of {1}.".format(self.svd_method, legal_svd_methods)) def fit(self, X): """Creates a biclustering for X. Parameters ---------- X : array-like, shape (n_samples, n_features) """ X = check_array(X, accept_sparse='csr', dtype=np.float64) self._check_parameters() self._fit(X) def _svd(self, array, n_components, n_discard): """Returns first `n_components` left and right singular vectors u and v, discarding the first `n_discard`. """ if self.svd_method == 'randomized': kwargs = {} if self.n_svd_vecs is not None: kwargs['n_oversamples'] = self.n_svd_vecs u, _, vt = randomized_svd(array, n_components, random_state=self.random_state, **kwargs) elif self.svd_method == 'arpack': u, _, vt = svds(array, k=n_components, ncv=self.n_svd_vecs) if np.any(np.isnan(vt)): # some eigenvalues of A * A.T are negative, causing # sqrt() to be np.nan. This causes some vectors in vt # to be np.nan. _, v = eigsh(safe_sparse_dot(array.T, array), ncv=self.n_svd_vecs) vt = v.T if np.any(np.isnan(u)): _, u = eigsh(safe_sparse_dot(array, array.T), ncv=self.n_svd_vecs) assert_all_finite(u) assert_all_finite(vt) u = u[:, n_discard:] vt = vt[n_discard:] return u, vt.T def _k_means(self, data, n_clusters): if self.mini_batch: model = MiniBatchKMeans(n_clusters, init=self.init, n_init=self.n_init, random_state=self.random_state) else: model = KMeans(n_clusters, init=self.init, n_init=self.n_init, n_jobs=self.n_jobs, random_state=self.random_state) model.fit(data) centroid = model.cluster_centers_ labels = model.labels_ return centroid, labels class SpectralCoclustering(BaseSpectral): """Spectral Co-Clustering algorithm (Dhillon, 2001). Clusters rows and columns of an array `X` to solve the relaxed normalized cut of the bipartite graph created from `X` as follows: the edge between row vertex `i` and column vertex `j` has weight `X[i, j]`. The resulting bicluster structure is block-diagonal, since each row and each column belongs to exactly one bicluster. Supports sparse matrices, as long as they are nonnegative. Read more in the :ref:`User Guide <spectral_coclustering>`. Parameters ---------- n_clusters : integer, optional, default: 3 The number of biclusters to find. svd_method : string, optional, default: 'randomized' Selects the algorithm for finding singular vectors. May be 'randomized' or 'arpack'. If 'randomized', use :func:`sklearn.utils.extmath.randomized_svd`, which may be faster for large matrices. If 'arpack', use :func:`sklearn.utils.arpack.svds`, which is more accurate, but possibly slower in some cases. n_svd_vecs : int, optional, default: None Number of vectors to use in calculating the SVD. Corresponds to `ncv` when `svd_method=arpack` and `n_oversamples` when `svd_method` is 'randomized`. mini_batch : bool, optional, default: False Whether to use mini-batch k-means, which is faster but may get different results. init : {'k-means++', 'random' or an ndarray} Method for initialization of k-means algorithm; defaults to 'k-means++'. n_init : int, optional, default: 10 Number of random initializations that are tried with the k-means algorithm. If mini-batch k-means is used, the best initialization is chosen and the algorithm runs once. Otherwise, the algorithm is run for each initialization and the best solution chosen. n_jobs : int, optional, default: 1 The number of jobs to use for the computation. This works by breaking down the pairwise matrix into n_jobs even slices and computing them in parallel. If -1 all CPUs are used. If 1 is given, no parallel computing code is used at all, which is useful for debugging. For n_jobs below -1, (n_cpus + 1 + n_jobs) are used. Thus for n_jobs = -2, all CPUs but one are used. random_state : int seed, RandomState instance, or None (default) A pseudo random number generator used by the K-Means initialization. Attributes ---------- rows_ : array-like, shape (n_row_clusters, n_rows) Results of the clustering. `rows[i, r]` is True if cluster `i` contains row `r`. Available only after calling ``fit``. columns_ : array-like, shape (n_column_clusters, n_columns) Results of the clustering, like `rows`. row_labels_ : array-like, shape (n_rows,) The bicluster label of each row. column_labels_ : array-like, shape (n_cols,) The bicluster label of each column. References ---------- * Dhillon, Inderjit S, 2001. `Co-clustering documents and words using bipartite spectral graph partitioning <http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.140.3011>`__. """ def __init__(self, n_clusters=3, svd_method='randomized', n_svd_vecs=None, mini_batch=False, init='k-means++', n_init=10, n_jobs=1, random_state=None): super(SpectralCoclustering, self).__init__(n_clusters, svd_method, n_svd_vecs, mini_batch, init, n_init, n_jobs, random_state) def _fit(self, X): normalized_data, row_diag, col_diag = _scale_normalize(X) n_sv = 1 + int(np.ceil(np.log2(self.n_clusters))) u, v = self._svd(normalized_data, n_sv, n_discard=1) z = np.vstack((row_diag[:, np.newaxis] * u, col_diag[:, np.newaxis] * v)) _, labels = self._k_means(z, self.n_clusters) n_rows = X.shape[0] self.row_labels_ = labels[:n_rows] self.column_labels_ = labels[n_rows:] self.rows_ = np.vstack(self.row_labels_ == c for c in range(self.n_clusters)) self.columns_ = np.vstack(self.column_labels_ == c for c in range(self.n_clusters)) class SpectralBiclustering(BaseSpectral): """Spectral biclustering (Kluger, 2003). Partitions rows and columns under the assumption that the data has an underlying checkerboard structure. For instance, if there are two row partitions and three column partitions, each row will belong to three biclusters, and each column will belong to two biclusters. The outer product of the corresponding row and column label vectors gives this checkerboard structure. Read more in the :ref:`User Guide <spectral_biclustering>`. Parameters ---------- n_clusters : integer or tuple (n_row_clusters, n_column_clusters) The number of row and column clusters in the checkerboard structure. method : string, optional, default: 'bistochastic' Method of normalizing and converting singular vectors into biclusters. May be one of 'scale', 'bistochastic', or 'log'. The authors recommend using 'log'. If the data is sparse, however, log normalization will not work, which is why the default is 'bistochastic'. CAUTION: if `method='log'`, the data must not be sparse. n_components : integer, optional, default: 6 Number of singular vectors to check. n_best : integer, optional, default: 3 Number of best singular vectors to which to project the data for clustering. svd_method : string, optional, default: 'randomized' Selects the algorithm for finding singular vectors. May be 'randomized' or 'arpack'. If 'randomized', uses `sklearn.utils.extmath.randomized_svd`, which may be faster for large matrices. If 'arpack', uses `sklearn.utils.arpack.svds`, which is more accurate, but possibly slower in some cases. n_svd_vecs : int, optional, default: None Number of vectors to use in calculating the SVD. Corresponds to `ncv` when `svd_method=arpack` and `n_oversamples` when `svd_method` is 'randomized`. mini_batch : bool, optional, default: False Whether to use mini-batch k-means, which is faster but may get different results. init : {'k-means++', 'random' or an ndarray} Method for initialization of k-means algorithm; defaults to 'k-means++'. n_init : int, optional, default: 10 Number of random initializations that are tried with the k-means algorithm. If mini-batch k-means is used, the best initialization is chosen and the algorithm runs once. Otherwise, the algorithm is run for each initialization and the best solution chosen. n_jobs : int, optional, default: 1 The number of jobs to use for the computation. This works by breaking down the pairwise matrix into n_jobs even slices and computing them in parallel. If -1 all CPUs are used. If 1 is given, no parallel computing code is used at all, which is useful for debugging. For n_jobs below -1, (n_cpus + 1 + n_jobs) are used. Thus for n_jobs = -2, all CPUs but one are used. random_state : int seed, RandomState instance, or None (default) A pseudo random number generator used by the K-Means initialization. Attributes ---------- rows_ : array-like, shape (n_row_clusters, n_rows) Results of the clustering. `rows[i, r]` is True if cluster `i` contains row `r`. Available only after calling ``fit``. columns_ : array-like, shape (n_column_clusters, n_columns) Results of the clustering, like `rows`. row_labels_ : array-like, shape (n_rows,) Row partition labels. column_labels_ : array-like, shape (n_cols,) Column partition labels. References ---------- * Kluger, Yuval, et. al., 2003. `Spectral biclustering of microarray data: coclustering genes and conditions <http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.135.1608>`__. """ def __init__(self, n_clusters=3, method='bistochastic', n_components=6, n_best=3, svd_method='randomized', n_svd_vecs=None, mini_batch=False, init='k-means++', n_init=10, n_jobs=1, random_state=None): super(SpectralBiclustering, self).__init__(n_clusters, svd_method, n_svd_vecs, mini_batch, init, n_init, n_jobs, random_state) self.method = method self.n_components = n_components self.n_best = n_best def _check_parameters(self): super(SpectralBiclustering, self)._check_parameters() legal_methods = ('bistochastic', 'scale', 'log') if self.method not in legal_methods: raise ValueError("Unknown method: '{0}'. method must be" " one of {1}.".format(self.method, legal_methods)) try: int(self.n_clusters) except TypeError: try: r, c = self.n_clusters int(r) int(c) except (ValueError, TypeError): raise ValueError("Incorrect parameter n_clusters has value:" " {}. It should either be a single integer" " or an iterable with two integers:" " (n_row_clusters, n_column_clusters)") if self.n_components < 1: raise ValueError("Parameter n_components must be greater than 0," " but its value is {}".format(self.n_components)) if self.n_best < 1: raise ValueError("Parameter n_best must be greater than 0," " but its value is {}".format(self.n_best)) if self.n_best > self.n_components: raise ValueError("n_best cannot be larger than" " n_components, but {} > {}" "".format(self.n_best, self.n_components)) def _fit(self, X): n_sv = self.n_components if self.method == 'bistochastic': normalized_data = _bistochastic_normalize(X) n_sv += 1 elif self.method == 'scale': normalized_data, _, _ = _scale_normalize(X) n_sv += 1 elif self.method == 'log': normalized_data = _log_normalize(X) n_discard = 0 if self.method == 'log' else 1 u, v = self._svd(normalized_data, n_sv, n_discard) ut = u.T vt = v.T try: n_row_clusters, n_col_clusters = self.n_clusters except TypeError: n_row_clusters = n_col_clusters = self.n_clusters best_ut = self._fit_best_piecewise(ut, self.n_best, n_row_clusters) best_vt = self._fit_best_piecewise(vt, self.n_best, n_col_clusters) self.row_labels_ = self._project_and_cluster(X, best_vt.T, n_row_clusters) self.column_labels_ = self._project_and_cluster(X.T, best_ut.T, n_col_clusters) self.rows_ = np.vstack(self.row_labels_ == label for label in range(n_row_clusters) for _ in range(n_col_clusters)) self.columns_ = np.vstack(self.column_labels_ == label for _ in range(n_row_clusters) for label in range(n_col_clusters)) def _fit_best_piecewise(self, vectors, n_best, n_clusters): """Find the ``n_best`` vectors that are best approximated by piecewise constant vectors. The piecewise vectors are found by k-means; the best is chosen according to Euclidean distance. """ def make_piecewise(v): centroid, labels = self._k_means(v.reshape(-1, 1), n_clusters) return centroid[labels].ravel() piecewise_vectors = np.apply_along_axis(make_piecewise, axis=1, arr=vectors) dists = np.apply_along_axis(norm, axis=1, arr=(vectors - piecewise_vectors)) result = vectors[np.argsort(dists)[:n_best]] return result def _project_and_cluster(self, data, vectors, n_clusters): """Project ``data`` to ``vectors`` and cluster the result.""" projected = safe_sparse_dot(data, vectors) _, labels = self._k_means(projected, n_clusters) return labels
bsd-3-clause
BeiLuoShiMen/nupic
external/linux32/lib/python2.6/site-packages/matplotlib/backends/backend_agg.py
69
11729
""" An agg http://antigrain.com/ backend Features that are implemented * capstyles and join styles * dashes * linewidth * lines, rectangles, ellipses * clipping to a rectangle * output to RGBA and PNG * alpha blending * DPI scaling properly - everything scales properly (dashes, linewidths, etc) * draw polygon * freetype2 w/ ft2font TODO: * allow save to file handle * integrate screen dpi w/ ppi and text """ from __future__ import division import numpy as npy from matplotlib import verbose, rcParams from matplotlib.backend_bases import RendererBase,\ FigureManagerBase, FigureCanvasBase from matplotlib.cbook import is_string_like, maxdict from matplotlib.figure import Figure from matplotlib.font_manager import findfont from matplotlib.ft2font import FT2Font, LOAD_FORCE_AUTOHINT from matplotlib.mathtext import MathTextParser from matplotlib.path import Path from matplotlib.transforms import Bbox from _backend_agg import RendererAgg as _RendererAgg from matplotlib import _png backend_version = 'v2.2' class RendererAgg(RendererBase): """ The renderer handles all the drawing primitives using a graphics context instance that controls the colors/styles """ debug=1 texd = maxdict(50) # a cache of tex image rasters _fontd = maxdict(50) def __init__(self, width, height, dpi): if __debug__: verbose.report('RendererAgg.__init__', 'debug-annoying') RendererBase.__init__(self) self.dpi = dpi self.width = width self.height = height if __debug__: verbose.report('RendererAgg.__init__ width=%s, height=%s'%(width, height), 'debug-annoying') self._renderer = _RendererAgg(int(width), int(height), dpi, debug=False) if __debug__: verbose.report('RendererAgg.__init__ _RendererAgg done', 'debug-annoying') #self.draw_path = self._renderer.draw_path # see below self.draw_markers = self._renderer.draw_markers self.draw_path_collection = self._renderer.draw_path_collection self.draw_quad_mesh = self._renderer.draw_quad_mesh self.draw_image = self._renderer.draw_image self.copy_from_bbox = self._renderer.copy_from_bbox self.restore_region = self._renderer.restore_region self.tostring_rgba_minimized = self._renderer.tostring_rgba_minimized self.mathtext_parser = MathTextParser('Agg') self.bbox = Bbox.from_bounds(0, 0, self.width, self.height) if __debug__: verbose.report('RendererAgg.__init__ done', 'debug-annoying') def draw_path(self, gc, path, transform, rgbFace=None): nmax = rcParams['agg.path.chunksize'] # here at least for testing npts = path.vertices.shape[0] if nmax > 100 and npts > nmax and path.should_simplify and rgbFace is None: nch = npy.ceil(npts/float(nmax)) chsize = int(npy.ceil(npts/nch)) i0 = npy.arange(0, npts, chsize) i1 = npy.zeros_like(i0) i1[:-1] = i0[1:] - 1 i1[-1] = npts for ii0, ii1 in zip(i0, i1): v = path.vertices[ii0:ii1,:] c = path.codes if c is not None: c = c[ii0:ii1] c[0] = Path.MOVETO # move to end of last chunk p = Path(v, c) self._renderer.draw_path(gc, p, transform, rgbFace) else: self._renderer.draw_path(gc, path, transform, rgbFace) def draw_mathtext(self, gc, x, y, s, prop, angle): """ Draw the math text using matplotlib.mathtext """ if __debug__: verbose.report('RendererAgg.draw_mathtext', 'debug-annoying') ox, oy, width, height, descent, font_image, used_characters = \ self.mathtext_parser.parse(s, self.dpi, prop) x = int(x) + ox y = int(y) - oy self._renderer.draw_text_image(font_image, x, y + 1, angle, gc) def draw_text(self, gc, x, y, s, prop, angle, ismath): """ Render the text """ if __debug__: verbose.report('RendererAgg.draw_text', 'debug-annoying') if ismath: return self.draw_mathtext(gc, x, y, s, prop, angle) font = self._get_agg_font(prop) if font is None: return None if len(s) == 1 and ord(s) > 127: font.load_char(ord(s), flags=LOAD_FORCE_AUTOHINT) else: # We pass '0' for angle here, since it will be rotated (in raster # space) in the following call to draw_text_image). font.set_text(s, 0, flags=LOAD_FORCE_AUTOHINT) font.draw_glyphs_to_bitmap() #print x, y, int(x), int(y) self._renderer.draw_text_image(font.get_image(), int(x), int(y) + 1, angle, gc) def get_text_width_height_descent(self, s, prop, ismath): """ get the width and height in display coords of the string s with FontPropertry prop # passing rgb is a little hack to make cacheing in the # texmanager more efficient. It is not meant to be used # outside the backend """ if ismath=='TeX': # todo: handle props size = prop.get_size_in_points() texmanager = self.get_texmanager() Z = texmanager.get_grey(s, size, self.dpi) m,n = Z.shape # TODO: descent of TeX text (I am imitating backend_ps here -JKS) return n, m, 0 if ismath: ox, oy, width, height, descent, fonts, used_characters = \ self.mathtext_parser.parse(s, self.dpi, prop) return width, height, descent font = self._get_agg_font(prop) font.set_text(s, 0.0, flags=LOAD_FORCE_AUTOHINT) # the width and height of unrotated string w, h = font.get_width_height() d = font.get_descent() w /= 64.0 # convert from subpixels h /= 64.0 d /= 64.0 return w, h, d def draw_tex(self, gc, x, y, s, prop, angle): # todo, handle props, angle, origins size = prop.get_size_in_points() texmanager = self.get_texmanager() key = s, size, self.dpi, angle, texmanager.get_font_config() im = self.texd.get(key) if im is None: Z = texmanager.get_grey(s, size, self.dpi) Z = npy.array(Z * 255.0, npy.uint8) self._renderer.draw_text_image(Z, x, y, angle, gc) def get_canvas_width_height(self): 'return the canvas width and height in display coords' return self.width, self.height def _get_agg_font(self, prop): """ Get the font for text instance t, cacheing for efficiency """ if __debug__: verbose.report('RendererAgg._get_agg_font', 'debug-annoying') key = hash(prop) font = self._fontd.get(key) if font is None: fname = findfont(prop) font = self._fontd.get(fname) if font is None: font = FT2Font(str(fname)) self._fontd[fname] = font self._fontd[key] = font font.clear() size = prop.get_size_in_points() font.set_size(size, self.dpi) return font def points_to_pixels(self, points): """ convert point measures to pixes using dpi and the pixels per inch of the display """ if __debug__: verbose.report('RendererAgg.points_to_pixels', 'debug-annoying') return points*self.dpi/72.0 def tostring_rgb(self): if __debug__: verbose.report('RendererAgg.tostring_rgb', 'debug-annoying') return self._renderer.tostring_rgb() def tostring_argb(self): if __debug__: verbose.report('RendererAgg.tostring_argb', 'debug-annoying') return self._renderer.tostring_argb() def buffer_rgba(self,x,y): if __debug__: verbose.report('RendererAgg.buffer_rgba', 'debug-annoying') return self._renderer.buffer_rgba(x,y) def clear(self): self._renderer.clear() def option_image_nocomposite(self): # It is generally faster to composite each image directly to # the Figure, and there's no file size benefit to compositing # with the Agg backend return True def new_figure_manager(num, *args, **kwargs): """ Create a new figure manager instance """ if __debug__: verbose.report('backend_agg.new_figure_manager', 'debug-annoying') FigureClass = kwargs.pop('FigureClass', Figure) thisFig = FigureClass(*args, **kwargs) canvas = FigureCanvasAgg(thisFig) manager = FigureManagerBase(canvas, num) return manager class FigureCanvasAgg(FigureCanvasBase): """ The canvas the figure renders into. Calls the draw and print fig methods, creates the renderers, etc... Public attribute figure - A Figure instance """ def copy_from_bbox(self, bbox): renderer = self.get_renderer() return renderer.copy_from_bbox(bbox) def restore_region(self, region): renderer = self.get_renderer() return renderer.restore_region(region) def draw(self): """ Draw the figure using the renderer """ if __debug__: verbose.report('FigureCanvasAgg.draw', 'debug-annoying') self.renderer = self.get_renderer() self.figure.draw(self.renderer) def get_renderer(self): l, b, w, h = self.figure.bbox.bounds key = w, h, self.figure.dpi try: self._lastKey, self.renderer except AttributeError: need_new_renderer = True else: need_new_renderer = (self._lastKey != key) if need_new_renderer: self.renderer = RendererAgg(w, h, self.figure.dpi) self._lastKey = key return self.renderer def tostring_rgb(self): if __debug__: verbose.report('FigureCanvasAgg.tostring_rgb', 'debug-annoying') return self.renderer.tostring_rgb() def tostring_argb(self): if __debug__: verbose.report('FigureCanvasAgg.tostring_argb', 'debug-annoying') return self.renderer.tostring_argb() def buffer_rgba(self,x,y): if __debug__: verbose.report('FigureCanvasAgg.buffer_rgba', 'debug-annoying') return self.renderer.buffer_rgba(x,y) def get_default_filetype(self): return 'png' def print_raw(self, filename_or_obj, *args, **kwargs): FigureCanvasAgg.draw(self) renderer = self.get_renderer() original_dpi = renderer.dpi renderer.dpi = self.figure.dpi if is_string_like(filename_or_obj): filename_or_obj = file(filename_or_obj, 'wb') renderer._renderer.write_rgba(filename_or_obj) renderer.dpi = original_dpi print_rgba = print_raw def print_png(self, filename_or_obj, *args, **kwargs): FigureCanvasAgg.draw(self) renderer = self.get_renderer() original_dpi = renderer.dpi renderer.dpi = self.figure.dpi if is_string_like(filename_or_obj): filename_or_obj = file(filename_or_obj, 'wb') _png.write_png(renderer._renderer.buffer_rgba(0, 0), renderer.width, renderer.height, filename_or_obj, self.figure.dpi) renderer.dpi = original_dpi
agpl-3.0
rexshihaoren/scikit-learn
examples/decomposition/plot_pca_vs_lda.py
182
1743
""" ======================================================= Comparison of LDA and PCA 2D projection of Iris dataset ======================================================= The Iris dataset represents 3 kind of Iris flowers (Setosa, Versicolour and Virginica) with 4 attributes: sepal length, sepal width, petal length and petal width. Principal Component Analysis (PCA) applied to this data identifies the combination of attributes (principal components, or directions in the feature space) that account for the most variance in the data. Here we plot the different samples on the 2 first principal components. Linear Discriminant Analysis (LDA) tries to identify attributes that account for the most variance *between classes*. In particular, LDA, in contrast to PCA, is a supervised method, using known class labels. """ print(__doc__) import matplotlib.pyplot as plt from sklearn import datasets from sklearn.decomposition import PCA from sklearn.lda import LDA iris = datasets.load_iris() X = iris.data y = iris.target target_names = iris.target_names pca = PCA(n_components=2) X_r = pca.fit(X).transform(X) lda = LDA(n_components=2) X_r2 = lda.fit(X, y).transform(X) # Percentage of variance explained for each components print('explained variance ratio (first two components): %s' % str(pca.explained_variance_ratio_)) plt.figure() for c, i, target_name in zip("rgb", [0, 1, 2], target_names): plt.scatter(X_r[y == i, 0], X_r[y == i, 1], c=c, label=target_name) plt.legend() plt.title('PCA of IRIS dataset') plt.figure() for c, i, target_name in zip("rgb", [0, 1, 2], target_names): plt.scatter(X_r2[y == i, 0], X_r2[y == i, 1], c=c, label=target_name) plt.legend() plt.title('LDA of IRIS dataset') plt.show()
bsd-3-clause
ankurankan/scikit-learn
sklearn/decomposition/__init__.py
99
1331
""" The :mod:`sklearn.decomposition` module includes matrix decomposition algorithms, including among others PCA, NMF or ICA. Most of the algorithms of this module can be regarded as dimensionality reduction techniques. """ from .nmf import NMF, ProjectedGradientNMF from .pca import PCA, RandomizedPCA from .incremental_pca import IncrementalPCA from .kernel_pca import KernelPCA from .sparse_pca import SparsePCA, MiniBatchSparsePCA from .truncated_svd import TruncatedSVD from .fastica_ import FastICA, fastica from .dict_learning import (dict_learning, dict_learning_online, sparse_encode, DictionaryLearning, MiniBatchDictionaryLearning, SparseCoder) from .factor_analysis import FactorAnalysis from ..utils.extmath import randomized_svd __all__ = ['DictionaryLearning', 'FastICA', 'IncrementalPCA', 'KernelPCA', 'MiniBatchDictionaryLearning', 'MiniBatchSparsePCA', 'NMF', 'PCA', 'ProjectedGradientNMF', 'RandomizedPCA', 'SparseCoder', 'SparsePCA', 'dict_learning', 'dict_learning_online', 'fastica', 'randomized_svd', 'sparse_encode', 'FactorAnalysis', 'TruncatedSVD']
bsd-3-clause
BubuLK/sfepy
examples/diffusion/time_poisson_interactive.py
2
9967
#!/usr/bin/env python """ Transient Laplace equation (heat equation) with non-constant initial conditions given by a function, using commands for interactive use. The script allows setting various simulation parameters, namely: - the diffusivity coefficient - the max. initial condition value - temperature field approximation order - uniform mesh refinement The example shows also how to probe the results. In the SfePy top-level directory the following command can be used to get usage information:: python examples/diffusion/time_poisson_interactive.py -h """ from __future__ import absolute_import import sys from six.moves import range sys.path.append('.') from argparse import ArgumentParser, RawDescriptionHelpFormatter import numpy as nm import matplotlib.pyplot as plt from sfepy.base.base import assert_, output, ordered_iteritems, IndexedStruct from sfepy.discrete import (FieldVariable, Material, Integral, Function, Equation, Equations, Problem) from sfepy.discrete.problem import prepare_matrix from sfepy.discrete.fem import Mesh, FEDomain, Field from sfepy.terms import Term from sfepy.discrete.conditions import Conditions, EssentialBC, InitialCondition from sfepy.solvers.ls import ScipyDirect from sfepy.solvers.nls import Newton from sfepy.solvers.ts_solvers import SimpleTimeSteppingSolver from sfepy.discrete.probes import LineProbe, CircleProbe from sfepy.discrete.projections import project_by_component def gen_probes(problem): """ Define a line probe and a circle probe. """ # Use enough points for higher order approximations. n_point = 1000 p0, p1 = nm.array([0.0, 0.0, 0.0]), nm.array([0.1, 0.0, 0.0]) line = LineProbe(p0, p1, n_point, share_geometry=True) # Workaround current probe code shortcoming. line.set_options(close_limit=0.5) centre = 0.5 * (p0 + p1) normal = [0.0, 1.0, 0.0] r = 0.019 circle = CircleProbe(centre, normal, r, n_point, share_geometry=True) circle.set_options(close_limit=0.0) probes = [line, circle] labels = ['%s -> %s' % (p0, p1), 'circle(%s, %s, %s' % (centre, normal, r)] return probes, labels def probe_results(ax_num, T, dvel, probe, label): """ Probe the results using the given probe and plot the probed values. """ results = {} pars, vals = probe(T) results['T'] = (pars, vals) pars, vals = probe(dvel) results['dvel'] = (pars, vals) fig = plt.figure(1) ax = plt.subplot(2, 2, 2 * ax_num + 1) ax.cla() pars, vals = results['T'] ax.plot(pars, vals, label=r'$T$', lw=1, ls='-', marker='+', ms=3) dx = 0.05 * (pars[-1] - pars[0]) ax.set_xlim(pars[0] - dx, pars[-1] + dx) ax.set_ylabel('temperature') ax.set_xlabel('probe %s' % label, fontsize=8) ax.legend(loc='best', fontsize=10) ax = plt.subplot(2, 2, 2 * ax_num + 2) ax.cla() pars, vals = results['dvel'] for ic in range(vals.shape[1]): ax.plot(pars, vals[:, ic], label=r'$w_{%d}$' % (ic + 1), lw=1, ls='-', marker='+', ms=3) dx = 0.05 * (pars[-1] - pars[0]) ax.set_xlim(pars[0] - dx, pars[-1] + dx) ax.set_ylabel('diffusion velocity') ax.set_xlabel('probe %s' % label, fontsize=8) ax.legend(loc='best', fontsize=10) return fig, results helps = { 'diffusivity' : 'the diffusivity coefficient [default: %(default)s]', 'ic_max' : 'the max. initial condition value [default: %(default)s]', 'order' : 'temperature field approximation order [default: %(default)s]', 'refine' : 'uniform mesh refinement level [default: %(default)s]', 'probe' : 'probe the results', 'show' : 'show the probing results figure, if --probe is used', } def main(): from sfepy import data_dir parser = ArgumentParser(description=__doc__, formatter_class=RawDescriptionHelpFormatter) parser.add_argument('--version', action='version', version='%(prog)s') parser.add_argument('--diffusivity', metavar='float', type=float, action='store', dest='diffusivity', default=1e-5, help=helps['diffusivity']) parser.add_argument('--ic-max', metavar='float', type=float, action='store', dest='ic_max', default=2.0, help=helps['ic_max']) parser.add_argument('--order', metavar='int', type=int, action='store', dest='order', default=2, help=helps['order']) parser.add_argument('-r', '--refine', metavar='int', type=int, action='store', dest='refine', default=0, help=helps['refine']) parser.add_argument('-p', '--probe', action="store_true", dest='probe', default=False, help=helps['probe']) parser.add_argument('-s', '--show', action="store_true", dest='show', default=False, help=helps['show']) options = parser.parse_args() assert_((0 < options.order), 'temperature approximation order must be at least 1!') output('using values:') output(' diffusivity:', options.diffusivity) output(' max. IC value:', options.ic_max) output('uniform mesh refinement level:', options.refine) mesh = Mesh.from_file(data_dir + '/meshes/3d/cylinder.mesh') domain = FEDomain('domain', mesh) if options.refine > 0: for ii in range(options.refine): output('refine %d...' % ii) domain = domain.refine() output('... %d nodes %d elements' % (domain.shape.n_nod, domain.shape.n_el)) omega = domain.create_region('Omega', 'all') left = domain.create_region('Left', 'vertices in x < 0.00001', 'facet') right = domain.create_region('Right', 'vertices in x > 0.099999', 'facet') field = Field.from_args('fu', nm.float64, 'scalar', omega, approx_order=options.order) T = FieldVariable('T', 'unknown', field, history=1) s = FieldVariable('s', 'test', field, primary_var_name='T') m = Material('m', diffusivity=options.diffusivity * nm.eye(3)) integral = Integral('i', order=2*options.order) t1 = Term.new('dw_diffusion(m.diffusivity, s, T)', integral, omega, m=m, s=s, T=T) t2 = Term.new('dw_volume_dot(s, dT/dt)', integral, omega, s=s, T=T) eq = Equation('balance', t1 + t2) eqs = Equations([eq]) # Boundary conditions. ebc1 = EssentialBC('T1', left, {'T.0' : 2.0}) ebc2 = EssentialBC('T2', right, {'T.0' : -2.0}) # Initial conditions. def get_ic(coors, ic): x, y, z = coors.T return 2 - 40.0 * x + options.ic_max * nm.sin(4 * nm.pi * x / 0.1) ic_fun = Function('ic_fun', get_ic) ic = InitialCondition('ic', omega, {'T.0' : ic_fun}) pb = Problem('heat', equations=eqs) pb.set_bcs(ebcs=Conditions([ebc1, ebc2])) pb.set_ics(Conditions([ic])) state0 = pb.get_initial_state() init_fun, prestep_fun, _poststep_fun = pb.get_tss_functions(state0) ls = ScipyDirect({}) nls_status = IndexedStruct() nls = Newton({'is_linear' : True}, lin_solver=ls, status=nls_status) tss = SimpleTimeSteppingSolver({'t0' : 0.0, 't1' : 100.0, 'n_step' : 11}, nls=nls, context=pb, verbose=True) pb.set_solver(tss) if options.probe: # Prepare probe data. probes, labels = gen_probes(pb) ev = pb.evaluate order = 2 * (options.order - 1) gfield = Field.from_args('gu', nm.float64, 'vector', omega, approx_order=options.order - 1) dvel = FieldVariable('dvel', 'parameter', gfield, primary_var_name='(set-to-None)') cfield = Field.from_args('gu', nm.float64, 'scalar', omega, approx_order=options.order - 1) component = FieldVariable('component', 'parameter', cfield, primary_var_name='(set-to-None)') nls_options = {'eps_a' : 1e-16, 'i_max' : 1} suffix = tss.ts.suffix def poststep_fun(ts, vec): _poststep_fun(ts, vec) # Probe the solution. dvel_qp = ev('ev_diffusion_velocity.%d.Omega(m.diffusivity, T)' % order, copy_materials=False, mode='qp') project_by_component(dvel, dvel_qp, component, order, nls_options=nls_options) all_results = [] for ii, probe in enumerate(probes): fig, results = probe_results(ii, T, dvel, probe, labels[ii]) all_results.append(results) plt.tight_layout() fig.savefig('time_poisson_interactive_probe_%s.png' % (suffix % ts.step), bbox_inches='tight') for ii, results in enumerate(all_results): output('probe %d (%s):' % (ii, probes[ii].name)) output.level += 2 for key, res in ordered_iteritems(results): output(key + ':') val = res[1] output(' min: %+.2e, mean: %+.2e, max: %+.2e' % (val.min(), val.mean(), val.max())) output.level -= 2 else: poststep_fun = _poststep_fun pb.time_update(tss.ts) state0.apply_ebc() # This is required if {'is_linear' : True} is passed to Newton. mtx = prepare_matrix(pb, state0) pb.try_presolve(mtx) tss_status = IndexedStruct() tss(state0.get_vec(pb.active_only), init_fun=init_fun, prestep_fun=prestep_fun, poststep_fun=poststep_fun, status=tss_status) output(tss_status) if options.show: plt.show() if __name__ == '__main__': main()
bsd-3-clause
apache/spark
python/pyspark/sql/tests/test_pandas_udf.py
22
10200
# # Licensed to the Apache Software Foundation (ASF) under one or more # contributor license agreements. See the NOTICE file distributed with # this work for additional information regarding copyright ownership. # The ASF licenses this file to You under the Apache License, Version 2.0 # (the "License"); you may not use this file except in compliance with # the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import unittest from pyspark.sql.functions import udf, pandas_udf, PandasUDFType from pyspark.sql.types import DoubleType, StructType, StructField, LongType from pyspark.sql.utils import ParseException, PythonException from pyspark.rdd import PythonEvalType from pyspark.testing.sqlutils import ReusedSQLTestCase, have_pandas, have_pyarrow, \ pandas_requirement_message, pyarrow_requirement_message from pyspark.testing.utils import QuietTest @unittest.skipIf( not have_pandas or not have_pyarrow, pandas_requirement_message or pyarrow_requirement_message) # type: ignore[arg-type] class PandasUDFTests(ReusedSQLTestCase): def test_pandas_udf_basic(self): udf = pandas_udf(lambda x: x, DoubleType()) self.assertEqual(udf.returnType, DoubleType()) self.assertEqual(udf.evalType, PythonEvalType.SQL_SCALAR_PANDAS_UDF) udf = pandas_udf(lambda x: x, DoubleType(), PandasUDFType.SCALAR) self.assertEqual(udf.returnType, DoubleType()) self.assertEqual(udf.evalType, PythonEvalType.SQL_SCALAR_PANDAS_UDF) udf = pandas_udf(lambda x: x, 'double', PandasUDFType.SCALAR) self.assertEqual(udf.returnType, DoubleType()) self.assertEqual(udf.evalType, PythonEvalType.SQL_SCALAR_PANDAS_UDF) udf = pandas_udf(lambda x: x, StructType([StructField("v", DoubleType())]), PandasUDFType.GROUPED_MAP) self.assertEqual(udf.returnType, StructType([StructField("v", DoubleType())])) self.assertEqual(udf.evalType, PythonEvalType.SQL_GROUPED_MAP_PANDAS_UDF) udf = pandas_udf(lambda x: x, 'v double', PandasUDFType.GROUPED_MAP) self.assertEqual(udf.returnType, StructType([StructField("v", DoubleType())])) self.assertEqual(udf.evalType, PythonEvalType.SQL_GROUPED_MAP_PANDAS_UDF) udf = pandas_udf(lambda x: x, 'v double', functionType=PandasUDFType.GROUPED_MAP) self.assertEqual(udf.returnType, StructType([StructField("v", DoubleType())])) self.assertEqual(udf.evalType, PythonEvalType.SQL_GROUPED_MAP_PANDAS_UDF) udf = pandas_udf(lambda x: x, returnType='v double', functionType=PandasUDFType.GROUPED_MAP) self.assertEqual(udf.returnType, StructType([StructField("v", DoubleType())])) self.assertEqual(udf.evalType, PythonEvalType.SQL_GROUPED_MAP_PANDAS_UDF) def test_pandas_udf_decorator(self): @pandas_udf(DoubleType()) def foo(x): return x self.assertEqual(foo.returnType, DoubleType()) self.assertEqual(foo.evalType, PythonEvalType.SQL_SCALAR_PANDAS_UDF) @pandas_udf(returnType=DoubleType()) def foo(x): return x self.assertEqual(foo.returnType, DoubleType()) self.assertEqual(foo.evalType, PythonEvalType.SQL_SCALAR_PANDAS_UDF) schema = StructType([StructField("v", DoubleType())]) @pandas_udf(schema, PandasUDFType.GROUPED_MAP) def foo(x): return x self.assertEqual(foo.returnType, schema) self.assertEqual(foo.evalType, PythonEvalType.SQL_GROUPED_MAP_PANDAS_UDF) @pandas_udf('v double', PandasUDFType.GROUPED_MAP) def foo(x): return x self.assertEqual(foo.returnType, schema) self.assertEqual(foo.evalType, PythonEvalType.SQL_GROUPED_MAP_PANDAS_UDF) @pandas_udf(schema, functionType=PandasUDFType.GROUPED_MAP) def foo(x): return x self.assertEqual(foo.returnType, schema) self.assertEqual(foo.evalType, PythonEvalType.SQL_GROUPED_MAP_PANDAS_UDF) @pandas_udf(returnType='double', functionType=PandasUDFType.SCALAR) def foo(x): return x self.assertEqual(foo.returnType, DoubleType()) self.assertEqual(foo.evalType, PythonEvalType.SQL_SCALAR_PANDAS_UDF) @pandas_udf(returnType=schema, functionType=PandasUDFType.GROUPED_MAP) def foo(x): return x self.assertEqual(foo.returnType, schema) self.assertEqual(foo.evalType, PythonEvalType.SQL_GROUPED_MAP_PANDAS_UDF) def test_udf_wrong_arg(self): with QuietTest(self.sc): with self.assertRaises(ParseException): @pandas_udf('blah') def foo(x): return x with self.assertRaisesRegex(ValueError, 'Invalid return type.*None'): @pandas_udf(functionType=PandasUDFType.SCALAR) def foo(x): return x with self.assertRaisesRegex(ValueError, 'Invalid function'): @pandas_udf('double', 100) def foo(x): return x with self.assertRaisesRegex(ValueError, '0-arg pandas_udfs.*not.*supported'): pandas_udf(lambda: 1, LongType(), PandasUDFType.SCALAR) with self.assertRaisesRegex(ValueError, '0-arg pandas_udfs.*not.*supported'): @pandas_udf(LongType(), PandasUDFType.SCALAR) def zero_with_type(): return 1 with self.assertRaisesRegex(TypeError, 'Invalid return type'): @pandas_udf(returnType=PandasUDFType.GROUPED_MAP) def foo(df): return df with self.assertRaisesRegex(TypeError, 'Invalid return type'): @pandas_udf(returnType='double', functionType=PandasUDFType.GROUPED_MAP) def foo(df): return df with self.assertRaisesRegex(ValueError, 'Invalid function'): @pandas_udf(returnType='k int, v double', functionType=PandasUDFType.GROUPED_MAP) def foo(k, v, w): return k def test_stopiteration_in_udf(self): def foo(x): raise StopIteration() def foofoo(x, y): raise StopIteration() exc_message = "Caught StopIteration thrown from user's code; failing the task" df = self.spark.range(0, 100) # plain udf (test for SPARK-23754) self.assertRaisesRegex( PythonException, exc_message, df.withColumn('v', udf(foo)('id')).collect ) # pandas scalar udf self.assertRaisesRegex( PythonException, exc_message, df.withColumn( 'v', pandas_udf(foo, 'double', PandasUDFType.SCALAR)('id') ).collect ) # pandas grouped map self.assertRaisesRegex( PythonException, exc_message, df.groupBy('id').apply( pandas_udf(foo, df.schema, PandasUDFType.GROUPED_MAP) ).collect ) self.assertRaisesRegex( PythonException, exc_message, df.groupBy('id').apply( pandas_udf(foofoo, df.schema, PandasUDFType.GROUPED_MAP) ).collect ) # pandas grouped agg self.assertRaisesRegex( PythonException, exc_message, df.groupBy('id').agg( pandas_udf(foo, 'double', PandasUDFType.GROUPED_AGG)('id') ).collect ) def test_pandas_udf_detect_unsafe_type_conversion(self): import pandas as pd import numpy as np values = [1.0] * 3 pdf = pd.DataFrame({'A': values}) df = self.spark.createDataFrame(pdf).repartition(1) @pandas_udf(returnType="int") def udf(column): return pd.Series(np.linspace(0, 1, len(column))) # Since 0.11.0, PyArrow supports the feature to raise an error for unsafe cast. with self.sql_conf({ "spark.sql.execution.pandas.convertToArrowArraySafely": True}): with self.assertRaisesRegex(Exception, "Exception thrown when converting pandas.Series"): df.select(['A']).withColumn('udf', udf('A')).collect() # Disabling Arrow safe type check. with self.sql_conf({ "spark.sql.execution.pandas.convertToArrowArraySafely": False}): df.select(['A']).withColumn('udf', udf('A')).collect() def test_pandas_udf_arrow_overflow(self): import pandas as pd df = self.spark.range(0, 1) @pandas_udf(returnType="byte") def udf(column): return pd.Series([128] * len(column)) # When enabling safe type check, Arrow 0.11.0+ disallows overflow cast. with self.sql_conf({ "spark.sql.execution.pandas.convertToArrowArraySafely": True}): with self.assertRaisesRegex(Exception, "Exception thrown when converting pandas.Series"): df.withColumn('udf', udf('id')).collect() # Disabling safe type check, let Arrow do the cast anyway. with self.sql_conf({"spark.sql.execution.pandas.convertToArrowArraySafely": False}): df.withColumn('udf', udf('id')).collect() if __name__ == "__main__": from pyspark.sql.tests.test_pandas_udf import * # noqa: F401 try: import xmlrunner # type: ignore[import] testRunner = xmlrunner.XMLTestRunner(output='target/test-reports', verbosity=2) except ImportError: testRunner = None unittest.main(testRunner=testRunner, verbosity=2)
apache-2.0
spallavolu/scikit-learn
benchmarks/bench_rcv1_logreg_convergence.py
149
7173
# Authors: Tom Dupre la Tour <[email protected]> # Olivier Grisel <[email protected]> # # License: BSD 3 clause import matplotlib.pyplot as plt import numpy as np import gc import time from sklearn.externals.joblib import Memory from sklearn.linear_model import (LogisticRegression, SGDClassifier) from sklearn.datasets import fetch_rcv1 from sklearn.linear_model.sag import get_auto_step_size from sklearn.linear_model.sag_fast import get_max_squared_sum try: import lightning.classification as lightning_clf except ImportError: lightning_clf = None m = Memory(cachedir='.', verbose=0) # compute logistic loss def get_loss(w, intercept, myX, myy, C): n_samples = myX.shape[0] w = w.ravel() p = np.mean(np.log(1. + np.exp(-myy * (myX.dot(w) + intercept)))) print("%f + %f" % (p, w.dot(w) / 2. / C / n_samples)) p += w.dot(w) / 2. / C / n_samples return p # We use joblib to cache individual fits. Note that we do not pass the dataset # as argument as the hashing would be too slow, so we assume that the dataset # never changes. @m.cache() def bench_one(name, clf_type, clf_params, n_iter): clf = clf_type(**clf_params) try: clf.set_params(max_iter=n_iter, random_state=42) except: clf.set_params(n_iter=n_iter, random_state=42) st = time.time() clf.fit(X, y) end = time.time() try: C = 1.0 / clf.alpha / n_samples except: C = clf.C try: intercept = clf.intercept_ except: intercept = 0. train_loss = get_loss(clf.coef_, intercept, X, y, C) train_score = clf.score(X, y) test_score = clf.score(X_test, y_test) duration = end - st return train_loss, train_score, test_score, duration def bench(clfs): for (name, clf, iter_range, train_losses, train_scores, test_scores, durations) in clfs: print("training %s" % name) clf_type = type(clf) clf_params = clf.get_params() for n_iter in iter_range: gc.collect() train_loss, train_score, test_score, duration = bench_one( name, clf_type, clf_params, n_iter) train_losses.append(train_loss) train_scores.append(train_score) test_scores.append(test_score) durations.append(duration) print("classifier: %s" % name) print("train_loss: %.8f" % train_loss) print("train_score: %.8f" % train_score) print("test_score: %.8f" % test_score) print("time for fit: %.8f seconds" % duration) print("") print("") return clfs def plot_train_losses(clfs): plt.figure() for (name, _, _, train_losses, _, _, durations) in clfs: plt.plot(durations, train_losses, '-o', label=name) plt.legend(loc=0) plt.xlabel("seconds") plt.ylabel("train loss") def plot_train_scores(clfs): plt.figure() for (name, _, _, _, train_scores, _, durations) in clfs: plt.plot(durations, train_scores, '-o', label=name) plt.legend(loc=0) plt.xlabel("seconds") plt.ylabel("train score") plt.ylim((0.92, 0.96)) def plot_test_scores(clfs): plt.figure() for (name, _, _, _, _, test_scores, durations) in clfs: plt.plot(durations, test_scores, '-o', label=name) plt.legend(loc=0) plt.xlabel("seconds") plt.ylabel("test score") plt.ylim((0.92, 0.96)) def plot_dloss(clfs): plt.figure() pobj_final = [] for (name, _, _, train_losses, _, _, durations) in clfs: pobj_final.append(train_losses[-1]) indices = np.argsort(pobj_final) pobj_best = pobj_final[indices[0]] for (name, _, _, train_losses, _, _, durations) in clfs: log_pobj = np.log(abs(np.array(train_losses) - pobj_best)) / np.log(10) plt.plot(durations, log_pobj, '-o', label=name) plt.legend(loc=0) plt.xlabel("seconds") plt.ylabel("log(best - train_loss)") rcv1 = fetch_rcv1() X = rcv1.data n_samples, n_features = X.shape # consider the binary classification problem 'CCAT' vs the rest ccat_idx = rcv1.target_names.tolist().index('CCAT') y = rcv1.target.tocsc()[:, ccat_idx].toarray().ravel().astype(np.float64) y[y == 0] = -1 # parameters C = 1. fit_intercept = True tol = 1.0e-14 # max_iter range sgd_iter_range = list(range(1, 121, 10)) newton_iter_range = list(range(1, 25, 3)) lbfgs_iter_range = list(range(1, 242, 12)) liblinear_iter_range = list(range(1, 37, 3)) liblinear_dual_iter_range = list(range(1, 85, 6)) sag_iter_range = list(range(1, 37, 3)) clfs = [ ("LR-liblinear", LogisticRegression(C=C, tol=tol, solver="liblinear", fit_intercept=fit_intercept, intercept_scaling=1), liblinear_iter_range, [], [], [], []), ("LR-liblinear-dual", LogisticRegression(C=C, tol=tol, dual=True, solver="liblinear", fit_intercept=fit_intercept, intercept_scaling=1), liblinear_dual_iter_range, [], [], [], []), ("LR-SAG", LogisticRegression(C=C, tol=tol, solver="sag", fit_intercept=fit_intercept), sag_iter_range, [], [], [], []), ("LR-newton-cg", LogisticRegression(C=C, tol=tol, solver="newton-cg", fit_intercept=fit_intercept), newton_iter_range, [], [], [], []), ("LR-lbfgs", LogisticRegression(C=C, tol=tol, solver="lbfgs", fit_intercept=fit_intercept), lbfgs_iter_range, [], [], [], []), ("SGD", SGDClassifier(alpha=1.0 / C / n_samples, penalty='l2', loss='log', fit_intercept=fit_intercept, verbose=0), sgd_iter_range, [], [], [], [])] if lightning_clf is not None and not fit_intercept: alpha = 1. / C / n_samples # compute the same step_size than in LR-sag max_squared_sum = get_max_squared_sum(X) step_size = get_auto_step_size(max_squared_sum, alpha, "log", fit_intercept) clfs.append( ("Lightning-SVRG", lightning_clf.SVRGClassifier(alpha=alpha, eta=step_size, tol=tol, loss="log"), sag_iter_range, [], [], [], [])) clfs.append( ("Lightning-SAG", lightning_clf.SAGClassifier(alpha=alpha, eta=step_size, tol=tol, loss="log"), sag_iter_range, [], [], [], [])) # We keep only 200 features, to have a dense dataset, # and compare to lightning SAG, which seems incorrect in the sparse case. X_csc = X.tocsc() nnz_in_each_features = X_csc.indptr[1:] - X_csc.indptr[:-1] X = X_csc[:, np.argsort(nnz_in_each_features)[-200:]] X = X.toarray() print("dataset: %.3f MB" % (X.nbytes / 1e6)) # Split training and testing. Switch train and test subset compared to # LYRL2004 split, to have a larger training dataset. n = 23149 X_test = X[:n, :] y_test = y[:n] X = X[n:, :] y = y[n:] clfs = bench(clfs) plot_train_scores(clfs) plot_test_scores(clfs) plot_train_losses(clfs) plot_dloss(clfs) plt.show()
bsd-3-clause
theislab/scanpy
scanpy/tests/conftest.py
1
2491
import sys from pathlib import Path import matplotlib as mpl mpl.use('agg') from matplotlib import pyplot from matplotlib.testing.compare import compare_images, make_test_filename import pytest import scanpy scanpy.settings.verbosity = "hint" # define this after importing scanpy but before running tests IMPORTED = frozenset(sys.modules.keys()) @pytest.fixture(autouse=True) def close_figures_on_teardown(): yield pyplot.close("all") def clear_loggers(): """Remove handlers from all loggers Fixes: https://github.com/theislab/scanpy/issues/1736 Code from: https://github.com/pytest-dev/pytest/issues/5502#issuecomment-647157873 """ import logging loggers = [logging.getLogger()] + list(logging.Logger.manager.loggerDict.values()) for logger in loggers: handlers = getattr(logger, 'handlers', []) for handler in handlers: logger.removeHandler(handler) @pytest.fixture(scope="session", autouse=True) def close_logs_on_teardown(request): request.addfinalizer(clear_loggers) @pytest.fixture def imported_modules(): return IMPORTED @pytest.fixture def check_same_image(add_nunit_attachment): def _(pth1, pth2, *, tol: int, basename: str = ""): def fmt_descr(descr): if basename != "": return f"{descr} ({basename})" else: return descr pth1, pth2 = Path(pth1), Path(pth2) try: result = compare_images(str(pth1), str(pth2), tol=tol) assert result is None, result except Exception as e: diff_pth = make_test_filename(pth2, 'failed-diff') add_nunit_attachment(str(pth1), fmt_descr("Expected")) add_nunit_attachment(str(pth2), fmt_descr("Result")) if Path(diff_pth).is_file(): add_nunit_attachment(str(diff_pth), fmt_descr("Difference")) raise e return _ @pytest.fixture def image_comparer(check_same_image): def make_comparer(path_expected: Path, path_actual: Path, *, tol: int): def save_and_compare(basename, tol=tol): path_actual.mkdir(parents=True, exist_ok=True) out_path = path_actual / f'{basename}.png' pyplot.savefig(out_path, dpi=40) pyplot.close() check_same_image(path_expected / f'{basename}.png', out_path, tol=tol) return save_and_compare return make_comparer @pytest.fixture def plt(): return pyplot
bsd-3-clause
AlexisEidelman/Til
til/pgm/liam2of.py
2
6000
# -*- coding:utf-8 -*- ''' Created on 25 Apr 2013 @author: alexis_e ''' from pandas import HDFStore, merge, DataFrame import numpy as np import pdb import time import os from til import __path__ as path_til from utils import of_name_to_til, concatenated_ranges def table_for_of(simulation, period=None, check_validity=False, save_tables=False): temps = time.clock() output_tab = os.path.join(path_til[0], "output", "to_run_leg.h5" ) # on travaille d'abord sur l'ensemble des tables puis on selectionne chaque annee # on étudie d'abord la table individu pour pouvoir séléctionner les identifiants # step 1 table = {} entities = simulation.entities entities_name = map( lambda e: e.name, simulation.entities) def _get_entity(name): position = entities_name.index(name) return simulation.entities[position] ind = _get_entity('person') table['ind'] = DataFrame(ind.array.columns) table['ind'] = table['ind'].rename(columns={'men': 'idmen', 'foy': 'idfoy', 'id': 'noi', 'statmarit': 'civilstate'}) # création de variable table['ind']['ageq'] = table['ind']['age']/5 - 4 table['ind']['ageq'] = table['ind']['ageq']*(table['ind']['ageq'] > 0) table['ind']['ageq'] = 12 + (table['ind']['ageq']-12)*(table['ind']['ageq'] < 12) #TODO: modifier pour les jeunes veufs # create fam entity try: table['ind'][['idfam','quifam']] = table['ind'].loc[:,['idmen','quimen']] except: pdb.set_trace() # # Travail sur les qui quand on ne controle pas dans la simulation que tout le monde n'est pas qui==2 ## inutile car fait maintenant dans la simulation mais peut-être mieux à refaire ici un jour ## parce que ça prend du temps dans la simulation # time_qui = time.clock() # for ent in ('men','foy'): # 'fam' un jour... # print "Deal with qui for ", ent # qui= 'qui'+ent # ident = 'id'+ent # trav = table['ind'].ix[table['ind'][qui]==2, [ident,qui,'period']] # for name, groupfor nom in ('menage','declar','fam'):for nom in ('menage','declar','fam'): in trav.groupby([ident,'period']): # to_add = range(len(group)) # group[qui] = group[qui]+to_add # table['ind'].ix[group[qui].index, qui] = group[qui] # print "les qui pour ", ent," sont réglés" # time_qui = time.clock() - time_qui # print "le temps passé à s'occuper des qui a été",time_qui ind = table['ind'] for ent in ['men','foy']: entity = _get_entity(of_name_to_til[ent]) table[ent] = DataFrame(entity.array.columns) id = 'id' + ent qui = 'qui' + ent table[ent] = table[ent].rename(columns={'id': id}) # travail sur les qui nb_qui = ind.loc[ind[qui]>1, ['noi',id,qui]].groupby(id, sort=True).size() if len(nb_qui)>0: new_qui = concatenated_ranges(nb_qui) + 2 table['ind'] = table['ind'].sort(id) #note the sort col_qui = table['ind'][qui] col_qui[col_qui>1] = new_qui table['ind'][qui] = col_qui # informations on qui == 0 qui0 = table['ind'].loc[table['ind']['qui' + ent]==0,['noi','idfoy','idmen','idfam','period']] table[ent] = merge(table[ent], qui0, how='left', left_on=[id,'period'], right_on=[id,'period']) if ent=='men': # nbinde est limité à 6 personnes et donc valeur = 5 en python table[ent]['nbinde'] = (table[ent]['nb_persons']-1) * (table[ent]['nb_persons']-1 <=5) +5*(table[ent]['nb_persons']-1 >5) table['fam'] = qui0 # remove non-ordinary household cond = (table['ind']['idmen'] >= 10) & (table['ind']['idfoy'] >= 10) table['ind'] = table['ind'][cond] table['men'] = table['men'][table['men']['idmen']>=10] table['foy'] = table['foy'][table['foy']['idfoy']>=10] table['fam'] = table['fam'][table['fam']['idfam']>=10] # get years years = np.unique(table['ind']['period'].values/100) if period is not None: years=[period] print years if check_validity: for year in years: ind = table['ind'] for ent in ['men','foy']: #fam id = 'id' + ent qui = 'qui' + ent tab = table[ent] try: assert ind.groupby([id,qui]).size().max() == 1 except: print ent pb = ind.groupby([id,qui]).size() > 1 print(ind.groupby([id,qui]).size()[pb]) pdb.set_trace() print(ind[ind[id]==43][['noi',id,qui]]) qui0 = ind[ind[qui]==0] try: assert qui0[id].isin(tab[id]).all() except: cond = tab[id].isin(qui0[id]) print(tab[~cond]) pdb.set_trace() try: assert tab[id].isin(qui0[id]).all() except: cond = tab[id].isin(qui0[id]) print(tab[~cond]) pdb.set_trace() for year in years: if save_tables: try: os.remove(output_tab) except: print("Attention, la table intermediaire n'a pas ete supprimee") goal = HDFStore(output_tab) goal.remove('survey_'+str(year)) for ent in ('ind','men','foy','fam'): tab = table[ent].loc[table[ent]['period']/100==year] key = 'survey_'+str(year) + '/'+ent goal.put(key, tab) goal.close() else: for ent in ('ind','men','foy','fam'): table[ent] = table[ent].loc[table[ent]['period']/100==year] return table if __name__ == "__main__": table_for_of()
gpl-3.0
GGiecold/PySCUBA
setup.py
1
2816
#!/usr/bin/env python # PySCUBA/setup.py # Author: Gregory Giecold for the GC Yuan Lab # Affiliation: Harvard University # Contact: [email protected], [email protected] from codecs import open from os import path from setuptools import setup exec(open(path.join('src', 'PySCUBA', '__version__.py')).read()) here = path.abspath(path.dirname(__file__)) with open(path.join(here, 'README'), encoding = 'utf-8') as f: long_description = f.read() setup(name = 'PySCUBA', version = __version__, description = "Python for Single-cell Clustering Using Bifurcation Analysis", long_description = long_description, url = 'https://github.com/GGiecold/PySCUBA', download_url = 'https://github.com/GGiecold/PySCUBA', author = 'Gregory Giecold', author_email = '[email protected]', maintainer = 'Gregory Giecold', maintainer_email = '[email protected]', license = 'MIT License', platforms = ('Any',), install_requires = ['matplotlib>=1.4.3', 'numpy>=1.9.0', 'Pillow>=3.2.0', 'python-igraph', 'rpy2>=2.8.1', 'scipy>=0.17.0', 'setuptools', 'sklearn', 'Wand>=0.4.3'], classifiers = ['Development Status :: 4 - Beta', 'Environment :: Console', 'Intended Audience :: End Users/Desktop', 'Intended Audience :: Developers', 'Intended Audience :: Healthcare Industry', 'Intended Audience :: Science/Research', 'License :: OSI Approved :: MIT License', 'Natural Language :: English', 'Operating System :: MacOS :: MacOS X', 'Operating System :: Microsoft', 'Operating System :: POSIX', 'Programming Language :: Python :: 2.7', 'Topic :: Scientific/Engineering', 'Topic :: Scientific/Engineering :: Bio-Informatics', 'Topic :: Scientific/Engineering :: Visualization', 'Topic :: Scientific/Engineering :: Mathematics', 'Topic :: Software Development :: User Interfaces', ], packages = ['PySCUBA'], package_dir = {'PySCUBA': 'src/PySCUBA'}, keywords = "bioinformatics biology clustering cytometry gap-statistics " "genomics machine-learning pattern-recognition PCR principal-curve " "qPCR RNASeq single-cell time-series unsupervised-learning", entry_points = { 'console_scripts': ['PySCUBA = PySCUBA.__main__:main'], } )
mit
thientu/scikit-learn
sklearn/datasets/__init__.py
176
3671
""" The :mod:`sklearn.datasets` module includes utilities to load datasets, including methods to load and fetch popular reference datasets. It also features some artificial data generators. """ from .base import load_diabetes from .base import load_digits from .base import load_files from .base import load_iris from .base import load_linnerud from .base import load_boston from .base import get_data_home from .base import clear_data_home from .base import load_sample_images from .base import load_sample_image from .covtype import fetch_covtype from .mlcomp import load_mlcomp from .lfw import load_lfw_pairs from .lfw import load_lfw_people from .lfw import fetch_lfw_pairs from .lfw import fetch_lfw_people from .twenty_newsgroups import fetch_20newsgroups from .twenty_newsgroups import fetch_20newsgroups_vectorized from .mldata import fetch_mldata, mldata_filename from .samples_generator import make_classification from .samples_generator import make_multilabel_classification from .samples_generator import make_hastie_10_2 from .samples_generator import make_regression from .samples_generator import make_blobs from .samples_generator import make_moons from .samples_generator import make_circles from .samples_generator import make_friedman1 from .samples_generator import make_friedman2 from .samples_generator import make_friedman3 from .samples_generator import make_low_rank_matrix from .samples_generator import make_sparse_coded_signal from .samples_generator import make_sparse_uncorrelated from .samples_generator import make_spd_matrix from .samples_generator import make_swiss_roll from .samples_generator import make_s_curve from .samples_generator import make_sparse_spd_matrix from .samples_generator import make_gaussian_quantiles from .samples_generator import make_biclusters from .samples_generator import make_checkerboard from .svmlight_format import load_svmlight_file from .svmlight_format import load_svmlight_files from .svmlight_format import dump_svmlight_file from .olivetti_faces import fetch_olivetti_faces from .species_distributions import fetch_species_distributions from .california_housing import fetch_california_housing from .rcv1 import fetch_rcv1 __all__ = ['clear_data_home', 'dump_svmlight_file', 'fetch_20newsgroups', 'fetch_20newsgroups_vectorized', 'fetch_lfw_pairs', 'fetch_lfw_people', 'fetch_mldata', 'fetch_olivetti_faces', 'fetch_species_distributions', 'fetch_california_housing', 'fetch_covtype', 'fetch_rcv1', 'get_data_home', 'load_boston', 'load_diabetes', 'load_digits', 'load_files', 'load_iris', 'load_lfw_pairs', 'load_lfw_people', 'load_linnerud', 'load_mlcomp', 'load_sample_image', 'load_sample_images', 'load_svmlight_file', 'load_svmlight_files', 'make_biclusters', 'make_blobs', 'make_circles', 'make_classification', 'make_checkerboard', 'make_friedman1', 'make_friedman2', 'make_friedman3', 'make_gaussian_quantiles', 'make_hastie_10_2', 'make_low_rank_matrix', 'make_moons', 'make_multilabel_classification', 'make_regression', 'make_s_curve', 'make_sparse_coded_signal', 'make_sparse_spd_matrix', 'make_sparse_uncorrelated', 'make_spd_matrix', 'make_swiss_roll', 'mldata_filename']
bsd-3-clause
m11s/MissionPlanner
Lib/site-packages/numpy/lib/npyio.py
53
59490
__all__ = ['savetxt', 'loadtxt', 'genfromtxt', 'ndfromtxt', 'mafromtxt', 'recfromtxt', 'recfromcsv', 'load', 'loads', 'save', 'savez', 'savez_compressed', 'packbits', 'unpackbits', 'fromregex', 'DataSource'] import numpy as np import format import sys import os import sys import itertools import warnings from operator import itemgetter from cPickle import load as _cload, loads from _datasource import DataSource if sys.platform != 'cli': from _compiled_base import packbits, unpackbits else: def packbits(*args, **kw): raise NotImplementedError() def unpackbits(*args, **kw): raise NotImplementedError() from _iotools import LineSplitter, NameValidator, StringConverter, \ ConverterError, ConverterLockError, ConversionWarning, \ _is_string_like, has_nested_fields, flatten_dtype, \ easy_dtype, _bytes_to_name from numpy.compat import asbytes, asstr, asbytes_nested, bytes if sys.version_info[0] >= 3: from io import BytesIO else: from cStringIO import StringIO as BytesIO _string_like = _is_string_like def seek_gzip_factory(f): """Use this factory to produce the class so that we can do a lazy import on gzip. """ import gzip class GzipFile(gzip.GzipFile): def seek(self, offset, whence=0): # figure out new position (we can only seek forwards) if whence == 1: offset = self.offset + offset if whence not in [0, 1]: raise IOError, "Illegal argument" if offset < self.offset: # for negative seek, rewind and do positive seek self.rewind() count = offset - self.offset for i in range(count // 1024): self.read(1024) self.read(count % 1024) def tell(self): return self.offset if isinstance(f, str): f = GzipFile(f) elif isinstance(f, gzip.GzipFile): # cast to our GzipFile if its already a gzip.GzipFile g = GzipFile(fileobj=f.fileobj) g.name = f.name g.mode = f.mode f = g return f class BagObj(object): """ BagObj(obj) Convert attribute look-ups to getitems on the object passed in. Parameters ---------- obj : class instance Object on which attribute look-up is performed. Examples -------- >>> from numpy.lib.npyio import BagObj as BO >>> class BagDemo(object): ... def __getitem__(self, key): # An instance of BagObj(BagDemo) ... # will call this method when any ... # attribute look-up is required ... result = "Doesn't matter what you want, " ... return result + "you're gonna get this" ... >>> demo_obj = BagDemo() >>> bagobj = BO(demo_obj) >>> bagobj.hello_there "Doesn't matter what you want, you're gonna get this" >>> bagobj.I_can_be_anything "Doesn't matter what you want, you're gonna get this" """ def __init__(self, obj): self._obj = obj def __getattribute__(self, key): try: return object.__getattribute__(self, '_obj')[key] except KeyError: raise AttributeError, key def zipfile_factory(*args, **kwargs): import zipfile if sys.version_info >= (2, 5): kwargs['allowZip64'] = True return zipfile.ZipFile(*args, **kwargs) class NpzFile(object): """ NpzFile(fid) A dictionary-like object with lazy-loading of files in the zipped archive provided on construction. `NpzFile` is used to load files in the NumPy ``.npz`` data archive format. It assumes that files in the archive have a ".npy" extension, other files are ignored. The arrays and file strings are lazily loaded on either getitem access using ``obj['key']`` or attribute lookup using ``obj.f.key``. A list of all files (without ".npy" extensions) can be obtained with ``obj.files`` and the ZipFile object itself using ``obj.zip``. Attributes ---------- files : list of str List of all files in the archive with a ".npy" extension. zip : ZipFile instance The ZipFile object initialized with the zipped archive. f : BagObj instance An object on which attribute can be performed as an alternative to getitem access on the `NpzFile` instance itself. Parameters ---------- fid : file or str The zipped archive to open. This is either a file-like object or a string containing the path to the archive. own_fid : bool, optional Whether NpzFile should close the file handle. Requires that `fid` is a file-like object. Examples -------- >>> from tempfile import TemporaryFile >>> outfile = TemporaryFile() >>> x = np.arange(10) >>> y = np.sin(x) >>> np.savez(outfile, x=x, y=y) >>> outfile.seek(0) >>> npz = np.load(outfile) >>> isinstance(npz, np.lib.io.NpzFile) True >>> npz.files ['y', 'x'] >>> npz['x'] # getitem access array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9]) >>> npz.f.x # attribute lookup array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9]) """ def __init__(self, fid, own_fid=False): # Import is postponed to here since zipfile depends on gzip, an optional # component of the so-called standard library. _zip = zipfile_factory(fid) self._files = _zip.namelist() self.files = [] for x in self._files: if x.endswith('.npy'): self.files.append(x[:-4]) else: self.files.append(x) self.zip = _zip self.f = BagObj(self) if own_fid: self.fid = fid else: self.fid = None def close(self): """ Close the file. """ if self.zip is not None: self.zip.close() self.zip = None if self.fid is not None: self.fid.close() self.fid = None def __del__(self): self.close() def __getitem__(self, key): # FIXME: This seems like it will copy strings around # more than is strictly necessary. The zipfile # will read the string and then # the format.read_array will copy the string # to another place in memory. # It would be better if the zipfile could read # (or at least uncompress) the data # directly into the array memory. member = 0 if key in self._files: member = 1 elif key in self.files: member = 1 key += '.npy' if member: bytes = self.zip.read(key) if bytes.startswith(format.MAGIC_PREFIX): value = BytesIO(bytes) return format.read_array(value) else: return bytes else: raise KeyError, "%s is not a file in the archive" % key def __iter__(self): return iter(self.files) def items(self): """ Return a list of tuples, with each tuple (filename, array in file). """ return [(f, self[f]) for f in self.files] def iteritems(self): """Generator that returns tuples (filename, array in file).""" for f in self.files: yield (f, self[f]) def keys(self): """Return files in the archive with a ".npy" extension.""" return self.files def iterkeys(self): """Return an iterator over the files in the archive.""" return self.__iter__() def __contains__(self, key): return self.files.__contains__(key) def load(file, mmap_mode=None): """ Load a pickled, ``.npy``, or ``.npz`` binary file. Parameters ---------- file : file-like object or string The file to read. It must support ``seek()`` and ``read()`` methods. If the filename extension is ``.gz``, the file is first decompressed. mmap_mode: {None, 'r+', 'r', 'w+', 'c'}, optional If not None, then memory-map the file, using the given mode (see `numpy.memmap`). The mode has no effect for pickled or zipped files. A memory-mapped array is stored on disk, and not directly loaded into memory. However, it can be accessed and sliced like any ndarray. Memory mapping is especially useful for accessing small fragments of large files without reading the entire file into memory. Returns ------- result : array, tuple, dict, etc. Data stored in the file. Raises ------ IOError If the input file does not exist or cannot be read. See Also -------- save, savez, loadtxt memmap : Create a memory-map to an array stored in a file on disk. Notes ----- - If the file contains pickle data, then whatever is stored in the pickle is returned. - If the file is a ``.npy`` file, then an array is returned. - If the file is a ``.npz`` file, then a dictionary-like object is returned, containing ``{filename: array}`` key-value pairs, one for each file in the archive. Examples -------- Store data to disk, and load it again: >>> np.save('/tmp/123', np.array([[1, 2, 3], [4, 5, 6]])) >>> np.load('/tmp/123.npy') array([[1, 2, 3], [4, 5, 6]]) Mem-map the stored array, and then access the second row directly from disk: >>> X = np.load('/tmp/123.npy', mmap_mode='r') >>> X[1, :] memmap([4, 5, 6]) """ import gzip own_fid = False if isinstance(file, basestring): fid = open(file, "rb") own_fid = True elif isinstance(file, gzip.GzipFile): fid = seek_gzip_factory(file) own_fid = True else: fid = file try: # Code to distinguish from NumPy binary files and pickles. _ZIP_PREFIX = asbytes('PK\x03\x04') N = len(format.MAGIC_PREFIX) magic = fid.read(N) fid.seek(-N, 1) # back-up if magic.startswith(_ZIP_PREFIX): # zip-file (assume .npz) own_fid = False return NpzFile(fid, own_fid=True) elif magic == format.MAGIC_PREFIX: # .npy file if mmap_mode: return format.open_memmap(file, mode=mmap_mode) else: return format.read_array(fid) else: # Try a pickle try: return _cload(fid) except: raise IOError, \ "Failed to interpret file %s as a pickle" % repr(file) finally: if own_fid: fid.close() def save(file, arr): """ Save an array to a binary file in NumPy ``.npy`` format. Parameters ---------- file : file or str File or filename to which the data is saved. If file is a file-object, then the filename is unchanged. If file is a string, a ``.npy`` extension will be appended to the file name if it does not already have one. arr : array_like Array data to be saved. See Also -------- savez : Save several arrays into a ``.npz`` archive savetxt, load Notes ----- For a description of the ``.npy`` format, see `format`. Examples -------- >>> from tempfile import TemporaryFile >>> outfile = TemporaryFile() >>> x = np.arange(10) >>> np.save(outfile, x) >>> outfile.seek(0) # Only needed here to simulate closing & reopening file >>> np.load(outfile) array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9]) """ own_fid = False if isinstance(file, basestring): if not file.endswith('.npy'): file = file + '.npy' fid = open(file, "wb") own_fid = True else: fid = file try: arr = np.asanyarray(arr) format.write_array(fid, arr) finally: if own_fid: fid.close() def savez(file, *args, **kwds): """ Save several arrays into a single file in uncompressed ``.npz`` format. If arguments are passed in with no keywords, the corresponding variable names, in the .npz file, are 'arr_0', 'arr_1', etc. If keyword arguments are given, the corresponding variable names, in the ``.npz`` file will match the keyword names. Parameters ---------- file : str or file Either the file name (string) or an open file (file-like object) where the data will be saved. If file is a string, the ``.npz`` extension will be appended to the file name if it is not already there. *args : Arguments, optional Arrays to save to the file. Since it is not possible for Python to know the names of the arrays outside `savez`, the arrays will be saved with names "arr_0", "arr_1", and so on. These arguments can be any expression. **kwds : Keyword arguments, optional Arrays to save to the file. Arrays will be saved in the file with the keyword names. Returns ------- None See Also -------- save : Save a single array to a binary file in NumPy format. savetxt : Save an array to a file as plain text. Notes ----- The ``.npz`` file format is a zipped archive of files named after the variables they contain. The archive is not compressed and each file in the archive contains one variable in ``.npy`` format. For a description of the ``.npy`` format, see `format`. When opening the saved ``.npz`` file with `load` a `NpzFile` object is returned. This is a dictionary-like object which can be queried for its list of arrays (with the ``.files`` attribute), and for the arrays themselves. Examples -------- >>> from tempfile import TemporaryFile >>> outfile = TemporaryFile() >>> x = np.arange(10) >>> y = np.sin(x) Using `savez` with *args, the arrays are saved with default names. >>> np.savez(outfile, x, y) >>> outfile.seek(0) # Only needed here to simulate closing & reopening file >>> npzfile = np.load(outfile) >>> npzfile.files ['arr_1', 'arr_0'] >>> npzfile['arr_0'] array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9]) Using `savez` with **kwds, the arrays are saved with the keyword names. >>> outfile = TemporaryFile() >>> np.savez(outfile, x=x, y=y) >>> outfile.seek(0) >>> npzfile = np.load(outfile) >>> npzfile.files ['y', 'x'] >>> npzfile['x'] array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9]) See Also -------- numpy.savez_compressed : Save several arrays into a compressed .npz file format """ _savez(file, args, kwds, False) def savez_compressed(file, *args, **kwds): """ Save several arrays into a single file in compressed ``.npz`` format. If keyword arguments are given, then filenames are taken from the keywords. If arguments are passed in with no keywords, then stored file names are arr_0, arr_1, etc. Parameters ---------- file : string File name of .npz file. args : Arguments Function arguments. kwds : Keyword arguments Keywords. See Also -------- numpy.savez : Save several arrays into an uncompressed .npz file format """ _savez(file, args, kwds, True) def _savez(file, args, kwds, compress): # Import is postponed to here since zipfile depends on gzip, an optional # component of the so-called standard library. import zipfile # Import deferred for startup time improvement import tempfile if isinstance(file, basestring): if not file.endswith('.npz'): file = file + '.npz' namedict = kwds for i, val in enumerate(args): key = 'arr_%d' % i if key in namedict.keys(): raise ValueError, "Cannot use un-named variables and keyword %s" % key namedict[key] = val if compress: compression = zipfile.ZIP_DEFLATED else: compression = zipfile.ZIP_STORED zip = zipfile_factory(file, mode="w", compression=compression) # Stage arrays in a temporary file on disk, before writing to zip. fd, tmpfile = tempfile.mkstemp(suffix='-numpy.npy') os.close(fd) try: for key, val in namedict.iteritems(): fname = key + '.npy' fid = open(tmpfile, 'wb') try: format.write_array(fid, np.asanyarray(val)) fid.close() fid = None zip.write(tmpfile, arcname=fname) finally: if fid: fid.close() finally: os.remove(tmpfile) zip.close() # Adapted from matplotlib def _getconv(dtype): typ = dtype.type if issubclass(typ, np.bool_): return lambda x: bool(int(x)) if issubclass(typ, np.integer): return lambda x: int(float(x)) elif issubclass(typ, np.floating): return float elif issubclass(typ, np.complex): return complex elif issubclass(typ, np.bytes_): return bytes else: return str def loadtxt(fname, dtype=float, comments='#', delimiter=None, converters=None, skiprows=0, usecols=None, unpack=False): """ Load data from a text file. Each row in the text file must have the same number of values. Parameters ---------- fname : file or str File or filename to read. If the filename extension is ``.gz`` or ``.bz2``, the file is first decompressed. dtype : data-type, optional Data-type of the resulting array; default: float. If this is a record data-type, the resulting array will be 1-dimensional, and each row will be interpreted as an element of the array. In this case, the number of columns used must match the number of fields in the data-type. comments : str, optional The character used to indicate the start of a comment; default: '#'. delimiter : str, optional The string used to separate values. By default, this is any whitespace. converters : dict, optional A dictionary mapping column number to a function that will convert that column to a float. E.g., if column 0 is a date string: ``converters = {0: datestr2num}``. Converters can also be used to provide a default value for missing data: ``converters = {3: lambda s: float(s or 0)}``. Default: None. skiprows : int, optional Skip the first `skiprows` lines; default: 0. usecols : sequence, optional Which columns to read, with 0 being the first. For example, ``usecols = (1,4,5)`` will extract the 2nd, 5th and 6th columns. The default, None, results in all columns being read. unpack : bool, optional If True, the returned array is transposed, so that arguments may be unpacked using ``x, y, z = loadtxt(...)``. The default is False. Returns ------- out : ndarray Data read from the text file. See Also -------- load, fromstring, fromregex genfromtxt : Load data with missing values handled as specified. scipy.io.loadmat : reads MATLAB data files Notes ----- This function aims to be a fast reader for simply formatted files. The `genfromtxt` function provides more sophisticated handling of, e.g., lines with missing values. Examples -------- >>> from StringIO import StringIO # StringIO behaves like a file object >>> c = StringIO("0 1\\n2 3") >>> np.loadtxt(c) array([[ 0., 1.], [ 2., 3.]]) >>> d = StringIO("M 21 72\\nF 35 58") >>> np.loadtxt(d, dtype={'names': ('gender', 'age', 'weight'), ... 'formats': ('S1', 'i4', 'f4')}) array([('M', 21, 72.0), ('F', 35, 58.0)], dtype=[('gender', '|S1'), ('age', '<i4'), ('weight', '<f4')]) >>> c = StringIO("1,0,2\\n3,0,4") >>> x, y = np.loadtxt(c, delimiter=',', usecols=(0, 2), unpack=True) >>> x array([ 1., 3.]) >>> y array([ 2., 4.]) """ # Type conversions for Py3 convenience comments = asbytes(comments) if delimiter is not None: delimiter = asbytes(delimiter) user_converters = converters if usecols is not None: usecols = list(usecols) own_fh = False if _is_string_like(fname): own_fh = True if fname.endswith('.gz'): fh = seek_gzip_factory(fname) elif fname.endswith('.bz2'): import bz2 fh = bz2.BZ2File(fname) else: fh = open(fname, 'U') elif hasattr(fname, 'readline'): fh = fname else: raise ValueError('fname must be a string or file handle') X = [] def flatten_dtype(dt): """Unpack a structured data-type.""" if dt.names is None: # If the dtype is flattened, return. # If the dtype has a shape, the dtype occurs # in the list more than once. return [dt.base] * int(np.prod(dt.shape)) else: types = [] for field in dt.names: tp, bytes = dt.fields[field] flat_dt = flatten_dtype(tp) types.extend(flat_dt) return types def split_line(line): """Chop off comments, strip, and split at delimiter.""" line = asbytes(line).split(comments)[0].strip() if line: return line.split(delimiter) else: return [] try: # Make sure we're dealing with a proper dtype dtype = np.dtype(dtype) defconv = _getconv(dtype) # Skip the first `skiprows` lines for i in xrange(skiprows): fh.readline() # Read until we find a line with some values, and use # it to estimate the number of columns, N. first_vals = None while not first_vals: first_line = fh.readline() if not first_line: # EOF reached raise IOError('End-of-file reached before encountering data.') first_vals = split_line(first_line) N = len(usecols or first_vals) dtype_types = flatten_dtype(dtype) if len(dtype_types) > 1: # We're dealing with a structured array, each field of # the dtype matches a column converters = [_getconv(dt) for dt in dtype_types] else: # All fields have the same dtype converters = [defconv for i in xrange(N)] # By preference, use the converters specified by the user for i, conv in (user_converters or {}).iteritems(): if usecols: try: i = usecols.index(i) except ValueError: # Unused converter specified continue converters[i] = conv # Parse each line, including the first for i, line in enumerate(itertools.chain([first_line], fh)): vals = split_line(line) if len(vals) == 0: continue if usecols: vals = [vals[i] for i in usecols] # Convert each value according to its column and store X.append(tuple([conv(val) for (conv, val) in zip(converters, vals)])) finally: if own_fh: fh.close() if len(dtype_types) > 1: # We're dealing with a structured array, with a dtype such as # [('x', int), ('y', [('s', int), ('t', float)])] # # First, create the array using a flattened dtype: # [('x', int), ('s', int), ('t', float)] # # Then, view the array using the specified dtype. try: X = np.array(X, dtype=np.dtype([('', t) for t in dtype_types])) X = X.view(dtype) except TypeError: # In the case we have an object dtype X = np.array(X, dtype=dtype) else: X = np.array(X, dtype) X = np.squeeze(X) if unpack: return X.T else: return X def savetxt(fname, X, fmt='%.18e', delimiter=' ', newline='\n'): """ Save an array to a text file. Parameters ---------- fname : filename or file handle If the filename ends in ``.gz``, the file is automatically saved in compressed gzip format. `loadtxt` understands gzipped files transparently. X : array_like Data to be saved to a text file. fmt : str or sequence of strs A single format (%10.5f), a sequence of formats, or a multi-format string, e.g. 'Iteration %d -- %10.5f', in which case `delimiter` is ignored. delimiter : str Character separating columns. newline : str .. versionadded:: 1.5.0 Character separating lines. See Also -------- save : Save an array to a binary file in NumPy ``.npy`` format savez : Save several arrays into a ``.npz`` compressed archive Notes ----- Further explanation of the `fmt` parameter (``%[flag]width[.precision]specifier``): flags: ``-`` : left justify ``+`` : Forces to preceed result with + or -. ``0`` : Left pad the number with zeros instead of space (see width). width: Minimum number of characters to be printed. The value is not truncated if it has more characters. precision: - For integer specifiers (eg. ``d,i,o,x``), the minimum number of digits. - For ``e, E`` and ``f`` specifiers, the number of digits to print after the decimal point. - For ``g`` and ``G``, the maximum number of significant digits. - For ``s``, the maximum number of characters. specifiers: ``c`` : character ``d`` or ``i`` : signed decimal integer ``e`` or ``E`` : scientific notation with ``e`` or ``E``. ``f`` : decimal floating point ``g,G`` : use the shorter of ``e,E`` or ``f`` ``o`` : signed octal ``s`` : string of characters ``u`` : unsigned decimal integer ``x,X`` : unsigned hexadecimal integer This explanation of ``fmt`` is not complete, for an exhaustive specification see [1]_. References ---------- .. [1] `Format Specification Mini-Language <http://docs.python.org/library/string.html# format-specification-mini-language>`_, Python Documentation. Examples -------- >>> x = y = z = np.arange(0.0,5.0,1.0) >>> np.savetxt('test.out', x, delimiter=',') # X is an array >>> np.savetxt('test.out', (x,y,z)) # x,y,z equal sized 1D arrays >>> np.savetxt('test.out', x, fmt='%1.4e') # use exponential notation """ # Py3 conversions first if isinstance(fmt, bytes): fmt = asstr(fmt) delimiter = asstr(delimiter) own_fh = False if _is_string_like(fname): own_fh = True if fname.endswith('.gz'): import gzip fh = gzip.open(fname, 'wb') else: if sys.version_info[0] >= 3: fh = open(fname, 'wb') else: fh = open(fname, 'w') elif hasattr(fname, 'seek'): fh = fname else: raise ValueError('fname must be a string or file handle') try: X = np.asarray(X) # Handle 1-dimensional arrays if X.ndim == 1: # Common case -- 1d array of numbers if X.dtype.names is None: X = np.atleast_2d(X).T ncol = 1 # Complex dtype -- each field indicates a separate column else: ncol = len(X.dtype.descr) else: ncol = X.shape[1] # `fmt` can be a string with multiple insertion points or a # list of formats. E.g. '%10.5f\t%10d' or ('%10.5f', '$10d') if type(fmt) in (list, tuple): if len(fmt) != ncol: raise AttributeError('fmt has wrong shape. %s' % str(fmt)) format = asstr(delimiter).join(map(asstr, fmt)) elif type(fmt) is str: if fmt.count('%') == 1: fmt = [fmt, ]*ncol format = delimiter.join(fmt) elif fmt.count('%') != ncol: raise AttributeError('fmt has wrong number of %% formats. %s' % fmt) else: format = fmt for row in X: fh.write(asbytes(format % tuple(row) + newline)) finally: if own_fh: fh.close() import re def fromregex(file, regexp, dtype): """ Construct an array from a text file, using regular expression parsing. The returned array is always a structured array, and is constructed from all matches of the regular expression in the file. Groups in the regular expression are converted to fields of the structured array. Parameters ---------- file : str or file File name or file object to read. regexp : str or regexp Regular expression used to parse the file. Groups in the regular expression correspond to fields in the dtype. dtype : dtype or list of dtypes Dtype for the structured array. Returns ------- output : ndarray The output array, containing the part of the content of `file` that was matched by `regexp`. `output` is always a structured array. Raises ------ TypeError When `dtype` is not a valid dtype for a structured array. See Also -------- fromstring, loadtxt Notes ----- Dtypes for structured arrays can be specified in several forms, but all forms specify at least the data type and field name. For details see `doc.structured_arrays`. Examples -------- >>> f = open('test.dat', 'w') >>> f.write("1312 foo\\n1534 bar\\n444 qux") >>> f.close() >>> regexp = r"(\\d+)\\s+(...)" # match [digits, whitespace, anything] >>> output = np.fromregex('test.dat', regexp, ... [('num', np.int64), ('key', 'S3')]) >>> output array([(1312L, 'foo'), (1534L, 'bar'), (444L, 'qux')], dtype=[('num', '<i8'), ('key', '|S3')]) >>> output['num'] array([1312, 1534, 444], dtype=int64) """ own_fh = False if not hasattr(file, "read"): file = open(file, 'rb') own_fh = True try: if not hasattr(regexp, 'match'): regexp = re.compile(asbytes(regexp)) if not isinstance(dtype, np.dtype): dtype = np.dtype(dtype) seq = regexp.findall(file.read()) if seq and not isinstance(seq[0], tuple): # Only one group is in the regexp. # Create the new array as a single data-type and then # re-interpret as a single-field structured array. newdtype = np.dtype(dtype[dtype.names[0]]) output = np.array(seq, dtype=newdtype) output.dtype = dtype else: output = np.array(seq, dtype=dtype) return output finally: if own_fh: fh.close() #####-------------------------------------------------------------------------- #---- --- ASCII functions --- #####-------------------------------------------------------------------------- def genfromtxt(fname, dtype=float, comments='#', delimiter=None, skiprows=0, skip_header=0, skip_footer=0, converters=None, missing='', missing_values=None, filling_values=None, usecols=None, names=None, excludelist=None, deletechars=None, replace_space='_', autostrip=False, case_sensitive=True, defaultfmt="f%i", unpack=None, usemask=False, loose=True, invalid_raise=True): """ Load data from a text file, with missing values handled as specified. Each line past the first `skiprows` lines is split at the `delimiter` character, and characters following the `comments` character are discarded. Parameters ---------- fname : file or str File or filename to read. If the filename extension is `.gz` or `.bz2`, the file is first decompressed. dtype : dtype, optional Data type of the resulting array. If None, the dtypes will be determined by the contents of each column, individually. comments : str, optional The character used to indicate the start of a comment. All the characters occurring on a line after a comment are discarded delimiter : str, int, or sequence, optional The string used to separate values. By default, any consecutive whitespaces act as delimiter. An integer or sequence of integers can also be provided as width(s) of each field. skip_header : int, optional The numbers of lines to skip at the beginning of the file. skip_footer : int, optional The numbers of lines to skip at the end of the file converters : variable or None, optional The set of functions that convert the data of a column to a value. The converters can also be used to provide a default value for missing data: ``converters = {3: lambda s: float(s or 0)}``. missing_values : variable or None, optional The set of strings corresponding to missing data. filling_values : variable or None, optional The set of values to be used as default when the data are missing. usecols : sequence or None, optional Which columns to read, with 0 being the first. For example, ``usecols = (1, 4, 5)`` will extract the 2nd, 5th and 6th columns. names : {None, True, str, sequence}, optional If `names` is True, the field names are read from the first valid line after the first `skiprows` lines. If `names` is a sequence or a single-string of comma-separated names, the names will be used to define the field names in a structured dtype. If `names` is None, the names of the dtype fields will be used, if any. excludelist : sequence, optional A list of names to exclude. This list is appended to the default list ['return','file','print']. Excluded names are appended an underscore: for example, `file` would become `file_`. deletechars : str, optional A string combining invalid characters that must be deleted from the names. defaultfmt : str, optional A format used to define default field names, such as "f%i" or "f_%02i". autostrip : bool, optional Whether to automatically strip white spaces from the variables. replace_space : char, optional Character(s) used in replacement of white spaces in the variables names. By default, use a '_'. case_sensitive : {True, False, 'upper', 'lower'}, optional If True, field names are case sensitive. If False or 'upper', field names are converted to upper case. If 'lower', field names are converted to lower case. unpack : bool, optional If True, the returned array is transposed, so that arguments may be unpacked using ``x, y, z = loadtxt(...)`` usemask : bool, optional If True, return a masked array. If False, return a regular array. invalid_raise : bool, optional If True, an exception is raised if an inconsistency is detected in the number of columns. If False, a warning is emitted and the offending lines are skipped. Returns ------- out : ndarray Data read from the text file. If `usemask` is True, this is a masked array. See Also -------- numpy.loadtxt : equivalent function when no data is missing. Notes ----- * When spaces are used as delimiters, or when no delimiter has been given as input, there should not be any missing data between two fields. * When the variables are named (either by a flexible dtype or with `names`, there must not be any header in the file (else a ValueError exception is raised). * Individual values are not stripped of spaces by default. When using a custom converter, make sure the function does remove spaces. Examples --------- >>> from StringIO import StringIO >>> import numpy as np Comma delimited file with mixed dtype >>> s = StringIO("1,1.3,abcde") >>> data = np.genfromtxt(s, dtype=[('myint','i8'),('myfloat','f8'), ... ('mystring','S5')], delimiter=",") >>> data array((1, 1.3, 'abcde'), dtype=[('myint', '<i8'), ('myfloat', '<f8'), ('mystring', '|S5')]) Using dtype = None >>> s.seek(0) # needed for StringIO example only >>> data = np.genfromtxt(s, dtype=None, ... names = ['myint','myfloat','mystring'], delimiter=",") >>> data array((1, 1.3, 'abcde'), dtype=[('myint', '<i8'), ('myfloat', '<f8'), ('mystring', '|S5')]) Specifying dtype and names >>> s.seek(0) >>> data = np.genfromtxt(s, dtype="i8,f8,S5", ... names=['myint','myfloat','mystring'], delimiter=",") >>> data array((1, 1.3, 'abcde'), dtype=[('myint', '<i8'), ('myfloat', '<f8'), ('mystring', '|S5')]) An example with fixed-width columns >>> s = StringIO("11.3abcde") >>> data = np.genfromtxt(s, dtype=None, names=['intvar','fltvar','strvar'], ... delimiter=[1,3,5]) >>> data array((1, 1.3, 'abcde'), dtype=[('intvar', '<i8'), ('fltvar', '<f8'), ('strvar', '|S5')]) """ # Py3 data conversions to bytes, for convenience comments = asbytes(comments) if isinstance(delimiter, unicode): delimiter = asbytes(delimiter) if isinstance(missing, unicode): missing = asbytes(missing) if isinstance(missing_values, (unicode, list, tuple)): missing_values = asbytes_nested(missing_values) # if usemask: from numpy.ma import MaskedArray, make_mask_descr # Check the input dictionary of converters user_converters = converters or {} if not isinstance(user_converters, dict): errmsg = "The input argument 'converter' should be a valid dictionary "\ "(got '%s' instead)" raise TypeError(errmsg % type(user_converters)) # Initialize the filehandle, the LineSplitter and the NameValidator own_fhd = False if isinstance(fname, basestring): fhd = np.lib._datasource.open(fname, 'U') own_fhd = True elif not hasattr(fname, 'read'): raise TypeError("The input should be a string or a filehandle. "\ "(got %s instead)" % type(fname)) else: fhd = fname split_line = LineSplitter(delimiter=delimiter, comments=comments, autostrip=autostrip)._handyman validate_names = NameValidator(excludelist=excludelist, deletechars=deletechars, case_sensitive=case_sensitive, replace_space=replace_space) # Get the first valid lines after the first skiprows ones .. if skiprows: warnings.warn("The use of `skiprows` is deprecated.\n"\ "Please use `skip_header` instead.", DeprecationWarning) skip_header = skiprows # Skip the first `skip_header` rows for i in xrange(skip_header): fhd.readline() # Keep on until we find the first valid values first_values = None while not first_values: first_line = fhd.readline() if not first_line: raise IOError('End-of-file reached before encountering data.') if names is True: if comments in first_line: first_line = asbytes('').join(first_line.split(comments)[1:]) first_values = split_line(first_line) # Should we take the first values as names ? if names is True: fval = first_values[0].strip() if fval in comments: del first_values[0] # Check the columns to use: make sure `usecols` is a list if usecols is not None: try: usecols = [_.strip() for _ in usecols.split(",")] except AttributeError: try: usecols = list(usecols) except TypeError: usecols = [usecols, ] nbcols = len(usecols or first_values) # Check the names and overwrite the dtype.names if needed if names is True: names = validate_names([_bytes_to_name(_.strip()) for _ in first_values]) first_line = asbytes('') elif _is_string_like(names): names = validate_names([_.strip() for _ in names.split(',')]) elif names: names = validate_names(names) # Get the dtype if dtype is not None: dtype = easy_dtype(dtype, defaultfmt=defaultfmt, names=names) # Make sure the names is a list (for 2.5) if names is not None: names = list(names) if usecols: for (i, current) in enumerate(usecols): # if usecols is a list of names, convert to a list of indices if _is_string_like(current): usecols[i] = names.index(current) elif current < 0: usecols[i] = current + len(first_values) # If the dtype is not None, make sure we update it if (dtype is not None) and (len(dtype) > nbcols): descr = dtype.descr dtype = np.dtype([descr[_] for _ in usecols]) names = list(dtype.names) # If `names` is not None, update the names elif (names is not None) and (len(names) > nbcols): names = [names[_] for _ in usecols] elif (names is not None) and (dtype is not None): names = dtype.names # Process the missing values ............................... # Rename missing_values for convenience user_missing_values = missing_values or () # Define the list of missing_values (one column: one list) missing_values = [list([asbytes('')]) for _ in range(nbcols)] # We have a dictionary: process it field by field if isinstance(user_missing_values, dict): # Loop on the items for (key, val) in user_missing_values.items(): # Is the key a string ? if _is_string_like(key): try: # Transform it into an integer key = names.index(key) except ValueError: # We couldn't find it: the name must have been dropped, then continue # Redefine the key as needed if it's a column number if usecols: try: key = usecols.index(key) except ValueError: pass # Transform the value as a list of string if isinstance(val, (list, tuple)): val = [str(_) for _ in val] else: val = [str(val), ] # Add the value(s) to the current list of missing if key is None: # None acts as default for miss in missing_values: miss.extend(val) else: missing_values[key].extend(val) # We have a sequence : each item matches a column elif isinstance(user_missing_values, (list, tuple)): for (value, entry) in zip(user_missing_values, missing_values): value = str(value) if value not in entry: entry.append(value) # We have a string : apply it to all entries elif isinstance(user_missing_values, bytes): user_value = user_missing_values.split(asbytes(",")) for entry in missing_values: entry.extend(user_value) # We have something else: apply it to all entries else: for entry in missing_values: entry.extend([str(user_missing_values)]) # Process the deprecated `missing` if missing != asbytes(''): warnings.warn("The use of `missing` is deprecated.\n"\ "Please use `missing_values` instead.", DeprecationWarning) values = [str(_) for _ in missing.split(asbytes(","))] for entry in missing_values: entry.extend(values) # Process the filling_values ............................... # Rename the input for convenience user_filling_values = filling_values or [] # Define the default filling_values = [None] * nbcols # We have a dictionary : update each entry individually if isinstance(user_filling_values, dict): for (key, val) in user_filling_values.items(): if _is_string_like(key): try: # Transform it into an integer key = names.index(key) except ValueError: # We couldn't find it: the name must have been dropped, then continue # Redefine the key if it's a column number and usecols is defined if usecols: try: key = usecols.index(key) except ValueError: pass # Add the value to the list filling_values[key] = val # We have a sequence : update on a one-to-one basis elif isinstance(user_filling_values, (list, tuple)): n = len(user_filling_values) if (n <= nbcols): filling_values[:n] = user_filling_values else: filling_values = user_filling_values[:nbcols] # We have something else : use it for all entries else: filling_values = [user_filling_values] * nbcols # Initialize the converters ................................ if dtype is None: # Note: we can't use a [...]*nbcols, as we would have 3 times the same # ... converter, instead of 3 different converters. converters = [StringConverter(None, missing_values=miss, default=fill) for (miss, fill) in zip(missing_values, filling_values)] else: dtype_flat = flatten_dtype(dtype, flatten_base=True) # Initialize the converters if len(dtype_flat) > 1: # Flexible type : get a converter from each dtype zipit = zip(dtype_flat, missing_values, filling_values) converters = [StringConverter(dt, locked=True, missing_values=miss, default=fill) for (dt, miss, fill) in zipit] else: # Set to a default converter (but w/ different missing values) zipit = zip(missing_values, filling_values) converters = [StringConverter(dtype, locked=True, missing_values=miss, default=fill) for (miss, fill) in zipit] # Update the converters to use the user-defined ones uc_update = [] for (i, conv) in user_converters.items(): # If the converter is specified by column names, use the index instead if _is_string_like(i): try: i = names.index(i) except ValueError: continue elif usecols: try: i = usecols.index(i) except ValueError: # Unused converter specified continue # Find the value to test: if len(first_line): testing_value = first_values[i] else: testing_value = None converters[i].update(conv, locked=True, testing_value=testing_value, default=filling_values[i], missing_values=missing_values[i],) uc_update.append((i, conv)) # Make sure we have the corrected keys in user_converters... user_converters.update(uc_update) miss_chars = [_.missing_values for _ in converters] # Initialize the output lists ... # ... rows rows = [] append_to_rows = rows.append # ... masks if usemask: masks = [] append_to_masks = masks.append # ... invalid invalid = [] append_to_invalid = invalid.append # Parse each line for (i, line) in enumerate(itertools.chain([first_line, ], fhd)): values = split_line(line) nbvalues = len(values) # Skip an empty line if nbvalues == 0: continue # Select only the columns we need if usecols: try: values = [values[_] for _ in usecols] except IndexError: append_to_invalid((i + skip_header + 1, nbvalues)) continue elif nbvalues != nbcols: append_to_invalid((i + skip_header + 1, nbvalues)) continue # Store the values append_to_rows(tuple(values)) if usemask: append_to_masks(tuple([v.strip() in m for (v, m) in zip(values, missing_values)])) if own_fhd: fhd.close() # Upgrade the converters (if needed) if dtype is None: for (i, converter) in enumerate(converters): current_column = map(itemgetter(i), rows) try: converter.iterupgrade(current_column) except ConverterLockError: errmsg = "Converter #%i is locked and cannot be upgraded: " % i current_column = itertools.imap(itemgetter(i), rows) for (j, value) in enumerate(current_column): try: converter.upgrade(value) except (ConverterError, ValueError): errmsg += "(occurred line #%i for value '%s')" errmsg %= (j + 1 + skip_header, value) raise ConverterError(errmsg) # Check that we don't have invalid values nbinvalid = len(invalid) if nbinvalid > 0: nbrows = len(rows) + nbinvalid - skip_footer # Construct the error message template = " Line #%%i (got %%i columns instead of %i)" % nbcols if skip_footer > 0: nbinvalid_skipped = len([_ for _ in invalid if _[0] > nbrows + skip_header]) invalid = invalid[:nbinvalid - nbinvalid_skipped] skip_footer -= nbinvalid_skipped # # nbrows -= skip_footer # errmsg = [template % (i, nb) # for (i, nb) in invalid if i < nbrows] # else: errmsg = [template % (i, nb) for (i, nb) in invalid] if len(errmsg): errmsg.insert(0, "Some errors were detected !") errmsg = "\n".join(errmsg) # Raise an exception ? if invalid_raise: raise ValueError(errmsg) # Issue a warning ? else: warnings.warn(errmsg, ConversionWarning) # Strip the last skip_footer data if skip_footer > 0: rows = rows[:-skip_footer] if usemask: masks = masks[:-skip_footer] # Convert each value according to the converter: # We want to modify the list in place to avoid creating a new one... # if loose: # conversionfuncs = [conv._loose_call for conv in converters] # else: # conversionfuncs = [conv._strict_call for conv in converters] # for (i, vals) in enumerate(rows): # rows[i] = tuple([convert(val) # for (convert, val) in zip(conversionfuncs, vals)]) if loose: rows = zip(*[map(converter._loose_call, map(itemgetter(i), rows)) for (i, converter) in enumerate(converters)]) else: rows = zip(*[map(converter._strict_call, map(itemgetter(i), rows)) for (i, converter) in enumerate(converters)]) # Reset the dtype data = rows if dtype is None: # Get the dtypes from the types of the converters column_types = [conv.type for conv in converters] # Find the columns with strings... strcolidx = [i for (i, v) in enumerate(column_types) if v in (type('S'), np.string_)] # ... and take the largest number of chars. for i in strcolidx: column_types[i] = "|S%i" % max(len(row[i]) for row in data) # if names is None: # If the dtype is uniform, don't define names, else use '' base = set([c.type for c in converters if c._checked]) if len(base) == 1: (ddtype, mdtype) = (list(base)[0], np.bool) else: ddtype = [(defaultfmt % i, dt) for (i, dt) in enumerate(column_types)] if usemask: mdtype = [(defaultfmt % i, np.bool) for (i, dt) in enumerate(column_types)] else: ddtype = zip(names, column_types) mdtype = zip(names, [np.bool] * len(column_types)) output = np.array(data, dtype=ddtype) if usemask: outputmask = np.array(masks, dtype=mdtype) else: # Overwrite the initial dtype names if needed if names and dtype.names: dtype.names = names # Case 1. We have a structured type if len(dtype_flat) > 1: # Nested dtype, eg [('a', int), ('b', [('b0', int), ('b1', 'f4')])] # First, create the array using a flattened dtype: # [('a', int), ('b1', int), ('b2', float)] # Then, view the array using the specified dtype. if 'O' in (_.char for _ in dtype_flat): if has_nested_fields(dtype): errmsg = "Nested fields involving objects "\ "are not supported..." raise NotImplementedError(errmsg) else: output = np.array(data, dtype=dtype) else: rows = np.array(data, dtype=[('', _) for _ in dtype_flat]) output = rows.view(dtype) # Now, process the rowmasks the same way if usemask: rowmasks = np.array(masks, dtype=np.dtype([('', np.bool) for t in dtype_flat])) # Construct the new dtype mdtype = make_mask_descr(dtype) outputmask = rowmasks.view(mdtype) # Case #2. We have a basic dtype else: # We used some user-defined converters if user_converters: ishomogeneous = True descr = [] for (i, ttype) in enumerate([conv.type for conv in converters]): # Keep the dtype of the current converter if i in user_converters: ishomogeneous &= (ttype == dtype.type) if ttype == np.string_: ttype = "|S%i" % max(len(row[i]) for row in data) descr.append(('', ttype)) else: descr.append(('', dtype)) # So we changed the dtype ? if not ishomogeneous: # We have more than one field if len(descr) > 1: dtype = np.dtype(descr) # We have only one field: drop the name if not needed. else: dtype = np.dtype(ttype) # output = np.array(data, dtype) if usemask: if dtype.names: mdtype = [(_, np.bool) for _ in dtype.names] else: mdtype = np.bool outputmask = np.array(masks, dtype=mdtype) # Try to take care of the missing data we missed names = output.dtype.names if usemask and names: for (name, conv) in zip(names or (), converters): missing_values = [conv(_) for _ in conv.missing_values if _ != asbytes('')] for mval in missing_values: outputmask[name] |= (output[name] == mval) # Construct the final array if usemask: output = output.view(MaskedArray) output._mask = outputmask if unpack: return output.squeeze().T return output.squeeze() def ndfromtxt(fname, **kwargs): """ Load ASCII data stored in a file and return it as a single array. Complete description of all the optional input parameters is available in the docstring of the `genfromtxt` function. See Also -------- numpy.genfromtxt : generic function. """ kwargs['usemask'] = False return genfromtxt(fname, **kwargs) def mafromtxt(fname, **kwargs): """ Load ASCII data stored in a text file and return a masked array. For a complete description of all the input parameters, see `genfromtxt`. See Also -------- numpy.genfromtxt : generic function to load ASCII data. """ kwargs['usemask'] = True return genfromtxt(fname, **kwargs) def recfromtxt(fname, **kwargs): """ Load ASCII data from a file and return it in a record array. If ``usemask=False`` a standard `recarray` is returned, if ``usemask=True`` a MaskedRecords array is returned. Complete description of all the optional input parameters is available in the docstring of the `genfromtxt` function. See Also -------- numpy.genfromtxt : generic function Notes ----- By default, `dtype` is None, which means that the data-type of the output array will be determined from the data. """ kwargs.update(dtype=kwargs.get('dtype', None)) usemask = kwargs.get('usemask', False) output = genfromtxt(fname, **kwargs) if usemask: from numpy.ma.mrecords import MaskedRecords output = output.view(MaskedRecords) else: output = output.view(np.recarray) return output def recfromcsv(fname, **kwargs): """ Load ASCII data stored in a comma-separated file. The returned array is a record array (if ``usemask=False``, see `recarray`) or a masked record array (if ``usemask=True``, see `ma.mrecords.MaskedRecords`). For a complete description of all the input parameters, see `genfromtxt`. See Also -------- numpy.genfromtxt : generic function to load ASCII data. """ case_sensitive = kwargs.get('case_sensitive', "lower") or "lower" names = kwargs.get('names', True) if names is None: names = True kwargs.update(dtype=kwargs.get('update', None), delimiter=kwargs.get('delimiter', ",") or ",", names=names, case_sensitive=case_sensitive) usemask = kwargs.get("usemask", False) output = genfromtxt(fname, **kwargs) if usemask: from numpy.ma.mrecords import MaskedRecords output = output.view(MaskedRecords) else: output = output.view(np.recarray) return output
gpl-3.0
mfjb/scikit-learn
sklearn/cross_validation.py
10
62355
""" The :mod:`sklearn.cross_validation` module includes utilities for cross- validation and performance evaluation. """ # Author: Alexandre Gramfort <[email protected]>, # Gael Varoquaux <[email protected]>, # Olivier Grisel <[email protected]> # License: BSD 3 clause from __future__ import print_function from __future__ import division import warnings from itertools import chain, combinations from math import ceil, floor, factorial import numbers import time from abc import ABCMeta, abstractmethod import numpy as np import scipy.sparse as sp from .base import is_classifier, clone from .utils import indexable, check_random_state, safe_indexing from .utils.validation import (_is_arraylike, _num_samples, check_array, column_or_1d) from .utils.multiclass import type_of_target from .externals.joblib import Parallel, delayed, logger from .externals.six import with_metaclass from .externals.six.moves import zip from .metrics.scorer import check_scoring from .utils.fixes import bincount __all__ = ['KFold', 'LeaveOneLabelOut', 'LeaveOneOut', 'LeavePLabelOut', 'LeavePOut', 'ShuffleSplit', 'StratifiedKFold', 'StratifiedShuffleSplit', 'PredefinedSplit', 'LabelShuffleSplit', 'check_cv', 'cross_val_score', 'cross_val_predict', 'permutation_test_score', 'train_test_split'] class _PartitionIterator(with_metaclass(ABCMeta)): """Base class for CV iterators where train_mask = ~test_mask Implementations must define `_iter_test_masks` or `_iter_test_indices`. Parameters ---------- n : int Total number of elements in dataset. """ def __init__(self, n): if abs(n - int(n)) >= np.finfo('f').eps: raise ValueError("n must be an integer") self.n = int(n) def __iter__(self): ind = np.arange(self.n) for test_index in self._iter_test_masks(): train_index = np.logical_not(test_index) train_index = ind[train_index] test_index = ind[test_index] yield train_index, test_index # Since subclasses must implement either _iter_test_masks or # _iter_test_indices, neither can be abstract. def _iter_test_masks(self): """Generates boolean masks corresponding to test sets. By default, delegates to _iter_test_indices() """ for test_index in self._iter_test_indices(): test_mask = self._empty_mask() test_mask[test_index] = True yield test_mask def _iter_test_indices(self): """Generates integer indices corresponding to test sets.""" raise NotImplementedError def _empty_mask(self): return np.zeros(self.n, dtype=np.bool) class LeaveOneOut(_PartitionIterator): """Leave-One-Out cross validation iterator. Provides train/test indices to split data in train test sets. Each sample is used once as a test set (singleton) while the remaining samples form the training set. Note: ``LeaveOneOut(n)`` is equivalent to ``KFold(n, n_folds=n)`` and ``LeavePOut(n, p=1)``. Due to the high number of test sets (which is the same as the number of samples) this cross validation method can be very costly. For large datasets one should favor KFold, StratifiedKFold or ShuffleSplit. Read more in the :ref:`User Guide <cross_validation>`. Parameters ---------- n : int Total number of elements in dataset. Examples -------- >>> from sklearn import cross_validation >>> X = np.array([[1, 2], [3, 4]]) >>> y = np.array([1, 2]) >>> loo = cross_validation.LeaveOneOut(2) >>> len(loo) 2 >>> print(loo) sklearn.cross_validation.LeaveOneOut(n=2) >>> for train_index, test_index in loo: ... print("TRAIN:", train_index, "TEST:", test_index) ... X_train, X_test = X[train_index], X[test_index] ... y_train, y_test = y[train_index], y[test_index] ... print(X_train, X_test, y_train, y_test) TRAIN: [1] TEST: [0] [[3 4]] [[1 2]] [2] [1] TRAIN: [0] TEST: [1] [[1 2]] [[3 4]] [1] [2] See also -------- LeaveOneLabelOut for splitting the data according to explicit, domain-specific stratification of the dataset. """ def _iter_test_indices(self): return range(self.n) def __repr__(self): return '%s.%s(n=%i)' % ( self.__class__.__module__, self.__class__.__name__, self.n, ) def __len__(self): return self.n class LeavePOut(_PartitionIterator): """Leave-P-Out cross validation iterator Provides train/test indices to split data in train test sets. This results in testing on all distinct samples of size p, while the remaining n - p samples form the training set in each iteration. Note: ``LeavePOut(n, p)`` is NOT equivalent to ``KFold(n, n_folds=n // p)`` which creates non-overlapping test sets. Due to the high number of iterations which grows combinatorically with the number of samples this cross validation method can be very costly. For large datasets one should favor KFold, StratifiedKFold or ShuffleSplit. Read more in the :ref:`User Guide <cross_validation>`. Parameters ---------- n : int Total number of elements in dataset. p : int Size of the test sets. Examples -------- >>> from sklearn import cross_validation >>> X = np.array([[1, 2], [3, 4], [5, 6], [7, 8]]) >>> y = np.array([1, 2, 3, 4]) >>> lpo = cross_validation.LeavePOut(4, 2) >>> len(lpo) 6 >>> print(lpo) sklearn.cross_validation.LeavePOut(n=4, p=2) >>> for train_index, test_index in lpo: ... print("TRAIN:", train_index, "TEST:", test_index) ... X_train, X_test = X[train_index], X[test_index] ... y_train, y_test = y[train_index], y[test_index] TRAIN: [2 3] TEST: [0 1] TRAIN: [1 3] TEST: [0 2] TRAIN: [1 2] TEST: [0 3] TRAIN: [0 3] TEST: [1 2] TRAIN: [0 2] TEST: [1 3] TRAIN: [0 1] TEST: [2 3] """ def __init__(self, n, p): super(LeavePOut, self).__init__(n) self.p = p def _iter_test_indices(self): for comb in combinations(range(self.n), self.p): yield np.array(comb) def __repr__(self): return '%s.%s(n=%i, p=%i)' % ( self.__class__.__module__, self.__class__.__name__, self.n, self.p, ) def __len__(self): return int(factorial(self.n) / factorial(self.n - self.p) / factorial(self.p)) class _BaseKFold(with_metaclass(ABCMeta, _PartitionIterator)): """Base class to validate KFold approaches""" @abstractmethod def __init__(self, n, n_folds, shuffle, random_state): super(_BaseKFold, self).__init__(n) if abs(n_folds - int(n_folds)) >= np.finfo('f').eps: raise ValueError("n_folds must be an integer") self.n_folds = n_folds = int(n_folds) if n_folds <= 1: raise ValueError( "k-fold cross validation requires at least one" " train / test split by setting n_folds=2 or more," " got n_folds={0}.".format(n_folds)) if n_folds > self.n: raise ValueError( ("Cannot have number of folds n_folds={0} greater" " than the number of samples: {1}.").format(n_folds, n)) if not isinstance(shuffle, bool): raise TypeError("shuffle must be True or False;" " got {0}".format(shuffle)) self.shuffle = shuffle self.random_state = random_state class KFold(_BaseKFold): """K-Folds cross validation iterator. Provides train/test indices to split data in train test sets. Split dataset into k consecutive folds (without shuffling by default). Each fold is then used a validation set once while the k - 1 remaining fold form the training set. Read more in the :ref:`User Guide <cross_validation>`. Parameters ---------- n : int Total number of elements. n_folds : int, default=3 Number of folds. Must be at least 2. shuffle : boolean, optional Whether to shuffle the data before splitting into batches. random_state : None, int or RandomState When shuffle=True, pseudo-random number generator state used for shuffling. If None, use default numpy RNG for shuffling. Examples -------- >>> from sklearn import cross_validation >>> X = np.array([[1, 2], [3, 4], [1, 2], [3, 4]]) >>> y = np.array([1, 2, 3, 4]) >>> kf = cross_validation.KFold(4, n_folds=2) >>> len(kf) 2 >>> print(kf) # doctest: +NORMALIZE_WHITESPACE sklearn.cross_validation.KFold(n=4, n_folds=2, shuffle=False, random_state=None) >>> for train_index, test_index in kf: ... print("TRAIN:", train_index, "TEST:", test_index) ... X_train, X_test = X[train_index], X[test_index] ... y_train, y_test = y[train_index], y[test_index] TRAIN: [2 3] TEST: [0 1] TRAIN: [0 1] TEST: [2 3] Notes ----- The first n % n_folds folds have size n // n_folds + 1, other folds have size n // n_folds. See also -------- StratifiedKFold: take label information into account to avoid building folds with imbalanced class distributions (for binary or multiclass classification tasks). """ def __init__(self, n, n_folds=3, shuffle=False, random_state=None): super(KFold, self).__init__(n, n_folds, shuffle, random_state) self.idxs = np.arange(n) if shuffle: rng = check_random_state(self.random_state) rng.shuffle(self.idxs) def _iter_test_indices(self): n = self.n n_folds = self.n_folds fold_sizes = (n // n_folds) * np.ones(n_folds, dtype=np.int) fold_sizes[:n % n_folds] += 1 current = 0 for fold_size in fold_sizes: start, stop = current, current + fold_size yield self.idxs[start:stop] current = stop def __repr__(self): return '%s.%s(n=%i, n_folds=%i, shuffle=%s, random_state=%s)' % ( self.__class__.__module__, self.__class__.__name__, self.n, self.n_folds, self.shuffle, self.random_state, ) def __len__(self): return self.n_folds class StratifiedKFold(_BaseKFold): """Stratified K-Folds cross validation iterator Provides train/test indices to split data in train test sets. This cross-validation object is a variation of KFold that returns stratified folds. The folds are made by preserving the percentage of samples for each class. Read more in the :ref:`User Guide <cross_validation>`. Parameters ---------- y : array-like, [n_samples] Samples to split in K folds. n_folds : int, default=3 Number of folds. Must be at least 2. shuffle : boolean, optional Whether to shuffle each stratification of the data before splitting into batches. random_state : None, int or RandomState When shuffle=True, pseudo-random number generator state used for shuffling. If None, use default numpy RNG for shuffling. Examples -------- >>> from sklearn import cross_validation >>> X = np.array([[1, 2], [3, 4], [1, 2], [3, 4]]) >>> y = np.array([0, 0, 1, 1]) >>> skf = cross_validation.StratifiedKFold(y, n_folds=2) >>> len(skf) 2 >>> print(skf) # doctest: +NORMALIZE_WHITESPACE sklearn.cross_validation.StratifiedKFold(labels=[0 0 1 1], n_folds=2, shuffle=False, random_state=None) >>> for train_index, test_index in skf: ... print("TRAIN:", train_index, "TEST:", test_index) ... X_train, X_test = X[train_index], X[test_index] ... y_train, y_test = y[train_index], y[test_index] TRAIN: [1 3] TEST: [0 2] TRAIN: [0 2] TEST: [1 3] Notes ----- All the folds have size trunc(n_samples / n_folds), the last one has the complementary. """ def __init__(self, y, n_folds=3, shuffle=False, random_state=None): super(StratifiedKFold, self).__init__( len(y), n_folds, shuffle, random_state) y = np.asarray(y) n_samples = y.shape[0] unique_labels, y_inversed = np.unique(y, return_inverse=True) label_counts = bincount(y_inversed) min_labels = np.min(label_counts) if self.n_folds > min_labels: warnings.warn(("The least populated class in y has only %d" " members, which is too few. The minimum" " number of labels for any class cannot" " be less than n_folds=%d." % (min_labels, self.n_folds)), Warning) # don't want to use the same seed in each label's shuffle if self.shuffle: rng = check_random_state(self.random_state) else: rng = self.random_state # pre-assign each sample to a test fold index using individual KFold # splitting strategies for each label so as to respect the # balance of labels per_label_cvs = [ KFold(max(c, self.n_folds), self.n_folds, shuffle=self.shuffle, random_state=rng) for c in label_counts] test_folds = np.zeros(n_samples, dtype=np.int) for test_fold_idx, per_label_splits in enumerate(zip(*per_label_cvs)): for label, (_, test_split) in zip(unique_labels, per_label_splits): label_test_folds = test_folds[y == label] # the test split can be too big because we used # KFold(max(c, self.n_folds), self.n_folds) instead of # KFold(c, self.n_folds) to make it possible to not crash even # if the data is not 100% stratifiable for all the labels # (we use a warning instead of raising an exception) # If this is the case, let's trim it: test_split = test_split[test_split < len(label_test_folds)] label_test_folds[test_split] = test_fold_idx test_folds[y == label] = label_test_folds self.test_folds = test_folds self.y = y def _iter_test_masks(self): for i in range(self.n_folds): yield self.test_folds == i def __repr__(self): return '%s.%s(labels=%s, n_folds=%i, shuffle=%s, random_state=%s)' % ( self.__class__.__module__, self.__class__.__name__, self.y, self.n_folds, self.shuffle, self.random_state, ) def __len__(self): return self.n_folds class LeaveOneLabelOut(_PartitionIterator): """Leave-One-Label_Out cross-validation iterator Provides train/test indices to split data according to a third-party provided label. This label information can be used to encode arbitrary domain specific stratifications of the samples as integers. For instance the labels could be the year of collection of the samples and thus allow for cross-validation against time-based splits. Read more in the :ref:`User Guide <cross_validation>`. Parameters ---------- labels : array-like of int with shape (n_samples,) Arbitrary domain-specific stratification of the data to be used to draw the splits. Examples -------- >>> from sklearn import cross_validation >>> X = np.array([[1, 2], [3, 4], [5, 6], [7, 8]]) >>> y = np.array([1, 2, 1, 2]) >>> labels = np.array([1, 1, 2, 2]) >>> lol = cross_validation.LeaveOneLabelOut(labels) >>> len(lol) 2 >>> print(lol) sklearn.cross_validation.LeaveOneLabelOut(labels=[1 1 2 2]) >>> for train_index, test_index in lol: ... print("TRAIN:", train_index, "TEST:", test_index) ... X_train, X_test = X[train_index], X[test_index] ... y_train, y_test = y[train_index], y[test_index] ... print(X_train, X_test, y_train, y_test) TRAIN: [2 3] TEST: [0 1] [[5 6] [7 8]] [[1 2] [3 4]] [1 2] [1 2] TRAIN: [0 1] TEST: [2 3] [[1 2] [3 4]] [[5 6] [7 8]] [1 2] [1 2] """ def __init__(self, labels): super(LeaveOneLabelOut, self).__init__(len(labels)) # We make a copy of labels to avoid side-effects during iteration self.labels = np.array(labels, copy=True) self.unique_labels = np.unique(labels) self.n_unique_labels = len(self.unique_labels) def _iter_test_masks(self): for i in self.unique_labels: yield self.labels == i def __repr__(self): return '%s.%s(labels=%s)' % ( self.__class__.__module__, self.__class__.__name__, self.labels, ) def __len__(self): return self.n_unique_labels class LeavePLabelOut(_PartitionIterator): """Leave-P-Label_Out cross-validation iterator Provides train/test indices to split data according to a third-party provided label. This label information can be used to encode arbitrary domain specific stratifications of the samples as integers. For instance the labels could be the year of collection of the samples and thus allow for cross-validation against time-based splits. The difference between LeavePLabelOut and LeaveOneLabelOut is that the former builds the test sets with all the samples assigned to ``p`` different values of the labels while the latter uses samples all assigned the same labels. Read more in the :ref:`User Guide <cross_validation>`. Parameters ---------- labels : array-like of int with shape (n_samples,) Arbitrary domain-specific stratification of the data to be used to draw the splits. p : int Number of samples to leave out in the test split. Examples -------- >>> from sklearn import cross_validation >>> X = np.array([[1, 2], [3, 4], [5, 6]]) >>> y = np.array([1, 2, 1]) >>> labels = np.array([1, 2, 3]) >>> lpl = cross_validation.LeavePLabelOut(labels, p=2) >>> len(lpl) 3 >>> print(lpl) sklearn.cross_validation.LeavePLabelOut(labels=[1 2 3], p=2) >>> for train_index, test_index in lpl: ... print("TRAIN:", train_index, "TEST:", test_index) ... X_train, X_test = X[train_index], X[test_index] ... y_train, y_test = y[train_index], y[test_index] ... print(X_train, X_test, y_train, y_test) TRAIN: [2] TEST: [0 1] [[5 6]] [[1 2] [3 4]] [1] [1 2] TRAIN: [1] TEST: [0 2] [[3 4]] [[1 2] [5 6]] [2] [1 1] TRAIN: [0] TEST: [1 2] [[1 2]] [[3 4] [5 6]] [1] [2 1] """ def __init__(self, labels, p): # We make a copy of labels to avoid side-effects during iteration super(LeavePLabelOut, self).__init__(len(labels)) self.labels = np.array(labels, copy=True) self.unique_labels = np.unique(labels) self.n_unique_labels = len(self.unique_labels) self.p = p def _iter_test_masks(self): comb = combinations(range(self.n_unique_labels), self.p) for idx in comb: test_index = self._empty_mask() idx = np.array(idx) for l in self.unique_labels[idx]: test_index[self.labels == l] = True yield test_index def __repr__(self): return '%s.%s(labels=%s, p=%s)' % ( self.__class__.__module__, self.__class__.__name__, self.labels, self.p, ) def __len__(self): return int(factorial(self.n_unique_labels) / factorial(self.n_unique_labels - self.p) / factorial(self.p)) class BaseShuffleSplit(with_metaclass(ABCMeta)): """Base class for ShuffleSplit and StratifiedShuffleSplit""" def __init__(self, n, n_iter=10, test_size=0.1, train_size=None, random_state=None): self.n = n self.n_iter = n_iter self.test_size = test_size self.train_size = train_size self.random_state = random_state self.n_train, self.n_test = _validate_shuffle_split(n, test_size, train_size) def __iter__(self): for train, test in self._iter_indices(): yield train, test return @abstractmethod def _iter_indices(self): """Generate (train, test) indices""" class ShuffleSplit(BaseShuffleSplit): """Random permutation cross-validation iterator. Yields indices to split data into training and test sets. Note: contrary to other cross-validation strategies, random splits do not guarantee that all folds will be different, although this is still very likely for sizeable datasets. Read more in the :ref:`User Guide <cross_validation>`. Parameters ---------- n : int Total number of elements in the dataset. n_iter : int (default 10) Number of re-shuffling & splitting iterations. test_size : float (default 0.1), int, or None If float, should be between 0.0 and 1.0 and represent the proportion of the dataset to include in the test split. If int, represents the absolute number of test samples. If None, the value is automatically set to the complement of the train size. train_size : float, int, or None (default is None) If float, should be between 0.0 and 1.0 and represent the proportion of the dataset to include in the train split. If int, represents the absolute number of train samples. If None, the value is automatically set to the complement of the test size. random_state : int or RandomState Pseudo-random number generator state used for random sampling. Examples -------- >>> from sklearn import cross_validation >>> rs = cross_validation.ShuffleSplit(4, n_iter=3, ... test_size=.25, random_state=0) >>> len(rs) 3 >>> print(rs) ... # doctest: +ELLIPSIS ShuffleSplit(4, n_iter=3, test_size=0.25, ...) >>> for train_index, test_index in rs: ... print("TRAIN:", train_index, "TEST:", test_index) ... TRAIN: [3 1 0] TEST: [2] TRAIN: [2 1 3] TEST: [0] TRAIN: [0 2 1] TEST: [3] >>> rs = cross_validation.ShuffleSplit(4, n_iter=3, ... train_size=0.5, test_size=.25, random_state=0) >>> for train_index, test_index in rs: ... print("TRAIN:", train_index, "TEST:", test_index) ... TRAIN: [3 1] TEST: [2] TRAIN: [2 1] TEST: [0] TRAIN: [0 2] TEST: [3] """ def _iter_indices(self): rng = check_random_state(self.random_state) for i in range(self.n_iter): # random partition permutation = rng.permutation(self.n) ind_test = permutation[:self.n_test] ind_train = permutation[self.n_test:self.n_test + self.n_train] yield ind_train, ind_test def __repr__(self): return ('%s(%d, n_iter=%d, test_size=%s, ' 'random_state=%s)' % ( self.__class__.__name__, self.n, self.n_iter, str(self.test_size), self.random_state, )) def __len__(self): return self.n_iter def _validate_shuffle_split(n, test_size, train_size): if test_size is None and train_size is None: raise ValueError( 'test_size and train_size can not both be None') if test_size is not None: if np.asarray(test_size).dtype.kind == 'f': if test_size >= 1.: raise ValueError( 'test_size=%f should be smaller ' 'than 1.0 or be an integer' % test_size) elif np.asarray(test_size).dtype.kind == 'i': if test_size >= n: raise ValueError( 'test_size=%d should be smaller ' 'than the number of samples %d' % (test_size, n)) else: raise ValueError("Invalid value for test_size: %r" % test_size) if train_size is not None: if np.asarray(train_size).dtype.kind == 'f': if train_size >= 1.: raise ValueError("train_size=%f should be smaller " "than 1.0 or be an integer" % train_size) elif np.asarray(test_size).dtype.kind == 'f' and \ train_size + test_size > 1.: raise ValueError('The sum of test_size and train_size = %f, ' 'should be smaller than 1.0. Reduce ' 'test_size and/or train_size.' % (train_size + test_size)) elif np.asarray(train_size).dtype.kind == 'i': if train_size >= n: raise ValueError("train_size=%d should be smaller " "than the number of samples %d" % (train_size, n)) else: raise ValueError("Invalid value for train_size: %r" % train_size) if np.asarray(test_size).dtype.kind == 'f': n_test = ceil(test_size * n) elif np.asarray(test_size).dtype.kind == 'i': n_test = float(test_size) if train_size is None: n_train = n - n_test else: if np.asarray(train_size).dtype.kind == 'f': n_train = floor(train_size * n) else: n_train = float(train_size) if test_size is None: n_test = n - n_train if n_train + n_test > n: raise ValueError('The sum of train_size and test_size = %d, ' 'should be smaller than the number of ' 'samples %d. Reduce test_size and/or ' 'train_size.' % (n_train + n_test, n)) return int(n_train), int(n_test) class StratifiedShuffleSplit(BaseShuffleSplit): """Stratified ShuffleSplit cross validation iterator Provides train/test indices to split data in train test sets. This cross-validation object is a merge of StratifiedKFold and ShuffleSplit, which returns stratified randomized folds. The folds are made by preserving the percentage of samples for each class. Note: like the ShuffleSplit strategy, stratified random splits do not guarantee that all folds will be different, although this is still very likely for sizeable datasets. Read more in the :ref:`User Guide <cross_validation>`. Parameters ---------- y : array, [n_samples] Labels of samples. n_iter : int (default 10) Number of re-shuffling & splitting iterations. test_size : float (default 0.1), int, or None If float, should be between 0.0 and 1.0 and represent the proportion of the dataset to include in the test split. If int, represents the absolute number of test samples. If None, the value is automatically set to the complement of the train size. train_size : float, int, or None (default is None) If float, should be between 0.0 and 1.0 and represent the proportion of the dataset to include in the train split. If int, represents the absolute number of train samples. If None, the value is automatically set to the complement of the test size. random_state : int or RandomState Pseudo-random number generator state used for random sampling. Examples -------- >>> from sklearn.cross_validation import StratifiedShuffleSplit >>> X = np.array([[1, 2], [3, 4], [1, 2], [3, 4]]) >>> y = np.array([0, 0, 1, 1]) >>> sss = StratifiedShuffleSplit(y, 3, test_size=0.5, random_state=0) >>> len(sss) 3 >>> print(sss) # doctest: +ELLIPSIS StratifiedShuffleSplit(labels=[0 0 1 1], n_iter=3, ...) >>> for train_index, test_index in sss: ... print("TRAIN:", train_index, "TEST:", test_index) ... X_train, X_test = X[train_index], X[test_index] ... y_train, y_test = y[train_index], y[test_index] TRAIN: [1 2] TEST: [3 0] TRAIN: [0 2] TEST: [1 3] TRAIN: [0 2] TEST: [3 1] """ def __init__(self, y, n_iter=10, test_size=0.1, train_size=None, random_state=None): super(StratifiedShuffleSplit, self).__init__( len(y), n_iter, test_size, train_size, random_state) self.y = np.array(y) self.classes, self.y_indices = np.unique(y, return_inverse=True) n_cls = self.classes.shape[0] if np.min(bincount(self.y_indices)) < 2: raise ValueError("The least populated class in y has only 1" " member, which is too few. The minimum" " number of labels for any class cannot" " be less than 2.") if self.n_train < n_cls: raise ValueError('The train_size = %d should be greater or ' 'equal to the number of classes = %d' % (self.n_train, n_cls)) if self.n_test < n_cls: raise ValueError('The test_size = %d should be greater or ' 'equal to the number of classes = %d' % (self.n_test, n_cls)) def _iter_indices(self): rng = check_random_state(self.random_state) cls_count = bincount(self.y_indices) p_i = cls_count / float(self.n) n_i = np.round(self.n_train * p_i).astype(int) t_i = np.minimum(cls_count - n_i, np.round(self.n_test * p_i).astype(int)) for n in range(self.n_iter): train = [] test = [] for i, cls in enumerate(self.classes): permutation = rng.permutation(cls_count[i]) cls_i = np.where((self.y == cls))[0][permutation] train.extend(cls_i[:n_i[i]]) test.extend(cls_i[n_i[i]:n_i[i] + t_i[i]]) # Because of rounding issues (as n_train and n_test are not # dividers of the number of elements per class), we may end # up here with less samples in train and test than asked for. if len(train) < self.n_train or len(test) < self.n_test: # We complete by affecting randomly the missing indexes missing_idx = np.where(bincount(train + test, minlength=len(self.y)) == 0, )[0] missing_idx = rng.permutation(missing_idx) train.extend(missing_idx[:(self.n_train - len(train))]) test.extend(missing_idx[-(self.n_test - len(test)):]) train = rng.permutation(train) test = rng.permutation(test) yield train, test def __repr__(self): return ('%s(labels=%s, n_iter=%d, test_size=%s, ' 'random_state=%s)' % ( self.__class__.__name__, self.y, self.n_iter, str(self.test_size), self.random_state, )) def __len__(self): return self.n_iter class PredefinedSplit(_PartitionIterator): """Predefined split cross validation iterator Splits the data into training/test set folds according to a predefined scheme. Each sample can be assigned to at most one test set fold, as specified by the user through the ``test_fold`` parameter. Read more in the :ref:`User Guide <cross_validation>`. Parameters ---------- test_fold : "array-like, shape (n_samples,) test_fold[i] gives the test set fold of sample i. A value of -1 indicates that the corresponding sample is not part of any test set folds, but will instead always be put into the training fold. Examples -------- >>> from sklearn.cross_validation import PredefinedSplit >>> X = np.array([[1, 2], [3, 4], [1, 2], [3, 4]]) >>> y = np.array([0, 0, 1, 1]) >>> ps = PredefinedSplit(test_fold=[0, 1, -1, 1]) >>> len(ps) 2 >>> print(ps) # doctest: +NORMALIZE_WHITESPACE +ELLIPSIS sklearn.cross_validation.PredefinedSplit(test_fold=[ 0 1 -1 1]) >>> for train_index, test_index in ps: ... print("TRAIN:", train_index, "TEST:", test_index) ... X_train, X_test = X[train_index], X[test_index] ... y_train, y_test = y[train_index], y[test_index] TRAIN: [1 2 3] TEST: [0] TRAIN: [0 2] TEST: [1 3] """ def __init__(self, test_fold): super(PredefinedSplit, self).__init__(len(test_fold)) self.test_fold = np.array(test_fold, dtype=np.int) self.test_fold = column_or_1d(self.test_fold) self.unique_folds = np.unique(self.test_fold) self.unique_folds = self.unique_folds[self.unique_folds != -1] def _iter_test_indices(self): for f in self.unique_folds: yield np.where(self.test_fold == f)[0] def __repr__(self): return '%s.%s(test_fold=%s)' % ( self.__class__.__module__, self.__class__.__name__, self.test_fold) def __len__(self): return len(self.unique_folds) class LabelShuffleSplit(ShuffleSplit): '''Shuffle-Labels-Out cross-validation iterator Provides randomized train/test indices to split data according to a third-party provided label. This label information can be used to encode arbitrary domain specific stratifications of the samples as integers. For instance the labels could be the year of collection of the samples and thus allow for cross-validation against time-based splits. The difference between LeavePLabelOut and LabelShuffleSplit is that the former generates splits using all subsets of size ``p`` unique labels, whereas LabelShuffleSplit generates a user-determined number of random test splits, each with a user-determined fraction of unique labels. For example, a less computationally intensive alternative to ``LeavePLabelOut(labels, p=10)`` would be ``LabelShuffleSplit(labels, test_size=10, n_iter=100)``. Note: The parameters ``test_size`` and ``train_size`` refer to labels, and not to samples, as in ShuffleSplit. Parameters ---------- labels : array, [n_samples] Labels of samples n_iter : int (default 5) Number of re-shuffling & splitting iterations. test_size : float (default 0.2), int, or None If float, should be between 0.0 and 1.0 and represent the proportion of the labels to include in the test split. If int, represents the absolute number of test labels. If None, the value is automatically set to the complement of the train size. train_size : float, int, or None (default is None) If float, should be between 0.0 and 1.0 and represent the proportion of the labels to include in the train split. If int, represents the absolute number of train labels. If None, the value is automatically set to the complement of the test size. random_state : int or RandomState Pseudo-random number generator state used for random sampling. ''' def __init__(self, labels, n_iter=5, test_size=0.2, train_size=None, random_state=None): classes, label_indices = np.unique(labels, return_inverse=True) super(LabelShuffleSplit, self).__init__( len(classes), n_iter=n_iter, test_size=test_size, train_size=train_size, random_state=random_state) self.labels = labels self.classes = classes self.label_indices = label_indices def __repr__(self): return ('%s(labels=%s, n_iter=%d, test_size=%s, ' 'random_state=%s)' % ( self.__class__.__name__, self.labels, self.n_iter, str(self.test_size), self.random_state, )) def __len__(self): return self.n_iter def _iter_indices(self): for label_train, label_test in super(LabelShuffleSplit, self)._iter_indices(): # these are the indices of classes in the partition # invert them into data indices train = np.flatnonzero(np.in1d(self.label_indices, label_train)) test = np.flatnonzero(np.in1d(self.label_indices, label_test)) yield train, test ############################################################################## def _index_param_value(X, v, indices): """Private helper function for parameter value indexing.""" if not _is_arraylike(v) or _num_samples(v) != _num_samples(X): # pass through: skip indexing return v if sp.issparse(v): v = v.tocsr() return safe_indexing(v, indices) def cross_val_predict(estimator, X, y=None, cv=None, n_jobs=1, verbose=0, fit_params=None, pre_dispatch='2*n_jobs'): """Generate cross-validated estimates for each input data point Read more in the :ref:`User Guide <cross_validation>`. Parameters ---------- estimator : estimator object implementing 'fit' and 'predict' The object to use to fit the data. X : array-like The data to fit. Can be, for example a list, or an array at least 2d. y : array-like, optional, default: None The target variable to try to predict in the case of supervised learning. cv : integer or cross-validation generator, optional, default=3 A cross-validation generator to use. If int, determines the number of folds in StratifiedKFold if estimator is a classifier and the target y is binary or multiclass, or the number of folds in KFold otherwise. Specific cross-validation objects can be passed, see sklearn.cross_validation module for the list of possible objects. This generator must include all elements in the test set exactly once. Otherwise, a ValueError is raised. n_jobs : integer, optional The number of CPUs to use to do the computation. -1 means 'all CPUs'. verbose : integer, optional The verbosity level. fit_params : dict, optional Parameters to pass to the fit method of the estimator. pre_dispatch : int, or string, optional Controls the number of jobs that get dispatched during parallel execution. Reducing this number can be useful to avoid an explosion of memory consumption when more jobs get dispatched than CPUs can process. This parameter can be: - None, in which case all the jobs are immediately created and spawned. Use this for lightweight and fast-running jobs, to avoid delays due to on-demand spawning of the jobs - An int, giving the exact number of total jobs that are spawned - A string, giving an expression as a function of n_jobs, as in '2*n_jobs' Returns ------- preds : ndarray This is the result of calling 'predict' """ X, y = indexable(X, y) cv = check_cv(cv, X, y, classifier=is_classifier(estimator)) # We clone the estimator to make sure that all the folds are # independent, and that it is pickle-able. parallel = Parallel(n_jobs=n_jobs, verbose=verbose, pre_dispatch=pre_dispatch) preds_blocks = parallel(delayed(_fit_and_predict)(clone(estimator), X, y, train, test, verbose, fit_params) for train, test in cv) preds = [p for p, _ in preds_blocks] locs = np.concatenate([loc for _, loc in preds_blocks]) if not _check_is_partition(locs, _num_samples(X)): raise ValueError('cross_val_predict only works for partitions') inv_locs = np.empty(len(locs), dtype=int) inv_locs[locs] = np.arange(len(locs)) # Check for sparse predictions if sp.issparse(preds[0]): preds = sp.vstack(preds, format=preds[0].format) else: preds = np.concatenate(preds) return preds[inv_locs] def _fit_and_predict(estimator, X, y, train, test, verbose, fit_params): """Fit estimator and predict values for a given dataset split. Read more in the :ref:`User Guide <cross_validation>`. Parameters ---------- estimator : estimator object implementing 'fit' and 'predict' The object to use to fit the data. X : array-like of shape at least 2D The data to fit. y : array-like, optional, default: None The target variable to try to predict in the case of supervised learning. train : array-like, shape (n_train_samples,) Indices of training samples. test : array-like, shape (n_test_samples,) Indices of test samples. verbose : integer The verbosity level. fit_params : dict or None Parameters that will be passed to ``estimator.fit``. Returns ------- preds : sequence Result of calling 'estimator.predict' test : array-like This is the value of the test parameter """ # Adjust length of sample weights fit_params = fit_params if fit_params is not None else {} fit_params = dict([(k, _index_param_value(X, v, train)) for k, v in fit_params.items()]) X_train, y_train = _safe_split(estimator, X, y, train) X_test, _ = _safe_split(estimator, X, y, test, train) if y_train is None: estimator.fit(X_train, **fit_params) else: estimator.fit(X_train, y_train, **fit_params) preds = estimator.predict(X_test) return preds, test def _check_is_partition(locs, n): """Check whether locs is a reordering of the array np.arange(n) Parameters ---------- locs : ndarray integer array to test n : int number of expected elements Returns ------- is_partition : bool True iff sorted(locs) is range(n) """ if len(locs) != n: return False hit = np.zeros(n, bool) hit[locs] = True if not np.all(hit): return False return True def cross_val_score(estimator, X, y=None, scoring=None, cv=None, n_jobs=1, verbose=0, fit_params=None, pre_dispatch='2*n_jobs'): """Evaluate a score by cross-validation Read more in the :ref:`User Guide <cross_validation>`. Parameters ---------- estimator : estimator object implementing 'fit' The object to use to fit the data. X : array-like The data to fit. Can be, for example a list, or an array at least 2d. y : array-like, optional, default: None The target variable to try to predict in the case of supervised learning. scoring : string, callable or None, optional, default: None A string (see model evaluation documentation) or a scorer callable object / function with signature ``scorer(estimator, X, y)``. cv : integer or cross-validation generator, optional, default=3 A cross-validation generator to use. If int, determines the number of folds in StratifiedKFold if estimator is a classifier and the target y is binary or multiclass, or the number of folds in KFold otherwise. Specific cross-validation objects can be passed, see sklearn.cross_validation module for the list of possible objects. n_jobs : integer, optional The number of CPUs to use to do the computation. -1 means 'all CPUs'. verbose : integer, optional The verbosity level. fit_params : dict, optional Parameters to pass to the fit method of the estimator. pre_dispatch : int, or string, optional Controls the number of jobs that get dispatched during parallel execution. Reducing this number can be useful to avoid an explosion of memory consumption when more jobs get dispatched than CPUs can process. This parameter can be: - None, in which case all the jobs are immediately created and spawned. Use this for lightweight and fast-running jobs, to avoid delays due to on-demand spawning of the jobs - An int, giving the exact number of total jobs that are spawned - A string, giving an expression as a function of n_jobs, as in '2*n_jobs' Returns ------- scores : array of float, shape=(len(list(cv)),) Array of scores of the estimator for each run of the cross validation. """ X, y = indexable(X, y) cv = check_cv(cv, X, y, classifier=is_classifier(estimator)) scorer = check_scoring(estimator, scoring=scoring) # We clone the estimator to make sure that all the folds are # independent, and that it is pickle-able. parallel = Parallel(n_jobs=n_jobs, verbose=verbose, pre_dispatch=pre_dispatch) scores = parallel(delayed(_fit_and_score)(clone(estimator), X, y, scorer, train, test, verbose, None, fit_params) for train, test in cv) return np.array(scores)[:, 0] class FitFailedWarning(RuntimeWarning): pass def _fit_and_score(estimator, X, y, scorer, train, test, verbose, parameters, fit_params, return_train_score=False, return_parameters=False, error_score='raise'): """Fit estimator and compute scores for a given dataset split. Parameters ---------- estimator : estimator object implementing 'fit' The object to use to fit the data. X : array-like of shape at least 2D The data to fit. y : array-like, optional, default: None The target variable to try to predict in the case of supervised learning. scorer : callable A scorer callable object / function with signature ``scorer(estimator, X, y)``. train : array-like, shape (n_train_samples,) Indices of training samples. test : array-like, shape (n_test_samples,) Indices of test samples. verbose : integer The verbosity level. error_score : 'raise' (default) or numeric Value to assign to the score if an error occurs in estimator fitting. If set to 'raise', the error is raised. If a numeric value is given, FitFailedWarning is raised. This parameter does not affect the refit step, which will always raise the error. parameters : dict or None Parameters to be set on the estimator. fit_params : dict or None Parameters that will be passed to ``estimator.fit``. return_train_score : boolean, optional, default: False Compute and return score on training set. return_parameters : boolean, optional, default: False Return parameters that has been used for the estimator. Returns ------- train_score : float, optional Score on training set, returned only if `return_train_score` is `True`. test_score : float Score on test set. n_test_samples : int Number of test samples. scoring_time : float Time spent for fitting and scoring in seconds. parameters : dict or None, optional The parameters that have been evaluated. """ if verbose > 1: if parameters is None: msg = "no parameters to be set" else: msg = '%s' % (', '.join('%s=%s' % (k, v) for k, v in parameters.items())) print("[CV] %s %s" % (msg, (64 - len(msg)) * '.')) # Adjust length of sample weights fit_params = fit_params if fit_params is not None else {} fit_params = dict([(k, _index_param_value(X, v, train)) for k, v in fit_params.items()]) if parameters is not None: estimator.set_params(**parameters) start_time = time.time() X_train, y_train = _safe_split(estimator, X, y, train) X_test, y_test = _safe_split(estimator, X, y, test, train) try: if y_train is None: estimator.fit(X_train, **fit_params) else: estimator.fit(X_train, y_train, **fit_params) except Exception as e: if error_score == 'raise': raise elif isinstance(error_score, numbers.Number): test_score = error_score if return_train_score: train_score = error_score warnings.warn("Classifier fit failed. The score on this train-test" " partition for these parameters will be set to %f. " "Details: \n%r" % (error_score, e), FitFailedWarning) else: raise ValueError("error_score must be the string 'raise' or a" " numeric value. (Hint: if using 'raise', please" " make sure that it has been spelled correctly.)" ) else: test_score = _score(estimator, X_test, y_test, scorer) if return_train_score: train_score = _score(estimator, X_train, y_train, scorer) scoring_time = time.time() - start_time if verbose > 2: msg += ", score=%f" % test_score if verbose > 1: end_msg = "%s -%s" % (msg, logger.short_format_time(scoring_time)) print("[CV] %s %s" % ((64 - len(end_msg)) * '.', end_msg)) ret = [train_score] if return_train_score else [] ret.extend([test_score, _num_samples(X_test), scoring_time]) if return_parameters: ret.append(parameters) return ret def _safe_split(estimator, X, y, indices, train_indices=None): """Create subset of dataset and properly handle kernels.""" if hasattr(estimator, 'kernel') and callable(estimator.kernel): # cannot compute the kernel values with custom function raise ValueError("Cannot use a custom kernel function. " "Precompute the kernel matrix instead.") if not hasattr(X, "shape"): if getattr(estimator, "_pairwise", False): raise ValueError("Precomputed kernels or affinity matrices have " "to be passed as arrays or sparse matrices.") X_subset = [X[idx] for idx in indices] else: if getattr(estimator, "_pairwise", False): # X is a precomputed square kernel matrix if X.shape[0] != X.shape[1]: raise ValueError("X should be a square kernel matrix") if train_indices is None: X_subset = X[np.ix_(indices, indices)] else: X_subset = X[np.ix_(indices, train_indices)] else: X_subset = safe_indexing(X, indices) if y is not None: y_subset = safe_indexing(y, indices) else: y_subset = None return X_subset, y_subset def _score(estimator, X_test, y_test, scorer): """Compute the score of an estimator on a given test set.""" if y_test is None: score = scorer(estimator, X_test) else: score = scorer(estimator, X_test, y_test) if not isinstance(score, numbers.Number): raise ValueError("scoring must return a number, got %s (%s) instead." % (str(score), type(score))) return score def _permutation_test_score(estimator, X, y, cv, scorer): """Auxiliary function for permutation_test_score""" avg_score = [] for train, test in cv: estimator.fit(X[train], y[train]) avg_score.append(scorer(estimator, X[test], y[test])) return np.mean(avg_score) def _shuffle(y, labels, random_state): """Return a shuffled copy of y eventually shuffle among same labels.""" if labels is None: ind = random_state.permutation(len(y)) else: ind = np.arange(len(labels)) for label in np.unique(labels): this_mask = (labels == label) ind[this_mask] = random_state.permutation(ind[this_mask]) return y[ind] def check_cv(cv, X=None, y=None, classifier=False): """Input checker utility for building a CV in a user friendly way. Parameters ---------- cv : int, a cv generator instance, or None The input specifying which cv generator to use. It can be an integer, in which case it is the number of folds in a KFold, None, in which case 3 fold is used, or another object, that will then be used as a cv generator. X : array-like The data the cross-val object will be applied on. y : array-like The target variable for a supervised learning problem. classifier : boolean optional Whether the task is a classification task, in which case stratified KFold will be used. Returns ------- checked_cv: a cross-validation generator instance. The return value is guaranteed to be a cv generator instance, whatever the input type. """ is_sparse = sp.issparse(X) if cv is None: cv = 3 if isinstance(cv, numbers.Integral): if classifier: if type_of_target(y) in ['binary', 'multiclass']: cv = StratifiedKFold(y, cv) else: cv = KFold(_num_samples(y), cv) else: if not is_sparse: n_samples = len(X) else: n_samples = X.shape[0] cv = KFold(n_samples, cv) return cv def permutation_test_score(estimator, X, y, cv=None, n_permutations=100, n_jobs=1, labels=None, random_state=0, verbose=0, scoring=None): """Evaluate the significance of a cross-validated score with permutations Read more in the :ref:`User Guide <cross_validation>`. Parameters ---------- estimator : estimator object implementing 'fit' The object to use to fit the data. X : array-like of shape at least 2D The data to fit. y : array-like The target variable to try to predict in the case of supervised learning. scoring : string, callable or None, optional, default: None A string (see model evaluation documentation) or a scorer callable object / function with signature ``scorer(estimator, X, y)``. cv : integer or cross-validation generator, optional, default=3 A cross-validation generator to use. If int, determines the number of folds in StratifiedKFold if estimator is a classifier and the target y is binary or multiclass, or the number of folds in KFold otherwise. Specific cross-validation objects can be passed, see sklearn.cross_validation module for the list of possible objects. n_permutations : integer, optional Number of times to permute ``y``. n_jobs : integer, optional The number of CPUs to use to do the computation. -1 means 'all CPUs'. labels : array-like of shape [n_samples] (optional) Labels constrain the permutation among groups of samples with a same label. random_state : RandomState or an int seed (0 by default) A random number generator instance to define the state of the random permutations generator. verbose : integer, optional The verbosity level. Returns ------- score : float The true score without permuting targets. permutation_scores : array, shape (n_permutations,) The scores obtained for each permutations. pvalue : float The returned value equals p-value if `scoring` returns bigger numbers for better scores (e.g., accuracy_score). If `scoring` is rather a loss function (i.e. when lower is better such as with `mean_squared_error`) then this is actually the complement of the p-value: 1 - p-value. Notes ----- This function implements Test 1 in: Ojala and Garriga. Permutation Tests for Studying Classifier Performance. The Journal of Machine Learning Research (2010) vol. 11 """ X, y = indexable(X, y) cv = check_cv(cv, X, y, classifier=is_classifier(estimator)) scorer = check_scoring(estimator, scoring=scoring) random_state = check_random_state(random_state) # We clone the estimator to make sure that all the folds are # independent, and that it is pickle-able. score = _permutation_test_score(clone(estimator), X, y, cv, scorer) permutation_scores = Parallel(n_jobs=n_jobs, verbose=verbose)( delayed(_permutation_test_score)( clone(estimator), X, _shuffle(y, labels, random_state), cv, scorer) for _ in range(n_permutations)) permutation_scores = np.array(permutation_scores) pvalue = (np.sum(permutation_scores >= score) + 1.0) / (n_permutations + 1) return score, permutation_scores, pvalue permutation_test_score.__test__ = False # to avoid a pb with nosetests def train_test_split(*arrays, **options): """Split arrays or matrices into random train and test subsets Quick utility that wraps input validation and ``next(iter(ShuffleSplit(n_samples)))`` and application to input data into a single call for splitting (and optionally subsampling) data in a oneliner. Read more in the :ref:`User Guide <cross_validation>`. Parameters ---------- *arrays : sequence of arrays or scipy.sparse matrices with same shape[0] Python lists or tuples occurring in arrays are converted to 1D numpy arrays. test_size : float, int, or None (default is None) If float, should be between 0.0 and 1.0 and represent the proportion of the dataset to include in the test split. If int, represents the absolute number of test samples. If None, the value is automatically set to the complement of the train size. If train size is also None, test size is set to 0.25. train_size : float, int, or None (default is None) If float, should be between 0.0 and 1.0 and represent the proportion of the dataset to include in the train split. If int, represents the absolute number of train samples. If None, the value is automatically set to the complement of the test size. random_state : int or RandomState Pseudo-random number generator state used for random sampling. stratify : array-like or None (default is None) If not None, data is split in a stratified fashion, using this as the labels array. Returns ------- splitting : list of arrays, length=2 * len(arrays) List containing train-test split of input array. Examples -------- >>> import numpy as np >>> from sklearn.cross_validation import train_test_split >>> X, y = np.arange(10).reshape((5, 2)), range(5) >>> X array([[0, 1], [2, 3], [4, 5], [6, 7], [8, 9]]) >>> list(y) [0, 1, 2, 3, 4] >>> X_train, X_test, y_train, y_test = train_test_split( ... X, y, test_size=0.33, random_state=42) ... >>> X_train array([[4, 5], [0, 1], [6, 7]]) >>> y_train [2, 0, 3] >>> X_test array([[2, 3], [8, 9]]) >>> y_test [1, 4] """ n_arrays = len(arrays) if n_arrays == 0: raise ValueError("At least one array required as input") test_size = options.pop('test_size', None) train_size = options.pop('train_size', None) random_state = options.pop('random_state', None) dtype = options.pop('dtype', None) if dtype is not None: warnings.warn("dtype option is ignored and will be removed in 0.18.", DeprecationWarning) allow_nd = options.pop('allow_nd', None) allow_lists = options.pop('allow_lists', None) stratify = options.pop('stratify', None) if allow_lists is not None: warnings.warn("The allow_lists option is deprecated and will be " "assumed True in 0.18 and removed.", DeprecationWarning) if options: raise TypeError("Invalid parameters passed: %s" % str(options)) if allow_nd is not None: warnings.warn("The allow_nd option is deprecated and will be " "assumed True in 0.18 and removed.", DeprecationWarning) if allow_lists is False or allow_nd is False: arrays = [check_array(x, 'csr', allow_nd=allow_nd, force_all_finite=False, ensure_2d=False) if x is not None else x for x in arrays] if test_size is None and train_size is None: test_size = 0.25 arrays = indexable(*arrays) if stratify is not None: cv = StratifiedShuffleSplit(stratify, test_size=test_size, train_size=train_size, random_state=random_state) else: n_samples = _num_samples(arrays[0]) cv = ShuffleSplit(n_samples, test_size=test_size, train_size=train_size, random_state=random_state) train, test = next(iter(cv)) return list(chain.from_iterable((safe_indexing(a, train), safe_indexing(a, test)) for a in arrays)) train_test_split.__test__ = False # to avoid a pb with nosetests
bsd-3-clause
zrhans/pythonanywhere
.virtualenvs/django19/lib/python3.4/site-packages/matplotlib/backends/wx_compat.py
8
5224
#!/usr/bin/env python """ A wx API adapter to hide differences between wxPython classic and phoenix. It is assumed that the user code is selecting what version it wants to use, here we just ensure that it meets the minimum required by matplotlib. For an example see embedding_in_wx2.py """ from __future__ import (absolute_import, division, print_function, unicode_literals) from matplotlib.externals import six from distutils.version import LooseVersion missingwx = "Matplotlib backend_wx and backend_wxagg require wxPython >=2.8.12" try: import wx backend_version = wx.VERSION_STRING is_phoenix = 'phoenix' in wx.PlatformInfo except ImportError: raise ImportError(missingwx) # Ensure we have the correct version imported if LooseVersion(wx.VERSION_STRING) < LooseVersion("2.8.12"): print(" wxPython version %s was imported." % backend_version) raise ImportError(missingwx) if is_phoenix: # define all the wxPython phoenix stuff # font styles, families and weight fontweights = { 100: wx.FONTWEIGHT_LIGHT, 200: wx.FONTWEIGHT_LIGHT, 300: wx.FONTWEIGHT_LIGHT, 400: wx.FONTWEIGHT_NORMAL, 500: wx.FONTWEIGHT_NORMAL, 600: wx.FONTWEIGHT_NORMAL, 700: wx.FONTWEIGHT_BOLD, 800: wx.FONTWEIGHT_BOLD, 900: wx.FONTWEIGHT_BOLD, 'ultralight': wx.FONTWEIGHT_LIGHT, 'light': wx.FONTWEIGHT_LIGHT, 'normal': wx.FONTWEIGHT_NORMAL, 'medium': wx.FONTWEIGHT_NORMAL, 'semibold': wx.FONTWEIGHT_NORMAL, 'bold': wx.FONTWEIGHT_BOLD, 'heavy': wx.FONTWEIGHT_BOLD, 'ultrabold': wx.FONTWEIGHT_BOLD, 'black': wx.FONTWEIGHT_BOLD } fontangles = { 'italic': wx.FONTSTYLE_ITALIC, 'normal': wx.FONTSTYLE_NORMAL, 'oblique': wx.FONTSTYLE_SLANT} # wxPython allows for portable font styles, choosing them appropriately # for the target platform. Map some standard font names to the portable # styles # QUESTION: Is it be wise to agree standard fontnames across all backends? fontnames = {'Sans': wx.FONTFAMILY_SWISS, 'Roman': wx.FONTFAMILY_ROMAN, 'Script': wx.FONTFAMILY_SCRIPT, 'Decorative': wx.FONTFAMILY_DECORATIVE, 'Modern': wx.FONTFAMILY_MODERN, 'Courier': wx.FONTFAMILY_MODERN, 'courier': wx.FONTFAMILY_MODERN} dashd_wx = {'solid': wx.PENSTYLE_SOLID, 'dashed': wx.PENSTYLE_SHORT_DASH, 'dashdot': wx.PENSTYLE_DOT_DASH, 'dotted': wx.PENSTYLE_DOT} # functions changes BitmapFromBuffer = wx.Bitmap.FromBufferRGBA EmptyBitmap = wx.Bitmap EmptyImage = wx.Image Cursor = wx.Cursor EventLoop = wx.GUIEventLoop NamedColour = wx.Colour StockCursor = wx.Cursor else: # define all the wxPython classic stuff # font styles, families and weight fontweights = { 100: wx.LIGHT, 200: wx.LIGHT, 300: wx.LIGHT, 400: wx.NORMAL, 500: wx.NORMAL, 600: wx.NORMAL, 700: wx.BOLD, 800: wx.BOLD, 900: wx.BOLD, 'ultralight': wx.LIGHT, 'light': wx.LIGHT, 'normal': wx.NORMAL, 'medium': wx.NORMAL, 'semibold': wx.NORMAL, 'bold': wx.BOLD, 'heavy': wx.BOLD, 'ultrabold': wx.BOLD, 'black': wx.BOLD } fontangles = { 'italic': wx.ITALIC, 'normal': wx.NORMAL, 'oblique': wx.SLANT} # wxPython allows for portable font styles, choosing them appropriately # for the target platform. Map some standard font names to the portable # styles # QUESTION: Is it be wise to agree standard fontnames across all backends? fontnames = {'Sans': wx.SWISS, 'Roman': wx.ROMAN, 'Script': wx.SCRIPT, 'Decorative': wx.DECORATIVE, 'Modern': wx.MODERN, 'Courier': wx.MODERN, 'courier': wx.MODERN} dashd_wx = {'solid': wx.SOLID, 'dashed': wx.SHORT_DASH, 'dashdot': wx.DOT_DASH, 'dotted': wx.DOT} # functions changes BitmapFromBuffer = wx.BitmapFromBufferRGBA EmptyBitmap = wx.EmptyBitmap EmptyImage = wx.EmptyImage Cursor = wx.StockCursor EventLoop = wx.EventLoop NamedColour = wx.NamedColour StockCursor = wx.StockCursor def _AddTool(parent, wx_ids, text, bmp, tooltip_text): if is_phoenix: if text in ['Pan', 'Zoom']: kind = wx.ITEM_CHECK else: kind = wx.ITEM_NORMAL parent.AddTool(wx_ids[text], label=text, bitmap=bmp, bmpDisabled=wx.NullBitmap, shortHelpString=text, longHelpString=tooltip_text, kind=kind) else: if text in ['Pan', 'Zoom']: parent.AddCheckTool( wx_ids[text], bmp, shortHelp=text, longHelp=tooltip_text) else: parent.AddSimpleTool(wx_ids[text], bmp, text, tooltip_text)
apache-2.0
jarn0ld/gnuradio
gr-dtv/examples/atsc_ctrlport_monitor.py
21
6089
#!/usr/bin/env python # # Copyright 2015 Free Software Foundation # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 3, or (at your option) # any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program; see the file COPYING. If not, write to # the Free Software Foundation, Inc., 51 Franklin Street, # Boston, MA 02110-1301, USA. # import sys import matplotlib matplotlib.use("QT4Agg") import matplotlib.pyplot as plt import matplotlib.animation as animation from gnuradio.ctrlport.GNURadioControlPortClient import GNURadioControlPortClient import scipy from scipy import fftpack """ If a host is running the ATSC receiver chain with ControlPort turned on, this script will connect to the host using the hostname and port pair of the ControlPort instance and display metrics of the receiver. The ATSC publishes information about the succes of the Reed-Solomon decoder and Viterbi metrics for use here in displaying the link quality. This also gets the equalizer taps of the receiver and displays the frequency response. """ class atsc_ctrlport_monitor: def __init__(self, host, port): argv = [None, host, port] radiosys = GNURadioControlPortClient(argv=argv, rpcmethod='thrift') self.radio = radiosys.client print self.radio vt_init_key = 'dtv_atsc_viterbi_decoder0::decoder_metrics' data = self.radio.getKnobs([vt_init_key])[vt_init_key] init_metric = scipy.mean(data.value) self._viterbi_metric = 100*[init_metric,] table_col_labels = ('Num Packets', 'Error Rate', 'Packet Error Rate', 'Viterbi Metric', 'SNR') self._fig = plt.figure(1, figsize=(12,12), facecolor='w') self._sp0 = self._fig.add_subplot(4,1,1) self._sp1 = self._fig.add_subplot(4,1,2) self._sp2 = self._fig.add_subplot(4,1,3) self._plot_taps = self._sp0.plot([], [], 'k', linewidth=2) self._plot_psd = self._sp1.plot([], [], 'k', linewidth=2) self._plot_data = self._sp2.plot([], [], 'ok', linewidth=2, markersize=4, alpha=0.05) self._ax2 = self._fig.add_subplot(4,1,4) self._table = self._ax2.table(cellText=[len(table_col_labels)*['0']], colLabels=table_col_labels, loc='center') self._ax2.axis('off') cells = self._table.properties()['child_artists'] for c in cells: c.set_lw(0.1) # set's line width c.set_ls('solid') c.set_height(0.2) ani = animation.FuncAnimation(self._fig, self.update_data, frames=200, fargs=(self._plot_taps[0], self._plot_psd[0], self._plot_data[0], self._table), init_func=self.init_function, blit=True) plt.show() def update_data(self, x, taps, psd, syms, table): try: eqdata_key = 'dtv_atsc_equalizer0::taps' symdata_key = 'dtv_atsc_equalizer0::data' rs_nump_key = 'dtv_atsc_rs_decoder0::num_packets' rs_numbp_key = 'dtv_atsc_rs_decoder0::num_bad_packets' rs_numerrs_key = 'dtv_atsc_rs_decoder0::num_errors_corrected' vt_metrics_key = 'dtv_atsc_viterbi_decoder0::decoder_metrics' snr_key = 'probe2_f0::SNR' data = self.radio.getKnobs([]) eqdata = data[eqdata_key] symdata = data[symdata_key] rs_num_packets = data[rs_nump_key] rs_num_bad_packets = data[rs_numbp_key] rs_num_errors_corrected = data[rs_numerrs_key] vt_decoder_metrics = data[vt_metrics_key] snr_est = data[snr_key] vt_decoder_metrics = scipy.mean(vt_decoder_metrics.value) self._viterbi_metric.pop() self._viterbi_metric.insert(0, vt_decoder_metrics) except: sys.stderr.write("Lost connection, exiting") sys.exit(1) ntaps = len(eqdata.value) taps.set_ydata(eqdata.value) taps.set_xdata(xrange(ntaps)) self._sp0.set_xlim(0, ntaps) self._sp0.set_ylim(min(eqdata.value), max(eqdata.value)) fs = 6.25e6 freq = scipy.linspace(-fs/2, fs/2, 10000) H = fftpack.fftshift(fftpack.fft(eqdata.value, 10000)) HdB = 20.0*scipy.log10(abs(H)) psd.set_ydata(HdB) psd.set_xdata(freq) self._sp1.set_xlim(0, fs/2) self._sp1.set_ylim([min(HdB), max(HdB)]) self._sp1.set_yticks([min(HdB), max(HdB)]) self._sp1.set_yticklabels(["min", "max"]) nsyms = len(symdata.value) syms.set_ydata(symdata.value) syms.set_xdata(nsyms*[0,]) self._sp2.set_xlim([-1, 1]) self._sp2.set_ylim([-10, 10]) per = float(rs_num_bad_packets.value) / float(rs_num_packets.value) ber = float(rs_num_errors_corrected.value) / float(187*rs_num_packets.value) table._cells[(1,0)]._text.set_text("{0}".format(rs_num_packets.value)) table._cells[(1,1)]._text.set_text("{0:.2g}".format(ber)) table._cells[(1,2)]._text.set_text("{0:.2g}".format(per)) table._cells[(1,3)]._text.set_text("{0:.1f}".format(scipy.mean(self._viterbi_metric))) table._cells[(1,4)]._text.set_text("{0:.4f}".format(snr_est.value[0])) return (taps, psd, syms, table) def init_function(self): return self._plot_taps + self._plot_psd + self._plot_data if __name__ == "__main__": host = sys.argv[1] port = sys.argv[2] m = atsc_ctrlport_monitor(host, port)
gpl-3.0
yunfanz/ReionBub
Choud14/TestESP.py
1
9152
import numpy as np, matplotlib.pyplot as p, scipy.special import cosmolopy.perturbation as pb import cosmolopy.density as cd from scipy.integrate import quad, tplquad import itertools from scipy.interpolate import interp1d from scipy.interpolate import RectBivariateSpline as RBS import optparse, sys from scipy.optimize import brenth, brentq from sigmas import * from scipy.ndimage.morphology import binary_dilation from joblib import Parallel, delayed import multiprocessing num_cores = multiprocessing.cpu_count() o = optparse.OptionParser() o.add_option('-d','--del0', dest='del0', default=5.) o.add_option('-m','--mul', dest='mul', default=1.) o.add_option('-z','--red', dest='red', default=12.) opts,args = o.parse_args(sys.argv[1:]) print opts, args rhobar = cd.cosmo_densities(**cosmo)[1] #msun/Mpc def m2R(m): RL = (3*m/4/np.pi/rhobar)**(1./3) return RL def m2V(m): return m/rhobar def R2m(RL): m = 4*np.pi/3*rhobar*RL**3 return m dmS = np.load('sig0.npz') RLtemp, MLtemp,SLtemp = dmS['radius'], dmS['mass'],dmS['sig0'] fs2m = interp1d(SLtemp,MLtemp) # fsig0 = interp1d(RLtemp,SLtemp) # def sig0(RL): # return fsig0(RL) print 'generated fs2m' def S2M(S): return fs2m(S) def m2S(m): return sig0(m2R(m)) def mmin(z,Tvir=1.E4): return pb.virial_mass(Tvir,z,**cosmo) def gam(RL): return sig1m(RL)/np.sqrt(sig0(RL)*sigG(RL,2)) def Vstar(RL): return (6*np.pi)**1.5*np.sqrt(sigG(RL,1)/sigG(RL,2))**3. def erf(x): return scipy.special.erf(x) def prob(x,av=0.5,var=0.25): return 1/np.sqrt(2*np.pi*var)/x*np.exp(-(np.log(x)-av)**2/2/var) def F(x): return (x**3-3*x)/2*(erf(x*np.sqrt(5./2))+erf(x*np.sqrt(5./8)))+np.sqrt(2./5/np.pi)*((31.*x**2/4+8./5)*np.exp(-5.*x**2/8)+(x**2/2-8./5)*np.exp(-5.*x**2/2)) def Deltac(z): fgrowth = pb.fgrowth(z, cosmo['omega_M_0']) # = D(z)/D(0) return 1.686/fgrowth #return 1.686*fgrowth #????? def pG(y,av,var): return 1/np.sqrt(2*np.pi*var)*np.exp(-(y-av)**2/2/var) def B(z,beta,s): #return Deltac(z)+beta*np.sqrt(s) return 1.686#+beta*np.sqrt(s) def Q(m,M0, eps=1.e-6): r,R0 = m2R(m), m2R(M0) s,s0 = sig0(r), sig0(R0) sx = SX(r,R0) Q = 1-sx**2/s/s0 if Q <= 0.: print 'Q {}<0, recompute with quad'.format(Q) s,s0 = sig0(r, method='quad'), sig0(R0, method='quad') sx = SX(r,R0, method='quad') Q = 1-sx**2/s/s0 print 'quad Q=', Q if Q <= 0: raise(Exception) #print m, M0, Q return Q def epX(m,M0): r,R0 = m2R(m), m2R(M0) s,s0 = sig0(r), sig0(R0) sx = SX(r,R0) sg1m = sig1m(r) sg1mX = sig1mX(r,R0) return s*sg1mX/sx/sg1m def testqua1(m,M0): return (1-epX(m, M0))/Q(m, M0) def testqua2(m,M0): return (1-epX(m, M0))**2/Q(m, M0) #def trapz(x,y): # return (x[-1]*y[-1]-x[0]*y[0]+np.sum(x[1:]*y[:-1]-y[1:]*x[:-1]))/2 def trapz(x,y): return np.trapz(y,x=x) # def subgrand_trapz_log(b,del0,s,s0,sx,epx,q,meanmu,varmu,varx,gamm,R0,V,z,err=False): # # EqA8, log intervaled integration axis # Bb = B(z,b,s) # #print 'gamm,epx,q =',gamm,epx,q # meanx = gamm*((Bb-del0*sx/s0)*(1-epx)/q/np.sqrt(s)+Bb*epx/np.sqrt(s)) # fact = V/Vstar(R0)*pG(Bb/np.sqrt(s),meanmu, varmu) # #print b, Bb/np.sqrt(s),meanmu,varmu,pG(Bb/np.sqrt(s),meanmu, varmu) # #print b # lxmin,lxmax = np.log(b*gamm), np.log(100.) # lx = np.linspace(lxmin,lxmax,100) # x = np.exp(lx) # y = (x/gamm-b)*F(x)*pG(x,meanx,varx)*x # factint = trapz(x,y) # #print y # #print factint # #factint = quad(lambda x: (x/gamm-b)*F(x)*pG(x,meanx,varx),b*gamm,100)[0] # #print fact, factint # return fact*factint def test1(s): # EqA8, non-log intervaled integration axis Bb = 1.686 nu = Bb/np.sqrt(s) #print 'gamm,epx,q =',gamm,epx,q r = m2R(S2M(s)) gamm = gam(r) meanx = gamm*nu varx = 1-gamm**2 V = 4*np.pi*r**3./3. fact = V/Vstar(r)*pG(nu,0., 1.) #print b, Bb/np.sqrt(s),meanmu,varmu,pG(Bb/np.sqrt(s),meanmu, varmu) #print b #x = np.linspace(b*gamm,100.,200) #TUNE x = np.logspace(-5,5,200) y = (x/gamm)*F(x)*pG(x,meanx,varx) factint = np.trapz(y,x) #print np.log10(b*gamm), fact, factint return fact*factint/2 def _blims(b, y, factor=1.e-6): """Integration limits used internally by the sigma_r functionp.""" maxintegrand = np.max(np.abs(y)) highmask = np.abs(y) > maxintegrand * factor highmask = binary_dilation(highmask) minb = np.min(b[highmask]) maxb = np.max(b[highmask]) return minb, maxb def _integrand_trapz_y(b,del0,s,s0,sx,epx,q,meanmu,varmu,varx,gamm,R0,V,z): y = [] for bx in b: newy = prob(bx)*subgrand_trapz(bx,del0,s,s0,sx,epx,q,meanmu,varmu,varx,gamm,R0,V,z)/2/s if np.isnan(newy): print 'NAN detected, breaking at: ' print bx,prob(bx),del0,s,s0,sx,epx,q,meanmu,varmu,varx,gamm,R0,V break else: y.append(newy) return np.asarray(y) def integrand_trapz(del0,m,M0,R0,z): #2s*f_ESP # of A7, divided by 2s; this IS f_ESP s = sig0(m2R(m)) V,r,dmdr = pb.volume_radius_dmdr(m,**cosmo) s,s0,sx = sig0(r), sig0(R0),SX(r,R0) gamm = gam(r) epx,q = epX(m,M0), Q(m,M0) meanmu = del0/np.sqrt(s)*sx/s0 varmu = q varx = 1-gamm**2 #print varmu, varx if varx<0: print "varx<0, breaking at varx, gamm, epx, q,m,M0=" print varx, gamm, epx, q, m, M0 #b = np.arange(0.00001,30.,0.03) #TUNE b = np.logspace(-6,3,100) y = _integrand_trapz_y(b,del0,s,s0,sx,epx,q,meanmu,varmu,varx,gamm,R0,V,z) if (y==0.).all(): return 0. blims = _blims(b, y) while blims[0] == blims[1]: b = np.logspace(np.log10(blims[0]*0.99),np.log10(blims[1]*1.01),100) y = _integrand_trapz_y(b,del0,s,s0,sx,epx,q,meanmu,varmu,varx,gamm,R0,V,z) blims = _blims(b, y) b = np.logspace(np.log10(blims[0]),np.log10(blims[1]),100) y = _integrand_trapz_y(b,del0,s,s0,sx,epx,q,meanmu,varmu,varx,gamm,R0,V,z) if y[-1]/np.max(y)>1.E-3: print "Warning: choice of bmax too small" print y print blims import IPython; IPython.embed() raise(Exception) if y[0]/np.max(y)>1.E-3: print "Warning: choice of bmin too big" return np.trapz(y,b) #return quad(lambda b: prob(b)*subgrand_trapz(b,del0,m,M0,z),0,4.)[0]/2/s def dsdm(m): return np.abs(sig0(m2R(m+1))-sig0(m2R(m-1)))/2 # def fcoll(del0,M0,z): # mm = mmin(z) # R0 = m2R(M0) # return quad(lambda m: integrand_trapz(del0,m,M0,R0,z)*dsdm(m),mm,M0) # def fcoll_trapz(del0,M0,z): # mm = mmin(z) # R0 = m2R(M0) # mx = np.arange(mm,M0,mm) # y = [] # for m in mx: # y.append(integrand_trapz(del0,m,M0,R0,z)*dsdm(m)) # print m, y[-1] # return np.trapz(y,mx,dx=mm) # #eturn trapz(mx,y) # def fcoll_trapz_log(del0,M0,z,debug=False): # # Eq. (6) # print del0 # mm = mmin(z) # R0 = m2R(M0) # lmx = np.linspace(np.log(mm),np.log(M0),200) # y = [] # for lm in lmx: # m = np.exp(lm) # y.append(integrand_trapz(del0,m,M0,R0,z)*dsdm(m)*m) #dsdm*m=ds/dln(m) # if debug: # return trapz(lmx,y),np.exp(lmx),y # else: # return trapz(lmx,y) def fcoll_trapz_log(del0,M0,z,debug=False): # Eq. (6) print del0 mm = mmin(z) R0 = m2R(M0) mx = np.logspace(np.log10(mm),np.log10(M0),200) ls = sig0(m2R(mx)) y = [] for m in mx: y.append(integrand_trapz(del0,m,M0,R0,z)) if debug: return trapz(lmx,y),np.exp(lmx),y else: #print ls[::-1],y[::-1] return trapz(ls[::-1],y[::-1]) # def resinterp(x1,x2,y1,y2): if y1*y2>0: raise ValueError('resinterp: root not in range') else: return (y2*x1-y1*x2)/(y2-y1) if __name__ == "__main__": zeta = 40. # Z = float(opts.red) # M0 = zeta*mmin(Z)*float(opts.mul) # del0 = float(opts.del0) Z = 12. #M0 = zeta*mmin(Z) #Mlist = np.exp(np.linspace(np.log(M0),np.log(1000*M0),10)) Slist = np.arange(5.,6.,1.) Mlist = S2M(Slist) #dlist = np.linspace(8,10,16) # for del0 in dlist: # res = fcoll_trapz_log(del0,M0,Z) # print m2S(M0), res[0] #Bracks = (()) # def parafunc(S0,Z): # M0 = S2M(S0) # def newfunc(del0): # return fcoll_trapz_log(del0,M0,Z)*40-1 # return brentq(newfunc,11,14.5,xtol=1.E-3,maxiter=100) if False: reslist = Parallel(n_jobs=num_cores)(delayed(parafunc)(S0,Z) for S0 in Slist) print reslist p.figure() p.plot(Slist,reslist) p.show() elif True: try: rootlist = [] for M0 in Mlist: def newfunc(del0): res = fcoll_trapz_log(del0,M0,Z)*40-1 return res Dlist = np.linspace(3.,20.,4) NJOBS = min(Dlist.size, num_cores) reslist = Parallel(n_jobs=NJOBS)(delayed(newfunc)(d0) for d0 in Dlist) print reslist if reslist[0]*reslist[-1]>0: print "root not in range" break else: print "enter second round of process" i = 0 while reslist[i]*reslist[-1]<0: i+=1 Dlist2 = np.linspace(Dlist[i-1],Dlist[i],8) reslist = Parallel(n_jobs=NJOBS)(delayed(newfunc)(d0) for d0 in Dlist2) print reslist i = 0 while reslist[i]*reslist[-1]<0: i+=1 resroot = resinterp(Dlist2[i-1],Dlist2[i],reslist[i-1],reslist[i]) print 'Barrier height:', resroot rootlist.append(resroot) print rootlist p.figure() p.plot(Slist,rootlist) p.savefig('barrier_z{}.png'.format(Z)) except: e = sys.exc_info() print e, '\n' finally: memory.clear() else: print 'doing nothing' #tplquad(All,mmin,M0,lambda x: 0, lambda x: 5., lambda x,y: gam(m2R(x))*y,lambda x,y: 10.,args=(del0,M0,z))
mit
luminescence/PolyLibScan
Analysis/job.py
1
9716
#import parser import numpy as np import pathlib2 as pl import pandas as pd import warnings import plotting import bayesModels as bayes import itertools as it import pymol_visualisation import sim_run import numerics as num_ import PolyLibScan.Database.db as DB import PolyLibScan.Tools.config as cfg warnings.filterwarnings("ignore") class Job(bayes.Job): def __init__(self, project, db_path, with_pymol=True): self.project = project self.poly_type = None self.db_path = pl.Path(db_path) if with_pymol: self.pymol = pymol_visualisation.PymolVisJob(self) self._parse = DB.JobDataBase(self.db_path, 'r') self.Id = None self.meta = self._parse.misc self.lmp_parameters = {key:val for key,val in self._parse.parameter} self.trajectory_meta = self._parse.traj_info self.trajectory_order = self._parse.traj_type_order self.particle_list = self._parse.particle_list self.sequence = self._parse.sequence self.weights = dict(self._parse.weights) # set self.active_site if there's a protein present self.config = cfg.JobConfig(self.db_path.parent.joinpath('config_with_setup.yml').as_posix()) if 'stoichiometry' in self.config.sim_parameter: if self.config.sim_parameter['stoichiometry'][0] > 0: self.active_site = self._parse.active_site else: self.active_site = self._parse.active_site self._runs = self._read_runs(with_pymol=with_pymol) self.particle_ids = self._get_particle_ids() self._charge = None self._parse.close() self._distance_frequency = None self._energy_distance_distribution = None super(Job, self).__init__() def __len__(self): return len(self._runs) def __getitem__(self, key): return self._runs[key] def __iter__(self): return iter(self._runs) def __repr__(self): info = (self.meta['poly_name'], self.meta['protein'], len(self)) return 'Lammps Run: %s-%s | Runs: %d' % info def __str__(self): info = (self.meta['poly_name'], self.meta['protein'], self.Id, len(self)) weights = zip(*self.weights.items()) out = [] out += ['Lammps Run: %s-%s | ID: %d | Runs: %d' % info] out += ['Monomers: %s' % '-'.join(weights[0])] out += ['Weights: %s' % '-'.join(map(str, weights[1]))] return '\n'.join(out) def _get_particle_ids(self): # in case there are no sim runs if len(self) == 0: raise Exception('No sim data available.') # this approach works if: # 1. there is only one protein and one polymer molecule # 2. the protein was created first, the polymer second p_type_ids = {} p_type_ids['polymer'] = np.unique(self.sequence['ID']) polymer_length = len(self.sequence) p_type_ids['protein'] = np.unique(self.trajectory_order[:-polymer_length]) return p_type_ids def charge(): doc = "The charge property." def fget(self): if self.project.parameters: if not self._charge: self._charge = self._calculate_polymer_charge() return self._charge else: raise AttributeError('Set parameters by path or dict.') def fset(self, value): self._charge = value def fdel(self): del self._charge return locals() charge = property(**charge()) def _calculate_polymer_charge(self): total_charge = 0 for monomer in self.sequence['monomer']: p_name, sub_name = monomer.split('_') total_charge += self.project.parameters['Atoms'][p_name][sub_name]['charge'] return total_charge def _read_runs(self, with_pymol=True): '''Reads in all runs from the database and creates a run object. All runs are sorted by id. ''' runs = [] # get inputs for data in self._parse.end_states: if 'Distance' in data.dtype.names: runs.append(sim_run.Run(self, data['ID'], data['Energy'], data["Distance"], with_pymol=True)) else: runs.append(sim_run.Run(self, data['ID'], data['Energy'], with_pymol=True)) return sorted(runs, key=lambda x:x.Id) def distance_frequency(): doc = "The distance_frequency property." def fget(self): if self._energy_distance_distribution == None: try: results = self._parse.histogramm except DB.tb.NoSuchNodeError: results = self._calc_distance_density(self) hist_array = self._parse_hist_data(results[['distance', 'frequency']], results['energy']) self._parse.histogram = hist_array self._distance_frequency = results[['distance', 'frequency']] self._energy_distance_distribution = results[['distance', 'energy']] return self._distance_frequency def fset(self, value): self._distance_frequency = value def fdel(self): self._distance_frequency = None return locals() distance_frequency = property(**distance_frequency()) def energy_distance_distribution(): doc = "The energy_distance_distribution property." def fget(self): if self._energy_distance_distribution == None: try: results = self._parse.hist_data() except parser.DB.tb.NoSuchNodeError: results = self._calc_distance_density(self) hist_array = self._parse_hist_data(results[['distance', 'frequency']], results[ 'energy']) self._parse.histogram = hist_array self._distance_frequency = results[['distance', 'frequency']] self._energy_distance_distribution = results[['distance', 'energy']] return self._energy_distance_distribution def fset(self, value): self._energy_distance_distribution = value def fdel(self): self._energy_distance_distribution = None return locals() energy_distance_distribution = property(**energy_distance_distribution()) def _parse_hist_data(self, distance, energy): '''Save the observables of distance and energy to the database. Since this involves writing to the database, it opens the database in write mode and writes to the /histogram table. The timestep information is in the distance argument. ''' results_dtype = [('distance', np.float), ('frequency', np.int), ('energy', np.float)] data = np.empty(distance.shape[0], results_dtype) data['distance'] = distance['distance'] data['frequency'] = distance['frequency'] data['energy'] = energy return data def _calc_distance_density(self, runs): dist_v = np.zeros(2000, dtype=[('count', np.int), ('energy', np.float)]) for run in runs: energy = run.binding_energy()[:,0] distance = run.distance_time_series()['distance'][-len(energy):] # discretize energy and distance timeseries into bins ofr histogram distance_density = num_.binning(distance, energy, dist_v) reduced_hist = num_.discard_tailing_zeros(dist_v['count']) reduced_len = reduced_hist.shape[0] energy_mean = dist_v['energy'][:reduced_len] / reduced_hist results_dtype = [('distance', np.float), ('frequency', np.int), ('energy', np.float)] results = np.empty(reduced_len, results_dtype) results['distance'] = np.arange(reduced_len, dtype=np.float)/10 results['frequency'] = reduced_hist results['energy'] = energy_mean return results def to_dataFrame(self): if self._parse.db.is_open(): self._parse.open() data = pd.DataFrame(self._parse.end_states) data = data.set_index('ID') data.set_index([[self.Id for i in xrange(data.shape[0])], data.index], inplace=True) data.index.names = ['PolymerId', 'RunId'] self._parse.close() return data def _calc_protein_box(self, margin=20): """calculate the minimal box of the protein coordinates, add margin and round box_coordinates to the next integer. The coordinates are taken from the first timestep; this assumes that the protein stays fixes during the simulation. Arguments: margin: margin added to each side of the box [float/integer] Output: box -- 2x3 numpy array """ protein_mask = np.in1d(self.trajectory_order, self.particle_ids['protein']) trajectory_iterator = self._parse.trajectory_load(0) protein_coords = np.array(list(it.islice(trajectory_iterator, len(protein_mask))))[protein_mask] box = num_.calc_box(protein_coords, margin=margin) discrete_box = np.zeros((2,3)) discrete_box[0] = np.floor(box[0]) discrete_box[1] = np.ceil(box[1]) return discrete_box def energies(self): return self.project.endstate_matrix.loc[self.Id ,(self.meta['poly_name'], 'Energy')] def distances(self): return self.project.endstate_matrix.loc[self.Id ,(self.meta['poly_name'], 'Distance')] def mean_energy(self): return np.mean(self.energies())
mit
shaneknapp/spark
python/pyspark/sql/tests/test_pandas_cogrouped_map.py
20
9306
# # Licensed to the Apache Software Foundation (ASF) under one or more # contributor license agreements. See the NOTICE file distributed with # this work for additional information regarding copyright ownership. # The ASF licenses this file to You under the Apache License, Version 2.0 # (the "License"); you may not use this file except in compliance with # the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import unittest from pyspark.sql.functions import array, explode, col, lit, udf, pandas_udf from pyspark.sql.types import DoubleType, StructType, StructField, Row from pyspark.testing.sqlutils import ReusedSQLTestCase, have_pandas, have_pyarrow, \ pandas_requirement_message, pyarrow_requirement_message from pyspark.testing.utils import QuietTest if have_pandas: import pandas as pd from pandas.testing import assert_frame_equal if have_pyarrow: import pyarrow as pa # noqa: F401 @unittest.skipIf( not have_pandas or not have_pyarrow, pandas_requirement_message or pyarrow_requirement_message) # type: ignore[arg-type] class CogroupedMapInPandasTests(ReusedSQLTestCase): @property def data1(self): return self.spark.range(10).toDF('id') \ .withColumn("ks", array([lit(i) for i in range(20, 30)])) \ .withColumn("k", explode(col('ks')))\ .withColumn("v", col('k') * 10)\ .drop('ks') @property def data2(self): return self.spark.range(10).toDF('id') \ .withColumn("ks", array([lit(i) for i in range(20, 30)])) \ .withColumn("k", explode(col('ks'))) \ .withColumn("v2", col('k') * 100) \ .drop('ks') def test_simple(self): self._test_merge(self.data1, self.data2) def test_left_group_empty(self): left = self.data1.where(col("id") % 2 == 0) self._test_merge(left, self.data2) def test_right_group_empty(self): right = self.data2.where(col("id") % 2 == 0) self._test_merge(self.data1, right) def test_different_schemas(self): right = self.data2.withColumn('v3', lit('a')) self._test_merge(self.data1, right, 'id long, k int, v int, v2 int, v3 string') def test_complex_group_by(self): left = pd.DataFrame.from_dict({ 'id': [1, 2, 3], 'k': [5, 6, 7], 'v': [9, 10, 11] }) right = pd.DataFrame.from_dict({ 'id': [11, 12, 13], 'k': [5, 6, 7], 'v2': [90, 100, 110] }) left_gdf = self.spark\ .createDataFrame(left)\ .groupby(col('id') % 2 == 0) right_gdf = self.spark \ .createDataFrame(right) \ .groupby(col('id') % 2 == 0) def merge_pandas(l, r): return pd.merge(l[['k', 'v']], r[['k', 'v2']], on=['k']) result = left_gdf \ .cogroup(right_gdf) \ .applyInPandas(merge_pandas, 'k long, v long, v2 long') \ .sort(['k']) \ .toPandas() expected = pd.DataFrame.from_dict({ 'k': [5, 6, 7], 'v': [9, 10, 11], 'v2': [90, 100, 110] }) assert_frame_equal(expected, result) def test_empty_group_by(self): left = self.data1 right = self.data2 def merge_pandas(l, r): return pd.merge(l, r, on=['id', 'k']) result = left.groupby().cogroup(right.groupby())\ .applyInPandas(merge_pandas, 'id long, k int, v int, v2 int') \ .sort(['id', 'k']) \ .toPandas() left = left.toPandas() right = right.toPandas() expected = pd \ .merge(left, right, on=['id', 'k']) \ .sort_values(by=['id', 'k']) assert_frame_equal(expected, result) def test_mixed_scalar_udfs_followed_by_cogrouby_apply(self): df = self.spark.range(0, 10).toDF('v1') df = df.withColumn('v2', udf(lambda x: x + 1, 'int')(df['v1'])) \ .withColumn('v3', pandas_udf(lambda x: x + 2, 'int')(df['v1'])) result = df.groupby().cogroup(df.groupby()) \ .applyInPandas(lambda x, y: pd.DataFrame([(x.sum().sum(), y.sum().sum())]), 'sum1 int, sum2 int').collect() self.assertEqual(result[0]['sum1'], 165) self.assertEqual(result[0]['sum2'], 165) def test_with_key_left(self): self._test_with_key(self.data1, self.data1, isLeft=True) def test_with_key_right(self): self._test_with_key(self.data1, self.data1, isLeft=False) def test_with_key_left_group_empty(self): left = self.data1.where(col("id") % 2 == 0) self._test_with_key(left, self.data1, isLeft=True) def test_with_key_right_group_empty(self): right = self.data1.where(col("id") % 2 == 0) self._test_with_key(self.data1, right, isLeft=False) def test_with_key_complex(self): def left_assign_key(key, l, _): return l.assign(key=key[0]) result = self.data1 \ .groupby(col('id') % 2 == 0)\ .cogroup(self.data2.groupby(col('id') % 2 == 0)) \ .applyInPandas(left_assign_key, 'id long, k int, v int, key boolean') \ .sort(['id', 'k']) \ .toPandas() expected = self.data1.toPandas() expected = expected.assign(key=expected.id % 2 == 0) assert_frame_equal(expected, result) def test_wrong_return_type(self): # Test that we get a sensible exception invalid values passed to apply left = self.data1 right = self.data2 with QuietTest(self.sc): with self.assertRaisesRegex( NotImplementedError, 'Invalid return type.*ArrayType.*TimestampType'): left.groupby('id').cogroup(right.groupby('id')).applyInPandas( lambda l, r: l, 'id long, v array<timestamp>') def test_wrong_args(self): left = self.data1 right = self.data2 with self.assertRaisesRegex(ValueError, 'Invalid function'): left.groupby('id').cogroup(right.groupby('id')) \ .applyInPandas(lambda: 1, StructType([StructField("d", DoubleType())])) def test_case_insensitive_grouping_column(self): # SPARK-31915: case-insensitive grouping column should work. df1 = self.spark.createDataFrame([(1, 1)], ("column", "value")) row = df1.groupby("ColUmn").cogroup( df1.groupby("COLUMN") ).applyInPandas(lambda r, l: r + l, "column long, value long").first() self.assertEqual(row.asDict(), Row(column=2, value=2).asDict()) df2 = self.spark.createDataFrame([(1, 1)], ("column", "value")) row = df1.groupby("ColUmn").cogroup( df2.groupby("COLUMN") ).applyInPandas(lambda r, l: r + l, "column long, value long").first() self.assertEqual(row.asDict(), Row(column=2, value=2).asDict()) def test_self_join(self): # SPARK-34319: self-join with FlatMapCoGroupsInPandas df = self.spark.createDataFrame([(1, 1)], ("column", "value")) row = df.groupby("ColUmn").cogroup( df.groupby("COLUMN") ).applyInPandas(lambda r, l: r + l, "column long, value long") row = row.join(row).first() self.assertEqual(row.asDict(), Row(column=2, value=2).asDict()) @staticmethod def _test_with_key(left, right, isLeft): def right_assign_key(key, l, r): return l.assign(key=key[0]) if isLeft else r.assign(key=key[0]) result = left \ .groupby('id') \ .cogroup(right.groupby('id')) \ .applyInPandas(right_assign_key, 'id long, k int, v int, key long') \ .toPandas() expected = left.toPandas() if isLeft else right.toPandas() expected = expected.assign(key=expected.id) assert_frame_equal(expected, result) @staticmethod def _test_merge(left, right, output_schema='id long, k int, v int, v2 int'): def merge_pandas(l, r): return pd.merge(l, r, on=['id', 'k']) result = left \ .groupby('id') \ .cogroup(right.groupby('id')) \ .applyInPandas(merge_pandas, output_schema)\ .sort(['id', 'k']) \ .toPandas() left = left.toPandas() right = right.toPandas() expected = pd \ .merge(left, right, on=['id', 'k']) \ .sort_values(by=['id', 'k']) assert_frame_equal(expected, result) if __name__ == "__main__": from pyspark.sql.tests.test_pandas_cogrouped_map import * # noqa: F401 try: import xmlrunner # type: ignore[import] testRunner = xmlrunner.XMLTestRunner(output='target/test-reports', verbosity=2) except ImportError: testRunner = None unittest.main(testRunner=testRunner, verbosity=2)
apache-2.0
keflavich/scikit-image
doc/examples/plot_tinting_grayscale_images.py
14
5336
""" ========================= Tinting gray-scale images ========================= It can be useful to artificially tint an image with some color, either to highlight particular regions of an image or maybe just to liven up a grayscale image. This example demonstrates image-tinting by scaling RGB values and by adjusting colors in the HSV color-space. In 2D, color images are often represented in RGB---3 layers of 2D arrays, where the 3 layers represent (R)ed, (G)reen and (B)lue channels of the image. The simplest way of getting a tinted image is to set each RGB channel to the grayscale image scaled by a different multiplier for each channel. For example, multiplying the green and blue channels by 0 leaves only the red channel and produces a bright red image. Similarly, zeroing-out the blue channel leaves only the red and green channels, which combine to form yellow. """ import matplotlib.pyplot as plt from skimage import data from skimage import color from skimage import img_as_float grayscale_image = img_as_float(data.camera()[::2, ::2]) image = color.gray2rgb(grayscale_image) red_multiplier = [1, 0, 0] yellow_multiplier = [1, 1, 0] fig, (ax1, ax2) = plt.subplots(ncols=2, figsize=(8, 4)) ax1.imshow(red_multiplier * image) ax2.imshow(yellow_multiplier * image) """ .. image:: PLOT2RST.current_figure In many cases, dealing with RGB values may not be ideal. Because of that, there are many other `color spaces`_ in which you can represent a color image. One popular color space is called HSV, which represents hue (~the color), saturation (~colorfulness), and value (~brightness). For example, a color (hue) might be green, but its saturation is how intense that green is---where olive is on the low end and neon on the high end. In some implementations, the hue in HSV goes from 0 to 360, since hues wrap around in a circle. In scikit-image, however, hues are float values from 0 to 1, so that hue, saturation, and value all share the same scale. .. _color spaces: http://en.wikipedia.org/wiki/List_of_color_spaces_and_their_uses Below, we plot a linear gradient in the hue, with the saturation and value turned all the way up: """ import numpy as np hue_gradient = np.linspace(0, 1) hsv = np.ones(shape=(1, len(hue_gradient), 3), dtype=float) hsv[:, :, 0] = hue_gradient all_hues = color.hsv2rgb(hsv) fig, ax = plt.subplots(figsize=(5, 2)) # Set image extent so hues go from 0 to 1 and the image is a nice aspect ratio. ax.imshow(all_hues, extent=(0, 1, 0, 0.2)) ax.set_axis_off() """ .. image:: PLOT2RST.current_figure Notice how the colors at the far left and far right are the same. That reflects the fact that the hues wrap around like the color wheel (see HSV_ for more info). .. _HSV: http://en.wikipedia.org/wiki/HSL_and_HSV Now, let's create a little utility function to take an RGB image and: 1. Transform the RGB image to HSV 2. Set the hue and saturation 3. Transform the HSV image back to RGB """ def colorize(image, hue, saturation=1): """ Add color of the given hue to an RGB image. By default, set the saturation to 1 so that the colors pop! """ hsv = color.rgb2hsv(image) hsv[:, :, 1] = saturation hsv[:, :, 0] = hue return color.hsv2rgb(hsv) """ Notice that we need to bump up the saturation; images with zero saturation are grayscale, so we need to a non-zero value to actually see the color we've set. Using the function above, we plot six images with a linear gradient in the hue and a non-zero saturation: """ hue_rotations = np.linspace(0, 1, 6) fig, axes = plt.subplots(nrows=2, ncols=3) for ax, hue in zip(axes.flat, hue_rotations): # Turn down the saturation to give it that vintage look. tinted_image = colorize(image, hue, saturation=0.3) ax.imshow(tinted_image, vmin=0, vmax=1) ax.set_axis_off() fig.tight_layout() """ .. image:: PLOT2RST.current_figure You can combine this tinting effect with numpy slicing and fancy-indexing to selectively tint your images. In the example below, we set the hue of some rectangles using slicing and scale the RGB values of some pixels found by thresholding. In practice, you might want to define a region for tinting based on segmentation results or blob detection methods. """ from skimage.filters import rank # Square regions defined as slices over the first two dimensions. top_left = (slice(100),) * 2 bottom_right = (slice(-100, None),) * 2 sliced_image = image.copy() sliced_image[top_left] = colorize(image[top_left], 0.82, saturation=0.5) sliced_image[bottom_right] = colorize(image[bottom_right], 0.5, saturation=0.5) # Create a mask selecting regions with interesting texture. noisy = rank.entropy(grayscale_image, np.ones((9, 9))) textured_regions = noisy > 4 # Note that using `colorize` here is a bit more difficult, since `rgb2hsv` # expects an RGB image (height x width x channel), but fancy-indexing returns # a set of RGB pixels (# pixels x channel). masked_image = image.copy() masked_image[textured_regions, :] *= red_multiplier fig, (ax1, ax2) = plt.subplots(ncols=2, figsize=(8, 4)) ax1.imshow(sliced_image) ax2.imshow(masked_image) plt.show() """ .. image:: PLOT2RST.current_figure For coloring multiple regions, you may also be interested in `skimage.color.label2rgb <http://scikit-image.org/docs/0.9.x/api/skimage.color.html#label2rgb>`_. """
bsd-3-clause
intersense/cudaDMA-gw
src/examples/deprecated/saxpy_ratio/replot.py
2
1096
import sys import math import numpy as np import matplotlib.pyplot as plt from matplotlib import cm def main(): import pickle output = open('data.pkl', 'r') data = pickle.load(output) print data lbl_sz = 12 styles = ['-','--',':'] fig = plt.figure() ax1 = fig.add_subplot(111) ax2 = ax1.twinx() for name, vals, style in zip(data.keys(),data.values(),styles): xs, ys_gbs, ys_gflops = vals ax1.plot(xs,ys_gbs,'b'+style, label=name) ax2.plot(xs, ys_gflops, 'r'+style, label=name) ax1.set_xlabel('B/FLOP', size=lbl_sz) ax1.set_ylabel('GB/s', size=lbl_sz, color='b') for t1 in ax1.get_yticklabels(): t1.set_color('b') ax2.set_ylabel('GFLOP/s', size=lbl_sz, color='r') for t1 in ax2.get_yticklabels(): t1.set_color('r') ax1.set_xscale('log', basex=2) ax2.set_xscale('log', basex=2) ax1.invert_xaxis() ax2.invert_xaxis() ax1.set_ylim(0) ax2.set_ylim(0) leg = plt.legend(loc=7) for t in leg.get_texts(): t.set_fontsize('small') for l in leg.get_lines(): l.set_color('k') plt.show() if __name__ == "__main__": main()
apache-2.0
dgellis90/nipype
nipype/utils/config.py
9
5668
# emacs: -*- mode: python; py-indent-offset: 4; indent-tabs-mode: nil -*- # vi: set ft=python sts=4 ts=4 sw=4 et: ''' Created on 20 Apr 2010 logging options : INFO, DEBUG hash_method : content, timestamp @author: Chris Filo Gorgolewski ''' from future import standard_library standard_library.install_aliases() from builtins import object import configparser from json import load, dump import os import shutil import errno from warnings import warn from ..external import portalocker from ..external.six import StringIO # Get home directory in platform-agnostic way homedir = os.path.expanduser('~') default_cfg = """ [logging] workflow_level = INFO filemanip_level = INFO interface_level = INFO log_to_file = false log_directory = %s log_size = 16384000 log_rotate = 4 [execution] create_report = true crashdump_dir = %s display_variable = :1 hash_method = timestamp job_finished_timeout = 5 keep_inputs = false local_hash_check = true matplotlib_backend = Agg plugin = Linear remove_node_directories = false remove_unnecessary_outputs = true try_hard_link_datasink = true single_thread_matlab = true stop_on_first_crash = false stop_on_first_rerun = false use_relative_paths = false stop_on_unknown_version = false write_provenance = false parameterize_dirs = true poll_sleep_duration = 60 xvfb_max_wait = 10 [check] interval = 1209600 """ % (homedir, os.getcwd()) def mkdir_p(path): try: os.makedirs(path) except OSError as exc: if exc.errno == errno.EEXIST and os.path.isdir(path): pass else: raise class NipypeConfig(object): """Base nipype config class """ def __init__(self, *args, **kwargs): self._config = configparser.ConfigParser() config_dir = os.path.expanduser('~/.nipype') mkdir_p(config_dir) old_config_file = os.path.expanduser('~/.nipype.cfg') new_config_file = os.path.join(config_dir, 'nipype.cfg') # To be deprecated in two releases if os.path.exists(old_config_file): if os.path.exists(new_config_file): msg = ("Detected presence of both old (%s, used by versions " "< 0.5.2) and new (%s) config files. This version will " "proceed with the new one. We advise to merge settings " "and remove old config file if you are not planning to " "use previous releases of nipype.") % (old_config_file, new_config_file) warn(msg) else: warn("Moving old config file from: %s to %s" % (old_config_file, new_config_file)) shutil.move(old_config_file, new_config_file) self.data_file = os.path.join(config_dir, 'nipype.json') self._config.readfp(StringIO(default_cfg)) self._config.read([new_config_file, old_config_file, 'nipype.cfg']) def set_default_config(self): self._config.readfp(StringIO(default_cfg)) def enable_debug_mode(self): """Enables debug configuration """ self._config.set('execution', 'stop_on_first_crash', 'true') self._config.set('execution', 'remove_unnecessary_outputs', 'false') self._config.set('execution', 'keep_inputs', 'true') self._config.set('logging', 'workflow_level', 'DEBUG') self._config.set('logging', 'interface_level', 'DEBUG') def set_log_dir(self, log_dir): """Sets logging directory This should be the first thing that is done before any nipype class with logging is imported. """ self._config.set('logging', 'log_directory', log_dir) def get(self, section, option): return self._config.get(section, option) def set(self, section, option, value): if isinstance(value, bool): value = str(value) return self._config.set(section, option, value) def getboolean(self, section, option): return self._config.getboolean(section, option) def has_option(self, section, option): return self._config.has_option(section, option) @property def _sections(self): return self._config._sections def get_data(self, key): if not os.path.exists(self.data_file): return None with open(self.data_file, 'rt') as file: portalocker.lock(file, portalocker.LOCK_EX) datadict = load(file) if key in datadict: return datadict[key] return None def save_data(self, key, value): datadict = {} if os.path.exists(self.data_file): with open(self.data_file, 'rt') as file: portalocker.lock(file, portalocker.LOCK_EX) datadict = load(file) with open(self.data_file, 'wt') as file: portalocker.lock(file, portalocker.LOCK_EX) datadict[key] = value dump(datadict, file) def update_config(self, config_dict): for section in ['execution', 'logging', 'check']: if section in config_dict: for key, val in list(config_dict[section].items()): if not key.startswith('__'): self._config.set(section, key, str(val)) def update_matplotlib(self): import matplotlib matplotlib.use(self.get('execution', 'matplotlib_backend')) def enable_provenance(self): self._config.set('execution', 'write_provenance', 'true') self._config.set('execution', 'hash_method', 'content')
bsd-3-clause
ryandougherty/mwa-capstone
MWA_Tools/build/matplotlib/examples/user_interfaces/embedding_in_tk.py
3
1095
#!/usr/bin/env python import matplotlib matplotlib.use('TkAgg') from numpy import arange, sin, pi from matplotlib.backends.backend_tkagg import FigureCanvasTkAgg, NavigationToolbar2TkAgg from matplotlib.figure import Figure import Tkinter as Tk import sys root = Tk.Tk() root.wm_title("Embedding in TK") f = Figure(figsize=(5,4), dpi=100) a = f.add_subplot(111) t = arange(0.0,3.0,0.01) s = sin(2*pi*t) a.plot(t,s) # a tk.DrawingArea canvas = FigureCanvasTkAgg(f, master=root) canvas.show() canvas.get_tk_widget().pack(side=Tk.TOP, fill=Tk.BOTH, expand=1) toolbar = NavigationToolbar2TkAgg( canvas, root ) toolbar.update() canvas._tkcanvas.pack(side=Tk.TOP, fill=Tk.BOTH, expand=1) def _quit(): root.quit() # stops mainloop root.destroy() # this is necessary on Windows to prevent # Fatal Python Error: PyEval_RestoreThread: NULL tstate button = Tk.Button(master=root, text='Quit', command=_quit) button.pack(side=Tk.BOTTOM) Tk.mainloop() # If you put root.destroy() here, it will cause an error if # the window is closed with the window manager.
gpl-2.0
LeiDai/meep_metamaterials
meep_utils.py
1
40785
#!/usr/bin/env python #coding:utf8 """ Here you can find various functions and classes that facilitate the work with python-meep. I believe some of these functions ought to be implemented in the meep module. Filip Dominec 2012-2013 """ import numpy as np import os, os.path, sys, subprocess, time from scipy.constants import c, epsilon_0, mu_0 #import meep import meep_mpi as meep ## XXX import _meep_mpi ## Define the simulated models as a class (much simpler and more flexible than handling callbacks) class AbstractMeepModel(meep.Callback): #{{{ def __init__(self): meep.Callback.__init__(self) self.double_vec = None # (callback function to be redirected to the desired function) self.return_value = True def register_local(self, param, val): """ Adds a parameter as an attribute of the model (either number or float), adds it also to the simulation name""" setattr(self, param, val) ## prepare the parameter to be added into name (if not conversible to float, add it as a string) try: self.simulation_name += ("_%s=%.2e") % (param, float(val)) self.parameterstring += "#param %s,%.4e\n" % (param, val) except: self.simulation_name += ("_%s=%s") % (param, val) self.parameterstring += "#param %s,%s\n" % (param, val) def register_locals(self, params): """ Scans through the parameters and calls register_local() for each """ self.parameterstring = "" ## First look up for the "VIP" parameters that should come first in the name: preferred_params = ['resolution', 'comment', 'frequency', 'simtime'] for param in preferred_params: if params.get(param): val = params.get(param) self.register_local(param, val) ## Then add all remaining parameters of the model for (param, val) in params.iteritems(): if param != 'self' and param not in preferred_params: self.register_local(param, val) def eps(self, r): """ Scans through materials and adds the high-frequency part of permittivity for each of them. This is why materials should never overlap. """ for mat in self.materials: if mat.where(r): return mat.eps else: return 1. def build_polarizabilities(self, structure): """ This is a helper to define the susceptibilities using the callback. It goes through all polarizabilities for all materials. Applicable for time-domain simulation only, because dispersive model is not implemented for frequency-domain simulation yet. """ avail_cbs = [meep.DBL5, meep.DBL4, meep.DBL3, meep.DBL2, meep.DBL1,] avail_cb_setters = [meep.set_DBL5_Callback, meep.set_DBL4_Callback, meep.set_DBL3_Callback, meep.set_DBL2_Callback, meep.set_DBL1_Callback,] for material in self.materials: meep.master_printf("\tAdding material: %s with epsilon: %s at frequency %.4g Hz\n" % (material.name, analytic_eps(material, self.srcFreq).__str__(), self.srcFreq)) for polariz in material.pol: if avail_cbs == []: meep.master_printf("Error: too many polarizabilities defined (5) Reduce their number.") exit() next_cb, next_cb_setter = avail_cbs.pop(), avail_cb_setters.pop() self.return_value = polariz['sigma'] self.double_vec = material.where ## redirect the double_vec() function callback next_cb_setter(self.__disown__()) if "lorentzian_susceptibility" in dir(meep): ## for meep 1.2 or newer structure.add_susceptibility(next_cb, meep.E_stuff, meep.lorentzian_susceptibility(polariz['omega']/c, polariz['gamma']/c)) #else:todo: fix in python-meep #print dir(meep) #structure.add_susceptibility(next_cb, meep.E_stuff, #meep.drude_susceptibility(polariz['omega']/c, polariz['gamma']/c)) else: ## for meep 1.1.1 or older structure.add_polarizability(next_cb, polariz['omega']/c, polariz['gamma']/c) def TestMaterials(self): """ Call the where() function for each material, in order to make sure there are no errors (SWIG callback does not report where the error occured, it just crashes) """ for material in self.materials: for x in np.linspace(-self.size_x/2, self.size_x/2, 1): for y in np.linspace(-self.size_y/2, self.size_y/2, 1): for z in np.linspace(-self.size_z/2, self.size_z/2, 1): if material.where(meep.vec(x, y, z)): print "teotueot" #}}} def phys_to_float(s):#{{{ """ Float() that also recognizes the short SI prefixes. Returns string if value is not a number. >>> phys_to_float('0.0121') 0.121 >>> phys_to_float('12.1m') 0.121 >>> phys_to_float('121e-4') 0.121 >>> phys_to_float('abcd') 'abcd' """ m = {'z':1e-21, 'a':1e-18, 'f':1e-15, 'p':1e-12, 'n':1e-9, 'u':1e-6, 'm':1e-3, 'c':1e-2, 'd':1e-1, 'k':1e3, 'M':1e6, 'G':1e9, 'T':1e12, 'P':1e15, 'E':1e18, 'Y':1e21} try: if s[-1] in '.0123456789': return float(s) elif s[-1] in m.keys(): return float(s[:-1]) * m[s[-1]] else: return s except ValueError: return s#}}} def process_param(args):#{{{ """ Parse command-line parameters Some of them control the simulation (`sim_param'), but all remaining will be passed to the model (`model_param') """ sim_param = { 'frequency_domain':False, 'frequency': None, 'MaxIter': 5000, 'MaxTol': 1e-2, 'BiCGStab': 8 } ## BiCGStab order of 8 proved to have best performance model_param = {} for namevalue in args: name, value = namevalue.split("=") if name == "frequency": sim_param['frequency'] = phys_to_float(value) sim_param['frequency_domain'] = True elif name == "maxtol": sim_param['MaxTol'] = phys_to_float(value) elif name == "maxiter": sim_param['MaxIter'] = int(value) elif name == "bicgstab": sim_param['BiCGStab'] = int(value) else: ## all other parameters will be passed to the model: model_param[name] = phys_to_float(value) return sim_param, model_param #}}} ## Geometrical primitives to help defining the geometry def in_xslab(r,cx,d):#{{{ return (abs(r.x()-cx) < d/2) def in_yslab(r,cy,d): return (abs(r.y()-cy) < d/2) def in_zslab(r,cz,d): return (abs(r.z()-cz) < d/2) def in_xcyl(r,cy,cz,rad): return ((r.y()-cy)**2+(r.z()-cz)**2) < rad**2 def in_ycyl(r,cx,cz,rad): return ((r.x()-cx)**2+(r.z()-cz)**2) < rad**2 def in_zcyl(r,cx,cy,rad): return ((r.x()-cx)**2+(r.y()-cy)**2) < rad**2 def in_sphere(r,cx,cy,cz,rad): return ((cx-r.x())**2 + (cy-r.y())**2 + (cz-r.z())**2)**.5 < rad def in_ellipsoid(r,cx,cy,cz,rad,ex): xd, yd, zd = (cx-r.x()), (cy-r.y()), (cz-r.z()) #return ((xd+yd)**2/2*ex + (xd-yd)**2/2/ex + zd**2)**.5 < rad return ((xd+yd)**2/2.*ex**2 + (xd-yd)**2/2./ex**2 + zd**2)**.5 < rad #def in_xcone(r,cy,cz,cx,d): #return (abs(r.x()-cx) < d/2) #}}} ## Use the same dispersive materials for time- and frequency-domain simulation def permittivity2conductivity(complex_eps, freq):#{{{ """ Complex permittivity can express also the conductivity of the sample (in the same manner as dielectric losses) with the corresponding relation: complex_eps = real_eps - 1j conductivity / (frequency * 2*pi * epsilon_0) Therefore it should be inverted for classic D-conductivity: conductivity = - In order to simulate any lossy medium with the freq-domain solver, we invert this relation to obtain a (nondispersive) conductivity for one frequency. But it does not give the same results as time-domain simulation. What we know: function of c, f, 2pi, eps0, eps.im/eps.r should give dimension 1 to feed unitless meep should be proportional to eps.im/eps.r should give ca. 50000 for omega = 2pi * 800 GHz and eps.im/eps.r=0.02 => should give 2.5e6 for (eps.im/eps.r=1) should be proportional to frequency omega => should give 5e-7 for omega = 1 and (eps.im/eps.r=1) already was pre-divided for meep by c = 3e8 (which counts here) => in real life it shall be 3e-6 * 3e8 = 148 should be proportional to epsilon0 [C/Vsm], which is similar in units to conductivity => if epsilon0 was 1, it would be 1.7e13 -> roughly c**2 """ # return complex_eps.imag * freq * 2*np.pi * epsilon_0 * complex_eps.real ## orig. idea # return complex_eps.imag * freq * 2*np.pi * epsilon_0 * complex_eps.real ## also wrong # return complex_eps.imag / complex_eps.real * 2*np.pi * c #return complex_eps.imag / complex_eps.real * 6.28*freq * 8.85e-12 * c magic_constant = 1.65e13 ## A. K. A. bulgarian constant... return complex_eps.imag / complex_eps.real * 6.28 * freq / c * 8.85e-12 * magic_constant #}}} def analytic_eps(mat, freq):#{{{ complex_eps = mat.eps for polariz in mat.pol: complex_eps += polariz['sigma'] * polariz['omega']**2 / (polariz['omega']**2 - freq**2 - 1j*freq*polariz['gamma']) return complex_eps # + sum(0) #}}} class MyHiFreqPermittivity(meep.Callback):#{{{ def __init__(self, model, frequency): meep.Callback.__init__(self) self.model = model self.frequency = frequency def double_vec(self, r): for material in self.model.materials: if material.where(r): return analytic_eps(material, self.frequency).real else: return 1 #}}} class MyConductivity(meep.Callback):#{{{ def __init__(self, model, frequency): meep.Callback.__init__(self) self.model = model self.frequency = frequency def double_vec(self, r): for material in self.model.materials: if material.where(r): return permittivity2conductivity(analytic_eps(material, self.frequency), self.frequency) else: return 0 #}}} def plot_eps(to_plot, filename="epsilon.png", plot_conductivity=False, freq_range=(1e9, 1e17), mark_freq=[]):#{{{ """ Plots complex permittivity of the materials to a PNG file Accepts list of materials """ from scipy.constants import epsilon_0 import matplotlib matplotlib.use('Agg') ## Enable plotting even in the GNU screen session import matplotlib.pyplot as plt plt.figure(figsize=(8,6)) frequency = 10**np.arange(np.log10(freq_range[0]), np.log10(freq_range[1]), .001) colors = ['#554400', '#004400', '#003366', '#000088', '#440077', '#661100', '#AA8800', '#00AA00', '#0099DD', '#2200FF', '#8800DD', '#BB3300'] subplotnumber = 2 if plot_conductivity else 1 for material in list(to_plot): plt.subplot(subplotnumber,1,1) if colors: color = colors.pop() else: color = 'black' label = getattr(material, 'shortname', material.name) #print material eps = analytic_eps(material, frequency) #print eps, frequency print len(eps), len(frequency) #R = abs((1-eps**.5)/(1+eps**.5))**2 ## Intensity reflectivity plt.plot(frequency, np.real(eps), color=color, label=label, ls='-') plt.plot(frequency, np.imag(eps), color=color, label="", ls='--') plt.ylabel(u"solid: Re($\\varepsilon_r$), dashed: Im($\\varepsilon_r$) ") #plt.ylabel(u"Intensity reflectivity") for mfreq in mark_freq: plt.plot([mfreq,mfreq], [-1,1]) plt.yscale('symlog') plt.xscale('log') plt.legend(loc='lower left', prop={'size':7}); #plt.ylim(ymin=1e-2); plt.grid(True) if plot_conductivity: plt.subplot(subplotnumber,1,2) label = "" cond = eps * frequency * epsilon_0 / 1j plt.plot(frequency, np.real(cond), color=color, label=label, ls='-') plt.plot(frequency, np.imag(cond), color=color, label="", ls='--') plt.ylabel(u"$Re\\sigma$ (solid), Im$\\sigma$ (dashed)") plt.yscale('symlog'); plt.xscale('log'); plt.legend(); plt.grid(True) ## Finish the graph plt.xlabel(u"Frequency [Hz]") #plt.xlim((, )) plt.savefig(filename, bbox_inches='tight') #}}} def lorentzian_unstable_check_new(model, dt, quit_on_warning=True): #{{{ for mat in model.materials: eps_ts = analytic_eps(mat, 1/dt/np.pi) if np.real(eps_ts)<0: meep.master_printf("Warning: for material '%s', the permittivity is negative at timestepping frequency eps(1/pi/dt)=eps(%g)=%s.\n" % \ (mat.name, 1/dt/np.pi, eps_ts.__str__())); if quit_on_warning: quit() for pol in mat.pol: omega_0, gamma = pol['omega'], pol['gamma'] if (omega_0 > gamma/2): z2 = np.sqrt(gamma*gamma + 4*omega_0*omega_0)/2 else: z2 = gamma/2 + np.sqrt(gamma*gamma - 4*omega_0*omega_0)/2 if z2 > 1/dt/np.pi: meep.master_printf("Warning: for material '%s', the oscillator pole having magnitude |z|=%g will be probably unstable when 1/pi/dt=%g.\n" % \ (mat.name, z2, 1/dt/np.pi)); if quit_on_warning: quit() #}}} ## Useful to make 3D snapshots of the fields def run_bash(cmd, anyprocess=False): #{{{ if meep.my_rank() == 0 or anyprocess: #meep.master_printf("CMD: " + cmd+ "\n") p = subprocess.Popen(cmd, shell=True, stdout=subprocess.PIPE) out = p.stdout.read().strip() return out #}}} class SnapshotMaker(): #{{{ """ Saves the field vectors to a HDF5/VTK file at a given time. This function unfortunately requires command-line tools from Linux system. """ def __init__(self, field=None, snapshot_times=[], outputdir=None, volume=None): """ Remember the time when to take a snapshot. A list of two or more numbers may be provided. """ self.field = field self.snapshot_times = snapshot_times self.outputdir = outputdir self.volume = volume if not os.path.exists(self.outputdir): run_bash("mkdir -p %s" % self.outputdir) meep.master_printf("Registered %d time points(s) to take snapshot\n" % len(self.snapshot_times)) def poll(self, now=None): """ Check if the time has come to make a snapshot. """ if len(self.snapshot_times)>0 and now > self.snapshot_times[0]: self.take_snapshot(now) self.snapshot_times[0:1] = [] ## Remove the current snapshot now from the list of remaining times def take_snapshot(self, now): """ This function creates a directory, exports the dielectric structure, then exports the electric and magnetic field vectors to separate HDF5 files. Finally it converts the fields to VTK format (to make it readable e.g. by Mayavi2 or Paraview). Note that it is not only called by self.poll(), but it may be also called at will anywhere in your code. """ meep.master_printf(" * Saving field snapshot at time=%.4e... \n" % now) ## Export the dielectric structure so that we can visually verify it structure_filename = os.path.join(self.outputdir, 'structure') ## name of the file to save eps (without extension) #if meep.my_rank() == 0 and not os.path.exists(self.outputdir): os.mkdir(self.outputdir) if not os.path.exists(self.outputdir): run_bash("mkdir -p %s" % self.outputdir, anyprocess=True) ## NO DATA #if not os.path.exists(structure_filename): #if meep.my_rank() ==0 : #if not "outputfile" in locals(): outputfile = meep.prepareHDF5File(structure_filename+'.h5') self.field.output_hdf5(meep.Dielectric, self.volume, outputfile) del(outputfile) ## Export the fields snapshot snapshotfiles = [] for (component, compname) in [(meep.Ex, "Ex"), (meep.Ey, "Ey"), (meep.Ez, "Ez"), (meep.Hx, "Hx"), (meep.Hy, "Hy"), (meep.Hz, "Hz")]: snapshotfiles.append("%s/snapshot_%s_t%e.h5" % (self.outputdir, compname, now)) snapshotfile = meep.prepareHDF5File(snapshotfiles[-1]) self.field.output_hdf5(component, self.volume, snapshotfile, 1) del(snapshotfile) ## Convert the files for Mayavi2; join E-fields and H-fields components into vector fields run_bash("h5tovtk %s.h5 -o %s.vtk" % (structure_filename, structure_filename)) run_bash("h5tovtk %s -t 0 -o %s/t%0.3e_Evec.vtk" % (" ".join(snapshotfiles[:3]), self.outputdir, now)) ## todo: use path.join run_bash("h5tovtk %s -t 0 -o %s/t%0.3e_Hvec.vtk" % (" ".join(snapshotfiles[3:]), self.outputdir, now)) # (Note: the -t parameter selects real part only) #}}} class SliceMaker(): #{{{ """ Saves the field vectors from a slice to a HDF5 file during the simulation. The slice may be specified either by two-dimensional meep.volume() object, or by a normal ("x", "y" or "z") and the slice position on this normal. After simulation ends, the data are exported as GIF animation and 3D VTK file. Optionally, you may disable these output formats and/or enable output to many many PNG files or to a 3D HDF file. This function unfortunately requires command-line tools from Linux system. """ def __init__(self, field=None, component=meep.Ex, timebounds=(0, np.inf), timestep=0, volume=None, normal=None, position=None, model=None, pad=0, outputdir="", name=None, outputPNGs=False, outputGIF=True, outputHDF=False, outputVTK=False): """ """ self.field = field self.outputdir = outputdir self.component = component self.timebounds = timebounds self.timestep = timestep self.outputPNGs = outputPNGs self.outputGIF = outputGIF self.outputHDF = outputHDF self.outputVTK = outputVTK if volume: self.volume = volume meep.master_printf("Will record slices at times %.3g, %.3g ... %.3g s \n" % (timebounds[0], timebounds[0]+timestep, timebounds[1])) else: #if not position: #raise RuntimeError("Specify the position of the cut plane (on the axis perpendicular to it)") if normal=="x": self.volume = meep.volume( meep.vec(position, -model.size_y/2+pad, -model.size_z/2+pad), meep.vec(position, model.size_y/2-pad, model.size_z/2-pad)) elif normal=="y": self.volume = meep.volume( meep.vec(-model.size_x/2+pad, position, -model.size_z/2+pad), meep.vec(model.size_x/2-pad, position, model.size_z/2-pad)) elif normal=="z": self.volume = meep.volume( meep.vec(-model.size_x/2+pad, -model.size_y/2+pad, position), meep.vec(model.size_x/2-pad, model.size_y/2-pad, position)) #else: #print normal #raise RuntimeError("Specify the normal parameter as 'x', 'y' or 'z'") meep.master_printf("Will record slices at %s=%.3g m, at times %g, %g ... %g s \n" \ % (normal, position, timebounds[0], timebounds[0]+timestep, timebounds[1])) self.outputdir = outputdir if not name: if not position or not normal: self.name = "SliceByVolume" else: self.name = "Slice_%s%.3e" % (normal, position) else: self.name = name self.images_number = 0 self.last_slice_time = 0. #slices=[] #slices.append({"name":"Ex_xz_slice", "component":meep.Ex, "geom": if not os.path.exists(outputdir): run_bash("mkdir -p %s" % outputdir, anyprocess=True) self.openfile = meep.prepareHDF5File("%s.h5" % (os.path.join(self.outputdir, self.name))) def poll(self, now): """ Check if the now has come to add a new slice """ if (now-self.last_slice_time > self.timestep) and (now > self.timebounds[0]) and (now < self.timebounds[1]): self.images_number += 1 self.field.output_hdf5(self.component, self.volume, self.openfile, 1) self.last_slice_time = now def finalize(self): #run_bash("cd %s; rm *png" % outputdir) meep.master_printf("\n\nImages to gif\n") del(self.openfile) if self.outputGIF or self.outputPNGs: run_bash("cd %s; h5topng -t 0:%d -R -Zc dkbluered -a yarg %s.h5 -S 1" % (self.outputdir, self.images_number-1, self.name)) if self.outputGIF: run_bash("cd %s; convert -compress None -delay 10 *png %s.gif" % (self.outputdir, self.name)) if self.outputGIF and not self.outputPNGs: run_bash("cd %s; rm %s*.png" % (self.outputdir, self.name)) if self.outputVTK: run_bash("cd %s; h5tovtk %s.h5 -o %s.vtk" % (self.outputdir, self.name, self.name)) if not self.outputHDF: run_bash("cd %s; rm %s.h5" % (self.outputdir, self.name)) #}}} ## Print the progress and estimated time class Timer():#{{{ def __init__(self, simtime): self.starttime = time.time() self.simtime = simtime meep.master_printf("\tSimulation time: %e [s] = %e time units\n" % (simtime, simtime*c)) self.reporttimes = [.001, .01, 0.03] + [t/10. for t in range(1,9)] + [2.] def get_time(self): return time.time()-self.starttime def print_progress(self, now): if now/self.simtime > self.reporttimes[0]: meep.master_printf("Progress %.2f of expected total %d s\n" % \ (now / self.simtime, (self.simtime / now * self.get_time()))) self.reporttimes[0:1] = [] #}}} def notify(title, run_time=None):#{{{ """ Shows a bubble with notification that your results are about to be ready! Requires python-notify installed, otherwise just quits Note: you may also use similar call with libnotify-bin from your bash scripts: run_bash('notify-send -t 3000 -i "face-glasses" "MEEP simulation finished %s" "%s"' % (timestring, title)) """ if meep.my_rank() != 0: return try: if run_time: timestring = "in %d s" % int(run_time) else: timestring = "" import pynotify pynotify.init("image") n = pynotify.Notification("MEEP simulation finished %s" % (timestring), title, "face-glasses") n.show() except: pass #}}} ## Obtain and process the s-parameters of the structure (works for both time- and freq-domain) def get_s_parameters(monitor1_Ex, monitor1_Hy, monitor2_Ex, monitor2_Hy, frequency_domain=False, frequency=None, pad_zeros=0.0, maxf=np.inf, minf=0, Kx=0, Ky=0): """ Returns the frequency, s11 (reflection) and s12 (transmission) in frequency domain """#{{{ ## TODO allow omitting second monitor (-> returns s12=None) t, Ex1 = monitor1_Ex.get_waveforms() t, Hy1 = monitor1_Hy.get_waveforms() t, Ex2 = monitor2_Ex.get_waveforms() t, Hy2 = monitor2_Hy.get_waveforms() ## Hann-window fade-out to suppress spectral leakage if not frequency_domain: for field in (Ex1, Hy1, Ex2, Hy2 ): field[t>max(t)*.8] = field[t>max(t)*.8]*(.5 + .5*np.cos(np.pi * (t[t>max(t)*.8]/max(t)-.8)/(1-.8))) try: import matplotlib #matplotlib.use('Agg') ## Enable plotting even in the GNU screen session? from matplotlib import pyplot as plt plt.figure(figsize=(6,5)) #matplotlib.rc('text', usetex=True) #matplotlib.rc('font', size=8) #matplotlib.rc('text.latex', preamble = \ #'\usepackage{amsmath}, \usepackage{yfonts}, \usepackage{txfonts}, \usepackage{lmodern},') plt.plot(t, abs(Ex1), label="Ex1") plt.plot(t, abs(Hy1), label="Hy1") plt.plot(t, abs(Ex2), label="Ex2") plt.plot(t, abs(Hy2), label="Hy2") np.savetxt("timedomain_Ex1_Kx%f.dat"%Kx, zip(t, Ex1), fmt="%.8e") np.savetxt("timedomain_Ex2_Kx%f.dat"%Kx, zip(t, Ex2), fmt="%.8e") #plt.ylim(1, 1e6) plt.gca().set_ylim(ymin=1e-10) plt.legend(prop={'size':10}, loc='upper right') plt.xlabel('Time'); plt.ylabel('Field amplitudes, $|E|$, $|H|$') #plt.title('Time-domain field amplitudes') plt.yscale("log") plt.savefig("sim_timedomain_debug.png", bbox_inches='tight') except: print "Timedomain plot failed" ## Obtain the electric and magnetic fields spectra if frequency_domain: ## No need for FFT in frequency domain, just copy the value freq = np.array([frequency]) (Ex1f, Hy1f, Ex2f, Hy2f) = (Ex1, Hy1, Ex2, Hy2) else: ## Optionally extend the data range by zeros (for stable eff param retrieval) target_len = 2**np.ceil(np.log(len(Ex1)*(1+pad_zeros))/np.log(2)) ## must be power of two for efficient FFT! append_len = target_len - len(Ex1) print 'target_len,append_len',target_len,append_len #def pad(arr, length): #appended = np.zeros(int(length*len(arr))) # * np.exp(- np.arange(0, len(, #return np.append(arr, appended) if pad_zeros: #Ex1, Hy1, Ex2, Hy2 = map(lambda x: pad(x, pad_zeros), (Ex1, Hy1, Ex2, Hy2)) Ex1, Hy1, Ex2, Hy2 = map(lambda x: np.append(x, np.zeros(append_len)), (Ex1, Hy1, Ex2, Hy2)) print "app" ## Calculate the Fourier transform of the recorded time-domain waves numpoints = len(Ex1) #fftfreq(signal.size, Sample spacing.[d]) Return the Discrete Fourier Transform sample frequencies. freq = np.arange(0., int(numpoints/2)) / numpoints / (t[1]-t[0]) # take positive frequency range only ## TODO use np.fft.fftfreq() instead ## TODO Positive frequency range should be separated just by truncation below, as 'minf => 0' print "freq x" #fftshift(x[, axes]) Shift the zero-frequency component to the center of the spectrum. (Ex1f, Hy1f, Ex2f, Hy2f) = map(lambda x: np.fft.fft(np.real(x))[0:int(numpoints/2)], (Ex1, Hy1, Ex2, Hy2)) print "fft" ## Truncate the data ranges to allowed radiating angles, and possibly to minf<freq<maxf truncated = np.logical_and((Ky**2+Kx**2)<(2*np.pi*freq/c)**2, freq>minf, freq<maxf) (Ex1f, Hy1f, Ex2f, Hy2f, freq) = map(lambda x: x[truncated], (Ex1f, Hy1f, Ex2f, Hy2f, freq)) print "trunc" ## Prepare the angles at which the wave propagates (dependent on frequency, Kx and Ky) #rho = np.arcsin(Kx / (2*np.pi*freq/c)) TODO beta0 = np.arcsin((Kx**2+Ky**2)**.5 / (2*np.pi*freq/c)) #print 'beta0', beta0 ## Separate the forward and backward wave in frequency domain ## (Efield+Hfield)/2 -> forward wave amplitude, ## (Efield-Hfield)/2 -> backward wave amplitude #in1, out1 = (Ex1f+Hy1f)/2, (Ex1f-Hy1f)/2 ## old: works only for perp. incidence beta0=0 #in2, out2 = (Ex2f-Hy2f)/2, (Ex2f+Hy2f)/2 in1, out1 = (Ex1f+Hy1f/np.cos(beta0))/2, (Ex1f-Hy1f/np.cos(beta0))/2 in2, out2 = (Ex2f-Hy2f/np.cos(beta0))/2, (Ex2f+Hy2f/np.cos(beta0))/2 ## Todo optimize cos(arcsin x ) = sqrt(1-x**2) print "sep" ## TEMPORARY Plot spectral profile try: plt.figure(figsize=(4,3)) plt.plot(freq, abs(in1), label="in1") plt.plot(freq, abs(out1), label="out1") plt.plot(freq, abs(in2), label="in2") plt.plot(freq, abs(out2), label="out2") plt.xlim(0, 1e12) plt.legend(prop={'size':10}, loc='lower left') plt.xlabel('Frequency'); plt.ylabel('Transmitted amplitude') #plt.title('Frequency-domain wave amplitudes') plt.yscale("log") plt.savefig("sim_ampli_debug_band.png", bbox_inches='tight') except: print "Frequency-domain plot failed" ## Check if PML works well (optional) #meep.master_printf("PML reflection max: %.4e" % max(in2 / in1)) ## Get the s-parameters s11 = out1 / in1 s12 = out2 / in1 ## Return the S-parameters (i. e. complex reflection and transmission) return freq, s11, s12 #}}} def get_phase(complex_data):#{{{ """ Unwraps and shifts the phase from Fourier transformation """ if len(complex_data) <= 1: return np.angle(complex_data) phase = np.unwrap(np.angle(complex_data)) center_phase = phase[min(5, len(phase)-1)] ## 5 is chosen to avoid zero freq. return phase-(round(center_phase/2/np.pi)*2*np.pi) #}}} class AmplitudeMonitorPlane():#{{{ """ Calculates an average of electric field and perpendicular magnetic field. I asked for a similar field-averaging function built in MEEP, but it seems not to be implemented yet. http://www.mail-archive.com/[email protected]/msg04447.html Note this implementation requires the planes are in vacuum (where impedance = 1.0) """ def __init__(self, comp=None, size_x=None, size_y=None, z_position=None, Kx=0, Ky=0): self.comp=comp self.size_x = size_x self.size_y = size_y self.z_position = z_position self.Kx = Kx self.Ky = Ky self.t = [] self.waveform = [] def average_field(self, field): """ Average field component in some plane, return amplitudes This function is ineffective - it should be implemented in C++ in meep itself 5x5 grid is usually optimal (no visible difference between 10x10 grid and 5x5 grid) TODO: This class implements a workaround for unavailable amplitude averaging in python-meep. This implementation is ineffective and inflexible, but one would have to edit the MEEP source otherwise. """ xcount, ycount = (2, 1) field_sum = 0 # The mode function has the form of an oblique plane wave #for x in [x0*self.size_x/xcount+(self.size_x/2/xcount)-self.size_x/2 for x0 in range(xcount)]: #for y in [y0*self.size_y/ycount+(self.size_y/2/ycount)-self.size_y/2 for y0 in range(ycount)]: #field_sum += (field.get_field(self.comp, meep.vec(x, y, self.z_position)) * #np.exp(1j*(self.Kx*x + self.Ky*y)) ) #return field_sum/(xcount*ycount) ## New way (removes explicit cycle, few percent faster) xr = [x0*self.size_x/xcount+(self.size_x/2/xcount)-self.size_x/2 for x0 in range(xcount)] yr = [y0*self.size_y/ycount+(self.size_y/2/ycount)-self.size_y/2 for y0 in range(ycount)] xm, ym = np.meshgrid(xr,yr) points = zip(xm.flatten(), ym.flatten()) sum_ = sum(map(lambda pos: field.get_field(self.comp, meep.vec(pos[0], pos[1], self.z_position)), points)) return sum_/(xcount*ycount) ## Yet newer way #xr = [x0*self.size_x/xcount+(self.size_x/2/xcount)-self.size_x/2 for x0 in range(xcount)] #yr = [x0*self.size_x/xcount+(self.size_x/2/xcount)-self.size_x/2 for x0 in range(xcount)] #xm, ym = np.meshgrid(xr,yr) #v = meep.vec(0,0, self.z_position) #points = zip(xm.flatten(), ym.flatten()) #sum_ = sum(map(lambda pos: _meep_mpi.fields_get_field(field, self.comp, v), points)) #sum_ = sum(map(lambda pos: _meep_mpi.fields_get_field(field, self.comp, _meep_mpi.new_vec(0,0,0)), points)) #cp =self.comp #zp = self.z_position #sum_ = sum(map(lambda pos: _meep_mpi.fields_get_field(field, cp, _meep_mpi.new_vec(pos[0], pos[1], zp)), points)) #return sum_/(xcount*ycount) #def NEW_average_field_xy_plane(field, component, zpos, model): ## TODO use the internal integration of fields by MEEP # TODO rewrite: # (fields &f, linear_integrand_data &d, const volume &v, component cgrid) # f.integrate(0, 0, linear_integrand, (void *) &d, v) #integrate(meep::fields *,int,meep::component const *,meep::field_function,void *,meep::volume const &,double *) #v = meep.volume( #meep.vec(-model.size_x/2, -model.size_y/2, -model.size_z/2+model.pml_thickness), #meep.vec(model.size_x/2, model.size_y/2, -model.size_z/2+model.pml_thickness)) #return field.integrate(1, [component], meep.one_vec, [], v) #Possible C/C++ prototypes are: #meep::fields::integrate(int,meep::component const *,meep::field_function,void *,meep::volume const &,double *) #meep::fields::integrate(int,meep::component const *,meep::field_function,void *,meep::volume const &) #meep::fields::integrate(int,meep::component const *,meep::field_rfunction,void *,meep::volume const &,double *) #meep::fields::integrate(int,meep::component const *,meep::field_rfunction,void *,meep::volume const &) #fields::integrate(int num_fvals, const component *components, #field_function integrand, #void *integrand_data_, #const volume &where, #double *maxabs def record(self, field=None): """ Useful for time-domain simulation only """ self.t.append(field.time()/c) self.waveform.append(self.average_field(field)) def get_waveforms(self): """ Return the recorded waveform (in time domain) """ if len(self.t) <= 1: t, result_wform = np.array(self.t), np.array(self.waveform) else: t = np.array(self.t[:-1]) ## The FDTD calculation introduces half-step time shift between Ex and Hy. Compensated by averaging the Hy field ## with its value in a next timestep. The error is reduced from O1 to O2. ## See http://ab-initio.mit.edu/wiki/index.php/Synchronizing_the_magnetic_and_electric_fields if meep.is_magnetic(self.comp) or meep.is_B(self.comp): result_wform = np.array(self.waveform[:-1])/2. + np.array(self.waveform[1:])/2. else: result_wform = np.array(self.waveform[:-1]) return t, result_wform ## time, ## TODO this will have to be modified in order to account for oblique incidence ## TODO take into account the medium impedance (... divide the Hfield) #}}} class AmplitudeMonitorPoint(AmplitudeMonitorPlane):#{{{ """ Calculates an average of electric field and perpendicular magnetic field. I asked for a similar field-averaging function built in MEEP, but it seems not to be implemented yet. http://www.mail-archive.com/[email protected]/msg04447.html Note this implementation requires the planes are in vacuum (where impedance = 1.0) """ def __init__(self, Ecomp=None, Hcomp=None, pos=None): self.Ecomp=Ecomp self.Hcomp=Hcomp self.pos = pos ## where to record the field self.t = [] self.Efield = [] self.Hfield = [] def get_amplitude(self, field, component): """ Record field in some point. No averaging here, but (inherited) time recording is pretty useful. """ #count = 5 #field_sum = 0 #for x in [x0*self.size_x/count+(self.size_x/2/count)-self.size_x/2 for x0 in range(count)]: #for y in [y0*self.size_y/count+(self.size_y/2/count)-self.size_y/2 for y0 in range(count)]: #field_sum += field.get_field(component, meep.vec(x, y, self.z_position)) return field.get_field(component, self.pos) #}}} def savetxt(name="output.dat", freq=None, s11=None, s12=None, model=None, polar_notation=True): #{{{ """ Saves the s-parameters to a file including comments """ with open(model.simulation_name+".dat", "w") as outfile: outfile.write("#Parameters Parameters\n") outfile.write("#param layer_thickness[m],%.6e\n" % (model.monitor_z2 - model.monitor_z1 - 2*model.padding)) if "interesting_frequencies" in dir(model): interest_freq = model.interesting_frequencies else: interest_freq = (0, model.srcFreq+model.srcWidth) outfile.write("#param plot_freq_min[Hz],%.3e\n" % interest_freq[0]) outfile.write("#param plot_freq_max[Hz],%.3e\n" % interest_freq[1]) outfile.write("#param simulation_orig_name,%s\n" % model.simulation_name) outfile.write(model.parameterstring) if polar_notation: ## Convert to polar notation s11amp, s12amp, s11phase, s12phase = abs(s11), abs(s12), get_phase(s11), get_phase(s12) ## Save polar outfile.write("#x-column Frequency [Hz]\n#Column Reflection amplitude\n#Column Reflection phase\n" + \ "#Column Transmission amplitude\n#Column Transmission phase\n") np.savetxt(outfile, zip(freq, s11amp, s11phase, s12amp, s12phase), fmt="%.8e") else: ## Save cartesian # TODO should save in such format that PKGraph understands complex values outfile.write("#x-column Frequency [Hz]\n#Column Reflection Re\n#Column Reflection Im\n" + \ "#Column Transmission Re\n#Column Transmission Im\n") np.savetxt(outfile, zip(freq, s11.real, s11.imag, s12.real, s12.imag), fmt="%.8e") #}}} def get_simulation_name(argindex=1): #{{{ """Get the name of the last simulation run. Priority: 1) parameter, 2) last_simulation_name.txt, 3) working directory""" cwd = os.getcwd() if len(sys.argv)>argindex and sys.argv[argindex] != "-" and __name__ == "__main__": print "Parameter passed:", sys.argv[argindex] last_simulation_name = sys.argv[argindex] elif os.path.exists(os.path.join(cwd, 'last_simulation_name.txt')): print "Loading from", os.path.join(cwd, 'last_simulation_name.txt') last_simulation_name = os.path.join(cwd, open(os.path.join(cwd, 'last_simulation_name.txt'),'r').read().strip()) else: print "Error: No input file provided and 'last_simulation_name.txt' not found!" last_simulation_name = cwd if (last_simulation_name[-4:] == ".dat"): last_simulation_name = last_simulation_name[:-4] # strip the .dat extension return last_simulation_name #}}} def load_rt(filename, layer_thickness=None, plot_freq_min=None, plot_freq_max=None, truncate=True): #{{{ """ Loads the reflection and transmission spectra and simulation settings Returns: * frequency axis * reflection s11 and transmission s12 as complex np arrays Compatible with the PKGraph text data file with polar data: * parameters in header like: #param name,value * column identification like: #column Ydata * data columns in ascii separated by space Expects polar data with columns: frequency, s11 ampli, s11 phase, s12 ampli, s12 phase """ with open(filename+'.dat') as datafile: for line in datafile: if line[0:1] in "0123456789": break # end of file header value = line.replace(",", " ").split()[-1] # the value of the parameter will be separated by space or comma if ("layer_thickness" in line) and (layer_thickness == None): d = float(value) if ("plot_freq_min" in line) and (plot_freq_min == None): plot_freq_min = float(value) if ("plot_freq_max" in line) and (plot_freq_max == None): plot_freq_max = float(value) xlim = (plot_freq_min, plot_freq_max) (freq, s11amp, s11phase, s12amp, s12phase) = \ map(lambda a: np.array(a, ndmin=1), np.loadtxt(filename+".dat", unpack=True)) ## Limit the frequency range to what will be plotted (recommended) #TODO better: #truncated = np.logical_and(freq>minf, freq<maxf) #(a, b, c, freq) = map(lambda x: x[truncated], (a, b, c, freq)) if truncate: (d0,d1) = np.interp((plot_freq_min, plot_freq_max), freq, range(len(freq))) (freq, s11amp, s11phase, s12amp, s12phase) = \ map(lambda a: a[int(d0):int(d1)], (freq, s11amp, s11phase, s12amp, s12phase)) return freq, s11amp, s11phase, s12amp, s12phase, xlim, (d, plot_freq_min, plot_freq_min) #}}}
mit
mmaelicke/scikit-gstat
skgstat/DirectionalVariogram.py
1
29843
""" Directional Variogram """ import numpy as np from scipy.spatial.distance import pdist from .Variogram import Variogram from skgstat import plotting from .MetricSpace import MetricSpace, MetricSpacePair class DirectionalVariogram(Variogram): """DirectionalVariogram Class Calculates a variogram of the separating distances in the given coordinates and relates them to one of the semi-variance measures of the given dependent values. The direcitonal version of a Variogram will only form paris of points that share a specified spatial relationship. """ def __init__(self, coordinates=None, values=None, estimator='matheron', model='spherical', dist_func='euclidean', bin_func='even', normalize=False, fit_method='trf', fit_sigma=None, directional_model='triangle', azimuth=0, tolerance=45.0, bandwidth='q33', use_nugget=False, maxlag=None, n_lags=10, verbose=False, **kwargs ): r"""Variogram Class Directional Variogram. The calculation is not performant and not tested yet. Parameters ---------- coordinates : numpy.ndarray Array of shape (m, n). Will be used as m observation points of n-dimensions. This variogram can be calculated on 1 - n dimensional coordinates. In case a 1-dimensional array is passed, a second array of same length containing only zeros will be stacked to the passed one. values : numpy.ndarray Array of values observed at the given coordinates. The length of the values array has to match the m dimension of the coordinates array. Will be used to calculate the dependent variable of the variogram. estimator : str, callable String identifying the semi-variance estimator to be used. Defaults to the Matheron estimator. Possible values are: * matheron [Matheron, default] * cressie [Cressie-Hawkins] * dowd [Dowd-Estimator] * genton [Genton] * minmax [MinMax Scaler] * entropy [Shannon Entropy] If a callable is passed, it has to accept an array of absoulte differences, aligned to the 1D distance matrix (flattened upper triangle) and return a scalar, that converges towards small values for similarity (high covariance). model : str String identifying the theoretical variogram function to be used to describe the experimental variogram. Can be one of: * spherical [Spherical, default] * exponential [Exponential] * gaussian [Gaussian] * cubic [Cubic] * stable [Stable model] * matern [Matérn model] * nugget [nugget effect variogram] dist_func : str String identifying the distance function. Defaults to 'euclidean'. Can be any metric accepted by scipy.spatial.distance.pdist. Additional parameters are not (yet) passed through to pdist. These are accepted by pdist for some of the metrics. In these cases the default values are used. bin_func : str .. versionchanged:: 0.3.8 added 'fd', 'sturges', 'scott', 'sqrt', 'doane' String identifying the binning function used to find lag class edges. All methods calculate bin edges on the interval [0, maxlag[. Possible values are: * `'even'` (default) finds `n_lags` same width bins * `'uniform'` forms `n_lags` bins of same data count * `'fd'` applies Freedman-Diaconis estimator to find `n_lags` * `'sturges'` applies Sturge's rule to find `n_lags`. * `'scott'` applies Scott's rule to find `n_lags` * `'doane'` applies Doane's extension to Sturge's rule to find `n_lags` * `'sqrt'` uses the square-root of :func:`distance <skgstat.Variogram.distance>`. as `n_lags`. More details are given in the documentation for :func:`set_bin_func <skgstat.Variogram.set_bin_func>`. normalize : bool Defaults to False. If True, the independent and dependent variable will be normalized to the range [0,1]. fit_method : str String identifying the method to be used for fitting the theoretical variogram function to the experimental. More info is given in the Variogram.fit docs. Can be one of: * 'lm': Levenberg-Marquardt algorithm for unconstrained problems. This is the faster algorithm, yet is the fitting of a variogram not unconstrianed. * 'trf': Trust Region Reflective function for non-linear constrained problems. The class will set the boundaries itself. This is the default function. fit_sigma : numpy.ndarray, str Defaults to None. The sigma is used as measure of uncertainty during variogram fit. If fit_sigma is an array, it has to hold n_lags elements, giving the uncertainty for all lags classes. If fit_sigma is None (default), it will give no weight to any lag. Higher values indicate higher uncertainty and will lower the influcence of the corresponding lag class for the fit. If fit_sigma is a string, a pre-defined function of separating distance will be used to fill the array. Can be one of: * 'linear': Linear loss with distance. Small bins will have higher impact. * 'exp': The weights decrease by a e-function of distance * 'sqrt': The weights decrease by the squareroot of distance * 'sq': The weights decrease by the squared distance. More info is given in the Variogram.fit_sigma documentation. directional_model : string, function The model used for selecting all points fulfilling the directional constraint of the Variogram. A predefined model can be selected by passing the model name as string. Optionally a callable accepting the difference vectors between points in polar form as angles and distances and returning a mask array can be passed. In this case, the azimuth, tolerance and bandwidth has to be incorporated by hand into the model. * 'compass': includes points in the direction of the azimuth at given tolerance. The bandwidth parameter will be ignored. * 'triangle': constructs a triangle with an angle of tolerance at the point of interest and union an rectangle parallel to azimuth, once the hypotenuse length reaches bandwidth. * 'circle': constructs a half circle touching the point of interest, dislocating the center at the distance of bandwidth in the direction of azimuth. The half circle is union with an rectangle parallel to azimuth. Visual representations, usage hints and implementation specifics are given in the documentation. azimuth : float The azimuth of the directional dependence for this Variogram, given as an angle in **degree**. The East of the coordinate plane is set to be at 0° and is counted clockwise to 180° and counter-clockwise to -180°. Only Points lying in the azimuth of a specific point will be used for forming point pairs. tolerance : float The tolerance is given as an angle in **degree**- Points being dislocated from the exact azimuth by half the tolerance will be accepted as well. It's half the tolerance as the point may be dislocated in the positive and negative direction from the azimuth. bandwidth : float Maximum tolerance acceptable in **coordinate units**, which is usually meter. Points at higher distances may be far dislocated from the azimuth in terms of coordinate distance, as the tolerance is defined as an angle. THe bandwidth defines a maximum width for the search window. It will be perpendicular to and bisected by the azimuth. use_nugget : bool Defaults to False. If True, a nugget effet will be added to all Variogram.models as a third (or fourth) fitting parameter. A nugget is essentially the y-axis interception of the theoretical variogram function. maxlag : float, str Can specify the maximum lag distance directly by giving a value larger than 1. The binning function will not find any lag class with an edge larger than maxlag. If 0 < maxlag < 1, then maxlag is relative and maxlag * max(Variogram.distance) will be used. In case maxlag is a string it has to be one of 'median', 'mean'. Then the median or mean of all Variogram.distance will be used. Note maxlag=0.5 will use half the maximum separating distance, this is not the same as 'median', which is the median of all separating distances n_lags : int Specify the number of lag classes to be defined by the binning function. verbose : bool Set the Verbosity of the class. Not Implemented yet. Keyword Arguments ----------------- entropy_bins : int, str .. versionadded:: 0.3.7 If the `estimator <skgstat.Variogram.estimator>` is set to `'entropy'` this argument sets the number of bins, that should be used for histogram calculation. percentile : int .. versionadded:: 0.3.7 If the `estimator <skgstat.Variogram.estimator>` is set to `'entropy'` this argument sets the percentile to be used. """ # Before we do anything else, make kwargs available self._kwargs = self._validate_kwargs(**kwargs) # FIXME: Call __init__ of baseclass? # No, because the sequence at which the arguments get initialized # does matter. There is way too much transitive dependence, thus # it was easiest to copy the init over. self._direction_mask_cache = None if not isinstance(coordinates, MetricSpace): coordinates = np.asarray(coordinates) coordinates = MetricSpace(coordinates.copy(), dist_func) # FIXME: Currently _direction_mask / _angles / _euclidean_dist don't get correctly calculated for sparse dspaces # coordinates = MetricSpace(coordinates.copy(), dist_func, maxlag if maxlag and not isinstance(maxlag, str) and maxlag >= 1 else None) else: assert self.dist_func == coordinates.dist_metric, "Distance metric of variogram differs from distance metric of coordinates" assert coordinates.max_dist is None # Set coordinates self._X = coordinates # pairwise difference self._diff = None # set verbosity self.verbose = verbose # set values self._values = None # calc_diff = False here, because it will be calculated by fit() later self.set_values(values=values, calc_diff=False) # distance matrix self._dist = None # set distance calculation function self._dist_func_name = None self.set_dist_function(func=dist_func) # Angles and euclidean distances used for direction mask calculation self._angles = None self._euclidean_dist = None # lags and max lag self.n_lags = n_lags self._maxlag = None self.maxlag = maxlag # estimator can be function or a string self._estimator = None self.set_estimator(estimator_name=estimator) # model can be function or a string self._model = None self.set_model(model_name=model) # azimuth direction self._azimuth = None self.azimuth = azimuth # azimuth tolerance self._tolerance = None self.tolerance = tolerance # tolerance bandwidth self._bandwidth = None self.bandwidth = bandwidth # set the directional model self._directional_model = None self.set_directional_model(model_name=directional_model) # the binning settings self._bin_func = None self._groups = None self._bins = None self.set_bin_func(bin_func=bin_func) # specify if the lag should be given absolute or relative to the maxlag self._normalized = normalize # set the fitting method and sigma array self.fit_method = fit_method self._fit_sigma = None self.fit_sigma = fit_sigma # set if nugget effect shall be used self.use_nugget = use_nugget # set attributes to be filled during calculation self.cov = None self.cof = None # settings, not reachable by init (not yet) self._cache_experimental = False # do the preprocessing and fitting upon initialization # Note that fit() calls preprocessing self.fit(force=True) def preprocessing(self, force=False): self._calc_direction_mask_data(force) self._calc_diff(force=force) self._calc_groups(force=force) def _calc_direction_mask_data(self, force=False): r""" Calculate directional mask data. For this, the angle between the vector between the two points, and east (see comment about self.azimuth) is calculated. The result is stored in self._angles and contains the angle of each point pair vector to the x-axis in radians. Parameters ---------- force : bool If True, a new calculation of all angles is forced, even if they are already in the cache. Notes ----- The masked data is in radias, while azimuth is given in degrees. For the Vector between a point pair A,B :math:`\overrightarrow{AB}=u` and the x-axis, represented by vector :math:`\overrightarrow{e} = [1,0]`, the angle :math:`\Theta` is calculated like: .. math:: cos(\Theta) = \frac{u \circ e}{|e| \cdot |[1,0]|} See Also -------- `azimuth <skgstat.DirectionalVariogram.azimuth>`_ """ # FIXME: This should be optimized for the sparse case (range << bbox(coordinates)), # i.e. use the MetricSpace in self._X # check if already calculated if self._angles is not None and not force: return # if self.coordinates is of just one dimension, concat zeros. if self.coordinates.ndim == 1: _x = np.vstack(zip(self.coordinates, np.zeros(len(self.coordinates)))) elif self.coordinates.ndim == 2: _x = self.coordinates else: raise NotImplementedError('N-dimensional coordinates cannot be handled') # for angles, we need Euklidean distance, # no matter which distance function is used # if self._dist_func_name == "euclidean": # self._euclidean_dist = scipy.spatial.distance.squareform(self.distance_matrix) # else: self._euclidean_dist = pdist(_x, "euclidean") # Calculate the angles # (a - b).[1,0] = ||a - b|| * ||[1,0]|| * cos(v) # cos(v) = (a - b).[1,0] / ||a - b|| # cos(v) = (a.[1,0] - b.[1,0]) / ||a - b|| scalar = pdist(np.array([np.dot(_x, [1, 0])]).T, np.subtract) pos_angles = np.arccos(scalar / self._euclidean_dist) # cos(v) for [2,1] and [2, -1] is the same, # but v is not (v vs -v), fix that. ydiff = pdist(np.array([np.dot(_x, [0, 1])]).T, np.subtract) # store the angle or negative angle, depending on the # amount of the x coordinate self._angles = np.where(ydiff >= 0, pos_angles, -pos_angles) @property def azimuth(self): """Direction azimuth Main direction for te selection of points in the formation of point pairs. East of the coordinate plane is defined to be 0° and then the azimuth is set clockwise up to 180°and count-clockwise to -180°. Parameters ---------- angle : float New azimuth angle in **degree**. Raises ------ ValueError : in case angle < -180° or angle > 180 """ return self._azimuth @azimuth.setter def azimuth(self, angle): if angle < -180 or angle > 180: raise ValueError('The azimuth is an angle in degree and has to ' 'meet -180 <= angle <= 180') else: self._azimuth = angle # reset groups and mask cache on azimuth change self._direction_mask_cache = None self._groups = None @property def tolerance(self): """Azimuth tolerance Tolerance angle of how far a point can be off the azimuth for being still counted as directional. A tolerance angle will be applied to the azimuth angle symmetrically. Parameters ---------- angle : float New tolerance angle in **degree**. Has to meet 0 <= angle <= 360. Raises ------ ValueError : in case angle < 0 or angle > 360 """ return self._tolerance @tolerance.setter def tolerance(self, angle): if angle < 0 or angle > 360: raise ValueError('The tolerance is an angle in degree and has to ' 'meet 0 <= angle <= 360') else: self._tolerance = angle # reset groups and mask on tolerance change self._direction_mask_cache = None self._groups = None @property def bandwidth(self): """Tolerance bandwidth New bandwidth parameter. As the tolerance from azimuth is given as an angle, point pairs at high distances can be far off the azimuth in coordinate distance. The bandwidth limits this distance and has the unnit of the coordinate system. Parameters ---------- width : float Positive coordinate distance. Raises ------ ValueError : in case width is negative """ if self._bandwidth is None: return 0 else: return self._bandwidth @bandwidth.setter def bandwidth(self, width): # check if quantiles is given if isinstance(width, str): # TODO document and handle more exceptions q = int(width[1:]) self._bandwidth = np.percentile(self.distance, q) elif width < 0: raise ValueError('The bandwidth cannot be negative.') elif width > np.max(self.distance): print('The bandwidth is larger than the maximum separating ' 'distance. Thus it will have no effect.') else: self._bandwidth = width # reset groups and direction mask cache on bandwidth change self._direction_mask_cache = None self._groups = None def set_directional_model(self, model_name): """Set new directional model The model used for selecting all points fulfilling the directional constraint of the Variogram. A predefined model can be selected by passing the model name as string. Optionally a callable accepting the difference vectors between points in polar form as angles and distances and returning a mask array can be passed. In this case, the azimuth, tolerance and bandwidth has to be incorporated by hand into the model. The predefined options are: * 'compass': includes points in the direction of the azimuth at given tolerance. The bandwidth parameter will be ignored. * 'triangle': constructs a triangle with an angle of tolerance at the point of interest and union an rectangle parallel to azimuth, once the hypotenuse length reaches bandwidth. * 'circle': constructs a half circle touching the point of interest, dislocating the center at the distance of bandwidth in the direction of azimuth. The half circle is union with an rectangle parallel to azimuth. Visual representations, usage hints and implementation specifics are given in the documentation. Parameters ---------- model_name : string, callable The name of the predefined model (string) or a function that accepts angle and distance arrays and returns a mask array. """ # handle predefined models if isinstance(model_name, str): if model_name.lower() == 'compass': self._directional_model = self._compass elif model_name.lower() == 'triangle': self._directional_model = self._triangle elif model_name.lower() == 'circle': self._directional_model = self._circle else: raise ValueError('%s is not a valid model.' % model_name) # handle callable elif callable(model_name): self._directional_model = model_name else: raise ValueError('The directional model has to be identified by a ' 'model name, or it has to be the search area ' 'itself') # reset the groups as the directional model changed self._groups = None @property def bins(self): if self._bins is None: # get the distances d = self.distance.copy() d[np.where(~self._direction_mask())] = np.nan self._bins, n = self.bin_func(d, self._n_lags, self.maxlag) # if the binning function returned an N, the n_lags need # to be adjusted directly (not through the setter) if n is not None: self._n_lags = n return self._bins.copy() def to_gstools(self, *args, **kwargs): raise NotImplementedError( "Exporting DirectinalVariogram is currently not supported." ) def _calc_groups(self, force=False): super(DirectionalVariogram, self)._calc_groups(force=force) # set to outside maxlag group self._groups[np.where(~self._direction_mask())] = -1 # @jit def _direction_mask(self, force=False): """Directional Mask Array aligned to self.distance masking all point pairs which shall be ignored for binning and grouping. The one dimensional array contains all row-wise point pair combinations from the upper or lower triangle of the distance matrix in case either of both is directional. Returns ------- mask : numpy.array Array aligned to self.distance giving for each point pair combination a boolean value whether the point are directional or not. """ if force or self._direction_mask_cache is None: self._direction_mask_cache = self._directional_model(self._angles, self._euclidean_dist) return self._direction_mask_cache def pair_field(self, ax=None, cmap="gist_rainbow", points='all', add_points=True, alpha=0.3, **kwargs): # pragma: no cover """ Plot a pair field. Plot a network graph for all point pairs that fulfill the direction filter and lie within each others search area. Parameters ---------- ax : matplotlib.Subplot A matplotlib Axes object to plot the pair field onto. If ``None``, a new new matplotlib figure will be created. cmap : string Any color-map name that is supported by matplotlib points : 'all', int, list If not ``'all'``, only the given coordinate (int) or list of coordinates (list) will be plotted. Recommended, if the input data is quite large. add_points : bool If True (default) The coordinates will be added as black points. alpha : float Alpha value for the colors to make overlapping vertices visualize better. Defaults to ``0.3``. """ # get the backend used_backend = plotting.backend() if used_backend == 'matplotlib': return plotting.matplotlib_pair_field(self, ax=ax, cmap=cmap, points=points, add_points=add_points, alpha=alpha, **kwargs) elif used_backend == 'plotly': return plotting.plotly_pair_field(self, fig=ax, points=points, add_points=add_points, alpha=alpha, **kwargs) def _triangle(self, angles, dists): r"""Triangular Search Area Construct a triangular bounded search area for building directional dependent point pairs. The Search Area will be located onto the current point of interest and the local x-axis is rotated onto the azimuth angle. Parameters ---------- angles, dists : numpy.array Vectors between point pairs in polar form (angle relative to east in radians, length in coordinate space units) Returns ------- mask : numpy.array(bool) Point pair mask, indexed as the results of scipy.spatial.distance.pdist are. Notes ----- .. code-block:: text C /|\ a / | \ a /__|h_\ A c B The point of interest is C and c is the bandwidth. The angle at C (gamma) is the tolerance. From this, a and then h can be calculated. When rotated into the local coordinate system, the two points needed to build the search area A,B are A := (h, 1/2 c) and B:= (h, -1/2 c) a can be calculated like: .. math:: a = \frac{c}{2 * sin\left(\frac{\gamma}{2}\right)} See Also -------- DirectionalVariogram._compass DirectionalVariogram._circle """ absdiff = np.abs(angles + np.radians(self.azimuth)) absdiff = np.where(absdiff > np.pi, absdiff - np.pi, absdiff) absdiff = np.where(absdiff > np.pi / 2, np.pi - absdiff, absdiff) in_tol = absdiff <= np.radians(self.tolerance / 2) in_band = self.bandwidth / 2 >= np.abs(dists * np.sin(np.abs(angles + np.radians(self.azimuth)))) return in_tol & in_band def _circle(self, angles, dists): r"""Circular Search Area Construct a half-circled bounded search area for building directional dependent point pairs. The Search Area will be located onto the current point of interest and the local x-axis is rotated onto the azimuth angle. The radius of the half-circle is set to half the bandwidth. Parameters ---------- angles, dists : numpy.array Vectors between point pairs in polar form (angle relative to east in radians, length in coordinate space units) Returns ------- mask : numpy.array(bool) Point pair mask, indexed as the results of scipy.spatial.distance.pdist are. Raises ------ ValueError : In case the DirectionalVariogram.bandwidth is None or 0. See Also -------- DirectionalVariogram._triangle DirectionalVariogram._compass """ raise NotImplementedError def _compass(self, angles, dists): r"""Compass direction direction mask Construct a search area for building directional dependent point pairs. The compass search area will **not** be bounded by the bandwidth. It will include all point pairs at the azimuth direction with a given tolerance. The Search Area will be located onto the current point of interest and the local x-axis is rotated onto the azimuth angle. Parameters ---------- angles, dists : numpy.array Vectors between point pairs in polar form (angle relative to east in radians, length in coordinate space units) Returns ------- mask : numpy.array(bool) Point pair mask, indexed as the results of scipy.spatial.distance.pdist are. See Also -------- DirectionalVariogram._triangle DirectionalVariogram._circle """ absdiff = np.abs(angles + np.radians(self.azimuth)) absdiff = np.where(absdiff > np.pi, absdiff - np.pi, absdiff) absdiff = np.where(absdiff > np.pi / 2, np.pi - absdiff, absdiff) return absdiff <= np.radians(self.tolerance / 2)
mit
pavanvidem/tools-iuc
tools/vsnp/vsnp_build_tables.py
12
14719
#!/usr/bin/env python import argparse import os import re import pandas import pandas.io.formats.excel from Bio import SeqIO # Maximum columns allowed in a LibreOffice # spreadsheet is 1024. Excel allows for # 16,384 columns, but we'll set the lower # number as the maximum. Some browsers # (e.g., Firefox on Linux) are configured # to use LibreOffice for Excel spreadsheets. MAXCOLS = 1024 OUTPUT_EXCEL_DIR = 'output_excel_dir' def annotate_table(table_df, group, annotation_dict): for gbk_chrome, pro in list(annotation_dict.items()): ref_pos = list(table_df) ref_series = pandas.Series(ref_pos) ref_df = pandas.DataFrame(ref_series.str.split(':', expand=True).values, columns=['reference', 'position']) all_ref = ref_df[ref_df['reference'] == gbk_chrome] positions = all_ref.position.to_frame() # Create an annotation file. annotation_file = "%s_annotations.csv" % group with open(annotation_file, "a") as fh: for _, row in positions.iterrows(): pos = row.position try: aaa = pro.iloc[pro.index.get_loc(int(pos))][['chrom', 'locus', 'product', 'gene']] try: chrom, name, locus, tag = aaa.values[0] print("{}:{}\t{}, {}, {}".format(chrom, pos, locus, tag, name), file=fh) except ValueError: # If only one annotation for the entire # chromosome (e.g., flu) then having [0] fails chrom, name, locus, tag = aaa.values print("{}:{}\t{}, {}, {}".format(chrom, pos, locus, tag, name), file=fh) except KeyError: print("{}:{}\tNo annotated product".format(gbk_chrome, pos), file=fh) # Read the annotation file into a data frame. annotations_df = pandas.read_csv(annotation_file, sep='\t', header=None, names=['index', 'annotations'], index_col='index') # Remove the annotation_file from disk since both # cascade and sort tables are built using the file, # and it is opened for writing in append mode. os.remove(annotation_file) # Process the data. table_df_transposed = table_df.T table_df_transposed.index = table_df_transposed.index.rename('index') table_df_transposed = table_df_transposed.merge(annotations_df, left_index=True, right_index=True) table_df = table_df_transposed.T return table_df def excel_formatter(json_file_name, excel_file_name, group, annotation_dict): pandas.io.formats.excel.header_style = None table_df = pandas.read_json(json_file_name, orient='split') if annotation_dict is not None: table_df = annotate_table(table_df, group, annotation_dict) else: table_df = table_df.append(pandas.Series(name='no annotations')) writer = pandas.ExcelWriter(excel_file_name, engine='xlsxwriter') table_df.to_excel(writer, sheet_name='Sheet1') writer_book = writer.book ws = writer.sheets['Sheet1'] format_a = writer_book.add_format({'bg_color': '#58FA82'}) format_g = writer_book.add_format({'bg_color': '#F7FE2E'}) format_c = writer_book.add_format({'bg_color': '#0000FF'}) format_t = writer_book.add_format({'bg_color': '#FF0000'}) format_normal = writer_book.add_format({'bg_color': '#FDFEFE'}) formatlowqual = writer_book.add_format({'font_color': '#C70039', 'bg_color': '#E2CFDD'}) format_ambigous = writer_book.add_format({'font_color': '#C70039', 'bg_color': '#E2CFDD'}) format_n = writer_book.add_format({'bg_color': '#E2CFDD'}) rows, cols = table_df.shape ws.set_column(0, 0, 30) ws.set_column(1, cols, 2.1) ws.freeze_panes(2, 1) format_annotation = writer_book.add_format({'font_color': '#0A028C', 'rotation': '-90', 'align': 'top'}) # Set last row. ws.set_row(rows + 1, cols + 1, format_annotation) # Make sure that row/column locations don't overlap. ws.conditional_format(rows - 2, 1, rows - 1, cols, {'type': 'cell', 'criteria': '<', 'value': 55, 'format': formatlowqual}) ws.conditional_format(2, 1, rows - 2, cols, {'type': 'cell', 'criteria': '==', 'value': 'B$2', 'format': format_normal}) ws.conditional_format(2, 1, rows - 2, cols, {'type': 'text', 'criteria': 'containing', 'value': 'A', 'format': format_a}) ws.conditional_format(2, 1, rows - 2, cols, {'type': 'text', 'criteria': 'containing', 'value': 'G', 'format': format_g}) ws.conditional_format(2, 1, rows - 2, cols, {'type': 'text', 'criteria': 'containing', 'value': 'C', 'format': format_c}) ws.conditional_format(2, 1, rows - 2, cols, {'type': 'text', 'criteria': 'containing', 'value': 'T', 'format': format_t}) ws.conditional_format(2, 1, rows - 2, cols, {'type': 'text', 'criteria': 'containing', 'value': 'S', 'format': format_ambigous}) ws.conditional_format(2, 1, rows - 2, cols, {'type': 'text', 'criteria': 'containing', 'value': 'Y', 'format': format_ambigous}) ws.conditional_format(2, 1, rows - 2, cols, {'type': 'text', 'criteria': 'containing', 'value': 'R', 'format': format_ambigous}) ws.conditional_format(2, 1, rows - 2, cols, {'type': 'text', 'criteria': 'containing', 'value': 'W', 'format': format_ambigous}) ws.conditional_format(2, 1, rows - 2, cols, {'type': 'text', 'criteria': 'containing', 'value': 'K', 'format': format_ambigous}) ws.conditional_format(2, 1, rows - 2, cols, {'type': 'text', 'criteria': 'containing', 'value': 'M', 'format': format_ambigous}) ws.conditional_format(2, 1, rows - 2, cols, {'type': 'text', 'criteria': 'containing', 'value': 'N', 'format': format_n}) ws.conditional_format(2, 1, rows - 2, cols, {'type': 'text', 'criteria': 'containing', 'value': '-', 'format': format_n}) format_rotation = writer_book.add_format({}) format_rotation.set_rotation(90) for column_num, column_name in enumerate(list(table_df.columns)): ws.write(0, column_num + 1, column_name, format_rotation) format_annotation = writer_book.add_format({'font_color': '#0A028C', 'rotation': '-90', 'align': 'top'}) # Set last row. ws.set_row(rows, 400, format_annotation) writer.save() def get_annotation_dict(gbk_file): gbk_dict = SeqIO.to_dict(SeqIO.parse(gbk_file, "genbank")) annotation_dict = {} tmp_file = "features.csv" # Create a file of chromosomes and features. for chromosome in list(gbk_dict.keys()): with open(tmp_file, 'w+') as fh: for feature in gbk_dict[chromosome].features: if "CDS" in feature.type or "rRNA" in feature.type: try: product = feature.qualifiers['product'][0] except KeyError: product = None try: locus = feature.qualifiers['locus_tag'][0] except KeyError: locus = None try: gene = feature.qualifiers['gene'][0] except KeyError: gene = None fh.write("%s\t%d\t%d\t%s\t%s\t%s\n" % (chromosome, int(feature.location.start), int(feature.location.end), locus, product, gene)) # Read the chromosomes and features file into a data frame. df = pandas.read_csv(tmp_file, sep='\t', names=["chrom", "start", "stop", "locus", "product", "gene"]) # Process the data. df = df.sort_values(['start', 'gene'], ascending=[True, False]) df = df.drop_duplicates('start') pro = df.reset_index(drop=True) pro.index = pandas.IntervalIndex.from_arrays(pro['start'], pro['stop'], closed='both') annotation_dict[chromosome] = pro return annotation_dict def get_sample_name(file_path): base_file_name = os.path.basename(file_path) if base_file_name.find(".") > 0: # Eliminate the extension. return os.path.splitext(base_file_name)[0] return base_file_name def output_cascade_table(cascade_order, mqdf, group, annotation_dict): cascade_order_mq = pandas.concat([cascade_order, mqdf], join='inner') output_table(cascade_order_mq, "cascade", group, annotation_dict) def output_excel(df, type_str, group, annotation_dict, count=None): # Output the temporary json file that # is used by the excel_formatter. if count is None: if group is None: json_file_name = os.path.join(OUTPUT_EXCEL_DIR, "%s_order_mq.json" % type_str) excel_file_name = os.path.join(OUTPUT_EXCEL_DIR, "%s_table.xlsx" % type_str) else: json_file_name = os.path.join(OUTPUT_EXCEL_DIR, "%s_%s_order_mq.json" % (group, type_str)) excel_file_name = os.path.join(OUTPUT_EXCEL_DIR, "%s_%s_table.xlsx" % (group, type_str)) else: # The table has more columns than is allowed by the # MAXCOLS setting, so multiple files will be produced # as an output collection. if group is None: json_file_name = os.path.join(OUTPUT_EXCEL_DIR, "%s_order_mq_%d.json" % (type_str, count)) excel_file_name = os.path.join(OUTPUT_EXCEL_DIR, "%s_table_%d.xlsx" % (type_str, count)) else: json_file_name = os.path.join(OUTPUT_EXCEL_DIR, "%s_%s_order_mq_%d.json" % (group, type_str, count)) excel_file_name = os.path.join(OUTPUT_EXCEL_DIR, "%s_%s_table_%d.xlsx" % (group, type_str, count)) df.to_json(json_file_name, orient='split') # Output the Excel file. excel_formatter(json_file_name, excel_file_name, group, annotation_dict) def output_sort_table(cascade_order, mqdf, group, annotation_dict): sort_df = cascade_order.T sort_df['abs_value'] = sort_df.index sort_df[['chrom', 'pos']] = sort_df['abs_value'].str.split(':', expand=True) sort_df = sort_df.drop(['abs_value', 'chrom'], axis=1) sort_df.pos = sort_df.pos.astype(int) sort_df = sort_df.sort_values(by=['pos']) sort_df = sort_df.drop(['pos'], axis=1) sort_df = sort_df.T sort_order_mq = pandas.concat([sort_df, mqdf], join='inner') output_table(sort_order_mq, "sort", group, annotation_dict) def output_table(df, type_str, group, annotation_dict): if isinstance(group, str) and group.startswith("dataset"): # Inputs are single files, not collections, # so input file names are not useful for naming # output files. group_str = None else: group_str = group count = 0 chunk_start = 0 chunk_end = 0 column_count = df.shape[1] if column_count >= MAXCOLS: # Here the number of columns is greater than # the maximum allowed by Excel, so multiple # outputs will be produced. while column_count >= MAXCOLS: count += 1 chunk_end += MAXCOLS df_of_type = df.iloc[:, chunk_start:chunk_end] output_excel(df_of_type, type_str, group_str, annotation_dict, count=count) chunk_start += MAXCOLS column_count -= MAXCOLS count += 1 df_of_type = df.iloc[:, chunk_start:] output_excel(df_of_type, type_str, group_str, annotation_dict, count=count) else: output_excel(df, type_str, group_str, annotation_dict) def preprocess_tables(newick_file, json_file, json_avg_mq_file, annotation_dict): avg_mq_series = pandas.read_json(json_avg_mq_file, typ='series', orient='split') # Map quality to dataframe. mqdf = avg_mq_series.to_frame(name='MQ') mqdf = mqdf.T # Get the group. group = get_sample_name(newick_file) snps_df = pandas.read_json(json_file, orient='split') with open(newick_file, 'r') as fh: for line in fh: line = re.sub('[:,]', '\n', line) line = re.sub('[)(]', '', line) line = re.sub(r'[0-9].*\.[0-9].*\n', '', line) line = re.sub('root\n', '', line) sample_order = line.split('\n') sample_order = list([_f for _f in sample_order if _f]) sample_order.insert(0, 'root') tree_order = snps_df.loc[sample_order] # Count number of SNPs in each column. snp_per_column = [] for column_header in tree_order: count = 0 column = tree_order[column_header] for element in column: if element != column[0]: count = count + 1 snp_per_column.append(count) row1 = pandas.Series(snp_per_column, tree_order.columns, name="snp_per_column") # Count number of SNPS from the # top of each column in the table. snp_from_top = [] for column_header in tree_order: count = 0 column = tree_order[column_header] # for each element in the column # skip the first element for element in column[1:]: if element == column[0]: count = count + 1 else: break snp_from_top.append(count) row2 = pandas.Series(snp_from_top, tree_order.columns, name="snp_from_top") tree_order = tree_order.append([row1]) tree_order = tree_order.append([row2]) # In pandas=0.18.1 even this does not work: # abc = row1.to_frame() # abc = abc.T --> tree_order.shape (5, 18), abc.shape (1, 18) # tree_order.append(abc) # Continue to get error: "*** ValueError: all the input arrays must have same number of dimensions" tree_order = tree_order.T tree_order = tree_order.sort_values(['snp_from_top', 'snp_per_column'], ascending=[True, False]) tree_order = tree_order.T # Remove snp_per_column and snp_from_top rows. cascade_order = tree_order[:-2] # Output the cascade table. output_cascade_table(cascade_order, mqdf, group, annotation_dict) # Output the sorted table. output_sort_table(cascade_order, mqdf, group, annotation_dict) if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument('--gbk_file', action='store', dest='gbk_file', required=False, default=None, help='Optional gbk file'), parser.add_argument('--input_avg_mq_json', action='store', dest='input_avg_mq_json', help='Average MQ json file') parser.add_argument('--input_newick', action='store', dest='input_newick', help='Newick file') parser.add_argument('--input_snps_json', action='store', dest='input_snps_json', help='SNPs json file') args = parser.parse_args() if args.gbk_file is not None: # Create the annotation_dict for annotating # the Excel tables. annotation_dict = get_annotation_dict(args.gbk_file) else: annotation_dict = None preprocess_tables(args.input_newick, args.input_snps_json, args.input_avg_mq_json, annotation_dict)
mit
yipenggao/moose
modules/tensor_mechanics/doc/tests/cosserat_glide.py
13
1867
#!/usr/bin/env python import os import sys import numpy as np import matplotlib.pyplot as plt def expected(y): mu = 2.0 mu_c = 3.0 be = 0.6 bbb = 1.0 we = np.sqrt(2 * mu * mu_c / be / (mu + mu_c)) phi = bbb * np.sinh(we * y) u = 2 * mu_c * bbb * (1 - np.cosh(we * y)) / we / (mu + mu_c) m32 = 2 * bbb * be * we * np.cosh(we * y) si21 = -4 * mu * mu_c / (mu + mu_c) * bbb * np.sinh(we * y) return (phi, u, m32, si21) def glide(): f = open("../../tests/static_deformations/gold/cosserat_glide_out_soln_0001.csv") data = [map(float, line.strip().split(",")) for line in f.readlines()[1:12]] f.close() return data ypoints = np.arange(0, 1.05, 0.01) moosex = [0.1 * i for i in range(11)] moose = glide() plt.figure() plt.plot(ypoints, expected(ypoints)[0], 'k-', linewidth = 1.0, label = 'expected Cosserat rot') plt.plot(ypoints, expected(ypoints)[1], 'r-', linewidth = 1.0, label = 'expected displacement') plt.plot(moosex, [d[4] for d in moose], 'ks', markersize = 10.0, label = 'MOOSE Cosserat rot') plt.plot(moosex, [d[1] for d in moose], 'r^', markersize = 10.0, label = 'MOOSE displacement') plt.legend(loc = 'center right') plt.xlabel("y (m)") plt.ylabel("displacement (m)") plt.title("Cosserat glide") plt.savefig("cosserat_glide_disp.pdf") plt.figure() plt.plot(ypoints, expected(ypoints)[2], 'k-', linewidth = 1.0, label = 'expected couple stress') plt.plot(ypoints, expected(ypoints)[3], 'r-', linewidth = 1.0, label = 'expected shear stress') plt.plot(moosex, [d[0] for d in moose], 'ks', markersize = 10.0, label = 'MOOSE couple stress') plt.plot(moosex, [d[3] for d in moose], 'r^', markersize = 10.0, label = 'MOOSE shear stress') plt.legend(loc = 'center right') plt.xlabel("y (m)") plt.ylabel("stress (Pa)") plt.title("Cosserat glide") plt.savefig("cosserat_glide_stress.pdf") sys.exit(0)
lgpl-2.1
moutai/scikit-learn
sklearn/cluster/spectral.py
25
18522
# -*- coding: utf-8 -*- """Algorithms for spectral clustering""" # Author: Gael Varoquaux [email protected] # Brian Cheung # Wei LI <[email protected]> # License: BSD 3 clause import warnings import numpy as np from ..base import BaseEstimator, ClusterMixin from ..utils import check_random_state, as_float_array from ..utils.validation import check_array from ..utils.extmath import norm from ..metrics.pairwise import pairwise_kernels from ..neighbors import kneighbors_graph from ..manifold import spectral_embedding from .k_means_ import k_means def discretize(vectors, copy=True, max_svd_restarts=30, n_iter_max=20, random_state=None): """Search for a partition matrix (clustering) which is closest to the eigenvector embedding. Parameters ---------- vectors : array-like, shape: (n_samples, n_clusters) The embedding space of the samples. copy : boolean, optional, default: True Whether to copy vectors, or perform in-place normalization. max_svd_restarts : int, optional, default: 30 Maximum number of attempts to restart SVD if convergence fails n_iter_max : int, optional, default: 30 Maximum number of iterations to attempt in rotation and partition matrix search if machine precision convergence is not reached random_state: int seed, RandomState instance, or None (default) A pseudo random number generator used for the initialization of the of the rotation matrix Returns ------- labels : array of integers, shape: n_samples The labels of the clusters. References ---------- - Multiclass spectral clustering, 2003 Stella X. Yu, Jianbo Shi http://www1.icsi.berkeley.edu/~stellayu/publication/doc/2003kwayICCV.pdf Notes ----- The eigenvector embedding is used to iteratively search for the closest discrete partition. First, the eigenvector embedding is normalized to the space of partition matrices. An optimal discrete partition matrix closest to this normalized embedding multiplied by an initial rotation is calculated. Fixing this discrete partition matrix, an optimal rotation matrix is calculated. These two calculations are performed until convergence. The discrete partition matrix is returned as the clustering solution. Used in spectral clustering, this method tends to be faster and more robust to random initialization than k-means. """ from scipy.sparse import csc_matrix from scipy.linalg import LinAlgError random_state = check_random_state(random_state) vectors = as_float_array(vectors, copy=copy) eps = np.finfo(float).eps n_samples, n_components = vectors.shape # Normalize the eigenvectors to an equal length of a vector of ones. # Reorient the eigenvectors to point in the negative direction with respect # to the first element. This may have to do with constraining the # eigenvectors to lie in a specific quadrant to make the discretization # search easier. norm_ones = np.sqrt(n_samples) for i in range(vectors.shape[1]): vectors[:, i] = (vectors[:, i] / norm(vectors[:, i])) \ * norm_ones if vectors[0, i] != 0: vectors[:, i] = -1 * vectors[:, i] * np.sign(vectors[0, i]) # Normalize the rows of the eigenvectors. Samples should lie on the unit # hypersphere centered at the origin. This transforms the samples in the # embedding space to the space of partition matrices. vectors = vectors / np.sqrt((vectors ** 2).sum(axis=1))[:, np.newaxis] svd_restarts = 0 has_converged = False # If there is an exception we try to randomize and rerun SVD again # do this max_svd_restarts times. while (svd_restarts < max_svd_restarts) and not has_converged: # Initialize first column of rotation matrix with a row of the # eigenvectors rotation = np.zeros((n_components, n_components)) rotation[:, 0] = vectors[random_state.randint(n_samples), :].T # To initialize the rest of the rotation matrix, find the rows # of the eigenvectors that are as orthogonal to each other as # possible c = np.zeros(n_samples) for j in range(1, n_components): # Accumulate c to ensure row is as orthogonal as possible to # previous picks as well as current one c += np.abs(np.dot(vectors, rotation[:, j - 1])) rotation[:, j] = vectors[c.argmin(), :].T last_objective_value = 0.0 n_iter = 0 while not has_converged: n_iter += 1 t_discrete = np.dot(vectors, rotation) labels = t_discrete.argmax(axis=1) vectors_discrete = csc_matrix( (np.ones(len(labels)), (np.arange(0, n_samples), labels)), shape=(n_samples, n_components)) t_svd = vectors_discrete.T * vectors try: U, S, Vh = np.linalg.svd(t_svd) svd_restarts += 1 except LinAlgError: print("SVD did not converge, randomizing and trying again") break ncut_value = 2.0 * (n_samples - S.sum()) if ((abs(ncut_value - last_objective_value) < eps) or (n_iter > n_iter_max)): has_converged = True else: # otherwise calculate rotation and continue last_objective_value = ncut_value rotation = np.dot(Vh.T, U.T) if not has_converged: raise LinAlgError('SVD did not converge') return labels def spectral_clustering(affinity, n_clusters=8, n_components=None, eigen_solver=None, random_state=None, n_init=10, eigen_tol=0.0, assign_labels='kmeans'): """Apply clustering to a projection to the normalized laplacian. In practice Spectral Clustering is very useful when the structure of the individual clusters is highly non-convex or more generally when a measure of the center and spread of the cluster is not a suitable description of the complete cluster. For instance when clusters are nested circles on the 2D plan. If affinity is the adjacency matrix of a graph, this method can be used to find normalized graph cuts. Read more in the :ref:`User Guide <spectral_clustering>`. Parameters ----------- affinity : array-like or sparse matrix, shape: (n_samples, n_samples) The affinity matrix describing the relationship of the samples to embed. **Must be symmetric**. Possible examples: - adjacency matrix of a graph, - heat kernel of the pairwise distance matrix of the samples, - symmetric k-nearest neighbours connectivity matrix of the samples. n_clusters : integer, optional Number of clusters to extract. n_components : integer, optional, default is n_clusters Number of eigen vectors to use for the spectral embedding eigen_solver : {None, 'arpack', 'lobpcg', or 'amg'} The eigenvalue decomposition strategy to use. AMG requires pyamg to be installed. It can be faster on very large, sparse problems, but may also lead to instabilities random_state : int seed, RandomState instance, or None (default) A pseudo random number generator used for the initialization of the lobpcg eigen vectors decomposition when eigen_solver == 'amg' and by the K-Means initialization. n_init : int, optional, default: 10 Number of time the k-means algorithm will be run with different centroid seeds. The final results will be the best output of n_init consecutive runs in terms of inertia. eigen_tol : float, optional, default: 0.0 Stopping criterion for eigendecomposition of the Laplacian matrix when using arpack eigen_solver. assign_labels : {'kmeans', 'discretize'}, default: 'kmeans' The strategy to use to assign labels in the embedding space. There are two ways to assign labels after the laplacian embedding. k-means can be applied and is a popular choice. But it can also be sensitive to initialization. Discretization is another approach which is less sensitive to random initialization. See the 'Multiclass spectral clustering' paper referenced below for more details on the discretization approach. Returns ------- labels : array of integers, shape: n_samples The labels of the clusters. References ---------- - Normalized cuts and image segmentation, 2000 Jianbo Shi, Jitendra Malik http://citeseer.ist.psu.edu/viewdoc/summary?doi=10.1.1.160.2324 - A Tutorial on Spectral Clustering, 2007 Ulrike von Luxburg http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.165.9323 - Multiclass spectral clustering, 2003 Stella X. Yu, Jianbo Shi http://www1.icsi.berkeley.edu/~stellayu/publication/doc/2003kwayICCV.pdf Notes ------ The graph should contain only one connect component, elsewhere the results make little sense. This algorithm solves the normalized cut for k=2: it is a normalized spectral clustering. """ if assign_labels not in ('kmeans', 'discretize'): raise ValueError("The 'assign_labels' parameter should be " "'kmeans' or 'discretize', but '%s' was given" % assign_labels) random_state = check_random_state(random_state) n_components = n_clusters if n_components is None else n_components maps = spectral_embedding(affinity, n_components=n_components, eigen_solver=eigen_solver, random_state=random_state, eigen_tol=eigen_tol, drop_first=False) if assign_labels == 'kmeans': _, labels, _ = k_means(maps, n_clusters, random_state=random_state, n_init=n_init) else: labels = discretize(maps, random_state=random_state) return labels class SpectralClustering(BaseEstimator, ClusterMixin): """Apply clustering to a projection to the normalized laplacian. In practice Spectral Clustering is very useful when the structure of the individual clusters is highly non-convex or more generally when a measure of the center and spread of the cluster is not a suitable description of the complete cluster. For instance when clusters are nested circles on the 2D plan. If affinity is the adjacency matrix of a graph, this method can be used to find normalized graph cuts. When calling ``fit``, an affinity matrix is constructed using either kernel function such the Gaussian (aka RBF) kernel of the euclidean distanced ``d(X, X)``:: np.exp(-gamma * d(X,X) ** 2) or a k-nearest neighbors connectivity matrix. Alternatively, using ``precomputed``, a user-provided affinity matrix can be used. Read more in the :ref:`User Guide <spectral_clustering>`. Parameters ----------- n_clusters : integer, optional The dimension of the projection subspace. affinity : string, array-like or callable, default 'rbf' If a string, this may be one of 'nearest_neighbors', 'precomputed', 'rbf' or one of the kernels supported by `sklearn.metrics.pairwise_kernels`. Only kernels that produce similarity scores (non-negative values that increase with similarity) should be used. This property is not checked by the clustering algorithm. gamma : float Scaling factor of RBF, polynomial, exponential chi^2 and sigmoid affinity kernel. Ignored for ``affinity='nearest_neighbors'``. degree : float, default=3 Degree of the polynomial kernel. Ignored by other kernels. coef0 : float, default=1 Zero coefficient for polynomial and sigmoid kernels. Ignored by other kernels. n_neighbors : integer Number of neighbors to use when constructing the affinity matrix using the nearest neighbors method. Ignored for ``affinity='rbf'``. eigen_solver : {None, 'arpack', 'lobpcg', or 'amg'} The eigenvalue decomposition strategy to use. AMG requires pyamg to be installed. It can be faster on very large, sparse problems, but may also lead to instabilities random_state : int seed, RandomState instance, or None (default) A pseudo random number generator used for the initialization of the lobpcg eigen vectors decomposition when eigen_solver == 'amg' and by the K-Means initialization. n_init : int, optional, default: 10 Number of time the k-means algorithm will be run with different centroid seeds. The final results will be the best output of n_init consecutive runs in terms of inertia. eigen_tol : float, optional, default: 0.0 Stopping criterion for eigendecomposition of the Laplacian matrix when using arpack eigen_solver. assign_labels : {'kmeans', 'discretize'}, default: 'kmeans' The strategy to use to assign labels in the embedding space. There are two ways to assign labels after the laplacian embedding. k-means can be applied and is a popular choice. But it can also be sensitive to initialization. Discretization is another approach which is less sensitive to random initialization. kernel_params : dictionary of string to any, optional Parameters (keyword arguments) and values for kernel passed as callable object. Ignored by other kernels. n_jobs : int, optional (default = 1) The number of parallel jobs to run. If ``-1``, then the number of jobs is set to the number of CPU cores. Attributes ---------- affinity_matrix_ : array-like, shape (n_samples, n_samples) Affinity matrix used for clustering. Available only if after calling ``fit``. labels_ : Labels of each point Notes ----- If you have an affinity matrix, such as a distance matrix, for which 0 means identical elements, and high values means very dissimilar elements, it can be transformed in a similarity matrix that is well suited for the algorithm by applying the Gaussian (RBF, heat) kernel:: np.exp(- dist_matrix ** 2 / (2. * delta ** 2)) Where ``delta`` is a free parameter representing the width of the Gaussian kernel. Another alternative is to take a symmetric version of the k nearest neighbors connectivity matrix of the points. If the pyamg package is installed, it is used: this greatly speeds up computation. References ---------- - Normalized cuts and image segmentation, 2000 Jianbo Shi, Jitendra Malik http://citeseer.ist.psu.edu/viewdoc/summary?doi=10.1.1.160.2324 - A Tutorial on Spectral Clustering, 2007 Ulrike von Luxburg http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.165.9323 - Multiclass spectral clustering, 2003 Stella X. Yu, Jianbo Shi http://www1.icsi.berkeley.edu/~stellayu/publication/doc/2003kwayICCV.pdf """ def __init__(self, n_clusters=8, eigen_solver=None, random_state=None, n_init=10, gamma=1., affinity='rbf', n_neighbors=10, eigen_tol=0.0, assign_labels='kmeans', degree=3, coef0=1, kernel_params=None, n_jobs=1): self.n_clusters = n_clusters self.eigen_solver = eigen_solver self.random_state = random_state self.n_init = n_init self.gamma = gamma self.affinity = affinity self.n_neighbors = n_neighbors self.eigen_tol = eigen_tol self.assign_labels = assign_labels self.degree = degree self.coef0 = coef0 self.kernel_params = kernel_params self.n_jobs = n_jobs def fit(self, X, y=None): """Creates an affinity matrix for X using the selected affinity, then applies spectral clustering to this affinity matrix. Parameters ---------- X : array-like or sparse matrix, shape (n_samples, n_features) OR, if affinity==`precomputed`, a precomputed affinity matrix of shape (n_samples, n_samples) """ X = check_array(X, accept_sparse=['csr', 'csc', 'coo'], dtype=np.float64) if X.shape[0] == X.shape[1] and self.affinity != "precomputed": warnings.warn("The spectral clustering API has changed. ``fit``" "now constructs an affinity matrix from data. To use" " a custom affinity matrix, " "set ``affinity=precomputed``.") if self.affinity == 'nearest_neighbors': connectivity = kneighbors_graph(X, n_neighbors=self.n_neighbors, include_self=True, n_jobs=self.n_jobs) self.affinity_matrix_ = 0.5 * (connectivity + connectivity.T) elif self.affinity == 'precomputed': self.affinity_matrix_ = X else: params = self.kernel_params if params is None: params = {} if not callable(self.affinity): params['gamma'] = self.gamma params['degree'] = self.degree params['coef0'] = self.coef0 self.affinity_matrix_ = pairwise_kernels(X, metric=self.affinity, filter_params=True, **params) random_state = check_random_state(self.random_state) self.labels_ = spectral_clustering(self.affinity_matrix_, n_clusters=self.n_clusters, eigen_solver=self.eigen_solver, random_state=random_state, n_init=self.n_init, eigen_tol=self.eigen_tol, assign_labels=self.assign_labels) return self @property def _pairwise(self): return self.affinity == "precomputed"
bsd-3-clause
abimannans/scikit-learn
examples/gaussian_process/plot_gp_regression.py
253
4054
#!/usr/bin/python # -*- coding: utf-8 -*- r""" ========================================================= Gaussian Processes regression: basic introductory example ========================================================= A simple one-dimensional regression exercise computed in two different ways: 1. A noise-free case with a cubic correlation model 2. A noisy case with a squared Euclidean correlation model In both cases, the model parameters are estimated using the maximum likelihood principle. The figures illustrate the interpolating property of the Gaussian Process model as well as its probabilistic nature in the form of a pointwise 95% confidence interval. Note that the parameter ``nugget`` is applied as a Tikhonov regularization of the assumed covariance between the training points. In the special case of the squared euclidean correlation model, nugget is mathematically equivalent to a normalized variance: That is .. math:: \mathrm{nugget}_i = \left[\frac{\sigma_i}{y_i}\right]^2 """ print(__doc__) # Author: Vincent Dubourg <[email protected]> # Jake Vanderplas <[email protected]> # Licence: BSD 3 clause import numpy as np from sklearn.gaussian_process import GaussianProcess from matplotlib import pyplot as pl np.random.seed(1) def f(x): """The function to predict.""" return x * np.sin(x) #---------------------------------------------------------------------- # First the noiseless case X = np.atleast_2d([1., 3., 5., 6., 7., 8.]).T # Observations y = f(X).ravel() # Mesh the input space for evaluations of the real function, the prediction and # its MSE x = np.atleast_2d(np.linspace(0, 10, 1000)).T # Instanciate a Gaussian Process model gp = GaussianProcess(corr='cubic', theta0=1e-2, thetaL=1e-4, thetaU=1e-1, random_start=100) # Fit to data using Maximum Likelihood Estimation of the parameters gp.fit(X, y) # Make the prediction on the meshed x-axis (ask for MSE as well) y_pred, MSE = gp.predict(x, eval_MSE=True) sigma = np.sqrt(MSE) # Plot the function, the prediction and the 95% confidence interval based on # the MSE fig = pl.figure() pl.plot(x, f(x), 'r:', label=u'$f(x) = x\,\sin(x)$') pl.plot(X, y, 'r.', markersize=10, label=u'Observations') pl.plot(x, y_pred, 'b-', label=u'Prediction') pl.fill(np.concatenate([x, x[::-1]]), np.concatenate([y_pred - 1.9600 * sigma, (y_pred + 1.9600 * sigma)[::-1]]), alpha=.5, fc='b', ec='None', label='95% confidence interval') pl.xlabel('$x$') pl.ylabel('$f(x)$') pl.ylim(-10, 20) pl.legend(loc='upper left') #---------------------------------------------------------------------- # now the noisy case X = np.linspace(0.1, 9.9, 20) X = np.atleast_2d(X).T # Observations and noise y = f(X).ravel() dy = 0.5 + 1.0 * np.random.random(y.shape) noise = np.random.normal(0, dy) y += noise # Mesh the input space for evaluations of the real function, the prediction and # its MSE x = np.atleast_2d(np.linspace(0, 10, 1000)).T # Instanciate a Gaussian Process model gp = GaussianProcess(corr='squared_exponential', theta0=1e-1, thetaL=1e-3, thetaU=1, nugget=(dy / y) ** 2, random_start=100) # Fit to data using Maximum Likelihood Estimation of the parameters gp.fit(X, y) # Make the prediction on the meshed x-axis (ask for MSE as well) y_pred, MSE = gp.predict(x, eval_MSE=True) sigma = np.sqrt(MSE) # Plot the function, the prediction and the 95% confidence interval based on # the MSE fig = pl.figure() pl.plot(x, f(x), 'r:', label=u'$f(x) = x\,\sin(x)$') pl.errorbar(X.ravel(), y, dy, fmt='r.', markersize=10, label=u'Observations') pl.plot(x, y_pred, 'b-', label=u'Prediction') pl.fill(np.concatenate([x, x[::-1]]), np.concatenate([y_pred - 1.9600 * sigma, (y_pred + 1.9600 * sigma)[::-1]]), alpha=.5, fc='b', ec='None', label='95% confidence interval') pl.xlabel('$x$') pl.ylabel('$f(x)$') pl.ylim(-10, 20) pl.legend(loc='upper left') pl.show()
bsd-3-clause
FBRTMaka/ooi-ui-services
ooiservices/app/uframe/windrose.py
5
20440
#!/usr/bin/env python # -*- coding: utf-8 -*- __version__ = '1.4' __author__ = 'Lionel Roubeyrie' __mail__ = '[email protected]' __license__ = 'CeCILL-B' import matplotlib import matplotlib.cm as cm import numpy as np from matplotlib.patches import Rectangle, Polygon from matplotlib.ticker import ScalarFormatter, AutoLocator from matplotlib.text import Text, FontProperties from matplotlib.projections.polar import PolarAxes from numpy.lib.twodim_base import histogram2d import matplotlib.pyplot as plt from pylab import poly_between RESOLUTION = 100 ZBASE = -1000 #The starting zorder for all drawing, negative to have the grid on class WindroseAxes(PolarAxes): """ Create a windrose axes """ def __init__(self, *args, **kwargs): """ See Axes base class for args and kwargs documentation """ #Uncomment to have the possibility to change the resolution directly #when the instance is created #self.RESOLUTION = kwargs.pop('resolution', 100) PolarAxes.__init__(self, *args, **kwargs) self.set_aspect('equal', adjustable='box', anchor='C') self.radii_angle = 67.5 self.cla() def cla(self): """ Clear the current axes """ PolarAxes.cla(self) self.theta_angles = np.arange(0, 360, 45) self.theta_labels = ['E', 'N-E', 'N', 'N-W', 'W', 'S-W', 'S', 'S-E'] self.set_thetagrids(angles=self.theta_angles, labels=self.theta_labels) self._info = {'dir' : list(), 'bins' : list(), 'table' : list()} self.patches_list = list() def _colors(self, cmap, n): ''' Returns a list of n colors based on the colormap cmap ''' return [cmap(i) for i in np.linspace(0.2, 1.0, n)] def set_radii_angle(self, **kwargs): """ Set the radii labels angle """ null = kwargs.pop('labels', None) angle = kwargs.pop('angle', None) if angle is None: angle = self.radii_angle self.radii_angle = angle radii = np.linspace(0.1, self.get_rmax(), 6) radii_labels = ["%.1f%%" % r for r in radii] radii_labels[0] = "" #Removing label 0 null = self.set_rgrids(radii=radii, labels=radii_labels, angle=self.radii_angle, **kwargs) def _update(self): self.set_rmax(rmax=np.max(np.sum(self._info['table'], axis=0))) self.set_radii_angle(angle=self.radii_angle) def legend(self, loc='lower left', **kwargs): """ Sets the legend location and her properties. The location codes are 'best' : 0, 'upper right' : 1, 'upper left' : 2, 'lower left' : 3, 'lower right' : 4, 'right' : 5, 'center left' : 6, 'center right' : 7, 'lower center' : 8, 'upper center' : 9, 'center' : 10, If none of these are suitable, loc can be a 2-tuple giving x,y in axes coords, ie, loc = (0, 1) is left top loc = (0.5, 0.5) is center, center and so on. The following kwargs are supported: isaxes=True # whether this is an axes legend prop = FontProperties(size='smaller') # the font property pad = 0.2 # the fractional whitespace inside the legend border shadow # if True, draw a shadow behind legend labelsep = 0.005 # the vertical space between the legend entries handlelen = 0.05 # the length of the legend lines handletextsep = 0.02 # the space between the legend line and legend text axespad = 0.02 # the border between the axes and legend edge """ def get_handles(): handles = list() for p in self.patches_list: if isinstance(p, matplotlib.patches.Polygon) or \ isinstance(p, matplotlib.patches.Rectangle): color = p.get_facecolor() elif isinstance(p, matplotlib.lines.Line2D): color = p.get_color() else: raise AttributeError("Can't handle patches") handles.append(Rectangle((0, 0), 0.2, 0.2, facecolor=color, edgecolor='black')) return handles def get_labels(): labels = np.copy(self._info['bins']) labels = ["[%.1f : %0.1f]" %(labels[i], labels[i+1]) \ for i in range(len(labels)-1)] return labels null = kwargs.pop('labels', None) null = kwargs.pop('handles', None) handles = get_handles() labels = get_labels() self.legend_ = matplotlib.legend.Legend(self, handles, labels, loc, **kwargs) return self.legend_ def _init_plot(self, dir, var, **kwargs): """ Internal method used by all plotting commands """ #self.cla() null = kwargs.pop('zorder', None) #Init of the bins array if not set bins = kwargs.pop('bins', None) if bins is None: bins = np.linspace(np.min(var), np.max(var), 6) if isinstance(bins, int): bins = np.linspace(np.min(var), np.max(var), bins) bins = np.asarray(bins) nbins = len(bins) #Number of sectors nsector = kwargs.pop('nsector', None) if nsector is None: nsector = 16 #Sets the colors table based on the colormap or the "colors" argument colors = kwargs.pop('colors', None) cmap = kwargs.pop('cmap', None) if colors is not None: if isinstance(colors, str): colors = [colors]*nbins if isinstance(colors, (tuple, list)): if len(colors) != nbins: raise ValueError("colors and bins must have same length") else: if cmap is None: cmap = cm.jet colors = self._colors(cmap, nbins) #Building the angles list angles = np.arange(0, -2*np.pi, -2*np.pi/nsector) + np.pi/2 normed = kwargs.pop('normed', False) blowto = kwargs.pop('blowto', False) #Set the global information dictionnary self._info['dir'], self._info['bins'], self._info['table'] = histogram(dir, var, bins, nsector, normed, blowto) return bins, nbins, nsector, colors, angles, kwargs def contour(self, dir, var, **kwargs): """ Plot a windrose in linear mode. For each var bins, a line will be draw on the axes, a segment between each sector (center to center). Each line can be formated (color, width, ...) like with standard plot pylab command. Mandatory: * dir : 1D array - directions the wind blows from, North centred * var : 1D array - values of the variable to compute. Typically the wind speeds Optional: * nsector: integer - number of sectors used to compute the windrose table. If not set, nsectors=16, then each sector will be 360/16=22.5°, and the resulting computed table will be aligned with the cardinals points. * bins : 1D array or integer- number of bins, or a sequence of bins variable. If not set, bins=6, then bins=linspace(min(var), max(var), 6) * blowto : bool. If True, the windrose will be pi rotated, to show where the wind blow to (usefull for pollutant rose). * colors : string or tuple - one string color ('k' or 'black'), in this case all bins will be plotted in this color; a tuple of matplotlib color args (string, float, rgb, etc), different levels will be plotted in different colors in the order specified. * cmap : a cm Colormap instance from matplotlib.cm. - if cmap == None and colors == None, a default Colormap is used. others kwargs : see help(pylab.plot) """ bins, nbins, nsector, colors, angles, kwargs = self._init_plot(dir, var, **kwargs) #closing lines angles = np.hstack((angles, angles[-1]-2*np.pi/nsector)) vals = np.hstack((self._info['table'], np.reshape(self._info['table'][:,0], (self._info['table'].shape[0], 1)))) offset = 0 for i in range(nbins): val = vals[i,:] + offset offset += vals[i, :] zorder = ZBASE + nbins - i patch = self.plot(angles, val, color=colors[i], zorder=zorder, **kwargs) self.patches_list.extend(patch) self._update() def contourf2(self, dir, var, **kwargs): """ Plot a windrose in filled mode. For each var bins, a line will be draw on the axes, a segment between each sector (center to center). Each line can be formated (color, width, ...) like with standard plot pylab command. Mandatory: * dir : 1D array - directions the wind blows from, North centred * var : 1D array - values of the variable to compute. Typically the wind speeds Optional: * nsector: integer - number of sectors used to compute the windrose table. If not set, nsectors=16, then each sector will be 360/16=22.5°, and the resulting computed table will be aligned with the cardinals points. * bins : 1D array or integer- number of bins, or a sequence of bins variable. If not set, bins=6, then bins=linspace(min(var), max(var), 6) * blowto : bool. If True, the windrose will be pi rotated, to show where the wind blow to (usefull for pollutant rose). * colors : string or tuple - one string color ('k' or 'black'), in this case all bins will be plotted in this color; a tuple of matplotlib color args (string, float, rgb, etc), different levels will be plotted in different colors in the order specified. * cmap : a cm Colormap instance from matplotlib.cm. - if cmap == None and colors == None, a default Colormap is used. others kwargs : see help(pylab.plot) """ bins, nbins, nsector, colors, angles, kwargs = self._init_plot(dir, var, **kwargs) null = kwargs.pop('facecolor', None) null = kwargs.pop('edgecolor', None) #closing lines angles = np.hstack((angles, angles[-1]-2*np.pi/nsector)) vals = np.hstack((self._info['table'], np.reshape(self._info['table'][:,0], (self._info['table'].shape[0], 1)))) offset = 0 for i in range(nbins): val = vals[i,:] + offset offset += vals[i, :] zorder = ZBASE + nbins - i xs, ys = poly_between(angles, 0, val) patch = self.fill(xs, ys, facecolor=colors[i], edgecolor=colors[i], zorder=zorder, **kwargs) self.patches_list.extend(patch) def bar(self, dir, var, **kwargs): """ Plot a windrose in bar mode. For each var bins and for each sector, a colored bar will be draw on the axes. Mandatory: * dir : 1D array - directions the wind blows from, North centred * var : 1D array - values of the variable to compute. Typically the wind speeds Optional: * nsector: integer - number of sectors used to compute the windrose table. If not set, nsectors=16, then each sector will be 360/16=22.5°, and the resulting computed table will be aligned with the cardinals points. * bins : 1D array or integer- number of bins, or a sequence of bins variable. If not set, bins=6 between min(var) and max(var). * blowto : bool. If True, the windrose will be pi rotated, to show where the wind blow to (usefull for pollutant rose). * colors : string or tuple - one string color ('k' or 'black'), in this case all bins will be plotted in this color; a tuple of matplotlib color args (string, float, rgb, etc), different levels will be plotted in different colors in the order specified. * cmap : a cm Colormap instance from matplotlib.cm. - if cmap == None and colors == None, a default Colormap is used. edgecolor : string - The string color each edge bar will be plotted. Default : no edgecolor * opening : float - between 0.0 and 1.0, to control the space between each sector (1.0 for no space) """ bins, nbins, nsector, colors, angles, kwargs = self._init_plot(dir, var, **kwargs) null = kwargs.pop('facecolor', None) edgecolor = kwargs.pop('edgecolor', None) if edgecolor is not None: if not isinstance(edgecolor, str): raise ValueError('edgecolor must be a string color') opening = kwargs.pop('opening', None) if opening is None: opening = 0.8 dtheta = 2*np.pi/nsector opening = dtheta*opening for j in range(nsector): offset = 0 for i in range(nbins): if i > 0: offset += self._info['table'][i-1, j] val = self._info['table'][i, j] zorder = ZBASE + nbins - i patch = Rectangle((angles[j]-opening/2, offset), opening, val, facecolor=colors[i], edgecolor=edgecolor, zorder=zorder, **kwargs) self.add_patch(patch) if j == 0: self.patches_list.append(patch) self._update() def box(self, dir, var, **kwargs): """ Plot a windrose in proportional bar mode. For each var bins and for each sector, a colored bar will be draw on the axes. Mandatory: * dir : 1D array - directions the wind blows from, North centred * var : 1D array - values of the variable to compute. Typically the wind speeds Optional: * nsector: integer - number of sectors used to compute the windrose table. If not set, nsectors=16, then each sector will be 360/16=22.5°, and the resulting computed table will be aligned with the cardinals points. * bins : 1D array or integer- number of bins, or a sequence of bins variable. If not set, bins=6 between min(var) and max(var). * blowto : bool. If True, the windrose will be pi rotated, to show where the wind blow to (usefull for pollutant rose). * colors : string or tuple - one string color ('k' or 'black'), in this case all bins will be plotted in this color; a tuple of matplotlib color args (string, float, rgb, etc), different levels will be plotted in different colors in the order specified. * cmap : a cm Colormap instance from matplotlib.cm. - if cmap == None and colors == None, a default Colormap is used. edgecolor : string - The string color each edge bar will be plotted. Default : no edgecolor """ bins, nbins, nsector, colors, angles, kwargs = self._init_plot(dir, var, **kwargs) null = kwargs.pop('facecolor', None) edgecolor = kwargs.pop('edgecolor', None) if edgecolor is not None: if not isinstance(edgecolor, str): raise ValueError('edgecolor must be a string color') opening = np.linspace(0.0, np.pi/16, nbins) for j in range(nsector): offset = 0 for i in range(nbins): if i > 0: offset += self._info['table'][i-1, j] val = self._info['table'][i, j] zorder = ZBASE + nbins - i patch = Rectangle((angles[j]-opening[i]/2, offset), opening[i], val, facecolor=colors[i], edgecolor=edgecolor, zorder=zorder, **kwargs) self.add_patch(patch) if j == 0: self.patches_list.append(patch) self._update() def histogram(dir, var, bins, nsector, normed=False, blowto=False): """ Returns an array where, for each sector of wind (centred on the north), we have the number of time the wind comes with a particular var (speed, polluant concentration, ...). * dir : 1D array - directions the wind blows from, North centred * var : 1D array - values of the variable to compute. Typically the wind speeds * bins : list - list of var category against we're going to compute the table * nsector : integer - number of sectors * normed : boolean - The resulting table is normed in percent or not. * blowto : boolean - Normaly a windrose is computed with directions as wind blows from. If true, the table will be reversed (usefull for pollutantrose) """ if len(var) != len(dir): raise ValueError, "var and dir must have same length" angle = 360./nsector dir_bins = np.arange(-angle/2 ,360.+angle, angle, dtype=np.float) dir_edges = dir_bins.tolist() dir_edges.pop(-1) dir_edges[0] = dir_edges.pop(-1) dir_bins[0] = 0. var_bins = bins.tolist() var_bins.append(np.inf) if blowto: dir = dir + 180. dir[dir>=360.] = dir[dir>=360.] - 360 table = histogram2d(x=var, y=dir, bins=[var_bins, dir_bins], normed=False)[0] # add the last value to the first to have the table of North winds table[:,0] = table[:,0] + table[:,-1] # and remove the last col table = table[:, :-1] if normed: table = table*100/table.sum() return dir_edges, var_bins, table def wrcontour(dir, var, **kwargs): fig = plt.figure() rect = [0.1, 0.1, 0.8, 0.8] ax = WindroseAxes(fig, rect) fig.add_axes(ax) ax.contour(dir, var, **kwargs) l = ax.legend(axespad=-0.10) plt.setp(l.get_texts(), fontsize=8) plt.draw() plt.show() return ax def wrcontourf(dir, var, **kwargs): fig = plt.figure() rect = [0.1, 0.1, 0.8, 0.8] ax = WindroseAxes(fig, rect) fig.add_axes(ax) ax.contourf(dir, var, **kwargs) l = ax.legend(axespad=-0.10) plt.setp(l.get_texts(), fontsize=8) plt.draw() plt.show() return ax def wrbox(dir, var, **kwargs): fig = plt.figure() rect = [0.1, 0.1, 0.8, 0.8] ax = WindroseAxes(fig, rect) fig.add_axes(ax) ax.box(dir, var, **kwargs) l = ax.legend(axespad=-0.10) plt.setp(l.get_texts(), fontsize=8) plt.draw() plt.show() return ax def wrbar(dir, var, **kwargs): fig = plt.figure() rect = [0.1, 0.1, 0.8, 0.8] ax = WindroseAxes(fig, rect) fig.add_axes(ax) ax.bar(dir, var, **kwargs) l = ax.legend(axespad=-0.10) plt.setp(l.get_texts(), fontsize=8) plt.draw() plt.show() return ax def clean(dir, var): ''' Remove masked values in the two arrays, where if a direction data is masked, the var data will also be removed in the cleaning process (and vice-versa) ''' dirmask = dir.mask==False varmask = var.mask==False ind = dirmask*varmask return dir[ind], var[ind] if __name__=='__main__': from pylab import figure, show, setp, random, grid, draw vv=random(500)*6 dv=random(500)*360 fig = figure(figsize=(8, 8), dpi=80, facecolor='w', edgecolor='w') rect = [0.1, 0.1, 0.8, 0.8] ax = WindroseAxes(fig, rect, axisbg='w') fig.add_axes(ax) # ax.contourf(dv, vv, bins=np.arange(0,8,1), cmap=cm.hot) # ax.contour(dv, vv, bins=np.arange(0,8,1), colors='k') # ax.bar(dv, vv, normed=True, opening=0.8, edgecolor='white') ax.box(dv, vv, normed=True) l = ax.legend(axespad=-0.10) setp(l.get_texts(), fontsize=8) draw() #print ax._info show()
apache-2.0
wanghaven/nupic
external/linux32/lib/python2.6/site-packages/matplotlib/rcsetup.py
69
23344
""" The rcsetup module contains the default values and the validation code for customization using matplotlib's rc settings. Each rc setting is assigned a default value and a function used to validate any attempted changes to that setting. The default values and validation functions are defined in the rcsetup module, and are used to construct the rcParams global object which stores the settings and is referenced throughout matplotlib. These default values should be consistent with the default matplotlibrc file that actually reflects the values given here. Any additions or deletions to the parameter set listed here should also be visited to the :file:`matplotlibrc.template` in matplotlib's root source directory. """ import os import warnings from matplotlib.fontconfig_pattern import parse_fontconfig_pattern from matplotlib.colors import is_color_like #interactive_bk = ['gtk', 'gtkagg', 'gtkcairo', 'fltkagg', 'qtagg', 'qt4agg', # 'tkagg', 'wx', 'wxagg', 'cocoaagg'] # The capitalized forms are needed for ipython at present; this may # change for later versions. interactive_bk = ['GTK', 'GTKAgg', 'GTKCairo', 'FltkAgg', 'MacOSX', 'QtAgg', 'Qt4Agg', 'TkAgg', 'WX', 'WXAgg', 'CocoaAgg'] non_interactive_bk = ['agg', 'cairo', 'emf', 'gdk', 'pdf', 'ps', 'svg', 'template'] all_backends = interactive_bk + non_interactive_bk class ValidateInStrings: def __init__(self, key, valid, ignorecase=False): 'valid is a list of legal strings' self.key = key self.ignorecase = ignorecase def func(s): if ignorecase: return s.lower() else: return s self.valid = dict([(func(k),k) for k in valid]) def __call__(self, s): if self.ignorecase: s = s.lower() if s in self.valid: return self.valid[s] raise ValueError('Unrecognized %s string "%s": valid strings are %s' % (self.key, s, self.valid.values())) def validate_path_exists(s): 'If s is a path, return s, else False' if os.path.exists(s): return s else: raise RuntimeError('"%s" should be a path but it does not exist'%s) def validate_bool(b): 'Convert b to a boolean or raise' if type(b) is str: b = b.lower() if b in ('t', 'y', 'yes', 'on', 'true', '1', 1, True): return True elif b in ('f', 'n', 'no', 'off', 'false', '0', 0, False): return False else: raise ValueError('Could not convert "%s" to boolean' % b) def validate_bool_maybe_none(b): 'Convert b to a boolean or raise' if type(b) is str: b = b.lower() if b=='none': return None if b in ('t', 'y', 'yes', 'on', 'true', '1', 1, True): return True elif b in ('f', 'n', 'no', 'off', 'false', '0', 0, False): return False else: raise ValueError('Could not convert "%s" to boolean' % b) def validate_float(s): 'convert s to float or raise' try: return float(s) except ValueError: raise ValueError('Could not convert "%s" to float' % s) def validate_int(s): 'convert s to int or raise' try: return int(s) except ValueError: raise ValueError('Could not convert "%s" to int' % s) def validate_fonttype(s): 'confirm that this is a Postscript of PDF font type that we know how to convert to' fonttypes = { 'type3': 3, 'truetype': 42 } try: fonttype = validate_int(s) except ValueError: if s.lower() in fonttypes.keys(): return fonttypes[s.lower()] raise ValueError('Supported Postscript/PDF font types are %s' % fonttypes.keys()) else: if fonttype not in fonttypes.values(): raise ValueError('Supported Postscript/PDF font types are %s' % fonttypes.values()) return fonttype #validate_backend = ValidateInStrings('backend', all_backends, ignorecase=True) _validate_standard_backends = ValidateInStrings('backend', all_backends, ignorecase=True) def validate_backend(s): if s.startswith('module://'): return s else: return _validate_standard_backends(s) validate_numerix = ValidateInStrings('numerix',[ 'Numeric','numarray','numpy', ], ignorecase=True) validate_toolbar = ValidateInStrings('toolbar',[ 'None','classic','toolbar2', ], ignorecase=True) def validate_autolayout(v): if v: warnings.warn("figure.autolayout is not currently supported") class validate_nseq_float: def __init__(self, n): self.n = n def __call__(self, s): 'return a seq of n floats or raise' if type(s) is str: ss = s.split(',') if len(ss) != self.n: raise ValueError('You must supply exactly %d comma separated values'%self.n) try: return [float(val) for val in ss] except ValueError: raise ValueError('Could not convert all entries to floats') else: assert type(s) in (list,tuple) if len(s) != self.n: raise ValueError('You must supply exactly %d values'%self.n) return [float(val) for val in s] class validate_nseq_int: def __init__(self, n): self.n = n def __call__(self, s): 'return a seq of n ints or raise' if type(s) is str: ss = s.split(',') if len(ss) != self.n: raise ValueError('You must supply exactly %d comma separated values'%self.n) try: return [int(val) for val in ss] except ValueError: raise ValueError('Could not convert all entries to ints') else: assert type(s) in (list,tuple) if len(s) != self.n: raise ValueError('You must supply exactly %d values'%self.n) return [int(val) for val in s] def validate_color(s): 'return a valid color arg' if s.lower() == 'none': return 'None' if is_color_like(s): return s stmp = '#' + s if is_color_like(stmp): return stmp # If it is still valid, it must be a tuple. colorarg = s msg = '' if s.find(',')>=0: # get rid of grouping symbols stmp = ''.join([ c for c in s if c.isdigit() or c=='.' or c==',']) vals = stmp.split(',') if len(vals)!=3: msg = '\nColor tuples must be length 3' else: try: colorarg = [float(val) for val in vals] except ValueError: msg = '\nCould not convert all entries to floats' if not msg and is_color_like(colorarg): return colorarg raise ValueError('%s does not look like a color arg%s'%(s, msg)) def validate_stringlist(s): 'return a list' if type(s) is str: return [ v.strip() for v in s.split(',') ] else: assert type(s) in [list,tuple] return [ str(v) for v in s ] validate_orientation = ValidateInStrings('orientation',[ 'landscape', 'portrait', ]) def validate_aspect(s): if s in ('auto', 'equal'): return s try: return float(s) except ValueError: raise ValueError('not a valid aspect specification') def validate_fontsize(s): if type(s) is str: s = s.lower() if s in ['xx-small', 'x-small', 'small', 'medium', 'large', 'x-large', 'xx-large', 'smaller', 'larger']: return s try: return float(s) except ValueError: raise ValueError('not a valid font size') def validate_font_properties(s): parse_fontconfig_pattern(s) return s validate_fontset = ValidateInStrings('fontset', ['cm', 'stix', 'stixsans', 'custom']) validate_verbose = ValidateInStrings('verbose',[ 'silent', 'helpful', 'debug', 'debug-annoying', ]) validate_cairo_format = ValidateInStrings('cairo_format', ['png', 'ps', 'pdf', 'svg'], ignorecase=True) validate_ps_papersize = ValidateInStrings('ps_papersize',[ 'auto', 'letter', 'legal', 'ledger', 'a0', 'a1', 'a2','a3', 'a4', 'a5', 'a6', 'a7', 'a8', 'a9', 'a10', 'b0', 'b1', 'b2', 'b3', 'b4', 'b5', 'b6', 'b7', 'b8', 'b9', 'b10', ], ignorecase=True) def validate_ps_distiller(s): if type(s) is str: s = s.lower() if s in ('none',None): return None elif s in ('false', False): return False elif s in ('ghostscript', 'xpdf'): return s else: raise ValueError('matplotlibrc ps.usedistiller must either be none, ghostscript or xpdf') validate_joinstyle = ValidateInStrings('joinstyle',['miter', 'round', 'bevel'], ignorecase=True) validate_capstyle = ValidateInStrings('capstyle',['butt', 'round', 'projecting'], ignorecase=True) validate_negative_linestyle = ValidateInStrings('negative_linestyle',['solid', 'dashed'], ignorecase=True) def validate_negative_linestyle_legacy(s): try: res = validate_negative_linestyle(s) return res except ValueError: dashes = validate_nseq_float(2)(s) warnings.warn("Deprecated negative_linestyle specification; use 'solid' or 'dashed'") return (0, dashes) # (offset, (solid, blank)) validate_legend_loc = ValidateInStrings('legend_loc',[ 'best', 'upper right', 'upper left', 'lower left', 'lower right', 'right', 'center left', 'center right', 'lower center', 'upper center', 'center', ], ignorecase=True) class ValidateInterval: """ Value must be in interval """ def __init__(self, vmin, vmax, closedmin=True, closedmax=True): self.vmin = vmin self.vmax = vmax self.cmin = closedmin self.cmax = closedmax def __call__(self, s): try: s = float(s) except: raise RuntimeError('Value must be a float; found "%s"'%s) if self.cmin and s<self.vmin: raise RuntimeError('Value must be >= %f; found "%f"'%(self.vmin, s)) elif not self.cmin and s<=self.vmin: raise RuntimeError('Value must be > %f; found "%f"'%(self.vmin, s)) if self.cmax and s>self.vmax: raise RuntimeError('Value must be <= %f; found "%f"'%(self.vmax, s)) elif not self.cmax and s>=self.vmax: raise RuntimeError('Value must be < %f; found "%f"'%(self.vmax, s)) return s # a map from key -> value, converter defaultParams = { 'backend' : ['Agg', validate_backend], # agg is certainly present 'backend_fallback' : [True, validate_bool], # agg is certainly present 'numerix' : ['numpy', validate_numerix], 'maskedarray' : [False, validate_bool], 'toolbar' : ['toolbar2', validate_toolbar], 'datapath' : [None, validate_path_exists], # handled by _get_data_path_cached 'units' : [False, validate_bool], 'interactive' : [False, validate_bool], 'timezone' : ['UTC', str], # the verbosity setting 'verbose.level' : ['silent', validate_verbose], 'verbose.fileo' : ['sys.stdout', str], # line props 'lines.linewidth' : [1.0, validate_float], # line width in points 'lines.linestyle' : ['-', str], # solid line 'lines.color' : ['b', validate_color], # blue 'lines.marker' : ['None', str], # black 'lines.markeredgewidth' : [0.5, validate_float], 'lines.markersize' : [6, validate_float], # markersize, in points 'lines.antialiased' : [True, validate_bool], # antialised (no jaggies) 'lines.dash_joinstyle' : ['miter', validate_joinstyle], 'lines.solid_joinstyle' : ['miter', validate_joinstyle], 'lines.dash_capstyle' : ['butt', validate_capstyle], 'lines.solid_capstyle' : ['projecting', validate_capstyle], # patch props 'patch.linewidth' : [1.0, validate_float], # line width in points 'patch.edgecolor' : ['k', validate_color], # black 'patch.facecolor' : ['b', validate_color], # blue 'patch.antialiased' : [True, validate_bool], # antialised (no jaggies) # font props 'font.family' : ['sans-serif', str], # used by text object 'font.style' : ['normal', str], # 'font.variant' : ['normal', str], # 'font.stretch' : ['normal', str], # 'font.weight' : ['normal', str], # 'font.size' : [12.0, validate_float], # 'font.serif' : [['Bitstream Vera Serif', 'DejaVu Serif', 'New Century Schoolbook', 'Century Schoolbook L', 'Utopia', 'ITC Bookman', 'Bookman', 'Nimbus Roman No9 L','Times New Roman', 'Times','Palatino','Charter','serif'], validate_stringlist], 'font.sans-serif' : [['Bitstream Vera Sans', 'DejaVu Sans', 'Lucida Grande', 'Verdana', 'Geneva', 'Lucid', 'Arial', 'Helvetica', 'Avant Garde', 'sans-serif'], validate_stringlist], 'font.cursive' : [['Apple Chancery','Textile','Zapf Chancery', 'Sand','cursive'], validate_stringlist], 'font.fantasy' : [['Comic Sans MS','Chicago','Charcoal','Impact' 'Western','fantasy'], validate_stringlist], 'font.monospace' : [['Bitstream Vera Sans Mono', 'DejaVu Sans Mono', 'Andale Mono', 'Nimbus Mono L', 'Courier New', 'Courier','Fixed', 'Terminal','monospace'], validate_stringlist], # text props 'text.color' : ['k', validate_color], # black 'text.usetex' : [False, validate_bool], 'text.latex.unicode' : [False, validate_bool], 'text.latex.preamble' : [[''], validate_stringlist], 'text.dvipnghack' : [None, validate_bool_maybe_none], 'text.fontstyle' : ['normal', str], 'text.fontangle' : ['normal', str], 'text.fontvariant' : ['normal', str], 'text.fontweight' : ['normal', str], 'text.fontsize' : ['medium', validate_fontsize], 'mathtext.cal' : ['cursive', validate_font_properties], 'mathtext.rm' : ['serif', validate_font_properties], 'mathtext.tt' : ['monospace', validate_font_properties], 'mathtext.it' : ['serif:italic', validate_font_properties], 'mathtext.bf' : ['serif:bold', validate_font_properties], 'mathtext.sf' : ['sans\-serif', validate_font_properties], 'mathtext.fontset' : ['cm', validate_fontset], 'mathtext.fallback_to_cm' : [True, validate_bool], 'image.aspect' : ['equal', validate_aspect], # equal, auto, a number 'image.interpolation' : ['bilinear', str], 'image.cmap' : ['jet', str], # one of gray, jet, etc 'image.lut' : [256, validate_int], # lookup table 'image.origin' : ['upper', str], # lookup table 'image.resample' : [False, validate_bool], 'contour.negative_linestyle' : ['dashed', validate_negative_linestyle_legacy], # axes props 'axes.axisbelow' : [False, validate_bool], 'axes.hold' : [True, validate_bool], 'axes.facecolor' : ['w', validate_color], # background color; white 'axes.edgecolor' : ['k', validate_color], # edge color; black 'axes.linewidth' : [1.0, validate_float], # edge linewidth 'axes.titlesize' : ['large', validate_fontsize], # fontsize of the axes title 'axes.grid' : [False, validate_bool], # display grid or not 'axes.labelsize' : ['medium', validate_fontsize], # fontsize of the x any y labels 'axes.labelcolor' : ['k', validate_color], # color of axis label 'axes.formatter.limits' : [[-7, 7], validate_nseq_int(2)], # use scientific notation if log10 # of the axis range is smaller than the # first or larger than the second 'axes.unicode_minus' : [True, validate_bool], 'polaraxes.grid' : [True, validate_bool], # display polar grid or not #legend properties 'legend.fancybox' : [False,validate_bool], 'legend.loc' : ['upper right',validate_legend_loc], # at some point, this should be changed to 'best' 'legend.isaxes' : [True,validate_bool], # this option is internally ignored - it never served any useful purpose 'legend.numpoints' : [2, validate_int], # the number of points in the legend line 'legend.fontsize' : ['large', validate_fontsize], 'legend.pad' : [0, validate_float], # was 0.2, deprecated; the fractional whitespace inside the legend border 'legend.borderpad' : [0.4, validate_float], # units are fontsize 'legend.markerscale' : [1.0, validate_float], # the relative size of legend markers vs. original # the following dimensions are in axes coords 'legend.labelsep' : [0.010, validate_float], # the vertical space between the legend entries 'legend.handlelen' : [0.05, validate_float], # the length of the legend lines 'legend.handletextsep' : [0.02, validate_float], # the space between the legend line and legend text 'legend.axespad' : [0.02, validate_float], # the border between the axes and legend edge 'legend.shadow' : [False, validate_bool], 'legend.labelspacing' : [0.5, validate_float], # the vertical space between the legend entries 'legend.handlelength' : [2., validate_float], # the length of the legend lines 'legend.handletextpad' : [.8, validate_float], # the space between the legend line and legend text 'legend.borderaxespad' : [0.5, validate_float], # the border between the axes and legend edge 'legend.columnspacing' : [2., validate_float], # the border between the axes and legend edge 'legend.markerscale' : [1.0, validate_float], # the relative size of legend markers vs. original # the following dimensions are in axes coords 'legend.labelsep' : [0.010, validate_float], # the vertical space between the legend entries 'legend.handlelen' : [0.05, validate_float], # the length of the legend lines 'legend.handletextsep' : [0.02, validate_float], # the space between the legend line and legend text 'legend.axespad' : [0.5, validate_float], # the border between the axes and legend edge 'legend.shadow' : [False, validate_bool], # tick properties 'xtick.major.size' : [4, validate_float], # major xtick size in points 'xtick.minor.size' : [2, validate_float], # minor xtick size in points 'xtick.major.pad' : [4, validate_float], # distance to label in points 'xtick.minor.pad' : [4, validate_float], # distance to label in points 'xtick.color' : ['k', validate_color], # color of the xtick labels 'xtick.labelsize' : ['medium', validate_fontsize], # fontsize of the xtick labels 'xtick.direction' : ['in', str], # direction of xticks 'ytick.major.size' : [4, validate_float], # major ytick size in points 'ytick.minor.size' : [2, validate_float], # minor ytick size in points 'ytick.major.pad' : [4, validate_float], # distance to label in points 'ytick.minor.pad' : [4, validate_float], # distance to label in points 'ytick.color' : ['k', validate_color], # color of the ytick labels 'ytick.labelsize' : ['medium', validate_fontsize], # fontsize of the ytick labels 'ytick.direction' : ['in', str], # direction of yticks 'grid.color' : ['k', validate_color], # grid color 'grid.linestyle' : [':', str], # dotted 'grid.linewidth' : [0.5, validate_float], # in points # figure props # figure size in inches: width by height 'figure.figsize' : [ [8.0,6.0], validate_nseq_float(2)], 'figure.dpi' : [ 80, validate_float], # DPI 'figure.facecolor' : [ '0.75', validate_color], # facecolor; scalar gray 'figure.edgecolor' : [ 'w', validate_color], # edgecolor; white 'figure.autolayout' : [ False, validate_autolayout], 'figure.subplot.left' : [0.125, ValidateInterval(0, 1, closedmin=True, closedmax=True)], 'figure.subplot.right' : [0.9, ValidateInterval(0, 1, closedmin=True, closedmax=True)], 'figure.subplot.bottom' : [0.1, ValidateInterval(0, 1, closedmin=True, closedmax=True)], 'figure.subplot.top' : [0.9, ValidateInterval(0, 1, closedmin=True, closedmax=True)], 'figure.subplot.wspace' : [0.2, ValidateInterval(0, 1, closedmin=True, closedmax=False)], 'figure.subplot.hspace' : [0.2, ValidateInterval(0, 1, closedmin=True, closedmax=False)], 'savefig.dpi' : [100, validate_float], # DPI 'savefig.facecolor' : ['w', validate_color], # facecolor; white 'savefig.edgecolor' : ['w', validate_color], # edgecolor; white 'savefig.orientation' : ['portrait', validate_orientation], # edgecolor; white 'cairo.format' : ['png', validate_cairo_format], 'tk.window_focus' : [False, validate_bool], # Maintain shell focus for TkAgg 'tk.pythoninspect' : [False, validate_bool], # Set PYTHONINSPECT 'ps.papersize' : ['letter', validate_ps_papersize], # Set the papersize/type 'ps.useafm' : [False, validate_bool], # Set PYTHONINSPECT 'ps.usedistiller' : [False, validate_ps_distiller], # use ghostscript or xpdf to distill ps output 'ps.distiller.res' : [6000, validate_int], # dpi 'ps.fonttype' : [3, validate_fonttype], # 3 (Type3) or 42 (Truetype) 'pdf.compression' : [6, validate_int], # compression level from 0 to 9; 0 to disable 'pdf.inheritcolor' : [False, validate_bool], # ignore any color-setting commands from the frontend 'pdf.use14corefonts' : [False, validate_bool], # use only the 14 PDF core fonts # embedded in every PDF viewing application 'pdf.fonttype' : [3, validate_fonttype], # 3 (Type3) or 42 (Truetype) 'svg.image_inline' : [True, validate_bool], # write raster image data directly into the svg file 'svg.image_noscale' : [False, validate_bool], # suppress scaling of raster data embedded in SVG 'svg.embed_char_paths' : [True, validate_bool], # True to save all characters as paths in the SVG 'docstring.hardcopy' : [False, validate_bool], # set this when you want to generate hardcopy docstring 'plugins.directory' : ['.matplotlib_plugins', str], # where plugin directory is locate 'path.simplify' : [False, validate_bool], 'agg.path.chunksize' : [0, validate_int] # 0 to disable chunking; # recommend about 20000 to # enable. Experimental. } if __name__ == '__main__': rc = defaultParams rc['datapath'][0] = '/' for key in rc: if not rc[key][1](rc[key][0]) == rc[key][0]: print "%s: %s != %s"%(key, rc[key][1](rc[key][0]), rc[key][0])
agpl-3.0
KarlTDebiec/Moldynplot
moldynplot/dataset/IREDTimeSeriesDataset.py
2
7363
#!/usr/bin/python # -*- coding: utf-8 -*- # moldynplot.dataset.IREDTimeSeriesDataset.py # # Copyright (C) 2015-2017 Karl T Debiec # All rights reserved. # # This software may be modified and distributed under the terms of the # BSD license. See the LICENSE file for details. """ Represents iRED NMR relaxation data as a function of time and residue number """ ################################### MODULES ################################### from __future__ import (absolute_import, division, print_function, unicode_literals) if __name__ == "__main__": __package__ = str("moldynplot.dataset") import moldynplot.dataset from IPython import embed import h5py import numpy as np import pandas as pd import six from .IREDDataset import IREDDataset from .TimeSeriesDataset import TimeSeriesDataset from ..myplotspec.Dataset import Dataset from ..myplotspec import wiprint ################################### CLASSES ################################### class IREDTimeSeriesDataset(TimeSeriesDataset, IREDDataset): """ Represents iRED NMR relaxation data as a function of time and residue number """ @staticmethod def construct_argparser(parser_or_subparsers=None, **kwargs): """ Adds arguments to an existing argument parser, constructs a subparser, or constructs a new parser Arguments: parser_or_subparsers (ArgumentParser, _SubParsersAction, optional): If ArgumentParser, existing parser to which arguments will be added; if _SubParsersAction, collection of subparsers to which a new argument parser will be added; if None, a new argument parser will be generated kwargs (dict): Additional keyword arguments Returns: ArgumentParser: Argument parser or subparser """ import argparse # Process arguments help_message = """Process NMR relaxation data calculated from MD simulation using the iRED method as implemented in cpptraj""" if isinstance(parser_or_subparsers, argparse.ArgumentParser): parser = parser_or_subparsers elif isinstance(parser_or_subparsers, argparse._SubParsersAction): parser = parser_or_subparsers.add_parser(name="ired", description=help_message, help=help_message) elif parser_or_subparsers is None: parser = argparse.ArgumentParser(description=help_message) # Defaults if parser.get_default("cls") is None: parser.set_defaults(cls=IREDTimeSeriesDataset) # Arguments unique to this class # Arguments inherited from superclass IREDDataset.construct_argparser(parser) TimeSeriesDataset.construct_argparser(parser) return parser @staticmethod def concatenate_timeseries(timeseries_dfs=None, relax_dfs=None, order_dfs=None, **kwargs): """ Concatenates a series of iRED datasets. Arguments: timeseries_dfs (list): DataFrames containing data from timeseries infiles relax_dfs (list): DataFrames containing data from relax infiles order_dfs (list): DataFrames containing data from order infiles verbose (int): Level of verbose output kwargs (dict): Additional keyword arguments Returns: DataFrame: Concatenated DataFrame including relax and order """ # Process arguments verbose = kwargs.get("verbose", 1) # Process timeseries if len(timeseries_dfs) >= 1: if verbose >= 1: wiprint("""Concatenating timeseries from {0} timeseries infiles""".format(len(timeseries_dfs))) timeseries_df = pd.concat(timeseries_dfs) else: timeseries_df = None # Process relaxation if len(relax_dfs) >= 1: if verbose >= 1: wiprint("""Concatenating timeseries from {0} relaxation infiles""".format(len(relax_dfs))) relax_df = pd.concat([rdf.stack() for rdf in relax_dfs], axis=1).transpose() else: relax_df = None # Process order parameters if len(order_dfs) >= 1: if verbose >= 1: wiprint("""Concatenating timeseries from {0} order parameter infiles""".format(len(order_dfs))) order_df = pd.concat([odf.stack() for odf in order_dfs], axis=1).transpose() else: order_df = None # Merge and sort relaxation and order parameters if relax_df is not None and order_df is not None: df = pd.merge(relax_df, order_df, how="outer", left_index=True, right_index=True) df = df[sorted(list(set(df.columns.get_level_values(0))), key=lambda x: int(x.split(":")[1]))] elif relax_df is None and order_df is not None: df = order_df elif order_df is None and relax_df is not None: df = relax_df else: df = None # Append to existing timeseries_df if timeseries_df is not None and df is not None: df = pd.concat([timeseries_df, df]) elif df is None: df = timeseries_df return df def read(self, **kwargs): """ Reads iRED time series data from one or more *infiles* into a DataFrame. """ import re from ..myplotspec import multi_pop_merged # Process arguments infile_args = multi_pop_merged(["infile", "infiles"], kwargs) infiles = self.infiles = self.process_infiles(infiles=infile_args) if len(infiles) == 0: raise Exception(sformat("""No infiles found matching '{0}'""".format(infile_args))) re_h5 = re.compile( r"^(?P<path>(.+)\.(h5|hdf5))((:)?(/)?(?P<address>.+))?$", flags=re.UNICODE) # Load data timeseries_dfs = [] relax_dfs = [] order_dfs = [] for infile in infiles: if re_h5.match(infile): df = self._read_hdf5(infile, **kwargs) else: df = self._read_text(infile, **kwargs) if df.columns.nlevels == 2: timeseries_dfs.append(df) else: columns = df.columns.values if "r1" in columns and "r2" in columns and "noe" in columns: relax_dfs.append(df) if "s2" in columns: order_dfs.append(df) if not (( "r1" in columns and "r2" in columns and "noe" in columns) or ( "s2" in columns)): raise Exception(sformat("""DataFrame loaded from '{0}' does not appear to contain either relaxation ('r1', 'r2', 'noe') or order parameter ('s2') columns""".format(infile))) # Concatenate into timeseries df = self.concatenate_timeseries(timeseries_dfs, relax_dfs, order_dfs) return df #################################### MAIN ##################################### if __name__ == "__main__": IREDTimeSeriesDataset.main()
bsd-3-clause