repo_name
stringlengths
7
90
path
stringlengths
5
191
copies
stringlengths
1
3
size
stringlengths
4
6
content
stringlengths
976
581k
license
stringclasses
15 values
seaotterman/tensorflow
tensorflow/examples/learn/iris_run_config.py
86
2087
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Example of DNNClassifier for Iris plant dataset, with run config.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function from sklearn import cross_validation from sklearn import datasets from sklearn import metrics import tensorflow as tf def main(unused_argv): # Load dataset. iris = datasets.load_iris() x_train, x_test, y_train, y_test = cross_validation.train_test_split( iris.data, iris.target, test_size=0.2, random_state=42) # You can define you configurations by providing a RunConfig object to # estimator to control session configurations, e.g. num_cores # and gpu_memory_fraction run_config = tf.contrib.learn.estimators.RunConfig( num_cores=3, gpu_memory_fraction=0.6) # Build 3 layer DNN with 10, 20, 10 units respectively. feature_columns = tf.contrib.learn.infer_real_valued_columns_from_input( x_train) classifier = tf.contrib.learn.DNNClassifier(feature_columns=feature_columns, hidden_units=[10, 20, 10], n_classes=3, config=run_config) # Fit and predict. classifier.fit(x_train, y_train, steps=200) predictions = list(classifier.predict(x_test, as_iterable=True)) score = metrics.accuracy_score(y_test, predictions) print('Accuracy: {0:f}'.format(score)) if __name__ == '__main__': tf.app.run()
apache-2.0
sinhrks/expandas
pandas_ml/skaccessors/test/test_svm.py
2
2995
#!/usr/bin/env python import pytest import numpy as np import sklearn.datasets as datasets import sklearn.svm as svm import pandas_ml as pdml import pandas_ml.util.testing as tm class TestSVM(tm.TestCase): def test_objectmapper(self): df = pdml.ModelFrame([]) self.assertIs(df.svm.SVC, svm.SVC) self.assertIs(df.svm.LinearSVC, svm.LinearSVC) self.assertIs(df.svm.NuSVC, svm.NuSVC) self.assertIs(df.svm.SVR, svm.SVR) self.assertIs(df.svm.NuSVR, svm.NuSVR) self.assertIs(df.svm.OneClassSVM, svm.OneClassSVM) def test_l1_min_c(self): iris = datasets.load_iris() df = pdml.ModelFrame(iris) result = df.svm.l1_min_c() expected = svm.l1_min_c(iris.data, iris.target) self.assertAlmostEqual(result, expected) @pytest.mark.parametrize("algo", ['SVR', 'NuSVR']) def test_Regressions_curve(self, algo): # http://scikit-learn.org/stable/auto_examples/plot_kernel_ridge_regression.html X = 5 * np.random.rand(1000, 1) y = np.sin(X).ravel() # Add noise to targets y[::5] += 3 * (0.5 - np.random.rand(X.shape[0] // 5)) df = pdml.ModelFrame(data=X, target=y) mod1 = getattr(df.svm, algo)() mod2 = getattr(svm, algo)() df.fit(mod1) mod2.fit(X, y) result = df.predict(mod1) expected = mod2.predict(X) self.assertIsInstance(result, pdml.ModelSeries) self.assert_numpy_array_almost_equal(result.values, expected) self.assertIsInstance(df.predicted, pdml.ModelSeries) self.assert_numpy_array_almost_equal(df.predicted.values, expected) @pytest.mark.parametrize("algo", ['SVR', 'NuSVR']) def test_Regressions_iris(self, algo): iris = datasets.load_iris() df = pdml.ModelFrame(iris) mod1 = getattr(df.svm, algo)() mod2 = getattr(svm, algo)() df.fit(mod1) mod2.fit(iris.data, iris.target) result = df.predict(mod1) expected = mod2.predict(iris.data) self.assertIsInstance(result, pdml.ModelSeries) self.assert_numpy_array_almost_equal(result.values, expected) self.assertIsInstance(df.predicted, pdml.ModelSeries) self.assert_numpy_array_almost_equal(df.predicted.values, expected) @pytest.mark.parametrize("algo", ['LinearSVC', 'NuSVC']) def test_Classifications(self, algo): iris = datasets.load_iris() df = pdml.ModelFrame(iris) mod1 = getattr(df.svm, algo)(random_state=self.random_state) mod2 = getattr(svm, algo)(random_state=self.random_state) df.fit(mod1) mod2.fit(iris.data, iris.target) result = df.predict(mod1) expected = mod2.predict(iris.data) self.assertIsInstance(result, pdml.ModelSeries) self.assert_numpy_array_almost_equal(result.values, expected)
bsd-3-clause
arahuja/scikit-learn
examples/linear_model/plot_sgd_separating_hyperplane.py
260
1219
""" ========================================= SGD: Maximum margin separating hyperplane ========================================= Plot the maximum margin separating hyperplane within a two-class separable dataset using a linear Support Vector Machines classifier trained using SGD. """ print(__doc__) import numpy as np import matplotlib.pyplot as plt from sklearn.linear_model import SGDClassifier from sklearn.datasets.samples_generator import make_blobs # we create 50 separable points X, Y = make_blobs(n_samples=50, centers=2, random_state=0, cluster_std=0.60) # fit the model clf = SGDClassifier(loss="hinge", alpha=0.01, n_iter=200, fit_intercept=True) clf.fit(X, Y) # plot the line, the points, and the nearest vectors to the plane xx = np.linspace(-1, 5, 10) yy = np.linspace(-1, 5, 10) X1, X2 = np.meshgrid(xx, yy) Z = np.empty(X1.shape) for (i, j), val in np.ndenumerate(X1): x1 = val x2 = X2[i, j] p = clf.decision_function([x1, x2]) Z[i, j] = p[0] levels = [-1.0, 0.0, 1.0] linestyles = ['dashed', 'solid', 'dashed'] colors = 'k' plt.contour(X1, X2, Z, levels, colors=colors, linestyles=linestyles) plt.scatter(X[:, 0], X[:, 1], c=Y, cmap=plt.cm.Paired) plt.axis('tight') plt.show()
bsd-3-clause
vybstat/scikit-learn
sklearn/decomposition/tests/test_incremental_pca.py
297
8265
"""Tests for Incremental PCA.""" import numpy as np from sklearn.utils.testing import assert_almost_equal from sklearn.utils.testing import assert_array_almost_equal from sklearn.utils.testing import assert_raises from sklearn import datasets from sklearn.decomposition import PCA, IncrementalPCA iris = datasets.load_iris() def test_incremental_pca(): # Incremental PCA on dense arrays. X = iris.data batch_size = X.shape[0] // 3 ipca = IncrementalPCA(n_components=2, batch_size=batch_size) pca = PCA(n_components=2) pca.fit_transform(X) X_transformed = ipca.fit_transform(X) np.testing.assert_equal(X_transformed.shape, (X.shape[0], 2)) assert_almost_equal(ipca.explained_variance_ratio_.sum(), pca.explained_variance_ratio_.sum(), 1) for n_components in [1, 2, X.shape[1]]: ipca = IncrementalPCA(n_components, batch_size=batch_size) ipca.fit(X) cov = ipca.get_covariance() precision = ipca.get_precision() assert_array_almost_equal(np.dot(cov, precision), np.eye(X.shape[1])) def test_incremental_pca_check_projection(): # Test that the projection of data is correct. rng = np.random.RandomState(1999) n, p = 100, 3 X = rng.randn(n, p) * .1 X[:10] += np.array([3, 4, 5]) Xt = 0.1 * rng.randn(1, p) + np.array([3, 4, 5]) # Get the reconstruction of the generated data X # Note that Xt has the same "components" as X, just separated # This is what we want to ensure is recreated correctly Yt = IncrementalPCA(n_components=2).fit(X).transform(Xt) # Normalize Yt /= np.sqrt((Yt ** 2).sum()) # Make sure that the first element of Yt is ~1, this means # the reconstruction worked as expected assert_almost_equal(np.abs(Yt[0][0]), 1., 1) def test_incremental_pca_inverse(): # Test that the projection of data can be inverted. rng = np.random.RandomState(1999) n, p = 50, 3 X = rng.randn(n, p) # spherical data X[:, 1] *= .00001 # make middle component relatively small X += [5, 4, 3] # make a large mean # same check that we can find the original data from the transformed # signal (since the data is almost of rank n_components) ipca = IncrementalPCA(n_components=2, batch_size=10).fit(X) Y = ipca.transform(X) Y_inverse = ipca.inverse_transform(Y) assert_almost_equal(X, Y_inverse, decimal=3) def test_incremental_pca_validation(): # Test that n_components is >=1 and <= n_features. X = [[0, 1], [1, 0]] for n_components in [-1, 0, .99, 3]: assert_raises(ValueError, IncrementalPCA(n_components, batch_size=10).fit, X) def test_incremental_pca_set_params(): # Test that components_ sign is stable over batch sizes. rng = np.random.RandomState(1999) n_samples = 100 n_features = 20 X = rng.randn(n_samples, n_features) X2 = rng.randn(n_samples, n_features) X3 = rng.randn(n_samples, n_features) ipca = IncrementalPCA(n_components=20) ipca.fit(X) # Decreasing number of components ipca.set_params(n_components=10) assert_raises(ValueError, ipca.partial_fit, X2) # Increasing number of components ipca.set_params(n_components=15) assert_raises(ValueError, ipca.partial_fit, X3) # Returning to original setting ipca.set_params(n_components=20) ipca.partial_fit(X) def test_incremental_pca_num_features_change(): # Test that changing n_components will raise an error. rng = np.random.RandomState(1999) n_samples = 100 X = rng.randn(n_samples, 20) X2 = rng.randn(n_samples, 50) ipca = IncrementalPCA(n_components=None) ipca.fit(X) assert_raises(ValueError, ipca.partial_fit, X2) def test_incremental_pca_batch_signs(): # Test that components_ sign is stable over batch sizes. rng = np.random.RandomState(1999) n_samples = 100 n_features = 3 X = rng.randn(n_samples, n_features) all_components = [] batch_sizes = np.arange(10, 20) for batch_size in batch_sizes: ipca = IncrementalPCA(n_components=None, batch_size=batch_size).fit(X) all_components.append(ipca.components_) for i, j in zip(all_components[:-1], all_components[1:]): assert_almost_equal(np.sign(i), np.sign(j), decimal=6) def test_incremental_pca_batch_values(): # Test that components_ values are stable over batch sizes. rng = np.random.RandomState(1999) n_samples = 100 n_features = 3 X = rng.randn(n_samples, n_features) all_components = [] batch_sizes = np.arange(20, 40, 3) for batch_size in batch_sizes: ipca = IncrementalPCA(n_components=None, batch_size=batch_size).fit(X) all_components.append(ipca.components_) for i, j in zip(all_components[:-1], all_components[1:]): assert_almost_equal(i, j, decimal=1) def test_incremental_pca_partial_fit(): # Test that fit and partial_fit get equivalent results. rng = np.random.RandomState(1999) n, p = 50, 3 X = rng.randn(n, p) # spherical data X[:, 1] *= .00001 # make middle component relatively small X += [5, 4, 3] # make a large mean # same check that we can find the original data from the transformed # signal (since the data is almost of rank n_components) batch_size = 10 ipca = IncrementalPCA(n_components=2, batch_size=batch_size).fit(X) pipca = IncrementalPCA(n_components=2, batch_size=batch_size) # Add one to make sure endpoint is included batch_itr = np.arange(0, n + 1, batch_size) for i, j in zip(batch_itr[:-1], batch_itr[1:]): pipca.partial_fit(X[i:j, :]) assert_almost_equal(ipca.components_, pipca.components_, decimal=3) def test_incremental_pca_against_pca_iris(): # Test that IncrementalPCA and PCA are approximate (to a sign flip). X = iris.data Y_pca = PCA(n_components=2).fit_transform(X) Y_ipca = IncrementalPCA(n_components=2, batch_size=25).fit_transform(X) assert_almost_equal(np.abs(Y_pca), np.abs(Y_ipca), 1) def test_incremental_pca_against_pca_random_data(): # Test that IncrementalPCA and PCA are approximate (to a sign flip). rng = np.random.RandomState(1999) n_samples = 100 n_features = 3 X = rng.randn(n_samples, n_features) + 5 * rng.rand(1, n_features) Y_pca = PCA(n_components=3).fit_transform(X) Y_ipca = IncrementalPCA(n_components=3, batch_size=25).fit_transform(X) assert_almost_equal(np.abs(Y_pca), np.abs(Y_ipca), 1) def test_explained_variances(): # Test that PCA and IncrementalPCA calculations match X = datasets.make_low_rank_matrix(1000, 100, tail_strength=0., effective_rank=10, random_state=1999) prec = 3 n_samples, n_features = X.shape for nc in [None, 99]: pca = PCA(n_components=nc).fit(X) ipca = IncrementalPCA(n_components=nc, batch_size=100).fit(X) assert_almost_equal(pca.explained_variance_, ipca.explained_variance_, decimal=prec) assert_almost_equal(pca.explained_variance_ratio_, ipca.explained_variance_ratio_, decimal=prec) assert_almost_equal(pca.noise_variance_, ipca.noise_variance_, decimal=prec) def test_whitening(): # Test that PCA and IncrementalPCA transforms match to sign flip. X = datasets.make_low_rank_matrix(1000, 10, tail_strength=0., effective_rank=2, random_state=1999) prec = 3 n_samples, n_features = X.shape for nc in [None, 9]: pca = PCA(whiten=True, n_components=nc).fit(X) ipca = IncrementalPCA(whiten=True, n_components=nc, batch_size=250).fit(X) Xt_pca = pca.transform(X) Xt_ipca = ipca.transform(X) assert_almost_equal(np.abs(Xt_pca), np.abs(Xt_ipca), decimal=prec) Xinv_ipca = ipca.inverse_transform(Xt_ipca) Xinv_pca = pca.inverse_transform(Xt_pca) assert_almost_equal(X, Xinv_ipca, decimal=prec) assert_almost_equal(X, Xinv_pca, decimal=prec) assert_almost_equal(Xinv_pca, Xinv_ipca, decimal=prec)
bsd-3-clause
scipy/scipy
scipy/signal/bsplines.py
12
19509
from numpy import (logical_and, asarray, pi, zeros_like, piecewise, array, arctan2, tan, zeros, arange, floor) from numpy.core.umath import (sqrt, exp, greater, less, cos, add, sin, less_equal, greater_equal) # From splinemodule.c from .spline import cspline2d, sepfir2d from scipy.special import comb from scipy._lib._util import float_factorial __all__ = ['spline_filter', 'bspline', 'gauss_spline', 'cubic', 'quadratic', 'cspline1d', 'qspline1d', 'cspline1d_eval', 'qspline1d_eval'] def spline_filter(Iin, lmbda=5.0): """Smoothing spline (cubic) filtering of a rank-2 array. Filter an input data set, `Iin`, using a (cubic) smoothing spline of fall-off `lmbda`. Parameters ---------- Iin : array_like input data set lmbda : float, optional spline smooghing fall-off value, default is `5.0`. Returns ------- res : ndarray filterd input data Examples -------- We can filter an multi dimentional signal (ex: 2D image) using cubic B-spline filter: >>> from scipy.signal import spline_filter >>> import matplotlib.pyplot as plt >>> orig_img = np.eye(20) # create an image >>> orig_img[10, :] = 1.0 >>> sp_filter = spline_filter(orig_img, lmbda=0.1) >>> f, ax = plt.subplots(1, 2, sharex=True) >>> for ind, data in enumerate([[orig_img, "original image"], ... [sp_filter, "spline filter"]]): ... ax[ind].imshow(data[0], cmap='gray_r') ... ax[ind].set_title(data[1]) >>> plt.tight_layout() >>> plt.show() """ intype = Iin.dtype.char hcol = array([1.0, 4.0, 1.0], 'f') / 6.0 if intype in ['F', 'D']: Iin = Iin.astype('F') ckr = cspline2d(Iin.real, lmbda) cki = cspline2d(Iin.imag, lmbda) outr = sepfir2d(ckr, hcol, hcol) outi = sepfir2d(cki, hcol, hcol) out = (outr + 1j * outi).astype(intype) elif intype in ['f', 'd']: ckr = cspline2d(Iin, lmbda) out = sepfir2d(ckr, hcol, hcol) out = out.astype(intype) else: raise TypeError("Invalid data type for Iin") return out _splinefunc_cache = {} def _bspline_piecefunctions(order): """Returns the function defined over the left-side pieces for a bspline of a given order. The 0th piece is the first one less than 0. The last piece is a function identical to 0 (returned as the constant 0). (There are order//2 + 2 total pieces). Also returns the condition functions that when evaluated return boolean arrays for use with `numpy.piecewise`. """ try: return _splinefunc_cache[order] except KeyError: pass def condfuncgen(num, val1, val2): if num == 0: return lambda x: logical_and(less_equal(x, val1), greater_equal(x, val2)) elif num == 2: return lambda x: less_equal(x, val2) else: return lambda x: logical_and(less(x, val1), greater_equal(x, val2)) last = order // 2 + 2 if order % 2: startbound = -1.0 else: startbound = -0.5 condfuncs = [condfuncgen(0, 0, startbound)] bound = startbound for num in range(1, last - 1): condfuncs.append(condfuncgen(1, bound, bound - 1)) bound = bound - 1 condfuncs.append(condfuncgen(2, 0, -(order + 1) / 2.0)) # final value of bound is used in piecefuncgen below # the functions to evaluate are taken from the left-hand side # in the general expression derived from the central difference # operator (because they involve fewer terms). fval = float_factorial(order) def piecefuncgen(num): Mk = order // 2 - num if (Mk < 0): return 0 # final function is 0 coeffs = [(1 - 2 * (k % 2)) * float(comb(order + 1, k, exact=1)) / fval for k in range(Mk + 1)] shifts = [-bound - k for k in range(Mk + 1)] def thefunc(x): res = 0.0 for k in range(Mk + 1): res += coeffs[k] * (x + shifts[k]) ** order return res return thefunc funclist = [piecefuncgen(k) for k in range(last)] _splinefunc_cache[order] = (funclist, condfuncs) return funclist, condfuncs def bspline(x, n): """B-spline basis function of order n. Parameters ---------- x : array_like a knot vector n : int The order of the spline. Must be non-negative, i.e., n >= 0 Returns ------- res : ndarray B-spline basis function values See Also -------- cubic : A cubic B-spline. quadratic : A quadratic B-spline. Notes ----- Uses numpy.piecewise and automatic function-generator. Examples -------- We can calculate B-Spline basis function of several orders: >>> from scipy.signal import bspline, cubic, quadratic >>> bspline(0.0, 1) 1 >>> knots = [-1.0, 0.0, -1.0] >>> bspline(knots, 2) array([0.125, 0.75, 0.125]) >>> np.array_equal(bspline(knots, 2), quadratic(knots)) True >>> np.array_equal(bspline(knots, 3), cubic(knots)) True """ ax = -abs(asarray(x)) # number of pieces on the left-side is (n+1)/2 funclist, condfuncs = _bspline_piecefunctions(n) condlist = [func(ax) for func in condfuncs] return piecewise(ax, condlist, funclist) def gauss_spline(x, n): r"""Gaussian approximation to B-spline basis function of order n. Parameters ---------- x : array_like a knot vector n : int The order of the spline. Must be non-negative, i.e., n >= 0 Returns ------- res : ndarray B-spline basis function values approximated by a zero-mean Gaussian function. Notes ----- The B-spline basis function can be approximated well by a zero-mean Gaussian function with standard-deviation equal to :math:`\sigma=(n+1)/12` for large `n` : .. math:: \frac{1}{\sqrt {2\pi\sigma^2}}exp(-\frac{x^2}{2\sigma}) References ---------- .. [1] Bouma H., Vilanova A., Bescos J.O., ter Haar Romeny B.M., Gerritsen F.A. (2007) Fast and Accurate Gaussian Derivatives Based on B-Splines. In: Sgallari F., Murli A., Paragios N. (eds) Scale Space and Variational Methods in Computer Vision. SSVM 2007. Lecture Notes in Computer Science, vol 4485. Springer, Berlin, Heidelberg .. [2] http://folk.uio.no/inf3330/scripting/doc/python/SciPy/tutorial/old/node24.html Examples -------- We can calculate B-Spline basis functions approximated by a gaussian distribution: >>> from scipy.signal import gauss_spline, bspline >>> knots = np.array([-1.0, 0.0, -1.0]) >>> gauss_spline(knots, 3) array([0.15418033, 0.6909883, 0.15418033]) # may vary >>> bspline(knots, 3) array([0.16666667, 0.66666667, 0.16666667]) # may vary """ x = asarray(x) signsq = (n + 1) / 12.0 return 1 / sqrt(2 * pi * signsq) * exp(-x ** 2 / 2 / signsq) def cubic(x): """A cubic B-spline. This is a special case of `bspline`, and equivalent to ``bspline(x, 3)``. Parameters ---------- x : array_like a knot vector Returns ------- res : ndarray Cubic B-spline basis function values See Also -------- bspline : B-spline basis function of order n quadratic : A quadratic B-spline. Examples -------- We can calculate B-Spline basis function of several orders: >>> from scipy.signal import bspline, cubic, quadratic >>> bspline(0.0, 1) 1 >>> knots = [-1.0, 0.0, -1.0] >>> bspline(knots, 2) array([0.125, 0.75, 0.125]) >>> np.array_equal(bspline(knots, 2), quadratic(knots)) True >>> np.array_equal(bspline(knots, 3), cubic(knots)) True """ ax = abs(asarray(x)) res = zeros_like(ax) cond1 = less(ax, 1) if cond1.any(): ax1 = ax[cond1] res[cond1] = 2.0 / 3 - 1.0 / 2 * ax1 ** 2 * (2 - ax1) cond2 = ~cond1 & less(ax, 2) if cond2.any(): ax2 = ax[cond2] res[cond2] = 1.0 / 6 * (2 - ax2) ** 3 return res def quadratic(x): """A quadratic B-spline. This is a special case of `bspline`, and equivalent to ``bspline(x, 2)``. Parameters ---------- x : array_like a knot vector Returns ------- res : ndarray Quadratic B-spline basis function values See Also -------- bspline : B-spline basis function of order n cubic : A cubic B-spline. Examples -------- We can calculate B-Spline basis function of several orders: >>> from scipy.signal import bspline, cubic, quadratic >>> bspline(0.0, 1) 1 >>> knots = [-1.0, 0.0, -1.0] >>> bspline(knots, 2) array([0.125, 0.75, 0.125]) >>> np.array_equal(bspline(knots, 2), quadratic(knots)) True >>> np.array_equal(bspline(knots, 3), cubic(knots)) True """ ax = abs(asarray(x)) res = zeros_like(ax) cond1 = less(ax, 0.5) if cond1.any(): ax1 = ax[cond1] res[cond1] = 0.75 - ax1 ** 2 cond2 = ~cond1 & less(ax, 1.5) if cond2.any(): ax2 = ax[cond2] res[cond2] = (ax2 - 1.5) ** 2 / 2.0 return res def _coeff_smooth(lam): xi = 1 - 96 * lam + 24 * lam * sqrt(3 + 144 * lam) omeg = arctan2(sqrt(144 * lam - 1), sqrt(xi)) rho = (24 * lam - 1 - sqrt(xi)) / (24 * lam) rho = rho * sqrt((48 * lam + 24 * lam * sqrt(3 + 144 * lam)) / xi) return rho, omeg def _hc(k, cs, rho, omega): return (cs / sin(omega) * (rho ** k) * sin(omega * (k + 1)) * greater(k, -1)) def _hs(k, cs, rho, omega): c0 = (cs * cs * (1 + rho * rho) / (1 - rho * rho) / (1 - 2 * rho * rho * cos(2 * omega) + rho ** 4)) gamma = (1 - rho * rho) / (1 + rho * rho) / tan(omega) ak = abs(k) return c0 * rho ** ak * (cos(omega * ak) + gamma * sin(omega * ak)) def _cubic_smooth_coeff(signal, lamb): rho, omega = _coeff_smooth(lamb) cs = 1 - 2 * rho * cos(omega) + rho * rho K = len(signal) yp = zeros((K,), signal.dtype.char) k = arange(K) yp[0] = (_hc(0, cs, rho, omega) * signal[0] + add.reduce(_hc(k + 1, cs, rho, omega) * signal)) yp[1] = (_hc(0, cs, rho, omega) * signal[0] + _hc(1, cs, rho, omega) * signal[1] + add.reduce(_hc(k + 2, cs, rho, omega) * signal)) for n in range(2, K): yp[n] = (cs * signal[n] + 2 * rho * cos(omega) * yp[n - 1] - rho * rho * yp[n - 2]) y = zeros((K,), signal.dtype.char) y[K - 1] = add.reduce((_hs(k, cs, rho, omega) + _hs(k + 1, cs, rho, omega)) * signal[::-1]) y[K - 2] = add.reduce((_hs(k - 1, cs, rho, omega) + _hs(k + 2, cs, rho, omega)) * signal[::-1]) for n in range(K - 3, -1, -1): y[n] = (cs * yp[n] + 2 * rho * cos(omega) * y[n + 1] - rho * rho * y[n + 2]) return y def _cubic_coeff(signal): zi = -2 + sqrt(3) K = len(signal) yplus = zeros((K,), signal.dtype.char) powers = zi ** arange(K) yplus[0] = signal[0] + zi * add.reduce(powers * signal) for k in range(1, K): yplus[k] = signal[k] + zi * yplus[k - 1] output = zeros((K,), signal.dtype) output[K - 1] = zi / (zi - 1) * yplus[K - 1] for k in range(K - 2, -1, -1): output[k] = zi * (output[k + 1] - yplus[k]) return output * 6.0 def _quadratic_coeff(signal): zi = -3 + 2 * sqrt(2.0) K = len(signal) yplus = zeros((K,), signal.dtype.char) powers = zi ** arange(K) yplus[0] = signal[0] + zi * add.reduce(powers * signal) for k in range(1, K): yplus[k] = signal[k] + zi * yplus[k - 1] output = zeros((K,), signal.dtype.char) output[K - 1] = zi / (zi - 1) * yplus[K - 1] for k in range(K - 2, -1, -1): output[k] = zi * (output[k + 1] - yplus[k]) return output * 8.0 def cspline1d(signal, lamb=0.0): """ Compute cubic spline coefficients for rank-1 array. Find the cubic spline coefficients for a 1-D signal assuming mirror-symmetric boundary conditions. To obtain the signal back from the spline representation mirror-symmetric-convolve these coefficients with a length 3 FIR window [1.0, 4.0, 1.0]/ 6.0 . Parameters ---------- signal : ndarray A rank-1 array representing samples of a signal. lamb : float, optional Smoothing coefficient, default is 0.0. Returns ------- c : ndarray Cubic spline coefficients. See Also -------- cspline1d_eval : Evaluate a cubic spline at the new set of points. Examples -------- We can filter a signal to reduce and smooth out high-frequency noise with a cubic spline: >>> import matplotlib.pyplot as plt >>> from scipy.signal import cspline1d, cspline1d_eval >>> rng = np.random.default_rng() >>> sig = np.repeat([0., 1., 0.], 100) >>> sig += rng.standard_normal(len(sig))*0.05 # add noise >>> time = np.linspace(0, len(sig)) >>> filtered = cspline1d_eval(cspline1d(sig), time) >>> plt.plot(sig, label="signal") >>> plt.plot(time, filtered, label="filtered") >>> plt.legend() >>> plt.show() """ if lamb != 0.0: return _cubic_smooth_coeff(signal, lamb) else: return _cubic_coeff(signal) def qspline1d(signal, lamb=0.0): """Compute quadratic spline coefficients for rank-1 array. Parameters ---------- signal : ndarray A rank-1 array representing samples of a signal. lamb : float, optional Smoothing coefficient (must be zero for now). Returns ------- c : ndarray Quadratic spline coefficients. See Also -------- qspline1d_eval : Evaluate a quadratic spline at the new set of points. Notes ----- Find the quadratic spline coefficients for a 1-D signal assuming mirror-symmetric boundary conditions. To obtain the signal back from the spline representation mirror-symmetric-convolve these coefficients with a length 3 FIR window [1.0, 6.0, 1.0]/ 8.0 . Examples -------- We can filter a signal to reduce and smooth out high-frequency noise with a quadratic spline: >>> import matplotlib.pyplot as plt >>> from scipy.signal import qspline1d, qspline1d_eval >>> rng = np.random.default_rng() >>> sig = np.repeat([0., 1., 0.], 100) >>> sig += rng.standard_normal(len(sig))*0.05 # add noise >>> time = np.linspace(0, len(sig)) >>> filtered = qspline1d_eval(qspline1d(sig), time) >>> plt.plot(sig, label="signal") >>> plt.plot(time, filtered, label="filtered") >>> plt.legend() >>> plt.show() """ if lamb != 0.0: raise ValueError("Smoothing quadratic splines not supported yet.") else: return _quadratic_coeff(signal) def cspline1d_eval(cj, newx, dx=1.0, x0=0): """Evaluate a cubic spline at the new set of points. `dx` is the old sample-spacing while `x0` was the old origin. In other-words the old-sample points (knot-points) for which the `cj` represent spline coefficients were at equally-spaced points of: oldx = x0 + j*dx j=0...N-1, with N=len(cj) Edges are handled using mirror-symmetric boundary conditions. Parameters ---------- cj : ndarray cublic spline coefficients newx : ndarray New set of points. dx : float, optional Old sample-spacing, the default value is 1.0. x0 : int, optional Old origin, the default value is 0. Returns ------- res : ndarray Evaluated a cubic spline points. See Also -------- cspline1d : Compute cubic spline coefficients for rank-1 array. Examples -------- We can filter a signal to reduce and smooth out high-frequency noise with a cubic spline: >>> import matplotlib.pyplot as plt >>> from scipy.signal import cspline1d, cspline1d_eval >>> rng = np.random.default_rng() >>> sig = np.repeat([0., 1., 0.], 100) >>> sig += rng.standard_normal(len(sig))*0.05 # add noise >>> time = np.linspace(0, len(sig)) >>> filtered = cspline1d_eval(cspline1d(sig), time) >>> plt.plot(sig, label="signal") >>> plt.plot(time, filtered, label="filtered") >>> plt.legend() >>> plt.show() """ newx = (asarray(newx) - x0) / float(dx) res = zeros_like(newx, dtype=cj.dtype) if res.size == 0: return res N = len(cj) cond1 = newx < 0 cond2 = newx > (N - 1) cond3 = ~(cond1 | cond2) # handle general mirror-symmetry res[cond1] = cspline1d_eval(cj, -newx[cond1]) res[cond2] = cspline1d_eval(cj, 2 * (N - 1) - newx[cond2]) newx = newx[cond3] if newx.size == 0: return res result = zeros_like(newx, dtype=cj.dtype) jlower = floor(newx - 2).astype(int) + 1 for i in range(4): thisj = jlower + i indj = thisj.clip(0, N - 1) # handle edge cases result += cj[indj] * cubic(newx - thisj) res[cond3] = result return res def qspline1d_eval(cj, newx, dx=1.0, x0=0): """Evaluate a quadratic spline at the new set of points. Parameters ---------- cj : ndarray Quadratic spline coefficients newx : ndarray New set of points. dx : float, optional Old sample-spacing, the default value is 1.0. x0 : int, optional Old origin, the default value is 0. Returns ------- res : ndarray Evaluated a quadratic spline points. See Also -------- qspline1d : Compute quadratic spline coefficients for rank-1 array. Notes ----- `dx` is the old sample-spacing while `x0` was the old origin. In other-words the old-sample points (knot-points) for which the `cj` represent spline coefficients were at equally-spaced points of:: oldx = x0 + j*dx j=0...N-1, with N=len(cj) Edges are handled using mirror-symmetric boundary conditions. Examples -------- We can filter a signal to reduce and smooth out high-frequency noise with a quadratic spline: >>> import matplotlib.pyplot as plt >>> from scipy.signal import qspline1d, qspline1d_eval >>> rng = np.random.default_rng() >>> sig = np.repeat([0., 1., 0.], 100) >>> sig += rng.standard_normal(len(sig))*0.05 # add noise >>> time = np.linspace(0, len(sig)) >>> filtered = qspline1d_eval(qspline1d(sig), time) >>> plt.plot(sig, label="signal") >>> plt.plot(time, filtered, label="filtered") >>> plt.legend() >>> plt.show() """ newx = (asarray(newx) - x0) / dx res = zeros_like(newx) if res.size == 0: return res N = len(cj) cond1 = newx < 0 cond2 = newx > (N - 1) cond3 = ~(cond1 | cond2) # handle general mirror-symmetry res[cond1] = qspline1d_eval(cj, -newx[cond1]) res[cond2] = qspline1d_eval(cj, 2 * (N - 1) - newx[cond2]) newx = newx[cond3] if newx.size == 0: return res result = zeros_like(newx) jlower = floor(newx - 1.5).astype(int) + 1 for i in range(3): thisj = jlower + i indj = thisj.clip(0, N - 1) # handle edge cases result += cj[indj] * quadratic(newx - thisj) res[cond3] = result return res
bsd-3-clause
mmaraya/nd101
ch02/lesson04/and.perceptron.py
1
1065
#!/usr/bin/env python import pandas as pd # Set weight1, weight2, and bias weight1 = 0.5 weight2 = 0.5 bias = -1.0 # DON'T CHANGE ANYTHING BELOW # Inputs and outputs test_inputs = [(0, 0), (0, 1), (1, 0), (1, 1)] correct_outputs = [False, False, False, True] outputs = [] # Generate and check output for test_input, correct_output in zip(test_inputs, correct_outputs): linear_combination = weight1 * test_input[0] + weight2 * test_input[1] + bias output = int(linear_combination >= 0) is_correct_string = 'Yes' if output == correct_output else 'No' outputs.append([test_input[0], test_input[1], linear_combination, output, is_correct_string]) # Print output num_wrong = len([output[4] for output in outputs if output[4] == 'No']) output_frame = pd.DataFrame(outputs, columns=['Input 1', ' Input 2', ' Linear Combination', ' Activation Output', ' Is Correct']) if not num_wrong: print('Nice! You got it all correct.\n') else: print('You got {} wrong. Keep trying!\n'.format(num_wrong)) print(output_frame.to_string(index=False))
mit
mahak/spark
python/pyspark/pandas/base.py
3
55960
# # Licensed to the Apache Software Foundation (ASF) under one or more # contributor license agreements. See the NOTICE file distributed with # this work for additional information regarding copyright ownership. # The ASF licenses this file to You under the Apache License, Version 2.0 # (the "License"); you may not use this file except in compliance with # the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # """ Base and utility classes for pandas-on-Spark objects. """ from abc import ABCMeta, abstractmethod from functools import wraps, partial from itertools import chain from typing import Any, Callable, Optional, Sequence, Tuple, Union, cast, TYPE_CHECKING import numpy as np import pandas as pd # noqa: F401 from pandas.api.types import is_list_like, CategoricalDtype from pyspark.sql import functions as F, Column, Window from pyspark.sql.types import ( DoubleType, FloatType, LongType, ) from pyspark import pandas as ps # For running doctests and reference resolution in PyCharm. from pyspark.pandas._typing import Axis, Dtype, IndexOpsLike, Label, SeriesOrIndex from pyspark.pandas.config import get_option, option_context from pyspark.pandas.internal import ( InternalField, InternalFrame, NATURAL_ORDER_COLUMN_NAME, SPARK_DEFAULT_INDEX_NAME, ) from pyspark.pandas.spark import functions as SF from pyspark.pandas.spark.accessors import SparkIndexOpsMethods from pyspark.pandas.typedef import extension_dtypes from pyspark.pandas.utils import ( combine_frames, same_anchor, scol_for, validate_axis, ERROR_MESSAGE_CANNOT_COMBINE, ) from pyspark.pandas.frame import DataFrame if TYPE_CHECKING: from pyspark.sql._typing import ColumnOrName # noqa: F401 (SPARK-34943) from pyspark.pandas.data_type_ops.base import DataTypeOps # noqa: F401 (SPARK-34943) from pyspark.pandas.series import Series # noqa: F401 (SPARK-34943) def should_alignment_for_column_op(self: SeriesOrIndex, other: SeriesOrIndex) -> bool: from pyspark.pandas.series import Series if isinstance(self, Series) and isinstance(other, Series): return not same_anchor(self, other) else: return self._internal.spark_frame is not other._internal.spark_frame def align_diff_index_ops( func: Callable[..., Column], this_index_ops: SeriesOrIndex, *args: Any ) -> SeriesOrIndex: """ Align the `IndexOpsMixin` objects and apply the function. Parameters ---------- func : The function to apply this_index_ops : IndexOpsMixin A base `IndexOpsMixin` object args : list of other arguments including other `IndexOpsMixin` objects Returns ------- `Index` if all `this_index_ops` and arguments are `Index`; otherwise `Series` """ from pyspark.pandas.indexes import Index from pyspark.pandas.series import Series, first_series cols = [arg for arg in args if isinstance(arg, IndexOpsMixin)] if isinstance(this_index_ops, Series) and all(isinstance(col, Series) for col in cols): combined = combine_frames( this_index_ops.to_frame(), *[cast(Series, col).rename(i) for i, col in enumerate(cols)], how="full" ) return column_op(func)( combined["this"]._psser_for(combined["this"]._internal.column_labels[0]), *[ combined["that"]._psser_for(label) for label in combined["that"]._internal.column_labels ] ).rename(this_index_ops.name) else: # This could cause as many counts, reset_index calls, joins for combining # as the number of `Index`s in `args`. So far it's fine since we can assume the ops # only work between at most two `Index`s. We might need to fix it in the future. self_len = len(this_index_ops) if any(len(col) != self_len for col in args if isinstance(col, IndexOpsMixin)): raise ValueError("operands could not be broadcast together with shapes") with option_context("compute.default_index_type", "distributed-sequence"): if isinstance(this_index_ops, Index) and all(isinstance(col, Index) for col in cols): return Index( column_op(func)( this_index_ops.to_series().reset_index(drop=True), *[ arg.to_series().reset_index(drop=True) if isinstance(arg, Index) else arg for arg in args ] ).sort_index(), name=this_index_ops.name, ) elif isinstance(this_index_ops, Series): this = cast(DataFrame, this_index_ops.reset_index()) that = [ cast(Series, col.to_series() if isinstance(col, Index) else col) .rename(i) .reset_index(drop=True) for i, col in enumerate(cols) ] combined = combine_frames(this, *that, how="full").sort_index() combined = combined.set_index( combined._internal.column_labels[: this_index_ops._internal.index_level] ) combined.index.names = this_index_ops._internal.index_names return column_op(func)( first_series(combined["this"]), *[ combined["that"]._psser_for(label) for label in combined["that"]._internal.column_labels ] ).rename(this_index_ops.name) else: this = cast(Index, this_index_ops).to_frame().reset_index(drop=True) that_series = next(col for col in cols if isinstance(col, Series)) that_frame = that_series._psdf[ [ cast(Series, col.to_series() if isinstance(col, Index) else col).rename(i) for i, col in enumerate(cols) ] ] combined = combine_frames(this, that_frame.reset_index()).sort_index() self_index = ( combined["this"].set_index(combined["this"]._internal.column_labels).index ) other = combined["that"].set_index( combined["that"]._internal.column_labels[: that_series._internal.index_level] ) other.index.names = that_series._internal.index_names return column_op(func)( self_index, *[ other._psser_for(label) for label, col in zip(other._internal.column_labels, cols) ] ).rename(that_series.name) def booleanize_null(scol: Column, f: Callable[..., Column]) -> Column: """ Booleanize Null in Spark Column """ comp_ops = [ getattr(Column, "__{}__".format(comp_op)) for comp_op in ["eq", "ne", "lt", "le", "ge", "gt"] ] if f in comp_ops: # if `f` is "!=", fill null with True otherwise False filler = f == Column.__ne__ scol = F.when(scol.isNull(), filler).otherwise(scol) return scol def column_op(f: Callable[..., Column]) -> Callable[..., SeriesOrIndex]: """ A decorator that wraps APIs taking/returning Spark Column so that pandas-on-Spark Series can be supported too. If this decorator is used for the `f` function that takes Spark Column and returns Spark Column, decorated `f` takes pandas-on-Spark Series as well and returns pandas-on-Spark Series. :param f: a function that takes Spark Column and returns Spark Column. :param self: pandas-on-Spark Series :param args: arguments that the function `f` takes. """ @wraps(f) def wrapper(self: SeriesOrIndex, *args: Any) -> SeriesOrIndex: from pyspark.pandas.indexes.base import Index from pyspark.pandas.series import Series # It is possible for the function `f` takes other arguments than Spark Column. # To cover this case, explicitly check if the argument is pandas-on-Spark Series and # extract Spark Column. For other arguments, they are used as are. cols = [arg for arg in args if isinstance(arg, (Series, Index))] if all(not should_alignment_for_column_op(self, col) for col in cols): # Same DataFrame anchors scol = f( self.spark.column, *[arg.spark.column if isinstance(arg, IndexOpsMixin) else arg for arg in args] ) field = InternalField.from_struct_field( self._internal.spark_frame.select(scol).schema[0], use_extension_dtypes=any( isinstance(col.dtype, extension_dtypes) for col in [self] + cols ), ) if not field.is_extension_dtype: scol = booleanize_null(scol, f).alias(field.name) if isinstance(self, Series) or not any(isinstance(col, Series) for col in cols): index_ops = self._with_new_scol(scol, field=field) else: psser = next(col for col in cols if isinstance(col, Series)) index_ops = psser._with_new_scol(scol, field=field) elif get_option("compute.ops_on_diff_frames"): index_ops = align_diff_index_ops(f, self, *args) else: raise ValueError(ERROR_MESSAGE_CANNOT_COMBINE) if not all(self.name == col.name for col in cols): index_ops = index_ops.rename(None) return index_ops return wrapper def numpy_column_op(f: Callable[..., Column]) -> Callable[..., SeriesOrIndex]: @wraps(f) def wrapper(self: SeriesOrIndex, *args: Any) -> SeriesOrIndex: # PySpark does not support NumPy type out of the box. For now, we convert NumPy types # into some primitive types understandable in PySpark. new_args = [] for arg in args: # TODO: This is a quick hack to support NumPy type. We should revisit this. if isinstance(self.spark.data_type, LongType) and isinstance(arg, np.timedelta64): new_args.append(float(arg / np.timedelta64(1, "s"))) else: new_args.append(arg) return column_op(f)(self, *new_args) return wrapper class IndexOpsMixin(object, metaclass=ABCMeta): """common ops mixin to support a unified interface / docs for Series / Index Assuming there are following attributes or properties and function. """ @property @abstractmethod def _internal(self) -> InternalFrame: pass @property @abstractmethod def _psdf(self) -> DataFrame: pass @abstractmethod def _with_new_scol( self: IndexOpsLike, scol: Column, *, field: Optional[InternalField] = None ) -> IndexOpsLike: pass @property @abstractmethod def _column_label(self) -> Optional[Label]: pass @property @abstractmethod def spark(self: IndexOpsLike) -> SparkIndexOpsMethods[IndexOpsLike]: pass @property def _dtype_op(self) -> "DataTypeOps": from pyspark.pandas.data_type_ops.base import DataTypeOps return DataTypeOps(self.dtype, self.spark.data_type) @abstractmethod def copy(self: IndexOpsLike) -> IndexOpsLike: pass # arithmetic operators def __neg__(self: IndexOpsLike) -> IndexOpsLike: return cast(IndexOpsLike, column_op(Column.__neg__)(self)) def __add__(self, other: Any) -> SeriesOrIndex: return self._dtype_op.add(self, other) def __sub__(self, other: Any) -> SeriesOrIndex: return self._dtype_op.sub(self, other) def __mul__(self, other: Any) -> SeriesOrIndex: return self._dtype_op.mul(self, other) def __truediv__(self, other: Any) -> SeriesOrIndex: """ __truediv__ has different behaviour between pandas and PySpark for several cases. 1. When divide np.inf by zero, PySpark returns null whereas pandas returns np.inf 2. When divide positive number by zero, PySpark returns null whereas pandas returns np.inf 3. When divide -np.inf by zero, PySpark returns null whereas pandas returns -np.inf 4. When divide negative number by zero, PySpark returns null whereas pandas returns -np.inf +-------------------------------------------+ | dividend (divisor: 0) | PySpark | pandas | |-----------------------|---------|---------| | np.inf | null | np.inf | | -np.inf | null | -np.inf | | 10 | null | np.inf | | -10 | null | -np.inf | +-----------------------|---------|---------+ """ return self._dtype_op.truediv(self, other) def __mod__(self, other: Any) -> SeriesOrIndex: return self._dtype_op.mod(self, other) def __radd__(self, other: Any) -> SeriesOrIndex: return self._dtype_op.radd(self, other) def __rsub__(self, other: Any) -> SeriesOrIndex: return self._dtype_op.rsub(self, other) def __rmul__(self, other: Any) -> SeriesOrIndex: return self._dtype_op.rmul(self, other) def __rtruediv__(self, other: Any) -> SeriesOrIndex: return self._dtype_op.rtruediv(self, other) def __floordiv__(self, other: Any) -> SeriesOrIndex: """ __floordiv__ has different behaviour between pandas and PySpark for several cases. 1. When divide np.inf by zero, PySpark returns null whereas pandas returns np.inf 2. When divide positive number by zero, PySpark returns null whereas pandas returns np.inf 3. When divide -np.inf by zero, PySpark returns null whereas pandas returns -np.inf 4. When divide negative number by zero, PySpark returns null whereas pandas returns -np.inf +-------------------------------------------+ | dividend (divisor: 0) | PySpark | pandas | |-----------------------|---------|---------| | np.inf | null | np.inf | | -np.inf | null | -np.inf | | 10 | null | np.inf | | -10 | null | -np.inf | +-----------------------|---------|---------+ """ return self._dtype_op.floordiv(self, other) def __rfloordiv__(self, other: Any) -> SeriesOrIndex: return self._dtype_op.rfloordiv(self, other) def __rmod__(self, other: Any) -> SeriesOrIndex: return self._dtype_op.rmod(self, other) def __pow__(self, other: Any) -> SeriesOrIndex: return self._dtype_op.pow(self, other) def __rpow__(self, other: Any) -> SeriesOrIndex: return self._dtype_op.rpow(self, other) def __abs__(self: IndexOpsLike) -> IndexOpsLike: return cast(IndexOpsLike, column_op(F.abs)(self)) # comparison operators def __eq__(self, other: Any) -> SeriesOrIndex: # type: ignore[override] return column_op(Column.__eq__)(self, other) def __ne__(self, other: Any) -> SeriesOrIndex: # type: ignore[override] return column_op(Column.__ne__)(self, other) __lt__ = column_op(Column.__lt__) __le__ = column_op(Column.__le__) __ge__ = column_op(Column.__ge__) __gt__ = column_op(Column.__gt__) def __invert__(self: IndexOpsLike) -> IndexOpsLike: return cast(IndexOpsLike, column_op(Column.__invert__)(self)) # `and`, `or`, `not` cannot be overloaded in Python, # so use bitwise operators as boolean operators def __and__(self, other: Any) -> SeriesOrIndex: return self._dtype_op.__and__(self, other) def __or__(self, other: Any) -> SeriesOrIndex: return self._dtype_op.__or__(self, other) def __rand__(self, other: Any) -> SeriesOrIndex: return self._dtype_op.rand(self, other) def __ror__(self, other: Any) -> SeriesOrIndex: return self._dtype_op.ror(self, other) def __len__(self) -> int: return len(self._psdf) # NDArray Compat def __array_ufunc__( self, ufunc: Callable, method: str, *inputs: Any, **kwargs: Any ) -> SeriesOrIndex: from pyspark.pandas import numpy_compat # Try dunder methods first. result = numpy_compat.maybe_dispatch_ufunc_to_dunder_op( self, ufunc, method, *inputs, **kwargs ) # After that, we try with PySpark APIs. if result is NotImplemented: result = numpy_compat.maybe_dispatch_ufunc_to_spark_func( self, ufunc, method, *inputs, **kwargs ) if result is not NotImplemented: return cast(SeriesOrIndex, result) else: # TODO: support more APIs? raise NotImplementedError( "pandas-on-Spark objects currently do not support %s." % ufunc ) @property def dtype(self) -> Dtype: """Return the dtype object of the underlying data. Examples -------- >>> s = ps.Series([1, 2, 3]) >>> s.dtype dtype('int64') >>> s = ps.Series(list('abc')) >>> s.dtype dtype('O') >>> s = ps.Series(pd.date_range('20130101', periods=3)) >>> s.dtype dtype('<M8[ns]') >>> s.rename("a").to_frame().set_index("a").index.dtype dtype('<M8[ns]') """ return self._internal.data_fields[0].dtype @property def empty(self) -> bool: """ Returns true if the current object is empty. Otherwise, returns false. >>> ps.range(10).id.empty False >>> ps.range(0).id.empty True >>> ps.DataFrame({}, index=list('abc')).index.empty False """ return self._internal.resolved_copy.spark_frame.rdd.isEmpty() @property def hasnans(self) -> bool: """ Return True if it has any missing values. Otherwise, it returns False. >>> ps.DataFrame({}, index=list('abc')).index.hasnans False >>> ps.Series(['a', None]).hasnans True >>> ps.Series([1.0, 2.0, np.nan]).hasnans True >>> ps.Series([1, 2, 3]).hasnans False >>> (ps.Series([1.0, 2.0, np.nan]) + 1).hasnans True >>> ps.Series([1, 2, 3]).rename("a").to_frame().set_index("a").index.hasnans False """ sdf = self._internal.spark_frame scol = self.spark.column if isinstance(self.spark.data_type, (DoubleType, FloatType)): return sdf.select(F.max(scol.isNull() | F.isnan(scol))).collect()[0][0] else: return sdf.select(F.max(scol.isNull())).collect()[0][0] @property def is_monotonic(self) -> bool: """ Return boolean if values in the object are monotonically increasing. .. note:: the current implementation of is_monotonic requires to shuffle and aggregate multiple times to check the order locally and globally, which is potentially expensive. In case of multi-index, all data are transferred to single node which can easily cause out-of-memory error currently. .. note:: Disable the Spark config `spark.sql.optimizer.nestedSchemaPruning.enabled` for multi-index if you're using pandas-on-Spark < 1.7.0 with PySpark 3.1.1. Returns ------- is_monotonic : bool Examples -------- >>> ser = ps.Series(['1/1/2018', '3/1/2018', '4/1/2018']) >>> ser.is_monotonic True >>> df = ps.DataFrame({'dates': [None, '1/1/2018', '2/1/2018', '3/1/2018']}) >>> df.dates.is_monotonic False >>> df.index.is_monotonic True >>> ser = ps.Series([1]) >>> ser.is_monotonic True >>> ser = ps.Series([]) >>> ser.is_monotonic True >>> ser.rename("a").to_frame().set_index("a").index.is_monotonic True >>> ser = ps.Series([5, 4, 3, 2, 1], index=[1, 2, 3, 4, 5]) >>> ser.is_monotonic False >>> ser.index.is_monotonic True Support for MultiIndex >>> midx = ps.MultiIndex.from_tuples( ... [('x', 'a'), ('x', 'b'), ('y', 'c'), ('y', 'd'), ('z', 'e')]) >>> midx # doctest: +SKIP MultiIndex([('x', 'a'), ('x', 'b'), ('y', 'c'), ('y', 'd'), ('z', 'e')], ) >>> midx.is_monotonic True >>> midx = ps.MultiIndex.from_tuples( ... [('z', 'a'), ('z', 'b'), ('y', 'c'), ('y', 'd'), ('x', 'e')]) >>> midx # doctest: +SKIP MultiIndex([('z', 'a'), ('z', 'b'), ('y', 'c'), ('y', 'd'), ('x', 'e')], ) >>> midx.is_monotonic False """ return self._is_monotonic("increasing") is_monotonic_increasing = is_monotonic @property def is_monotonic_decreasing(self) -> bool: """ Return boolean if values in the object are monotonically decreasing. .. note:: the current implementation of is_monotonic_decreasing requires to shuffle and aggregate multiple times to check the order locally and globally, which is potentially expensive. In case of multi-index, all data are transferred to single node which can easily cause out-of-memory error currently. .. note:: Disable the Spark config `spark.sql.optimizer.nestedSchemaPruning.enabled` for multi-index if you're using pandas-on-Spark < 1.7.0 with PySpark 3.1.1. Returns ------- is_monotonic : bool Examples -------- >>> ser = ps.Series(['4/1/2018', '3/1/2018', '1/1/2018']) >>> ser.is_monotonic_decreasing True >>> df = ps.DataFrame({'dates': [None, '3/1/2018', '2/1/2018', '1/1/2018']}) >>> df.dates.is_monotonic_decreasing False >>> df.index.is_monotonic_decreasing False >>> ser = ps.Series([1]) >>> ser.is_monotonic_decreasing True >>> ser = ps.Series([]) >>> ser.is_monotonic_decreasing True >>> ser.rename("a").to_frame().set_index("a").index.is_monotonic_decreasing True >>> ser = ps.Series([5, 4, 3, 2, 1], index=[1, 2, 3, 4, 5]) >>> ser.is_monotonic_decreasing True >>> ser.index.is_monotonic_decreasing False Support for MultiIndex >>> midx = ps.MultiIndex.from_tuples( ... [('x', 'a'), ('x', 'b'), ('y', 'c'), ('y', 'd'), ('z', 'e')]) >>> midx # doctest: +SKIP MultiIndex([('x', 'a'), ('x', 'b'), ('y', 'c'), ('y', 'd'), ('z', 'e')], ) >>> midx.is_monotonic_decreasing False >>> midx = ps.MultiIndex.from_tuples( ... [('z', 'e'), ('z', 'd'), ('y', 'c'), ('y', 'b'), ('x', 'a')]) >>> midx # doctest: +SKIP MultiIndex([('z', 'a'), ('z', 'b'), ('y', 'c'), ('y', 'd'), ('x', 'e')], ) >>> midx.is_monotonic_decreasing True """ return self._is_monotonic("decreasing") def _is_locally_monotonic_spark_column(self, order: str) -> Column: window = ( Window.partitionBy(F.col("__partition_id")) .orderBy(NATURAL_ORDER_COLUMN_NAME) .rowsBetween(-1, -1) ) if order == "increasing": return (F.col("__origin") >= F.lag(F.col("__origin"), 1).over(window)) & F.col( "__origin" ).isNotNull() else: return (F.col("__origin") <= F.lag(F.col("__origin"), 1).over(window)) & F.col( "__origin" ).isNotNull() def _is_monotonic(self, order: str) -> bool: assert order in ("increasing", "decreasing") sdf = self._internal.spark_frame sdf = ( sdf.select( F.spark_partition_id().alias( "__partition_id" ), # Make sure we use the same partition id in the whole job. F.col(NATURAL_ORDER_COLUMN_NAME), self.spark.column.alias("__origin"), ) .select( F.col("__partition_id"), F.col("__origin"), self._is_locally_monotonic_spark_column(order).alias( "__comparison_within_partition" ), ) .groupby(F.col("__partition_id")) .agg( F.min(F.col("__origin")).alias("__partition_min"), F.max(F.col("__origin")).alias("__partition_max"), F.min(F.coalesce(F.col("__comparison_within_partition"), SF.lit(True))).alias( "__comparison_within_partition" ), ) ) # Now we're windowing the aggregation results without partition specification. # The number of rows here will be as the same of partitions, which is expected # to be small. window = Window.orderBy(F.col("__partition_id")).rowsBetween(-1, -1) if order == "increasing": comparison_col = F.col("__partition_min") >= F.lag(F.col("__partition_max"), 1).over( window ) else: comparison_col = F.col("__partition_min") <= F.lag(F.col("__partition_max"), 1).over( window ) sdf = sdf.select( comparison_col.alias("__comparison_between_partitions"), F.col("__comparison_within_partition"), ) ret = sdf.select( F.min(F.coalesce(F.col("__comparison_between_partitions"), SF.lit(True))) & F.min(F.coalesce(F.col("__comparison_within_partition"), SF.lit(True))) ).collect()[0][0] if ret is None: return True else: return ret @property def ndim(self) -> int: """ Return an int representing the number of array dimensions. Return 1 for Series / Index / MultiIndex. Examples -------- For Series >>> s = ps.Series([None, 1, 2, 3, 4], index=[4, 5, 2, 1, 8]) >>> s.ndim 1 For Index >>> s.index.ndim 1 For MultiIndex >>> midx = pd.MultiIndex([['lama', 'cow', 'falcon'], ... ['speed', 'weight', 'length']], ... [[0, 0, 0, 1, 1, 1, 2, 2, 2], ... [1, 1, 1, 1, 1, 2, 1, 2, 2]]) >>> s = ps.Series([45, 200, 1.2, 30, 250, 1.5, 320, 1, 0.3], index=midx) >>> s.index.ndim 1 """ return 1 def astype(self: IndexOpsLike, dtype: Union[str, type, Dtype]) -> IndexOpsLike: """ Cast a pandas-on-Spark object to a specified dtype ``dtype``. Parameters ---------- dtype : data type Use a numpy.dtype or Python type to cast entire pandas object to the same type. Returns ------- casted : same type as caller See Also -------- to_datetime : Convert argument to datetime. Examples -------- >>> ser = ps.Series([1, 2], dtype='int32') >>> ser 0 1 1 2 dtype: int32 >>> ser.astype('int64') 0 1 1 2 dtype: int64 >>> ser.rename("a").to_frame().set_index("a").index.astype('int64') Int64Index([1, 2], dtype='int64', name='a') """ return self._dtype_op.astype(self, dtype) def isin(self: IndexOpsLike, values: Sequence[Any]) -> IndexOpsLike: """ Check whether `values` are contained in Series or Index. Return a boolean Series or Index showing whether each element in the Series matches an element in the passed sequence of `values` exactly. Parameters ---------- values : set or list-like The sequence of values to test. Returns ------- isin : Series (bool dtype) or Index (bool dtype) Examples -------- >>> s = ps.Series(['lama', 'cow', 'lama', 'beetle', 'lama', ... 'hippo'], name='animal') >>> s.isin(['cow', 'lama']) 0 True 1 True 2 True 3 False 4 True 5 False Name: animal, dtype: bool Passing a single string as ``s.isin('lama')`` will raise an error. Use a list of one element instead: >>> s.isin(['lama']) 0 True 1 False 2 True 3 False 4 True 5 False Name: animal, dtype: bool >>> s.rename("a").to_frame().set_index("a").index.isin(['lama']) Index([True, False, True, False, True, False], dtype='object', name='a') """ if not is_list_like(values): raise TypeError( "only list-like objects are allowed to be passed" " to isin(), you passed a [{values_type}]".format(values_type=type(values).__name__) ) values = values.tolist() if isinstance(values, np.ndarray) else list(values) return self._with_new_scol(self.spark.column.isin([SF.lit(v) for v in values])) def isnull(self: IndexOpsLike) -> IndexOpsLike: """ Detect existing (non-missing) values. Return a boolean same-sized object indicating if the values are NA. NA values, such as None or numpy.NaN, gets mapped to True values. Everything else gets mapped to False values. Characters such as empty strings '' or numpy.inf are not considered NA values (unless you set pandas.options.mode.use_inf_as_na = True). Returns ------- Series or Index : Mask of bool values for each element in Series that indicates whether an element is not an NA value. Examples -------- >>> ser = ps.Series([5, 6, np.NaN]) >>> ser.isna() # doctest: +NORMALIZE_WHITESPACE 0 False 1 False 2 True dtype: bool >>> ser.rename("a").to_frame().set_index("a").index.isna() Index([False, False, True], dtype='object', name='a') """ from pyspark.pandas.indexes import MultiIndex if isinstance(self, MultiIndex): raise NotImplementedError("isna is not defined for MultiIndex") return self._dtype_op.isnull(self) isna = isnull def notnull(self: IndexOpsLike) -> IndexOpsLike: """ Detect existing (non-missing) values. Return a boolean same-sized object indicating if the values are not NA. Non-missing values get mapped to True. Characters such as empty strings '' or numpy.inf are not considered NA values (unless you set pandas.options.mode.use_inf_as_na = True). NA values, such as None or numpy.NaN, get mapped to False values. Returns ------- Series or Index : Mask of bool values for each element in Series that indicates whether an element is not an NA value. Examples -------- Show which entries in a Series are not NA. >>> ser = ps.Series([5, 6, np.NaN]) >>> ser 0 5.0 1 6.0 2 NaN dtype: float64 >>> ser.notna() 0 True 1 True 2 False dtype: bool >>> ser.rename("a").to_frame().set_index("a").index.notna() Index([True, True, False], dtype='object', name='a') """ from pyspark.pandas.indexes import MultiIndex if isinstance(self, MultiIndex): raise NotImplementedError("notna is not defined for MultiIndex") return (~self.isnull()).rename(self.name) # type: ignore notna = notnull # TODO: axis, skipna, and many arguments should be implemented. def all(self, axis: Axis = 0) -> bool: """ Return whether all elements are True. Returns True unless there at least one element within a series that is False or equivalent (e.g. zero or empty) Parameters ---------- axis : {0 or 'index'}, default 0 Indicate which axis or axes should be reduced. * 0 / 'index' : reduce the index, return a Series whose index is the original column labels. Examples -------- >>> ps.Series([True, True]).all() True >>> ps.Series([True, False]).all() False >>> ps.Series([0, 1]).all() False >>> ps.Series([1, 2, 3]).all() True >>> ps.Series([True, True, None]).all() True >>> ps.Series([True, False, None]).all() False >>> ps.Series([]).all() True >>> ps.Series([np.nan]).all() True >>> df = ps.Series([True, False, None]).rename("a").to_frame() >>> df.set_index("a").index.all() False """ axis = validate_axis(axis) if axis != 0: raise NotImplementedError('axis should be either 0 or "index" currently.') sdf = self._internal.spark_frame.select(self.spark.column) col = scol_for(sdf, sdf.columns[0]) # Note that we're ignoring `None`s here for now. # any and every was added as of Spark 3.0 # ret = sdf.select(F.expr("every(CAST(`%s` AS BOOLEAN))" % sdf.columns[0])).collect()[0][0] # Here we use min as its alternative: ret = sdf.select(F.min(F.coalesce(col.cast("boolean"), SF.lit(True)))).collect()[0][0] if ret is None: return True else: return ret # TODO: axis, skipna, and many arguments should be implemented. def any(self, axis: Axis = 0) -> bool: """ Return whether any element is True. Returns False unless there at least one element within a series that is True or equivalent (e.g. non-zero or non-empty). Parameters ---------- axis : {0 or 'index'}, default 0 Indicate which axis or axes should be reduced. * 0 / 'index' : reduce the index, return a Series whose index is the original column labels. Examples -------- >>> ps.Series([False, False]).any() False >>> ps.Series([True, False]).any() True >>> ps.Series([0, 0]).any() False >>> ps.Series([0, 1, 2]).any() True >>> ps.Series([False, False, None]).any() False >>> ps.Series([True, False, None]).any() True >>> ps.Series([]).any() False >>> ps.Series([np.nan]).any() False >>> df = ps.Series([True, False, None]).rename("a").to_frame() >>> df.set_index("a").index.any() True """ axis = validate_axis(axis) if axis != 0: raise NotImplementedError('axis should be either 0 or "index" currently.') sdf = self._internal.spark_frame.select(self.spark.column) col = scol_for(sdf, sdf.columns[0]) # Note that we're ignoring `None`s here for now. # any and every was added as of Spark 3.0 # ret = sdf.select(F.expr("any(CAST(`%s` AS BOOLEAN))" % sdf.columns[0])).collect()[0][0] # Here we use max as its alternative: ret = sdf.select(F.max(F.coalesce(col.cast("boolean"), SF.lit(False)))).collect()[0][0] if ret is None: return False else: return ret # TODO: add frep and axis parameter def shift( self: IndexOpsLike, periods: int = 1, fill_value: Optional[Any] = None ) -> IndexOpsLike: """ Shift Series/Index by desired number of periods. .. note:: the current implementation of shift uses Spark's Window without specifying partition specification. This leads to move all data into single partition in single machine and could cause serious performance degradation. Avoid this method against very large dataset. Parameters ---------- periods : int Number of periods to shift. Can be positive or negative. fill_value : object, optional The scalar value to use for newly introduced missing values. The default depends on the dtype of self. For numeric data, np.nan is used. Returns ------- Copy of input Series/Index, shifted. Examples -------- >>> df = ps.DataFrame({'Col1': [10, 20, 15, 30, 45], ... 'Col2': [13, 23, 18, 33, 48], ... 'Col3': [17, 27, 22, 37, 52]}, ... columns=['Col1', 'Col2', 'Col3']) >>> df.Col1.shift(periods=3) 0 NaN 1 NaN 2 NaN 3 10.0 4 20.0 Name: Col1, dtype: float64 >>> df.Col2.shift(periods=3, fill_value=0) 0 0 1 0 2 0 3 13 4 23 Name: Col2, dtype: int64 >>> df.index.shift(periods=3, fill_value=0) Int64Index([0, 0, 0, 0, 1], dtype='int64') """ return self._shift(periods, fill_value).spark.analyzed def _shift( self: IndexOpsLike, periods: int, fill_value: Any, *, part_cols: Sequence["ColumnOrName"] = () ) -> IndexOpsLike: if not isinstance(periods, int): raise TypeError("periods should be an int; however, got [%s]" % type(periods).__name__) col = self.spark.column window = ( Window.partitionBy(*part_cols) .orderBy(NATURAL_ORDER_COLUMN_NAME) .rowsBetween(-periods, -periods) ) lag_col = F.lag(col, periods).over(window) col = F.when(lag_col.isNull() | F.isnan(lag_col), fill_value).otherwise(lag_col) return self._with_new_scol(col, field=self._internal.data_fields[0].copy(nullable=True)) # TODO: Update Documentation for Bins Parameter when its supported def value_counts( self, normalize: bool = False, sort: bool = True, ascending: bool = False, bins: None = None, dropna: bool = True, ) -> "Series": """ Return a Series containing counts of unique values. The resulting object will be in descending order so that the first element is the most frequently-occurring element. Excludes NA values by default. Parameters ---------- normalize : boolean, default False If True then the object returned will contain the relative frequencies of the unique values. sort : boolean, default True Sort by values. ascending : boolean, default False Sort in ascending order. bins : Not Yet Supported dropna : boolean, default True Don't include counts of NaN. Returns ------- counts : Series See Also -------- Series.count: Number of non-NA elements in a Series. Examples -------- For Series >>> df = ps.DataFrame({'x':[0, 0, 1, 1, 1, np.nan]}) >>> df.x.value_counts() # doctest: +NORMALIZE_WHITESPACE 1.0 3 0.0 2 Name: x, dtype: int64 With `normalize` set to `True`, returns the relative frequency by dividing all values by the sum of values. >>> df.x.value_counts(normalize=True) # doctest: +NORMALIZE_WHITESPACE 1.0 0.6 0.0 0.4 Name: x, dtype: float64 **dropna** With `dropna` set to `False` we can also see NaN index values. >>> df.x.value_counts(dropna=False) # doctest: +NORMALIZE_WHITESPACE 1.0 3 0.0 2 NaN 1 Name: x, dtype: int64 For Index >>> idx = ps.Index([3, 1, 2, 3, 4, np.nan]) >>> idx Float64Index([3.0, 1.0, 2.0, 3.0, 4.0, nan], dtype='float64') >>> idx.value_counts().sort_index() 1.0 1 2.0 1 3.0 2 4.0 1 dtype: int64 **sort** With `sort` set to `False`, the result wouldn't be sorted by number of count. >>> idx.value_counts(sort=True).sort_index() 1.0 1 2.0 1 3.0 2 4.0 1 dtype: int64 **normalize** With `normalize` set to `True`, returns the relative frequency by dividing all values by the sum of values. >>> idx.value_counts(normalize=True).sort_index() 1.0 0.2 2.0 0.2 3.0 0.4 4.0 0.2 dtype: float64 **dropna** With `dropna` set to `False` we can also see NaN index values. >>> idx.value_counts(dropna=False).sort_index() # doctest: +SKIP 1.0 1 2.0 1 3.0 2 4.0 1 NaN 1 dtype: int64 For MultiIndex. >>> midx = pd.MultiIndex([['lama', 'cow', 'falcon'], ... ['speed', 'weight', 'length']], ... [[0, 0, 0, 1, 1, 1, 2, 2, 2], ... [1, 1, 1, 1, 1, 2, 1, 2, 2]]) >>> s = ps.Series([45, 200, 1.2, 30, 250, 1.5, 320, 1, 0.3], index=midx) >>> s.index # doctest: +SKIP MultiIndex([( 'lama', 'weight'), ( 'lama', 'weight'), ( 'lama', 'weight'), ( 'cow', 'weight'), ( 'cow', 'weight'), ( 'cow', 'length'), ('falcon', 'weight'), ('falcon', 'length'), ('falcon', 'length')], ) >>> s.index.value_counts().sort_index() (cow, length) 1 (cow, weight) 2 (falcon, length) 2 (falcon, weight) 1 (lama, weight) 3 dtype: int64 >>> s.index.value_counts(normalize=True).sort_index() (cow, length) 0.111111 (cow, weight) 0.222222 (falcon, length) 0.222222 (falcon, weight) 0.111111 (lama, weight) 0.333333 dtype: float64 If Index has name, keep the name up. >>> idx = ps.Index([0, 0, 0, 1, 1, 2, 3], name='pandas-on-Spark') >>> idx.value_counts().sort_index() 0 3 1 2 2 1 3 1 Name: pandas-on-Spark, dtype: int64 """ from pyspark.pandas.series import first_series if bins is not None: raise NotImplementedError("value_counts currently does not support bins") if dropna: sdf_dropna = self._internal.spark_frame.select(self.spark.column).dropna() else: sdf_dropna = self._internal.spark_frame.select(self.spark.column) index_name = SPARK_DEFAULT_INDEX_NAME column_name = self._internal.data_spark_column_names[0] sdf = sdf_dropna.groupby(scol_for(sdf_dropna, column_name).alias(index_name)).count() if sort: if ascending: sdf = sdf.orderBy(F.col("count")) else: sdf = sdf.orderBy(F.col("count").desc()) if normalize: sum = sdf_dropna.count() sdf = sdf.withColumn("count", F.col("count") / SF.lit(sum)) internal = InternalFrame( spark_frame=sdf, index_spark_columns=[scol_for(sdf, index_name)], column_labels=self._internal.column_labels, data_spark_columns=[scol_for(sdf, "count")], column_label_names=self._internal.column_label_names, ) return first_series(DataFrame(internal)) def nunique(self, dropna: bool = True, approx: bool = False, rsd: float = 0.05) -> int: """ Return number of unique elements in the object. Excludes NA values by default. Parameters ---------- dropna : bool, default True Don’t include NaN in the count. approx: bool, default False If False, will use the exact algorithm and return the exact number of unique. If True, it uses the HyperLogLog approximate algorithm, which is significantly faster for large amount of data. Note: This parameter is specific to pandas-on-Spark and is not found in pandas. rsd: float, default 0.05 Maximum estimation error allowed in the HyperLogLog algorithm. Note: Just like ``approx`` this parameter is specific to pandas-on-Spark. Returns ------- int See Also -------- DataFrame.nunique: Method nunique for DataFrame. Series.count: Count non-NA/null observations in the Series. Examples -------- >>> ps.Series([1, 2, 3, np.nan]).nunique() 3 >>> ps.Series([1, 2, 3, np.nan]).nunique(dropna=False) 4 On big data, we recommend using the approximate algorithm to speed up this function. The result will be very close to the exact unique count. >>> ps.Series([1, 2, 3, np.nan]).nunique(approx=True) 3 >>> idx = ps.Index([1, 1, 2, None]) >>> idx Float64Index([1.0, 1.0, 2.0, nan], dtype='float64') >>> idx.nunique() 2 >>> idx.nunique(dropna=False) 3 """ res = self._internal.spark_frame.select([self._nunique(dropna, approx, rsd)]) return res.collect()[0][0] def _nunique(self, dropna: bool = True, approx: bool = False, rsd: float = 0.05) -> Column: colname = self._internal.data_spark_column_names[0] count_fn = cast( Callable[[Column], Column], partial(F.approx_count_distinct, rsd=rsd) if approx else F.countDistinct, ) if dropna: return count_fn(self.spark.column).alias(colname) else: return ( count_fn(self.spark.column) + F.when( F.count(F.when(self.spark.column.isNull(), 1).otherwise(None)) >= 1, 1 ).otherwise(0) ).alias(colname) def take(self: IndexOpsLike, indices: Sequence[int]) -> IndexOpsLike: """ Return the elements in the given *positional* indices along an axis. This means that we are not indexing according to actual values in the index attribute of the object. We are indexing according to the actual position of the element in the object. Parameters ---------- indices : array-like An array of ints indicating which positions to take. Returns ------- taken : same type as caller An array-like containing the elements taken from the object. See Also -------- DataFrame.loc : Select a subset of a DataFrame by labels. DataFrame.iloc : Select a subset of a DataFrame by positions. numpy.take : Take elements from an array along an axis. Examples -------- Series >>> psser = ps.Series([100, 200, 300, 400, 500]) >>> psser 0 100 1 200 2 300 3 400 4 500 dtype: int64 >>> psser.take([0, 2, 4]).sort_index() 0 100 2 300 4 500 dtype: int64 Index >>> psidx = ps.Index([100, 200, 300, 400, 500]) >>> psidx Int64Index([100, 200, 300, 400, 500], dtype='int64') >>> psidx.take([0, 2, 4]).sort_values() Int64Index([100, 300, 500], dtype='int64') MultiIndex >>> psmidx = ps.MultiIndex.from_tuples([("x", "a"), ("x", "b"), ("x", "c")]) >>> psmidx # doctest: +SKIP MultiIndex([('x', 'a'), ('x', 'b'), ('x', 'c')], ) >>> psmidx.take([0, 2]) # doctest: +SKIP MultiIndex([('x', 'a'), ('x', 'c')], ) """ if not is_list_like(indices) or isinstance(indices, (dict, set)): raise TypeError("`indices` must be a list-like except dict or set") if isinstance(self, ps.Series): return cast(IndexOpsLike, self.iloc[indices]) else: return cast(IndexOpsLike, self._psdf.iloc[indices].index) def factorize( self: IndexOpsLike, sort: bool = True, na_sentinel: Optional[int] = -1 ) -> Tuple[IndexOpsLike, pd.Index]: """ Encode the object as an enumerated type or categorical variable. This method is useful for obtaining a numeric representation of an array when all that matters is identifying distinct values. Parameters ---------- sort : bool, default True na_sentinel : int or None, default -1 Value to mark "not found". If None, will not drop the NaN from the uniques of the values. Returns ------- codes : Series or Index A Series or Index that's an indexer into `uniques`. ``uniques.take(codes)`` will have the same values as `values`. uniques : pd.Index The unique valid values. .. note :: Even if there's a missing value in `values`, `uniques` will *not* contain an entry for it. Examples -------- >>> psser = ps.Series(['b', None, 'a', 'c', 'b']) >>> codes, uniques = psser.factorize() >>> codes 0 1 1 -1 2 0 3 2 4 1 dtype: int32 >>> uniques Index(['a', 'b', 'c'], dtype='object') >>> codes, uniques = psser.factorize(na_sentinel=None) >>> codes 0 1 1 3 2 0 3 2 4 1 dtype: int32 >>> uniques Index(['a', 'b', 'c', None], dtype='object') >>> codes, uniques = psser.factorize(na_sentinel=-2) >>> codes 0 1 1 -2 2 0 3 2 4 1 dtype: int32 >>> uniques Index(['a', 'b', 'c'], dtype='object') For Index: >>> psidx = ps.Index(['b', None, 'a', 'c', 'b']) >>> codes, uniques = psidx.factorize() >>> codes Int64Index([1, -1, 0, 2, 1], dtype='int64') >>> uniques Index(['a', 'b', 'c'], dtype='object') """ from pyspark.pandas.series import first_series assert (na_sentinel is None) or isinstance(na_sentinel, int) assert sort is True if isinstance(self.dtype, CategoricalDtype): categories = self.dtype.categories if len(categories) == 0: scol = SF.lit(None) else: kvs = list( chain( *[ (SF.lit(code), SF.lit(category)) for code, category in enumerate(categories) ] ) ) map_scol = F.create_map(*kvs) scol = map_scol.getItem(self.spark.column) codes, uniques = self._with_new_scol( scol.alias(self._internal.data_spark_column_names[0]) ).factorize(na_sentinel=na_sentinel) return codes, uniques.astype(self.dtype) uniq_sdf = self._internal.spark_frame.select(self.spark.column).distinct() # Check number of uniques and constructs sorted `uniques_list` max_compute_count = get_option("compute.max_rows") if max_compute_count is not None: uniq_pdf = uniq_sdf.limit(max_compute_count + 1).toPandas() if len(uniq_pdf) > max_compute_count: raise ValueError( "Current Series has more then {0} unique values. " "Please set 'compute.max_rows' by using 'pyspark.pandas.config.set_option' " "to more than {0} rows. Note that, before changing the " "'compute.max_rows', this operation is considerably expensive.".format( max_compute_count ) ) else: uniq_pdf = uniq_sdf.toPandas() # pandas takes both NaN and null in Spark to np.nan, so de-duplication is required uniq_series = first_series(uniq_pdf).drop_duplicates() uniques_list = uniq_series.tolist() uniques_list = sorted(uniques_list, key=lambda x: (pd.isna(x), x)) # Constructs `unique_to_code` mapping non-na unique to code unique_to_code = {} if na_sentinel is not None: na_sentinel_code = na_sentinel code = 0 for unique in uniques_list: if pd.isna(unique): if na_sentinel is None: na_sentinel_code = code else: unique_to_code[unique] = code code += 1 kvs = list( chain(*([(SF.lit(unique), SF.lit(code)) for unique, code in unique_to_code.items()])) ) if len(kvs) == 0: # uniques are all missing values new_scol = SF.lit(na_sentinel_code) else: scol = self.spark.column if isinstance(self.spark.data_type, (FloatType, DoubleType)): cond = scol.isNull() | F.isnan(scol) else: cond = scol.isNull() map_scol = F.create_map(*kvs) null_scol = F.when(cond, SF.lit(na_sentinel_code)) new_scol = null_scol.otherwise(map_scol.getItem(scol)) codes = self._with_new_scol(new_scol.alias(self._internal.data_spark_column_names[0])) if na_sentinel is not None: # Drops the NaN from the uniques of the values uniques_list = [x for x in uniques_list if not pd.isna(x)] uniques = pd.Index(uniques_list) return codes, uniques def _test() -> None: import os import doctest import sys from pyspark.sql import SparkSession import pyspark.pandas.base os.chdir(os.environ["SPARK_HOME"]) globs = pyspark.pandas.base.__dict__.copy() globs["ps"] = pyspark.pandas spark = ( SparkSession.builder.master("local[4]").appName("pyspark.pandas.base tests").getOrCreate() ) (failure_count, test_count) = doctest.testmod( pyspark.pandas.base, globs=globs, optionflags=doctest.ELLIPSIS | doctest.NORMALIZE_WHITESPACE, ) spark.stop() if failure_count: sys.exit(-1) if __name__ == "__main__": _test()
apache-2.0
moutai/scikit-learn
examples/model_selection/plot_confusion_matrix.py
47
2495
""" ================ Confusion matrix ================ Example of confusion matrix usage to evaluate the quality of the output of a classifier on the iris data set. The diagonal elements represent the number of points for which the predicted label is equal to the true label, while off-diagonal elements are those that are mislabeled by the classifier. The higher the diagonal values of the confusion matrix the better, indicating many correct predictions. The figures show the confusion matrix with and without normalization by class support size (number of elements in each class). This kind of normalization can be interesting in case of class imbalance to have a more visual interpretation of which class is being misclassified. Here the results are not as good as they could be as our choice for the regularization parameter C was not the best. In real life applications this parameter is usually chosen using :ref:`grid_search`. """ print(__doc__) import numpy as np import matplotlib.pyplot as plt from sklearn import svm, datasets from sklearn.model_selection import train_test_split from sklearn.metrics import confusion_matrix # import some data to play with iris = datasets.load_iris() X = iris.data y = iris.target # Split the data into a training set and a test set X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=0) # Run classifier, using a model that is too regularized (C too low) to see # the impact on the results classifier = svm.SVC(kernel='linear', C=0.01) y_pred = classifier.fit(X_train, y_train).predict(X_test) def plot_confusion_matrix(cm, title='Confusion matrix', cmap=plt.cm.Blues): plt.imshow(cm, interpolation='nearest', cmap=cmap) plt.title(title) plt.colorbar() tick_marks = np.arange(len(iris.target_names)) plt.xticks(tick_marks, iris.target_names, rotation=45) plt.yticks(tick_marks, iris.target_names) plt.tight_layout() plt.ylabel('True label') plt.xlabel('Predicted label') # Compute confusion matrix cm = confusion_matrix(y_test, y_pred) np.set_printoptions(precision=2) print('Confusion matrix, without normalization') print(cm) plt.figure() plot_confusion_matrix(cm) # Normalize the confusion matrix by row (i.e by the number of samples # in each class) cm_normalized = cm.astype('float') / cm.sum(axis=1)[:, np.newaxis] print('Normalized confusion matrix') print(cm_normalized) plt.figure() plot_confusion_matrix(cm_normalized, title='Normalized confusion matrix') plt.show()
bsd-3-clause
sppalkia/weld
python/grizzly/grizzly/seriesweld.py
3
19541
import pandas as pd import grizzly_impl from lazy_op import LazyOpResult, to_weld_type from weld.weldobject import * import utils class SeriesWeld(LazyOpResult): """Summary Attributes: column_name (TYPE): Description df (TYPE): Description dim (int): Description expr (TYPE): Description weld_type (TYPE): Description """ def __init__(self, expr, weld_type, df=None, column_name=None, index_type=None, index_name=None): """Summary TODO: Implement an actual Index Object like how Pandas does Args: expr (TYPE): Description weld_type (TYPE): Description df (None, optional): Description column_name (None, optional): Description """ self.expr = expr self.weld_type = weld_type self.dim = 1 self.df = df self.column_name = column_name self.index_type = index_type self.index_name = index_name def __getitem__(self, key): """Summary Args: predicates (TYPE): Description new_value (TYPE): Description Returns: TYPE: Description """ if isinstance(key, slice): start = key.start # TODO : We currently do nothing with step step = key.step stop = key.stop if self.index_type is not None: index_expr = grizzly_impl.get_field(self.expr, 0) column_expr = grizzly_impl.get_field(self.expr, 1) zip_expr = grizzly_impl.zip_columns([index_expr, column_expr]) sliced_expr = grizzly_impl.slice_vec(zip_expr, start, stop) unzip_expr = grizzly_impl.unzip_columns( sliced_expr, [self.index_type, self.weld_type] ) return SeriesWeld( unzip_expr, self.weld_type, self.df, self.column_name, self.index_type, self.index_name ) else: return SeriesWeld( grizzly_impl.slice_vec( self.expr, start, stop ) ) else: # By default we return as if the key were predicates to filter by return self.filter(key) def __setitem__(self, predicates, new_value): """Summary Args: predicates (TYPE): Description new_value (TYPE): Description Returns: TYPE: Description """ if self.df is not None and self.column_name is not None: self.df[self.column_name] = self.mask(predicates, new_value) @property def loc(self): return WeldLocIndexer( self ) def __getattr__(self, key): """Summary Args: key (TYPE): Description Returns: TYPE: Description Raises: Exception: Description """ if key == 'str' and self.weld_type == WeldVec(WeldChar()): return StringSeriesWeld( self.expr, self.weld_type, self.df, self.column_name ) raise AttributeError("Attr %s does not exist" % key) @property def index(self): if self.index_type is not None: return SeriesWeld( grizzly_impl.get_field( self.expr, 0 ), self.index_type, self.df, self.index_name ) # TODO : Make all series have a series attribute raise Exception("No index present") def evaluate(self, verbose=False, passes=None): if self.index_type is not None: index, column = LazyOpResult( self.expr, WeldStruct([WeldVec(self.index_type), WeldVec(self.weld_type)]), 0 ).evaluate(verbose=verbose, passes=passes) series = pd.Series(column, index) series.index.rename(self.index_name, True) return series else: column = LazyOpResult.evaluate(self, verbose=verbose, passes=passes) return pd.Series(column) def sort_values(self, ascending=False): """ Sorts the values of this series """ if self.index_type is not None: index_expr = grizzly_impl.get_field(self.expr, 0) column_expr = grizzly_impl.get_field(self.expr, 1) zip_expr = grizzly_impl.zip_columns([index_expr, column_expr]) result_expr = grizzly_impl.sort(zip_expr, 1, self.weld_type, ascending) unzip_expr = grizzly_impl.unzip_columns( result_expr, [self.index_type, self.weld_type] ) return SeriesWeld( unzip_expr, self.weld_type, self.df, self.column_name, self.index_type, self.index_name ) else: result_expr = grizzly_impl.sort(self.expr) # TODO need to finish this def unique(self): """Summary Returns: TYPE: Description """ return SeriesWeld( grizzly_impl.unique( self.expr, self.weld_type ), self.weld_type, self.df, self.column_name ) def lower(self): """Summary Returns: TYPE: Description """ # TODO : Bug in nested map operating on strings # TODO : Check that self.weld_type is a string type vectype = self.weld_type if isinstance(vectype, WeldVec): elem_type = vectype.elemType if isinstance(elem_type, WeldChar): return SeriesWeld( grizzly_impl.to_lower( self.expr, elem_type ), self.weld_type, self.df, self.column_name ) raise Exception("Cannot call to_lower on non string type") def contains(self, string): """Summary Returns: TYPE: Description """ # Check that self.weld_type is a string type vectype = self.weld_type if isinstance(vectype, WeldVec): elem_type = vectype.elemType if isinstance(elem_type, WeldChar): return SeriesWeld( grizzly_impl.contains( self.expr, elem_type, string ), WeldBit(), self.df, self.column_name ) raise Exception("Cannot call to_lower on non string type") def isin(self, ls): if isinstance(ls, SeriesWeld): if self.weld_type == ls.weld_type: return SeriesWeld( grizzly_impl.isin(self.expr, ls.expr, self.weld_type), WeldBit(), self.df, self.column_name ) raise Exception("Cannot call isin on different typed list") def prod(self): """Summary Returns: TYPE: Description """ return LazyOpResult( grizzly_impl.aggr( self.expr, "*", 1, self.weld_type ), self.weld_type, 0 ) def sum(self): """Summary Returns: TYPE: Description """ return LazyOpResult( grizzly_impl.aggr( self.expr, "+", 0, self.weld_type ), self.weld_type, 0 ) def max(self): """Summary Returns: TYPE: Description """ pass def min(self): """Summary Returns: TYPE: Description """ pass def count(self): """Summary Returns: TYPE: Description """ return LazyOpResult( grizzly_impl.count( self.expr, self.weld_type ), WeldInt(), 0 ) def mask(self, predicates, new_value): """Summary Args: predicates (TYPE): Description new_value (TYPE): Description Returns: TYPE: Description """ if isinstance(predicates, SeriesWeld): predicates = predicates.expr return SeriesWeld( grizzly_impl.mask( self.expr, predicates, new_value, self.weld_type ), self.weld_type, self.df, self.column_name ) def filter(self, predicates): if isinstance(predicates, SeriesWeld): predicates = predicates.expr return SeriesWeld( grizzly_impl.filter( self.expr, predicates, self.weld_type ), self.weld_type, self.df, self.column_name ) def add(self, other): """Summary Args: other (TYPE): Description Returns: TYPE: Description """ if isinstance(other, SeriesWeld): other = other.expr return SeriesWeld( grizzly_impl.element_wise_op( self.expr, other, "+", self.weld_type ), self.weld_type, self.df, self.column_name ) def __sub__(self, other): # TODO subtractionw without index variables if self.index_type is not None: index = grizzly_impl.get_field(self.expr, 0) expr1 = grizzly_impl.get_field(self.expr, 1) else: expr1 = self.expr if other.index_type is not None: index2 = grizzly_impl.get_field(other.expr, 0) expr2 = grizzly_impl.get_field(other.expr, 1) else: expr2 = other.expr index_expr = LazyOpResult(index, self.index_type, 0) sub_expr = SeriesWeld( grizzly_impl.element_wise_op( expr1, expr2, "-", self.weld_type ), self.weld_type, self.df, self.column_name ) index_sub_expr = utils.group([index_expr, sub_expr]) return SeriesWeld( index_sub_expr.expr, self.weld_type, self.df, self.column_name, self.index_type, self.index_name ) # We also need to ensure that both indexes of the subtracted # columns are compatible def sub(self, other): """Summary Args: other (TYPE): Description Returns: TYPE: Description """ if isinstance(other, SeriesWeld): other = other.expr return SeriesWeld( grizzly_impl.element_wise_op( self.expr, other, "-", self.weld_type ), self.weld_type, self.df, self.column_name ) def mul(self, other): """Summary Args: other (TYPE): Description Returns: TYPE: Description """ if isinstance(other, SeriesWeld): other = other.expr return SeriesWeld( grizzly_impl.element_wise_op( self.expr, other, "*", self.weld_type ), self.weld_type, self.df, self.column_name ) def div(self, other): """Summary Args: other (TYPE): Description Returns: TYPE: Description """ if isinstance(other, SeriesWeld): other = other.expr return SeriesWeld( grizzly_impl.element_wise_op( self.expr, other, "/", self.weld_type ), self.weld_type, self.df, self.column_name ) def per_element_and(self, other): """Summary Args: other (TYPE): Description Returns: TYPE: Description """ if isinstance(other, SeriesWeld): other = other.expr return SeriesWeld( grizzly_impl.element_wise_op( self.expr, other, "&&", self.weld_type ), self.weld_type, self.df, self.column_name ) def mod(self, other): """Summary Args: other (TYPE): Description Returns: TYPE: Description """ if isinstance(other, SeriesWeld): other = other.expr return SeriesWeld( grizzly_impl.element_wise_op( self.expr, other, "%", self.weld_type ), self.weld_type, self.df, self.column_name ) def __eq__(self, other): """Summary Args: other (TYPE): Description Returns: TYPE: Description """ return SeriesWeld( grizzly_impl.compare( self.expr, other, "==", self.weld_type ), WeldBit(), self.df, self.column_name ) def __ne__(self, other): """Summary Args: other (TYPE): Description Returns: TYPE: Description """ return SeriesWeld( grizzly_impl.compare( self.expr, other, "!=", self.weld_type ), WeldBit(), self.df, self.column_name ) def __gt__(self, other): """Summary Args: other (TYPE): Description Returns: TYPE: Description """ return SeriesWeld( grizzly_impl.compare( self.expr, other, ">", self.weld_type ), WeldBit(), self.df, self.column_name ) def __ge__(self, other): """Summary Args: other (TYPE): Description Returns: TYPE: Description """ if self.index_type is not None: expr = grizzly_impl.get_field(self.expr, 1) else: expr = self.expr return SeriesWeld( grizzly_impl.compare( expr, other, ">=", self.weld_type ), WeldBit(), self.df, self.column_name ) def __lt__(self, other): """Summary Args: other (TYPE): Description Returns: TYPE: Description """ return SeriesWeld( grizzly_impl.compare( self.expr, other, "<", self.weld_type ), WeldBit(), self.df, self.column_name ) def __le__(self, other): """Summary Args: other (TYPE): Description Returns: TYPE: Description """ return SeriesWeld( grizzly_impl.compare( self.expr, other, "<=", self.weld_type ), WeldBit(), self.df, self.column_name ) class StringSeriesWeld: """Summary Attributes: column_name (TYPE): Description df (TYPE): Description dim (int): Description expr (TYPE): Description weld_type (TYPE): Description """ def __init__(self, expr, weld_type, df=None, column_name=None): """Summary Args: expr (TYPE): Description weld_type (TYPE): Description df (None, optional): Description column_name (None, optional): Description """ self.expr = expr self.weld_type = weld_type self.dim = 1 self.df = df self.column_name = column_name def slice(self, start, size): """Summary Args: start (TYPE): Description size (TYPE): Description Returns: TYPE: Description """ return SeriesWeld( grizzly_impl.slice( self.expr, start, size, self.weld_type ), self.weld_type, self.df, self.column_name ) class WeldLocIndexer: """ Label location based indexer for selection by label for Series objects. Attributes: grizzly_obj (TYPE): The Series being indexed into. """ def __init__(self, grizzly_obj): # If index_type field of grizzly_obj is None # then we assume normal 0 - 1 indexing self.grizzly_obj = grizzly_obj def __getitem__(self, key): if isinstance(self.grizzly_obj, SeriesWeld): series = self.grizzly_obj if isinstance(key, SeriesWeld): if series.index_type is not None: index_expr = grizzly_impl.get_field(series.expr, 0) column_expr = grizzly_impl.get_field(series.expr, 1) zip_expr = grizzly_impl.zip_columns([index_expr, column_expr]) predicate_expr = grizzly_impl.isin(index_expr, key.expr, series.index_type) filtered_expr = grizzly_impl.filter( zip_expr, predicate_expr ) unzip_expr = grizzly_impl.unzip_columns( filtered_expr, [series.index_type, series.weld_type] ) return SeriesWeld( unzip_expr, series.weld_type, series.df, series.column_name, series.index_type, series.index_name ) # TODO : Need to implement for non-pivot tables raise Exception("Cannot invoke getitem on non SeriesWeld object")
bsd-3-clause
PMitura/smiles-neural-network
baselines/sicho_svm_uni_feature_sel.py
1
8481
#! /usr/bin/env python import db import math import numpy as np import pandas as pd import matplotlib.pyplot as plt from rdkit import Chem from rdkit.Chem import Descriptors from sklearn.feature_selection import VarianceThreshold import pylab data = db.getTarget_206_1977() duplicates = {} for datum in data: if datum[0] in duplicates: duplicates[datum[0]].append(datum[1]) else: duplicates[datum[0]] = [datum[1]] new_data = [] for smile, sval_arr in duplicates.iteritems(): lemin = np.amin(sval_arr) lemax = np.amax(sval_arr) if len(sval_arr) == 1: new_data.append([smile,sval_arr[0]]) elif lemin != 0 and lemax != 0: if not (len(sval_arr) < 20 and int(math.log(lemin, 10)) != int(math.log(lemax, 10))): new_data.append([smile,np.median(sval_arr)]) data = new_data df_data = {} df_data['smiles'] = [] df_data['sval'] = [] df_reorder = ['smiles','sval'] for name, function in Descriptors.descList: df_data[name] = [] df_reorder.append(name) for i in range(len(data)): smiles = data[i][0] sval = data[i][1] mol = Chem.MolFromSmiles(smiles) for name, function in Descriptors.descList: df_data[name].append(function(mol)) df_data['smiles'].append(smiles) df_data['sval'].append(sval) # create dataframe, reorder values so that smiles is first, sval is second df = pd.DataFrame(df_data) df = df[df_reorder] df.set_index('smiles', inplace=True) # we convert the IC50 values to pIC50 df.sval = df.sval.apply(lambda x : -1.0 * np.log10(x / 1.0e9)) # drop infinite values df = df.drop(df[df.sval == np.inf].index) def get_removed_feats(df, model): return df.columns.values[1:][~model.get_support()] def update_df(df, removed_descriptors, inplace=True): if inplace: df.drop(removed_descriptors, 1, inplace=True) # print(df.shape) return df else: new_df = df.drop(removed_descriptors, 1, inplace=False) # print(new_df.shape) return new_df # find the names of the columns with zero variance var_sel = VarianceThreshold() var_sel.fit(df.iloc[:,1:]) removed_descriptors = get_removed_feats(df, var_sel) # update the data frame update_df(df, removed_descriptors) # correlation filter def find_correlated(data): correlation_matrix = data.iloc[:,1:].corr(method='spearman') removed_descs = set() all_descs = correlation_matrix.columns.values for label in all_descs: if label not in removed_descs: correlations_abs = correlation_matrix[label].abs() mask = (correlations_abs > 0.7).values to_remove = set(all_descs[mask]) to_remove.remove(label) removed_descs.update(to_remove) return removed_descs update_df(df, find_correlated(df)) # regression tests from sklearn.feature_selection import SelectPercentile,SelectKBest from sklearn.feature_selection import f_regression from sklearn.preprocessing import StandardScaler # keep only the descriptors that show significant # correlation with the target variable (pIC50) regre_sele = SelectPercentile(f_regression, percentile=50) regre_sele.fit(df.iloc[:,1:], df.sval) removed_descriptors = get_removed_feats(df, regre_sele) # update the data frame update_df(df, removed_descriptors) # print selected features print(df.columns.tolist()) from sklearn.metrics import mean_squared_error from sklearn.cross_validation import train_test_split from sklearn.svm import SVR from sklearn.grid_search import GridSearchCV def createModelAndMeasure(df): scaler = StandardScaler(copy=False) scaler.fit(df.iloc[:,1:]) scaled_features = pd.DataFrame(scaler.transform(df.iloc[:,1:]), columns=df.iloc[:,1:].columns) # Next, we create the datasets for cross-validation and testing: features_train, features_test, sval_train, sval_test = train_test_split( scaled_features , df.sval , test_size=0.4 , random_state=42 ) # and build the model: param_grid = [ # {'C': [1, 10, 100, 1000], 'epsilon': [0.0, 0.1, 0.2, 0.3, 0.4], 'kernel': ['linear']}, # {'C': [1, 10, 100, 1000], 'epsilon': [0.0, 0.1, 0.2, 0.3, 0.4], 'kernel': ['poly'], 'degree' : [2, 3, 4, 5]}, {'C': [1, 10, 100, 1000], 'epsilon': [0.0, 0.1, 0.2, 0.3, 0.4], 'gamma': [0.01, 0.001, 0.0001], 'kernel': ['rbf']}, ] model = GridSearchCV(SVR(), param_grid, n_jobs=2, cv=5) model.fit(features_train, sval_train) model = model.best_estimator_ # print('Model params:') # print(model.get_params()) # print() # cross validation results from sklearn.cross_validation import cross_val_score scores = cross_val_score(model, features_train, sval_train, cv=5) scores_mse = cross_val_score(model, features_train, sval_train, cv=5, scoring='mean_squared_error') results = { 'cv_mse': abs(scores_mse.mean()), 'cv_mse_d': scores_mse.std() * 2, 'v_mse': mean_squared_error(model.predict(features_test), sval_test) } return results # print('Cross validation:') # print("Mean R^2: %0.2f (+/- %0.2f)" % (scores.mean(), scores.std() * 2)) # print("Mean R: %0.2f (+/- %0.2f)" % (np.sqrt(scores).mean(), np.sqrt(scores).std() * 2)) # print("Mean MSE: %0.2f (+/- %0.2f)" % (abs(scores_mse.mean()), scores_mse.std() * 2)) # print() # test validation results # print('Test validation:') # print("R^2: %0.2f" % model.score(features_test, sval_test)) # print("R: %0.2f" % np.sqrt(model.score(features_test, sval_test))) # print("MSE: %0.2f" % mean_squared_error(model.predict(features_test), sval_test)) # print() ###################################################################### features_count = len(df.columns)-1 print(features_count) results = [] # Further forward selection of k best for fw_step in range(features_count,0,-1): print('Selecting %d/%d features:' % (fw_step,features_count)) selector = SelectKBest(f_regression,k=fw_step) selector.fit(df.iloc[:,1:], df.sval) removed_descriptors = get_removed_feats(df, selector) # update the data frame new_df = update_df(df, removed_descriptors, inplace=False) print(new_df.columns.tolist()) res = createModelAndMeasure(new_df) res['k']=fw_step results.append(res) resultsdf = pd.DataFrame(results) resultsdf.set_index('k',inplace=True) print(resultsdf) resultsdf.plot() plt.show() # print(features_mean.values) # scaled_features = pd.DataFrame(((df.iloc[:,1:]-features_mean)/features_std).values, columns=df.iloc[:,1:].columns) # print(scaled_features) # error plot # (sval_test - model.predict(features_test)).abs().hist(bins=30).plot() # plt.show() # PCA plot print("Computing decomposition:") from sklearn import decomposition ''' n_components = 5 pca = decomposition.PCA(n_components=n_components) pca.fit(df.iloc[:,1:]) pca_result = pca.transform(df.iloc[:,1:]) from mpl_toolkits.mplot3d import Axes3D from itertools import combinations plt.rcParams["figure.figsize"] = [15, 15] fig = plt.figure() ax = fig.add_subplot(1,1,1,projection='3d') PCAcombo = [3,1,0] ax.scatter( pca_result[:,PCAcombo[0]] , pca_result[:,PCAcombo[1]] , pca_result[:,PCAcombo[2]] , c=df.sval , cmap='YlOrRd' ) ax.view_init(elev=30, azim=45) ax.set_xlabel('PC%s' % (PCAcombo[0] + 1)) ax.set_ylabel('PC%s' % (PCAcombo[1] + 1)) ax.set_zlabel('PC%s' % (PCAcombo[2] + 1)) plt.show() ''' ''' combos = list(combinations(range(n_components), 3)) plt.rcParams["figure.figsize"] = [15, 30] fig = plt.figure(len(combos) / 2) for idx, combo in enumerate(combos): ax = fig.add_subplot(len(combos) / 2, 2, idx + 1, projection='3d') ax.scatter( pca_result[:,combo[0]] , pca_result[:,combo[1]] , pca_result[:,combo[2]] , c=df.sval , s=20 , cmap='YlOrRd' # red are the compounds with higher values of pIC50 ) ax.view_init(elev=30, azim=45) ax.set_xlabel('PC%s' % (combo[0] + 1)) ax.set_ylabel('PC%s' % (combo[1] + 1)) ax.set_zlabel('PC%s' % (combo[2] + 1)) plt.show() ''' ''' from sklearn.manifold import TSNE model = TSNE(n_components=2) TSNEdata = model.fit_transform(df.iloc[:,1:]) TSNEdf = pd.DataFrame(TSNEdata, columns=('x','y')) TSNEdf['c'] = pd.Series(df.sval.values,index=TSNEdf.index) plot = TSNEdf.plot.scatter(x = 'x', y = 'y', c = 'c', cmap = 'plasma') plt.show() '''
bsd-3-clause
rs2/pandas
pandas/tests/indexes/multi/test_drop.py
2
4428
import numpy as np import pytest from pandas.errors import PerformanceWarning import pandas as pd from pandas import Index, MultiIndex import pandas._testing as tm def test_drop(idx): dropped = idx.drop([("foo", "two"), ("qux", "one")]) index = MultiIndex.from_tuples([("foo", "two"), ("qux", "one")]) dropped2 = idx.drop(index) expected = idx[[0, 2, 3, 5]] tm.assert_index_equal(dropped, expected) tm.assert_index_equal(dropped2, expected) dropped = idx.drop(["bar"]) expected = idx[[0, 1, 3, 4, 5]] tm.assert_index_equal(dropped, expected) dropped = idx.drop("foo") expected = idx[[2, 3, 4, 5]] tm.assert_index_equal(dropped, expected) index = MultiIndex.from_tuples([("bar", "two")]) with pytest.raises(KeyError, match=r"^10$"): idx.drop([("bar", "two")]) with pytest.raises(KeyError, match=r"^10$"): idx.drop(index) with pytest.raises(KeyError, match=r"^'two'$"): idx.drop(["foo", "two"]) # partially correct argument mixed_index = MultiIndex.from_tuples([("qux", "one"), ("bar", "two")]) with pytest.raises(KeyError, match=r"^10$"): idx.drop(mixed_index) # error='ignore' dropped = idx.drop(index, errors="ignore") expected = idx[[0, 1, 2, 3, 4, 5]] tm.assert_index_equal(dropped, expected) dropped = idx.drop(mixed_index, errors="ignore") expected = idx[[0, 1, 2, 3, 5]] tm.assert_index_equal(dropped, expected) dropped = idx.drop(["foo", "two"], errors="ignore") expected = idx[[2, 3, 4, 5]] tm.assert_index_equal(dropped, expected) # mixed partial / full drop dropped = idx.drop(["foo", ("qux", "one")]) expected = idx[[2, 3, 5]] tm.assert_index_equal(dropped, expected) # mixed partial / full drop / error='ignore' mixed_index = ["foo", ("qux", "one"), "two"] with pytest.raises(KeyError, match=r"^'two'$"): idx.drop(mixed_index) dropped = idx.drop(mixed_index, errors="ignore") expected = idx[[2, 3, 5]] tm.assert_index_equal(dropped, expected) def test_droplevel_with_names(idx): index = idx[idx.get_loc("foo")] dropped = index.droplevel(0) assert dropped.name == "second" index = MultiIndex( levels=[Index(range(4)), Index(range(4)), Index(range(4))], codes=[ np.array([0, 0, 1, 2, 2, 2, 3, 3]), np.array([0, 1, 0, 0, 0, 1, 0, 1]), np.array([1, 0, 1, 1, 0, 0, 1, 0]), ], names=["one", "two", "three"], ) dropped = index.droplevel(0) assert dropped.names == ("two", "three") dropped = index.droplevel("two") expected = index.droplevel(1) assert dropped.equals(expected) def test_droplevel_list(): index = MultiIndex( levels=[Index(range(4)), Index(range(4)), Index(range(4))], codes=[ np.array([0, 0, 1, 2, 2, 2, 3, 3]), np.array([0, 1, 0, 0, 0, 1, 0, 1]), np.array([1, 0, 1, 1, 0, 0, 1, 0]), ], names=["one", "two", "three"], ) dropped = index[:2].droplevel(["three", "one"]) expected = index[:2].droplevel(2).droplevel(0) assert dropped.equals(expected) dropped = index[:2].droplevel([]) expected = index[:2] assert dropped.equals(expected) msg = ( "Cannot remove 3 levels from an index with 3 levels: " "at least one level must be left" ) with pytest.raises(ValueError, match=msg): index[:2].droplevel(["one", "two", "three"]) with pytest.raises(KeyError, match="'Level four not found'"): index[:2].droplevel(["one", "four"]) def test_drop_not_lexsorted(): # GH 12078 # define the lexsorted version of the multi-index tuples = [("a", ""), ("b1", "c1"), ("b2", "c2")] lexsorted_mi = MultiIndex.from_tuples(tuples, names=["b", "c"]) assert lexsorted_mi.is_lexsorted() # and the not-lexsorted version df = pd.DataFrame( columns=["a", "b", "c", "d"], data=[[1, "b1", "c1", 3], [1, "b2", "c2", 4]] ) df = df.pivot_table(index="a", columns=["b", "c"], values="d") df = df.reset_index() not_lexsorted_mi = df.columns assert not not_lexsorted_mi.is_lexsorted() # compare the results tm.assert_index_equal(lexsorted_mi, not_lexsorted_mi) with tm.assert_produces_warning(PerformanceWarning): tm.assert_index_equal(lexsorted_mi.drop("a"), not_lexsorted_mi.drop("a"))
bsd-3-clause
evgchz/scikit-learn
sklearn/neural_network/rbm.py
15
11957
"""Restricted Boltzmann Machine """ # Authors: Yann N. Dauphin <[email protected]> # Vlad Niculae # Gabriel Synnaeve # Lars Buitinck # License: BSD 3 clause import time import numpy as np import scipy.sparse as sp from ..base import BaseEstimator from ..base import TransformerMixin from ..externals.six.moves import xrange from ..utils import check_array from ..utils import check_random_state from ..utils import gen_even_slices from ..utils import issparse from ..utils.extmath import safe_sparse_dot from ..utils.extmath import log_logistic from ..utils.fixes import expit # logistic function class BernoulliRBM(BaseEstimator, TransformerMixin): """Bernoulli Restricted Boltzmann Machine (RBM). A Restricted Boltzmann Machine with binary visible units and binary hiddens. Parameters are estimated using Stochastic Maximum Likelihood (SML), also known as Persistent Contrastive Divergence (PCD) [2]. The time complexity of this implementation is ``O(d ** 2)`` assuming d ~ n_features ~ n_components. Parameters ---------- n_components : int, optional Number of binary hidden units. learning_rate : float, optional The learning rate for weight updates. It is *highly* recommended to tune this hyper-parameter. Reasonable values are in the 10**[0., -3.] range. batch_size : int, optional Number of examples per minibatch. n_iter : int, optional Number of iterations/sweeps over the training dataset to perform during training. verbose : int, optional The verbosity level. The default, zero, means silent mode. random_state : integer or numpy.RandomState, optional A random number generator instance to define the state of the random permutations generator. If an integer is given, it fixes the seed. Defaults to the global numpy random number generator. Attributes ---------- intercept_hidden_ : array-like, shape (n_components,) Biases of the hidden units. intercept_visible_ : array-like, shape (n_features,) Biases of the visible units. components_ : array-like, shape (n_components, n_features) Weight matrix, where n_features in the number of visible units and n_components is the number of hidden units. Examples -------- >>> import numpy as np >>> from sklearn.neural_network import BernoulliRBM >>> X = np.array([[0, 0, 0], [0, 1, 1], [1, 0, 1], [1, 1, 1]]) >>> model = BernoulliRBM(n_components=2) >>> model.fit(X) BernoulliRBM(batch_size=10, learning_rate=0.1, n_components=2, n_iter=10, random_state=None, verbose=0) References ---------- [1] Hinton, G. E., Osindero, S. and Teh, Y. A fast learning algorithm for deep belief nets. Neural Computation 18, pp 1527-1554. http://www.cs.toronto.edu/~hinton/absps/fastnc.pdf [2] Tieleman, T. Training Restricted Boltzmann Machines using Approximations to the Likelihood Gradient. International Conference on Machine Learning (ICML) 2008 """ def __init__(self, n_components=256, learning_rate=0.1, batch_size=10, n_iter=10, verbose=0, random_state=None): self.n_components = n_components self.learning_rate = learning_rate self.batch_size = batch_size self.n_iter = n_iter self.verbose = verbose self.random_state = random_state def transform(self, X): """Compute the hidden layer activation probabilities, P(h=1|v=X). Parameters ---------- X : {array-like, sparse matrix} shape (n_samples, n_features) The data to be transformed. Returns ------- h : array, shape (n_samples, n_components) Latent representations of the data. """ X = check_array(X, accept_sparse='csr', dtype=np.float) return self._mean_hiddens(X) def _mean_hiddens(self, v): """Computes the probabilities P(h=1|v). Parameters ---------- v : array-like, shape (n_samples, n_features) Values of the visible layer. Returns ------- h : array-like, shape (n_samples, n_components) Corresponding mean field values for the hidden layer. """ p = safe_sparse_dot(v, self.components_.T) p += self.intercept_hidden_ return expit(p, out=p) def _sample_hiddens(self, v, rng): """Sample from the distribution P(h|v). Parameters ---------- v : array-like, shape (n_samples, n_features) Values of the visible layer to sample from. rng : RandomState Random number generator to use. Returns ------- h : array-like, shape (n_samples, n_components) Values of the hidden layer. """ p = self._mean_hiddens(v) return (rng.random_sample(size=p.shape) < p) def _sample_visibles(self, h, rng): """Sample from the distribution P(v|h). Parameters ---------- h : array-like, shape (n_samples, n_components) Values of the hidden layer to sample from. rng : RandomState Random number generator to use. Returns ------- v : array-like, shape (n_samples, n_features) Values of the visible layer. """ p = np.dot(h, self.components_) p += self.intercept_visible_ expit(p, out=p) return (rng.random_sample(size=p.shape) < p) def _free_energy(self, v): """Computes the free energy F(v) = - log sum_h exp(-E(v,h)). Parameters ---------- v : array-like, shape (n_samples, n_features) Values of the visible layer. Returns ------- free_energy : array-like, shape (n_samples,) The value of the free energy. """ return (- safe_sparse_dot(v, self.intercept_visible_) - np.logaddexp(0, safe_sparse_dot(v, self.components_.T) + self.intercept_hidden_).sum(axis=1)) def gibbs(self, v): """Perform one Gibbs sampling step. Parameters ---------- v : array-like, shape (n_samples, n_features) Values of the visible layer to start from. Returns ------- v_new : array-like, shape (n_samples, n_features) Values of the visible layer after one Gibbs step. """ rng = check_random_state(self.random_state) h_ = self._sample_hiddens(v, rng) v_ = self._sample_visibles(h_, rng) return v_ def partial_fit(self, X): """Fit the model to the data X which should contain a partial segment of the data. Parameters ---------- X : array-like, shape (n_samples, n_features) Training data. Returns ------- self : BernoulliRBM The fitted model. """ X = check_array(X, accept_sparse='csr', dtype=np.float) if not hasattr(self, 'random_state_'): self.random_state_ = check_random_state(self.random_state) if not hasattr(self, 'components_'): self.components_ = np.asarray( self.random_state_.normal( 0, 0.01, (self.n_components, X.shape[1]) ), order='fortran') if not hasattr(self, 'intercept_hidden_'): self.intercept_hidden_ = np.zeros(self.n_components, ) if not hasattr(self, 'intercept_visible_'): self.intercept_visible_ = np.zeros(X.shape[1], ) if not hasattr(self, 'h_samples_'): self.h_samples_ = np.zeros((self.batch_size, self.n_components)) self._fit(X, self.random_state_) def _fit(self, v_pos, rng): """Inner fit for one mini-batch. Adjust the parameters to maximize the likelihood of v using Stochastic Maximum Likelihood (SML). Parameters ---------- v_pos : array-like, shape (n_samples, n_features) The data to use for training. rng : RandomState Random number generator to use for sampling. """ h_pos = self._mean_hiddens(v_pos) v_neg = self._sample_visibles(self.h_samples_, rng) h_neg = self._mean_hiddens(v_neg) lr = float(self.learning_rate) / v_pos.shape[0] update = safe_sparse_dot(v_pos.T, h_pos, dense_output=True).T update -= np.dot(h_neg.T, v_neg) self.components_ += lr * update self.intercept_hidden_ += lr * (h_pos.sum(axis=0) - h_neg.sum(axis=0)) self.intercept_visible_ += lr * (np.asarray( v_pos.sum(axis=0)).squeeze() - v_neg.sum(axis=0)) h_neg[rng.uniform(size=h_neg.shape) < h_neg] = 1.0 # sample binomial self.h_samples_ = np.floor(h_neg, h_neg) def score_samples(self, X): """Compute the pseudo-likelihood of X. Parameters ---------- X : {array-like, sparse matrix} shape (n_samples, n_features) Values of the visible layer. Must be all-boolean (not checked). Returns ------- pseudo_likelihood : array-like, shape (n_samples,) Value of the pseudo-likelihood (proxy for likelihood). Notes ----- This method is not deterministic: it computes a quantity called the free energy on X, then on a randomly corrupted version of X, and returns the log of the logistic function of the difference. """ v = check_array(X, accept_sparse='csr') rng = check_random_state(self.random_state) # Randomly corrupt one feature in each sample in v. ind = (np.arange(v.shape[0]), rng.randint(0, v.shape[1], v.shape[0])) if issparse(v): data = -2 * v[ind] + 1 v_ = v + sp.csr_matrix((data.A.ravel(), ind), shape=v.shape) else: v_ = v.copy() v_[ind] = 1 - v_[ind] fe = self._free_energy(v) fe_ = self._free_energy(v_) return v.shape[1] * log_logistic(fe_ - fe) def fit(self, X, y=None): """Fit the model to the data X. Parameters ---------- X : {array-like, sparse matrix} shape (n_samples, n_features) Training data. Returns ------- self : BernoulliRBM The fitted model. """ X = check_array(X, accept_sparse='csr', dtype=np.float) n_samples = X.shape[0] rng = check_random_state(self.random_state) self.components_ = np.asarray( rng.normal(0, 0.01, (self.n_components, X.shape[1])), order='fortran') self.intercept_hidden_ = np.zeros(self.n_components, ) self.intercept_visible_ = np.zeros(X.shape[1], ) self.h_samples_ = np.zeros((self.batch_size, self.n_components)) n_batches = int(np.ceil(float(n_samples) / self.batch_size)) batch_slices = list(gen_even_slices(n_batches * self.batch_size, n_batches, n_samples)) verbose = self.verbose begin = time.time() for iteration in xrange(1, self.n_iter + 1): for batch_slice in batch_slices: self._fit(X[batch_slice], rng) if verbose: end = time.time() print("[%s] Iteration %d, pseudo-likelihood = %.2f," " time = %.2fs" % (type(self).__name__, iteration, self.score_samples(X).mean(), end - begin)) begin = end return self
bsd-3-clause
KeithYue/StockTrading
utility.py
1
4059
# coding=utf-8 # utility function of stock import os import pandas as pd import numpy as np import logging # config the logging system logging.basicConfig(level=logging.DEBUG) # define Stock class class Stock(): ''' the stock class ''' def __init__(self, code): self.code=code # search and load the stock data try: for f in os.listdir('./data'): if f.startswith(self.code): self.path = './data/{}'.format(f) data = pd.read_csv(self.path, parse_dates=['Date']) data.rename(columns=str.lower, inplace=True) except Exception as e: logging.error(e) self.data=data # the raw dataframe data # logging.info(self.data) return def __str__(self): return self.code # modify the DataFrame class to convert dict-like data for talib compudation def tt(self): ''' convert DataFrame to talib computation data tt means to talib return dict-like data ''' d = {} for c in self.columns: d[c] = np.asarray(self[c]) return d pd.DataFrame.tt = tt def gold_cross_number(s): ''' given a time series, return the count of crossing ''' count = 0 for i in range(0, len(s)-1): if s[i] < 0 and s[i+1]>0: count = count + 1 return count def send_email(body): import smtplib # Import the email modules we'll need from email.mime.text import MIMEText user = "[email protected]" pwd = "keith5805880" recipient = "[email protected]" subject = "From Keith: Promising Stock Codes" msg = MIMEText(body, 'html') msg['Subject'] = subject msg['From'] = user msg['To'] = recipient try: # server = smtplib.SMTP_SSL('smtp.gmail.com:465') server = smtplib.SMTP("smtp.gmail.com", 587) server.ehlo() server.starttls() server.login(user, pwd) server.send_message(msg) server.quit() print('successfully sent the mail') except Exception as e : print(e) # smooth the timeseries function def smooth(x,window_len=11,window='hanning'): """smooth the data using a window with requested size. This method is based on the convolution of a scaled window with the signal. The signal is prepared by introducing reflected copies of the signal (with the window size) in both ends so that transient parts are minimized in the begining and end part of the output signal. input: x: the input signal window_len: the dimension of the smoothing window; should be an odd integer window: the type of window from 'flat', 'hanning', 'hamming', 'bartlett', 'blackman' flat window will produce a moving average smoothing. output: the smoothed signal example: t=linspace(-2,2,0.1) x=sin(t)+randn(len(t))*0.1 y=smooth(x) see also: numpy.hanning, numpy.hamming, numpy.bartlett, numpy.blackman, numpy.convolve scipy.signal.lfilter TODO: the window parameter could be the window itself if an array instead of a string NOTE: length(output) != length(input), to correct this: return y[(window_len/2-1):-(window_len/2)] instead of just y. """ if x.ndim != 1: raise ValueError("smooth only accepts 1 dimension arrays.") if x.size < window_len: raise ValueError("Input vector needs to be bigger than window size.") if window_len<3: return x if not window in ['flat', 'hanning', 'hamming', 'bartlett', 'blackman']: raise ValueError("Window is on of 'flat', 'hanning', 'hamming', 'bartlett', 'blackman'") s=np.r_[x[window_len-1:0:-1],x,x[-1:-window_len:-1]] #print(len(s)) if window == 'flat': #moving average w=np.ones(window_len,'d') else: w=eval('np.'+window+'(window_len)') y=np.convolve(w/w.sum(),s,mode='valid') return y[(window_len/2-1):-(window_len/2)] def test(): s = Stock('0001') print(s.data) if __name__ == '__main__': test()
apache-2.0
Sentient07/scikit-learn
examples/ensemble/plot_voting_probas.py
316
2824
""" =========================================================== Plot class probabilities calculated by the VotingClassifier =========================================================== Plot the class probabilities of the first sample in a toy dataset predicted by three different classifiers and averaged by the `VotingClassifier`. First, three examplary classifiers are initialized (`LogisticRegression`, `GaussianNB`, and `RandomForestClassifier`) and used to initialize a soft-voting `VotingClassifier` with weights `[1, 1, 5]`, which means that the predicted probabilities of the `RandomForestClassifier` count 5 times as much as the weights of the other classifiers when the averaged probability is calculated. To visualize the probability weighting, we fit each classifier on the training set and plot the predicted class probabilities for the first sample in this example dataset. """ print(__doc__) import numpy as np import matplotlib.pyplot as plt from sklearn.linear_model import LogisticRegression from sklearn.naive_bayes import GaussianNB from sklearn.ensemble import RandomForestClassifier from sklearn.ensemble import VotingClassifier clf1 = LogisticRegression(random_state=123) clf2 = RandomForestClassifier(random_state=123) clf3 = GaussianNB() X = np.array([[-1.0, -1.0], [-1.2, -1.4], [-3.4, -2.2], [1.1, 1.2]]) y = np.array([1, 1, 2, 2]) eclf = VotingClassifier(estimators=[('lr', clf1), ('rf', clf2), ('gnb', clf3)], voting='soft', weights=[1, 1, 5]) # predict class probabilities for all classifiers probas = [c.fit(X, y).predict_proba(X) for c in (clf1, clf2, clf3, eclf)] # get class probabilities for the first sample in the dataset class1_1 = [pr[0, 0] for pr in probas] class2_1 = [pr[0, 1] for pr in probas] # plotting N = 4 # number of groups ind = np.arange(N) # group positions width = 0.35 # bar width fig, ax = plt.subplots() # bars for classifier 1-3 p1 = ax.bar(ind, np.hstack(([class1_1[:-1], [0]])), width, color='green') p2 = ax.bar(ind + width, np.hstack(([class2_1[:-1], [0]])), width, color='lightgreen') # bars for VotingClassifier p3 = ax.bar(ind, [0, 0, 0, class1_1[-1]], width, color='blue') p4 = ax.bar(ind + width, [0, 0, 0, class2_1[-1]], width, color='steelblue') # plot annotations plt.axvline(2.8, color='k', linestyle='dashed') ax.set_xticks(ind + width) ax.set_xticklabels(['LogisticRegression\nweight 1', 'GaussianNB\nweight 1', 'RandomForestClassifier\nweight 5', 'VotingClassifier\n(average probabilities)'], rotation=40, ha='right') plt.ylim([0, 1]) plt.title('Class probabilities for sample 1 by different classifiers') plt.legend([p1[0], p2[0]], ['class 1', 'class 2'], loc='upper left') plt.show()
bsd-3-clause
nkoukou/University_Projects_Year_3
EDM_Assembly/base_class.py
1
11366
''' Defines the base class of an electric potential grid. ''' import numpy as np import matplotlib as mpl import matplotlib.pylab as plt from numba import jit # Global dimensions (used for plots) sqc_x = (2., 'cm') # unit length for SquareCable sqc_u = (10., 'V') # unit potential for SquareCable edm_x = (10., 'mm') # unit length for Edm edm_u = (2., 'kV') # unit potential for Edm # Plot parameters font = {'family' : 'normal', 'weight' : 'normal'} mpl.rc('font', **font) mpl.rcParams['lines.linewidth'] = 5. # Functions compiled just-in-time @jit def gen_sc_grid(b, t, u): ''' Generates SquareCable grid. ''' grid = np.full((b,b), u) fix = np.ones((b,b)) grid = np.pad(grid, ((t-b)/2,), 'constant', constant_values=(0,)) fix = np.pad(fix, ((t-b)/2,), 'constant', constant_values=(0,)) grid = np.pad(grid, 1, 'constant', constant_values=(0,)) fix = np.pad(fix, 1, 'constant', constant_values=(1,)) return grid, fix @jit def gen_edm_grid(tube_dist, scale=1): ''' Generates Edm grid. ''' small_plate = np.full(2,1, dtype='float64') big_plate = np.full(20,4, dtype='float64') gap = np.zeros(1, dtype='float64') row_one = np.concatenate((small_plate, gap, big_plate, gap, small_plate)) row_two = np.zeros(row_one.size) row_three = -row_one grid = np.vstack((row_one, row_two, row_three)) grid = np.pad(grid, tube_dist, 'constant', constant_values=(0,)) fix = np.where(grid==0, 0, 1) if scale != 1: scale = np.ones((scale, scale)) grid = np.kron(grid, scale) fix = np.kron(fix, scale) grid = np.pad(grid, 1, 'constant', constant_values=(0,)) fix = np.pad(fix, 1, 'constant', constant_values=(1,)) return grid, fix @jit def update(grid, fix, scale, w=-1): ''' Updates SquareCable or Edm grid. Relaxation parameter w (0 < w < 2) affects the speed of convergence. - w = 'j': solves with Jacobi method - w = -1: solves with estimated optimal w ''' if w=='j' or w=='J': new_grid=np.copy(grid) for index, fixed in np.ndenumerate(fix): if fixed: continue new_grid[index] = 0.25*( grid[index[0]-1, index[1]] + grid[index[0]+1, index[1]] + grid[index[0], index[1]-1] + grid[index[0], index[1]+1] ) return new_grid if w==-1: coef = float(grid.shape[1])/grid.shape[0] const = 2.0 if coef==1. else 5.5 w = 2./(1+const/(coef*scale)) for index, fixed in np.ndenumerate(fix): if fixed: continue grid[index] = ((1-w) * grid[index] + 0.25 * w * ( grid[index[0]-1, index[1]] + grid[index[0]+1, index[1]] + grid[index[0], index[1]-1] + grid[index[0], index[1]+1] )) return grid # Base class class PotentialGrid(object): def update_grid(self, w=-1): ''' Updates grid once. ''' self.grid = update(self.grid, self.fix, self.scale, w) def converge_grid(self, w=-1, accuracy=0.05): ''' Updates grid until convergence. ''' temporal_spread = 1. spatial_spread = 0. updates = 0 while temporal_spread > accuracy*spatial_spread: horizontal_spread = np.absolute(np.diff(self.grid, axis=-1)).max() vertical_spread = np.absolute(np.diff(self.grid, axis=0)).max() spatial_spread = max(horizontal_spread, vertical_spread) old_grid = np.copy(self.grid) self.update_grid(w) temporal_spread = np.linalg.norm( (self.grid - old_grid) ) updates += 1 if updates%1000==0: print '\nspatial spread = ', spatial_spread print 'temporal spread = ', temporal_spread print 'updates = ', updates return temporal_spread, spatial_spread, updates def plot_grid(self, title=None): ''' Plots grid's potential field. Parameter title sets the title of the plot. ''' if self.grid.shape[0] == self.grid.shape[1]: colour, shrink, aspect = 'YlOrRd', 1, (1, 10) else: colour, shrink, aspect = 'RdYlBu', 0.5, (1.2, 8) grid = self.dim['u'][0]*self.grid xedge = (grid.shape[1]-2.)*self.dim['x'][0]/self.scale/2. yedge = (grid.shape[0]-2.)*self.dim['x'][0]/self.scale/2. fig = plt.figure() ax = fig.add_subplot(111) if title=='intro': ax.set_title(r'EDM experiment plate assembly', fontsize=45) elif title=='results': ax.set_title(r'Electric Potential Field', fontsize=45) axx = ax.imshow(grid, extent= [-xedge, xedge, -yedge, yedge], aspect=aspect[0], interpolation='None', cmap=plt.cm.get_cmap(colour)) ax.set_xlabel(r'$system\ size\ ({0})$'.format(self.dim['x'][1]), fontsize=45) ax.xaxis.set_ticks_position('bottom') ax.yaxis.set_ticks_position('left') ax.tick_params(axis='both', labelsize=40) cbar = fig.colorbar(axx, shrink=shrink, aspect=aspect[1]) cbar.ax.tick_params(labelsize=40) cbar.set_label(r'$Potential\ \phi\ ({0})$'.format(self.dim['u'][1]), size=50) def analyse_scale(self, w=-1, datapoints=20, accuracy=0.05, plot=True): ''' Plots number of updates against scale for given relaxation parameter w, number of datapoints and accuracy of convergence. If plot=False, returns computed updates and scales. Plots also maximum spatial spread of potential against scale. ''' scales = np.linspace(10, 10*datapoints, datapoints) mesh, updates = [], [] for s in scales: print s self.set_scale(s, silent=True) data = self.converge_grid(w, accuracy) updates.append(data[2]) mesh.append(data[1]*self.dim['u'][0]) if not plot: return scales, updates if w=='j': xaxis = scales*scales lab= r'$scale^2\ \left(\frac{1}{(%g%s)^2}\right)$'% ( self.dim['x'][0], self.dim['x'][1]) else: xaxis = scales lab= r'$scale\ \left(\frac{1}{%g%s}\right)$'% (self.dim['x'][0], self.dim['x'][1]) slope = updates[-1]/xaxis[-1] fit = slope*xaxis fig = plt.figure() ax = fig.add_subplot(111) ax.set_title(r'Number of updates against Scale', fontsize=45) ax.plot(xaxis, updates, label=r'Numerical data') ax.plot(xaxis, fit, label=r'Linear fit ($slope=%.2f$)'% (slope)) ax.set_xlabel(lab, fontsize=35) ax.set_ylabel(r'$temporal\ updates$', fontsize=35) ax.tick_params(axis='both', labelsize=25) ax.legend(loc='upper left', prop={'size':40}) fig = plt.figure() ax = fig.add_subplot(111) ax.set_title(r'Spatial spread against Scale', fontsize=45) ax.plot(scales, mesh) ax.set_xlabel(r'$scale\ \left(\frac{1}{%g%s}\right)$'% (self.dim['x'][0], self.dim['x'][1]), fontsize=40) ax.set_ylabel(r'$spatial\ spread\ (%s)$'% (self.dim['u'][1]), fontsize=40) ax.tick_params(axis='both', labelsize=25) def analyse_spread(self, w=-1, datapoints=10): ''' Plots spatial spread of potential against accuracy of convergence for given relaxation parameter w and number of datapoints. ''' fig = plt.figure() ax = fig.add_subplot(111) #ax.set_title(r'Spatial spread against Accuracy of convergence', # fontsize=75) ax.set_xlabel(r'$fraction\ of\ spatial\ spread$', fontsize=40) ax.invert_xaxis() ax.set_ylabel(r'$spatial\ spread\ (%s)$'% (self.dim['u'][1]), fontsize=40) ax.tick_params(axis='both', labelsize=30) accuracies = np.logspace(-1,-10,datapoints) for scale in np.linspace(10,10*datapoints,datapoints): self.set_scale(scale, silent=True) spreads = [] for acc in accuracies: t,s,u = self.converge_grid(w, acc) spreads.append(s*self.dim['u'][0]) ax.plot(accuracies, spreads, label='Scale={0}'.format(scale)) return accuracies, spreads def analyse_omega(self, guess, scales=-1, datapoints=20, accuracy=0.05, plot=True): ''' Plots number of updates against relaxation parameter for given initial guess, system scales, number of datapoints and accuracy of convergence. If plot=False, returns computed updates and relaxation parameters. ''' if plot: fig = plt.figure() ax = fig.add_subplot(111) ax.set_title(r'Optimal omega search at different scales', fontsize=55) ax.set_xlabel('$relaxation\ parameter\ \omega$', fontsize=37) ax.set_ylabel('$temporal\ updates$', fontsize=37) ax.tick_params(axis='both', labelsize=30) ws = np.pad(np.array([guess]), datapoints/2, 'linear_ramp', end_values=(guess-0.05, 1.99)) if scales==-1: scales = [self.scale] for scale in scales: updates = [] for w in ws: self.set_scale(scale, silent=True) data = self.converge_grid(w, accuracy) updates.append(data[-1]) if plot: ax.plot(ws, updates, label=r'Scale ${0}$'.format(scale)) else: return ws, updates if plot: ax.legend(loc='upper center', prop={'size':40}) def plot_omega_vs_scale(self, const=2., datapoints=20): ''' Plots relaxation parameter against scale along with approximate fit for given number of datapoints. The fitting is approximated by the user with the constant const which appears in the formula: 2(1+const/(coef*scale)), where coef is the ratio of x and y dimensions of the system. ''' coef = float(self.grid.shape[1]-2)/(self.grid.shape[0]-2) scales = np.linspace(10, 50, datapoints) fit = 2./(1+const/(coef*scales)) ws = [] for scale in scales: self.set_scale(scale, silent=True) guess = 2./(1+const/(coef*self.scale)) w, update = self.analyse_omega(guess, plot=False) w = w[update.index(min(update))] ws.append(w) fig = plt.figure() ax = fig.add_subplot(111) ax.set_title(r'Relaxation parameter against scale', fontsize=55) ax.set_xlabel(r'$scale\ \left(\frac{1}{%g%s}\right)$'% (self.dim['x'][0], self.dim['x'][1]), fontsize=37) ax.set_ylabel('$relaxation\ parameter\ \omega$', fontsize=37) ax.tick_params(axis='both', labelsize=30) ax.plot(scales, ws, label=r'Numerical data') ax.plot(scales, fit, label=r'Approximate fit ($C=%.1f$)'% (const)) ax.legend(loc='upper left', prop={'size':40}) return scales, ws
mit
victor-prado/broker-manager
environment/lib/python3.5/site-packages/pandas/tests/frame/test_mutate_columns.py
7
7831
# -*- coding: utf-8 -*- from __future__ import print_function from pandas.compat import range, lrange import numpy as np from pandas import DataFrame, Series, Index from pandas.util.testing import (assert_series_equal, assert_frame_equal, assertRaisesRegexp) import pandas.util.testing as tm from pandas.tests.frame.common import TestData # Column add, remove, delete. class TestDataFrameMutateColumns(tm.TestCase, TestData): _multiprocess_can_split_ = True def test_assign(self): df = DataFrame({'A': [1, 2, 3], 'B': [4, 5, 6]}) original = df.copy() result = df.assign(C=df.B / df.A) expected = df.copy() expected['C'] = [4, 2.5, 2] assert_frame_equal(result, expected) # lambda syntax result = df.assign(C=lambda x: x.B / x.A) assert_frame_equal(result, expected) # original is unmodified assert_frame_equal(df, original) # Non-Series array-like result = df.assign(C=[4, 2.5, 2]) assert_frame_equal(result, expected) # original is unmodified assert_frame_equal(df, original) result = df.assign(B=df.B / df.A) expected = expected.drop('B', axis=1).rename(columns={'C': 'B'}) assert_frame_equal(result, expected) # overwrite result = df.assign(A=df.A + df.B) expected = df.copy() expected['A'] = [5, 7, 9] assert_frame_equal(result, expected) # lambda result = df.assign(A=lambda x: x.A + x.B) assert_frame_equal(result, expected) def test_assign_multiple(self): df = DataFrame([[1, 4], [2, 5], [3, 6]], columns=['A', 'B']) result = df.assign(C=[7, 8, 9], D=df.A, E=lambda x: x.B) expected = DataFrame([[1, 4, 7, 1, 4], [2, 5, 8, 2, 5], [3, 6, 9, 3, 6]], columns=list('ABCDE')) assert_frame_equal(result, expected) def test_assign_alphabetical(self): # GH 9818 df = DataFrame([[1, 2], [3, 4]], columns=['A', 'B']) result = df.assign(D=df.A + df.B, C=df.A - df.B) expected = DataFrame([[1, 2, -1, 3], [3, 4, -1, 7]], columns=list('ABCD')) assert_frame_equal(result, expected) result = df.assign(C=df.A - df.B, D=df.A + df.B) assert_frame_equal(result, expected) def test_assign_bad(self): df = DataFrame({'A': [1, 2, 3], 'B': [4, 5, 6]}) # non-keyword argument with tm.assertRaises(TypeError): df.assign(lambda x: x.A) with tm.assertRaises(AttributeError): df.assign(C=df.A, D=df.A + df.C) with tm.assertRaises(KeyError): df.assign(C=lambda df: df.A, D=lambda df: df['A'] + df['C']) with tm.assertRaises(KeyError): df.assign(C=df.A, D=lambda x: x['A'] + x['C']) def test_insert_error_msmgs(self): # GH 7432 df = DataFrame({'foo': ['a', 'b', 'c'], 'bar': [ 1, 2, 3], 'baz': ['d', 'e', 'f']}).set_index('foo') s = DataFrame({'foo': ['a', 'b', 'c', 'a'], 'fiz': [ 'g', 'h', 'i', 'j']}).set_index('foo') msg = 'cannot reindex from a duplicate axis' with assertRaisesRegexp(ValueError, msg): df['newcol'] = s # GH 4107, more descriptive error message df = DataFrame(np.random.randint(0, 2, (4, 4)), columns=['a', 'b', 'c', 'd']) msg = 'incompatible index of inserted column with frame index' with assertRaisesRegexp(TypeError, msg): df['gr'] = df.groupby(['b', 'c']).count() def test_insert_benchmark(self): # from the vb_suite/frame_methods/frame_insert_columns N = 10 K = 5 df = DataFrame(index=lrange(N)) new_col = np.random.randn(N) for i in range(K): df[i] = new_col expected = DataFrame(np.repeat(new_col, K).reshape(N, K), index=lrange(N)) assert_frame_equal(df, expected) def test_insert(self): df = DataFrame(np.random.randn(5, 3), index=np.arange(5), columns=['c', 'b', 'a']) df.insert(0, 'foo', df['a']) self.assert_index_equal(df.columns, Index(['foo', 'c', 'b', 'a'])) tm.assert_series_equal(df['a'], df['foo'], check_names=False) df.insert(2, 'bar', df['c']) self.assert_index_equal(df.columns, Index(['foo', 'c', 'bar', 'b', 'a'])) tm.assert_almost_equal(df['c'], df['bar'], check_names=False) # diff dtype # new item df['x'] = df['a'].astype('float32') result = Series(dict(float64=5, float32=1)) self.assertTrue((df.get_dtype_counts() == result).all()) # replacing current (in different block) df['a'] = df['a'].astype('float32') result = Series(dict(float64=4, float32=2)) self.assertTrue((df.get_dtype_counts() == result).all()) df['y'] = df['a'].astype('int32') result = Series(dict(float64=4, float32=2, int32=1)) self.assertTrue((df.get_dtype_counts() == result).all()) with assertRaisesRegexp(ValueError, 'already exists'): df.insert(1, 'a', df['b']) self.assertRaises(ValueError, df.insert, 1, 'c', df['b']) df.columns.name = 'some_name' # preserve columns name field df.insert(0, 'baz', df['c']) self.assertEqual(df.columns.name, 'some_name') # GH 13522 df = DataFrame(index=['A', 'B', 'C']) df['X'] = df.index df['X'] = ['x', 'y', 'z'] exp = DataFrame(data={'X': ['x', 'y', 'z']}, index=['A', 'B', 'C']) assert_frame_equal(df, exp) def test_delitem(self): del self.frame['A'] self.assertNotIn('A', self.frame) def test_pop(self): self.frame.columns.name = 'baz' self.frame.pop('A') self.assertNotIn('A', self.frame) self.frame['foo'] = 'bar' self.frame.pop('foo') self.assertNotIn('foo', self.frame) # TODO self.assertEqual(self.frame.columns.name, 'baz') # 10912 # inplace ops cause caching issue a = DataFrame([[1, 2, 3], [4, 5, 6]], columns=[ 'A', 'B', 'C'], index=['X', 'Y']) b = a.pop('B') b += 1 # original frame expected = DataFrame([[1, 3], [4, 6]], columns=[ 'A', 'C'], index=['X', 'Y']) assert_frame_equal(a, expected) # result expected = Series([2, 5], index=['X', 'Y'], name='B') + 1 assert_series_equal(b, expected) def test_pop_non_unique_cols(self): df = DataFrame({0: [0, 1], 1: [0, 1], 2: [4, 5]}) df.columns = ["a", "b", "a"] res = df.pop("a") self.assertEqual(type(res), DataFrame) self.assertEqual(len(res), 2) self.assertEqual(len(df.columns), 1) self.assertTrue("b" in df.columns) self.assertFalse("a" in df.columns) self.assertEqual(len(df.index), 2) def test_insert_column_bug_4032(self): # GH4032, inserting a column and renaming causing errors df = DataFrame({'b': [1.1, 2.2]}) df = df.rename(columns={}) df.insert(0, 'a', [1, 2]) result = df.rename(columns={}) str(result) expected = DataFrame([[1, 1.1], [2, 2.2]], columns=['a', 'b']) assert_frame_equal(result, expected) df.insert(0, 'c', [1.3, 2.3]) result = df.rename(columns={}) str(result) expected = DataFrame([[1.3, 1, 1.1], [2.3, 2, 2.2]], columns=['c', 'a', 'b']) assert_frame_equal(result, expected)
mit
bikong2/scikit-learn
sklearn/tests/test_random_projection.py
79
14035
from __future__ import division import numpy as np import scipy.sparse as sp from sklearn.metrics import euclidean_distances from sklearn.random_projection import johnson_lindenstrauss_min_dim from sklearn.random_projection import gaussian_random_matrix from sklearn.random_projection import sparse_random_matrix from sklearn.random_projection import SparseRandomProjection from sklearn.random_projection import GaussianRandomProjection from sklearn.utils.testing import assert_less from sklearn.utils.testing import assert_raises from sklearn.utils.testing import assert_raise_message from sklearn.utils.testing import assert_array_equal from sklearn.utils.testing import assert_equal from sklearn.utils.testing import assert_almost_equal from sklearn.utils.testing import assert_in from sklearn.utils.testing import assert_array_almost_equal from sklearn.utils.testing import assert_warns from sklearn.utils import DataDimensionalityWarning all_sparse_random_matrix = [sparse_random_matrix] all_dense_random_matrix = [gaussian_random_matrix] all_random_matrix = set(all_sparse_random_matrix + all_dense_random_matrix) all_SparseRandomProjection = [SparseRandomProjection] all_DenseRandomProjection = [GaussianRandomProjection] all_RandomProjection = set(all_SparseRandomProjection + all_DenseRandomProjection) # Make some random data with uniformly located non zero entries with # Gaussian distributed values def make_sparse_random_data(n_samples, n_features, n_nonzeros): rng = np.random.RandomState(0) data_coo = sp.coo_matrix( (rng.randn(n_nonzeros), (rng.randint(n_samples, size=n_nonzeros), rng.randint(n_features, size=n_nonzeros))), shape=(n_samples, n_features)) return data_coo.toarray(), data_coo.tocsr() def densify(matrix): if not sp.issparse(matrix): return matrix else: return matrix.toarray() n_samples, n_features = (10, 1000) n_nonzeros = int(n_samples * n_features / 100.) data, data_csr = make_sparse_random_data(n_samples, n_features, n_nonzeros) ############################################################################### # test on JL lemma ############################################################################### def test_invalid_jl_domain(): assert_raises(ValueError, johnson_lindenstrauss_min_dim, 100, 1.1) assert_raises(ValueError, johnson_lindenstrauss_min_dim, 100, 0.0) assert_raises(ValueError, johnson_lindenstrauss_min_dim, 100, -0.1) assert_raises(ValueError, johnson_lindenstrauss_min_dim, 0, 0.5) def test_input_size_jl_min_dim(): assert_raises(ValueError, johnson_lindenstrauss_min_dim, 3 * [100], 2 * [0.9]) assert_raises(ValueError, johnson_lindenstrauss_min_dim, 3 * [100], 2 * [0.9]) johnson_lindenstrauss_min_dim(np.random.randint(1, 10, size=(10, 10)), 0.5 * np.ones((10, 10))) ############################################################################### # tests random matrix generation ############################################################################### def check_input_size_random_matrix(random_matrix): assert_raises(ValueError, random_matrix, 0, 0) assert_raises(ValueError, random_matrix, -1, 1) assert_raises(ValueError, random_matrix, 1, -1) assert_raises(ValueError, random_matrix, 1, 0) assert_raises(ValueError, random_matrix, -1, 0) def check_size_generated(random_matrix): assert_equal(random_matrix(1, 5).shape, (1, 5)) assert_equal(random_matrix(5, 1).shape, (5, 1)) assert_equal(random_matrix(5, 5).shape, (5, 5)) assert_equal(random_matrix(1, 1).shape, (1, 1)) def check_zero_mean_and_unit_norm(random_matrix): # All random matrix should produce a transformation matrix # with zero mean and unit norm for each columns A = densify(random_matrix(10000, 1, random_state=0)) assert_array_almost_equal(0, np.mean(A), 3) assert_array_almost_equal(1.0, np.linalg.norm(A), 1) def check_input_with_sparse_random_matrix(random_matrix): n_components, n_features = 5, 10 for density in [-1., 0.0, 1.1]: assert_raises(ValueError, random_matrix, n_components, n_features, density=density) def test_basic_property_of_random_matrix(): # Check basic properties of random matrix generation for random_matrix in all_random_matrix: yield check_input_size_random_matrix, random_matrix yield check_size_generated, random_matrix yield check_zero_mean_and_unit_norm, random_matrix for random_matrix in all_sparse_random_matrix: yield check_input_with_sparse_random_matrix, random_matrix random_matrix_dense = \ lambda n_components, n_features, random_state: random_matrix( n_components, n_features, random_state=random_state, density=1.0) yield check_zero_mean_and_unit_norm, random_matrix_dense def test_gaussian_random_matrix(): # Check some statical properties of Gaussian random matrix # Check that the random matrix follow the proper distribution. # Let's say that each element of a_{ij} of A is taken from # a_ij ~ N(0.0, 1 / n_components). # n_components = 100 n_features = 1000 A = gaussian_random_matrix(n_components, n_features, random_state=0) assert_array_almost_equal(0.0, np.mean(A), 2) assert_array_almost_equal(np.var(A, ddof=1), 1 / n_components, 1) def test_sparse_random_matrix(): # Check some statical properties of sparse random matrix n_components = 100 n_features = 500 for density in [0.3, 1.]: s = 1 / density A = sparse_random_matrix(n_components, n_features, density=density, random_state=0) A = densify(A) # Check possible values values = np.unique(A) assert_in(np.sqrt(s) / np.sqrt(n_components), values) assert_in(- np.sqrt(s) / np.sqrt(n_components), values) if density == 1.0: assert_equal(np.size(values), 2) else: assert_in(0., values) assert_equal(np.size(values), 3) # Check that the random matrix follow the proper distribution. # Let's say that each element of a_{ij} of A is taken from # # - -sqrt(s) / sqrt(n_components) with probability 1 / 2s # - 0 with probability 1 - 1 / s # - +sqrt(s) / sqrt(n_components) with probability 1 / 2s # assert_almost_equal(np.mean(A == 0.0), 1 - 1 / s, decimal=2) assert_almost_equal(np.mean(A == np.sqrt(s) / np.sqrt(n_components)), 1 / (2 * s), decimal=2) assert_almost_equal(np.mean(A == - np.sqrt(s) / np.sqrt(n_components)), 1 / (2 * s), decimal=2) assert_almost_equal(np.var(A == 0.0, ddof=1), (1 - 1 / s) * 1 / s, decimal=2) assert_almost_equal(np.var(A == np.sqrt(s) / np.sqrt(n_components), ddof=1), (1 - 1 / (2 * s)) * 1 / (2 * s), decimal=2) assert_almost_equal(np.var(A == - np.sqrt(s) / np.sqrt(n_components), ddof=1), (1 - 1 / (2 * s)) * 1 / (2 * s), decimal=2) ############################################################################### # tests on random projection transformer ############################################################################### def test_sparse_random_projection_transformer_invalid_density(): for RandomProjection in all_SparseRandomProjection: assert_raises(ValueError, RandomProjection(density=1.1).fit, data) assert_raises(ValueError, RandomProjection(density=0).fit, data) assert_raises(ValueError, RandomProjection(density=-0.1).fit, data) def test_random_projection_transformer_invalid_input(): for RandomProjection in all_RandomProjection: assert_raises(ValueError, RandomProjection(n_components='auto').fit, [[0, 1, 2]]) assert_raises(ValueError, RandomProjection(n_components=-10).fit, data) def test_try_to_transform_before_fit(): for RandomProjection in all_RandomProjection: assert_raises(ValueError, RandomProjection(n_components='auto').transform, data) def test_too_many_samples_to_find_a_safe_embedding(): data, _ = make_sparse_random_data(1000, 100, 1000) for RandomProjection in all_RandomProjection: rp = RandomProjection(n_components='auto', eps=0.1) expected_msg = ( 'eps=0.100000 and n_samples=1000 lead to a target dimension' ' of 5920 which is larger than the original space with' ' n_features=100') assert_raise_message(ValueError, expected_msg, rp.fit, data) def test_random_projection_embedding_quality(): data, _ = make_sparse_random_data(8, 5000, 15000) eps = 0.2 original_distances = euclidean_distances(data, squared=True) original_distances = original_distances.ravel() non_identical = original_distances != 0.0 # remove 0 distances to avoid division by 0 original_distances = original_distances[non_identical] for RandomProjection in all_RandomProjection: rp = RandomProjection(n_components='auto', eps=eps, random_state=0) projected = rp.fit_transform(data) projected_distances = euclidean_distances(projected, squared=True) projected_distances = projected_distances.ravel() # remove 0 distances to avoid division by 0 projected_distances = projected_distances[non_identical] distances_ratio = projected_distances / original_distances # check that the automatically tuned values for the density respect the # contract for eps: pairwise distances are preserved according to the # Johnson-Lindenstrauss lemma assert_less(distances_ratio.max(), 1 + eps) assert_less(1 - eps, distances_ratio.min()) def test_SparseRandomProjection_output_representation(): for SparseRandomProjection in all_SparseRandomProjection: # when using sparse input, the projected data can be forced to be a # dense numpy array rp = SparseRandomProjection(n_components=10, dense_output=True, random_state=0) rp.fit(data) assert isinstance(rp.transform(data), np.ndarray) sparse_data = sp.csr_matrix(data) assert isinstance(rp.transform(sparse_data), np.ndarray) # the output can be left to a sparse matrix instead rp = SparseRandomProjection(n_components=10, dense_output=False, random_state=0) rp = rp.fit(data) # output for dense input will stay dense: assert isinstance(rp.transform(data), np.ndarray) # output for sparse output will be sparse: assert sp.issparse(rp.transform(sparse_data)) def test_correct_RandomProjection_dimensions_embedding(): for RandomProjection in all_RandomProjection: rp = RandomProjection(n_components='auto', random_state=0, eps=0.5).fit(data) # the number of components is adjusted from the shape of the training # set assert_equal(rp.n_components, 'auto') assert_equal(rp.n_components_, 110) if RandomProjection in all_SparseRandomProjection: assert_equal(rp.density, 'auto') assert_almost_equal(rp.density_, 0.03, 2) assert_equal(rp.components_.shape, (110, n_features)) projected_1 = rp.transform(data) assert_equal(projected_1.shape, (n_samples, 110)) # once the RP is 'fitted' the projection is always the same projected_2 = rp.transform(data) assert_array_equal(projected_1, projected_2) # fit transform with same random seed will lead to the same results rp2 = RandomProjection(random_state=0, eps=0.5) projected_3 = rp2.fit_transform(data) assert_array_equal(projected_1, projected_3) # Try to transform with an input X of size different from fitted. assert_raises(ValueError, rp.transform, data[:, 1:5]) # it is also possible to fix the number of components and the density # level if RandomProjection in all_SparseRandomProjection: rp = RandomProjection(n_components=100, density=0.001, random_state=0) projected = rp.fit_transform(data) assert_equal(projected.shape, (n_samples, 100)) assert_equal(rp.components_.shape, (100, n_features)) assert_less(rp.components_.nnz, 115) # close to 1% density assert_less(85, rp.components_.nnz) # close to 1% density def test_warning_n_components_greater_than_n_features(): n_features = 20 data, _ = make_sparse_random_data(5, n_features, int(n_features / 4)) for RandomProjection in all_RandomProjection: assert_warns(DataDimensionalityWarning, RandomProjection(n_components=n_features + 1).fit, data) def test_works_with_sparse_data(): n_features = 20 data, _ = make_sparse_random_data(5, n_features, int(n_features / 4)) for RandomProjection in all_RandomProjection: rp_dense = RandomProjection(n_components=3, random_state=1).fit(data) rp_sparse = RandomProjection(n_components=3, random_state=1).fit(sp.csr_matrix(data)) assert_array_almost_equal(densify(rp_dense.components_), densify(rp_sparse.components_))
bsd-3-clause
evidation-health/pymc3
setup.py
1
2670
#!/usr/bin/env python from setuptools import setup import sys DISTNAME = 'pymc3' DESCRIPTION = "PyMC3" LONG_DESCRIPTION = """Bayesian estimation, particularly using Markov chain Monte Carlo (MCMC), is an increasingly relevant approach to statistical estimation. However, few statistical software packages implement MCMC samplers, and they are non-trivial to code by hand. ``pymc3`` is a python package that implements the Metropolis-Hastings algorithm as a python class, and is extremely flexible and applicable to a large suite of problems. ``pymc3`` includes methods for summarizing output, plotting, goodness-of-fit and convergence diagnostics.""" MAINTAINER = 'John Salvatier' MAINTAINER_EMAIL = '[email protected]' AUTHOR = 'John Salvatier and Christopher Fonnesbeck' AUTHOR_EMAIL = '[email protected]' URL = "http://github.com/pymc-devs/pymc" LICENSE = "Apache License, Version 2.0" VERSION = "3.0" classifiers = ['Development Status :: 4 - Beta', 'Programming Language :: Python', 'Programming Language :: Python :: 2', 'Programming Language :: Python :: 3', 'Programming Language :: Python :: 2.7', 'Programming Language :: Python :: 3.3', 'License :: OSI Approved :: Apache Software License', 'Intended Audience :: Science/Research', 'Topic :: Scientific/Engineering', 'Topic :: Scientific/Engineering :: Mathematics', 'Operating System :: OS Independent'] install_reqs = ['numpy>=1.7.1', 'scipy>=0.12.0', 'matplotlib>=1.2.1', 'Theano<=0.7.1dev', 'pandas>=0.15.0'] if sys.version_info < (3, 4): install_reqs.append('enum34') test_reqs = ['nose'] if sys.version_info[0] == 2: # py3 has mock in stdlib test_reqs.append('mock') dep_links = ['https://github.com/Theano/Theano/tarball/master#egg=Theano-0.7.1dev'] if __name__ == "__main__": setup(name=DISTNAME, version=VERSION, maintainer=MAINTAINER, maintainer_email=MAINTAINER_EMAIL, description=DESCRIPTION, license=LICENSE, url=URL, long_description=LONG_DESCRIPTION, packages=['pymc3', 'pymc3.distributions', 'pymc3.step_methods', 'pymc3.tuning', 'pymc3.tests', 'pymc3.glm', 'pymc3.examples', 'pymc3.backends'], package_data = {'pymc3.examples': ['data/*.*']}, classifiers=classifiers, install_requires=install_reqs, dependency_links=dep_links, tests_require=test_reqs, test_suite='nose.collector')
apache-2.0
cgrohman/ponies
hypo1.py
1
4172
import numpy as np import pandas as pd from horse import Horse from race import Race import pdb from sklearn.preprocessing import Imputer, StandardScaler, OneHotEncoder from sklearn.model_selection import train_test_split #------------------------------------------------------------------------------ def main(): dataset = pd.read_csv('results/ml_2017-04-17.csv') #data clean up # H Odds columns: impute and scale horse_odds_labels = ['h0_odds','h1_odds', 'h2_odds', 'h3_odds', 'h4_odds', 'h5_odds', 'h6_odds', 'h7_odds', 'h8_odds', 'h9_odds', 'h10_odds', 'h11_odds', 'h12_odds', 'h13_odds', 'h14_odds', 'h15_odds', 'h16_odds', 'h17_odds','h18_odds'] dataset = impute_def_col(dataset, horse_odds_labels) dataset = scale_def_col(dataset, horse_odds_labels) # H Weights columns: impute and scale horse_weight_labels = ['h0_weight','h1_weight', 'h2_weight', 'h3_weight', 'h4_weight', 'h5_weight', 'h6_weight', 'h7_weight', 'h8_weight', 'h9_weight', 'h10_weight', 'h11_weight', 'h12_weight', 'h13_weight', 'h14_weight', 'h15_weight', 'h16_weight', 'h17_weight','h18_weight'] dataset = impute_def_col(dataset, horse_weight_labels) dataset = scale_def_col(dataset, horse_weight_labels) # H Claim value columns: impute and scale horse_claim_value_labels = ['h0_claim_value','h1_claim_value', 'h2_claim_value', 'h3_claim_value', 'h4_claim_value', 'h5_claim_value', 'h6_claim_value', 'h7_claim_value', 'h8_claim_value', 'h9_claim_value', 'h10_claim_value', 'h11_claim_value', 'h12_claim_value', 'h13_claim_value', 'h14_claim_value', 'h15_claim_value', 'h16_claim_value', 'h17_claim_value','h18_claim_value'] dataset = impute_def_col(dataset, horse_claim_value_labels) dataset = scale_def_col(dataset, horse_claim_value_labels) # R Purse value columns: impute and scale dataset = impute_def_col(dataset, ['purse']) dataset = scale_def_col(dataset, ['purse']) # R Purse value columns: impute and scale dataset = impute_def_col(dataset, ['distance']) dataset = scale_def_col(dataset, ['distance']) # R Class Rating value columns: impute and scale dataset = impute_def_col(dataset, ['class_rating']) dataset = scale_def_col(dataset, ['class_rating']) # Data splitting x = dataset.iloc[:,:-1] y = dataset.iloc[:,-1] from sklearn.cross_validation import train_test_split x_train, x_test, y_train, y_test = trian_test_split(x, y, test_size=0.2) # SVC from sklearn.svm import SVC svc = SVC() svc.fit(x_train, y_train) y_pred_svm = svc.predict(x_test) # Validation from sklearn.metrics import confusion_matrix confusion_matrix(y_test, y_pred_svm) # predicted 0 1 Total: # real 0 [7590, 1240] 8830 # 1 [2715, 2187] 4902 # Predict NOT wps accuracy: 85.95% # Predict wps accuracy: 44.61% # Removing race_number from data x_nrn = x.iloc[:,1:] x_nrn_train, x_nrn_test, y_nrn_train, y_nrn_test = train_test_split(x_nrn, y, test_size=0.2) svc_nrn.fit(x_nrn_train,y_nrn_train) y_pred_nrn = svc_nrn.predict(x_nrn_test) # predicted 0 1 Total: # real 0 [7609, 1221] 8830 # 1 [2812, 2090] 4902 # Predict NOT wps accuracy: 86.17% # Presict wps accuracy: 42.63% #------------------------------------------------------------------------------ def impute_def_col(df, label): for la in label: imp = Imputer() col = np.array(df[la]).T try: df[la] = imp.fit_transform(col.reshape(-1,1)) except: pdb.set_trace() return df #------------------------------------------------------------------------------ def scale_def_col(df, label): for la in label: sc = StandardScaler() col = np.array(df[la]).T try: df[la] = sc.fit_transform(col.reshape(-1,1)) except: pdb.set_trace() return df #------------------------------------------------------------------------------ def ohe_col(df, label): for la in label: le = LabelEncoder() ohe = OneHotEncoder() col = np.array(df[la]).T try: col_le = le.fit_transform(col.reshape(-1,1)) return #------------------------------------------------------------------------------ if __name__ == '__main__': main()
gpl-3.0
vberthiaume/vblandr
src/silenceTest.py
1
3381
import subprocess as sp import scikits.audiolab import numpy as np from scipy.fftpack import fft, ifft from scipy.io import wavfile import bisect import matplotlib.pyplot as plt import time plt.rcParams['agg.path.chunksize'] = 10000 #--CONVERT MP3 TO WAV------------------------------------------ #song_path = '/home/gris/Music/vblandr/test_small/punk/07 Alkaline Trio - Only Love.mp3' #song_path = '/mnt/c/Users/barth/Documents/vblandr/train_small/punk/01 - True North.mp3' #song_path = '/mnt/c/Users/barth/Documents/vblandr/train_small/audiobook/Blaise_Pascal_-_Discours_sur_les_passions_de_l_amour.mp3' song_path = '/home/gris/Music/vblandr/train_small/audiobook/Blaise_Pascal_-_Discours_sur_les_passions_de_l_amour.mp3' command = [ 'ffmpeg', '-i', song_path, '-f', 's16le', '-acodec', 'pcm_s16le', '-ar', '44100', # sms tools wavread can only read 44100 Hz '-ac', '1', # mono file '-loglevel', 'quiet', '-'] #instead of having an output file, using '-' sends it in the pipe. not actually sure how this works. #run the command pipe = sp.Popen(command, stdout=sp.PIPE) #read the output into a numpy array stdoutdata = pipe.stdout.read() audio_array = np.fromstring(stdoutdata, dtype=np.int16) #-------------------------------------------------------------- def removeInitialSilence(cur_song_pcm): #start_time = time.clock() #raw #min = np.min(cur_song_pcm) #max = np.max(cur_song_pcm) #print ("raw min:", min, "max:", max) #using absolute value env = abs(cur_song_pcm) #min = np.min(env) #max = np.max(env) #print ("abs min:", min, "max:", max) #float env = env.astype(np.float32) #cast the array into float32 #min = np.min(env) #max = np.max(env) #print ("float min:", min, "max:", max) #norm1 max = np.max(env) env = np.multiply(env, 1.0 / max) #convert int16 range into [-.5, .5], but really because of the abs we're already between [0,.5] min = np.min(env) max = np.max(env) print ("norm1 min:", min, "max:", max) #end_time = time.clock() #print ("time:", end_time - start_time) plt.plot(env) plt.show() #convolving as a way to do a fast moving average N = 100 env = np.convolve(env, np.ones((N,))/N)[(N-1):] #first 44100 samples are silent. what is their max amplitude? #print np.max(env[:44100]) #at 1.5s, we're clearly into audio, what is the max amplitude? #print "before .5s, max: ", np.max(env[:.5*44100]) #here we're still in noise part #print "in vocal part, max: ", np.max(env[.625*44100]) #detect first non-silent sample threshold = .00004 endOfSilence = bisect.bisect(env,threshold) print "end of silence: ", endOfSilence #these don't work on hesse plt.plot(env) plt.show() return cur_song_pcm[endOfSilence:] #---- REMOVE SILENCE -------------------- ifft_output = removeInitialSilence(audio_array) #truncate to 1 sec ifft_output = ifft_output[:1*44100] #--SAVE WAVE AS NEW FILE ---------------- ifft_output = np.round(ifft_output).astype('int16') wavfile.write('/home/gris/Music/vblandr/silenceTest.wav', 44100, ifft_output) #wavfile.write('/mnt/c/Users/barth/Documents/vblandr/silenceTest.wav', 44100, ifft_output)
apache-2.0

Dataset Card for "forall"

More Information needed

Downloads last month
34