publishedAt
timestamp[ns]date
2023-02-13 12:55:54
2025-05-02 03:36:49
title
stringlengths
8
206
thumbnail
stringlengths
77
77
numComments
int64
0
143
submittedBy
dict
isAuthorParticipating
bool
2 classes
mediaUrls
sequencelengths
0
12
paper_id
stringlengths
10
10
paper_authors
listlengths
1
942
paper_publishedAt
timestamp[ns]date
2023-02-13 17:55:54
2025-05-02 07:36:49
paper_title
stringlengths
8
206
paper_summary
stringlengths
165
1.92k
paper_upvotes
int64
0
615
paper_discussionId
stringlengths
24
24
paper_projectPage
stringclasses
572 values
paper_githubRepo
stringclasses
813 values
2025-02-26T00:56:27.275000
K-LoRA: Unlocking Training-Free Fusion of Any Subject and Style LoRAs
https://cdn-thumbnails.h…s/2502.18461.png
2
{ "_id": "6285a9133ab6642179158944", "avatarUrl": "/avatars/6e10fa07c94141fcdbe0cab02bb731ca.svg", "followerCount": 15, "fullname": "Zhen Li", "isHf": false, "isMod": false, "isPro": false, "name": "Paper99", "type": "user" }
true
null
2502.18461
[ { "_id": "67bea0cc2d6011a72335f704", "hidden": false, "name": "Ziheng Ouyang", "status": "claimed_verified", "statusLastChangedAt": "2025-02-26T08:25:46.941Z", "user": { "_id": "67be9daa65ae638b17e461e9", "avatarUrl": "/avatars/30ab04b8a6a4d3e1d211943c0344b95e.svg", "fullname": "Ziheng Ouyang", "isPro": false, "type": "user", "user": "oyzh2005" } }, { "_id": "67bea0cc2d6011a72335f705", "hidden": false, "name": "Zhen Li", "status": "claimed_verified", "statusLastChangedAt": "2025-02-26T15:37:36.061Z", "user": { "_id": "6285a9133ab6642179158944", "avatarUrl": "/avatars/6e10fa07c94141fcdbe0cab02bb731ca.svg", "fullname": "Zhen Li", "isPro": false, "type": "user", "user": "Paper99" } }, { "_id": "67bea0cc2d6011a72335f706", "hidden": false, "name": "Qibin Hou", "status": null, "statusLastChangedAt": null, "user": null } ]
2025-02-25T18:59:12
K-LoRA: Unlocking Training-Free Fusion of Any Subject and Style LoRAs
Recent studies have explored combining different LoRAs to jointly generate learned style and content. However, existing methods either fail to effectively preserve both the original subject and style simultaneously or require additional training. In this paper, we argue that the intrinsic properties of LoRA can effectively guide diffusion models in merging learned subject and style. Building on this insight, we propose K-LoRA, a simple yet effective training-free LoRA fusion approach. In each attention layer, K-LoRA compares the Top-K elements in each LoRA to be fused, determining which LoRA to select for optimal fusion. This selection mechanism ensures that the most representative features of both subject and style are retained during the fusion process, effectively balancing their contributions. Experimental results demonstrate that the proposed method effectively integrates the subject and style information learned by the original LoRAs, outperforming state-of-the-art training-based approaches in both qualitative and quantitative results.
15
67bea0cf2d6011a72335f7aa
https://k-lora.github.io/K-LoRA.io/
https://github.com/HVision-NKU/K-LoRA
2025-02-26T00:38:42.527000
Shakti-VLMs: Scalable Vision-Language Models for Enterprise AI
https://cdn-thumbnails.h…s/2502.17092.png
2
{ "_id": "63d9e09f1cae35c27bf80cb2", "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/1675223055197-noauth.jpeg", "followerCount": 6, "fullname": "Syed Abdul Gaffar Shakhadri", "isHf": false, "isMod": false, "isPro": true, "name": "SyedAbdul", "type": "user" }
true
null
2502.17092
[ { "_id": "67bea8cc7e54112af6c372aa", "hidden": false, "name": "Syed Abdul Gaffar Shakhadri", "status": "extracted_confirmed", "statusLastChangedAt": "2025-02-26T05:52:19.355Z", "user": { "_id": "63d9e09f1cae35c27bf80cb2", "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/1675223055197-noauth.jpeg", "fullname": "Syed Abdul Gaffar Shakhadri", "isPro": true, "type": "user", "user": "SyedAbdul" } }, { "_id": "67bea8cc7e54112af6c372ab", "hidden": false, "name": "Kruthika KR", "status": "extracted_pending", "statusLastChangedAt": "2025-02-26T05:38:21.529Z", "user": { "_id": "5fb7ae48e6ae537272bdeb3c", "avatarUrl": "/avatars/e5d01cb428f4b22161e0d17895a5c678.svg", "fullname": "Kruthika", "isPro": false, "type": "user", "user": "kruthika" } }, { "_id": "67bea8cc7e54112af6c372ac", "hidden": false, "name": "Kartik Basavaraj Angadi", "status": "extracted_pending", "statusLastChangedAt": "2025-02-26T05:38:21.529Z", "user": { "_id": "677cc34fe4cf361eedccd085", "avatarUrl": "/avatars/e97a3f9a84ed258ab4b75c12865562d6.svg", "fullname": "Kartik Basavaraj Angadi", "isPro": false, "type": "user", "user": "KartikAngadi" } } ]
2025-02-24T12:15:07
Shakti-VLMs: Scalable Vision-Language Models for Enterprise AI
We introduce Shakti VLM, a family of vision-language models in the capacity of 1B and 4B parameters designed to address data efficiency challenges in multimodal learning. While recent VLMs achieve strong performance through extensive training data, Shakti models leverage architectural innovations to attain competitive results with fewer tokens. Key advancements include QK-Normalization for attention stability, hybrid normalization techniques, and enhanced positional encoding. A three-stage training strategy further optimizes learning efficiency. Evaluations show that Shakti-Shakti-VLM-1B and Shakti-VLM-4B excel in document understanding, Visual Reasoning, OCR extraction, and general multimodal reasoning. Our results highlight that high performance can be achieved through model design and training strategy rather than sheer data volume, making Shakti an efficient solution for enterprise-scale multimodal tasks.
3
67bea8cd7e54112af6c37305
null
null
2025-02-25T22:26:11.421000
Scale-Distribution Decoupling: Enabling Stable and Effective Training of Large Language Models
https://cdn-thumbnails.h…s/2502.15499.png
2
{ "_id": "6371128eafbe42caa5a5222b", "avatarUrl": "/avatars/c3b2ab35949c38aa3dfb2657a1300aac.svg", "followerCount": 1, "fullname": "Yutao Zeng", "isHf": false, "isMod": false, "isPro": false, "name": "Taoer", "type": "user" }
true
[ "https://cdn-uploads.huggingface.co/production/uploads/6371128eafbe42caa5a5222b/eu6jpeTjTn34I1SJ4_K1a.png", "https://cdn-uploads.huggingface.co/production/uploads/6371128eafbe42caa5a5222b/P6mXXagZPsH6fwQ6myMlr.png" ]
2502.15499
[ { "_id": "67be86743ea16c7e9491ff16", "hidden": false, "name": "Ya Wang", "status": null, "statusLastChangedAt": null, "user": null }, { "_id": "67be86743ea16c7e9491ff17", "hidden": false, "name": "Zhijian Zhuo", "status": "admin_assigned", "statusLastChangedAt": "2025-02-26T08:58:10.556Z", "user": { "_id": "66335b9c95c5b79ebf306f30", "avatarUrl": "/avatars/d57784ee65cbef014360c9bac1ad4119.svg", "fullname": "Zhijian Zhuo", "isPro": false, "type": "user", "user": "BryceZhuo" } }, { "_id": "67be86743ea16c7e9491ff18", "hidden": false, "name": "Yutao Zeng", "status": "claimed_verified", "statusLastChangedAt": "2025-02-26T08:25:55.016Z", "user": { "_id": "6371128eafbe42caa5a5222b", "avatarUrl": "/avatars/c3b2ab35949c38aa3dfb2657a1300aac.svg", "fullname": "Yutao Zeng", "isPro": false, "type": "user", "user": "Taoer" } }, { "_id": "67be86743ea16c7e9491ff19", "hidden": false, "name": "Xun Zhou", "status": "admin_assigned", "statusLastChangedAt": "2025-02-26T08:52:26.974Z", "user": { "_id": "62533db4a06ec75172eeabe7", "avatarUrl": "/avatars/b1a4dad90afae5c00df97233a97777db.svg", "fullname": "xunzhou", "isPro": false, "type": "user", "user": "xunzhou" } }, { "_id": "67be86743ea16c7e9491ff1a", "hidden": false, "name": "Jian Yang", "status": null, "statusLastChangedAt": null, "user": null }, { "_id": "67be86743ea16c7e9491ff1b", "hidden": false, "name": "Xiaoqing Li", "status": "admin_assigned", "statusLastChangedAt": "2025-02-26T08:51:57.314Z", "user": { "_id": "64648638351adef1a847a7ad", "avatarUrl": "/avatars/7518e058fcf81ee81a06c96e996531e9.svg", "fullname": "Xiaoqing Li", "isPro": false, "type": "user", "user": "LLIXQ" } } ]
2025-02-21T14:49:34
Scale-Distribution Decoupling: Enabling Stable and Effective Training of Large Language Models
Training stability is a persistent challenge in the pre-training of large language models (LLMs), particularly for architectures such as Post-Norm Transformers, which are prone to gradient explosion and dissipation. In this paper, we propose Scale-Distribution Decoupling (SDD), a novel approach that stabilizes training by explicitly decoupling the scale and distribution of the weight matrix in fully-connected layers. SDD applies a normalization mechanism to regulate activations and a learnable scaling vector to maintain well-conditioned gradients, effectively preventing gradient explosion and dissipation. This separation improves optimization efficiency, particularly in deep networks, by ensuring stable gradient propagation. Experimental results demonstrate that our method stabilizes training across various LLM architectures and outperforms existing techniques in different normalization configurations. Furthermore, the proposed method is lightweight and compatible with existing frameworks, making it a practical solution for stabilizing LLM training. Code is available at https://github.com/kaihemo/SDD.
13
67be86753ea16c7e9491ff49
null
null
2025-02-25T22:20:16.916000
WebGames: Challenging General-Purpose Web-Browsing AI Agents
https://cdn-thumbnails.h…s/2502.18356.png
2
{ "_id": "60f1abe7544c2adfd699860c", "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/1674929746905-60f1abe7544c2adfd699860c.jpeg", "followerCount": 6280, "fullname": "AK", "isHf": true, "isMod": false, "isPro": false, "name": "akhaliq", "type": "user" }
false
null
2502.18356
[ { "_id": "67be8866823e790d21a2bb90", "hidden": false, "name": "George Thomas", "status": "admin_assigned", "statusLastChangedAt": "2025-02-26T09:06:53.500Z", "user": { "_id": "6529aa1460e706730575baa9", "avatarUrl": "/avatars/550fac58a6ebf937a65d19a48e71eb45.svg", "fullname": "George Thomas", "isPro": false, "type": "user", "user": "georgethomas" } }, { "_id": "67be8866823e790d21a2bb91", "hidden": false, "name": "Alex J. Chan", "status": "extracted_pending", "statusLastChangedAt": "2025-02-26T03:20:08.029Z", "user": { "_id": "636c1e4415cd58e915bc45df", "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/636c1e4415cd58e915bc45df/KnPgdPe0G5ngvXaCBua6R.jpeg", "fullname": "Alex J. Chan", "isPro": false, "type": "user", "user": "XanderJC" } }, { "_id": "67be8866823e790d21a2bb92", "hidden": false, "name": "Jikun Kang", "status": "claimed_verified", "statusLastChangedAt": "2025-02-26T15:37:37.981Z", "user": { "_id": "6489e10ca13f65198dc6e122", "avatarUrl": "/avatars/4aa9eab488157711b2f0298ddadee2f4.svg", "fullname": "Kang", "isPro": false, "type": "user", "user": "JaxonK" } }, { "_id": "67be8866823e790d21a2bb93", "hidden": false, "name": "Wenqi Wu", "status": "admin_assigned", "statusLastChangedAt": "2025-02-26T09:08:43.843Z", "user": { "_id": "63a2f1dfc8a2aa5d9e85f8f6", "avatarUrl": "/avatars/f2191e3a0ce92563f9bfe83283d8d966.svg", "fullname": "Wenqi Wu", "isPro": false, "type": "user", "user": "BiggieW" } }, { "_id": "67be8866823e790d21a2bb94", "hidden": false, "name": "Filippos Christianos", "status": "admin_assigned", "statusLastChangedAt": "2025-02-26T09:08:23.534Z", "user": { "_id": "64f46b681d337935d0495d4d", "avatarUrl": "/avatars/cce5a4910617931fb13062b832e14ef8.svg", "fullname": "Filippos Christianos", "isPro": false, "type": "user", "user": "semitable" } }, { "_id": "67be8866823e790d21a2bb95", "hidden": false, "name": "Fraser Greenlee", "status": "admin_assigned", "statusLastChangedAt": "2025-02-26T09:08:16.380Z", "user": { "_id": "5f195784925b9863e28ad610", "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/1595496291585-noauth.png", "fullname": "Fraser Greenlee", "isPro": false, "type": "user", "user": "Fraser" } }, { "_id": "67be8866823e790d21a2bb96", "hidden": false, "name": "Andy Toulis", "status": null, "statusLastChangedAt": null, "user": null }, { "_id": "67be8866823e790d21a2bb97", "hidden": false, "name": "Marvin Purtorab", "status": "admin_assigned", "statusLastChangedAt": "2025-02-26T09:07:42.610Z", "user": { "_id": "6787c4a970c0f5272f456968", "avatarUrl": "/avatars/bdfa53add57b0f0a9e4e94e24115b354.svg", "fullname": "Marvin Purtorab", "isPro": false, "type": "user", "user": "comvergent-marvin" } } ]
2025-02-25T16:45:08
WebGames: Challenging General-Purpose Web-Browsing AI Agents
We introduce WebGames, a comprehensive benchmark suite designed to evaluate general-purpose web-browsing AI agents through a collection of 50+ interactive challenges. These challenges are specifically crafted to be straightforward for humans while systematically testing the limitations of current AI systems across fundamental browser interactions, advanced input processing, cognitive tasks, workflow automation, and interactive entertainment. Our framework eliminates external dependencies through a hermetic testing environment, ensuring reproducible evaluation with verifiable ground-truth solutions. We evaluate leading vision-language models including GPT-4o, Claude Computer-Use, Gemini-1.5-Pro, and Qwen2-VL against human performance. Results reveal a substantial capability gap, with the best AI system achieving only 43.1% success rate compared to human performance of 95.7%, highlighting fundamental limitations in current AI systems' ability to handle common web interaction patterns that humans find intuitive. The benchmark is publicly available at webgames.convergence.ai, offering a lightweight, client-side implementation that facilitates rapid evaluation cycles. Through its modular architecture and standardized challenge specifications, WebGames provides a robust foundation for measuring progress in development of more capable web-browsing agents.
10
67be8868823e790d21a2bbea
null
null
2025-02-25T22:20:08.416000
AAD-LLM: Neural Attention-Driven Auditory Scene Understanding
https://cdn-thumbnails.h…s/2502.16794.png
3
{ "_id": "6531a65daed617662c7f1007", "avatarUrl": "/avatars/ea2e504780dc40719f7501ab2c7d9c91.svg", "followerCount": 1, "fullname": "Xilin Jiang", "isHf": false, "isMod": false, "isPro": false, "name": "xi-j", "type": "user" }
true
null
2502.16794
[ { "_id": "67be86a78a5a80542314f0e6", "hidden": false, "name": "Xilin Jiang", "status": "claimed_verified", "statusLastChangedAt": "2025-02-26T08:25:52.841Z", "user": { "_id": "6531a65daed617662c7f1007", "avatarUrl": "/avatars/ea2e504780dc40719f7501ab2c7d9c91.svg", "fullname": "Xilin Jiang", "isPro": false, "type": "user", "user": "xi-j" } }, { "_id": "67be86a78a5a80542314f0e7", "hidden": false, "name": "Sukru Samet Dindar", "status": "admin_assigned", "statusLastChangedAt": "2025-02-26T09:11:37.706Z", "user": { "_id": "661361993bb67cb4f356c3de", "avatarUrl": "/avatars/b707c07f9c70d2ed1e8cd8cff2551c69.svg", "fullname": "Sukru Samet Dindar", "isPro": false, "type": "user", "user": "susameddin" } }, { "_id": "67be86a78a5a80542314f0e8", "hidden": false, "name": "Vishal Choudhari", "status": "admin_assigned", "statusLastChangedAt": "2025-02-26T09:11:45.258Z", "user": { "_id": "670e8671ba29b3fca221b8c9", "avatarUrl": "/avatars/20f6479bd5218d6d3e304539df5003f9.svg", "fullname": "Vishal Choudhari", "isPro": false, "type": "user", "user": "vchoudhari" } }, { "_id": "67be86a78a5a80542314f0e9", "hidden": false, "name": "Stephan Bickel", "status": null, "statusLastChangedAt": null, "user": null }, { "_id": "67be86a78a5a80542314f0ea", "hidden": false, "name": "Ashesh Mehta", "status": null, "statusLastChangedAt": null, "user": null }, { "_id": "67be86a78a5a80542314f0eb", "hidden": false, "name": "Guy M McKhann", "status": null, "statusLastChangedAt": null, "user": null }, { "_id": "67be86a78a5a80542314f0ec", "hidden": false, "name": "Adeen Flinker", "status": null, "statusLastChangedAt": null, "user": null }, { "_id": "67be86a78a5a80542314f0ed", "hidden": false, "name": "Daniel Friedman", "status": null, "statusLastChangedAt": null, "user": null }, { "_id": "67be86a78a5a80542314f0ee", "hidden": false, "name": "Nima Mesgarani", "status": null, "statusLastChangedAt": null, "user": null } ]
2025-02-24T03:06:45
AAD-LLM: Neural Attention-Driven Auditory Scene Understanding
Auditory foundation models, including auditory large language models (LLMs), process all sound inputs equally, independent of listener perception. However, human auditory perception is inherently selective: listeners focus on specific speakers while ignoring others in complex auditory scenes. Existing models do not incorporate this selectivity, limiting their ability to generate perception-aligned responses. To address this, we introduce Intention-Informed Auditory Scene Understanding (II-ASU) and present Auditory Attention-Driven LLM (AAD-LLM), a prototype system that integrates brain signals to infer listener attention. AAD-LLM extends an auditory LLM by incorporating intracranial electroencephalography (iEEG) recordings to decode which speaker a listener is attending to and refine responses accordingly. The model first predicts the attended speaker from neural activity, then conditions response generation on this inferred attentional state. We evaluate AAD-LLM on speaker description, speech transcription and extraction, and question answering in multitalker scenarios, with both objective and subjective ratings showing improved alignment with listener intention. By taking a first step toward intention-aware auditory AI, this work explores a new paradigm where listener perception informs machine listening, paving the way for future listener-centered auditory systems. Demo and code available: https://aad-llm.github.io.
5
67be86a98a5a80542314f16e
null
null
2025-02-25T22:18:24.064000
Unveiling Downstream Performance Scaling of LLMs: A Clustering-Based Perspective
https://cdn-thumbnails.h…s/2502.17262.png
2
{ "_id": "636b4d796e6981ebad73f398", "avatarUrl": "/avatars/bcd405b98c12afaf1e32d85ad8ce7f23.svg", "followerCount": null, "fullname": "Kaiyuan Chen", "isHf": false, "isMod": false, "isPro": false, "name": "Lucky2022", "type": "user" }
true
null
2502.17262
[ { "_id": "67bd3870a917fc506d9f3d15", "hidden": false, "name": "Chengyin Xu", "status": "claimed_verified", "statusLastChangedAt": "2025-02-25T09:39:44.252Z", "user": { "_id": "66ab06956b8847339d449128", "avatarUrl": "/avatars/d71490acb91981459121005b84e556d8.svg", "fullname": "Xu Chengyin", "isPro": false, "type": "user", "user": "JerryXu98" } }, { "_id": "67bd3870a917fc506d9f3d16", "hidden": false, "name": "Kaiyuan Chen", "status": "claimed_verified", "statusLastChangedAt": "2025-02-25T09:40:01.532Z", "user": { "_id": "636b4d796e6981ebad73f398", "avatarUrl": "/avatars/bcd405b98c12afaf1e32d85ad8ce7f23.svg", "fullname": "Kaiyuan Chen", "isPro": false, "type": "user", "user": "Lucky2022" } }, { "_id": "67bd3870a917fc506d9f3d17", "hidden": false, "name": "Xiao Li", "status": null, "statusLastChangedAt": null, "user": null }, { "_id": "67bd3870a917fc506d9f3d18", "hidden": false, "name": "Ke Shen", "status": "claimed_verified", "statusLastChangedAt": "2025-02-25T09:39:49.578Z", "user": { "_id": "645604eebabbbbd3486dc615", "avatarUrl": "/avatars/17a5ca8274e2bfc8f183a4af9878a930.svg", "fullname": "shenke", "isPro": false, "type": "user", "user": "shenke18" } }, { "_id": "67bd3870a917fc506d9f3d19", "hidden": false, "name": "Chenggang Li", "status": null, "statusLastChangedAt": null, "user": null } ]
2025-02-24T15:44:57
Unveiling Downstream Performance Scaling of LLMs: A Clustering-Based Perspective
The rapid advancements in computing dramatically increase the scale and cost of training Large Language Models (LLMs). Accurately predicting downstream task performance prior to model training is crucial for efficient resource allocation, yet remains challenging due to two primary constraints: (1) the "emergence phenomenon", wherein downstream performance metrics become meaningful only after extensive training, which limits the ability to use smaller models for prediction; (2) Uneven task difficulty distributions and the absence of consistent scaling laws, resulting in substantial metric variability. Existing performance prediction methods suffer from limited accuracy and reliability, thereby impeding the assessment of potential LLM capabilities. To address these challenges, we propose a Clustering-On-Difficulty (COD) downstream performance prediction framework. COD first constructs a predictable support subset by clustering tasks based on difficulty features, strategically excluding non-emergent and non-scalable clusters. The scores on the selected subset serve as effective intermediate predictors of downstream performance on the full evaluation set. With theoretical support, we derive a mapping function that transforms performance metrics from the predictable subset to the full evaluation set, thereby ensuring accurate extrapolation of LLM downstream performance. The proposed method has been applied to predict performance scaling for a 70B LLM, providing actionable insights for training resource allocation and assisting in monitoring the training process. Notably, COD achieves remarkable predictive accuracy on the 70B LLM by leveraging an ensemble of small models, demonstrating an absolute mean deviation of 1.36% across eight important LLM evaluation benchmarks.
18
67bd3872a917fc506d9f3d8f
null
null
2025-02-25T22:04:57.351000
SpargeAttn: Accurate Sparse Attention Accelerating Any Model Inference
https://cdn-thumbnails.h…s/2502.18137.png
2
{ "_id": "66c0a08bac74db25de8427ec", "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/66c0a08bac74db25de8427ec/9D-piDBZqSt6KNkHImmkv.jpeg", "followerCount": 3, "fullname": "Jintao Zhang", "isHf": false, "isMod": false, "isPro": false, "name": "jt-zhang", "type": "user" }
true
null
2502.18137
[ { "_id": "67be8443ed8e258c0f70063a", "hidden": false, "name": "Jintao Zhang", "status": "claimed_verified", "statusLastChangedAt": "2025-02-26T08:25:57.704Z", "user": { "_id": "66c0a08bac74db25de8427ec", "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/66c0a08bac74db25de8427ec/9D-piDBZqSt6KNkHImmkv.jpeg", "fullname": "Jintao Zhang", "isPro": false, "type": "user", "user": "jt-zhang" } }, { "_id": "67be8443ed8e258c0f70063b", "hidden": false, "name": "Chendong Xiang", "status": "admin_assigned", "statusLastChangedAt": "2025-02-26T08:49:29.341Z", "user": { "_id": "6329bdbbde087eac2921e6a9", "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/1663679904323-noauth.jpeg", "fullname": "Xiangchendong", "isPro": false, "type": "user", "user": "Xiang-cd" } }, { "_id": "67be8443ed8e258c0f70063c", "hidden": false, "name": "Haofeng Huang", "status": null, "statusLastChangedAt": null, "user": null }, { "_id": "67be8443ed8e258c0f70063d", "hidden": false, "name": "Jia Wei", "status": null, "statusLastChangedAt": null, "user": null }, { "_id": "67be8443ed8e258c0f70063e", "hidden": false, "name": "Haocheng Xi", "status": "admin_assigned", "statusLastChangedAt": "2025-02-26T08:49:45.446Z", "user": { "_id": "65d5a000ec7e31555e4db57e", "avatarUrl": "/avatars/aab8319fbaffdd53faff59a40ca5a5ea.svg", "fullname": "Haocheng Xi", "isPro": false, "type": "user", "user": "hxi0408" } }, { "_id": "67be8443ed8e258c0f70063f", "hidden": false, "name": "Jun Zhu", "status": null, "statusLastChangedAt": null, "user": null }, { "_id": "67be8443ed8e258c0f700640", "hidden": false, "name": "Jianfei Chen", "status": "admin_assigned", "statusLastChangedAt": "2025-02-26T08:49:52.550Z", "user": { "_id": "65fcad0ba0d7adc40b54fac2", "avatarUrl": "/avatars/7564b5642378fddb46ec3b5ae57c0402.svg", "fullname": "Jianfei Chen", "isPro": false, "type": "user", "user": "surfingtomchen" } } ]
2025-02-25T12:02:17
SpargeAttn: Accurate Sparse Attention Accelerating Any Model Inference
An efficient attention implementation is essential for large models due to its quadratic time complexity. Fortunately, attention commonly exhibits sparsity, i.e., many values in the attention map are near zero, allowing for the omission of corresponding computations. Many studies have utilized the sparse pattern to accelerate attention. However, most existing works focus on optimizing attention within specific models by exploiting certain sparse patterns of the attention map. A universal sparse attention that guarantees both the speedup and end-to-end performance of diverse models remains elusive. In this paper, we propose SpargeAttn, a universal sparse and quantized attention for any model. Our method uses a two-stage online filter: in the first stage, we rapidly and accurately predict the attention map, enabling the skip of some matrix multiplications in attention. In the second stage, we design an online softmax-aware filter that incurs no extra overhead and further skips some matrix multiplications. Experiments show that our method significantly accelerates diverse models, including language, image, and video generation, without sacrificing end-to-end metrics. The codes are available at https://github.com/thu-ml/SpargeAttn.
50
67be8447ed8e258c0f70075f
null
null
2025-02-25T22:03:08.515000
SWE-RL: Advancing LLM Reasoning via Reinforcement Learning on Open Software Evolution
https://cdn-thumbnails.h…s/2502.18449.png
5
{ "_id": "60f1abe7544c2adfd699860c", "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/1674929746905-60f1abe7544c2adfd699860c.jpeg", "followerCount": 6280, "fullname": "AK", "isHf": true, "isMod": false, "isPro": false, "name": "akhaliq", "type": "user" }
false
null
2502.18449
[ { "_id": "67be845a8a5a80542314579f", "hidden": false, "name": "Yuxiang Wei", "status": "admin_assigned", "statusLastChangedAt": "2025-02-26T08:50:44.837Z", "user": { "_id": "632a176259950c1d279d5ea7", "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/632a176259950c1d279d5ea7/xsSGhBXalt9RaKzSKY8uk.jpeg", "fullname": "Yuxiang Wei", "isPro": false, "type": "user", "user": "yuxiang630" } }, { "_id": "67be845a8a5a8054231457a0", "hidden": false, "name": "Olivier Duchenne", "status": null, "statusLastChangedAt": null, "user": null }, { "_id": "67be845a8a5a8054231457a1", "hidden": false, "name": "Jade Copet", "status": "admin_assigned", "statusLastChangedAt": "2025-02-26T08:50:58.290Z", "user": { "_id": "6481e0ac50b759c75d5fdad0", "avatarUrl": "/avatars/49f08d989ca505ae01bce5578a94f6fe.svg", "fullname": "Jade Copet", "isPro": false, "type": "user", "user": "JadeCopet" } }, { "_id": "67be845a8a5a8054231457a2", "hidden": false, "name": "Quentin Carbonneaux", "status": null, "statusLastChangedAt": null, "user": null }, { "_id": "67be845a8a5a8054231457a3", "hidden": false, "name": "Lingming Zhang", "status": "admin_assigned", "statusLastChangedAt": "2025-02-26T08:51:10.640Z", "user": { "_id": "656f473c14fa8cfccd14559e", "avatarUrl": "/avatars/8f4fef3d835a7a11c2ab66dbf04f3424.svg", "fullname": "Lingming Zhang", "isPro": false, "type": "user", "user": "lingming" } }, { "_id": "67be845a8a5a8054231457a4", "hidden": false, "name": "Daniel Fried", "status": null, "statusLastChangedAt": null, "user": null }, { "_id": "67be845a8a5a8054231457a5", "hidden": false, "name": "Gabriel Synnaeve", "status": "admin_assigned", "statusLastChangedAt": "2025-02-26T08:51:21.641Z", "user": { "_id": "630eac7931970d1cd4fbacf2", "avatarUrl": "/avatars/b7ccbddfa745db854dc342be1327cd53.svg", "fullname": "Gabriel Synnaeve", "isPro": false, "type": "user", "user": "gsynnaeve" } }, { "_id": "67be845a8a5a8054231457a6", "hidden": false, "name": "Rishabh Singh", "status": "admin_assigned", "statusLastChangedAt": "2025-02-26T08:51:28.321Z", "user": { "_id": "6597e5a6420dcc68501a69e9", "avatarUrl": "/avatars/da48b13e07c367ecd5c891abfd6c3ded.svg", "fullname": "Rishabh Singh", "isPro": false, "type": "user", "user": "RishabhSingh021" } }, { "_id": "67be845a8a5a8054231457a7", "hidden": false, "name": "Sida I. Wang", "status": null, "statusLastChangedAt": null, "user": null } ]
2025-02-25T18:45:04
SWE-RL: Advancing LLM Reasoning via Reinforcement Learning on Open Software Evolution
The recent DeepSeek-R1 release has demonstrated the immense potential of reinforcement learning (RL) in enhancing the general reasoning capabilities of large language models (LLMs). While DeepSeek-R1 and other follow-up work primarily focus on applying RL to competitive coding and math problems, this paper introduces SWE-RL, the first approach to scale RL-based LLM reasoning for real-world software engineering. Leveraging a lightweight rule-based reward (e.g., the similarity score between ground-truth and LLM-generated solutions), SWE-RL enables LLMs to autonomously recover a developer's reasoning processes and solutions by learning from extensive open-source software evolution data -- the record of a software's entire lifecycle, including its code snapshots, code changes, and events such as issues and pull requests. Trained on top of Llama 3, our resulting reasoning model, Llama3-SWE-RL-70B, achieves a 41.0% solve rate on SWE-bench Verified -- a human-verified collection of real-world GitHub issues. To our knowledge, this is the best performance reported for medium-sized (<100B) LLMs to date, even comparable to leading proprietary LLMs like GPT-4o. Surprisingly, despite performing RL solely on software evolution data, Llama3-SWE-RL has even emerged with generalized reasoning skills. For example, it shows improved results on five out-of-domain tasks, namely, function coding, library use, code reasoning, mathematics, and general language understanding, whereas a supervised-finetuning baseline even leads to performance degradation on average. Overall, SWE-RL opens up a new direction to improve the reasoning capabilities of LLMs through reinforcement learning on massive software engineering data.
61
67be845b8a5a8054231457d6
null
null
2025-02-25T22:01:56.532000
OmniAlign-V: Towards Enhanced Alignment of MLLMs with Human Preference
https://cdn-thumbnails.h…s/2502.18411.png
2
{ "_id": "6530e62f536dbca918e71c3e", "avatarUrl": "/avatars/efc93bc767e561c6c6d429f65c23382d.svg", "followerCount": 4, "fullname": "Xiangyu Z", "isHf": false, "isMod": false, "isPro": false, "name": "PhoenixZ", "type": "user" }
true
null
2502.18411
[ { "_id": "67be834ae7b05f9e43b172b2", "hidden": false, "name": "Xiangyu Zhao", "status": "claimed_verified", "statusLastChangedAt": "2025-02-26T08:26:02.247Z", "user": { "_id": "6530e62f536dbca918e71c3e", "avatarUrl": "/avatars/efc93bc767e561c6c6d429f65c23382d.svg", "fullname": "Xiangyu Z", "isPro": false, "type": "user", "user": "PhoenixZ" } }, { "_id": "67be834ae7b05f9e43b172b3", "hidden": false, "name": "Shengyuan Ding", "status": "claimed_verified", "statusLastChangedAt": "2025-02-26T08:25:59.887Z", "user": { "_id": "646cd947da8e99940b6e55cf", "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/646cd947da8e99940b6e55cf/9c0P0WppFqNW9pdo8LgOS.jpeg", "fullname": "Shengyuan Ding", "isPro": false, "type": "user", "user": "ChrisDing1105" } }, { "_id": "67be834ae7b05f9e43b172b4", "hidden": false, "name": "Zicheng Zhang", "status": "admin_assigned", "statusLastChangedAt": "2025-02-26T08:49:10.028Z", "user": { "_id": "675aa937ab6aa7ecd09341ce", "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/no-auth/d_CNUsNOw92pg7MVhf9Vm.png", "fullname": "Zicheng Zhang", "isPro": false, "type": "user", "user": "UniverseCA" } }, { "_id": "67be834ae7b05f9e43b172b5", "hidden": false, "name": "Haian Huang", "status": null, "statusLastChangedAt": null, "user": null }, { "_id": "67be834ae7b05f9e43b172b6", "hidden": false, "name": "Maosong Cao", "status": null, "statusLastChangedAt": null, "user": null }, { "_id": "67be834ae7b05f9e43b172b7", "hidden": false, "name": "Weiyun Wang", "status": "admin_assigned", "statusLastChangedAt": "2025-02-26T08:48:45.520Z", "user": { "_id": "619507e7b74b6c591f794340", "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/619507e7b74b6c591f794340/JbPDoy6Ko1V1-6oJJwFV8.jpeg", "fullname": "Weiyun Wang", "isPro": false, "type": "user", "user": "Weiyun1025" } }, { "_id": "67be834ae7b05f9e43b172b8", "hidden": false, "name": "Jiaqi Wang", "status": "admin_assigned", "statusLastChangedAt": "2025-02-26T08:48:38.876Z", "user": { "_id": "64638c4d51fa6e63060521b5", "avatarUrl": "/avatars/c863ace5b1dc788a341bcf4ddbdfaec1.svg", "fullname": "JIaqi", "isPro": false, "type": "user", "user": "Jiaqiwang" } }, { "_id": "67be834ae7b05f9e43b172b9", "hidden": false, "name": "Xinyu Fang", "status": "claimed_verified", "statusLastChangedAt": "2025-02-26T08:26:04.433Z", "user": { "_id": "64f5f8dd9b17cd59c453c57f", "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/64f5f8dd9b17cd59c453c57f/MulhwLcePFUWUQel8LQZ8.jpeg", "fullname": "Xinyu Fang", "isPro": false, "type": "user", "user": "nebulae09" } }, { "_id": "67be834ae7b05f9e43b172ba", "hidden": false, "name": "Wenhai Wang", "status": "admin_assigned", "statusLastChangedAt": "2025-02-26T08:48:28.151Z", "user": { "_id": "64d1c560c0c627dfa71bdbe0", "avatarUrl": "/avatars/f42794fe25bffcd870a1bcee69b95298.svg", "fullname": "wenhai.wang", "isPro": false, "type": "user", "user": "wangwhcore" } }, { "_id": "67be834ae7b05f9e43b172bb", "hidden": false, "name": "Guangtao Zhai", "status": null, "statusLastChangedAt": null, "user": null }, { "_id": "67be834ae7b05f9e43b172bc", "hidden": false, "name": "Haodong Duan", "status": "admin_assigned", "statusLastChangedAt": "2025-02-26T08:48:20.155Z", "user": { "_id": "63ee1379190ddd6214efd73a", "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/1676546883247-noauth.png", "fullname": "HAODONG DUAN", "isPro": false, "type": "user", "user": "KennyUTC" } }, { "_id": "67be834ae7b05f9e43b172bd", "hidden": false, "name": "Hua Yang", "status": null, "statusLastChangedAt": null, "user": null }, { "_id": "67be834ae7b05f9e43b172be", "hidden": false, "name": "Kai Chen", "status": null, "statusLastChangedAt": null, "user": null } ]
2025-02-25T18:05:14
OmniAlign-V: Towards Enhanced Alignment of MLLMs with Human Preference
Recent advancements in open-source multi-modal large language models (MLLMs) have primarily focused on enhancing foundational capabilities, leaving a significant gap in human preference alignment. This paper introduces OmniAlign-V, a comprehensive dataset of 200K high-quality training samples featuring diverse images, complex questions, and varied response formats to improve MLLMs' alignment with human preferences. We also present MM-AlignBench, a human-annotated benchmark specifically designed to evaluate MLLMs' alignment with human values. Experimental results show that finetuning MLLMs with OmniAlign-V, using Supervised Fine-Tuning (SFT) or Direct Preference Optimization (DPO), significantly enhances human preference alignment while maintaining or enhancing performance on standard VQA benchmarks, preserving their fundamental capabilities. Our datasets, benchmark, code and checkpoints have been released at https://github.com/PhoenixZ810/OmniAlign-V.
67
67be834ce7b05f9e43b1730a
null
null
2025-02-25T21:50:19.941000
ART: Anonymous Region Transformer for Variable Multi-Layer Transparent Image Generation
https://cdn-thumbnails.h…s/2502.18364.png
4
{ "_id": "646f69a6041e48e1c4728de3", "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/646f69a6041e48e1c4728de3/U5OaW6PgsXTXnfG03xs9Q.png", "followerCount": 34, "fullname": "GlyphByT5", "isHf": false, "isMod": false, "isPro": false, "name": "GlyphByT5", "type": "user" }
false
null
2502.18364
[ { "_id": "67be81414084d82ee69ad4a2", "hidden": false, "name": "Yifan Pu", "status": "admin_assigned", "statusLastChangedAt": "2025-02-26T08:58:24.942Z", "user": { "_id": "647e83257f9ad5e44babe82a", "avatarUrl": "/avatars/2d9593775c49856fe5dfa5bd23dfcda7.svg", "fullname": "yifan pu", "isPro": false, "type": "user", "user": "yifanpu001" } }, { "_id": "67be81414084d82ee69ad4a3", "hidden": false, "name": "Yiming Zhao", "status": "claimed_verified", "statusLastChangedAt": "2025-02-27T09:17:43.946Z", "user": { "_id": "637a2be47ce76c3b8347aae2", "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/637a2be47ce76c3b8347aae2/rQdt1j35MA2OXJnkGQfHJ.jpeg", "fullname": "Yiming Zhao", "isPro": false, "type": "user", "user": "ZYMPKU" } }, { "_id": "67be81414084d82ee69ad4a4", "hidden": false, "name": "Zhicong Tang", "status": null, "statusLastChangedAt": null, "user": null }, { "_id": "67be81414084d82ee69ad4a5", "hidden": false, "name": "Ruihong Yin", "status": null, "statusLastChangedAt": null, "user": null }, { "_id": "67be81414084d82ee69ad4a6", "hidden": false, "name": "Haoxing Ye", "status": "admin_assigned", "statusLastChangedAt": "2025-02-26T08:58:52.821Z", "user": { "_id": "65229f2f6b01183a67e86370", "avatarUrl": "/avatars/b218207fce28497b30e22c807d44b2d2.svg", "fullname": "Haoxing Ye", "isPro": false, "type": "user", "user": "131131yhx" } }, { "_id": "67be81414084d82ee69ad4a7", "hidden": false, "name": "Yuhui Yuan", "status": null, "statusLastChangedAt": null, "user": null }, { "_id": "67be81414084d82ee69ad4a8", "hidden": false, "name": "Dong Chen", "status": "admin_assigned", "statusLastChangedAt": "2025-02-26T08:59:16.526Z", "user": { "_id": "666470a28f5513b0cf11e850", "avatarUrl": "/avatars/7beea758882677ad32a12ce56d4d084a.svg", "fullname": "Dong Chen", "isPro": false, "type": "user", "user": "DongChen06" } }, { "_id": "67be81414084d82ee69ad4a9", "hidden": false, "name": "Jianmin Bao", "status": "admin_assigned", "statusLastChangedAt": "2025-02-26T08:59:22.654Z", "user": { "_id": "646b2f4bb1202bc77c0fb396", "avatarUrl": "/avatars/6b09dec5d5affe817ad6acda60f61740.svg", "fullname": "Jianmin_bao", "isPro": false, "type": "user", "user": "JianminBao" } }, { "_id": "67be81414084d82ee69ad4aa", "hidden": false, "name": "Sirui Zhang", "status": "admin_assigned", "statusLastChangedAt": "2025-02-26T08:59:30.766Z", "user": { "_id": "64f7f119a92703ef65d9a717", "avatarUrl": "/avatars/118524faab66cecba6d4da622034b44b.svg", "fullname": "Sirui Zhang", "isPro": false, "type": "user", "user": "zsr200901" } }, { "_id": "67be81414084d82ee69ad4ab", "hidden": false, "name": "Yanbin Wang", "status": "admin_assigned", "statusLastChangedAt": "2025-02-26T08:59:38.138Z", "user": { "_id": "67965a5a9f57883759a6efc3", "avatarUrl": "/avatars/9138a879fbe1f60c2f4720810bfdfda6.svg", "fullname": "Yanbin Wang", "isPro": false, "type": "user", "user": "yanbinwang" } }, { "_id": "67be81414084d82ee69ad4ac", "hidden": false, "name": "Lin Liang", "status": null, "statusLastChangedAt": null, "user": null }, { "_id": "67be81414084d82ee69ad4ad", "hidden": false, "name": "Lijuan Wang", "status": "admin_assigned", "statusLastChangedAt": "2025-02-26T09:00:05.520Z", "user": { "_id": "6672e20d1dbdf7da8310dd92", "avatarUrl": "/avatars/5d2fb23f92a7f9ff025a5be17a26de4d.svg", "fullname": "lijuanwang", "isPro": false, "type": "user", "user": "lijuanwang228" } }, { "_id": "67be81414084d82ee69ad4ae", "hidden": false, "name": "Ji Li", "status": null, "statusLastChangedAt": null, "user": null }, { "_id": "67be81414084d82ee69ad4af", "hidden": false, "name": "Xiu Li", "status": null, "statusLastChangedAt": null, "user": null }, { "_id": "67be81414084d82ee69ad4b0", "hidden": false, "name": "Zhouhui Lian", "status": "admin_assigned", "statusLastChangedAt": "2025-02-26T08:59:57.943Z", "user": { "_id": "64c882f7527d7636555bbb2c", "avatarUrl": "/avatars/578a118a945dd6fa62fd3be9d6e4e986.svg", "fullname": "Zhouhui Lian", "isPro": false, "type": "user", "user": "lianzhouhui" } }, { "_id": "67be81414084d82ee69ad4b1", "hidden": false, "name": "Gao Huang", "status": null, "statusLastChangedAt": null, "user": null }, { "_id": "67be81414084d82ee69ad4b2", "hidden": false, "name": "Baining Guo", "status": null, "statusLastChangedAt": null, "user": null } ]
2025-02-25T16:57:04
ART: Anonymous Region Transformer for Variable Multi-Layer Transparent Image Generation
Multi-layer image generation is a fundamental task that enables users to isolate, select, and edit specific image layers, thereby revolutionizing interactions with generative models. In this paper, we introduce the Anonymous Region Transformer (ART), which facilitates the direct generation of variable multi-layer transparent images based on a global text prompt and an anonymous region layout. Inspired by Schema theory suggests that knowledge is organized in frameworks (schemas) that enable people to interpret and learn from new information by linking it to prior knowledge.}, this anonymous region layout allows the generative model to autonomously determine which set of visual tokens should align with which text tokens, which is in contrast to the previously dominant semantic layout for the image generation task. In addition, the layer-wise region crop mechanism, which only selects the visual tokens belonging to each anonymous region, significantly reduces attention computation costs and enables the efficient generation of images with numerous distinct layers (e.g., 50+). When compared to the full attention approach, our method is over 12 times faster and exhibits fewer layer conflicts. Furthermore, we propose a high-quality multi-layer transparent image autoencoder that supports the direct encoding and decoding of the transparency of variable multi-layer images in a joint manner. By enabling precise control and scalable layer generation, ART establishes a new paradigm for interactive content creation.
32
67be81464084d82ee69ad576
null
null
2025-02-25T21:36:19.851000
KV-Edit: Training-Free Image Editing for Precise Background Preservation
https://cdn-thumbnails.h…s/2502.17363.png
3
{ "_id": "66078994c50f8393c56ed837", "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/noauth/aYYde45zaFACRllyEhJyU.jpeg", "followerCount": 3, "fullname": "Tianrui Zhu", "isHf": false, "isMod": false, "isPro": true, "name": "xilluill", "type": "user" }
true
null
2502.17363
[ { "_id": "67bd6d2bbf6d46017e619f31", "hidden": false, "name": "Tianrui Zhu", "status": "extracted_confirmed", "statusLastChangedAt": "2025-02-25T07:24:35.845Z", "user": { "_id": "66078994c50f8393c56ed837", "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/noauth/aYYde45zaFACRllyEhJyU.jpeg", "fullname": "Tianrui Zhu", "isPro": true, "type": "user", "user": "xilluill" } }, { "_id": "67bd6d2bbf6d46017e619f32", "hidden": false, "name": "Shiyi Zhang", "status": "claimed_verified", "statusLastChangedAt": "2025-02-26T08:30:48.262Z", "user": { "_id": "6315d306a9456afe2b9bf34a", "avatarUrl": "/avatars/7285b4e7d84b528d1a50f8ee4eb10727.svg", "fullname": "ElevenZ", "isPro": false, "type": "user", "user": "shiyi0408" } }, { "_id": "67bd6d2bbf6d46017e619f33", "hidden": false, "name": "Jiawei Shao", "status": "admin_assigned", "statusLastChangedAt": "2025-02-26T08:50:09.030Z", "user": { "_id": "646c6985d072747f7ebf352a", "avatarUrl": "/avatars/8aaf92045687b21b56c257db62bf4fa5.svg", "fullname": "Jiawei Shao", "isPro": false, "type": "user", "user": "jewelshaw" } }, { "_id": "67bd6d2bbf6d46017e619f34", "hidden": false, "name": "Yansong Tang", "status": null, "statusLastChangedAt": null, "user": null } ]
2025-02-24T17:40:09
KV-Edit: Training-Free Image Editing for Precise Background Preservation
Background consistency remains a significant challenge in image editing tasks. Despite extensive developments, existing works still face a trade-off between maintaining similarity to the original image and generating content that aligns with the target. Here, we propose KV-Edit, a training-free approach that uses KV cache in DiTs to maintain background consistency, where background tokens are preserved rather than regenerated, eliminating the need for complex mechanisms or expensive training, ultimately generating new content that seamlessly integrates with the background within user-provided regions. We further explore the memory consumption of the KV cache during editing and optimize the space complexity to O(1) using an inversion-free method. Our approach is compatible with any DiT-based generative model without additional training. Experiments demonstrate that KV-Edit significantly outperforms existing approaches in terms of both background and image quality, even surpassing training-based methods. Project webpage is available at https://xilluill.github.io/projectpages/KV-Edit
32
67bd6d2dbf6d46017e619f99
null
null
2025-02-25T19:35:42.726000
MutaGReP: Execution-Free Repository-Grounded Plan Search for Code-Use
https://cdn-thumbnails.h…s/2502.15872.png
2
{ "_id": "6301c3e0a123c93a5fb295ff", "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/1661060051926-noauth.jpeg", "followerCount": null, "fullname": "Zaid Khan", "isHf": false, "isMod": false, "isPro": false, "name": "codezakh", "type": "user" }
true
[ "https://cdn-uploads.huggingface.co/production/uploads/6301c3e0a123c93a5fb295ff/okGV09FjfhO7T3uVDYjte.qt" ]
2502.15872
[ { "_id": "67be572f65ae638b17d35eae", "hidden": false, "name": "Zaid Khan", "status": "claimed_verified", "statusLastChangedAt": "2025-02-26T08:27:57.798Z", "user": { "_id": "6301c3e0a123c93a5fb295ff", "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/1661060051926-noauth.jpeg", "fullname": "Zaid Khan", "isPro": false, "type": "user", "user": "codezakh" } }, { "_id": "67be572f65ae638b17d35eaf", "hidden": false, "name": "Ali Farhadi", "status": null, "statusLastChangedAt": null, "user": null }, { "_id": "67be572f65ae638b17d35eb0", "hidden": false, "name": "Ranjay Krishna", "status": null, "statusLastChangedAt": null, "user": null }, { "_id": "67be572f65ae638b17d35eb1", "hidden": false, "name": "Luca Weihs", "status": null, "statusLastChangedAt": null, "user": null }, { "_id": "67be572f65ae638b17d35eb2", "hidden": false, "name": "Mohit Bansal", "status": null, "statusLastChangedAt": null, "user": null }, { "_id": "67be572f65ae638b17d35eb3", "hidden": false, "name": "Tanmay Gupta", "status": "extracted_pending", "statusLastChangedAt": "2025-02-25T23:50:08.896Z", "user": { "_id": "62a108242e30aaf94ec283bb", "avatarUrl": "/avatars/4da19ae99df6a3fa2d81336eb59cdaa7.svg", "fullname": "Tanmay Gupta", "isPro": false, "type": "user", "user": "tanmayg" } } ]
2025-02-21T18:58:17
MutaGReP: Execution-Free Repository-Grounded Plan Search for Code-Use
When a human requests an LLM to complete a coding task using functionality from a large code repository, how do we provide context from the repo to the LLM? One approach is to add the entire repo to the LLM's context window. However, most tasks involve only fraction of symbols from a repo, longer contexts are detrimental to the LLM's reasoning abilities, and context windows are not unlimited. Alternatively, we could emulate the human ability to navigate a large repo, pick out the right functionality, and form a plan to solve the task. We propose MutaGReP (Mutation-guided Grounded Repository Plan Search), an approach to search for plans that decompose a user request into natural language steps grounded in the codebase. MutaGReP performs neural tree search in plan space, exploring by mutating plans and using a symbol retriever for grounding. On the challenging LongCodeArena benchmark, our plans use less than 5% of the 128K context window for GPT-4o but rival the coding performance of GPT-4o with a context window filled with the repo. Plans produced by MutaGReP allow Qwen 2.5 Coder 32B and 72B to match the performance of GPT-4o with full repo context and enable progress on the hardest LongCodeArena tasks. Project page: zaidkhan.me/MutaGReP
4
67be573165ae638b17d35f24
null
null
2025-02-25T17:06:48.440000
Pandora3D: A Comprehensive Framework for High-Quality 3D Shape and Texture Generation
https://cdn-thumbnails.h…s/2502.14247.png
2
{ "_id": "6444d87e5691ca69b0d8f56a", "avatarUrl": "/avatars/78d4d2b36d629a8e6ad833e102bb86f7.svg", "followerCount": 1, "fullname": "Peter Ji", "isHf": false, "isMod": false, "isPro": false, "name": "peterji", "type": "user" }
false
null
2502.14247
[ { "_id": "67be3ebc1c80786468704721", "hidden": false, "name": "Jiayu Yang", "status": null, "statusLastChangedAt": null, "user": null }, { "_id": "67be3ebc1c80786468704722", "hidden": false, "name": "Taizhang Shang", "status": null, "statusLastChangedAt": null, "user": null }, { "_id": "67be3ebc1c80786468704723", "hidden": false, "name": "Weixuan Sun", "status": null, "statusLastChangedAt": null, "user": null }, { "_id": "67be3ebc1c80786468704724", "hidden": false, "name": "Xibin Song", "status": null, "statusLastChangedAt": null, "user": null }, { "_id": "67be3ebc1c80786468704725", "hidden": false, "name": "Ziang Cheng", "status": null, "statusLastChangedAt": null, "user": null }, { "_id": "67be3ebc1c80786468704726", "hidden": false, "name": "Senbo Wang", "status": null, "statusLastChangedAt": null, "user": null }, { "_id": "67be3ebc1c80786468704727", "hidden": false, "name": "Shenzhou Chen", "status": null, "statusLastChangedAt": null, "user": null }, { "_id": "67be3ebc1c80786468704728", "hidden": false, "name": "Weizhe Liu", "status": null, "statusLastChangedAt": null, "user": null }, { "_id": "67be3ebc1c80786468704729", "hidden": false, "name": "Hongdong Li", "status": null, "statusLastChangedAt": null, "user": null }, { "_id": "67be3ebc1c8078646870472a", "hidden": false, "name": "Pan Ji", "status": null, "statusLastChangedAt": null, "user": null } ]
2025-02-20T04:22:30
Pandora3D: A Comprehensive Framework for High-Quality 3D Shape and Texture Generation
This report presents a comprehensive framework for generating high-quality 3D shapes and textures from diverse input prompts, including single images, multi-view images, and text descriptions. The framework consists of 3D shape generation and texture generation. (1). The 3D shape generation pipeline employs a Variational Autoencoder (VAE) to encode implicit 3D geometries into a latent space and a diffusion network to generate latents conditioned on input prompts, with modifications to enhance model capacity. An alternative Artist-Created Mesh (AM) generation approach is also explored, yielding promising results for simpler geometries. (2). Texture generation involves a multi-stage process starting with frontal images generation followed by multi-view images generation, RGB-to-PBR texture conversion, and high-resolution multi-view texture refinement. A consistency scheduler is plugged into every stage, to enforce pixel-wise consistency among multi-view textures during inference, ensuring seamless integration. The pipeline demonstrates effective handling of diverse input formats, leveraging advanced neural architectures and novel methodologies to produce high-quality 3D content. This report details the system architecture, experimental results, and potential future directions to improve and expand the framework. The source code and pretrained weights are released at: https://github.com/Tencent/Tencent-XR-3DGen.
5
67be3ec21c80786468704886
null
null
2025-02-25T16:46:31.986000
Mind the Gap! Static and Interactive Evaluations of Large Audio Models
https://cdn-thumbnails.h…s/2502.15919.png
2
{ "_id": "632116accafe12f481a473cb", "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/1666207676653-632116accafe12f481a473cb.jpeg", "followerCount": 16, "fullname": "Will Held", "isHf": false, "isMod": false, "isPro": true, "name": "WillHeld", "type": "user" }
true
[ "https://cdn-uploads.huggingface.co/production/uploads/632116accafe12f481a473cb/ltGJsrWtFi6_K4qlGLiIX.png" ]
2502.15919
[ { "_id": "67be33ffe30b2f126c599413", "hidden": false, "name": "Minzhi Li", "status": null, "statusLastChangedAt": null, "user": null }, { "_id": "67be33ffe30b2f126c599414", "hidden": false, "name": "William Barr Held", "status": "claimed_verified", "statusLastChangedAt": "2025-02-26T08:28:38.756Z", "user": { "_id": "632116accafe12f481a473cb", "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/1666207676653-632116accafe12f481a473cb.jpeg", "fullname": "Will Held", "isPro": true, "type": "user", "user": "WillHeld" } }, { "_id": "67be33ffe30b2f126c599415", "hidden": false, "name": "Michael J Ryan", "status": "claimed_verified", "statusLastChangedAt": "2025-03-04T08:52:35.827Z", "user": { "_id": "63878fa2e40346f68ede7fc4", "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/63878fa2e40346f68ede7fc4/MOdQbApvhwpVzPo5FWLVV.jpeg", "fullname": "Michael Ryan", "isPro": false, "type": "user", "user": "MichaelR207" } }, { "_id": "67be33ffe30b2f126c599416", "hidden": false, "name": "Kunat Pipatanakul", "status": null, "statusLastChangedAt": null, "user": null }, { "_id": "67be33ffe30b2f126c599417", "hidden": false, "name": "Potsawee Manakul", "status": null, "statusLastChangedAt": null, "user": null }, { "_id": "67be33ffe30b2f126c599418", "hidden": false, "name": "Hao Zhu", "status": "claimed_verified", "statusLastChangedAt": "2025-03-03T16:07:29.874Z", "user": { "_id": "61aa376688c20eebf1e8deb3", "avatarUrl": "/avatars/7c11dcb232c73547d7d87834be287822.svg", "fullname": "Hao Zhu", "isPro": false, "type": "user", "user": "ProKil" } }, { "_id": "67be33ffe30b2f126c599419", "hidden": false, "name": "Diyi Yang", "status": null, "statusLastChangedAt": null, "user": null } ]
2025-02-21T20:29:02
Mind the Gap! Static and Interactive Evaluations of Large Audio Models
As AI chatbots become ubiquitous, voice interaction presents a compelling way to enable rapid, high-bandwidth communication for both semantic and social signals. This has driven research into Large Audio Models (LAMs) to power voice-native experiences. However, aligning LAM development with user goals requires a clear understanding of user needs and preferences to establish reliable progress metrics. This study addresses these challenges by introducing an interactive approach to evaluate LAMs and collecting 7,500 LAM interactions from 484 participants. Through topic modeling of user queries, we identify primary use cases for audio interfaces. We then analyze user preference rankings and qualitative feedback to determine which models best align with user needs. Finally, we evaluate how static benchmarks predict interactive performance - our analysis reveals no individual benchmark strongly correlates with interactive results (tau leq 0.33 for all benchmarks). While combining multiple coarse-grained features yields modest predictive power (R^2=0.30), only two out of twenty datasets on spoken question answering and age prediction show significantly positive correlations. This suggests a clear need to develop LAM evaluations that better correlate with user preferences.
3
67be3400e30b2f126c599503
null
null
2025-02-25T12:50:27.642000
Self-Taught Agentic Long Context Understanding
https://cdn-thumbnails.h…s/2502.15920.png
2
{ "_id": "6438ccbb3b46237de3d052e8", "avatarUrl": "/avatars/baa624d417b0b905e82127dc66346478.svg", "followerCount": 9, "fullname": "Yufan Zhuang", "isHf": false, "isMod": false, "isPro": true, "name": "yzhuang", "type": "user" }
true
null
2502.15920
[ { "_id": "67bd1ae085a048f74fd1b8ec", "hidden": false, "name": "Yufan Zhuang", "status": "claimed_verified", "statusLastChangedAt": "2025-02-26T08:38:05.314Z", "user": { "_id": "6438ccbb3b46237de3d052e8", "avatarUrl": "/avatars/baa624d417b0b905e82127dc66346478.svg", "fullname": "Yufan Zhuang", "isPro": true, "type": "user", "user": "yzhuang" } }, { "_id": "67bd1ae085a048f74fd1b8ed", "hidden": false, "name": "Xiaodong Yu", "status": null, "statusLastChangedAt": null, "user": null }, { "_id": "67bd1ae085a048f74fd1b8ee", "hidden": false, "name": "Jialian Wu", "status": null, "statusLastChangedAt": null, "user": null }, { "_id": "67bd1ae085a048f74fd1b8ef", "hidden": false, "name": "Ximeng Sun", "status": null, "statusLastChangedAt": null, "user": null }, { "_id": "67bd1ae085a048f74fd1b8f0", "hidden": false, "name": "Ze Wang", "status": null, "statusLastChangedAt": null, "user": null }, { "_id": "67bd1ae085a048f74fd1b8f1", "hidden": false, "name": "Jiang Liu", "status": null, "statusLastChangedAt": null, "user": null }, { "_id": "67bd1ae085a048f74fd1b8f2", "hidden": false, "name": "Yusheng Su", "status": null, "statusLastChangedAt": null, "user": null }, { "_id": "67bd1ae085a048f74fd1b8f3", "hidden": false, "name": "Jingbo Shang", "status": null, "statusLastChangedAt": null, "user": null }, { "_id": "67bd1ae085a048f74fd1b8f4", "hidden": false, "name": "Zicheng Liu", "status": null, "statusLastChangedAt": null, "user": null }, { "_id": "67bd1ae085a048f74fd1b8f5", "hidden": false, "name": "Emad Barsoum", "status": null, "statusLastChangedAt": null, "user": null } ]
2025-02-21T20:29:36
Self-Taught Agentic Long Context Understanding
Answering complex, long-context questions remains a major challenge for large language models (LLMs) as it requires effective question clarifications and context retrieval. We propose Agentic Long-Context Understanding (AgenticLU), a framework designed to enhance an LLM's understanding of such queries by integrating targeted self-clarification with contextual grounding within an agentic workflow. At the core of AgenticLU is Chain-of-Clarifications (CoC), where models refine their understanding through self-generated clarification questions and corresponding contextual groundings. By scaling inference as a tree search where each node represents a CoC step, we achieve 97.8% answer recall on NarrativeQA with a search depth of up to three and a branching factor of eight. To amortize the high cost of this search process to training, we leverage the preference pairs for each step obtained by the CoC workflow and perform two-stage model finetuning: (1) supervised finetuning to learn effective decomposition strategies, and (2) direct preference optimization to enhance reasoning quality. This enables AgenticLU models to generate clarifications and retrieve relevant context effectively and efficiently in a single inference pass. Extensive experiments across seven long-context tasks demonstrate that AgenticLU significantly outperforms state-of-the-art prompting methods and specialized long-context LLMs, achieving robust multi-hop reasoning while sustaining consistent performance as context length grows.
2
67bd1ae385a048f74fd1b9ba
null
null
2025-02-25T12:26:42.547000
Grounded Persuasive Language Generation for Automated Marketing
https://cdn-thumbnails.h…s/2502.16810.png
3
{ "_id": "61aa376688c20eebf1e8deb3", "avatarUrl": "/avatars/7c11dcb232c73547d7d87834be287822.svg", "followerCount": 7, "fullname": "Hao Zhu", "isHf": false, "isMod": false, "isPro": false, "name": "ProKil", "type": "user" }
true
null
2502.16810
[ { "_id": "67bdfc14c45e6063fed00c43", "hidden": false, "name": "Jibang Wu", "status": null, "statusLastChangedAt": null, "user": null }, { "_id": "67bdfc14c45e6063fed00c44", "hidden": false, "name": "Chenghao Yang", "status": "claimed_verified", "statusLastChangedAt": "2025-02-26T08:28:53.841Z", "user": { "_id": "62fb49bafcce44435d7e079a", "avatarUrl": "/avatars/116cb4371206ee7010e161c986b09e85.svg", "fullname": "Chenghao Yang", "isPro": false, "type": "user", "user": "chromeNLP" } }, { "_id": "67bdfc14c45e6063fed00c45", "hidden": false, "name": "Simon Mahns", "status": "claimed_verified", "statusLastChangedAt": "2025-02-28T12:15:59.842Z", "user": { "_id": "65c5898e469efddc1c54b873", "avatarUrl": "/avatars/25e19bb239eee9fbc0ca48119891c5a8.svg", "fullname": "simon", "isPro": false, "type": "user", "user": "smahns" } }, { "_id": "67bdfc14c45e6063fed00c46", "hidden": false, "name": "Chaoqi Wang", "status": null, "statusLastChangedAt": null, "user": null }, { "_id": "67bdfc14c45e6063fed00c47", "hidden": false, "name": "Hao Zhu", "status": "claimed_verified", "statusLastChangedAt": "2025-02-25T17:22:57.723Z", "user": { "_id": "61aa376688c20eebf1e8deb3", "avatarUrl": "/avatars/7c11dcb232c73547d7d87834be287822.svg", "fullname": "Hao Zhu", "isPro": false, "type": "user", "user": "ProKil" } }, { "_id": "67bdfc14c45e6063fed00c48", "hidden": false, "name": "Fei Fang", "status": null, "statusLastChangedAt": null, "user": null }, { "_id": "67bdfc14c45e6063fed00c49", "hidden": false, "name": "Haifeng Xu", "status": null, "statusLastChangedAt": null, "user": null } ]
2025-02-24T03:36:57
Grounded Persuasive Language Generation for Automated Marketing
This paper develops an agentic framework that employs large language models (LLMs) to automate the generation of persuasive and grounded marketing content, using real estate listing descriptions as our focal application domain. Our method is designed to align the generated content with user preferences while highlighting useful factual attributes. This agent consists of three key modules: (1) Grounding Module, mimicking expert human behavior to predict marketable features; (2) Personalization Module, aligning content with user preferences; (3) Marketing Module, ensuring factual accuracy and the inclusion of localized features. We conduct systematic human-subject experiments in the domain of real estate marketing, with a focus group of potential house buyers. The results demonstrate that marketing descriptions generated by our approach are preferred over those written by human experts by a clear margin. Our findings suggest a promising LLM-based agentic framework to automate large-scale targeted marketing while ensuring responsible generation using only facts.
10
67bdfc15c45e6063fed00c7a
null
null
2025-02-25T11:58:10.154000
InductionBench: LLMs Fail in the Simplest Complexity Class
https://cdn-thumbnails.h…s/2502.15823.png
2
{ "_id": "639a25aba2b0b1c9d85a51e8", "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/639a25aba2b0b1c9d85a51e8/pphz-MK62hPNbBkMHAkeR.jpeg", "followerCount": 4, "fullname": "Wenyue Hua", "isHf": false, "isMod": false, "isPro": false, "name": "wenyueH", "type": "user" }
false
null
2502.15823
[ { "_id": "67bdf5d04dc920400e28c251", "hidden": false, "name": "Wenyue Hua", "status": null, "statusLastChangedAt": null, "user": null }, { "_id": "67bdf5d04dc920400e28c252", "hidden": false, "name": "Tyler Wong", "status": "claimed_verified", "statusLastChangedAt": "2025-02-26T08:28:57.332Z", "user": { "_id": "67be036f9d18abb027aa2f2b", "avatarUrl": "/avatars/9ba9530be87fd745b5d6f2fc05c63753.svg", "fullname": "Tyler Wong", "isPro": false, "type": "user", "user": "Tyler-W0ng" } }, { "_id": "67bdf5d04dc920400e28c253", "hidden": false, "name": "Sun Fei", "status": null, "statusLastChangedAt": null, "user": null }, { "_id": "67bdf5d04dc920400e28c254", "hidden": false, "name": "Liangming Pan", "status": null, "statusLastChangedAt": null, "user": null }, { "_id": "67bdf5d04dc920400e28c255", "hidden": false, "name": "Adam Jardine", "status": null, "statusLastChangedAt": null, "user": null }, { "_id": "67bdf5d04dc920400e28c256", "hidden": false, "name": "William Yang Wang", "status": null, "statusLastChangedAt": null, "user": null } ]
2025-02-20T03:48:00
InductionBench: LLMs Fail in the Simplest Complexity Class
Large language models (LLMs) have shown remarkable improvements in reasoning and many existing benchmarks have been addressed by models such as o1 and o3 either fully or partially. However, a majority of these benchmarks emphasize deductive reasoning, including mathematical and coding tasks in which rules such as mathematical axioms or programming syntax are clearly defined, based on which LLMs can plan and apply these rules to arrive at a solution. In contrast, inductive reasoning, where one infers the underlying rules from observed data, remains less explored. Such inductive processes lie at the heart of scientific discovery, as they enable researchers to extract general principles from empirical observations. To assess whether LLMs possess this capacity, we introduce InductionBench, a new benchmark designed to evaluate the inductive reasoning ability of LLMs. Our experimental findings reveal that even the most advanced models available struggle to master the simplest complexity classes within the subregular hierarchy of functions, highlighting a notable deficiency in current LLMs' inductive reasoning capabilities. Coda and data are available https://github.com/Wenyueh/inductive_reasoning_benchmark.
6
67bdf5d24dc920400e28c2cb
null
null
2025-02-25T11:40:15.745000
Investigating the Impact of Quantization Methods on the Safety and Reliability of Large Language Models
https://cdn-thumbnails.h…s/2502.15799.png
2
{ "_id": "65afde6ba0b4bf3b0e95b4e8", "avatarUrl": "/avatars/e9b97040b0a619bf6609465d1678705c.svg", "followerCount": null, "fullname": "Egor Shvetsov", "isHf": false, "isMod": false, "isPro": false, "name": "dalime", "type": "user" }
true
null
2502.15799
[ { "_id": "67bdf20b7c9bd4f09ebf05ac", "hidden": false, "name": "Artyom Kharinaev", "status": "claimed_verified", "statusLastChangedAt": "2025-02-26T08:29:03.290Z", "user": { "_id": "64b4f8ba2fc8324fcb64c516", "avatarUrl": "/avatars/4cc7ab802a4e0c538c8ae1acb8192528.svg", "fullname": "Artyom Kharinaev", "isPro": false, "type": "user", "user": "kharinaev" } }, { "_id": "67bdf20b7c9bd4f09ebf05ad", "hidden": false, "name": "Viktor Moskvoretskii", "status": null, "statusLastChangedAt": null, "user": null }, { "_id": "67bdf20b7c9bd4f09ebf05ae", "hidden": false, "name": "Egor Shvetsov", "status": "claimed_verified", "statusLastChangedAt": "2025-02-25T16:41:24.118Z", "user": { "_id": "65afde6ba0b4bf3b0e95b4e8", "avatarUrl": "/avatars/e9b97040b0a619bf6609465d1678705c.svg", "fullname": "Egor Shvetsov", "isPro": false, "type": "user", "user": "dalime" } }, { "_id": "67bdf20b7c9bd4f09ebf05af", "hidden": false, "name": "Kseniia Studenikina", "status": "claimed_verified", "statusLastChangedAt": "2025-02-26T08:29:00.879Z", "user": { "_id": "64c24ba6275309cb8bdab7ba", "avatarUrl": "/avatars/96cca2e5658c36c286d438e5d38f4c2f.svg", "fullname": "Kseniia Studenikina", "isPro": false, "type": "user", "user": "Xeanst" } }, { "_id": "67bdf20b7c9bd4f09ebf05b0", "hidden": false, "name": "Bykov Mikhail", "status": null, "statusLastChangedAt": null, "user": null }, { "_id": "67bdf20b7c9bd4f09ebf05b1", "hidden": false, "name": "Evgeny Burnaev", "status": null, "statusLastChangedAt": null, "user": null } ]
2025-02-18T20:32:05
Investigating the Impact of Quantization Methods on the Safety and Reliability of Large Language Models
Large Language Models (LLMs) have emerged as powerful tools for addressing modern challenges and enabling practical applications. However, their computational expense remains a significant barrier to widespread adoption. Quantization has emerged as a promising technique to democratize access and enable low resource device deployment. Despite these advancements, the safety and trustworthiness of quantized models remain underexplored, as prior studies often overlook contemporary architectures and rely on overly simplistic benchmarks and evaluations. To address this gap, we introduce OpenSafetyMini, a novel open-ended safety dataset designed to better distinguish between models. We evaluate 4 state-of-the-art quantization techniques across LLaMA and Mistral models using 4 benchmarks, including human evaluations. Our findings reveal that the optimal quantization method varies for 4-bit precision, while vector quantization techniques deliver the best safety and trustworthiness performance at 2-bit precision, providing foundation for future research.
6
67bdf20b7c9bd4f09ebf05dd
null
null
2025-02-25T11:02:34.002000
Diagnosing COVID-19 Severity from Chest X-Ray Images Using ViT and CNN Architectures
https://cdn-thumbnails.h…s/2502.16622.png
2
{ "_id": "63e972f1ccae1fe5c6211759", "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/63e972f1ccae1fe5c6211759/AfKPgMdAraUtvbtJpoHFY.jpeg", "followerCount": 2, "fullname": "Luis Lara", "isHf": false, "isMod": false, "isPro": false, "name": "ludolara", "type": "user" }
true
null
2502.16622
[ { "_id": "67bde94fc45e6063fecbcf04", "hidden": false, "name": "Luis Lara", "status": "extracted_confirmed", "statusLastChangedAt": "2025-02-25T16:05:37.367Z", "user": { "_id": "63e972f1ccae1fe5c6211759", "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/63e972f1ccae1fe5c6211759/AfKPgMdAraUtvbtJpoHFY.jpeg", "fullname": "Luis Lara", "isPro": false, "type": "user", "user": "ludolara" } }, { "_id": "67bde94fc45e6063fecbcf05", "hidden": false, "name": "Lucia Eve Berger", "status": null, "statusLastChangedAt": null, "user": null }, { "_id": "67bde94fc45e6063fecbcf06", "hidden": false, "name": "Rajesh Raju", "status": "admin_assigned", "statusLastChangedAt": "2025-02-25T16:40:11.167Z", "user": { "_id": "6544d303629ca3a19924cebe", "avatarUrl": "/avatars/3595f9ee3b745212ceeb19be6723c7b2.svg", "fullname": "Rajesh Raju", "isPro": false, "type": "user", "user": "rajeshraju" } }, { "_id": "67bde94fc45e6063fecbcf07", "hidden": false, "name": "Shawn Whitfield", "status": null, "statusLastChangedAt": null, "user": null } ]
2025-02-23T15:50:42
Diagnosing COVID-19 Severity from Chest X-Ray Images Using ViT and CNN Architectures
The COVID-19 pandemic strained healthcare resources and prompted discussion about how machine learning can alleviate physician burdens and contribute to diagnosis. Chest x-rays (CXRs) are used for diagnosis of COVID-19, but few studies predict the severity of a patient's condition from CXRs. In this study, we produce a large COVID severity dataset by merging three sources and investigate the efficacy of transfer learning using ImageNet- and CXR-pretrained models and vision transformers (ViTs) in both severity regression and classification tasks. A pretrained DenseNet161 model performed the best on the three class severity prediction problem, reaching 80% accuracy overall and 77.3%, 83.9%, and 70% on mild, moderate and severe cases, respectively. The ViT had the best regression results, with a mean absolute error of 0.5676 compared to radiologist-predicted severity scores. The project's source code is publicly available.
1
67bde950c45e6063fecbcf62
null
null
2025-02-25T09:17:04.777000
Early-Exit and Instant Confidence Translation Quality Estimation
https://cdn-thumbnails.h…s/2502.14429.png
2
{ "_id": "6304ece07424d937fa35fb98", "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/6304ece07424d937fa35fb98/6qZoqm-Ti8CiDcCHEt1sE.jpeg", "followerCount": 20, "fullname": "Vilém Zouhar", "isHf": false, "isMod": false, "isPro": false, "name": "zouharvi", "type": "user" }
true
[ "https://cdn-uploads.huggingface.co/production/uploads/6304ece07424d937fa35fb98/FbzjxTx-i9oevQ-i0c_CH.png" ]
2502.14429
[ { "_id": "67b835f98512a3eca052c0ee", "hidden": false, "name": "Vilém Zouhar", "status": "claimed_verified", "statusLastChangedAt": "2025-02-25T14:09:46.337Z", "user": { "_id": "6304ece07424d937fa35fb98", "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/6304ece07424d937fa35fb98/6qZoqm-Ti8CiDcCHEt1sE.jpeg", "fullname": "Vilém Zouhar", "isPro": false, "type": "user", "user": "zouharvi" } }, { "_id": "67b835f98512a3eca052c0ef", "hidden": false, "name": "Maike Züfle", "status": "admin_assigned", "statusLastChangedAt": "2025-02-25T16:38:17.623Z", "user": { "_id": "6552004b4d9e71e17b35fa0b", "avatarUrl": "/avatars/341ac1551588d5fcf5f3526fc06ff702.svg", "fullname": "Maike Züfle", "isPro": false, "type": "user", "user": "maikez" } }, { "_id": "67b835f98512a3eca052c0f0", "hidden": false, "name": "Beni Egressy", "status": "admin_assigned", "statusLastChangedAt": "2025-02-25T16:38:24.223Z", "user": { "_id": "6735d61d0c6b2cc068fe7cda", "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/no-auth/OD07myJrBbPaM1BUknLP-.png", "fullname": "Beni Egressy", "isPro": false, "type": "user", "user": "egressbi" } }, { "_id": "67b835f98512a3eca052c0f1", "hidden": false, "name": "Julius Cheng", "status": "admin_assigned", "statusLastChangedAt": "2025-02-25T16:38:33.820Z", "user": { "_id": "641af90d1911d3be6742928a", "avatarUrl": "/avatars/d6d34c2d49cb8dfdccc6681aacf47cd4.svg", "fullname": "Julius Cheng", "isPro": false, "type": "user", "user": "juliuscheng" } }, { "_id": "67b835f98512a3eca052c0f2", "hidden": false, "name": "Jan Niehues", "status": "admin_assigned", "statusLastChangedAt": "2025-02-25T16:38:40.110Z", "user": { "_id": "63394998474cfeb1a85bde3f", "avatarUrl": "/avatars/43d997eb118e6c6da9604e0c0bf0e63e.svg", "fullname": "Jan Niehues", "isPro": false, "type": "user", "user": "jannieh" } } ]
2025-02-20T10:27:13
Early-Exit and Instant Confidence Translation Quality Estimation
Quality estimation is omnipresent in machine translation, for both evaluation and generation. Unfortunately, quality estimation models are often opaque and computationally expensive, making them impractical to be part of large-scale pipelines. In this work, we tackle two connected challenges: (1) reducing the cost of quality estimation at scale, and (2) developing an inexpensive uncertainty estimation method for quality estimation. To address the latter, we introduce Instant Confidence COMET, an uncertainty-aware quality estimation model that matches the performance of previous approaches at a fraction of their costs. We extend this to Early-Exit COMET, a quality estimation model that can compute quality scores and associated confidences already at early model layers, allowing us to early-exit computations and reduce evaluation costs. We also apply our model to machine translation reranking. We combine Early-Exit COMET with an upper confidence bound bandit algorithm to find the best candidate from a large pool without having to run the full evaluation model on all candidates. In both cases (evaluation and reranking) our methods reduce the required compute by 50% with very little degradation in performance.
3
67b835fa8512a3eca052c11e
null
null
2025-02-25T09:00:19.900000
MegaLoc: One Retrieval to Place Them All
https://cdn-thumbnails.h…s/2502.17237.png
2
{ "_id": "67a9e16f0710558f7bd8947a", "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/no-auth/2SacRuI2bOsBgctaxWNGl.png", "followerCount": null, "fullname": "Gabriele Berton", "isHf": false, "isMod": false, "isPro": false, "name": "gberton", "type": "user" }
true
null
2502.17237
[ { "_id": "67bdcb947186ab0e92d9ebf6", "hidden": false, "name": "Gabriele Berton", "status": "extracted_pending", "statusLastChangedAt": "2025-02-25T13:54:29.302Z", "user": { "_id": "67a9e16f0710558f7bd8947a", "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/no-auth/2SacRuI2bOsBgctaxWNGl.png", "fullname": "Gabriele Berton", "isPro": false, "type": "user", "user": "gberton" } }, { "_id": "67bdcb947186ab0e92d9ebf7", "hidden": false, "name": "Carlo Masone", "status": "admin_assigned", "statusLastChangedAt": "2025-02-25T16:40:30.511Z", "user": { "_id": "643fb774e5f6d513c7214ec3", "avatarUrl": "/avatars/9333c175e72ced43d158ecd3a40c6af4.svg", "fullname": "Carlo Masone", "isPro": false, "type": "user", "user": "carmas" } } ]
2025-02-24T15:14:55
MegaLoc: One Retrieval to Place Them All
Retrieving images from the same location as a given query is an important component of multiple computer vision tasks, like Visual Place Recognition, Landmark Retrieval, Visual Localization, 3D reconstruction, and SLAM. However, existing solutions are built to specifically work for one of these tasks, and are known to fail when the requirements slightly change or when they meet out-of-distribution data. In this paper we combine a variety of existing methods, training techniques, and datasets to train a retrieval model, called MegaLoc, that is performant on multiple tasks. We find that MegaLoc (1) achieves state of the art on a large number of Visual Place Recognition datasets, (2) impressive results on common Landmark Retrieval datasets, and (3) sets a new state of the art for Visual Localization on the LaMAR datasets, where we only changed the retrieval method to the existing localization pipeline. The code for MegaLoc is available at https://github.com/gmberton/MegaLoc
1
67bdcb957186ab0e92d9ec34
null
null
2025-02-25T05:51:02.881000
TAG: A Decentralized Framework for Multi-Agent Hierarchical Reinforcement Learning
https://cdn-thumbnails.h…s/2502.15425.png
2
{ "_id": "65e98cd8e19214e9d151f29e", "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/65e98cd8e19214e9d151f29e/XjQzoVgKVzv8AZBWFQnHz.jpeg", "followerCount": 2, "fullname": "Giuseppe Paolo", "isHf": false, "isMod": false, "isPro": false, "name": "GPaolo", "type": "user" }
true
null
2502.15425
[ { "_id": "67bda01d87919b52fc418533", "hidden": false, "name": "Giuseppe Paolo", "status": "claimed_verified", "statusLastChangedAt": "2025-02-25T14:09:33.376Z", "user": { "_id": "65e98cd8e19214e9d151f29e", "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/65e98cd8e19214e9d151f29e/XjQzoVgKVzv8AZBWFQnHz.jpeg", "fullname": "Giuseppe Paolo", "isPro": false, "type": "user", "user": "GPaolo" } }, { "_id": "67bda01d87919b52fc418534", "hidden": false, "name": "Abdelhakim Benechehab", "status": "admin_assigned", "statusLastChangedAt": "2025-02-25T16:37:00.751Z", "user": { "_id": "621d59ebd3df05d67132e8d9", "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/621d59ebd3df05d67132e8d9/0gPfPTRKKnz5kq0InTqm5.jpeg", "fullname": "Abdelhakim Benechehab", "isPro": false, "type": "user", "user": "abenechehab" } }, { "_id": "67bda01d87919b52fc418535", "hidden": false, "name": "Hamza Cherkaoui", "status": "admin_assigned", "statusLastChangedAt": "2025-02-25T16:37:07.215Z", "user": { "_id": "6794d6ba8bed6b676ee9ba8a", "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/no-auth/dXlh-KNL2H80ahMJcvAlK.png", "fullname": "Hamza Cherkaoui", "isPro": false, "type": "user", "user": "HamzaCherkaoui" } }, { "_id": "67bda01d87919b52fc418536", "hidden": false, "name": "Albert Thomas", "status": "admin_assigned", "statusLastChangedAt": "2025-02-25T16:37:14.448Z", "user": { "_id": "639789c20f1ac9c2f34a59f7", "avatarUrl": "/avatars/fd73c93d50264d14f532ff52bc0d48f7.svg", "fullname": "Albert Thomas", "isPro": false, "type": "user", "user": "albert9000" } }, { "_id": "67bda01d87919b52fc418537", "hidden": false, "name": "Balázs Kégl", "status": "admin_assigned", "statusLastChangedAt": "2025-02-25T16:37:20.798Z", "user": { "_id": "672cb69f250205b317235571", "avatarUrl": "/avatars/37afc1506b15a2f9c37e3e8769142580.svg", "fullname": "Balazs Kegl", "isPro": false, "type": "user", "user": "balazskegl" } } ]
2025-02-21T12:52:16
TAG: A Decentralized Framework for Multi-Agent Hierarchical Reinforcement Learning
Hierarchical organization is fundamental to biological systems and human societies, yet artificial intelligence systems often rely on monolithic architectures that limit adaptability and scalability. Current hierarchical reinforcement learning (HRL) approaches typically restrict hierarchies to two levels or require centralized training, which limits their practical applicability. We introduce TAME Agent Framework (TAG), a framework for constructing fully decentralized hierarchical multi-agent systems.TAG enables hierarchies of arbitrary depth through a novel LevelEnv concept, which abstracts each hierarchy level as the environment for the agents above it. This approach standardizes information flow between levels while preserving loose coupling, allowing for seamless integration of diverse agent types. We demonstrate the effectiveness of TAG by implementing hierarchical architectures that combine different RL agents across multiple levels, achieving improved performance over classical multi-agent RL baselines on standard benchmarks. Our results show that decentralized hierarchical organization enhances both learning speed and final performance, positioning TAG as a promising direction for scalable multi-agent systems.
8
67bda01f87919b52fc4185d8
null
null
2025-02-25T05:40:40.152000
Stable-SPAM: How to Train in 4-Bit More Stably than 16-Bit Adam
https://cdn-thumbnails.h…s/2502.17055.png
2
{ "_id": "64cd4743a785f2043b32915e", "avatarUrl": "/avatars/ba0b497a194dfea8449112d71fc67654.svg", "followerCount": 1, "fullname": "Tianjin Huang", "isHf": false, "isMod": false, "isPro": false, "name": "TianjinHuang", "type": "user" }
true
null
2502.17055
[ { "_id": "67bd9b40478ef7c36240c6e6", "hidden": false, "name": "Tianjin Huang", "status": "admin_assigned", "statusLastChangedAt": "2025-02-25T16:30:14.371Z", "user": { "_id": "64cd4743a785f2043b32915e", "avatarUrl": "/avatars/ba0b497a194dfea8449112d71fc67654.svg", "fullname": "Tianjin Huang", "isPro": false, "type": "user", "user": "TianjinHuang" } }, { "_id": "67bd9b40478ef7c36240c6e7", "hidden": false, "name": "Haotian Hu", "status": "claimed_verified", "statusLastChangedAt": "2025-02-26T08:30:36.869Z", "user": { "_id": "67577b39a6073ee33f97cdd9", "avatarUrl": "/avatars/c05788ebc7c59b13fcddf8ff88540f79.svg", "fullname": "Haotian Hu", "isPro": false, "type": "user", "user": "cspikachu" } }, { "_id": "67bd9b40478ef7c36240c6e8", "hidden": false, "name": "Zhenyu Zhang", "status": "claimed_verified", "statusLastChangedAt": "2025-02-26T08:30:38.930Z", "user": { "_id": "649c888f67fd6c6aa97e5f85", "avatarUrl": "/avatars/9967b729916d1128773102797fed1673.svg", "fullname": "Zhenyu Zhang", "isPro": false, "type": "user", "user": "Kyriection" } }, { "_id": "67bd9b40478ef7c36240c6e9", "hidden": false, "name": "Gaojie Jin", "status": "admin_assigned", "statusLastChangedAt": "2025-02-25T16:30:59.295Z", "user": { "_id": "6662bd6b6016f6effa6ce492", "avatarUrl": "/avatars/c8e6b4b4a64f7ca0ddc91af5217a791b.svg", "fullname": "gaojie jin", "isPro": false, "type": "user", "user": "sggjin" } }, { "_id": "67bd9b40478ef7c36240c6ea", "hidden": false, "name": "Xiang Li", "status": null, "statusLastChangedAt": null, "user": null }, { "_id": "67bd9b40478ef7c36240c6eb", "hidden": false, "name": "Li Shen", "status": null, "statusLastChangedAt": null, "user": null }, { "_id": "67bd9b40478ef7c36240c6ec", "hidden": false, "name": "Tianlong Chen", "status": null, "statusLastChangedAt": null, "user": null }, { "_id": "67bd9b40478ef7c36240c6ed", "hidden": false, "name": "Lu Liu", "status": null, "statusLastChangedAt": null, "user": null }, { "_id": "67bd9b40478ef7c36240c6ee", "hidden": false, "name": "Qingsong Wen", "status": null, "statusLastChangedAt": null, "user": null }, { "_id": "67bd9b40478ef7c36240c6ef", "hidden": false, "name": "Zhangyang Wang", "status": null, "statusLastChangedAt": null, "user": null }, { "_id": "67bd9b40478ef7c36240c6f0", "hidden": false, "name": "Shiwei Liu", "status": "claimed_verified", "statusLastChangedAt": "2025-03-03T11:14:48.533Z", "user": { "_id": "65b04d2291e63920a7898c9e", "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/65b04d2291e63920a7898c9e/iUHs235G4bqK-KnH_94ti.jpeg", "fullname": "Liu", "isPro": false, "type": "user", "user": "Shiweiliuiiiiiii" } } ]
2025-02-24T11:09:15
Stable-SPAM: How to Train in 4-Bit More Stably than 16-Bit Adam
This paper comprehensively evaluates several recently proposed optimizers for 4-bit training, revealing that low-bit precision amplifies sensitivity to learning rates and often causes unstable gradient norms, leading to divergence at higher learning rates. Among these, SPAM, a recent optimizer featuring momentum reset and spike-aware gradient clipping, achieves the best performance across various bit levels, but struggles to stabilize gradient norms, requiring careful learning rate tuning. To address these limitations, we propose Stable-SPAM, which incorporates enhanced gradient normalization and clipping techniques. In particular, Stable-SPAM (1) adaptively updates the clipping threshold for spiked gradients by tracking their historical maxima; (2) normalizes the entire gradient matrix based on its historical l_2-norm statistics; and (3) inherits momentum reset from SPAM to periodically reset the first and second moments of Adam, mitigating the accumulation of spiked gradients. Extensive experiments show that Stable-SPAM effectively stabilizes gradient norms in 4-bit LLM training, delivering superior performance compared to Adam and SPAM. Notably, our 4-bit LLaMA-1B model trained with Stable-SPAM outperforms the BF16 LLaMA-1B trained with Adam by up to 2 perplexity. Furthermore, when both models are trained in 4-bit, Stable-SPAM achieves the same loss as Adam while requiring only about half the training steps. Code is available at https://github.com/TianjinYellow/StableSPAM.git.
16
67bd9b41478ef7c36240c724
null
null
2025-02-25T04:11:18.915000
Can Community Notes Replace Professional Fact-Checkers?
https://cdn-thumbnails.h…s/2502.14132.png
2
{ "_id": "6231d3ce86753f5f41d39c6f", "avatarUrl": "/avatars/9b18f368e5f80cfc935b2e339d42a85f.svg", "followerCount": 3, "fullname": "Nadav Borenstein", "isHf": false, "isMod": false, "isPro": false, "name": "Nadav", "type": "user" }
true
[ "https://cdn-uploads.huggingface.co/production/uploads/6231d3ce86753f5f41d39c6f/CwWaf1c9-jOzJ-gD5lvCH.jpeg", "https://cdn-uploads.huggingface.co/production/uploads/6231d3ce86753f5f41d39c6f/WrrBClUkuDsXHcfxP_N8B.jpeg" ]
2502.14132
[ { "_id": "67b86819d00e69f10c1f31b9", "hidden": false, "name": "Nadav Borenstein", "status": "claimed_verified", "statusLastChangedAt": "2025-02-25T09:40:52.278Z", "user": { "_id": "6231d3ce86753f5f41d39c6f", "avatarUrl": "/avatars/9b18f368e5f80cfc935b2e339d42a85f.svg", "fullname": "Nadav Borenstein", "isPro": false, "type": "user", "user": "Nadav" } }, { "_id": "67b86819d00e69f10c1f31ba", "hidden": false, "name": "Greta Warren", "status": "claimed_verified", "statusLastChangedAt": "2025-02-21T14:42:45.791Z", "user": { "_id": "6698cffdb2ebada9f4a7e7d7", "avatarUrl": "/avatars/e66d946c14595d3b008185f2be8d2f57.svg", "fullname": "Greta Warren", "isPro": false, "type": "user", "user": "gretawarren" } }, { "_id": "67b86819d00e69f10c1f31bb", "hidden": false, "name": "Desmond Elliott", "status": "admin_assigned", "statusLastChangedAt": "2025-02-25T16:35:15.142Z", "user": { "_id": "6285f66a7cc3b7bc1b8e7b8e", "avatarUrl": "/avatars/984ae22db7cc885591bc0b5bceffdfbd.svg", "fullname": "Desmond Elliott", "isPro": false, "type": "user", "user": "elliottd" } }, { "_id": "67b86819d00e69f10c1f31bc", "hidden": false, "name": "Isabelle Augenstein", "status": "admin_assigned", "statusLastChangedAt": "2025-02-25T16:35:20.535Z", "user": { "_id": "608918b7df398c3b285ce960", "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/1621507769190-608918b7df398c3b285ce960.jpeg", "fullname": "Isabelle Augenstein", "isPro": false, "type": "user", "user": "IAugenstein" } } ]
2025-02-19T22:26:39
Can Community Notes Replace Professional Fact-Checkers?
Two commonly-employed strategies to combat the rise of misinformation on social media are (i) fact-checking by professional organisations and (ii) community moderation by platform users. Policy changes by Twitter/X and, more recently, Meta, signal a shift away from partnerships with fact-checking organisations and towards an increased reliance on crowdsourced community notes. However, the extent and nature of dependencies between fact-checking and helpful community notes remain unclear. To address these questions, we use language models to annotate a large corpus of Twitter/X community notes with attributes such as topic, cited sources, and whether they refute claims tied to broader misinformation narratives. Our analysis reveals that community notes cite fact-checking sources up to five times more than previously reported. Fact-checking is especially crucial for notes on posts linked to broader narratives, which are twice as likely to reference fact-checking sources compared to other sources. In conclusion, our results show that successful community moderation heavily relies on professional fact-checking.
5
67b8681bd00e69f10c1f3267
null
null
2025-02-25T04:03:39.758000
The snake in the Brownian sphere
https://cdn-thumbnails.h…s/2502.13074.png
2
{ "_id": "636d12455aaed143cd665607", "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/1679399015950-636d12455aaed143cd665607.png", "followerCount": 2, "fullname": "ZLW", "isHf": false, "isMod": false, "isPro": false, "name": "ZarkLngeW", "type": "user" }
false
null
2502.13074
[ { "_id": "67bd8759fdecc637bd621e6b", "hidden": false, "name": "Omer Angel", "status": null, "statusLastChangedAt": null, "user": null }, { "_id": "67bd8759fdecc637bd621e6c", "hidden": false, "name": "Emmanuel Jacob", "status": null, "statusLastChangedAt": null, "user": null }, { "_id": "67bd8759fdecc637bd621e6d", "hidden": false, "name": "Brett Kolesnik", "status": null, "statusLastChangedAt": null, "user": null }, { "_id": "67bd8759fdecc637bd621e6e", "hidden": false, "name": "Grégory Miermont", "status": null, "statusLastChangedAt": null, "user": null } ]
2025-02-18T17:21:44
The snake in the Brownian sphere
The Brownian sphere is a random metric space, homeomorphic to the two-dimensional sphere, which arises as the universal scaling limit of many types of random planar maps. The direct construction of the Brownian sphere is via a continuous analogue of the Cori--Vauquelin--Schaeffer (CVS) bijection. The CVS bijection maps labeled trees to planar maps, and the continuous version maps Aldous' continuum random tree with Brownian labels (the Brownian snake) to the Brownian sphere. In this work, we describe the inverse of the continuous CVS bijection, by constructing the Brownian snake as a measurable function of the Brownian sphere. Special care is needed to work with the orientation of the Brownian sphere.
1
67bd875afdecc637bd621e95
null
null
2025-02-25T03:36:50.480000
M3-AGIQA: Multimodal, Multi-Round, Multi-Aspect AI-Generated Image Quality Assessment
https://cdn-thumbnails.h…s/2502.15167.png
2
{ "_id": "5f1158120c833276f61f1a84", "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/1608042047613-5f1158120c833276f61f1a84.jpeg", "followerCount": 777, "fullname": "Niels Rogge", "isHf": true, "isMod": false, "isPro": false, "name": "nielsr", "type": "user" }
false
null
2502.15167
[ { "_id": "67bc7ea06f88ef9a2b8283d3", "hidden": false, "name": "Chuan Cui", "status": "claimed_verified", "statusLastChangedAt": "2025-02-26T15:37:40.037Z", "user": { "_id": "60534c7e9d7c1d4d81b7e519", "avatarUrl": "/avatars/1496a1d25c07ccf7446d74edc6bda7c0.svg", "fullname": "草帽不是猫", "isPro": false, "type": "user", "user": "strawhat" } }, { "_id": "67bc7ea06f88ef9a2b8283d4", "hidden": false, "name": "Kejiang Chen", "status": "admin_assigned", "statusLastChangedAt": "2025-02-25T16:43:06.621Z", "user": { "_id": "63231a6a9aa01cafc8da1b62", "avatarUrl": "/avatars/d5adb473f43902ba0e2c4cb7f5be394b.svg", "fullname": "Kejiang Chen", "isPro": false, "type": "user", "user": "kejiangchen" } }, { "_id": "67bc7ea06f88ef9a2b8283d5", "hidden": false, "name": "Zhihua Wei", "status": null, "statusLastChangedAt": null, "user": null }, { "_id": "67bc7ea06f88ef9a2b8283d6", "hidden": false, "name": "Wen Shen", "status": null, "statusLastChangedAt": null, "user": null }, { "_id": "67bc7ea06f88ef9a2b8283d7", "hidden": false, "name": "Weiming Zhang", "status": "admin_assigned", "statusLastChangedAt": "2025-02-25T16:41:43.726Z", "user": { "_id": "64c54c28c097c6c2b3ab22cf", "avatarUrl": "/avatars/de1f74516d03bb2e01811c0a53dce9c8.svg", "fullname": "weiming zhang", "isPro": false, "type": "user", "user": "xtwfnjezhang" } }, { "_id": "67bc7ea06f88ef9a2b8283d8", "hidden": false, "name": "Nenghai Yu", "status": null, "statusLastChangedAt": null, "user": null } ]
2025-02-21T03:05:45
M3-AGIQA: Multimodal, Multi-Round, Multi-Aspect AI-Generated Image Quality Assessment
The rapid advancement of AI-generated image (AGI) models has introduced significant challenges in evaluating their quality, which requires considering multiple dimensions such as perceptual quality, prompt correspondence, and authenticity. To address these challenges, we propose M3-AGIQA, a comprehensive framework for AGI quality assessment that is Multimodal, Multi-Round, and Multi-Aspect. Our approach leverages the capabilities of Multimodal Large Language Models (MLLMs) as joint text and image encoders and distills advanced captioning capabilities from online MLLMs into a local model via Low-Rank Adaptation (LoRA) fine-tuning. The framework includes a structured multi-round evaluation mechanism, where intermediate image descriptions are generated to provide deeper insights into the quality, correspondence, and authenticity aspects. To align predictions with human perceptual judgments, a predictor constructed by an xLSTM and a regression head is incorporated to process sequential logits and predict Mean Opinion Scores (MOSs). Extensive experiments conducted on multiple benchmark datasets demonstrate that M3-AGIQA achieves state-of-the-art performance, effectively capturing nuanced aspects of AGI quality. Furthermore, cross-dataset validation confirms its strong generalizability. The code is available at https://github.com/strawhatboy/M3-AGIQA.
1
67bc7ea26f88ef9a2b828473
null
null
2025-02-25T02:06:00.809000
GCC: Generative Color Constancy via Diffusing a Color Checker
https://cdn-thumbnails.h…s/2502.17435.png
2
{ "_id": "6459d5da3b6fafd9664807ab", "avatarUrl": "/avatars/57430d1bbde3a2fe5586e5fbcafb0e74.svg", "followerCount": 3, "fullname": "Yu-Lun Liu", "isHf": false, "isMod": false, "isPro": false, "name": "yulunliu", "type": "user" }
true
[ "https://cdn-uploads.huggingface.co/production/uploads/6459d5da3b6fafd9664807ab/gDAYQUcbNE2Ps2pQFxg_m.mp4" ]
2502.17435
[ { "_id": "67bd6b4b8edd1ce8ad5603a0", "hidden": false, "name": "Chen-Wei Chang", "status": null, "statusLastChangedAt": null, "user": null }, { "_id": "67bd6b4b8edd1ce8ad5603a1", "hidden": false, "name": "Cheng-De Fan", "status": "admin_assigned", "statusLastChangedAt": "2025-02-25T16:08:08.047Z", "user": { "_id": "64ea1e12925565abda02b17b", "avatarUrl": "/avatars/b2bc33d95a147c6c8cf6b54672eb5a97.svg", "fullname": "Cheng-De Fan", "isPro": false, "type": "user", "user": "fansam39" } }, { "_id": "67bd6b4b8edd1ce8ad5603a2", "hidden": false, "name": "Chia-Che Chang", "status": null, "statusLastChangedAt": null, "user": null }, { "_id": "67bd6b4b8edd1ce8ad5603a3", "hidden": false, "name": "Yi-Chen Lo", "status": null, "statusLastChangedAt": null, "user": null }, { "_id": "67bd6b4b8edd1ce8ad5603a4", "hidden": false, "name": "Yu-Chee Tseng", "status": null, "statusLastChangedAt": null, "user": null }, { "_id": "67bd6b4b8edd1ce8ad5603a5", "hidden": false, "name": "Jiun-Long Huang", "status": null, "statusLastChangedAt": null, "user": null }, { "_id": "67bd6b4b8edd1ce8ad5603a6", "hidden": false, "name": "Yu-Lun Liu", "status": "admin_assigned", "statusLastChangedAt": "2025-02-25T16:08:30.752Z", "user": { "_id": "6459d5da3b6fafd9664807ab", "avatarUrl": "/avatars/57430d1bbde3a2fe5586e5fbcafb0e74.svg", "fullname": "Yu-Lun Liu", "isPro": false, "type": "user", "user": "yulunliu" } } ]
2025-02-24T18:59:54
GCC: Generative Color Constancy via Diffusing a Color Checker
Color constancy methods often struggle to generalize across different camera sensors due to varying spectral sensitivities. We present GCC, which leverages diffusion models to inpaint color checkers into images for illumination estimation. Our key innovations include (1) a single-step deterministic inference approach that inpaints color checkers reflecting scene illumination, (2) a Laplacian decomposition technique that preserves checker structure while allowing illumination-dependent color adaptation, and (3) a mask-based data augmentation strategy for handling imprecise color checker annotations. GCC demonstrates superior robustness in cross-camera scenarios, achieving state-of-the-art worst-25% error rates of 5.15{\deg} and 4.32{\deg} in bi-directional evaluations. These results highlight our method's stability and generalization capability across different camera characteristics without requiring sensor-specific training, making it a versatile solution for real-world applications.
27
67bd6b4d8edd1ce8ad560401
null
null
2025-02-25T01:02:05.395000
Reflective Planning: Vision-Language Models for Multi-Stage Long-Horizon Robotic Manipulation
https://cdn-thumbnails.h…s/2502.16707.png
2
{ "_id": "64f8cb8ed04a890f5380d9a4", "avatarUrl": "/avatars/d6fdfdbb0c10141aa3b4c832d928121b.svg", "followerCount": 4, "fullname": "Jianlan Luo", "isHf": false, "isMod": false, "isPro": false, "name": "jianlanluo", "type": "user" }
true
null
2502.16707
[ { "_id": "67bd3bcc797e4d53ce0bc70d", "hidden": false, "name": "Yunhai Feng", "status": "claimed_verified", "statusLastChangedAt": "2025-02-25T09:39:31.085Z", "user": { "_id": "64f8fbd95515d7dcceb906b1", "avatarUrl": "/avatars/1c7d034de408930b166592465e65fc31.svg", "fullname": "Yunhai Feng", "isPro": false, "type": "user", "user": "yunhaif" } }, { "_id": "67bd3bcc797e4d53ce0bc70e", "hidden": false, "name": "Jiaming Han", "status": "claimed_verified", "statusLastChangedAt": "2025-02-25T09:39:28.772Z", "user": { "_id": "62318c0386753f5f41d0e261", "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/62318c0386753f5f41d0e261/xO_5PvOf7lXhQPnQLcmnq.jpeg", "fullname": "Jiaming Han", "isPro": false, "type": "user", "user": "csuhan" } }, { "_id": "67bd3bcc797e4d53ce0bc70f", "hidden": false, "name": "Zhuoran Yang", "status": "admin_assigned", "statusLastChangedAt": "2025-02-25T16:28:50.050Z", "user": { "_id": "646d769cda8e99940b71928e", "avatarUrl": "/avatars/acee495a23362aa39b3d3e75c9afd967.svg", "fullname": "Zhuoran Yang", "isPro": false, "type": "user", "user": "zhuoranyang" } }, { "_id": "67bd3bcc797e4d53ce0bc710", "hidden": false, "name": "Xiangyu Yue", "status": "admin_assigned", "statusLastChangedAt": "2025-02-25T16:28:43.087Z", "user": { "_id": "666a8f24e2990b0cb16b7bf9", "avatarUrl": "/avatars/fcbaf8f1e3e53a2a4a819b7cb2c53aa4.svg", "fullname": "Xiangyu Yue", "isPro": false, "type": "user", "user": "xyyue" } }, { "_id": "67bd3bcc797e4d53ce0bc711", "hidden": false, "name": "Sergey Levine", "status": "admin_assigned", "statusLastChangedAt": "2025-02-25T16:28:36.442Z", "user": { "_id": "665ce54120a307a3754849dd", "avatarUrl": "/avatars/e698726e9be61dd50ce2efe372ed5dac.svg", "fullname": "Sergey Levine", "isPro": false, "type": "user", "user": "svlevine" } }, { "_id": "67bd3bcc797e4d53ce0bc712", "hidden": false, "name": "Jianlan Luo", "status": "admin_assigned", "statusLastChangedAt": "2025-02-25T16:28:30.231Z", "user": { "_id": "64f8cb8ed04a890f5380d9a4", "avatarUrl": "/avatars/d6fdfdbb0c10141aa3b4c832d928121b.svg", "fullname": "Jianlan Luo", "isPro": false, "type": "user", "user": "jianlanluo" } } ]
2025-02-23T20:42:15
Reflective Planning: Vision-Language Models for Multi-Stage Long-Horizon Robotic Manipulation
Solving complex long-horizon robotic manipulation problems requires sophisticated high-level planning capabilities, the ability to reason about the physical world, and reactively choose appropriate motor skills. Vision-language models (VLMs) pretrained on Internet data could in principle offer a framework for tackling such problems. However, in their current form, VLMs lack both the nuanced understanding of intricate physics required for robotic manipulation and the ability to reason over long horizons to address error compounding issues. In this paper, we introduce a novel test-time computation framework that enhances VLMs' physical reasoning capabilities for multi-stage manipulation tasks. At its core, our approach iteratively improves a pretrained VLM with a "reflection" mechanism - it uses a generative model to imagine future world states, leverages these predictions to guide action selection, and critically reflects on potential suboptimalities to refine its reasoning. Experimental results demonstrate that our method significantly outperforms several state-of-the-art commercial VLMs as well as other post-training approaches such as Monte Carlo Tree Search (MCTS). Videos are available at https://reflect-vlm.github.io.
11
67bd3bcf797e4d53ce0bc7ff
null
null
2025-02-25T00:37:53.138000
MONSTER: Monash Scalable Time Series Evaluation Repository
https://cdn-thumbnails.h…s/2502.15122.png
2
{ "_id": "675f68e3074ff89c5c078bf3", "avatarUrl": "/avatars/e3b78d90f032659d411761f47c3cf43e.svg", "followerCount": null, "fullname": "Angus", "isHf": false, "isMod": false, "isPro": false, "name": "angus924", "type": "user" }
true
null
2502.15122
[ { "_id": "67bbd6d5ba0bb31293e11210", "hidden": false, "name": "Angus Dempster", "status": "extracted_confirmed", "statusLastChangedAt": "2025-02-24T02:18:57.914Z", "user": { "_id": "675f68e3074ff89c5c078bf3", "avatarUrl": "/avatars/e3b78d90f032659d411761f47c3cf43e.svg", "fullname": "Angus", "isPro": false, "type": "user", "user": "angus924" } }, { "_id": "67bbd6d5ba0bb31293e11211", "hidden": false, "name": "Navid Mohammadi Foumani", "status": "admin_assigned", "statusLastChangedAt": "2025-02-25T16:39:04.191Z", "user": { "_id": "64fd243cb3eee10ba5430423", "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/64fd243cb3eee10ba5430423/u6SS1ueStDo35JOCgy0-J.jpeg", "fullname": "Navid Foumani", "isPro": false, "type": "user", "user": "Navidfoumani" } }, { "_id": "67bbd6d5ba0bb31293e11212", "hidden": false, "name": "Chang Wei Tan", "status": "admin_assigned", "statusLastChangedAt": "2025-02-25T16:39:12.684Z", "user": { "_id": "664c356b543feedee5f54c19", "avatarUrl": "/avatars/5b3522ceff6b6e8de733898d6b235cc1.svg", "fullname": "Chang Wei Tan", "isPro": true, "type": "user", "user": "charsiuu" } }, { "_id": "67bbd6d5ba0bb31293e11213", "hidden": false, "name": "Lynn Miller", "status": "admin_assigned", "statusLastChangedAt": "2025-02-25T16:39:20.335Z", "user": { "_id": "67ae773b8a3f2c111fb36803", "avatarUrl": "/avatars/d46608182cd449f1a9f1c9e76c514e6b.svg", "fullname": "Lynn Miller", "isPro": false, "type": "user", "user": "lynn-miller" } }, { "_id": "67bbd6d5ba0bb31293e11214", "hidden": false, "name": "Amish Mishra", "status": null, "statusLastChangedAt": null, "user": null }, { "_id": "67bbd6d5ba0bb31293e11215", "hidden": false, "name": "Mahsa Salehi", "status": null, "statusLastChangedAt": null, "user": null }, { "_id": "67bbd6d5ba0bb31293e11216", "hidden": false, "name": "Charlotte Pelletier", "status": null, "statusLastChangedAt": null, "user": null }, { "_id": "67bbd6d5ba0bb31293e11217", "hidden": false, "name": "Daniel F. Schmidt", "status": "admin_assigned", "statusLastChangedAt": "2025-02-25T16:39:39.384Z", "user": { "_id": "67505920dd6ece09aa9eae3f", "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/no-auth/XwLt-BAbKqqVVM37ItIp5.png", "fullname": "Daniel Schmidt", "isPro": false, "type": "user", "user": "DanielSchmidt" } }, { "_id": "67bbd6d5ba0bb31293e11218", "hidden": false, "name": "Geoffrey I. Webb", "status": "admin_assigned", "statusLastChangedAt": "2025-02-25T16:39:48.897Z", "user": { "_id": "64a7301b01646254506b2746", "avatarUrl": "/avatars/910efc38bf28f4250014483095c7b552.svg", "fullname": "Geoffrey Webb", "isPro": false, "type": "user", "user": "geoffwebb" } } ]
2025-02-21T00:54:40
MONSTER: Monash Scalable Time Series Evaluation Repository
We introduce MONSTER-the MONash Scalable Time Series Evaluation Repository-a collection of large datasets for time series classification. The field of time series classification has benefitted from common benchmarks set by the UCR and UEA time series classification repositories. However, the datasets in these benchmarks are small, with median sizes of 217 and 255 examples, respectively. In consequence they favour a narrow subspace of models that are optimised to achieve low classification error on a wide variety of smaller datasets, that is, models that minimise variance, and give little weight to computational issues such as scalability. Our hope is to diversify the field by introducing benchmarks using larger datasets. We believe that there is enormous potential for new progress in the field by engaging with the theoretical and practical challenges of learning effectively from larger quantities of data.
2
67bbd6d6ba0bb31293e11258
null
null
2025-02-25T00:17:51.431000
X-Dancer: Expressive Music to Human Dance Video Generation
https://cdn-thumbnails.h…s/2502.17414.png
3
{ "_id": "60f1abe7544c2adfd699860c", "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/1674929746905-60f1abe7544c2adfd699860c.jpeg", "followerCount": 6280, "fullname": "AK", "isHf": true, "isMod": false, "isPro": false, "name": "akhaliq", "type": "user" }
false
null
2502.17414
[ { "_id": "67bd526001d5bfa0abfcc5ba", "hidden": false, "name": "Zeyuan Chen", "status": null, "statusLastChangedAt": null, "user": null }, { "_id": "67bd526001d5bfa0abfcc5bb", "hidden": false, "name": "Hongyi Xu", "status": null, "statusLastChangedAt": null, "user": null }, { "_id": "67bd526001d5bfa0abfcc5bc", "hidden": false, "name": "Guoxian Song", "status": "admin_assigned", "statusLastChangedAt": "2025-02-25T16:33:13.695Z", "user": { "_id": "63086a237dc1b1a54cc6c24d", "avatarUrl": "/avatars/477b94134edc4c18c8f769ecbb7d8091.svg", "fullname": "Song", "isPro": false, "type": "user", "user": "guoxiansong" } }, { "_id": "67bd526001d5bfa0abfcc5bd", "hidden": false, "name": "You Xie", "status": "admin_assigned", "statusLastChangedAt": "2025-02-25T16:33:21.430Z", "user": { "_id": "6408dfd4b6a334f53e24023c", "avatarUrl": "/avatars/b7e3fa4fbec6313e94ff3384b74dabfc.svg", "fullname": "You Xie", "isPro": false, "type": "user", "user": "youxie" } }, { "_id": "67bd526001d5bfa0abfcc5be", "hidden": false, "name": "Chenxu Zhang", "status": "admin_assigned", "statusLastChangedAt": "2025-02-25T16:33:27.827Z", "user": { "_id": "64f58e61abc51e6b0f885575", "avatarUrl": "/avatars/53ec28d045e708570e0e34f44aaba7a7.svg", "fullname": "Chenxu Zhang", "isPro": false, "type": "user", "user": "ChenxuZhang528" } }, { "_id": "67bd526001d5bfa0abfcc5bf", "hidden": false, "name": "Xin Chen", "status": null, "statusLastChangedAt": null, "user": null }, { "_id": "67bd526001d5bfa0abfcc5c0", "hidden": false, "name": "Chao Wang", "status": "admin_assigned", "statusLastChangedAt": "2025-02-25T16:33:39.754Z", "user": { "_id": "64cf8caa0b71aea8be5c97db", "avatarUrl": "/avatars/d486466afa3b1d58abd85725930b9298.svg", "fullname": "Chao Wang", "isPro": false, "type": "user", "user": "chaowang" } }, { "_id": "67bd526001d5bfa0abfcc5c1", "hidden": false, "name": "Di Chang", "status": "admin_assigned", "statusLastChangedAt": "2025-02-25T16:33:46.334Z", "user": { "_id": "64a5d8219f3b568c202b3137", "avatarUrl": "/avatars/eef6fb7c70d272555a53183c0e50dbaf.svg", "fullname": "Di Chang", "isPro": false, "type": "user", "user": "Boese0601" } }, { "_id": "67bd526001d5bfa0abfcc5c2", "hidden": false, "name": "Linjie Luo", "status": null, "statusLastChangedAt": null, "user": null } ]
2025-02-24T18:47:54
X-Dancer: Expressive Music to Human Dance Video Generation
We present X-Dancer, a novel zero-shot music-driven image animation pipeline that creates diverse and long-range lifelike human dance videos from a single static image. As its core, we introduce a unified transformer-diffusion framework, featuring an autoregressive transformer model that synthesize extended and music-synchronized token sequences for 2D body, head and hands poses, which then guide a diffusion model to produce coherent and realistic dance video frames. Unlike traditional methods that primarily generate human motion in 3D, X-Dancer addresses data limitations and enhances scalability by modeling a wide spectrum of 2D dance motions, capturing their nuanced alignment with musical beats through readily available monocular videos. To achieve this, we first build a spatially compositional token representation from 2D human pose labels associated with keypoint confidences, encoding both large articulated body movements (e.g., upper and lower body) and fine-grained motions (e.g., head and hands). We then design a music-to-motion transformer model that autoregressively generates music-aligned dance pose token sequences, incorporating global attention to both musical style and prior motion context. Finally we leverage a diffusion backbone to animate the reference image with these synthesized pose tokens through AdaIN, forming a fully differentiable end-to-end framework. Experimental results demonstrate that X-Dancer is able to produce both diverse and characterized dance videos, substantially outperforming state-of-the-art methods in term of diversity, expressiveness and realism. Code and model will be available for research purposes.
11
67bd526101d5bfa0abfcc62c
null
null
2025-02-25T00:13:12.214000
VideoGrain: Modulating Space-Time Attention for Multi-grained Video Editing
https://cdn-thumbnails.h…s/2502.17258.png
4
{ "_id": "60f1abe7544c2adfd699860c", "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/1674929746905-60f1abe7544c2adfd699860c.jpeg", "followerCount": 6280, "fullname": "AK", "isHf": true, "isMod": false, "isPro": false, "name": "akhaliq", "type": "user" }
true
null
2502.17258
[ { "_id": "67bd515c0417e7f92283d3b8", "hidden": false, "name": "Xiangpeng Yang", "status": null, "statusLastChangedAt": null, "user": null }, { "_id": "67bd515c0417e7f92283d3b9", "hidden": false, "name": "Linchao Zhu", "status": "admin_assigned", "statusLastChangedAt": "2025-02-25T15:16:07.044Z", "user": { "_id": "63521e1dfe367c0d9b155007", "avatarUrl": "/avatars/b22804fc63b507fd60191486b17cdf7c.svg", "fullname": "Linchao Zhu", "isPro": false, "type": "user", "user": "ffmpbgrnn" } }, { "_id": "67bd515c0417e7f92283d3ba", "hidden": false, "name": "Hehe Fan", "status": "admin_assigned", "statusLastChangedAt": "2025-02-25T15:16:12.884Z", "user": { "_id": "64ad04020fb9b20dbabbd30e", "avatarUrl": "/avatars/a6bae4a3a4bcd6b54c33860fe14c7923.svg", "fullname": "Hehe Fan", "isPro": false, "type": "user", "user": "hehefan" } }, { "_id": "67bd515c0417e7f92283d3bb", "hidden": false, "name": "Yi Yang", "status": null, "statusLastChangedAt": null, "user": null } ]
2025-02-24T15:39:14
VideoGrain: Modulating Space-Time Attention for Multi-grained Video Editing
Recent advancements in diffusion models have significantly improved video generation and editing capabilities. However, multi-grained video editing, which encompasses class-level, instance-level, and part-level modifications, remains a formidable challenge. The major difficulties in multi-grained editing include semantic misalignment of text-to-region control and feature coupling within the diffusion model. To address these difficulties, we present VideoGrain, a zero-shot approach that modulates space-time (cross- and self-) attention mechanisms to achieve fine-grained control over video content. We enhance text-to-region control by amplifying each local prompt's attention to its corresponding spatial-disentangled region while minimizing interactions with irrelevant areas in cross-attention. Additionally, we improve feature separation by increasing intra-region awareness and reducing inter-region interference in self-attention. Extensive experiments demonstrate our method achieves state-of-the-art performance in real-world scenarios. Our code, data, and demos are available at https://knightyxp.github.io/VideoGrain_project_page/
71
67bd51620417e7f92283d4e9
null
null
2025-02-25T00:09:04.483000
RIFLEx: A Free Lunch for Length Extrapolation in Video Diffusion Transformers
https://cdn-thumbnails.h…s/2502.15894.png
3
{ "_id": "60f1abe7544c2adfd699860c", "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/1674929746905-60f1abe7544c2adfd699860c.jpeg", "followerCount": 6280, "fullname": "AK", "isHf": true, "isMod": false, "isPro": false, "name": "akhaliq", "type": "user" }
true
null
2502.15894
[ { "_id": "67bd3bd26faf9f04b2170f61", "hidden": false, "name": "Min Zhao", "status": "admin_assigned", "statusLastChangedAt": "2025-02-25T16:25:16.045Z", "user": { "_id": "65d0aa91617d1f7450cfcc3b", "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/noauth/lIoRhlq_Bmwt5X-V6LztR.png", "fullname": "min zhao", "isPro": false, "type": "user", "user": "caomi" } }, { "_id": "67bd3bd26faf9f04b2170f62", "hidden": false, "name": "Guande He", "status": "admin_assigned", "statusLastChangedAt": "2025-02-25T16:25:07.460Z", "user": { "_id": "67492ee82ad3cfc108a41bbb", "avatarUrl": "/avatars/7ad03e55a8791c62f1271a5c9bf8cc60.svg", "fullname": "Guande He", "isPro": false, "type": "user", "user": "gdhe17" } }, { "_id": "67bd3bd26faf9f04b2170f63", "hidden": false, "name": "Yixiao Chen", "status": "admin_assigned", "statusLastChangedAt": "2025-02-25T16:24:59.862Z", "user": { "_id": "67505e0990ba48ec35e748e2", "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/no-auth/K9bfDDD9AZJTxasc9yGfC.png", "fullname": "yixiaochen", "isPro": false, "type": "user", "user": "yixiaochen" } }, { "_id": "67bd3bd26faf9f04b2170f64", "hidden": false, "name": "Hongzhou Zhu", "status": "claimed_verified", "statusLastChangedAt": "2025-02-25T09:39:23.502Z", "user": { "_id": "64c269a52d73768f07ac266c", "avatarUrl": "/avatars/d497a960f8aef6a974907b68ed750c1c.svg", "fullname": "Zhu Hongzhou", "isPro": false, "type": "user", "user": "zhuhz22" } }, { "_id": "67bd3bd26faf9f04b2170f65", "hidden": false, "name": "Chongxuan Li", "status": "admin_assigned", "statusLastChangedAt": "2025-02-25T16:24:52.448Z", "user": { "_id": "64c07b488e2612254361153b", "avatarUrl": "/avatars/ade0f783cc4c2d3e73f402637f595471.svg", "fullname": "chongxuan li", "isPro": false, "type": "user", "user": "zhenxuan00" } }, { "_id": "67bd3bd26faf9f04b2170f66", "hidden": false, "name": "Jun Zhu", "status": null, "statusLastChangedAt": null, "user": null } ]
2025-02-21T19:28:05
RIFLEx: A Free Lunch for Length Extrapolation in Video Diffusion Transformers
Recent advancements in video generation have enabled models to synthesize high-quality, minute-long videos. However, generating even longer videos with temporal coherence remains a major challenge, and existing length extrapolation methods lead to temporal repetition or motion deceleration. In this work, we systematically analyze the role of frequency components in positional embeddings and identify an intrinsic frequency that primarily governs extrapolation behavior. Based on this insight, we propose RIFLEx, a minimal yet effective approach that reduces the intrinsic frequency to suppress repetition while preserving motion consistency, without requiring any additional modifications. RIFLEx offers a true free lunch--achieving high-quality 2times extrapolation on state-of-the-art video diffusion transformers in a completely training-free manner. Moreover, it enhances quality and enables 3times extrapolation by minimal fine-tuning without long videos. Project page and codes: https://riflex-video.github.io/{https://riflex-video.github.io/.}
19
67bd3bd66faf9f04b21710d1
null
null
2025-02-24T23:37:53.138000
Linguistic Generalizability of Test-Time Scaling in Mathematical Reasoning
https://cdn-thumbnails.h…s/2502.17407.png
2
{ "_id": "60d3e619b8448e1785bbda2a", "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/60d3e619b8448e1785bbda2a/q2re5u1HNwsCCyIMtid_I.jpeg", "followerCount": 48, "fullname": "GUIJIN SON", "isHf": false, "isMod": false, "isPro": false, "name": "amphora", "type": "user" }
true
null
2502.17407
[ { "_id": "67bd48d4becb766415a5d19d", "hidden": false, "name": "Guijin Son", "status": "admin_assigned", "statusLastChangedAt": "2025-02-25T16:21:47.182Z", "user": { "_id": "60d3e619b8448e1785bbda2a", "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/60d3e619b8448e1785bbda2a/q2re5u1HNwsCCyIMtid_I.jpeg", "fullname": "GUIJIN SON", "isPro": false, "type": "user", "user": "amphora" } }, { "_id": "67bd48d4becb766415a5d19e", "hidden": false, "name": "Jiwoo Hong", "status": "admin_assigned", "statusLastChangedAt": "2025-02-25T16:21:56.398Z", "user": { "_id": "678b61b6c7491f8b7065f68d", "avatarUrl": "/avatars/2168e7a0c58076126fcb41b01d01e622.svg", "fullname": "Jiwoo Hong", "isPro": false, "type": "user", "user": "hongmush" } }, { "_id": "67bd48d4becb766415a5d19f", "hidden": false, "name": "Hyunwoo Ko", "status": "claimed_verified", "statusLastChangedAt": "2025-02-25T09:39:12.933Z", "user": { "_id": "63e087b6a98d931aa90c1b9c", "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/63e087b6a98d931aa90c1b9c/96c6IT3f1pWGLbRdRDB2U.png", "fullname": "Hyunwoo Ko", "isPro": false, "type": "user", "user": "Cartinoe5930" } }, { "_id": "67bd48d4becb766415a5d1a0", "hidden": false, "name": "James Thorne", "status": null, "statusLastChangedAt": null, "user": null } ]
2025-02-24T18:36:15
Linguistic Generalizability of Test-Time Scaling in Mathematical Reasoning
Scaling pre-training compute has proven effective for achieving mulitlinguality, but does the same hold for test-time scaling? In this work, we introduce MCLM, a multilingual math benchmark featuring competition-level problems in 55 languages. We test three test-time scaling methods-Outcome Reward Modeling (ORM), Process Reward Modeling (ORM), and Budget Forcing (BF)-on both Qwen2.5-1.5B Math and MR1-1.5B, a multilingual LLM we trained for extended reasoning. Our experiments show that using Qwen2.5-1.5B Math with ORM achieves a score of 35.8 on MCLM, while BF on MR1-1.5B attains 35.2. Although "thinking LLMs" have recently garnered significant attention, we find that their performance is comparable to traditional scaling methods like best-of-N once constrained to similar levels of inference FLOPs. Moreover, while BF yields a 20-point improvement on English AIME, it provides only a 1.94-point average gain across other languages-a pattern consistent across the other test-time scaling methods we studied-higlighting that test-time scaling may not generalize as effectively to multilingual tasks. To foster further research, we release MCLM, MR1-1.5B, and evaluation results.
24
67bd48d5becb766415a5d1e9
null
null
2025-02-24T23:30:36.556000
Forecasting Open-Weight AI Model Growth on Hugging Face
https://cdn-thumbnails.h…s/2502.15987.png
3
{ "_id": "5e67bdd61009063689407479", "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/1583857146757-5e67bdd61009063689407479.jpeg", "followerCount": 2066, "fullname": "Clem 🤗", "isHf": true, "isMod": false, "isPro": true, "name": "clem", "type": "user" }
true
[ "https://cdn-uploads.huggingface.co/production/uploads/5e67bdd61009063689407479/kQHArNjaT0CM1KCujtDc1.png" ]
2502.15987
[ { "_id": "67bd46ea3e090b402d70f1f4", "hidden": false, "name": "Kushal Raj Bhandari", "status": "extracted_confirmed", "statusLastChangedAt": "2025-02-25T04:30:32.676Z", "user": { "_id": "64dfbcb18e2084e1d7b51b46", "avatarUrl": "/avatars/fafe30beea2d7e8eec3f3ba985c582f7.svg", "fullname": "Kushal Raj Bhandari", "isPro": false, "type": "user", "user": "KBhandari11" } }, { "_id": "67bd46ea3e090b402d70f1f5", "hidden": false, "name": "Pin-Yu Chen", "status": "admin_assigned", "statusLastChangedAt": "2025-02-25T16:34:05.126Z", "user": { "_id": "6495dd0b71f6708e0f990032", "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/6495dd0b71f6708e0f990032/PBIjdKNnpkxvR_3djCGVm.png", "fullname": "Pin-Yu Chen", "isPro": true, "type": "user", "user": "pinyuchen" } }, { "_id": "67bd46ea3e090b402d70f1f6", "hidden": false, "name": "Jianxi Gao", "status": null, "statusLastChangedAt": null, "user": null } ]
2025-02-21T22:52:19
Forecasting Open-Weight AI Model Growth on Hugging Face
As the open-weight AI landscape continues to proliferate-with model development, significant investment, and user interest-it becomes increasingly important to predict which models will ultimately drive innovation and shape AI ecosystems. Building on parallels with citation dynamics in scientific literature, we propose a framework to quantify how an open-weight model's influence evolves. Specifically, we adapt the model introduced by Wang et al. for scientific citations, using three key parameters-immediacy, longevity, and relative fitness-to track the cumulative number of fine-tuned models of an open-weight model. Our findings reveal that this citation-style approach can effectively capture the diverse trajectories of open-weight model adoption, with most models fitting well and outliers indicating unique patterns or abrupt jumps in usage.
10
67bd46ee3e090b402d70f317
null
null
2025-02-24T23:14:20.487000
Audio-FLAN: A Preliminary Release
https://cdn-thumbnails.h…s/2502.16584.png
2
{ "_id": "5fd6f670053c8345eddc1b68", "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/5fd6f670053c8345eddc1b68/cuTsu2krRYHC6zYGD2dpQ.jpeg", "followerCount": 13, "fullname": "Ruibin Yuan", "isHf": false, "isMod": false, "isPro": false, "name": "a43992899", "type": "user" }
true
null
2502.16584
[ { "_id": "67bd42386959e61abd265a9b", "hidden": false, "name": "Liumeng Xue", "status": "admin_assigned", "statusLastChangedAt": "2025-02-25T16:02:19.831Z", "user": { "_id": "6290e961473e457463a53248", "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/6290e961473e457463a53248/-58Dp5uHvdjs9yOupAMs0.jpeg", "fullname": "Liumeng Xue", "isPro": true, "type": "user", "user": "lmxue" } }, { "_id": "67bd42386959e61abd265a9c", "hidden": false, "name": "Ziya Zhou", "status": "admin_assigned", "statusLastChangedAt": "2025-02-25T16:04:58.842Z", "user": { "_id": "64191c925d6f3d15c65137b5", "avatarUrl": "/avatars/0e6a5fabf11904b9c31073ad1e10f6c6.svg", "fullname": "Ziya Zhou", "isPro": false, "type": "user", "user": "DangeZy" } }, { "_id": "67bd42386959e61abd265a9d", "hidden": false, "name": "Jiahao Pan", "status": null, "statusLastChangedAt": null, "user": null }, { "_id": "67bd42386959e61abd265a9e", "hidden": false, "name": "Zixuan Li", "status": null, "statusLastChangedAt": null, "user": null }, { "_id": "67bd42386959e61abd265a9f", "hidden": false, "name": "Shuai Fan", "status": "admin_assigned", "statusLastChangedAt": "2025-02-25T16:05:22.700Z", "user": { "_id": "669a705f7c6ce7348dae9dcd", "avatarUrl": "/avatars/b042a8ea45848e3c9c77ce532286692f.svg", "fullname": "Shuai Fan", "isPro": false, "type": "user", "user": "Micro20" } }, { "_id": "67bd42386959e61abd265aa0", "hidden": false, "name": "Yinghao Ma", "status": "admin_assigned", "statusLastChangedAt": "2025-02-25T16:05:28.773Z", "user": { "_id": "6410665d5364a661bee22524", "avatarUrl": "/avatars/f1cb0e07f36933187ceccbd5dcbeff79.svg", "fullname": "Yinghao Ma", "isPro": false, "type": "user", "user": "nicolaus625" } }, { "_id": "67bd42386959e61abd265aa1", "hidden": false, "name": "Sitong Cheng", "status": null, "statusLastChangedAt": null, "user": null }, { "_id": "67bd42386959e61abd265aa2", "hidden": false, "name": "Dongchao Yang", "status": "admin_assigned", "statusLastChangedAt": "2025-02-25T16:05:44.137Z", "user": { "_id": "63c7636b656e7822e23e6f6b", "avatarUrl": "/avatars/41bfd5e1ce6daab6058eacfd33c7a268.svg", "fullname": "Dongchao Yang", "isPro": false, "type": "user", "user": "Dongchao" } }, { "_id": "67bd42386959e61abd265aa3", "hidden": false, "name": "Haohan Guo", "status": "admin_assigned", "statusLastChangedAt": "2025-02-25T16:05:50.198Z", "user": { "_id": "63783d9d84318944acd305c4", "avatarUrl": "/avatars/cafd4fd0287e77cc6ebf37c8c8509174.svg", "fullname": "Haohan Guo", "isPro": false, "type": "user", "user": "hhguo" } }, { "_id": "67bd42386959e61abd265aa4", "hidden": false, "name": "Yujia Xiao", "status": "claimed_verified", "statusLastChangedAt": "2025-03-04T13:00:34.602Z", "user": { "_id": "674836767b7151c3ff30f865", "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/no-auth/jcwK5NW-efhCt8s2TE6vK.png", "fullname": "Yujia Xiao", "isPro": false, "type": "user", "user": "Yogurt928" } }, { "_id": "67bd42386959e61abd265aa5", "hidden": false, "name": "Xinsheng Wang", "status": "admin_assigned", "statusLastChangedAt": "2025-02-25T16:06:03.447Z", "user": { "_id": "64cc69be8174e45ae076393e", "avatarUrl": "/avatars/6fd566535cadbed63e1f956587157d13.svg", "fullname": "Xinsheng Wang", "isPro": false, "type": "user", "user": "wangxso" } }, { "_id": "67bd42386959e61abd265aa6", "hidden": false, "name": "Zixuan Shen", "status": null, "statusLastChangedAt": null, "user": null }, { "_id": "67bd42386959e61abd265aa7", "hidden": false, "name": "Chuanbo Zhu", "status": "admin_assigned", "statusLastChangedAt": "2025-02-25T16:06:27.024Z", "user": { "_id": "6721db0fab7602a59648aec6", "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/no-auth/bhWBJ26b_94mZICgi3jVZ.png", "fullname": "zhu chuanbo", "isPro": false, "type": "user", "user": "zhuchb" } }, { "_id": "67bd42386959e61abd265aa8", "hidden": false, "name": "Xinshen Zhang", "status": "admin_assigned", "statusLastChangedAt": "2025-02-25T16:06:40.621Z", "user": { "_id": "668b90710b04331a0bbacbb0", "avatarUrl": "/avatars/1a457fc4b4d242a9a7104ba38d5c2467.svg", "fullname": "ZHANG Xinshen", "isPro": false, "type": "user", "user": "Ashaire" } }, { "_id": "67bd42386959e61abd265aa9", "hidden": false, "name": "Tianchi Liu", "status": "admin_assigned", "statusLastChangedAt": "2025-02-25T16:06:47.569Z", "user": { "_id": "6756ae32298969739a42d5f9", "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/6756ae32298969739a42d5f9/XethqlkSvZUi3ZFnNLqaF.jpeg", "fullname": "Tianchi Liu", "isPro": false, "type": "user", "user": "liu-tianchi" } }, { "_id": "67bd42386959e61abd265aaa", "hidden": false, "name": "Ruibin Yuan", "status": "admin_assigned", "statusLastChangedAt": "2025-02-25T16:06:54.742Z", "user": { "_id": "5fd6f670053c8345eddc1b68", "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/5fd6f670053c8345eddc1b68/cuTsu2krRYHC6zYGD2dpQ.jpeg", "fullname": "Ruibin Yuan", "isPro": false, "type": "user", "user": "a43992899" } }, { "_id": "67bd42386959e61abd265aab", "hidden": false, "name": "Zeyue Tian", "status": null, "statusLastChangedAt": null, "user": null }, { "_id": "67bd42386959e61abd265aac", "hidden": false, "name": "Haohe Liu", "status": "admin_assigned", "statusLastChangedAt": "2025-02-25T16:07:13.402Z", "user": { "_id": "6155245d1c762d4d61b51d5d", "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/1677233708065-6155245d1c762d4d61b51d5d.png", "fullname": "haoheliu", "isPro": false, "type": "user", "user": "haoheliu" } }, { "_id": "67bd42386959e61abd265aad", "hidden": false, "name": "Emmanouil Benetos", "status": "admin_assigned", "statusLastChangedAt": "2025-02-25T16:07:19.685Z", "user": { "_id": "66b0a0839797b94f001ed874", "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/66b0a0839797b94f001ed874/BBtlJdQNyzQX10chnU81s.jpeg", "fullname": "Emmanouil Benetos", "isPro": false, "type": "user", "user": "emmanouilb" } }, { "_id": "67bd42386959e61abd265aae", "hidden": false, "name": "Ge Zhang", "status": "admin_assigned", "statusLastChangedAt": "2025-02-25T16:07:26.226Z", "user": { "_id": "638efcf4c67af472d316d424", "avatarUrl": "/avatars/97a57859d7d87a3a8f1bb41d32a72bc2.svg", "fullname": "Ge Zhang", "isPro": false, "type": "user", "user": "zhangysk" } }, { "_id": "67bd42386959e61abd265aaf", "hidden": false, "name": "Yike Guo", "status": "admin_assigned", "statusLastChangedAt": "2025-02-25T16:07:36.243Z", "user": { "_id": "64762b325f70f9b2d0ade28e", "avatarUrl": "/avatars/1f37382724b475ece805f943a8858acd.svg", "fullname": "Yike Guo", "isPro": false, "type": "user", "user": "SuaLily" } }, { "_id": "67bd42386959e61abd265ab0", "hidden": false, "name": "Wei Xue", "status": null, "statusLastChangedAt": null, "user": null } ]
2025-02-23T14:24:15
Audio-FLAN: A Preliminary Release
Recent advancements in audio tokenization have significantly enhanced the integration of audio capabilities into large language models (LLMs). However, audio understanding and generation are often treated as distinct tasks, hindering the development of truly unified audio-language models. While instruction tuning has demonstrated remarkable success in improving generalization and zero-shot learning across text and vision, its application to audio remains largely unexplored. A major obstacle is the lack of comprehensive datasets that unify audio understanding and generation. To address this, we introduce Audio-FLAN, a large-scale instruction-tuning dataset covering 80 diverse tasks across speech, music, and sound domains, with over 100 million instances. Audio-FLAN lays the foundation for unified audio-language models that can seamlessly handle both understanding (e.g., transcription, comprehension) and generation (e.g., speech, music, sound) tasks across a wide range of audio domains in a zero-shot manner. The Audio-FLAN dataset is available on HuggingFace and GitHub and will be continuously updated.
32
67bd423b6959e61abd265b88
null
null
2025-02-24T23:14:12.363000
Slamming: Training a Speech Language Model on One GPU in a Day
https://cdn-thumbnails.h…s/2502.15814.png
2
{ "_id": "66b9bc2dacdbc1d0b39c3b50", "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/noauth/hwR0pVfP_E8XjimXIxDOU.jpeg", "followerCount": 5, "fullname": "Gallil Maimon", "isHf": false, "isMod": false, "isPro": false, "name": "gallilmaimon", "type": "user" }
true
[ "https://cdn-uploads.huggingface.co/production/uploads/66b9bc2dacdbc1d0b39c3b50/t93GkoiYRplnXH1Go0MmY.png" ]
2502.15814
[ { "_id": "67bd3972f077ddf1f98bacda", "hidden": false, "name": "Gallil Maimon", "status": "claimed_verified", "statusLastChangedAt": "2025-02-25T09:39:36.258Z", "user": { "_id": "66b9bc2dacdbc1d0b39c3b50", "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/noauth/hwR0pVfP_E8XjimXIxDOU.jpeg", "fullname": "Gallil Maimon", "isPro": false, "type": "user", "user": "gallilmaimon" } }, { "_id": "67bd3972f077ddf1f98bacdb", "hidden": false, "name": "Avishai Elmakies", "status": "claimed_verified", "statusLastChangedAt": "2025-02-25T09:39:33.712Z", "user": { "_id": "644662145004f2cb3af08b27", "avatarUrl": "/avatars/5f2af24c7410a5db46374d0b84fb479d.svg", "fullname": "Avishai Elmakies", "isPro": false, "type": "user", "user": "avishai-elmakies" } }, { "_id": "67bd3972f077ddf1f98bacdc", "hidden": false, "name": "Yossi Adi", "status": "admin_assigned", "statusLastChangedAt": "2025-02-25T16:02:07.243Z", "user": { "_id": "6481e135578646b5c2386728", "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/6481e135578646b5c2386728/SPva4iNw0pORiCXD45cx9.jpeg", "fullname": "Yossi Adi", "isPro": false, "type": "user", "user": "adiyoss" } } ]
2025-02-19T17:21:15
Slamming: Training a Speech Language Model on One GPU in a Day
We introduce Slam, a recipe for training high-quality Speech Language Models (SLMs) on a single academic GPU in 24 hours. We do so through empirical analysis of model initialisation and architecture, synthetic training data, preference optimisation with synthetic data and tweaking all other components. We empirically demonstrate that this training recipe also scales well with more compute getting results on par with leading SLMs in a fraction of the compute cost. We hope these insights will make SLM training and research more accessible. In the context of SLM scaling laws, our results far outperform predicted compute optimal performance, giving an optimistic view to SLM feasibility. See code, data, models, samples at - https://pages.cs.huji.ac.il/adiyoss-lab/slamming .
65
67bd3973f077ddf1f98bacf9
null
null
2025-02-24T22:48:30.357000
Benchmarking Temporal Reasoning and Alignment Across Chinese Dynasties
https://cdn-thumbnails.h…s/2502.16922.png
4
{ "_id": "644a4fbc2166258fccc664bc", "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/noauth/8k3b44MbhQiWuo6i8BnYl.jpeg", "followerCount": 6, "fullname": "Jialong Wu", "isHf": false, "isMod": false, "isPro": false, "name": "callanwu", "type": "user" }
true
null
2502.16922
[ { "_id": "67bd3d6b60186d7478467208", "hidden": false, "name": "Zhenglin Wang", "status": "claimed_verified", "statusLastChangedAt": "2025-02-25T09:39:15.633Z", "user": { "_id": "6643261b8876db14227eeb19", "avatarUrl": "/avatars/67428c9e37a2273697c0547e1783ec6b.svg", "fullname": "Zhenglin Wang", "isPro": false, "type": "user", "user": "wzl0228" } }, { "_id": "67bd3d6b60186d7478467209", "hidden": false, "name": "Jialong Wu", "status": "claimed_verified", "statusLastChangedAt": "2025-02-25T15:06:02.856Z", "user": { "_id": "644a4fbc2166258fccc664bc", "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/noauth/8k3b44MbhQiWuo6i8BnYl.jpeg", "fullname": "Jialong Wu", "isPro": false, "type": "user", "user": "callanwu" } }, { "_id": "67bd3d6b60186d747846720a", "hidden": false, "name": "Pengfei LI", "status": null, "statusLastChangedAt": null, "user": null }, { "_id": "67bd3d6b60186d747846720b", "hidden": false, "name": "Yong Jiang", "status": "admin_assigned", "statusLastChangedAt": "2025-02-25T16:29:23.380Z", "user": { "_id": "678ddd806aa55e76bfffb953", "avatarUrl": "/avatars/f447936c286a6a2d2874a760210b2f17.svg", "fullname": "Yong Jiang", "isPro": false, "type": "user", "user": "yongjiangNLP" } }, { "_id": "67bd3d6b60186d747846720c", "hidden": false, "name": "Deyu Zhou", "status": "admin_assigned", "statusLastChangedAt": "2025-02-25T16:29:35.320Z", "user": { "_id": "64e821f2bddc5b1072b15c2e", "avatarUrl": "/avatars/618b5a48f2fa62daff4e1922a9aa9e8b.svg", "fullname": "zhoudeyu", "isPro": false, "type": "user", "user": "zhoudeyu" } } ]
2025-02-24T07:27:54
Benchmarking Temporal Reasoning and Alignment Across Chinese Dynasties
Temporal reasoning is fundamental to human cognition and is crucial for various real-world applications. While recent advances in Large Language Models have demonstrated promising capabilities in temporal reasoning, existing benchmarks primarily rely on rule-based construction, lack contextual depth, and involve a limited range of temporal entities. To address these limitations, we introduce Chinese Time Reasoning (CTM), a benchmark designed to evaluate LLMs on temporal reasoning within the extensive scope of Chinese dynastic chronology. CTM emphasizes cross-entity relationships, pairwise temporal alignment, and contextualized and culturally-grounded reasoning, providing a comprehensive evaluation. Extensive experimental results reveal the challenges posed by CTM and highlight potential avenues for improvement.
7
67bd3d6c60186d7478467249
null
null
2025-02-24T22:39:29.837000
DICEPTION: A Generalist Diffusion Model for Visual Perceptual Tasks
https://cdn-thumbnails.h…s/2502.17157.png
3
{ "_id": "646efd223dd912a539e0bd46", "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/noauth/EOFAv5xvOgJOzuDgh4nSb.png", "followerCount": 12, "fullname": "Canyu Zhao", "isHf": false, "isMod": false, "isPro": true, "name": "Canyu", "type": "user" }
true
null
2502.17157
[ { "_id": "67bd3285ac4a596a43b53205", "hidden": false, "name": "Canyu Zhao", "status": "claimed_verified", "statusLastChangedAt": "2025-02-25T09:40:20.829Z", "user": { "_id": "646efd223dd912a539e0bd46", "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/noauth/EOFAv5xvOgJOzuDgh4nSb.png", "fullname": "Canyu Zhao", "isPro": true, "type": "user", "user": "Canyu" } }, { "_id": "67bd3285ac4a596a43b53206", "hidden": false, "name": "Mingyu Liu", "status": "claimed_verified", "statusLastChangedAt": "2025-02-26T08:38:01.503Z", "user": { "_id": "652e25d2e647b0ee0a024f26", "avatarUrl": "/avatars/b5c65cf6c8d0ddc9b8ef0226e0295d56.svg", "fullname": "Mingyu Liu", "isPro": false, "type": "user", "user": "MingyuLiu" } }, { "_id": "67bd3285ac4a596a43b53207", "hidden": false, "name": "Huanyi Zheng", "status": "claimed_verified", "statusLastChangedAt": "2025-02-25T09:40:18.731Z", "user": { "_id": "64d60375d7e30889c65e8cf4", "avatarUrl": "/avatars/640f7c570fc45194557ce7931bdfe87f.svg", "fullname": "Huanyi Zheng", "isPro": false, "type": "user", "user": "zhyya" } }, { "_id": "67bd3285ac4a596a43b53208", "hidden": false, "name": "Muzhi Zhu", "status": "claimed_verified", "statusLastChangedAt": "2025-02-25T09:40:11.968Z", "user": { "_id": "632179745fc60c44fd91fc33", "avatarUrl": "/avatars/37d4fefbcc19f091dccffefec9706de2.svg", "fullname": "zhumuzhi", "isPro": false, "type": "user", "user": "Z-MU-Z" } }, { "_id": "67bd3285ac4a596a43b53209", "hidden": false, "name": "Zhiyue Zhao", "status": null, "statusLastChangedAt": null, "user": null }, { "_id": "67bd3285ac4a596a43b5320a", "hidden": false, "name": "Hao Chen", "status": null, "statusLastChangedAt": null, "user": null }, { "_id": "67bd3285ac4a596a43b5320b", "hidden": false, "name": "Tong He", "status": null, "statusLastChangedAt": null, "user": null }, { "_id": "67bd3285ac4a596a43b5320c", "hidden": false, "name": "Chunhua Shen", "status": null, "statusLastChangedAt": null, "user": null } ]
2025-02-24T13:51:06
DICEPTION: A Generalist Diffusion Model for Visual Perceptual Tasks
Our primary goal here is to create a good, generalist perception model that can tackle multiple tasks, within limits on computational resources and training data. To achieve this, we resort to text-to-image diffusion models pre-trained on billions of images. Our exhaustive evaluation metrics demonstrate that DICEPTION effectively tackles multiple perception tasks, achieving performance on par with state-of-the-art models. We achieve results on par with SAM-vit-h using only 0.06% of their data (e.g., 600K vs. 1B pixel-level annotated images). Inspired by Wang et al., DICEPTION formulates the outputs of various perception tasks using color encoding; and we show that the strategy of assigning random colors to different instances is highly effective in both entity segmentation and semantic segmentation. Unifying various perception tasks as conditional image generation enables us to fully leverage pre-trained text-to-image models. Thus, DICEPTION can be efficiently trained at a cost of orders of magnitude lower, compared to conventional models that were trained from scratch. When adapting our model to other tasks, it only requires fine-tuning on as few as 50 images and 1% of its parameters. DICEPTION provides valuable insights and a more promising solution for visual generalist models.
51
67bd328aac4a596a43b532ae
null
null
2025-02-24T22:35:41.042000
Make LoRA Great Again: Boosting LoRA with Adaptive Singular Values and Mixture-of-Experts Optimization Alignment
https://cdn-thumbnails.h…s/2502.16894.png
4
{ "_id": "641aa5e391e3376a057bbd4c", "avatarUrl": "/avatars/5818797f27444fde078b503774ee081c.svg", "followerCount": 12, "fullname": "Chenghao Fan", "isHf": false, "isMod": false, "isPro": false, "name": "Facico", "type": "user" }
true
null
2502.16894
[ { "_id": "67bd396ea06bae99f3866911", "hidden": false, "name": "Chenghao Fan", "status": "claimed_verified", "statusLastChangedAt": "2025-02-25T09:39:38.942Z", "user": { "_id": "641aa5e391e3376a057bbd4c", "avatarUrl": "/avatars/5818797f27444fde078b503774ee081c.svg", "fullname": "Chenghao Fan", "isPro": false, "type": "user", "user": "Facico" } }, { "_id": "67bd396ea06bae99f3866912", "hidden": false, "name": "Zhenyi Lu", "status": "admin_assigned", "statusLastChangedAt": "2025-02-25T16:22:55.129Z", "user": { "_id": "666b0a01e6cfd60425d00fd9", "avatarUrl": "/avatars/f6e5447e95785563e850ffcbe7dd6e3d.svg", "fullname": "LUZHENYI", "isPro": false, "type": "user", "user": "LUzhenyi123111" } }, { "_id": "67bd396ea06bae99f3866913", "hidden": false, "name": "Sichen Liu", "status": "claimed_verified", "statusLastChangedAt": "2025-02-26T08:37:56.904Z", "user": { "_id": "641dbda28dc52733fa4419cf", "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/641dbda28dc52733fa4419cf/vdIsa6UlMIaqHinGrYDb-.png", "fullname": "Sichen Liu", "isPro": false, "type": "user", "user": "Seas0" } }, { "_id": "67bd396ea06bae99f3866914", "hidden": false, "name": "Xiaoye Qu", "status": null, "statusLastChangedAt": null, "user": null }, { "_id": "67bd396ea06bae99f3866915", "hidden": false, "name": "Wei Wei", "status": null, "statusLastChangedAt": null, "user": null }, { "_id": "67bd396ea06bae99f3866916", "hidden": false, "name": "Chengfeng Gu", "status": "admin_assigned", "statusLastChangedAt": "2025-02-25T16:23:29.392Z", "user": { "_id": "675fc6bd34f2e646c06fbb07", "avatarUrl": "/avatars/60f77c237cd652f80b7f1ecfd358afe1.svg", "fullname": "gu chengfeng", "isPro": false, "type": "user", "user": "gucf" } }, { "_id": "67bd396ea06bae99f3866917", "hidden": false, "name": "Yu Cheng", "status": null, "statusLastChangedAt": null, "user": null } ]
2025-02-24T06:48:13
Make LoRA Great Again: Boosting LoRA with Adaptive Singular Values and Mixture-of-Experts Optimization Alignment
While Low-Rank Adaptation (LoRA) enables parameter-efficient fine-tuning for Large Language Models (LLMs), its performance often falls short of Full Fine-Tuning (Full FT). Current methods optimize LoRA by initializing with static singular value decomposition (SVD) subsets, leading to suboptimal leveraging of pre-trained knowledge. Another path for improving LoRA is incorporating a Mixture-of-Experts (MoE) architecture. However, weight misalignment and complex gradient dynamics make it challenging to adopt SVD prior to the LoRA MoE architecture. To mitigate these issues, we propose Great LoRA Mixture-of-Expert (GOAT), a framework that (1) adaptively integrates relevant priors using an SVD-structured MoE, and (2) aligns optimization with full fine-tuned MoE by deriving a theoretical scaling factor. We demonstrate that proper scaling, without modifying the architecture or training algorithms, boosts LoRA MoE's efficiency and performance. Experiments across 25 datasets, including natural language understanding, commonsense reasoning, image classification, and natural language generation, demonstrate GOAT's state-of-the-art performance, closing the gap with Full FT.
23
67bd396fa06bae99f3866964
null
null
2025-02-24T22:31:17.771000
Mobile-Agent-V: Learning Mobile Device Operation Through Video-Guided Multi-Agent Collaboration
https://cdn-thumbnails.h…s/2502.17110.png
2
{ "_id": "645b10e80c73ea27d13f7aca", "avatarUrl": "/avatars/95e565306472a15067440b5b43e07a6f.svg", "followerCount": 3, "fullname": "xuhaiyang", "isHf": false, "isMod": false, "isPro": false, "name": "xhyandwyy", "type": "user" }
true
[ "https://cdn-uploads.huggingface.co/production/uploads/645b10e80c73ea27d13f7aca/mshxtP77rrnN07f6ux6_0.jpeg" ]
2502.17110
[ { "_id": "67bd3936daef22cbce6d7ef2", "hidden": false, "name": "Junyang Wang", "status": "admin_assigned", "statusLastChangedAt": "2025-02-25T16:25:28.473Z", "user": { "_id": "6438f6415aa69077ffb16942", "avatarUrl": "/avatars/c83dbd3e10e88db97c2a86092bad5917.svg", "fullname": "Junyang Wang", "isPro": false, "type": "user", "user": "junyangwang0410" } }, { "_id": "67bd3936daef22cbce6d7ef3", "hidden": false, "name": "Haiyang Xu", "status": "claimed_verified", "statusLastChangedAt": "2025-02-25T09:39:41.528Z", "user": { "_id": "645b10e80c73ea27d13f7aca", "avatarUrl": "/avatars/95e565306472a15067440b5b43e07a6f.svg", "fullname": "xuhaiyang", "isPro": false, "type": "user", "user": "xhyandwyy" } }, { "_id": "67bd3936daef22cbce6d7ef4", "hidden": false, "name": "Xi Zhang", "status": "admin_assigned", "statusLastChangedAt": "2025-02-25T16:25:39.626Z", "user": { "_id": "66b1762e023357106d7e1d50", "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/no-auth/knNwe9xeQmIHUT7hQOrvN.png", "fullname": "Xi Zhang", "isPro": false, "type": "user", "user": "XiZhang" } }, { "_id": "67bd3936daef22cbce6d7ef5", "hidden": false, "name": "Ming Yan", "status": "claimed_verified", "statusLastChangedAt": "2025-02-25T16:29:39.149Z", "user": { "_id": "64771cfdd7cf39f2e9381aa9", "avatarUrl": "/avatars/48adf00c3b653df02628f80511639e19.svg", "fullname": "Ming", "isPro": false, "type": "user", "user": "MingYan123" } }, { "_id": "67bd3936daef22cbce6d7ef6", "hidden": false, "name": "Ji Zhang", "status": null, "statusLastChangedAt": null, "user": null }, { "_id": "67bd3936daef22cbce6d7ef7", "hidden": false, "name": "Fei Huang", "status": null, "statusLastChangedAt": null, "user": null }, { "_id": "67bd3936daef22cbce6d7ef8", "hidden": false, "name": "Jitao Sang", "status": null, "statusLastChangedAt": null, "user": null } ]
2025-02-24T12:51:23
Mobile-Agent-V: Learning Mobile Device Operation Through Video-Guided Multi-Agent Collaboration
The rapid increase in mobile device usage necessitates improved automation for seamless task management. However, many AI-driven frameworks struggle due to insufficient operational knowledge. Manually written knowledge helps but is labor-intensive and inefficient. To address these challenges, we introduce Mobile-Agent-V, a framework that leverages video guidance to provide rich and cost-effective operational knowledge for mobile automation. Mobile-Agent-V enhances task execution capabilities by leveraging video inputs without requiring specialized sampling or preprocessing. Mobile-Agent-V integrates a sliding window strategy and incorporates a video agent and deep-reflection agent to ensure that actions align with user instructions. Through this innovative approach, users can record task processes with guidance, enabling the system to autonomously learn and execute tasks efficiently. Experimental results show that Mobile-Agent-V achieves a 30% performance improvement compared to existing frameworks.
11
67bd3938daef22cbce6d7f9d
null
null
2025-02-24T22:27:11.566000
Thus Spake Long-Context Large Language Model
https://cdn-thumbnails.h…s/2502.17129.png
6
{ "_id": "64f033ef82c6eea604c4da8b", "avatarUrl": "/avatars/51b93fea7fd68b4274ee03701245dcca.svg", "followerCount": 2, "fullname": "Liu Xiaoran", "isHf": false, "isMod": false, "isPro": false, "name": "LiuXR", "type": "user" }
true
null
2502.17129
[ { "_id": "67bd37cb0d41e01cca99aa8b", "hidden": false, "name": "Xiaoran Liu", "status": "claimed_verified", "statusLastChangedAt": "2025-02-25T09:40:07.298Z", "user": { "_id": "64f033ef82c6eea604c4da8b", "avatarUrl": "/avatars/51b93fea7fd68b4274ee03701245dcca.svg", "fullname": "Liu Xiaoran", "isPro": false, "type": "user", "user": "LiuXR" } }, { "_id": "67bd37cb0d41e01cca99aa8c", "hidden": false, "name": "Ruixiao Li", "status": null, "statusLastChangedAt": null, "user": null }, { "_id": "67bd37cb0d41e01cca99aa8d", "hidden": false, "name": "Mianqiu Huang", "status": "claimed_verified", "statusLastChangedAt": "2025-02-26T08:37:59.249Z", "user": { "_id": "6459c7c10aba070266e41bb1", "avatarUrl": "/avatars/2178cac69cf4123db5e85191160f3795.svg", "fullname": "mqhuang", "isPro": false, "type": "user", "user": "LutherXD" } }, { "_id": "67bd37cb0d41e01cca99aa8e", "hidden": false, "name": "Zhigeng Liu", "status": null, "statusLastChangedAt": null, "user": null }, { "_id": "67bd37cb0d41e01cca99aa8f", "hidden": false, "name": "Yuerong Song", "status": null, "statusLastChangedAt": null, "user": null }, { "_id": "67bd37cb0d41e01cca99aa90", "hidden": false, "name": "Qipeng Guo", "status": "admin_assigned", "statusLastChangedAt": "2025-02-25T15:15:13.798Z", "user": { "_id": "6491cd52b1e5d3444528edb1", "avatarUrl": "/avatars/a85635d886c7f157b6723dec5c01c030.svg", "fullname": "Qipeng Guo", "isPro": false, "type": "user", "user": "QipengGuo" } }, { "_id": "67bd37cb0d41e01cca99aa91", "hidden": false, "name": "Siyang He", "status": null, "statusLastChangedAt": null, "user": null }, { "_id": "67bd37cb0d41e01cca99aa92", "hidden": false, "name": "Qiqi Wang", "status": null, "statusLastChangedAt": null, "user": null }, { "_id": "67bd37cb0d41e01cca99aa93", "hidden": false, "name": "Linlin Li", "status": null, "statusLastChangedAt": null, "user": null }, { "_id": "67bd37cb0d41e01cca99aa94", "hidden": false, "name": "Qun Liu", "status": null, "statusLastChangedAt": null, "user": null }, { "_id": "67bd37cb0d41e01cca99aa95", "hidden": false, "name": "Yaqian Zhou", "status": null, "statusLastChangedAt": null, "user": null }, { "_id": "67bd37cb0d41e01cca99aa96", "hidden": false, "name": "Xuanjing Huang", "status": null, "statusLastChangedAt": null, "user": null }, { "_id": "67bd37cb0d41e01cca99aa97", "hidden": false, "name": "Xipeng Qiu", "status": "admin_assigned", "statusLastChangedAt": "2025-02-25T15:12:06.360Z", "user": { "_id": "61457b8deff2c9fdb4de4988", "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/1632381702899-61457b8deff2c9fdb4de4988.jpeg", "fullname": "Xipeng Qiu", "isPro": false, "type": "user", "user": "xpqiu" } } ]
2025-02-24T13:19:33
Thus Spake Long-Context Large Language Model
Long context is an important topic in Natural Language Processing (NLP), running through the development of NLP architectures, and offers immense opportunities for Large Language Models (LLMs) giving LLMs the lifelong learning potential akin to humans. Unfortunately, the pursuit of a long context is accompanied by numerous obstacles. Nevertheless, long context remains a core competitive advantage for LLMs. In the past two years, the context length of LLMs has achieved a breakthrough extension to millions of tokens. Moreover, the research on long-context LLMs has expanded from length extrapolation to a comprehensive focus on architecture, infrastructure, training, and evaluation technologies. Inspired by the symphonic poem, Thus Spake Zarathustra, we draw an analogy between the journey of extending the context of LLM and the attempts of humans to transcend its mortality. In this survey, We will illustrate how LLM struggles between the tremendous need for a longer context and its equal need to accept the fact that it is ultimately finite. To achieve this, we give a global picture of the lifecycle of long-context LLMs from four perspectives: architecture, infrastructure, training, and evaluation, showcasing the full spectrum of long-context technologies. At the end of this survey, we will present 10 unanswered questions currently faced by long-context LLMs. We hope this survey can serve as a systematic introduction to the research on long-context LLMs.
66
67bd37cc0d41e01cca99ab1e
null
null
2025-02-24T22:17:28.937000
CodeCriticBench: A Holistic Code Critique Benchmark for Large Language Models
https://cdn-thumbnails.h…s/2502.16614.png
3
{ "_id": "65377c30e48353201e6fdda0", "avatarUrl": "/avatars/a8f803b6f2e598eaee9c52c0d2ddfc16.svg", "followerCount": 7, "fullname": "Jiaheng Liu", "isHf": false, "isMod": false, "isPro": false, "name": "CheeryLJH", "type": "user" }
true
null
2502.16614
[ { "_id": "67bd36334a9a04b9ca9bbb68", "hidden": false, "name": "Alexander Zhang", "status": null, "statusLastChangedAt": null, "user": null }, { "_id": "67bd36334a9a04b9ca9bbb69", "hidden": false, "name": "Marcus Dong", "status": null, "statusLastChangedAt": null, "user": null }, { "_id": "67bd36334a9a04b9ca9bbb6a", "hidden": false, "name": "Jiaheng Liu", "status": "admin_assigned", "statusLastChangedAt": "2025-02-25T16:09:48.690Z", "user": { "_id": "65377c30e48353201e6fdda0", "avatarUrl": "/avatars/a8f803b6f2e598eaee9c52c0d2ddfc16.svg", "fullname": "Jiaheng Liu", "isPro": false, "type": "user", "user": "CheeryLJH" } }, { "_id": "67bd36334a9a04b9ca9bbb6b", "hidden": false, "name": "Wei Zhang", "status": null, "statusLastChangedAt": null, "user": null }, { "_id": "67bd36334a9a04b9ca9bbb6c", "hidden": false, "name": "Yejie Wang", "status": "admin_assigned", "statusLastChangedAt": "2025-02-25T16:10:04.798Z", "user": { "_id": "6342dc0ee2647466b42918ab", "avatarUrl": "/avatars/a80a3df2f67410662bf9681ed8834b17.svg", "fullname": "Yejie Wang", "isPro": false, "type": "user", "user": "banksy235" } }, { "_id": "67bd36334a9a04b9ca9bbb6d", "hidden": false, "name": "Jian Yang", "status": null, "statusLastChangedAt": null, "user": null }, { "_id": "67bd36334a9a04b9ca9bbb6e", "hidden": false, "name": "Ge Zhang", "status": "admin_assigned", "statusLastChangedAt": "2025-02-25T16:19:39.556Z", "user": { "_id": "638efcf4c67af472d316d424", "avatarUrl": "/avatars/97a57859d7d87a3a8f1bb41d32a72bc2.svg", "fullname": "Ge Zhang", "isPro": false, "type": "user", "user": "zhangysk" } }, { "_id": "67bd36334a9a04b9ca9bbb6f", "hidden": false, "name": "Tianyu Liu", "status": null, "statusLastChangedAt": null, "user": null }, { "_id": "67bd36334a9a04b9ca9bbb70", "hidden": false, "name": "Zhongyuan Peng", "status": "admin_assigned", "statusLastChangedAt": "2025-02-25T16:20:18.644Z", "user": { "_id": "63299f93688ad82b783aaf20", "avatarUrl": "/avatars/e68e6f5add62edddfbdd3795f3a72347.svg", "fullname": "zhongyuan peng", "isPro": false, "type": "user", "user": "happzy2633" } }, { "_id": "67bd36334a9a04b9ca9bbb71", "hidden": false, "name": "Yingshui Tan", "status": "admin_assigned", "statusLastChangedAt": "2025-02-25T16:20:25.822Z", "user": { "_id": "6732f05d6d413742b5547249", "avatarUrl": "/avatars/c77b9fc579b0353e9c271d985b410342.svg", "fullname": "Yingshui Tan", "isPro": false, "type": "user", "user": "YingshuiTan1996" } }, { "_id": "67bd36334a9a04b9ca9bbb72", "hidden": false, "name": "Yuanxing Zhang", "status": "admin_assigned", "statusLastChangedAt": "2025-02-25T16:20:33.271Z", "user": { "_id": "64241749a05235e2f8d34cb0", "avatarUrl": "/avatars/e88967d77588f7205fbb110a51125e5b.svg", "fullname": "Yuanxing Zhang", "isPro": false, "type": "user", "user": "LongoXC" } }, { "_id": "67bd36334a9a04b9ca9bbb73", "hidden": false, "name": "Zhexu Wang", "status": null, "statusLastChangedAt": null, "user": null }, { "_id": "67bd36334a9a04b9ca9bbb74", "hidden": false, "name": "Weixun Wang", "status": null, "statusLastChangedAt": null, "user": null }, { "_id": "67bd36334a9a04b9ca9bbb75", "hidden": false, "name": "Yancheng He", "status": null, "statusLastChangedAt": null, "user": null }, { "_id": "67bd36334a9a04b9ca9bbb76", "hidden": false, "name": "Ken Deng", "status": null, "statusLastChangedAt": null, "user": null }, { "_id": "67bd36334a9a04b9ca9bbb77", "hidden": false, "name": "Wangchunshu Zhou", "status": "admin_assigned", "statusLastChangedAt": "2025-02-25T16:21:18.710Z", "user": { "_id": "628c8598ef14f971b698107f", "avatarUrl": "/avatars/3a4ad87e6b5f9e836a1160d869df1447.svg", "fullname": "Zhou", "isPro": false, "type": "user", "user": "Wangchunshu" } }, { "_id": "67bd36334a9a04b9ca9bbb78", "hidden": false, "name": "Wenhao Huang", "status": "admin_assigned", "statusLastChangedAt": "2025-02-25T16:21:27.459Z", "user": { "_id": "641e5bf65f274a0a92c2f6a2", "avatarUrl": "/avatars/c15a54c51998c0e6367685e8e1737ec9.svg", "fullname": "Wenhao Huang", "isPro": false, "type": "user", "user": "EZ-hwh" } }, { "_id": "67bd36334a9a04b9ca9bbb79", "hidden": false, "name": "Zhaoxiang Zhang", "status": null, "statusLastChangedAt": null, "user": null } ]
2025-02-23T15:36:43
CodeCriticBench: A Holistic Code Critique Benchmark for Large Language Models
The critique capacity of Large Language Models (LLMs) is essential for reasoning abilities, which can provide necessary suggestions (e.g., detailed analysis and constructive feedback). Therefore, how to evaluate the critique capacity of LLMs has drawn great attention and several critique benchmarks have been proposed. However, existing critique benchmarks usually have the following limitations: (1). Focusing on diverse reasoning tasks in general domains and insufficient evaluation on code tasks (e.g., only covering code generation task), where the difficulty of queries is relatively easy (e.g., the code queries of CriticBench are from Humaneval and MBPP). (2). Lacking comprehensive evaluation from different dimensions. To address these limitations, we introduce a holistic code critique benchmark for LLMs called CodeCriticBench. Specifically, our CodeCriticBench includes two mainstream code tasks (i.e., code generation and code QA) with different difficulties. Besides, the evaluation protocols include basic critique evaluation and advanced critique evaluation for different characteristics, where fine-grained evaluation checklists are well-designed for advanced settings. Finally, we conduct extensive experimental results of existing LLMs, which show the effectiveness of CodeCriticBench.
23
67bd36354a9a04b9ca9bbc16
null
null
2025-02-24T21:59:50.456000
Multimodal Inconsistency Reasoning (MMIR): A New Benchmark for Multimodal Reasoning Models
https://cdn-thumbnails.h…s/2502.16033.png
2
{ "_id": "64679a226192d39142245e5e", "avatarUrl": "/avatars/05abee0b6317f100923936ca2099e9eb.svg", "followerCount": 4, "fullname": "Xin Eric Wang", "isHf": false, "isMod": false, "isPro": false, "name": "xw-eric", "type": "user" }
true
null
2502.16033
[ { "_id": "67bd31d0d055a27740b16a30", "hidden": false, "name": "Qianqi Yan", "status": null, "statusLastChangedAt": null, "user": null }, { "_id": "67bd31d0d055a27740b16a31", "hidden": false, "name": "Yue Fan", "status": null, "statusLastChangedAt": null, "user": null }, { "_id": "67bd31d0d055a27740b16a32", "hidden": false, "name": "Hongquan Li", "status": null, "statusLastChangedAt": null, "user": null }, { "_id": "67bd31d0d055a27740b16a33", "hidden": false, "name": "Shan Jiang", "status": null, "statusLastChangedAt": null, "user": null }, { "_id": "67bd31d0d055a27740b16a34", "hidden": false, "name": "Yang Zhao", "status": null, "statusLastChangedAt": null, "user": null }, { "_id": "67bd31d0d055a27740b16a35", "hidden": false, "name": "Xinze Guan", "status": null, "statusLastChangedAt": null, "user": null }, { "_id": "67bd31d0d055a27740b16a36", "hidden": false, "name": "Ching-Chen Kuo", "status": null, "statusLastChangedAt": null, "user": null }, { "_id": "67bd31d0d055a27740b16a37", "hidden": false, "name": "Xin Eric Wang", "status": "admin_assigned", "statusLastChangedAt": "2025-02-25T16:24:13.717Z", "user": { "_id": "64679a226192d39142245e5e", "avatarUrl": "/avatars/05abee0b6317f100923936ca2099e9eb.svg", "fullname": "Xin Eric Wang", "isPro": false, "type": "user", "user": "xw-eric" } } ]
2025-02-22T01:52:37
Multimodal Inconsistency Reasoning (MMIR): A New Benchmark for Multimodal Reasoning Models
Existing Multimodal Large Language Models (MLLMs) are predominantly trained and tested on consistent visual-textual inputs, leaving open the question of whether they can handle inconsistencies in real-world, layout-rich content. To bridge this gap, we propose the Multimodal Inconsistency Reasoning (MMIR) benchmark to assess MLLMs' ability to detect and reason about semantic mismatches in artifacts such as webpages, presentation slides, and posters. MMIR comprises 534 challenging samples, each containing synthetically injected errors across five reasoning-heavy categories: Factual Contradiction, Identity Misattribution, Contextual Mismatch, Quantitative Discrepancy, and Temporal/Spatial Incoherence. We evaluate six state-of-the-art MLLMs, showing that models with dedicated multimodal reasoning capabilities, such as o1, substantially outperform their counterparts while open-source models remain particularly vulnerable to inconsistency errors. Detailed error analyses further show that models excel in detecting inconsistencies confined to a single modality, particularly in text, but struggle with cross-modal conflicts and complex layouts. Probing experiments reveal that single-modality prompting, including Chain-of-Thought (CoT) and Set-of-Mark (SoM) methods, yields marginal gains, revealing a key bottleneck in cross-modal reasoning. Our findings highlight the need for advanced multimodal reasoning and point to future research on multimodal inconsistency.
15
67bd31d2d055a27740b16ad9
null
null
2025-02-24T21:59:15.571000
Beyond Release: Access Considerations for Generative AI Systems
https://cdn-thumbnails.h…s/2502.16701.png
2
{ "_id": "62543749b777cd32720675c2", "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/1658760912583-62543749b777cd32720675c2.jpeg", "followerCount": 81, "fullname": "Irene Solaiman", "isHf": true, "isMod": false, "isPro": false, "name": "irenesolaiman", "type": "user" }
true
[ "https://cdn-uploads.huggingface.co/production/uploads/62543749b777cd32720675c2/LwZmJUoXiJriC_c1DZ7qM.png" ]
2502.16701
[ { "_id": "67bd31d6bf6d46017e515a58", "hidden": false, "name": "Irene Solaiman", "status": "extracted_confirmed", "statusLastChangedAt": "2025-02-25T03:43:21.348Z", "user": { "_id": "62543749b777cd32720675c2", "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/1658760912583-62543749b777cd32720675c2.jpeg", "fullname": "Irene Solaiman", "isPro": false, "type": "user", "user": "irenesolaiman" } }, { "_id": "67bd31d6bf6d46017e515a59", "hidden": false, "name": "Rishi Bommasani", "status": null, "statusLastChangedAt": null, "user": null }, { "_id": "67bd31d6bf6d46017e515a5a", "hidden": false, "name": "Dan Hendrycks", "status": "admin_assigned", "statusLastChangedAt": "2025-02-25T16:35:41.200Z", "user": { "_id": "63f55aa1b51da4d61da9c96b", "avatarUrl": "/avatars/56cf9c2d8295c4549248d3b0a4933043.svg", "fullname": "Dan Hendrycks", "isPro": false, "type": "user", "user": "hendrycks" } }, { "_id": "67bd31d6bf6d46017e515a5b", "hidden": false, "name": "Ariel Herbert-Voss", "status": null, "statusLastChangedAt": null, "user": null }, { "_id": "67bd31d6bf6d46017e515a5c", "hidden": false, "name": "Yacine Jernite", "status": "admin_assigned", "statusLastChangedAt": "2025-02-25T16:35:52.204Z", "user": { "_id": "5ee3a7cd2a3eae3cbdad1305", "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/1594144055859-5ee3a7cd2a3eae3cbdad1305.jpeg", "fullname": "Yacine Jernite", "isPro": false, "type": "user", "user": "yjernite" } }, { "_id": "67bd31d6bf6d46017e515a5d", "hidden": false, "name": "Aviya Skowron", "status": "admin_assigned", "statusLastChangedAt": "2025-02-25T16:35:58.505Z", "user": { "_id": "63c5dfc8d5a5cd2043e6f03c", "avatarUrl": "/avatars/edcfcd9cfb03286d670e6c5743efef6a.svg", "fullname": "Aviya Skowron", "isPro": false, "type": "user", "user": "avi-skowron" } }, { "_id": "67bd31d6bf6d46017e515a5e", "hidden": false, "name": "Andrew Trask", "status": "admin_assigned", "statusLastChangedAt": "2025-02-25T16:36:04.995Z", "user": { "_id": "631d812ae207d8fe9560e57b", "avatarUrl": "/avatars/8dbc78b47e3334b518f07a2fb18d1928.svg", "fullname": "Andrew Trask", "isPro": false, "type": "user", "user": "actrask" } } ]
2025-02-23T20:06:12
Beyond Release: Access Considerations for Generative AI Systems
Generative AI release decisions determine whether system components are made available, but release does not address many other elements that change how users and stakeholders are able to engage with a system. Beyond release, access to system components informs potential risks and benefits. Access refers to practical needs, infrastructurally, technically, and societally, in order to use available components in some way. We deconstruct access along three axes: resourcing, technical usability, and utility. Within each category, a set of variables per system component clarify tradeoffs. For example, resourcing requires access to computing infrastructure to serve model weights. We also compare the accessibility of four high performance language models, two open-weight and two closed-weight, showing similar considerations for all based instead on access variables. Access variables set the foundation for being able to scale or increase access to users; we examine the scale of access and how scale affects ability to manage and intervene on risks. This framework better encompasses the landscape and risk-benefit tradeoffs of system releases to inform system release decisions, research, and policy.
11
67bd31d7bf6d46017e515a7e
null
null
2025-02-24T21:23:29.485000
PLDR-LLMs Learn A Generalizable Tensor Operator That Can Replace Its Own Deep Neural Net At Inference
https://cdn-thumbnails.h…s/2502.13502.png
2
{ "_id": "671ddb3bf89c9b8208568e73", "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/no-auth/-Q77RLuIvzpVU95WGdM7u.png", "followerCount": 2, "fullname": "Burc Gokden", "isHf": false, "isMod": false, "isPro": false, "name": "fromthesky", "type": "user" }
true
null
2502.13502
[ { "_id": "67bd1db005a599263a2a684e", "hidden": false, "name": "Burc Gokden", "status": "extracted_pending", "statusLastChangedAt": "2025-02-25T01:32:33.775Z", "user": { "_id": "671ddb3bf89c9b8208568e73", "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/no-auth/-Q77RLuIvzpVU95WGdM7u.png", "fullname": "Burc Gokden", "isPro": false, "type": "user", "user": "fromthesky" } } ]
2025-02-19T07:43:36
PLDR-LLMs Learn A Generalizable Tensor Operator That Can Replace Its Own Deep Neural Net At Inference
We show that Large Language Model from Power Law Decoder Representations (PLDR-LLM) is a foundational model whose deductive outputs are invariant tensors up to a small perturbation. PLDR-LLM learns a singularity condition for the deductive outputs that enable the once-inferred energy-curvature tensor G_{LM} to replace the deep neural network of power law graph attention (PLGA) generating the deductive outputs at inference. We demonstrate that a cache for G_{LM} (G-cache) and KV-cache can be implemented in a straightforward manner to improve the inference time. The invariance and generalizable nature of deductive outputs is at a very high fidelity where deductive outputs have same RMSE and determinant values up to 15 decimal places after caching, and zero-shot benchmark scores remain unchanged. Ablation studies show that learned deductive outputs have distinct loss and accuracy characteristics from models pretrained with transferred, randomly initialized or identity tensors as a constant tensor operator and an LLM with scaled-dot product attention (SDPA) is a special case of PLDR-LLM where G_{LM} is predefined as identity. The observed invariance characteristic introduces a novel asymmetry between training and inference phases with caching. We outline observed common characteristics of the deductive outputs for the learned singularity condition. We provide an implementation of a training and inference framework for PLDR-LLM with KV-cache and G-cache.
2
67bd1db105a599263a2a6851
null
null
2025-02-24T21:06:14.906000
Towards Fully-Automated Materials Discovery via Large-Scale Synthesis Dataset and Expert-Level LLM-as-a-Judge
https://cdn-thumbnails.h…s/2502.16457.png
2
{ "_id": "5f3a52317e583543386218db", "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/5f3a52317e583543386218db/WLnW1_fCic9NWfMjE3yB-.jpeg", "followerCount": 77, "fullname": "Heegyu Kim", "isHf": false, "isMod": false, "isPro": true, "name": "heegyu", "type": "user" }
true
null
2502.16457
[ { "_id": "67bd23159e826530ef606d4d", "hidden": false, "name": "Heegyu Kim", "status": "claimed_verified", "statusLastChangedAt": "2025-02-25T09:40:23.108Z", "user": { "_id": "5f3a52317e583543386218db", "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/5f3a52317e583543386218db/WLnW1_fCic9NWfMjE3yB-.jpeg", "fullname": "Heegyu Kim", "isPro": true, "type": "user", "user": "heegyu" } }, { "_id": "67bd23159e826530ef606d4e", "hidden": false, "name": "Taeyang Jeon", "status": null, "statusLastChangedAt": null, "user": null }, { "_id": "67bd23159e826530ef606d4f", "hidden": false, "name": "Seungtaek Choi", "status": "claimed_verified", "statusLastChangedAt": "2025-02-26T08:38:03.427Z", "user": { "_id": "658a7aed74d1a1cbd0598bfb", "avatarUrl": "/avatars/055dc3c82820644b316b60d118c6ff94.svg", "fullname": "Seungtaek Choi", "isPro": false, "type": "user", "user": "seungtaek-choi" } }, { "_id": "67bd23159e826530ef606d50", "hidden": false, "name": "Jihoon Hong", "status": null, "statusLastChangedAt": null, "user": null }, { "_id": "67bd23159e826530ef606d51", "hidden": false, "name": "Dongwon Jeon", "status": null, "statusLastChangedAt": null, "user": null }, { "_id": "67bd23159e826530ef606d52", "hidden": false, "name": "Sungbum Cho", "status": null, "statusLastChangedAt": null, "user": null }, { "_id": "67bd23159e826530ef606d53", "hidden": false, "name": "Ga-Yeon Baek", "status": null, "statusLastChangedAt": null, "user": null }, { "_id": "67bd23159e826530ef606d54", "hidden": false, "name": "Kyung-Won Kwak", "status": null, "statusLastChangedAt": null, "user": null }, { "_id": "67bd23159e826530ef606d55", "hidden": false, "name": "Dong-Hee Lee", "status": null, "statusLastChangedAt": null, "user": null }, { "_id": "67bd23159e826530ef606d56", "hidden": false, "name": "Sun-Jin Choi", "status": null, "statusLastChangedAt": null, "user": null }, { "_id": "67bd23159e826530ef606d57", "hidden": false, "name": "Jisu Bae", "status": null, "statusLastChangedAt": null, "user": null }, { "_id": "67bd23159e826530ef606d58", "hidden": false, "name": "Chihoon Lee", "status": null, "statusLastChangedAt": null, "user": null }, { "_id": "67bd23159e826530ef606d59", "hidden": false, "name": "Yunseo Kim", "status": null, "statusLastChangedAt": null, "user": null }, { "_id": "67bd23159e826530ef606d5a", "hidden": false, "name": "Jinsung Park", "status": null, "statusLastChangedAt": null, "user": null }, { "_id": "67bd23159e826530ef606d5b", "hidden": false, "name": "Hyunsouk Cho", "status": null, "statusLastChangedAt": null, "user": null } ]
2025-02-23T06:16:23
Towards Fully-Automated Materials Discovery via Large-Scale Synthesis Dataset and Expert-Level LLM-as-a-Judge
Materials synthesis is vital for innovations such as energy storage, catalysis, electronics, and biomedical devices. Yet, the process relies heavily on empirical, trial-and-error methods guided by expert intuition. Our work aims to support the materials science community by providing a practical, data-driven resource. We have curated a comprehensive dataset of 17K expert-verified synthesis recipes from open-access literature, which forms the basis of our newly developed benchmark, AlchemyBench. AlchemyBench offers an end-to-end framework that supports research in large language models applied to synthesis prediction. It encompasses key tasks, including raw materials and equipment prediction, synthesis procedure generation, and characterization outcome forecasting. We propose an LLM-as-a-Judge framework that leverages large language models for automated evaluation, demonstrating strong statistical agreement with expert assessments. Overall, our contributions offer a supportive foundation for exploring the capabilities of LLMs in predicting and guiding materials synthesis, ultimately paving the way for more efficient experimental design and accelerated innovation in materials science.
11
67bd231c9e826530ef606f56
null
null
2025-02-24T17:06:56.210000
Learning to Discover Regulatory Elements for Gene Expression Prediction
https://cdn-thumbnails.h…s/2502.13991.png
2
{ "_id": "65ea0819d1fc5524c18f1d35", "avatarUrl": "/avatars/84b7a97d74705666c63447c01ae2e492.svg", "followerCount": null, "fullname": "haiyang yu", "isHf": false, "isMod": false, "isPro": false, "name": "oceanusity", "type": "user" }
false
[ "https://cdn-uploads.huggingface.co/production/uploads/65ea0819d1fc5524c18f1d35/JU9NqF4Yzq8NhjBx4jhCB.jpeg" ]
2502.13991
[ { "_id": "67bced139d37199a15263ec5", "hidden": false, "name": "Xingyu Su", "status": "claimed_verified", "statusLastChangedAt": "2025-02-25T09:40:30.431Z", "user": { "_id": "662d70df52e194d5d495a567", "avatarUrl": "/avatars/efc6cf8a4f39140cc683343d6df0580b.svg", "fullname": "Xingyu Su", "isPro": false, "type": "user", "user": "xingyusu" } }, { "_id": "67bced139d37199a15263ec6", "hidden": false, "name": "Haiyang Yu", "status": null, "statusLastChangedAt": null, "user": null }, { "_id": "67bced139d37199a15263ec7", "hidden": false, "name": "Degui Zhi", "status": null, "statusLastChangedAt": null, "user": null }, { "_id": "67bced139d37199a15263ec8", "hidden": false, "name": "Shuiwang Ji", "status": null, "statusLastChangedAt": null, "user": null } ]
2025-02-19T03:25:49
Learning to Discover Regulatory Elements for Gene Expression Prediction
We consider the problem of predicting gene expressions from DNA sequences. A key challenge of this task is to find the regulatory elements that control gene expressions. Here, we introduce Seq2Exp, a Sequence to Expression network explicitly designed to discover and extract regulatory elements that drive target gene expression, enhancing the accuracy of the gene expression prediction. Our approach captures the causal relationship between epigenomic signals, DNA sequences and their associated regulatory elements. Specifically, we propose to decompose the epigenomic signals and the DNA sequence conditioned on the causal active regulatory elements, and apply an information bottleneck with the Beta distribution to combine their effects while filtering out non-causal components. Our experiments demonstrate that Seq2Exp outperforms existing baselines in gene expression prediction tasks and discovers influential regions compared to commonly used statistical methods for peak detection such as MACS3. The source code is released as part of the AIRS library (https://github.com/divelab/AIRS/).
1
67bced149d37199a15263f26
null
null
2025-02-24T15:59:07.128000
Rare Disease Differential Diagnosis with Large Language Models at Scale: From Abdominal Actinomycosis to Wilson's Disease
https://cdn-thumbnails.h…s/2502.15069.png
2
{ "_id": "64f74beb4db24c1ca9379afc", "avatarUrl": "/avatars/c29b7d000ff65c590a5aec2d3262edd9.svg", "followerCount": null, "fullname": "Elliot Schumacher", "isHf": false, "isMod": false, "isPro": false, "name": "elliotschu", "type": "user" }
true
null
2502.15069
[ { "_id": "67bcdc646840d9686fcea432", "hidden": false, "name": "Elliot Schumacher", "status": "extracted_confirmed", "statusLastChangedAt": "2025-02-24T20:54:12.397Z", "user": { "_id": "64f74beb4db24c1ca9379afc", "avatarUrl": "/avatars/c29b7d000ff65c590a5aec2d3262edd9.svg", "fullname": "Elliot Schumacher", "isPro": false, "type": "user", "user": "elliotschu" } }, { "_id": "67bcdc646840d9686fcea433", "hidden": false, "name": "Dhruv Naik", "status": null, "statusLastChangedAt": null, "user": null }, { "_id": "67bcdc646840d9686fcea434", "hidden": false, "name": "Anitha Kannan", "status": null, "statusLastChangedAt": null, "user": null } ]
2025-02-20T22:02:52
Rare Disease Differential Diagnosis with Large Language Models at Scale: From Abdominal Actinomycosis to Wilson's Disease
Large language models (LLMs) have demonstrated impressive capabilities in disease diagnosis. However, their effectiveness in identifying rarer diseases, which are inherently more challenging to diagnose, remains an open question. Rare disease performance is critical with the increasing use of LLMs in healthcare settings. This is especially true if a primary care physician needs to make a rarer prognosis from only a patient conversation so that they can take the appropriate next step. To that end, several clinical decision support systems are designed to support providers in rare disease identification. Yet their utility is limited due to their lack of knowledge of common disorders and difficulty of use. In this paper, we propose RareScale to combine the knowledge LLMs with expert systems. We use jointly use an expert system and LLM to simulate rare disease chats. This data is used to train a rare disease candidate predictor model. Candidates from this smaller model are then used as additional inputs to black-box LLM to make the final differential diagnosis. Thus, RareScale allows for a balance between rare and common diagnoses. We present results on over 575 rare diseases, beginning with Abdominal Actinomycosis and ending with Wilson's Disease. Our approach significantly improves the baseline performance of black-box LLMs by over 17% in Top-5 accuracy. We also find that our candidate generation performance is high (e.g. 88.8% on gpt-4o generated chats).
2
67bcdc656840d9686fcea462
null
null
2025-02-24T12:53:11.851000
Tree-of-Debate: Multi-Persona Debate Trees Elicit Critical Thinking for Scientific Comparative Analysis
https://cdn-thumbnails.h…s/2502.14767.png
2
{ "_id": "6476ae4083d4fdaedddf405f", "avatarUrl": "/avatars/08b23ccfa1f3bede6ade5a1aef06931d.svg", "followerCount": null, "fullname": "Priyanka Kargupta", "isHf": false, "isMod": false, "isPro": false, "name": "pkargupta", "type": "user" }
true
[ "https://cdn-uploads.huggingface.co/production/uploads/6476ae4083d4fdaedddf405f/xUea8WgprRdaPBbcEXDlf.png", "https://cdn-uploads.huggingface.co/production/uploads/6476ae4083d4fdaedddf405f/DenJlw9zUymRJ0r6KY0wh.png" ]
2502.14767
[ { "_id": "67bcb0511cc672a91331727a", "hidden": false, "name": "Priyanka Kargupta", "status": "claimed_verified", "statusLastChangedAt": "2025-02-25T09:40:34.292Z", "user": { "_id": "6476ae4083d4fdaedddf405f", "avatarUrl": "/avatars/08b23ccfa1f3bede6ade5a1aef06931d.svg", "fullname": "Priyanka Kargupta", "isPro": false, "type": "user", "user": "pkargupta" } }, { "_id": "67bcb0511cc672a91331727b", "hidden": false, "name": "Ishika Agarwal", "status": null, "statusLastChangedAt": null, "user": null }, { "_id": "67bcb0511cc672a91331727c", "hidden": false, "name": "Tal August", "status": null, "statusLastChangedAt": null, "user": null }, { "_id": "67bcb0511cc672a91331727d", "hidden": false, "name": "Jiawei Han", "status": null, "statusLastChangedAt": null, "user": null } ]
2025-02-20T17:43:40
Tree-of-Debate: Multi-Persona Debate Trees Elicit Critical Thinking for Scientific Comparative Analysis
With the exponential growth of research facilitated by modern technology and improved accessibility, scientific discoveries have become increasingly fragmented within and across fields. This makes it challenging to assess the significance, novelty, incremental findings, and equivalent ideas between related works, particularly those from different research communities. Large language models (LLMs) have recently demonstrated strong quantitative and qualitative reasoning abilities, and multi-agent LLM debates have shown promise in handling complex reasoning tasks by exploring diverse perspectives and reasoning paths. Inspired by this, we introduce Tree-of-Debate (ToD), a framework which converts scientific papers into LLM personas that debate their respective novelties. To emphasize structured, critical reasoning rather than focusing solely on outcomes, ToD dynamically constructs a debate tree, enabling fine-grained analysis of independent novelty arguments within scholarly articles. Through experiments on scientific literature across various domains, evaluated by expert researchers, we demonstrate that ToD generates informative arguments, effectively contrasts papers, and supports researchers in their literature review.
5
67bcb0521cc672a9133172c6
null
null
2025-02-24T12:18:28.662000
Benchmarking LLMs for Political Science: A United Nations Perspective
https://cdn-thumbnails.h…s/2502.14122.png
2
{ "_id": "650d3ed2e063bef6d9c46da7", "avatarUrl": "/avatars/d16b3d0d403c1953780f6532e9cf27ad.svg", "followerCount": null, "fullname": "Yueqing Liang", "isHf": false, "isMod": false, "isPro": false, "name": "yueqingliang", "type": "user" }
true
null
2502.14122
[ { "_id": "67bbecd2039a172a715f7b50", "hidden": false, "name": "Yueqing Liang", "status": "claimed_verified", "statusLastChangedAt": "2025-02-24T09:07:13.108Z", "user": { "_id": "650d3ed2e063bef6d9c46da7", "avatarUrl": "/avatars/d16b3d0d403c1953780f6532e9cf27ad.svg", "fullname": "Yueqing Liang", "isPro": false, "type": "user", "user": "yueqingliang" } }, { "_id": "67bbecd2039a172a715f7b51", "hidden": false, "name": "Liangwei Yang", "status": null, "statusLastChangedAt": null, "user": null }, { "_id": "67bbecd2039a172a715f7b52", "hidden": false, "name": "Chen Wang", "status": null, "statusLastChangedAt": null, "user": null }, { "_id": "67bbecd2039a172a715f7b53", "hidden": false, "name": "Congying Xia", "status": null, "statusLastChangedAt": null, "user": null }, { "_id": "67bbecd2039a172a715f7b54", "hidden": false, "name": "Rui Meng", "status": null, "statusLastChangedAt": null, "user": null }, { "_id": "67bbecd2039a172a715f7b55", "hidden": false, "name": "Xiongxiao Xu", "status": null, "statusLastChangedAt": null, "user": null }, { "_id": "67bbecd2039a172a715f7b56", "hidden": false, "name": "Haoran Wang", "status": null, "statusLastChangedAt": null, "user": null }, { "_id": "67bbecd2039a172a715f7b57", "hidden": false, "name": "Ali Payani", "status": null, "statusLastChangedAt": null, "user": null }, { "_id": "67bbecd2039a172a715f7b58", "hidden": false, "name": "Kai Shu", "status": null, "statusLastChangedAt": null, "user": null } ]
2025-02-19T21:51:01
Benchmarking LLMs for Political Science: A United Nations Perspective
Large Language Models (LLMs) have achieved significant advances in natural language processing, yet their potential for high-stake political decision-making remains largely unexplored. This paper addresses the gap by focusing on the application of LLMs to the United Nations (UN) decision-making process, where the stakes are particularly high and political decisions can have far-reaching consequences. We introduce a novel dataset comprising publicly available UN Security Council (UNSC) records from 1994 to 2024, including draft resolutions, voting records, and diplomatic speeches. Using this dataset, we propose the United Nations Benchmark (UNBench), the first comprehensive benchmark designed to evaluate LLMs across four interconnected political science tasks: co-penholder judgment, representative voting simulation, draft adoption prediction, and representative statement generation. These tasks span the three stages of the UN decision-making process--drafting, voting, and discussing--and aim to assess LLMs' ability to understand and simulate political dynamics. Our experimental analysis demonstrates the potential and challenges of applying LLMs in this domain, providing insights into their strengths and limitations in political science. This work contributes to the growing intersection of AI and political science, opening new avenues for research and practical applications in global governance. The UNBench Repository can be accessed at: https://github.com/yueqingliang1/UNBench.
2
67bbecd3039a172a715f7b85
null
null
2025-02-24T11:28:12.754000
FantasyID: Face Knowledge Enhanced ID-Preserving Video Generation
https://cdn-thumbnails.h…s/2502.13995.png
2
{ "_id": "63468720dd6d90d82ccf3450", "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/63468720dd6d90d82ccf3450/tVBFlmZNz8FRMkOrDaDID.jpeg", "followerCount": 32, "fullname": "YSH", "isHf": false, "isMod": false, "isPro": false, "name": "BestWishYsh", "type": "user" }
false
null
2502.13995
[ { "_id": "67b7ed63c5b2d0bd2eb3774d", "hidden": false, "name": "Yunpeng Zhang", "status": null, "statusLastChangedAt": null, "user": null }, { "_id": "67b7ed63c5b2d0bd2eb3774e", "hidden": false, "name": "Qiang Wang", "status": "claimed_verified", "statusLastChangedAt": "2025-02-25T09:40:55.195Z", "user": { "_id": "653b195c5f1703225b2fd571", "avatarUrl": "/avatars/b7f376225cef6c13952c9c5540dd43be.svg", "fullname": "wangqiang", "isPro": false, "type": "user", "user": "wangqiang9" } }, { "_id": "67b7ed63c5b2d0bd2eb3774f", "hidden": false, "name": "Fan Jiang", "status": null, "statusLastChangedAt": null, "user": null }, { "_id": "67b7ed63c5b2d0bd2eb37750", "hidden": false, "name": "Yaqi Fan", "status": null, "statusLastChangedAt": null, "user": null }, { "_id": "67b7ed63c5b2d0bd2eb37751", "hidden": false, "name": "Mu Xu", "status": null, "statusLastChangedAt": null, "user": null }, { "_id": "67b7ed63c5b2d0bd2eb37752", "hidden": false, "name": "Yonggang Qi", "status": null, "statusLastChangedAt": null, "user": null } ]
2025-02-19T06:50:27
FantasyID: Face Knowledge Enhanced ID-Preserving Video Generation
Tuning-free approaches adapting large-scale pre-trained video diffusion models for identity-preserving text-to-video generation (IPT2V) have gained popularity recently due to their efficacy and scalability. However, significant challenges remain to achieve satisfied facial dynamics while keeping the identity unchanged. In this work, we present a novel tuning-free IPT2V framework by enhancing face knowledge of the pre-trained video model built on diffusion transformers (DiT), dubbed FantasyID. Essentially, 3D facial geometry prior is incorporated to ensure plausible facial structures during video synthesis. To prevent the model from learning copy-paste shortcuts that simply replicate reference face across frames, a multi-view face augmentation strategy is devised to capture diverse 2D facial appearance features, hence increasing the dynamics over the facial expressions and head poses. Additionally, after blending the 2D and 3D features as guidance, instead of naively employing cross-attention to inject guidance cues into DiT layers, a learnable layer-aware adaptive mechanism is employed to selectively inject the fused features into each individual DiT layers, facilitating balanced modeling of identity preservation and motion dynamics. Experimental results validate our model's superiority over the current tuning-free IPT2V methods.
8
67b7ed66c5b2d0bd2eb37899
null
null
2025-02-24T10:54:53.456000
MedHallu: A Comprehensive Benchmark for Detecting Medical Hallucinations in Large Language Models
https://cdn-thumbnails.h…s/2502.14302.png
2
{ "_id": "648749094dea003c6dae810f", "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/648749094dea003c6dae810f/gHUHSBt1zrt8wjO1YwTNu.jpeg", "followerCount": 2, "fullname": "Shrey Pandit", "isHf": false, "isMod": false, "isPro": false, "name": "SP2001", "type": "user" }
true
[ "https://cdn-uploads.huggingface.co/production/uploads/648749094dea003c6dae810f/qTlH4qY6XwrzylaSr6wr9.png", "https://cdn-uploads.huggingface.co/production/uploads/648749094dea003c6dae810f/vfRF5rd0lMB_Cc8_U_Nmj.png", "https://cdn-uploads.huggingface.co/production/uploads/648749094dea003c6dae810f/ghoZUKVm_nNHix4Jgo9cx.png", "https://cdn-uploads.huggingface.co/production/uploads/648749094dea003c6dae810f/FvXCYnMlDbkgFAfMZ-cvt.png" ]
2502.14302
[ { "_id": "67b7e1a0e5dcadcedba108e8", "hidden": false, "name": "Shrey Pandit", "status": "extracted_confirmed", "statusLastChangedAt": "2025-02-22T19:42:39.549Z", "user": { "_id": "648749094dea003c6dae810f", "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/648749094dea003c6dae810f/gHUHSBt1zrt8wjO1YwTNu.jpeg", "fullname": "Shrey Pandit", "isPro": false, "type": "user", "user": "SP2001" } }, { "_id": "67b7e1a0e5dcadcedba108e9", "hidden": false, "name": "Jiawei Xu", "status": null, "statusLastChangedAt": null, "user": null }, { "_id": "67b7e1a0e5dcadcedba108ea", "hidden": false, "name": "Junyuan Hong", "status": "admin_assigned", "statusLastChangedAt": "2025-02-24T15:58:00.251Z", "user": { "_id": "6400cf982b67d27affce2d89", "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/6400cf982b67d27affce2d89/Vs042d2M-iV2wk9Q_Jqh3.jpeg", "fullname": "Junyuan Hong", "isPro": false, "type": "user", "user": "jyhong836" } }, { "_id": "67b7e1a0e5dcadcedba108eb", "hidden": false, "name": "Zhangyang Wang", "status": null, "statusLastChangedAt": null, "user": null }, { "_id": "67b7e1a0e5dcadcedba108ec", "hidden": false, "name": "Tianlong Chen", "status": null, "statusLastChangedAt": null, "user": null }, { "_id": "67b7e1a0e5dcadcedba108ed", "hidden": false, "name": "Kaidi Xu", "status": "admin_assigned", "statusLastChangedAt": "2025-02-24T16:00:54.855Z", "user": { "_id": "65aaa5b4d2adc31ee3eab350", "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/65aaa5b4d2adc31ee3eab350/vzDrR7JVCEShn_Vk-NCgT.jpeg", "fullname": "Kaidi Xu", "isPro": false, "type": "user", "user": "KaidiXu1" } }, { "_id": "67b7e1a0e5dcadcedba108ee", "hidden": false, "name": "Ying Ding", "status": null, "statusLastChangedAt": null, "user": null } ]
2025-02-20T06:33:23
MedHallu: A Comprehensive Benchmark for Detecting Medical Hallucinations in Large Language Models
Advancements in Large Language Models (LLMs) and their increasing use in medical question-answering necessitate rigorous evaluation of their reliability. A critical challenge lies in hallucination, where models generate plausible yet factually incorrect outputs. In the medical domain, this poses serious risks to patient safety and clinical decision-making. To address this, we introduce MedHallu, the first benchmark specifically designed for medical hallucination detection. MedHallu comprises 10,000 high-quality question-answer pairs derived from PubMedQA, with hallucinated answers systematically generated through a controlled pipeline. Our experiments show that state-of-the-art LLMs, including GPT-4o, Llama-3.1, and the medically fine-tuned UltraMedical, struggle with this binary hallucination detection task, with the best model achieving an F1 score as low as 0.625 for detecting "hard" category hallucinations. Using bidirectional entailment clustering, we show that harder-to-detect hallucinations are semantically closer to ground truth. Through experiments, we also show incorporating domain-specific knowledge and introducing a "not sure" category as one of the answer categories improves the precision and F1 scores by up to 38% relative to baselines.
9
67b7e1a1e5dcadcedba10963
null
null
2025-02-24T10:33:37.569000
mStyleDistance: Multilingual Style Embeddings and their Evaluation
https://cdn-thumbnails.h…s/2502.15168.png
2
{ "_id": "61c40eeb727d1257bf3cf5ba", "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/61c40eeb727d1257bf3cf5ba/hVNbcFjsvwWqWarcGTOdI.jpeg", "followerCount": 3, "fullname": "Ajay Patel", "isHf": false, "isMod": false, "isPro": false, "name": "AjayP13", "type": "user" }
true
null
2502.15168
[ { "_id": "67bc90e38915fc3c91098a9e", "hidden": false, "name": "Justin Qiu", "status": "admin_assigned", "statusLastChangedAt": "2025-02-24T16:13:58.715Z", "user": { "_id": "643d0a98c17bfb2256ee6c3a", "avatarUrl": "/avatars/1e06c03a92e8845fa0aa67a884ef28ca.svg", "fullname": "Millers", "isPro": false, "type": "user", "user": "JustinQiu" } }, { "_id": "67bc90e38915fc3c91098a9f", "hidden": false, "name": "Jiacheng Zhu", "status": "admin_assigned", "statusLastChangedAt": "2025-02-24T16:13:48.141Z", "user": { "_id": "653801b167325b6218ddfdc8", "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/653801b167325b6218ddfdc8/y3DjEDpcvgnRC30201dFc.jpeg", "fullname": "Jiacheng Zhu", "isPro": false, "type": "user", "user": "JiachengZhu" } }, { "_id": "67bc90e38915fc3c91098aa0", "hidden": false, "name": "Ajay Patel", "status": "claimed_verified", "statusLastChangedAt": "2025-02-24T16:39:31.830Z", "user": { "_id": "61c40eeb727d1257bf3cf5ba", "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/61c40eeb727d1257bf3cf5ba/hVNbcFjsvwWqWarcGTOdI.jpeg", "fullname": "Ajay Patel", "isPro": false, "type": "user", "user": "AjayP13" } }, { "_id": "67bc90e38915fc3c91098aa1", "hidden": false, "name": "Marianna Apidianaki", "status": null, "statusLastChangedAt": null, "user": null }, { "_id": "67bc90e38915fc3c91098aa2", "hidden": false, "name": "Chris Callison-Burch", "status": "admin_assigned", "statusLastChangedAt": "2025-02-24T16:13:29.298Z", "user": { "_id": "6303ce25fc783bfc744216af", "avatarUrl": "/avatars/09f5e87c1f56a1b7f6ef9c5037682285.svg", "fullname": "Chris Callison-Burch", "isPro": false, "type": "user", "user": "CCB" } } ]
2025-02-21T03:11:41
mStyleDistance: Multilingual Style Embeddings and their Evaluation
Style embeddings are useful for stylistic analysis and style transfer; however, only English style embeddings have been made available. We introduce Multilingual StyleDistance (mStyleDistance), a multilingual style embedding model trained using synthetic data and contrastive learning. We train the model on data from nine languages and create a multilingual STEL-or-Content benchmark (Wegmann et al., 2022) that serves to assess the embeddings' quality. We also employ our embeddings in an authorship verification task involving different languages. Our results show that mStyleDistance embeddings outperform existing models on these multilingual style benchmarks and generalize well to unseen features and languages. We make our model publicly available at https://huggingface.co/StyleDistance/mstyledistance .
3
67bc90e48915fc3c91098af6
null
null
2025-02-24T08:37:35.940000
EgoSpeak: Learning When to Speak for Egocentric Conversational Agents in the Wild
https://cdn-thumbnails.h…s/2502.14892.png
2
{ "_id": "646aecb04c1cd18b497a50ee", "avatarUrl": "/avatars/de15c724056f36a41cb4f375d05ed836.svg", "followerCount": null, "fullname": "Junhyeok Kim", "isHf": false, "isMod": false, "isPro": false, "name": "kjunh", "type": "user" }
true
null
2502.14892
[ { "_id": "67bbf87b4f54983efbd94187", "hidden": false, "name": "Junhyeok Kim", "status": "claimed_verified", "statusLastChangedAt": "2025-02-24T09:07:08.715Z", "user": { "_id": "646aecb04c1cd18b497a50ee", "avatarUrl": "/avatars/de15c724056f36a41cb4f375d05ed836.svg", "fullname": "Junhyeok Kim", "isPro": false, "type": "user", "user": "kjunh" } }, { "_id": "67bbf87b4f54983efbd94188", "hidden": false, "name": "Min Soo Kim", "status": null, "statusLastChangedAt": null, "user": null }, { "_id": "67bbf87b4f54983efbd94189", "hidden": false, "name": "Jiwan Chung", "status": "admin_assigned", "statusLastChangedAt": "2025-02-24T16:10:38.158Z", "user": { "_id": "60d74d1affe0328e0167dc5f", "avatarUrl": "/avatars/9b1a2df9402e9c26e1eb7c818af9bae0.svg", "fullname": "Jiwan Chung", "isPro": false, "type": "user", "user": "jiwan-chung" } }, { "_id": "67bbf87b4f54983efbd9418a", "hidden": false, "name": "Jungbin Cho", "status": null, "statusLastChangedAt": null, "user": null }, { "_id": "67bbf87b4f54983efbd9418b", "hidden": false, "name": "Jisoo Kim", "status": null, "statusLastChangedAt": null, "user": null }, { "_id": "67bbf87b4f54983efbd9418c", "hidden": false, "name": "Sungwoong Kim", "status": "admin_assigned", "statusLastChangedAt": "2025-02-24T16:10:11.922Z", "user": { "_id": "662afff1ef7a4675bdf5bfb6", "avatarUrl": "/avatars/511bc1c630dff30f7651ff8037110792.svg", "fullname": "sungwoong kim", "isPro": false, "type": "user", "user": "sukim96" } }, { "_id": "67bbf87b4f54983efbd9418d", "hidden": false, "name": "Gyeongbo Sim", "status": "admin_assigned", "statusLastChangedAt": "2025-02-24T16:09:47.531Z", "user": { "_id": "673be9ed0a4d127a7f4d0ea6", "avatarUrl": "/avatars/c15690d22a3b2ce098e195e54c9f414e.svg", "fullname": "Gyeongbo Sim", "isPro": false, "type": "user", "user": "gbosim" } }, { "_id": "67bbf87b4f54983efbd9418e", "hidden": false, "name": "Youngjae Yu", "status": "admin_assigned", "statusLastChangedAt": "2025-02-24T16:09:38.274Z", "user": { "_id": "6504777fb1da3747a05160c4", "avatarUrl": "/avatars/b777d98a5ff971ddb4c3e1060bb3e070.svg", "fullname": "Youngjae Yu", "isPro": false, "type": "user", "user": "yjyu" } } ]
2025-02-17T04:47:12
EgoSpeak: Learning When to Speak for Egocentric Conversational Agents in the Wild
Predicting when to initiate speech in real-world environments remains a fundamental challenge for conversational agents. We introduce EgoSpeak, a novel framework for real-time speech initiation prediction in egocentric streaming video. By modeling the conversation from the speaker's first-person viewpoint, EgoSpeak is tailored for human-like interactions in which a conversational agent must continuously observe its environment and dynamically decide when to talk. Our approach bridges the gap between simplified experimental setups and complex natural conversations by integrating four key capabilities: (1) first-person perspective, (2) RGB processing, (3) online processing, and (4) untrimmed video processing. We also present YT-Conversation, a diverse collection of in-the-wild conversational videos from YouTube, as a resource for large-scale pretraining. Experiments on EasyCom and Ego4D demonstrate that EgoSpeak outperforms random and silence-based baselines in real time. Our results also highlight the importance of multimodal input and context length in effectively deciding when to speak.
6
67bbf87d4f54983efbd941ec
null
null
2025-02-24T07:41:08.352000
Is Safety Standard Same for Everyone? User-Specific Safety Evaluation of Large Language Models
https://cdn-thumbnails.h…s/2502.15086.png
2
{ "_id": "60af909e288a0f96f6cefc4d", "avatarUrl": "/avatars/44a8ab48acb58c45de0b0947a1b56e7c.svg", "followerCount": 4, "fullname": "Yeonjun In", "isHf": false, "isMod": false, "isPro": false, "name": "Yeonjun", "type": "user" }
true
[ "https://cdn-uploads.huggingface.co/production/uploads/60af909e288a0f96f6cefc4d/HK-3ALEi_S7sCnikcsULP.png", "https://cdn-uploads.huggingface.co/production/uploads/60af909e288a0f96f6cefc4d/5ibSAEzxHYtYUIK4FpSkp.png", "https://cdn-uploads.huggingface.co/production/uploads/60af909e288a0f96f6cefc4d/r727Pzrq-PvVKdetEl5U6.png" ]
2502.15086
[ { "_id": "67bbfc7ab3920fd18e63cb26", "hidden": false, "name": "Yeonjun In", "status": "claimed_verified", "statusLastChangedAt": "2025-02-24T09:07:06.533Z", "user": { "_id": "60af909e288a0f96f6cefc4d", "avatarUrl": "/avatars/44a8ab48acb58c45de0b0947a1b56e7c.svg", "fullname": "Yeonjun In", "isPro": false, "type": "user", "user": "Yeonjun" } }, { "_id": "67bbfc7ab3920fd18e63cb27", "hidden": false, "name": "Wonjoong Kim", "status": "claimed_verified", "statusLastChangedAt": "2025-02-24T13:05:06.940Z", "user": { "_id": "67bc62b77727595ca5b6a4ca", "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/no-auth/JXilVx4ACCw6L9BnomqVP.png", "fullname": "Wonjoong Kim", "isPro": false, "type": "user", "user": "wjkim0229" } }, { "_id": "67bbfc7ab3920fd18e63cb28", "hidden": false, "name": "Kanghoon Yoon", "status": null, "statusLastChangedAt": null, "user": null }, { "_id": "67bbfc7ab3920fd18e63cb29", "hidden": false, "name": "Sungchul Kim", "status": "admin_assigned", "statusLastChangedAt": "2025-02-24T13:28:51.033Z", "user": { "_id": "6250611d2f9acc6168e42737", "avatarUrl": "/avatars/1e053d3fa387d81b45a2435e4a633ad1.svg", "fullname": "Sungchul Kim", "isPro": false, "type": "user", "user": "subright" } }, { "_id": "67bbfc7ab3920fd18e63cb2a", "hidden": false, "name": "Mehrab Tanjim", "status": "admin_assigned", "statusLastChangedAt": "2025-02-24T13:28:37.445Z", "user": { "_id": "6366e2d9575c93ceda0791d8", "avatarUrl": "/avatars/a53cb1bb7cd9c63a2520587108ffe962.svg", "fullname": "Mehrab Tanjim", "isPro": false, "type": "user", "user": "Mehrab-Tanjim" } }, { "_id": "67bbfc7ab3920fd18e63cb2b", "hidden": false, "name": "Kibum Kim", "status": "admin_assigned", "statusLastChangedAt": "2025-02-24T13:28:30.900Z", "user": { "_id": "64b73688dcbce176037ef420", "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/64b73688dcbce176037ef420/R-fcEaZz5vrY74QO5oclB.jpeg", "fullname": "Kibum Kim", "isPro": false, "type": "user", "user": "kb-kim" } }, { "_id": "67bbfc7ab3920fd18e63cb2c", "hidden": false, "name": "Chanyoung Park", "status": null, "statusLastChangedAt": null, "user": null } ]
2025-02-20T22:58:44
Is Safety Standard Same for Everyone? User-Specific Safety Evaluation of Large Language Models
As the use of large language model (LLM) agents continues to grow, their safety vulnerabilities have become increasingly evident. Extensive benchmarks evaluate various aspects of LLM safety by defining the safety relying heavily on general standards, overlooking user-specific standards. However, safety standards for LLM may vary based on a user-specific profiles rather than being universally consistent across all users. This raises a critical research question: Do LLM agents act safely when considering user-specific safety standards? Despite its importance for safe LLM use, no benchmark datasets currently exist to evaluate the user-specific safety of LLMs. To address this gap, we introduce U-SAFEBENCH, the first benchmark designed to assess user-specific aspect of LLM safety. Our evaluation of 18 widely used LLMs reveals current LLMs fail to act safely when considering user-specific safety standards, marking a new discovery in this field. To address this vulnerability, we propose a simple remedy based on chain-of-thought, demonstrating its effectiveness in improving user-specific safety. Our benchmark and code are available at https://github.com/yeonjun-in/U-SafeBench.
14
67bbfc7bb3920fd18e63cb55
null
null
2025-02-24T07:37:26.684000
WHAC: World-grounded Humans and Cameras
https://cdn-thumbnails.h…s/2403.12959.png
2
{ "_id": "5f1158120c833276f61f1a84", "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/1608042047613-5f1158120c833276f61f1a84.jpeg", "followerCount": 777, "fullname": "Niels Rogge", "isHf": true, "isMod": false, "isPro": false, "name": "nielsr", "type": "user" }
false
null
2403.12959
[ { "_id": "67bc67e17727595ca5b7ddb4", "hidden": false, "name": "Wanqi Yin", "status": "claimed_verified", "statusLastChangedAt": "2025-02-27T09:17:51.355Z", "user": { "_id": "668f51fb8e8d87dbdd23caa9", "avatarUrl": "/avatars/0b17cb0f3ad2c729f185cdccdad94e48.svg", "fullname": "Yin", "isPro": false, "type": "user", "user": "waanqii" } }, { "_id": "67bc67e17727595ca5b7ddb5", "hidden": false, "name": "Zhongang Cai", "status": "admin_assigned", "statusLastChangedAt": "2025-02-24T16:14:30.375Z", "user": { "_id": "652d06833b5997ed71ce5c46", "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/noauth/xZTXEcnEogEmBm_ledJQr.jpeg", "fullname": "Zhongang Cai", "isPro": false, "type": "user", "user": "caizhongang" } }, { "_id": "67bc67e17727595ca5b7ddb6", "hidden": false, "name": "Ruisi Wang", "status": "admin_assigned", "statusLastChangedAt": "2025-02-24T16:14:42.508Z", "user": { "_id": "65b74305e602b6c2c9125480", "avatarUrl": "/avatars/d36909e0f245bfeb632a4afc9d3fceca.svg", "fullname": "wang ruisi", "isPro": false, "type": "user", "user": "wruisi" } }, { "_id": "67bc67e17727595ca5b7ddb7", "hidden": false, "name": "Fanzhou Wang", "status": "admin_assigned", "statusLastChangedAt": "2025-02-24T16:14:48.396Z", "user": { "_id": "66ac94b7ccd0aed70992a8be", "avatarUrl": "/avatars/98db346b7bfcb2040d4b58727a73d18b.svg", "fullname": "Fanzhou Wang", "isPro": false, "type": "user", "user": "wentww" } }, { "_id": "67bc67e17727595ca5b7ddb8", "hidden": false, "name": "Chen Wei", "status": null, "statusLastChangedAt": null, "user": null }, { "_id": "67bc67e17727595ca5b7ddb9", "hidden": false, "name": "Haiyi Mei", "status": "admin_assigned", "statusLastChangedAt": "2025-02-24T16:14:59.208Z", "user": { "_id": "635a895ef4a106ecd9203b2d", "avatarUrl": "/avatars/0ed9967f559582c2d93b5471b39f731a.svg", "fullname": "haiyimei", "isPro": false, "type": "user", "user": "haiyimei" } }, { "_id": "67bc67e17727595ca5b7ddba", "hidden": false, "name": "Weiye Xiao", "status": null, "statusLastChangedAt": null, "user": null }, { "_id": "67bc67e17727595ca5b7ddbb", "hidden": false, "name": "Zhitao Yang", "status": null, "statusLastChangedAt": null, "user": null }, { "_id": "67bc67e17727595ca5b7ddbc", "hidden": false, "name": "Qingping Sun", "status": "admin_assigned", "statusLastChangedAt": "2025-02-24T16:15:19.079Z", "user": { "_id": "65e20f88bb9c052e4171b857", "avatarUrl": "/avatars/5dcb3fe293c53e051842baf9024d589b.svg", "fullname": "Qingping SUN", "isPro": false, "type": "user", "user": "ttxskk" } }, { "_id": "67bc67e17727595ca5b7ddbd", "hidden": false, "name": "Atsushi Yamashita", "status": "admin_assigned", "statusLastChangedAt": "2025-02-24T16:15:25.136Z", "user": { "_id": "6485d56c77076d551d4adedc", "avatarUrl": "/avatars/0154474a6c6ec39a08f354b5dd69e1e3.svg", "fullname": "atsushi yamashita", "isPro": false, "type": "user", "user": "atsu-yama" } }, { "_id": "67bc67e17727595ca5b7ddbe", "hidden": false, "name": "Ziwei Liu", "status": "admin_assigned", "statusLastChangedAt": "2025-02-24T16:14:15.911Z", "user": { "_id": "62ab1ac1d48b4d8b048a3473", "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/1656826685333-62ab1ac1d48b4d8b048a3473.png", "fullname": "Ziwei Liu", "isPro": false, "type": "user", "user": "liuziwei7" } }, { "_id": "67bc67e17727595ca5b7ddbf", "hidden": false, "name": "Lei Yang", "status": null, "statusLastChangedAt": null, "user": null } ]
2024-03-19T17:58:02
WHAC: World-grounded Humans and Cameras
Estimating human and camera trajectories with accurate scale in the world coordinate system from a monocular video is a highly desirable yet challenging and ill-posed problem. In this study, we aim to recover expressive parametric human models (i.e., SMPL-X) and corresponding camera poses jointly, by leveraging the synergy between three critical players: the world, the human, and the camera. Our approach is founded on two key observations. Firstly, camera-frame SMPL-X estimation methods readily recover absolute human depth. Secondly, human motions inherently provide absolute spatial cues. By integrating these insights, we introduce a novel framework, referred to as WHAC, to facilitate world-grounded expressive human pose and shape estimation (EHPS) alongside camera pose estimation, without relying on traditional optimization techniques. Additionally, we present a new synthetic dataset, WHAC-A-Mole, which includes accurately annotated humans and cameras, and features diverse interactive human motions as well as realistic camera trajectories. Extensive experiments on both standard and newly established benchmarks highlight the superiority and efficacy of our framework. We will make the code and dataset publicly available.
3
67bc67e57727595ca5b7deb9
null
null
2025-02-24T06:58:46.440000
Evaluating Multimodal Generative AI with Korean Educational Standards
https://cdn-thumbnails.h…s/2502.15422.png
3
{ "_id": "6639f75a910d619c288f8a86", "avatarUrl": "/avatars/4b20a056798c009eaf665b0e3021db60.svg", "followerCount": null, "fullname": "sanghee park", "isHf": false, "isMod": false, "isPro": false, "name": "sangheeeee", "type": "user" }
true
null
2502.15422
[ { "_id": "67bc53ad670ece8d919a8fe1", "hidden": false, "name": "Sanghee Park", "status": "claimed_verified", "statusLastChangedAt": "2025-02-24T11:54:51.633Z", "user": { "_id": "6639f75a910d619c288f8a86", "avatarUrl": "/avatars/4b20a056798c009eaf665b0e3021db60.svg", "fullname": "sanghee park", "isPro": false, "type": "user", "user": "sangheeeee" } }, { "_id": "67bc53ad670ece8d919a8fe2", "hidden": false, "name": "Geewook Kim", "status": "claimed_verified", "statusLastChangedAt": "2025-02-24T13:04:57.334Z", "user": { "_id": "6298362c9d3de7b32fd11526", "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/1658473855720-6298362c9d3de7b32fd11526.jpeg", "fullname": "Geewook Kim", "isPro": false, "type": "user", "user": "gwkrsrch" } } ]
2025-02-21T12:46:40
Evaluating Multimodal Generative AI with Korean Educational Standards
This paper presents the Korean National Educational Test Benchmark (KoNET), a new benchmark designed to evaluate Multimodal Generative AI Systems using Korean national educational tests. KoNET comprises four exams: the Korean Elementary General Educational Development Test (KoEGED), Middle (KoMGED), High (KoHGED), and College Scholastic Ability Test (KoCSAT). These exams are renowned for their rigorous standards and diverse questions, facilitating a comprehensive analysis of AI performance across different educational levels. By focusing on Korean, KoNET provides insights into model performance in less-explored languages. We assess a range of models - open-source, open-access, and closed APIs - by examining difficulties, subject diversity, and human error rates. The code and dataset builder will be made fully open-sourced at https://github.com/naver-ai/KoNET.
9
67bc53ae670ece8d919a901a
null
null
2025-02-24T06:44:41.263000
Beyond No: Quantifying AI Over-Refusal and Emotional Attachment Boundaries
https://cdn-thumbnails.h…s/2502.14975.png
3
{ "_id": "63136a82e29fb2e86d5e5bdd", "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/63136a82e29fb2e86d5e5bdd/pFZDuQtzfUStovbwwZGvn.png", "followerCount": null, "fullname": "David Noever", "isHf": false, "isMod": false, "isPro": false, "name": "dnoever", "type": "user" }
true
null
2502.14975
[ { "_id": "67bc5b6b876dad36abdd56fb", "hidden": false, "name": "David Noever", "status": "admin_assigned", "statusLastChangedAt": "2025-02-24T16:15:40.749Z", "user": { "_id": "63136a82e29fb2e86d5e5bdd", "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/63136a82e29fb2e86d5e5bdd/pFZDuQtzfUStovbwwZGvn.png", "fullname": "David Noever", "isPro": false, "type": "user", "user": "dnoever" } }, { "_id": "67bc5b6b876dad36abdd56fc", "hidden": false, "name": "Grant Rosario", "status": null, "statusLastChangedAt": null, "user": null } ]
2025-02-20T19:09:40
Beyond No: Quantifying AI Over-Refusal and Emotional Attachment Boundaries
We present an open-source benchmark and evaluation framework for assessing emotional boundary handling in Large Language Models (LLMs). Using a dataset of 1156 prompts across six languages, we evaluated three leading LLMs (GPT-4o, Claude-3.5 Sonnet, and Mistral-large) on their ability to maintain appropriate emotional boundaries through pattern-matched response analysis. Our framework quantifies responses across seven key patterns: direct refusal, apology, explanation, deflection, acknowledgment, boundary setting, and emotional awareness. Results demonstrate significant variation in boundary-handling approaches, with Claude-3.5 achieving the highest overall score (8.69/10) and producing longer, more nuanced responses (86.51 words on average). We identified a substantial performance gap between English (average score 25.62) and non-English interactions (< 0.22), with English responses showing markedly higher refusal rates (43.20% vs. < 1% for non-English). Pattern analysis revealed model-specific strategies, such as Mistral's preference for deflection (4.2%) and consistently low empathy scores across all models (< 0.06). Limitations include potential oversimplification through pattern matching, lack of contextual understanding in response analysis, and binary classification of complex emotional responses. Future work should explore more nuanced scoring methods, expand language coverage, and investigate cultural variations in emotional boundary expectations. Our benchmark and methodology provide a foundation for systematic evaluation of LLM emotional intelligence and boundary-setting capabilities.
0
67bc5b6c876dad36abdd5736
null
null
2025-02-24T05:43:47.767000
KITAB-Bench: A Comprehensive Multi-Domain Benchmark for Arabic OCR and Document Understanding
https://cdn-thumbnails.h…s/2502.14949.png
2
{ "_id": "656864e12d73834278a8dea7", "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/656864e12d73834278a8dea7/sfAWS2eyPtFHb_2GZIypp.jpeg", "followerCount": 27, "fullname": "Ahmed Heakl", "isHf": false, "isMod": false, "isPro": true, "name": "ahmedheakl", "type": "user" }
true
null
2502.14949
[ { "_id": "67bc4ced7727595ca5b108f1", "hidden": false, "name": "Ahmed Heakl", "status": "claimed_verified", "statusLastChangedAt": "2025-02-24T10:58:23.973Z", "user": { "_id": "656864e12d73834278a8dea7", "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/656864e12d73834278a8dea7/sfAWS2eyPtFHb_2GZIypp.jpeg", "fullname": "Ahmed Heakl", "isPro": true, "type": "user", "user": "ahmedheakl" } }, { "_id": "67bc4ced7727595ca5b108f2", "hidden": false, "name": "Abdullah Sohail", "status": "claimed_verified", "statusLastChangedAt": "2025-02-24T13:05:04.733Z", "user": { "_id": "672e4574b60c3a27d783a1ac", "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/no-auth/aut4W4hJcOT8jvQnlWs-y.png", "fullname": "Muhammad Abdullah", "isPro": false, "type": "user", "user": "mabdullahsohail" } }, { "_id": "67bc4ced7727595ca5b108f3", "hidden": false, "name": "Mukul Ranjan", "status": "claimed_verified", "statusLastChangedAt": "2025-02-24T11:54:56.690Z", "user": { "_id": "65262a396b41932089fd7bae", "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/65262a396b41932089fd7bae/6YIEoAfJojuTW1UOKlwZT.png", "fullname": "Mukul Ranjan", "isPro": false, "type": "user", "user": "mukul54" } }, { "_id": "67bc4ced7727595ca5b108f4", "hidden": false, "name": "Rania Hossam", "status": null, "statusLastChangedAt": null, "user": null }, { "_id": "67bc4ced7727595ca5b108f5", "hidden": false, "name": "Ghazi Ahmed", "status": null, "statusLastChangedAt": null, "user": null }, { "_id": "67bc4ced7727595ca5b108f6", "hidden": false, "name": "Mohamed El-Geish", "status": null, "statusLastChangedAt": null, "user": null }, { "_id": "67bc4ced7727595ca5b108f7", "hidden": false, "name": "Omar Maher", "status": null, "statusLastChangedAt": null, "user": null }, { "_id": "67bc4ced7727595ca5b108f8", "hidden": false, "name": "Zhiqiang Shen", "status": null, "statusLastChangedAt": null, "user": null }, { "_id": "67bc4ced7727595ca5b108f9", "hidden": false, "name": "Fahad Khan", "status": null, "statusLastChangedAt": null, "user": null }, { "_id": "67bc4ced7727595ca5b108fa", "hidden": false, "name": "Salman Khan", "status": null, "statusLastChangedAt": null, "user": null } ]
2025-02-20T18:41:23
KITAB-Bench: A Comprehensive Multi-Domain Benchmark for Arabic OCR and Document Understanding
With the growing adoption of Retrieval-Augmented Generation (RAG) in document processing, robust text recognition has become increasingly critical for knowledge extraction. While OCR (Optical Character Recognition) for English and other languages benefits from large datasets and well-established benchmarks, Arabic OCR faces unique challenges due to its cursive script, right-to-left text flow, and complex typographic and calligraphic features. We present KITAB-Bench, a comprehensive Arabic OCR benchmark that fills the gaps in current evaluation systems. Our benchmark comprises 8,809 samples across 9 major domains and 36 sub-domains, encompassing diverse document types including handwritten text, structured tables, and specialized coverage of 21 chart types for business intelligence. Our findings show that modern vision-language models (such as GPT-4, Gemini, and Qwen) outperform traditional OCR approaches (like EasyOCR, PaddleOCR, and Surya) by an average of 60% in Character Error Rate (CER). Furthermore, we highlight significant limitations of current Arabic OCR models, particularly in PDF-to-Markdown conversion, where the best model Gemini-2.0-Flash achieves only 65% accuracy. This underscores the challenges in accurately recognizing Arabic text, including issues with complex fonts, numeral recognition errors, word elongation, and table structure detection. This work establishes a rigorous evaluation framework that can drive improvements in Arabic document analysis methods and bridge the performance gap with English OCR technologies.
6
67bc4cee7727595ca5b10967
null
null
2025-02-24T05:35:44.667000
ReQFlow: Rectified Quaternion Flow for Efficient and High-Quality Protein Backbone Generation
https://cdn-thumbnails.h…s/2502.14637.png
3
{ "_id": "63021e665e305a35cb09cb35", "avatarUrl": "/avatars/442e61765cb755f55540192e9a80cf80.svg", "followerCount": 1, "fullname": "AngxiaoYue", "isHf": false, "isMod": false, "isPro": false, "name": "AngxiaoYue", "type": "user" }
true
null
2502.14637
[ { "_id": "67bc3393057a4685851067c9", "hidden": false, "name": "Angxiao Yue", "status": "claimed_verified", "statusLastChangedAt": "2025-02-24T09:06:54.271Z", "user": { "_id": "63021e665e305a35cb09cb35", "avatarUrl": "/avatars/442e61765cb755f55540192e9a80cf80.svg", "fullname": "AngxiaoYue", "isPro": false, "type": "user", "user": "AngxiaoYue" } }, { "_id": "67bc3393057a4685851067ca", "hidden": false, "name": "Zichong Wang", "status": "claimed_verified", "statusLastChangedAt": "2025-02-24T11:54:58.392Z", "user": { "_id": "669a2fd15bd3f749a3eb7b65", "avatarUrl": "/avatars/7b23f892d2dc8fc87f62469dc02524ac.svg", "fullname": "ZiChong Wang", "isPro": false, "type": "user", "user": "EatEatEatEat" } }, { "_id": "67bc3393057a4685851067cb", "hidden": false, "name": "Hongteng Xu", "status": "claimed_verified", "statusLastChangedAt": "2025-02-24T13:24:57.462Z", "user": { "_id": "67bc72956d5bfdc989e194dd", "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/no-auth/LB6fZyznoTrPKFUDJia2i.png", "fullname": "Hongteng Xu", "isPro": false, "type": "user", "user": "Hongteng" } } ]
2025-02-20T15:20:37
ReQFlow: Rectified Quaternion Flow for Efficient and High-Quality Protein Backbone Generation
Protein backbone generation plays a central role in de novo protein design and is significant for many biological and medical applications. Although diffusion and flow-based generative models provide potential solutions to this challenging task, they often generate proteins with undesired designability and suffer computational inefficiency. In this study, we propose a novel rectified quaternion flow (ReQFlow) matching method for fast and high-quality protein backbone generation. In particular, our method generates a local translation and a 3D rotation from random noise for each residue in a protein chain, which represents each 3D rotation as a unit quaternion and constructs its flow by spherical linear interpolation (SLERP) in an exponential format. We train the model by quaternion flow (QFlow) matching with guaranteed numerical stability and rectify the QFlow model to accelerate its inference and improve the designability of generated protein backbones, leading to the proposed ReQFlow model. Experiments show that ReQFlow achieves state-of-the-art performance in protein backbone generation while requiring much fewer sampling steps and significantly less inference time (e.g., being 37x faster than RFDiffusion and 62x faster than Genie2 when generating a backbone of length 300), demonstrating its effectiveness and efficiency. The code is available at https://github.com/AngxiaoYue/ReQFlow.
6
67bc3396057a468585106864
null
null
2025-02-24T04:52:30.963000
MoBA: Mixture of Block Attention for Long-Context LLMs
https://cdn-thumbnails.h…s/2502.13189.png
2
{ "_id": "63a369d98c0c89dcae3b8329", "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/63a369d98c0c89dcae3b8329/6OUJ7Hc9T1jXynYH3FGaf.png", "followerCount": 439, "fullname": "Adina Yakefu", "isHf": true, "isMod": false, "isPro": false, "name": "AdinaY", "type": "user" }
false
null
2502.13189
[ { "_id": "67b7152f299e4d30f9eb41c2", "hidden": false, "name": "Enzhe Lu", "status": "admin_assigned", "statusLastChangedAt": "2025-02-24T15:48:22.594Z", "user": { "_id": "67aed930cc96f87ce3c3132f", "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/no-auth/JDrhmbCRcuCtKir7i9z9n.png", "fullname": "Lu", "isPro": false, "type": "user", "user": "Enzhe" } }, { "_id": "67b7152f299e4d30f9eb41c3", "hidden": false, "name": "Zhejun Jiang", "status": "admin_assigned", "statusLastChangedAt": "2025-02-24T15:48:29.904Z", "user": { "_id": "662c6e8352e194d5d44d873c", "avatarUrl": "/avatars/385a5cc7299faf2f61ccbabedd827f29.svg", "fullname": "Zhejun Jiang", "isPro": false, "type": "user", "user": "Skewed" } }, { "_id": "67b7152f299e4d30f9eb41c4", "hidden": false, "name": "Jingyuan Liu", "status": "admin_assigned", "statusLastChangedAt": "2025-02-24T15:48:36.573Z", "user": { "_id": "64ead9e35349043b2b941a03", "avatarUrl": "/avatars/e9acef299086f0245ff364d9d7889007.svg", "fullname": "JingyuanLiu", "isPro": false, "type": "user", "user": "JingyuanLiu" } }, { "_id": "67b7152f299e4d30f9eb41c5", "hidden": false, "name": "Yulun Du", "status": "admin_assigned", "statusLastChangedAt": "2025-02-24T15:48:47.033Z", "user": { "_id": "6340f31fb78ed99eab04ce33", "avatarUrl": "/avatars/2e7fcbf0233bdc0bc9a3f4603fd8bf90.svg", "fullname": "Du", "isPro": false, "type": "user", "user": "Yulun" } }, { "_id": "67b7152f299e4d30f9eb41c6", "hidden": false, "name": "Tao Jiang", "status": null, "statusLastChangedAt": null, "user": null }, { "_id": "67b7152f299e4d30f9eb41c7", "hidden": false, "name": "Chao Hong", "status": null, "statusLastChangedAt": null, "user": null }, { "_id": "67b7152f299e4d30f9eb41c8", "hidden": true, "name": "Shaowei Liu", "status": null, "statusLastChangedAt": null, "user": null }, { "_id": "67b7152f299e4d30f9eb41c9", "hidden": false, "name": "Weiran He", "status": null, "statusLastChangedAt": null, "user": null }, { "_id": "67b7152f299e4d30f9eb41ca", "hidden": false, "name": "Enming Yuan", "status": "admin_assigned", "statusLastChangedAt": "2025-02-24T15:49:40.245Z", "user": { "_id": "6331606f18711776b4655e67", "avatarUrl": "/avatars/1479c2ca743b9f92d845b0ed23fcd07b.svg", "fullname": "Enming Yuan", "isPro": false, "type": "user", "user": "EnmingYuan" } }, { "_id": "67b7152f299e4d30f9eb41cb", "hidden": false, "name": "Yuzhi Wang", "status": "admin_assigned", "statusLastChangedAt": "2025-02-24T15:49:48.436Z", "user": { "_id": "67127a470a82509269d738ae", "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/no-auth/M9qLmI3P6dT2FIwEPFJq0.png", "fullname": "yuzhi wang", "isPro": false, "type": "user", "user": "vin-tage" } }, { "_id": "67b7152f299e4d30f9eb41cc", "hidden": false, "name": "Zhiqi Huang", "status": "admin_assigned", "statusLastChangedAt": "2025-02-24T15:49:54.439Z", "user": { "_id": "66221f1a90f3fd333c4ec52e", "avatarUrl": "/avatars/a3173d9603a69020ec24170831c97c2f.svg", "fullname": "Zhiqi Huang", "isPro": false, "type": "user", "user": "Angelalilyer" } }, { "_id": "67b7152f299e4d30f9eb41cd", "hidden": false, "name": "Huan Yuan", "status": null, "statusLastChangedAt": null, "user": null }, { "_id": "67b7152f299e4d30f9eb41ce", "hidden": false, "name": "Suting Xu", "status": "admin_assigned", "statusLastChangedAt": "2025-02-24T15:50:08.223Z", "user": { "_id": "649e7c2afbdfd3c16128ce6e", "avatarUrl": "/avatars/1ff863b0fa39cfe4285255e4417c1db4.svg", "fullname": "Suting Xu", "isPro": false, "type": "user", "user": "susu1210" } }, { "_id": "67b7152f299e4d30f9eb41cf", "hidden": false, "name": "Xinran Xu", "status": null, "statusLastChangedAt": null, "user": null }, { "_id": "67b7152f299e4d30f9eb41d0", "hidden": false, "name": "Guokun Lai", "status": "admin_assigned", "statusLastChangedAt": "2025-02-24T15:50:25.601Z", "user": { "_id": "63b4c71758f367a212c4f9ef", "avatarUrl": "/avatars/d61736e0ae8b333a7c24eb411378698c.svg", "fullname": "Lai", "isPro": false, "type": "user", "user": "Guokun" } }, { "_id": "67b7152f299e4d30f9eb41d1", "hidden": false, "name": "Yanru Chen", "status": "admin_assigned", "statusLastChangedAt": "2025-02-24T15:50:32.381Z", "user": { "_id": "6365df6912188d67e65f5c5b", "avatarUrl": "/avatars/59a1d2f30ba4faea0336bedf4df321a8.svg", "fullname": "Yanru Chen", "isPro": false, "type": "user", "user": "AChen-qaq" } }, { "_id": "67b7152f299e4d30f9eb41d2", "hidden": false, "name": "Huabin Zheng", "status": "admin_assigned", "statusLastChangedAt": "2025-02-24T15:50:38.272Z", "user": { "_id": "61860e1258cb1f8c362f9441", "avatarUrl": "/avatars/8dbc8209ad0d918453c1ffacc8f61e7f.svg", "fullname": "Huabin Zheng", "isPro": false, "type": "user", "user": "zhenghuabin" } }, { "_id": "67b7152f299e4d30f9eb41d3", "hidden": false, "name": "Junjie Yan", "status": null, "statusLastChangedAt": null, "user": null }, { "_id": "67b7152f299e4d30f9eb41d4", "hidden": false, "name": "Jianlin Su", "status": "admin_assigned", "statusLastChangedAt": "2025-02-24T15:50:44.579Z", "user": { "_id": "6404982cad54665351d7c1e0", "avatarUrl": "/avatars/8fb6d01802cbd4a1cbb7f6a0d83faa3a.svg", "fullname": "jianlin su", "isPro": false, "type": "user", "user": "bojone" } }, { "_id": "67b7152f299e4d30f9eb41d5", "hidden": false, "name": "Yuxin Wu", "status": null, "statusLastChangedAt": null, "user": null }, { "_id": "67b7152f299e4d30f9eb41d6", "hidden": false, "name": "Neo Y. Zhang", "status": null, "statusLastChangedAt": null, "user": null }, { "_id": "67b7152f299e4d30f9eb41d7", "hidden": false, "name": "Zhilin Yang", "status": "admin_assigned", "statusLastChangedAt": "2025-02-24T15:51:03.452Z", "user": { "_id": "64bf74154d2052b1aa5ca6d9", "avatarUrl": "/avatars/7aa6f2952cdbc20cfa758fdd905f06a6.svg", "fullname": "ZHILIN YANG", "isPro": false, "type": "user", "user": "bruceyannnn" } }, { "_id": "67b7152f299e4d30f9eb41d8", "hidden": false, "name": "Xinyu Zhou", "status": null, "statusLastChangedAt": null, "user": null }, { "_id": "67b7152f299e4d30f9eb41d9", "hidden": false, "name": "Mingxing Zhang", "status": null, "statusLastChangedAt": null, "user": null }, { "_id": "67b7152f299e4d30f9eb41da", "hidden": false, "name": "Jiezhong Qiu", "status": "admin_assigned", "statusLastChangedAt": "2025-02-24T15:51:14.319Z", "user": { "_id": "64b4fb7146dd1c352b0da25a", "avatarUrl": "/avatars/b5c15bca8020c4841a87252ce9ed1618.svg", "fullname": "Jiezhong Qiu", "isPro": false, "type": "user", "user": "xptree" } } ]
2025-02-18T14:06:05
MoBA: Mixture of Block Attention for Long-Context LLMs
Scaling the effective context length is essential for advancing large language models (LLMs) toward artificial general intelligence (AGI). However, the quadratic increase in computational complexity inherent in traditional attention mechanisms presents a prohibitive overhead. Existing approaches either impose strongly biased structures, such as sink or window attention which are task-specific, or radically modify the attention mechanism into linear approximations, whose performance in complex reasoning tasks remains inadequately explored. In this work, we propose a solution that adheres to the ``less structure'' principle, allowing the model to determine where to attend autonomously, rather than introducing predefined biases. We introduce Mixture of Block Attention (MoBA), an innovative approach that applies the principles of Mixture of Experts (MoE) to the attention mechanism. This novel architecture demonstrates superior performance on long-context tasks while offering a key advantage: the ability to seamlessly transition between full and sparse attention, enhancing efficiency without the risk of compromising performance. MoBA has already been deployed to support Kimi's long-context requests and demonstrates significant advancements in efficient attention computation for LLMs. Our code is available at https://github.com/MoonshotAI/MoBA.
13
67b71530299e4d30f9eb4213
null
null
2025-02-24T04:29:42.452000
JL1-CD: A New Benchmark for Remote Sensing Change Detection and a Robust Multi-Teacher Knowledge Distillation Framework
https://cdn-thumbnails.h…s/2502.13407.png
2
{ "_id": "67bb32b6a0cb6e48cfd27d80", "avatarUrl": "/avatars/3cafe3a3fb60405252962d00105667c5.svg", "followerCount": null, "fullname": "Ziyuan Liu", "isHf": false, "isMod": false, "isPro": false, "name": "circleLZY", "type": "user" }
true
null
2502.13407
[ { "_id": "67bb33f3829dedfc99ae1288", "hidden": false, "name": "Ziyuan Liu", "status": "claimed_verified", "statusLastChangedAt": "2025-02-24T09:07:29.223Z", "user": { "_id": "67bb32b6a0cb6e48cfd27d80", "avatarUrl": "/avatars/3cafe3a3fb60405252962d00105667c5.svg", "fullname": "Ziyuan Liu", "isPro": false, "type": "user", "user": "circleLZY" } }, { "_id": "67bb33f3829dedfc99ae1289", "hidden": false, "name": "Ruifei Zhu", "status": null, "statusLastChangedAt": null, "user": null }, { "_id": "67bb33f3829dedfc99ae128a", "hidden": false, "name": "Long Gao", "status": null, "statusLastChangedAt": null, "user": null }, { "_id": "67bb33f3829dedfc99ae128b", "hidden": false, "name": "Yuanxiu Zhou", "status": null, "statusLastChangedAt": null, "user": null }, { "_id": "67bb33f3829dedfc99ae128c", "hidden": false, "name": "Jingyu Ma", "status": "admin_assigned", "statusLastChangedAt": "2025-02-24T16:16:21.974Z", "user": { "_id": "673a9a638127cd120c9c272d", "avatarUrl": "/avatars/d6e225d7a869487cb48c4ac89d048cb4.svg", "fullname": "Jingyu Ma", "isPro": false, "type": "user", "user": "jingyum" } }, { "_id": "67bb33f3829dedfc99ae128d", "hidden": false, "name": "Yuantao Gu", "status": null, "statusLastChangedAt": null, "user": null } ]
2025-02-19T03:33:54
JL1-CD: A New Benchmark for Remote Sensing Change Detection and a Robust Multi-Teacher Knowledge Distillation Framework
Deep learning has achieved significant success in the field of remote sensing image change detection (CD), yet two major challenges remain: the scarcity of sub-meter, all-inclusive open-source CD datasets, and the difficulty of achieving consistent and satisfactory detection results across images with varying change areas. To address these issues, we introduce the JL1-CD dataset, which contains 5,000 pairs of 512 x 512 pixel images with a resolution of 0.5 to 0.75 meters. Additionally, we propose a multi-teacher knowledge distillation (MTKD) framework for CD. Experimental results on the JL1-CD and SYSU-CD datasets demonstrate that the MTKD framework significantly improves the performance of CD models with various network architectures and parameter sizes, achieving new state-of-the-art results. The code is available at https://github.com/circleLZY/MTKD-CD.
1
67bb33f6829dedfc99ae135e
null
null
2025-02-24T02:07:41.624000
LLM-Microscope: Uncovering the Hidden Role of Punctuation in Context Memory of Transformers
https://cdn-thumbnails.h…s/2502.15007.png
3
{ "_id": "6172aaeec8e66e2aa84c06b9", "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/6172aaeec8e66e2aa84c06b9/ZdRZSp3P1SU6CIDbvQwkv.jpeg", "followerCount": 12, "fullname": "Anton Razzhigaev", "isHf": false, "isMod": false, "isPro": false, "name": "razzant", "type": "user" }
true
[ "https://cdn-uploads.huggingface.co/production/uploads/6172aaeec8e66e2aa84c06b9/ZPSmOQ-7Yd7B7YIYiwcTw.png" ]
2502.15007
[ { "_id": "67bc1a4a72499ce2ba28cc70", "hidden": false, "name": "Anton Razzhigaev", "status": "admin_assigned", "statusLastChangedAt": "2025-02-24T13:11:53.576Z", "user": { "_id": "6172aaeec8e66e2aa84c06b9", "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/6172aaeec8e66e2aa84c06b9/ZdRZSp3P1SU6CIDbvQwkv.jpeg", "fullname": "Anton Razzhigaev", "isPro": false, "type": "user", "user": "razzant" } }, { "_id": "67bc1a4a72499ce2ba28cc71", "hidden": false, "name": "Matvey Mikhalchuk", "status": "admin_assigned", "statusLastChangedAt": "2025-02-24T13:11:58.863Z", "user": { "_id": "64ee45a944f4b3b1bccc02d1", "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/64ee45a944f4b3b1bccc02d1/SoidO9HQ4mftzbUPtuBBf.png", "fullname": "Matvey Mikhalchuk", "isPro": false, "type": "user", "user": "matveymih" } }, { "_id": "67bc1a4a72499ce2ba28cc72", "hidden": false, "name": "Temurbek Rahmatullaev", "status": "claimed_verified", "statusLastChangedAt": "2025-02-25T09:40:40.159Z", "user": { "_id": "659c33fe1801bc22227b8ff6", "avatarUrl": "/avatars/837cdb3351cfd84dc9dcef37bcf18dff.svg", "fullname": "Temurbek", "isPro": false, "type": "user", "user": "raxtemur" } }, { "_id": "67bc1a4a72499ce2ba28cc73", "hidden": false, "name": "Elizaveta Goncharova", "status": "admin_assigned", "statusLastChangedAt": "2025-02-24T13:12:27.998Z", "user": { "_id": "6310ff34bc152fa3e810c186", "avatarUrl": "/avatars/bfd63bcd81548283f5e496e3693bf143.svg", "fullname": "Elizaveta Goncharova", "isPro": false, "type": "user", "user": "Elizaveta" } }, { "_id": "67bc1a4a72499ce2ba28cc74", "hidden": false, "name": "Polina Druzhinina", "status": "admin_assigned", "statusLastChangedAt": "2025-02-24T13:12:33.837Z", "user": { "_id": "65d5e094cd05bc1eaa0fafc9", "avatarUrl": "/avatars/ea3d52def6ef4d9af07728a76a499a9f.svg", "fullname": "Polina Druzhinina", "isPro": false, "type": "user", "user": "plina2polina" } }, { "_id": "67bc1a4a72499ce2ba28cc75", "hidden": false, "name": "Ivan Oseledets", "status": "admin_assigned", "statusLastChangedAt": "2025-02-24T13:12:40.295Z", "user": { "_id": "6169a581d05945bfd8718dfa", "avatarUrl": "/avatars/1892ab06a7ddb557232777de3cbec470.svg", "fullname": "Ivan Oseledets", "isPro": false, "type": "user", "user": "oseledets" } }, { "_id": "67bc1a4a72499ce2ba28cc76", "hidden": false, "name": "Andrey Kuznetsov", "status": "claimed_verified", "statusLastChangedAt": "2025-02-25T09:40:42.629Z", "user": { "_id": "643984dceb7c5616ef3f5d54", "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/643984dceb7c5616ef3f5d54/10JRkblrRIEVci6UJwvPz.jpeg", "fullname": "Andrey Kuznetsov", "isPro": false, "type": "user", "user": "kuznetsoffandrey" } } ]
2025-02-20T19:59:35
LLM-Microscope: Uncovering the Hidden Role of Punctuation in Context Memory of Transformers
We introduce methods to quantify how Large Language Models (LLMs) encode and store contextual information, revealing that tokens often seen as minor (e.g., determiners, punctuation) carry surprisingly high context. Notably, removing these tokens -- especially stopwords, articles, and commas -- consistently degrades performance on MMLU and BABILong-4k, even if removing only irrelevant tokens. Our analysis also shows a strong correlation between contextualization and linearity, where linearity measures how closely the transformation from one layer's embeddings to the next can be approximated by a single linear mapping. These findings underscore the hidden importance of filler tokens in maintaining context. For further exploration, we present LLM-Microscope, an open-source toolkit that assesses token-level nonlinearity, evaluates contextual memory, visualizes intermediate layer contributions (via an adapted Logit Lens), and measures the intrinsic dimensionality of representations. This toolkit illuminates how seemingly trivial tokens can be critical for long-range understanding.
156
67bc1a4c72499ce2ba28cd49
null
null
2025-02-24T01:16:03.517000
MaskGWM: A Generalizable Driving World Model with Video Mask Reconstruction
https://cdn-thumbnails.h…s/2502.11663.png
2
{ "_id": "65717368be66cd9b65a8201c", "avatarUrl": "/avatars/fe945828eec9ded4cfa3b89d48a64d90.svg", "followerCount": null, "fullname": "Wu Zehuan", "isHf": false, "isMod": false, "isPro": false, "name": "wzhgba", "type": "user" }
true
null
2502.11663
[ { "_id": "67b705d2ebee4662205c47f7", "hidden": false, "name": "Jingcheng Ni", "status": "admin_assigned", "statusLastChangedAt": "2025-02-24T13:06:17.841Z", "user": { "_id": "65d444b1ea28ba508b87ab01", "avatarUrl": "/avatars/5836c0d64ba3936e064faa8ff4d44de0.svg", "fullname": "Jingcheng Ni", "isPro": false, "type": "user", "user": "kiranjc" } }, { "_id": "67b705d2ebee4662205c47f8", "hidden": false, "name": "Yuxin Guo", "status": null, "statusLastChangedAt": null, "user": null }, { "_id": "67b705d2ebee4662205c47f9", "hidden": false, "name": "Yichen Liu", "status": "claimed_verified", "statusLastChangedAt": "2025-02-24T09:23:40.466Z", "user": { "_id": "6572dcc6bbd6664053b1fa6b", "avatarUrl": "/avatars/aba29efd00bc41f14ce422f7807cd2c3.svg", "fullname": "Liu Yichen", "isPro": false, "type": "user", "user": "lyclyc52" } }, { "_id": "67b705d2ebee4662205c47fa", "hidden": false, "name": "Rui Chen", "status": null, "statusLastChangedAt": null, "user": null }, { "_id": "67b705d2ebee4662205c47fb", "hidden": false, "name": "Lewei Lu", "status": "admin_assigned", "statusLastChangedAt": "2025-02-24T13:06:46.453Z", "user": { "_id": "65ead3ea908526a39082e641", "avatarUrl": "/avatars/dcf870695fd56b06ca03d82f831e9019.svg", "fullname": "Lewei Lu", "isPro": false, "type": "user", "user": "luotto" } }, { "_id": "67b705d2ebee4662205c47fc", "hidden": false, "name": "Zehuan Wu", "status": "claimed_verified", "statusLastChangedAt": "2025-02-21T09:59:38.956Z", "user": { "_id": "65717368be66cd9b65a8201c", "avatarUrl": "/avatars/fe945828eec9ded4cfa3b89d48a64d90.svg", "fullname": "Wu Zehuan", "isPro": false, "type": "user", "user": "wzhgba" } } ]
2025-02-17T10:53:56
MaskGWM: A Generalizable Driving World Model with Video Mask Reconstruction
World models that forecast environmental changes from actions are vital for autonomous driving models with strong generalization. The prevailing driving world model mainly build on video prediction model. Although these models can produce high-fidelity video sequences with advanced diffusion-based generator, they are constrained by their predictive duration and overall generalization capabilities. In this paper, we explore to solve this problem by combining generation loss with MAE-style feature-level context learning. In particular, we instantiate this target with three key design: (1) A more scalable Diffusion Transformer (DiT) structure trained with extra mask construction task. (2) we devise diffusion-related mask tokens to deal with the fuzzy relations between mask reconstruction and generative diffusion process. (3) we extend mask construction task to spatial-temporal domain by utilizing row-wise mask for shifted self-attention rather than masked self-attention in MAE. Then, we adopt a row-wise cross-view module to align with this mask design. Based on above improvement, we propose MaskGWM: a Generalizable driving World Model embodied with Video Mask reconstruction. Our model contains two variants: MaskGWM-long, focusing on long-horizon prediction, and MaskGWM-mview, dedicated to multi-view generation. Comprehensive experiments on standard benchmarks validate the effectiveness of the proposed method, which contain normal validation of Nuscene dataset, long-horizon rollout of OpenDV-2K dataset and zero-shot validation of Waymo dataset. Quantitative metrics on these datasets show our method notably improving state-of-the-art driving world model.
36
67b705d4ebee4662205c489c
null
null
2025-02-24T01:13:24.911000
CrossOver: 3D Scene Cross-Modal Alignment
https://cdn-thumbnails.h…s/2502.15011.png
3
{ "_id": "650ec19e6620b0c57e2a551b", "avatarUrl": "/avatars/c26c03fa920d857120f03c9ccb9f1d7a.svg", "followerCount": null, "fullname": "Sayan Deb Sarkar", "isHf": false, "isMod": false, "isPro": false, "name": "sayandsarkar", "type": "user" }
true
[ "https://cdn-uploads.huggingface.co/production/uploads/650ec19e6620b0c57e2a551b/S_xFBPoV3YbtHmtLtRrSV.gif" ]
2502.15011
[ { "_id": "67bc0d12ffc2c387329c8cfd", "hidden": false, "name": "Sayan Deb Sarkar", "status": "claimed_verified", "statusLastChangedAt": "2025-02-24T09:06:56.555Z", "user": { "_id": "650ec19e6620b0c57e2a551b", "avatarUrl": "/avatars/c26c03fa920d857120f03c9ccb9f1d7a.svg", "fullname": "Sayan Deb Sarkar", "isPro": false, "type": "user", "user": "sayandsarkar" } }, { "_id": "67bc0d12ffc2c387329c8cfe", "hidden": false, "name": "Ondrej Miksik", "status": null, "statusLastChangedAt": null, "user": null }, { "_id": "67bc0d12ffc2c387329c8cff", "hidden": false, "name": "Marc Pollefeys", "status": "admin_assigned", "statusLastChangedAt": "2025-02-24T16:11:04.481Z", "user": { "_id": "67b5fa179782a5e2fd2cb26a", "avatarUrl": "/avatars/62c38f29ec641e001eeddf840bea21a0.svg", "fullname": "Marc Pollefeys", "isPro": false, "type": "user", "user": "mapo1" } }, { "_id": "67bc0d12ffc2c387329c8d00", "hidden": false, "name": "Daniel Barath", "status": null, "statusLastChangedAt": null, "user": null }, { "_id": "67bc0d12ffc2c387329c8d01", "hidden": false, "name": "Iro Armeni", "status": "admin_assigned", "statusLastChangedAt": "2025-02-24T16:11:14.554Z", "user": { "_id": "6745f90cf4d75fd11a2407ac", "avatarUrl": "/avatars/882f56565b4ebfabf1c13e199d74a4de.svg", "fullname": "Iro Armeni", "isPro": false, "type": "user", "user": "ir0" } } ]
2025-02-20T20:05:30
CrossOver: 3D Scene Cross-Modal Alignment
Multi-modal 3D object understanding has gained significant attention, yet current approaches often assume complete data availability and rigid alignment across all modalities. We present CrossOver, a novel framework for cross-modal 3D scene understanding via flexible, scene-level modality alignment. Unlike traditional methods that require aligned modality data for every object instance, CrossOver learns a unified, modality-agnostic embedding space for scenes by aligning modalities - RGB images, point clouds, CAD models, floorplans, and text descriptions - with relaxed constraints and without explicit object semantics. Leveraging dimensionality-specific encoders, a multi-stage training pipeline, and emergent cross-modal behaviors, CrossOver supports robust scene retrieval and object localization, even with missing modalities. Evaluations on ScanNet and 3RScan datasets show its superior performance across diverse metrics, highlighting adaptability for real-world applications in 3D scene understanding.
3
67bc0d18ffc2c387329c8e56
null
null
2025-02-24T00:36:34.341000
VLM$^2$-Bench: A Closer Look at How Well VLMs Implicitly Link Explicit Matching Visual Cues
https://cdn-thumbnails.h…s/2502.12084.png
2
{ "_id": "65d8b0f0661492b25c6623de", "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/65d8b0f0661492b25c6623de/c6LPDse8NIV_3BHIu8dYe.png", "followerCount": 10, "fullname": "Jianshu Zhang", "isHf": false, "isMod": false, "isPro": false, "name": "Sterzhang", "type": "user" }
true
null
2502.12084
[ { "_id": "67b8922ef6632327952ec1e1", "hidden": false, "name": "Jianshu Zhang", "status": "extracted_pending", "statusLastChangedAt": "2025-02-21T14:48:16.643Z", "user": { "_id": "65d8b0f0661492b25c6623de", "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/65d8b0f0661492b25c6623de/c6LPDse8NIV_3BHIu8dYe.png", "fullname": "Jianshu Zhang", "isPro": false, "type": "user", "user": "Sterzhang" } }, { "_id": "67b8922ef6632327952ec1e2", "hidden": false, "name": "Dongyu Yao", "status": "claimed_verified", "statusLastChangedAt": "2025-02-24T09:20:43.528Z", "user": { "_id": "64b0377121a001042bc0d274", "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/64b0377121a001042bc0d274/Hk8yI5_s7ey5o9SVZzXrB.png", "fullname": "Dongyu Yao", "isPro": false, "type": "user", "user": "RainJamesY" } }, { "_id": "67b8922ef6632327952ec1e3", "hidden": false, "name": "Renjie Pi", "status": "admin_assigned", "statusLastChangedAt": "2025-02-24T13:18:30.254Z", "user": { "_id": "63f45b8d520c14618930d175", "avatarUrl": "/avatars/a20994594579b52a8be8bd2c4acbb913.svg", "fullname": "renjie", "isPro": false, "type": "user", "user": "renjiepi" } }, { "_id": "67b8922ef6632327952ec1e4", "hidden": false, "name": "Paul Pu Liang", "status": null, "statusLastChangedAt": null, "user": null }, { "_id": "67b8922ef6632327952ec1e5", "hidden": false, "name": "Yi R.", "status": null, "statusLastChangedAt": null, "user": null }, { "_id": "67b8922ef6632327952ec1e6", "hidden": false, "name": "Fung", "status": "extracted_pending", "statusLastChangedAt": "2025-02-26T01:33:46.195Z", "user": { "_id": "67be6f4f22513d7d52d7ef66", "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/no-auth/jQEVQufb6BOb9cQpb6NIt.png", "fullname": "San Yi", "isPro": false, "type": "user", "user": "Sanyia" } } ]
2025-02-17T17:57:50
VLM^2-Bench: A Closer Look at How Well VLMs Implicitly Link Explicit Matching Visual Cues
Visually linking matching cues is a crucial ability in daily life, such as identifying the same person in multiple photos based on their cues, even without knowing who they are. Despite the extensive knowledge that vision-language models (VLMs) possess, it remains largely unexplored whether they are capable of performing this fundamental task. To address this, we introduce VLM^2-Bench, a benchmark designed to assess whether VLMs can Visually Link Matching cues, with 9 subtasks and over 3,000 test cases. Comprehensive evaluation across eight open-source VLMs and GPT-4o, along with further analysis of various language-side and vision-side prompting methods, leads to a total of eight key findings. We identify critical challenges in models' ability to link visual cues, highlighting a significant performance gap where even GPT-4o lags 34.80% behind humans. Based on these insights, we advocate for (i) enhancing core visual capabilities to improve adaptability and reduce reliance on prior knowledge, (ii) establishing clearer principles for integrating language-based reasoning in vision-centric tasks to prevent unnecessary biases, and (iii) shifting vision-text training paradigms toward fostering models' ability to independently structure and infer relationships among visual cues.
29
67b89230f6632327952ec27a
null
null
2025-02-24T00:07:05.804000
LightThinker: Thinking Step-by-Step Compression
https://cdn-thumbnails.h…s/2502.15589.png
5
{ "_id": "620b3bbb0668e435407c8d0a", "avatarUrl": "/avatars/e0fccbb2577d76088e09f054c35cffbc.svg", "followerCount": 19, "fullname": "Ningyu Zhang", "isHf": false, "isMod": false, "isPro": false, "name": "Ningyu", "type": "user" }
true
[ "https://cdn-uploads.huggingface.co/production/uploads/620b3bbb0668e435407c8d0a/dhGMWf_tcPkvQlRm5DbD6.png" ]
2502.15589
[ { "_id": "67bbfe2d670ece8d9184f339", "hidden": false, "name": "Jintian Zhang", "status": "admin_assigned", "statusLastChangedAt": "2025-02-24T13:22:07.730Z", "user": { "_id": "63f89fe7565506a9cadcd2cf", "avatarUrl": "/avatars/7eb449a1109dcff051cb3ba680f0c082.svg", "fullname": "Jintian Zhang", "isPro": false, "type": "user", "user": "MikeDean" } }, { "_id": "67bbfe2d670ece8d9184f33a", "hidden": false, "name": "Yuqi Zhu", "status": null, "statusLastChangedAt": null, "user": null }, { "_id": "67bbfe2d670ece8d9184f33b", "hidden": false, "name": "Mengshu Sun", "status": "admin_assigned", "statusLastChangedAt": "2025-02-24T13:22:36.798Z", "user": { "_id": "64f6d1ed46284aa28d9abf6c", "avatarUrl": "/avatars/d6beaecfd00345e4a664862fff217427.svg", "fullname": "Sun mengshu", "isPro": false, "type": "user", "user": "sunmengshu" } }, { "_id": "67bbfe2d670ece8d9184f33c", "hidden": false, "name": "Yujie Luo", "status": "admin_assigned", "statusLastChangedAt": "2025-02-24T13:22:42.818Z", "user": { "_id": "67603f17d4f2ded0c1498358", "avatarUrl": "/avatars/97205504757d7eb33512ab96b2ecde28.svg", "fullname": "yujieluo", "isPro": false, "type": "user", "user": "yujieluo1031" } }, { "_id": "67bbfe2d670ece8d9184f33d", "hidden": false, "name": "Shuofei Qiao", "status": "claimed_verified", "statusLastChangedAt": "2025-02-24T09:07:02.722Z", "user": { "_id": "6447800f30fa4ecb85ddad80", "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/6447800f30fa4ecb85ddad80/NsmXIaMsWctmTNA7tFVkX.jpeg", "fullname": "Shuofei Qiao", "isPro": false, "type": "user", "user": "GoooDte" } }, { "_id": "67bbfe2d670ece8d9184f33e", "hidden": false, "name": "Lun Du", "status": null, "statusLastChangedAt": null, "user": null }, { "_id": "67bbfe2d670ece8d9184f33f", "hidden": false, "name": "Da Zheng", "status": "admin_assigned", "statusLastChangedAt": "2025-02-24T13:22:53.988Z", "user": { "_id": "66270e0026d5a3eee310ad53", "avatarUrl": "/avatars/db34068c114c348de296e00b1b5a5b9b.svg", "fullname": "Da Zheng", "isPro": false, "type": "user", "user": "zhengda1936" } }, { "_id": "67bbfe2d670ece8d9184f340", "hidden": false, "name": "Huajun Chen", "status": "admin_assigned", "statusLastChangedAt": "2025-02-24T13:24:31.548Z", "user": { "_id": "64931296137833d7ec7689cd", "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/64931296137833d7ec7689cd/TBihNdp1ZwIWjhfAWjRr6.jpeg", "fullname": "Huajun Chen", "isPro": false, "type": "user", "user": "huajunsir" } }, { "_id": "67bbfe2d670ece8d9184f341", "hidden": false, "name": "Ningyu Zhang", "status": "claimed_verified", "statusLastChangedAt": "2025-02-24T09:07:04.794Z", "user": { "_id": "620b3bbb0668e435407c8d0a", "avatarUrl": "/avatars/e0fccbb2577d76088e09f054c35cffbc.svg", "fullname": "Ningyu Zhang", "isPro": false, "type": "user", "user": "Ningyu" } } ]
2025-02-21T16:57:22
LightThinker: Thinking Step-by-Step Compression
Large language models (LLMs) have shown remarkable performance in complex reasoning tasks, but their efficiency is hindered by the substantial memory and computational costs associated with generating lengthy tokens. In this paper, we propose LightThinker, a novel method that enables LLMs to dynamically compress intermediate thoughts during reasoning. Inspired by human cognitive processes, LightThinker compresses verbose thought steps into compact representations and discards the original reasoning chains, thereby significantly reducing the number of tokens stored in the context window. This is achieved by training the model on when and how to perform compression through data construction, mapping hidden states to condensed gist tokens, and creating specialized attention masks. Additionally, we introduce the Dependency (Dep) metric to quantify the degree of compression by measuring the reliance on historical tokens during generation. Extensive experiments on four datasets and two models show that LightThinker reduces peak memory usage and inference time, while maintaining competitive accuracy. Our work provides a new direction for improving the efficiency of LLMs in complex reasoning tasks without sacrificing performance. Code will be released at https://github.com/zjunlp/LightThinker.
26
67bbfe2f670ece8d9184f3a4
null
null
2025-02-24T00:02:52.495000
Superintelligent Agents Pose Catastrophic Risks: Can Scientist AI Offer a Safer Path?
https://cdn-thumbnails.h…s/2502.15657.png
2
{ "_id": "6039478ab3ecf716b1a5fd4d", "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/6039478ab3ecf716b1a5fd4d/_Thy4E7taiSYBLKxEKJbT.jpeg", "followerCount": 65, "fullname": "taesiri", "isHf": false, "isMod": false, "isPro": true, "name": "taesiri", "type": "user" }
false
null
2502.15657
[ { "_id": "67bbfd6c3593f69f41512d54", "hidden": false, "name": "Yoshua Bengio", "status": null, "statusLastChangedAt": null, "user": null }, { "_id": "67bbfd6c3593f69f41512d55", "hidden": false, "name": "Michael Cohen", "status": null, "statusLastChangedAt": null, "user": null }, { "_id": "67bbfd6c3593f69f41512d56", "hidden": false, "name": "Damiano Fornasiere", "status": "admin_assigned", "statusLastChangedAt": "2025-02-24T15:53:43.499Z", "user": { "_id": "63e4beb2d6278c161be4ef52", "avatarUrl": "/avatars/15bbfde42e890f6f0dd0efd32dfdf5fa.svg", "fullname": "Damiano Fornasiere", "isPro": false, "type": "user", "user": "dfp00" } }, { "_id": "67bbfd6c3593f69f41512d57", "hidden": false, "name": "Joumana Ghosn", "status": null, "statusLastChangedAt": null, "user": null }, { "_id": "67bbfd6c3593f69f41512d58", "hidden": false, "name": "Pietro Greiner", "status": null, "statusLastChangedAt": null, "user": null }, { "_id": "67bbfd6c3593f69f41512d59", "hidden": false, "name": "Matt MacDermott", "status": "admin_assigned", "statusLastChangedAt": "2025-02-24T15:53:56.982Z", "user": { "_id": "65bb7386a951088f7dc69b16", "avatarUrl": "/avatars/bb72822451a9d769951c03e0cc3b1912.svg", "fullname": "Matt MacDermott", "isPro": false, "type": "user", "user": "mattmacdermott" } }, { "_id": "67bbfd6c3593f69f41512d5a", "hidden": false, "name": "Sören Mindermann", "status": null, "statusLastChangedAt": null, "user": null }, { "_id": "67bbfd6c3593f69f41512d5b", "hidden": false, "name": "Adam Oberman", "status": null, "statusLastChangedAt": null, "user": null }, { "_id": "67bbfd6c3593f69f41512d5c", "hidden": false, "name": "Jesse Richardson", "status": "admin_assigned", "statusLastChangedAt": "2025-02-24T15:54:09.707Z", "user": { "_id": "6602268ec92df8c189d56ef1", "avatarUrl": "/avatars/ec4a88bbf01f226640725ac117e53eae.svg", "fullname": "Jesse Richardson", "isPro": false, "type": "user", "user": "getfull" } }, { "_id": "67bbfd6c3593f69f41512d5d", "hidden": false, "name": "Oliver Richardson", "status": "admin_assigned", "statusLastChangedAt": "2025-02-24T15:54:15.449Z", "user": { "_id": "64e3e41e52a2eece10b99f0f", "avatarUrl": "/avatars/90045fe790388fe2cd010e04ad0137d1.svg", "fullname": "Oliver Richardson", "isPro": false, "type": "user", "user": "olliekse" } }, { "_id": "67bbfd6c3593f69f41512d5e", "hidden": false, "name": "Marc-Antoine Rondeau", "status": "admin_assigned", "statusLastChangedAt": "2025-02-24T15:54:22.066Z", "user": { "_id": "67112a441635565bd8d0a6cd", "avatarUrl": "/avatars/68dc8aa2a65c47c2e0869119212ac4aa.svg", "fullname": "Marc-Antoine Rondeau", "isPro": false, "type": "user", "user": "marondeau" } }, { "_id": "67bbfd6c3593f69f41512d5f", "hidden": false, "name": "Pierre-Luc St-Charles", "status": "admin_assigned", "statusLastChangedAt": "2025-02-24T15:54:28.067Z", "user": { "_id": "6686a17d7c05938b94d81875", "avatarUrl": "/avatars/caff2bc79068a024d74e9d3b7ea79eaf.svg", "fullname": "Pierre-Luc St-Charles", "isPro": false, "type": "user", "user": "plstcharles-mila" } }, { "_id": "67bbfd6c3593f69f41512d60", "hidden": false, "name": "David Williams-King", "status": "admin_assigned", "statusLastChangedAt": "2025-02-24T15:54:34.058Z", "user": { "_id": "6776217bd8ace1de4692e17e", "avatarUrl": "/avatars/357eb3e2c96b8a98b5d1029eefbb0ed3.svg", "fullname": "David Williams-King", "isPro": false, "type": "user", "user": "dwksrc" } } ]
2025-02-21T18:28:36
Superintelligent Agents Pose Catastrophic Risks: Can Scientist AI Offer a Safer Path?
The leading AI companies are increasingly focused on building generalist AI agents -- systems that can autonomously plan, act, and pursue goals across almost all tasks that humans can perform. Despite how useful these systems might be, unchecked AI agency poses significant risks to public safety and security, ranging from misuse by malicious actors to a potentially irreversible loss of human control. We discuss how these risks arise from current AI training methods. Indeed, various scenarios and experiments have demonstrated the possibility of AI agents engaging in deception or pursuing goals that were not specified by human operators and that conflict with human interests, such as self-preservation. Following the precautionary principle, we see a strong need for safer, yet still useful, alternatives to the current agency-driven trajectory. Accordingly, we propose as a core building block for further advances the development of a non-agentic AI system that is trustworthy and safe by design, which we call Scientist AI. This system is designed to explain the world from observations, as opposed to taking actions in it to imitate or please humans. It comprises a world model that generates theories to explain data and a question-answering inference machine. Both components operate with an explicit notion of uncertainty to mitigate the risks of overconfident predictions. In light of these considerations, a Scientist AI could be used to assist human researchers in accelerating scientific progress, including in AI safety. In particular, our system can be employed as a guardrail against AI agents that might be created despite the risks involved. Ultimately, focusing on non-agentic AI may enable the benefits of AI innovation while avoiding the risks associated with the current trajectory. We hope these arguments will motivate researchers, developers, and policymakers to favor this safer path.
5
67bbfd6c3593f69f41512d96
null
null
2025-02-23T23:43:43.529000
StructFlowBench: A Structured Flow Benchmark for Multi-turn Instruction Following
https://cdn-thumbnails.h…s/2502.14494.png
2
{ "_id": "670e57b3391f1a7021182bff", "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/no-auth/N0tuHZVz8KFPCv8G1qUX2.png", "followerCount": 2, "fullname": "Yuan Wu", "isHf": false, "isMod": false, "isPro": false, "name": "WhiteCatY", "type": "user" }
true
null
2502.14494
[ { "_id": "67b9dda03593f69f41cdb5d3", "hidden": false, "name": "Jinnan Li", "status": "admin_assigned", "statusLastChangedAt": "2025-02-24T13:24:42.884Z", "user": { "_id": "6434f5a5a4c9c55871ae888f", "avatarUrl": "/avatars/058389c773a67b2b03d44556f0ee43d1.svg", "fullname": "Jinnan Li", "isPro": false, "type": "user", "user": "Jinnan" } }, { "_id": "67b9dda03593f69f41cdb5d4", "hidden": true, "name": "Jinzhe Li", "status": "admin_assigned", "statusLastChangedAt": "2025-02-24T13:24:50.056Z", "user": { "_id": "67658bd7f7ac7e978ab6f957", "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/no-auth/c8VBgFckkZNUGeqUyotwq.png", "fullname": "Jinzhe Li", "isPro": false, "type": "user", "user": "JinzheFudan" } }, { "_id": "67b9dda03593f69f41cdb5d5", "hidden": false, "name": "Yue Wang", "status": null, "statusLastChangedAt": null, "user": null }, { "_id": "67b9dda03593f69f41cdb5d6", "hidden": false, "name": "Yi Chang", "status": null, "statusLastChangedAt": null, "user": null }, { "_id": "67b9dda03593f69f41cdb5d7", "hidden": false, "name": "Yuan Wu", "status": "claimed_verified", "statusLastChangedAt": "2025-02-24T15:47:33.508Z", "user": { "_id": "670e57b3391f1a7021182bff", "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/no-auth/N0tuHZVz8KFPCv8G1qUX2.png", "fullname": "Yuan Wu", "isPro": false, "type": "user", "user": "WhiteCatY" } } ]
2025-02-20T12:22:18
StructFlowBench: A Structured Flow Benchmark for Multi-turn Instruction Following
Multi-turn instruction following capability constitutes a core competency of large language models (LLMs) in real-world applications. Existing evaluation benchmarks predominantly focus on fine-grained constraint satisfaction and domain-specific capability assessment, yet overlook the crucial structural dependency between dialogue turns that distinguishes multi-turn from single-turn interactions. This structural dependency not only reflects user intent but also establishes a second dimension for instruction following evaluation beyond constraint satisfaction. To address this gap, we propose StructFlowBench, a multi-turn instruction following benchmark with structural flow modeling. The benchmark innovatively defines a structural flow framework comprising six fundamental inter-turn relationships, which not only introduces novel structural constraints for model evaluation but also serves as generation parameters for creating customized dialogue flows tailored to specific scenarios. Adopting established LLM-based automatic evaluation methodologies, we conduct systematic evaluations of 13 leading open-source and closed-source LLMs. Experimental results reveal significant deficiencies in current models' comprehension of multi-turn dialogue structures. The code is available at https://github.com/MLGroupJLU/StructFlowBench.
13
67b9dda13593f69f41cdb635
null
null
2025-02-23T23:17:33.152000
UPCORE: Utility-Preserving Coreset Selection for Balanced Unlearning
https://cdn-thumbnails.h…s/2502.15082.png
2
{ "_id": "64f64da90efa33bfe0a3d9ba", "avatarUrl": "/avatars/c45fb015433e46a2eeb9518910f75d35.svg", "followerCount": null, "fullname": "Vaidehi Patil", "isHf": false, "isMod": false, "isPro": false, "name": "vaidehi99", "type": "user" }
true
null
2502.15082
[ { "_id": "67bbe93f267aa2b537b318be", "hidden": false, "name": "Vaidehi Patil", "status": "claimed_verified", "statusLastChangedAt": "2025-02-24T09:07:15.794Z", "user": { "_id": "64f64da90efa33bfe0a3d9ba", "avatarUrl": "/avatars/c45fb015433e46a2eeb9518910f75d35.svg", "fullname": "Vaidehi Patil", "isPro": false, "type": "user", "user": "vaidehi99" } }, { "_id": "67bbe93f267aa2b537b318bf", "hidden": false, "name": "Elias Stengel-Eskin", "status": "admin_assigned", "statusLastChangedAt": "2025-02-24T16:16:49.662Z", "user": { "_id": "61781c4caf41befe8ff060e8", "avatarUrl": "/avatars/8871d7b046fc28cbc8638228da8e9737.svg", "fullname": "Elias Stengel-Eskin", "isPro": false, "type": "user", "user": "esteng" } }, { "_id": "67bbe93f267aa2b537b318c0", "hidden": false, "name": "Mohit Bansal", "status": "admin_assigned", "statusLastChangedAt": "2025-02-24T16:16:57.627Z", "user": { "_id": "665d9d3a057f7c508f98c625", "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/665d9d3a057f7c508f98c625/u1R9P9sJoAl4zEIcetbPy.jpeg", "fullname": "Mohit Bansal", "isPro": false, "type": "user", "user": "mohitbansal" } } ]
2025-02-20T22:51:10
UPCORE: Utility-Preserving Coreset Selection for Balanced Unlearning
User specifications or legal frameworks often require information to be removed from pretrained models, including large language models (LLMs). This requires deleting or "forgetting" a set of data points from an already-trained model, which typically degrades its performance on other data points. Thus, a balance must be struck between removing information and keeping the model's other abilities intact, with a failure to balance this trade-off leading to poor deletion or an unusable model. To this end, we propose UPCORE (Utility-Preserving Coreset Selection), a method-agnostic data selection framework for mitigating collateral damage during unlearning. Finding that the model damage is correlated with the variance of the model's representations on the forget set, we selectively prune the forget set to remove outliers, thereby minimizing model degradation after unlearning. We evaluate UPCORE across three standard unlearning methods consistently achieving a superior balance between the competing objectives of deletion efficacy and model preservation. To better evaluate this trade-off, we introduce a new metric, measuring the area-under-the-curve (AUC) across standard metrics. We find that UPCORE improves both standard metrics and AUC, benefitting from positive transfer between the coreset and pruned points while reducing negative transfer from the forget set to points outside of it.
1
67bbe940267aa2b537b318f4
null
null
2025-02-23T22:55:04.409000
PhotoDoodle: Learning Artistic Image Editing from Few-Shot Pairwise Data
https://cdn-thumbnails.h…s/2502.14397.png
6
{ "_id": "64311a95034ecbefddd141ef", "avatarUrl": "/avatars/b6dc5ca373bedbaa368208517954c375.svg", "followerCount": 4, "fullname": "Yiren Song", "isHf": false, "isMod": false, "isPro": true, "name": "yiren98", "type": "user" }
true
null
2502.14397
[ { "_id": "67bbed806f2833ecccf914dd", "hidden": false, "name": "Shijie Huang", "status": "admin_assigned", "statusLastChangedAt": "2025-02-24T13:13:17.369Z", "user": { "_id": "6239ad42cddfae177174bdc5", "avatarUrl": "/avatars/badc07ff40d9790527b27d87c924e9ee.svg", "fullname": "Shijie Huang", "isPro": false, "type": "user", "user": "Humor" } }, { "_id": "67bbed806f2833ecccf914de", "hidden": false, "name": "Yiren Song", "status": "admin_assigned", "statusLastChangedAt": "2025-02-24T13:13:23.453Z", "user": { "_id": "64311a95034ecbefddd141ef", "avatarUrl": "/avatars/b6dc5ca373bedbaa368208517954c375.svg", "fullname": "Yiren Song", "isPro": true, "type": "user", "user": "yiren98" } }, { "_id": "67bbed806f2833ecccf914df", "hidden": false, "name": "Yuxuan Zhang", "status": null, "statusLastChangedAt": null, "user": null }, { "_id": "67bbed806f2833ecccf914e0", "hidden": false, "name": "Hailong Guo", "status": null, "statusLastChangedAt": null, "user": null }, { "_id": "67bbed806f2833ecccf914e1", "hidden": false, "name": "Xueyin Wang", "status": "admin_assigned", "statusLastChangedAt": "2025-02-24T13:17:06.041Z", "user": { "_id": "65fd9853b329ebf2d40e280a", "avatarUrl": "/avatars/053e96c4db138cc8948c6350b04617b9.svg", "fullname": "Wang Xueying", "isPro": false, "type": "user", "user": "Forever-rover" } }, { "_id": "67bbed806f2833ecccf914e2", "hidden": false, "name": "Mike Zheng Shou", "status": "admin_assigned", "statusLastChangedAt": "2025-02-24T13:17:12.124Z", "user": { "_id": "661ab3da2b14565c7acccf5c", "avatarUrl": "/avatars/fa4fc03664803e02aede4d4c3d50b393.svg", "fullname": "Mike Zheng Shou", "isPro": false, "type": "user", "user": "AnalMom" } }, { "_id": "67bbed806f2833ecccf914e3", "hidden": false, "name": "Jiaming Liu", "status": null, "statusLastChangedAt": null, "user": null } ]
2025-02-20T09:35:38
PhotoDoodle: Learning Artistic Image Editing from Few-Shot Pairwise Data
We introduce PhotoDoodle, a novel image editing framework designed to facilitate photo doodling by enabling artists to overlay decorative elements onto photographs. Photo doodling is challenging because the inserted elements must appear seamlessly integrated with the background, requiring realistic blending, perspective alignment, and contextual coherence. Additionally, the background must be preserved without distortion, and the artist's unique style must be captured efficiently from limited training data. These requirements are not addressed by previous methods that primarily focus on global style transfer or regional inpainting. The proposed method, PhotoDoodle, employs a two-stage training strategy. Initially, we train a general-purpose image editing model, OmniEditor, using large-scale data. Subsequently, we fine-tune this model with EditLoRA using a small, artist-curated dataset of before-and-after image pairs to capture distinct editing styles and techniques. To enhance consistency in the generated results, we introduce a positional encoding reuse mechanism. Additionally, we release a PhotoDoodle dataset featuring six high-quality styles. Extensive experiments demonstrate the advanced performance and robustness of our method in customized image editing, opening new possibilities for artistic creation.
38
67bbed856f2833ecccf915c5
null
null
2025-02-23T22:24:55.500000
One-step Diffusion Models with $f$-Divergence Distribution Matching
https://cdn-thumbnails.h…s/2502.15681.png
2
{ "_id": "60f1abe7544c2adfd699860c", "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/1674929746905-60f1abe7544c2adfd699860c.jpeg", "followerCount": 6280, "fullname": "AK", "isHf": true, "isMod": false, "isPro": false, "name": "akhaliq", "type": "user" }
false
null
2502.15681
[ { "_id": "67bbe67c7727595ca5979d2a", "hidden": false, "name": "Yilun Xu", "status": "admin_assigned", "statusLastChangedAt": "2025-02-24T15:54:56.422Z", "user": { "_id": "649c37de5ffe05267a105fe8", "avatarUrl": "/avatars/4f262272e6222f879c6c0fedfa2e5861.svg", "fullname": "Yilun Xu", "isPro": false, "type": "user", "user": "AaronXyl" } }, { "_id": "67bbe67c7727595ca5979d2b", "hidden": false, "name": "Weili Nie", "status": "admin_assigned", "statusLastChangedAt": "2025-02-24T15:55:03.232Z", "user": { "_id": "64c1a69e226e016da8450ae2", "avatarUrl": "/avatars/54c161e8b8543244ed13cbe47017624e.svg", "fullname": "Weili Nie", "isPro": false, "type": "user", "user": "xiaoli08" } }, { "_id": "67bbe67c7727595ca5979d2c", "hidden": false, "name": "Arash Vahdat", "status": "admin_assigned", "statusLastChangedAt": "2025-02-24T15:55:08.446Z", "user": { "_id": "66727eb8f1bef807e01c6164", "avatarUrl": "/avatars/ba8edee083cfd6124b82e2a776f0fb43.svg", "fullname": "Arash vahdat", "isPro": false, "type": "user", "user": "ArashAVN" } } ]
2025-02-21T18:59:20
One-step Diffusion Models with f-Divergence Distribution Matching
Sampling from diffusion models involves a slow iterative process that hinders their practical deployment, especially for interactive applications. To accelerate generation speed, recent approaches distill a multi-step diffusion model into a single-step student generator via variational score distillation, which matches the distribution of samples generated by the student to the teacher's distribution. However, these approaches use the reverse Kullback-Leibler (KL) divergence for distribution matching which is known to be mode seeking. In this paper, we generalize the distribution matching approach using a novel f-divergence minimization framework, termed f-distill, that covers different divergences with different trade-offs in terms of mode coverage and training variance. We derive the gradient of the f-divergence between the teacher and student distributions and show that it is expressed as the product of their score differences and a weighting function determined by their density ratio. This weighting function naturally emphasizes samples with higher density in the teacher distribution, when using a less mode-seeking divergence. We observe that the popular variational score distillation approach using the reverse-KL divergence is a special case within our framework. Empirically, we demonstrate that alternative f-divergences, such as forward-KL and Jensen-Shannon divergences, outperform the current best variational score distillation methods across image generation tasks. In particular, when using Jensen-Shannon divergence, f-distill achieves current state-of-the-art one-step generation performance on ImageNet64 and zero-shot text-to-image generation on MS-COCO. Project page: https://research.nvidia.com/labs/genair/f-distill
6
67bbe6837727595ca5979e8c
null
null
2025-02-23T22:17:18.309000
SIFT: Grounding LLM Reasoning in Contexts via Stickers
https://cdn-thumbnails.h…s/2502.14922.png
3
{ "_id": "60f1abe7544c2adfd699860c", "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/1674929746905-60f1abe7544c2adfd699860c.jpeg", "followerCount": 6280, "fullname": "AK", "isHf": true, "isMod": false, "isPro": false, "name": "akhaliq", "type": "user" }
false
null
2502.14922
[ { "_id": "67bbe4ba79e0a705cf573985", "hidden": false, "name": "Zihao Zeng", "status": "claimed_verified", "statusLastChangedAt": "2025-02-24T13:05:08.989Z", "user": { "_id": "6544c0585a13979f82038a1c", "avatarUrl": "/avatars/01f3e862d49020e9eaf1728e4ba97bea.svg", "fullname": "Zeng Zihao", "isPro": false, "type": "user", "user": "zzh6666" } }, { "_id": "67bbe4ba79e0a705cf573986", "hidden": false, "name": "Xuyao Huang", "status": "admin_assigned", "statusLastChangedAt": "2025-02-24T13:19:22.415Z", "user": { "_id": "6721dacfc5309c08451d21d5", "avatarUrl": "/avatars/ac8be5ac8b8ee5b5533214e526b72dad.svg", "fullname": "Huang Xuyao", "isPro": false, "type": "user", "user": "ElysiaTrue" } }, { "_id": "67bbe4ba79e0a705cf573987", "hidden": false, "name": "Boxiu Li", "status": null, "statusLastChangedAt": null, "user": null }, { "_id": "67bbe4ba79e0a705cf573988", "hidden": false, "name": "Zhijie Deng", "status": "admin_assigned", "statusLastChangedAt": "2025-02-24T13:19:36.725Z", "user": { "_id": "673d5f411b0fe168ad4896b2", "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/no-auth/fYgQx6XNi_P5GxlUKbH5G.png", "fullname": "Zhijie Deng", "isPro": false, "type": "user", "user": "thudzj" } } ]
2025-02-19T17:38:46
SIFT: Grounding LLM Reasoning in Contexts via Stickers
This paper identifies the misinterpretation of the context can be a significant issue during the reasoning process of large language models, spanning from smaller models like Llama3.2-3B-Instruct to cutting-edge ones like DeepSeek-R1. For example, in the phrase "10 dollars per kilo," LLMs might not recognize that "per" means "for each," leading to calculation errors. We introduce a novel, post-training approach called **Stick to the Facts (SIFT)** to tackle this. SIFT leverages increasing inference-time compute to ground LLM reasoning in contexts. At the core of SIFT lies the *Sticker*, which is generated by the model itself to explicitly emphasize the key information within the context. Given the curated Sticker, SIFT generates two predictions -- one from the original query and one from the query augmented with the Sticker. If they differ, the Sticker is sequentially refined via *forward* optimization (to better align the extracted facts with the query) and *inverse* generation (to conform with the model's inherent tendencies) for more faithful reasoning outcomes. Studies across diverse models (from 3B to 100B+) and benchmarks (e.g., GSM8K, MATH-500) reveal consistent performance improvements. Notably, SIFT improves the pass@1 accuracy of DeepSeek-R1 on AIME2024 from 78.33% to **85.67**%, establishing a new state-of-the-art in the open-source community. The code is available at https://github.com/zhijie-group/SIFT.
29
67bbe4bb79e0a705cf5739c3
null
null
2025-02-23T22:11:17.789000
Think Inside the JSON: Reinforcement Strategy for Strict LLM Schema Adherence
https://cdn-thumbnails.h…s/2502.14905.png
2
{ "_id": "60f1abe7544c2adfd699860c", "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/1674929746905-60f1abe7544c2adfd699860c.jpeg", "followerCount": 6280, "fullname": "AK", "isHf": true, "isMod": false, "isPro": false, "name": "akhaliq", "type": "user" }
false
null
2502.14905
[ { "_id": "67bbe0520aabd5d571a723e7", "hidden": false, "name": "Bhavik Agarwal", "status": "claimed_verified", "statusLastChangedAt": "2025-02-24T16:38:48.442Z", "user": { "_id": "6739c3675d150a0c7e3c0014", "avatarUrl": "/avatars/87a0d9d39b0c854c467a3cdd46fa0ce1.svg", "fullname": "Bhavik Agarwal", "isPro": false, "type": "user", "user": "bhaviktheslider" } }, { "_id": "67bbe0520aabd5d571a723e8", "hidden": false, "name": "Ishan Joshi", "status": "admin_assigned", "statusLastChangedAt": "2025-02-24T15:55:31.357Z", "user": { "_id": "647e85b6e4d52fe0e0210718", "avatarUrl": "/avatars/ee9ed51b64486b898ce0b58b22db32d5.svg", "fullname": "Ishan Joshi", "isPro": false, "type": "user", "user": "IshanJoshi" } }, { "_id": "67bbe0520aabd5d571a723e9", "hidden": false, "name": "Viktoria Rojkova", "status": "admin_assigned", "statusLastChangedAt": "2025-02-24T15:55:40.802Z", "user": { "_id": "62c1b81e8b647bdc24f78027", "avatarUrl": "/avatars/b994d31a0c4161f715bb2153c0f0a83f.svg", "fullname": "Viktoria Rojkova", "isPro": true, "type": "user", "user": "vrojkova" } } ]
2025-02-18T16:44:55
Think Inside the JSON: Reinforcement Strategy for Strict LLM Schema Adherence
In this paper, we address the challenge of enforcing strict schema adherence in large language model (LLM) generation by leveraging LLM reasoning capabilities. Building on the DeepSeek R1 reinforcement learning framework, our approach trains structured reasoning skills of a 1.5B parameter model through a novel pipeline that combines synthetic reasoning dataset construction with custom reward functions under Group Relative Policy Optimization (GRPO). Specifically, we first perform R1 reinforcement learning on a 20K sample unstructured-to-structured dataset, mirroring the original DeepSeek R1 methods, to establish core reasoning abilities. Subsequently, we performed supervised fine-tuning on a separate 10K reasoning sample dataset, focusing on refining schema adherence for downstream tasks. Despite the relatively modest training scope, requiring approximately 20 hours on an 8xH100 GPU cluster for GRPO training and 3 hours on 1xA100 for SFT, our model demonstrates robust performance in enforcing schema consistency. We compare our ThinkJSON approach against the original DeepSeek R1 (671B), distilled versions of DeepSeek R1 (Qwen-1.5B and Qwen-7B), and Gemini 2.0 Flash (70B), showcasing its effectiveness in real-world applications. Our results underscore the practical utility of a resource-efficient framework for schema-constrained text generation.
9
67bbe0530aabd5d571a72437
null
null
2025-02-23T21:52:51.059000
Mol-LLaMA: Towards General Understanding of Molecules in Large Molecular Language Model
https://cdn-thumbnails.h…s/2502.13449.png
2
{ "_id": "65633c5e84a9fbe322f87d81", "avatarUrl": "/avatars/7233a555b43c669847a950ce5697c92c.svg", "followerCount": 9, "fullname": "DongkiKim", "isHf": false, "isMod": false, "isPro": false, "name": "DongkiKim", "type": "user" }
true
null
2502.13449
[ { "_id": "67b7ceae3e8a45f770b2606e", "hidden": false, "name": "Dongki Kim", "status": "claimed_verified", "statusLastChangedAt": "2025-02-21T09:59:11.214Z", "user": { "_id": "65633c5e84a9fbe322f87d81", "avatarUrl": "/avatars/7233a555b43c669847a950ce5697c92c.svg", "fullname": "DongkiKim", "isPro": false, "type": "user", "user": "DongkiKim" } }, { "_id": "67b7ceae3e8a45f770b2606f", "hidden": false, "name": "Wonbin Lee", "status": "admin_assigned", "statusLastChangedAt": "2025-02-24T13:09:46.291Z", "user": { "_id": "66d812997e6c9509bb15fac2", "avatarUrl": "/avatars/baf0e384a864de47bfd989aebe62c357.svg", "fullname": "Wonbin Lee", "isPro": false, "type": "user", "user": "WonbinLee067" } }, { "_id": "67b7ceae3e8a45f770b26070", "hidden": false, "name": "Sung Ju Hwang", "status": null, "statusLastChangedAt": null, "user": null } ]
2025-02-19T05:49:10
Mol-LLaMA: Towards General Understanding of Molecules in Large Molecular Language Model
Understanding molecules is key to understanding organisms and driving advances in drug discovery, requiring interdisciplinary knowledge across chemistry and biology. Although large molecular language models have achieved notable success in interpreting molecular structures, their instruction datasets are limited to the specific knowledge from task-oriented datasets and do not fully cover the fundamental characteristics of molecules, hindering their abilities as general-purpose molecular assistants. To address this issue, we propose Mol-LLaMA, a large molecular language model that grasps the general knowledge centered on molecules via multi-modal instruction tuning. To this end, we design key data types that encompass the fundamental features of molecules, incorporating essential knowledge from molecular structures. In addition, to improve understanding of molecular features, we introduce a module that integrates complementary information from different molecular encoders, leveraging the distinct advantages of different molecular representations. Our experimental results demonstrate that Mol-LLaMA is capable of comprehending the general features of molecules and generating relevant responses to users' queries with detailed explanations, implying its potential as a general-purpose assistant for molecular analysis.
42
67b7ceae3e8a45f770b2609f
null
null
2025-02-23T21:44:33.443000
InterFeedback: Unveiling Interactive Intelligence of Large Multimodal Models via Human Feedback
https://cdn-thumbnails.h…s/2502.15027.png
2
{ "_id": "60f1abe7544c2adfd699860c", "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/1674929746905-60f1abe7544c2adfd699860c.jpeg", "followerCount": 6280, "fullname": "AK", "isHf": true, "isMod": false, "isPro": false, "name": "akhaliq", "type": "user" }
false
null
2502.15027
[ { "_id": "67bbdcec79fcd85f09ddd869", "hidden": false, "name": "Henry Hengyuan Zhao", "status": "admin_assigned", "statusLastChangedAt": "2025-02-24T13:32:25.051Z", "user": { "_id": "647d7eb9770c299e56f5b39b", "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/647d7eb9770c299e56f5b39b/CC5JJgkyLkXOxw-BeT4G5.jpeg", "fullname": "Henry Hengyuan Zhao", "isPro": false, "type": "user", "user": "hhenryz" } }, { "_id": "67bbdcec79fcd85f09ddd86a", "hidden": false, "name": "Wenqi Pei", "status": null, "statusLastChangedAt": null, "user": null }, { "_id": "67bbdcec79fcd85f09ddd86b", "hidden": false, "name": "Yifei Tao", "status": "admin_assigned", "statusLastChangedAt": "2025-02-24T15:52:28.951Z", "user": { "_id": "6684c542cc72cbbde88ccf55", "avatarUrl": "/avatars/dafa8b5b44dbb8be859fbae94a6cd953.svg", "fullname": "yifeitao", "isPro": false, "type": "user", "user": "yifeitao" } }, { "_id": "67bbdcec79fcd85f09ddd86c", "hidden": false, "name": "Haiyang Mei", "status": "admin_assigned", "statusLastChangedAt": "2025-02-24T15:52:15.485Z", "user": { "_id": "66fcfa6e05638227c44233a9", "avatarUrl": "/avatars/4a88765c7f5c5ca77da6d21eb01f73e0.svg", "fullname": "Haiyang Mei", "isPro": false, "type": "user", "user": "meihaiyang" } }, { "_id": "67bbdcec79fcd85f09ddd86d", "hidden": false, "name": "Mike Zheng Shou", "status": "admin_assigned", "statusLastChangedAt": "2025-02-24T15:52:21.365Z", "user": { "_id": "661ab3da2b14565c7acccf5c", "avatarUrl": "/avatars/fa4fc03664803e02aede4d4c3d50b393.svg", "fullname": "Mike Zheng Shou", "isPro": false, "type": "user", "user": "AnalMom" } } ]
2025-02-20T20:27:06
InterFeedback: Unveiling Interactive Intelligence of Large Multimodal Models via Human Feedback
Existing benchmarks do not test Large Multimodal Models (LMMs) on their interactive intelligence with human users which is vital for developing general-purpose AI assistants. We design InterFeedback, an interactive framework, which can be applied to any LMM and dataset to assess this ability autonomously. On top of this, we introduce InterFeedback-Bench which evaluates interactive intelligence using two representative datasets, MMMU-Pro and MathVerse, to test 10 different open-source LMMs. Additionally, we present InterFeedback-Human, a newly collected dataset of 120 cases designed for manually testing interactive performance in leading models such as OpenAI-o1 and Claude-3.5-Sonnet. Our evaluation results show that even state-of-the-art LMM (like OpenAI-o1) can correct their results through human feedback less than 50%. Our findings point to the need for methods that can enhance the LMMs' capability to interpret and benefit from feedback.
7
67bbdced79fcd85f09ddd8da
null
null
2025-02-23T21:40:17.216000
The Relationship Between Reasoning and Performance in Large Language Models -- o3 (mini) Thinks Harder, Not Longer
https://cdn-thumbnails.h…s/2502.15631.png
2
{ "_id": "60f1abe7544c2adfd699860c", "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/1674929746905-60f1abe7544c2adfd699860c.jpeg", "followerCount": 6280, "fullname": "AK", "isHf": true, "isMod": false, "isPro": false, "name": "akhaliq", "type": "user" }
false
null
2502.15631
[ { "_id": "67bbdbe8ea3003f47f15d036", "hidden": false, "name": "Marthe Ballon", "status": null, "statusLastChangedAt": null, "user": null }, { "_id": "67bbdbe8ea3003f47f15d037", "hidden": false, "name": "Andres Algaba", "status": null, "statusLastChangedAt": null, "user": null }, { "_id": "67bbdbe8ea3003f47f15d038", "hidden": false, "name": "Vincent Ginis", "status": "admin_assigned", "statusLastChangedAt": "2025-02-24T15:53:02.578Z", "user": { "_id": "62d69d324be637062ecd88de", "avatarUrl": "/avatars/445cfce9170484d32cfa379015d9cd14.svg", "fullname": "Vincent Ginis", "isPro": false, "type": "user", "user": "VincentGinis" } } ]
2025-02-21T17:59:13
The Relationship Between Reasoning and Performance in Large Language Models -- o3 (mini) Thinks Harder, Not Longer
Large language models have demonstrated remarkable progress in mathematical reasoning, leveraging chain-of-thought and test-time compute scaling. However, many open questions remain regarding the interplay between reasoning token usage and accuracy gains. In particular, when comparing models across generations, it is unclear whether improved performance results from longer reasoning chains or more efficient reasoning. We systematically analyze chain-of-thought length across o1-mini and o3-mini variants on the Omni-MATH benchmark, finding that o3-mini (m) achieves superior accuracy without requiring longer reasoning chains than o1-mini. Moreover, we show that accuracy generally declines as reasoning chains grow across all models and compute settings, even when controlling for difficulty of the questions. This accuracy drop is significantly smaller in more proficient models, suggesting that new generations of reasoning models use test-time compute more effectively. Finally, we highlight that while o3-mini (h) achieves a marginal accuracy gain over o3-mini (m), it does so by allocating substantially more reasoning tokens across all problems, even the ones that o3-mini (m) can already solve. These findings provide new insights into the relationship between model capability and reasoning length, with implications for efficiency, scaling, and evaluation methodologies.
8
67bbdbefea3003f47f15d226
null
null
2025-02-23T21:39:54.375000
SurveyX: Academic Survey Automation via Large Language Models
https://cdn-thumbnails.h…s/2502.14776.png
5
{ "_id": "669e60ee8580d17cb60f8347", "avatarUrl": "/avatars/37963b833228afe39cc24854c9326670.svg", "followerCount": 5, "fullname": "yang jiawei", "isHf": false, "isMod": false, "isPro": false, "name": "Dany-0", "type": "user" }
true
null
2502.14776
[ { "_id": "67bbdb46d94d32bcfba70db7", "hidden": false, "name": "Xun Liang", "status": null, "statusLastChangedAt": null, "user": null }, { "_id": "67bbdb46d94d32bcfba70db8", "hidden": false, "name": "Jiawei Yang", "status": "claimed_verified", "statusLastChangedAt": "2025-02-24T13:05:10.864Z", "user": { "_id": "669e60ee8580d17cb60f8347", "avatarUrl": "/avatars/37963b833228afe39cc24854c9326670.svg", "fullname": "yang jiawei", "isPro": false, "type": "user", "user": "Dany-0" } }, { "_id": "67bbdb46d94d32bcfba70db9", "hidden": false, "name": "Yezhaohui Wang", "status": "extracted_confirmed", "statusLastChangedAt": "2025-02-24T04:12:46.485Z", "user": { "_id": "662dd19f9e6d371ab71b91ce", "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/662dd19f9e6d371ab71b91ce/mZBPw_Zs8ZlEFGlbekAoH.jpeg", "fullname": "Yezhaohui Wang", "isPro": false, "type": "user", "user": "HaruTeru" } }, { "_id": "67bbdb46d94d32bcfba70dba", "hidden": false, "name": "Chen Tang", "status": "claimed_verified", "statusLastChangedAt": "2025-02-24T13:05:12.859Z", "user": { "_id": "615a0d48b89c239e75b2b019", "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/1633291509590-noauth.jpeg", "fullname": "Travis Tang", "isPro": false, "type": "user", "user": "tangg555" } }, { "_id": "67bbdb46d94d32bcfba70dbb", "hidden": false, "name": "Zifan Zheng", "status": "claimed_verified", "statusLastChangedAt": "2025-02-24T09:07:22.303Z", "user": { "_id": "656f47ba2f058b368c0b1611", "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/656f47ba2f058b368c0b1611/mrmcmA8bxaDNUhuJQQ7T1.png", "fullname": "Zifan Zheng", "isPro": false, "type": "user", "user": "fan2goa1" } }, { "_id": "67bbdb46d94d32bcfba70dbc", "hidden": false, "name": "Simin Niu", "status": "admin_assigned", "statusLastChangedAt": "2025-02-24T11:55:35.171Z", "user": { "_id": "66daea8776dbaaa372eabec5", "avatarUrl": "/avatars/1e5fbe4ff06bb6121c7029253b76b79f.svg", "fullname": "siminniu", "isPro": false, "type": "user", "user": "siminniu" } }, { "_id": "67bbdb46d94d32bcfba70dbd", "hidden": false, "name": "Shichao Song", "status": "admin_assigned", "statusLastChangedAt": "2025-02-24T11:55:41.788Z", "user": { "_id": "656f339a5273668d5b946b33", "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/656f339a5273668d5b946b33/o2nBvQiOKKP5IfDmnpHP2.jpeg", "fullname": "Shichao Song", "isPro": false, "type": "user", "user": "Ki-Seki" } }, { "_id": "67bbdb46d94d32bcfba70dbe", "hidden": false, "name": "Hanyu Wang", "status": "claimed_verified", "statusLastChangedAt": "2025-02-24T09:07:20.146Z", "user": { "_id": "669e0b93c7cb0568dac6e92e", "avatarUrl": "/avatars/a39ea77d7391f164af8a80f94f85f2ca.svg", "fullname": "hanyu Wang", "isPro": false, "type": "user", "user": "UglyToilet" } }, { "_id": "67bbdb46d94d32bcfba70dbf", "hidden": false, "name": "Bo Tang", "status": null, "statusLastChangedAt": null, "user": null }, { "_id": "67bbdb46d94d32bcfba70dc0", "hidden": false, "name": "Feiyu Xiong", "status": null, "statusLastChangedAt": null, "user": null }, { "_id": "67bbdb46d94d32bcfba70dc1", "hidden": false, "name": "Keming Mao", "status": null, "statusLastChangedAt": null, "user": null }, { "_id": "67bbdb46d94d32bcfba70dc2", "hidden": false, "name": "Zhiyu li", "status": null, "statusLastChangedAt": null, "user": null } ]
2025-02-20T17:59:45
SurveyX: Academic Survey Automation via Large Language Models
Large Language Models (LLMs) have demonstrated exceptional comprehension capabilities and a vast knowledge base, suggesting that LLMs can serve as efficient tools for automated survey generation. However, recent research related to automated survey generation remains constrained by some critical limitations like finite context window, lack of in-depth content discussion, and absence of systematic evaluation frameworks. Inspired by human writing processes, we propose SurveyX, an efficient and organized system for automated survey generation that decomposes the survey composing process into two phases: the Preparation and Generation phases. By innovatively introducing online reference retrieval, a pre-processing method called AttributeTree, and a re-polishing process, SurveyX significantly enhances the efficacy of survey composition. Experimental evaluation results show that SurveyX outperforms existing automated survey generation systems in content quality (0.259 improvement) and citation quality (1.76 enhancement), approaching human expert performance across multiple evaluation dimensions. Examples of surveys generated by SurveyX are available on www.surveyx.cn
91
67bbdb47d94d32bcfba70df3
null
null
2025-02-21T21:19:35.358000
Generating Skyline Datasets for Data Science Models
https://cdn-thumbnails.h…s/2502.11262.png
2
{ "_id": "63f05764f1a47aaea5bcdee0", "avatarUrl": "/avatars/3a58d6f0439dce32d2010499f321fe9d.svg", "followerCount": 2, "fullname": "Mengying Wang", "isHf": false, "isMod": false, "isPro": false, "name": "wmying", "type": "user" }
true
null
2502.11262
[ { "_id": "67b68ee59076bb9959a6fd6e", "hidden": false, "name": "Mengying Wang", "status": "claimed_verified", "statusLastChangedAt": "2025-02-20T09:36:16.105Z", "user": { "_id": "63f05764f1a47aaea5bcdee0", "avatarUrl": "/avatars/3a58d6f0439dce32d2010499f321fe9d.svg", "fullname": "Mengying Wang", "isPro": false, "type": "user", "user": "wmying" } }, { "_id": "67b68ee59076bb9959a6fd6f", "hidden": false, "name": "Hanchao Ma", "status": null, "statusLastChangedAt": null, "user": null }, { "_id": "67b68ee59076bb9959a6fd70", "hidden": false, "name": "Yiyang Bian", "status": null, "statusLastChangedAt": null, "user": null }, { "_id": "67b68ee59076bb9959a6fd71", "hidden": false, "name": "Yangxin Fan", "status": null, "statusLastChangedAt": null, "user": null }, { "_id": "67b68ee59076bb9959a6fd72", "hidden": false, "name": "Yinghui Wu", "status": null, "statusLastChangedAt": null, "user": null } ]
2025-02-16T20:33:59
Generating Skyline Datasets for Data Science Models
Preparing high-quality datasets required by various data-driven AI and machine learning models has become a cornerstone task in data-driven analysis. Conventional data discovery methods typically integrate datasets towards a single pre-defined quality measure that may lead to bias for downstream tasks. This paper introduces MODis, a framework that discovers datasets by optimizing multiple user-defined, model-performance measures. Given a set of data sources and a model, MODis selects and integrates data sources into a skyline dataset, over which the model is expected to have the desired performance in all the performance measures. We formulate MODis as a multi-goal finite state transducer, and derive three feasible algorithms to generate skyline datasets. Our first algorithm adopts a "reduce-from-universal" strategy, that starts with a universal schema and iteratively prunes unpromising data. Our second algorithm further reduces the cost with a bi-directional strategy that interleaves data augmentation and reduction. We also introduce a diversification algorithm to mitigate the bias in skyline datasets. We experimentally verify the efficiency and effectiveness of our skyline data discovery algorithms, and showcase their applications in optimizing data science pipelines.
7
67b68ee89076bb9959a6fde3
null
null
2025-02-21T13:42:50.546000
Symmetrical Visual Contrastive Optimization: Aligning Vision-Language Models with Minimal Contrastive Images
https://cdn-thumbnails.h…s/2502.13928.png
2
{ "_id": "65222f97ef06bb99753cb829", "avatarUrl": "/avatars/f1a743d74e6d38b916acaec91b4e7e4f.svg", "followerCount": null, "fullname": "Shengguang Wu", "isHf": false, "isMod": false, "isPro": false, "name": "danielwusg", "type": "user" }
true
null
2502.13928
[ { "_id": "67b7cdac904136d47c3966d8", "hidden": false, "name": "Shengguang Wu", "status": "claimed_verified", "statusLastChangedAt": "2025-02-21T09:59:21.001Z", "user": { "_id": "65222f97ef06bb99753cb829", "avatarUrl": "/avatars/f1a743d74e6d38b916acaec91b4e7e4f.svg", "fullname": "Shengguang Wu", "isPro": false, "type": "user", "user": "danielwusg" } }, { "_id": "67b7cdac904136d47c3966d9", "hidden": false, "name": "Fan-Yun Sun", "status": null, "statusLastChangedAt": null, "user": null }, { "_id": "67b7cdac904136d47c3966da", "hidden": false, "name": "Kaiyue Wen", "status": null, "statusLastChangedAt": null, "user": null }, { "_id": "67b7cdac904136d47c3966db", "hidden": false, "name": "Nick Haber", "status": null, "statusLastChangedAt": null, "user": null } ]
2025-02-19T18:05:42
Symmetrical Visual Contrastive Optimization: Aligning Vision-Language Models with Minimal Contrastive Images
Recent studies have shown that Large Vision-Language Models (VLMs) tend to neglect image content and over-rely on language-model priors, resulting in errors in visually grounded tasks and hallucinations. We hypothesize that this issue arises because existing VLMs are not explicitly trained to generate texts that are accurately grounded in fine-grained image details. To enhance visual feedback during VLM training, we propose S-VCO (Symmetrical Visual Contrastive Optimization), a novel finetuning objective that steers the model toward capturing important visual details and aligning them with corresponding text tokens. To further facilitate this detailed alignment, we introduce MVC, a paired image-text dataset built by automatically filtering and augmenting visual counterfactual data to challenge the model with hard contrastive cases involving Minimal Visual Contrasts. Experiments show that our method consistently improves VLM performance across diverse benchmarks covering various abilities and domains, achieving up to a 22% reduction in hallucinations, and significant gains in vision-centric and general tasks. Notably, these improvements become increasingly pronounced in benchmarks with higher visual dependency. In short, S-VCO offers a significant enhancement of VLM's visually-dependent task performance while retaining or even improving the model's general abilities. We opensource our code at https://s-vco.github.io/
3
67b7cdb8904136d47c396910
null
null
2025-02-21T13:05:36.173000
Generating $π$-Functional Molecules Using STGG+ with Active Learning
https://cdn-thumbnails.h…s/2502.14842.png
2
{ "_id": "5f1158120c833276f61f1a84", "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/1608042047613-5f1158120c833276f61f1a84.jpeg", "followerCount": 777, "fullname": "Niels Rogge", "isHf": true, "isMod": false, "isPro": false, "name": "nielsr", "type": "user" }
false
null
2502.14842
[ { "_id": "67b8c05e109d4be55d85d1f0", "hidden": false, "name": "Alexia Jolicoeur-Martineau", "status": null, "statusLastChangedAt": null, "user": null }, { "_id": "67b8c05e109d4be55d85d1f1", "hidden": false, "name": "Yan Zhang", "status": null, "statusLastChangedAt": null, "user": null }, { "_id": "67b8c05e109d4be55d85d1f2", "hidden": false, "name": "Boris Knyazev", "status": "extracted_confirmed", "statusLastChangedAt": "2025-02-21T18:14:23.859Z", "user": { "_id": "63e16165f0039731dfdd442a", "avatarUrl": "/avatars/37cf99dc016c291c800f60d260173482.svg", "fullname": "Boris Knyazev", "isPro": false, "type": "user", "user": "bknyaz" } }, { "_id": "67b8c05e109d4be55d85d1f3", "hidden": false, "name": "Aristide Baratin", "status": null, "statusLastChangedAt": null, "user": null }, { "_id": "67b8c05e109d4be55d85d1f4", "hidden": false, "name": "Cheng-Hao Liu", "status": null, "statusLastChangedAt": null, "user": null } ]
2025-02-20T18:52:42
Generating π-Functional Molecules Using STGG+ with Active Learning
Generating novel molecules with out-of-distribution properties is a major challenge in molecular discovery. While supervised learning methods generate high-quality molecules similar to those in a dataset, they struggle to generalize to out-of-distribution properties. Reinforcement learning can explore new chemical spaces but often conducts 'reward-hacking' and generates non-synthesizable molecules. In this work, we address this problem by integrating a state-of-the-art supervised learning method, STGG+, in an active learning loop. Our approach iteratively generates, evaluates, and fine-tunes STGG+ to continuously expand its knowledge. We denote this approach STGG+AL. We apply STGG+AL to the design of organic pi-functional materials, specifically two challenging tasks: 1) generating highly absorptive molecules characterized by high oscillator strength and 2) designing absorptive molecules with reasonable oscillator strength in the near-infrared (NIR) range. The generated molecules are validated and rationalized in-silico with time-dependent density functional theory. Our results demonstrate that our method is highly effective in generating novel molecules with high oscillator strength, contrary to existing methods such as reinforcement learning (RL) methods. We open-source our active-learning code along with our Conjugated-xTB dataset containing 2.9 million pi-conjugated molecules and the function for approximating the oscillator strength and absorption wavelength (based on sTDA-xTB).
4
67b8c05f109d4be55d85d249
null
null
2025-02-21T11:36:30.717000
How to Get Your LLM to Generate Challenging Problems for Evaluation
https://cdn-thumbnails.h…s/2502.14678.png
2
{ "_id": "631a523c04f8ed65eff16fb4", "avatarUrl": "/avatars/2b284403c88f140d7bef283f729f7a3e.svg", "followerCount": 1, "fullname": "Arkil Patel", "isHf": false, "isMod": false, "isPro": false, "name": "arkilpatel", "type": "user" }
true
null
2502.14678
[ { "_id": "67b886298512a3eca0668ba6", "hidden": false, "name": "Arkil Patel", "status": "claimed_verified", "statusLastChangedAt": "2025-02-24T09:20:45.806Z", "user": { "_id": "631a523c04f8ed65eff16fb4", "avatarUrl": "/avatars/2b284403c88f140d7bef283f729f7a3e.svg", "fullname": "Arkil Patel", "isPro": false, "type": "user", "user": "arkilpatel" } }, { "_id": "67b886298512a3eca0668ba7", "hidden": false, "name": "Siva Reddy", "status": null, "statusLastChangedAt": null, "user": null }, { "_id": "67b886298512a3eca0668ba8", "hidden": false, "name": "Dzmitry Bahdanau", "status": null, "statusLastChangedAt": null, "user": null } ]
2025-02-20T16:09:55
How to Get Your LLM to Generate Challenging Problems for Evaluation
The pace of evolution of Large Language Models (LLMs) necessitates new approaches for rigorous and comprehensive evaluation. Traditional human annotation is increasingly impracticable due to the complexities and costs involved in generating high-quality, challenging problems. In this work, we introduce CHASE, a unified framework to synthetically generate challenging problems using LLMs without human involvement. For a given task, our approach builds a hard problem in a bottom-up manner from simpler components. Moreover, our framework decomposes the generation process into independently verifiable sub-tasks, thereby ensuring a high level of quality and correctness. We implement CHASE to create evaluation benchmarks across three diverse domains: (1) document-based question answering, (2) repository-level code completion, and (3) math reasoning. The performance of state-of-the-art LLMs on these synthetic benchmarks lies in the range of 40-60% accuracy, thereby demonstrating the effectiveness of our framework at generating challenging problems. We publicly release our benchmarks and code.
16
67b8862a8512a3eca0668c00
null
null
2025-02-21T11:34:53.838000
Multimodal RewardBench: Holistic Evaluation of Reward Models for Vision Language Models
https://cdn-thumbnails.h…s/2502.14191.png
2
{ "_id": "621e9388345a1d9ab65391c3", "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/621e9388345a1d9ab65391c3/RxurNzyAWJOUdgeSHQi1R.jpeg", "followerCount": 11, "fullname": "Michihiro Yasunaga", "isHf": false, "isMod": false, "isPro": false, "name": "michiyasunaga", "type": "user" }
true
[ "https://cdn-uploads.huggingface.co/production/uploads/621e9388345a1d9ab65391c3/FaHBHPH3KH5KQ-kQ4bBek.png" ]
2502.14191
[ { "_id": "67b8aaa5ef55d96f2cbd7eaa", "hidden": false, "name": "Michihiro Yasunaga", "status": "claimed_verified", "statusLastChangedAt": "2025-02-21T16:39:03.035Z", "user": { "_id": "621e9388345a1d9ab65391c3", "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/621e9388345a1d9ab65391c3/RxurNzyAWJOUdgeSHQi1R.jpeg", "fullname": "Michihiro Yasunaga", "isPro": false, "type": "user", "user": "michiyasunaga" } }, { "_id": "67b8aaa5ef55d96f2cbd7eab", "hidden": false, "name": "Luke Zettlemoyer", "status": null, "statusLastChangedAt": null, "user": null }, { "_id": "67b8aaa5ef55d96f2cbd7eac", "hidden": false, "name": "Marjan Ghazvininejad", "status": "claimed_verified", "statusLastChangedAt": "2025-02-24T09:20:41.579Z", "user": { "_id": "660f0fd377a1e2509aa5a679", "avatarUrl": "/avatars/e04ef05bed0bf6cefdc7e3e39674e2f9.svg", "fullname": "Marjan Ghazvininejad", "isPro": false, "type": "user", "user": "mghazvininejad" } } ]
2025-02-20T01:48:13
Multimodal RewardBench: Holistic Evaluation of Reward Models for Vision Language Models
Reward models play an essential role in training vision-language models (VLMs) by assessing output quality to enable aligning with human preferences. Despite their importance, the research community lacks comprehensive open benchmarks for evaluating multimodal reward models in VLMs. To address this gap, we introduce Multimodal RewardBench, an expert-annotated benchmark covering six domains: general correctness, preference, knowledge, reasoning, safety, and visual question-answering. Our dataset comprises 5,211 annotated (prompt, chosen response, rejected response) triplets collected from various VLMs. In evaluating a range of VLM judges, we find that even the top-performing models, Gemini 1.5 Pro and Claude 3.5 Sonnet, achieve only 72% overall accuracy. Notably, most models struggle in the reasoning and safety domains. These findings suggest that Multimodal RewardBench offers a challenging testbed for advancing reward model development across multiple domains. We release the benchmark at https://github.com/facebookresearch/multimodal_rewardbench.
7
67b8aaa6ef55d96f2cbd7edf
null
null
2025-02-21T09:39:36.504000
LServe: Efficient Long-sequence LLM Serving with Unified Sparse Attention
https://cdn-thumbnails.h…s/2502.14866.png
2
{ "_id": "640d3eaa3623f6a56dde856d", "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/1678589663024-640d3eaa3623f6a56dde856d.jpeg", "followerCount": 14, "fullname": "vansin", "isHf": false, "isMod": false, "isPro": false, "name": "vansin", "type": "user" }
false
null
2502.14866
[ { "_id": "67b7f46218d8b6a80a14220b", "hidden": false, "name": "Shang Yang", "status": "claimed_verified", "statusLastChangedAt": "2025-02-21T09:58:16.384Z", "user": { "_id": "641d8bacd526196afc12766d", "avatarUrl": "/avatars/73f7b2d86a7bf27940bec2b1f199d71b.svg", "fullname": "Shang Yang", "isPro": false, "type": "user", "user": "Shangy" } }, { "_id": "67b7f46218d8b6a80a14220c", "hidden": false, "name": "Junxian Guo", "status": "admin_assigned", "statusLastChangedAt": "2025-02-21T15:17:47.441Z", "user": { "_id": "64e702982eba1760dfb0166c", "avatarUrl": "/avatars/3291112513914d823cd524dafec66c87.svg", "fullname": "Junxian Guo", "isPro": false, "type": "user", "user": "JerryGJX" } }, { "_id": "67b7f46218d8b6a80a14220d", "hidden": false, "name": "Haotian Tang", "status": "admin_assigned", "statusLastChangedAt": "2025-02-21T15:17:54.758Z", "user": { "_id": "646791c5374fe5728d403369", "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/646791c5374fe5728d403369/2kyCP48za0T3PTj-IR-J0.jpeg", "fullname": "Haotian Tang", "isPro": false, "type": "user", "user": "kentang1998" } }, { "_id": "67b7f46218d8b6a80a14220e", "hidden": false, "name": "Qinghao Hu", "status": "admin_assigned", "statusLastChangedAt": "2025-02-21T15:18:00.291Z", "user": { "_id": "67a6d5f424a2ace09c62640d", "avatarUrl": "/avatars/0360e2543d791c4d046dd516eb70ced1.svg", "fullname": "Qinghao Hu", "isPro": false, "type": "user", "user": "huqinghao" } }, { "_id": "67b7f46218d8b6a80a14220f", "hidden": false, "name": "Guangxuan Xiao", "status": "admin_assigned", "statusLastChangedAt": "2025-02-21T15:18:07.219Z", "user": { "_id": "6362fefe19cf373a5fc5b39e", "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/6362fefe19cf373a5fc5b39e/v4uJ5bzjpZJOxqGUHYPM2.jpeg", "fullname": "Guangxuan Xiao", "isPro": false, "type": "user", "user": "Guangxuan-Xiao" } }, { "_id": "67b7f46218d8b6a80a142210", "hidden": false, "name": "Jiaming Tang", "status": "admin_assigned", "statusLastChangedAt": "2025-02-21T15:18:13.068Z", "user": { "_id": "65ac13385860f06ff21c9a8a", "avatarUrl": "/avatars/5c4c151e90c0dfc0e321623013594bbe.svg", "fullname": "Jiaming Tang", "isPro": false, "type": "user", "user": "Dudep" } }, { "_id": "67b7f46218d8b6a80a142211", "hidden": false, "name": "Yujun Lin", "status": "admin_assigned", "statusLastChangedAt": "2025-02-21T15:18:19.276Z", "user": { "_id": "66a156136609d2b2b0f6353a", "avatarUrl": "/avatars/fc6850b5fc437269bf0870f6a6cdcf40.svg", "fullname": "Yujun Lin", "isPro": false, "type": "user", "user": "synxlin" } }, { "_id": "67b7f46218d8b6a80a142212", "hidden": false, "name": "Zhijian Liu", "status": "admin_assigned", "statusLastChangedAt": "2025-02-21T15:18:26.473Z", "user": { "_id": "650dac79b959b0e1d41d7378", "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/650dac79b959b0e1d41d7378/mzbN0MFk3k8b94FQ40I7L.jpeg", "fullname": "Zhijian Liu", "isPro": false, "type": "user", "user": "zhijianliu" } }, { "_id": "67b7f46218d8b6a80a142213", "hidden": false, "name": "Yao Lu", "status": null, "statusLastChangedAt": null, "user": null }, { "_id": "67b7f46218d8b6a80a142214", "hidden": false, "name": "Song Han", "status": "admin_assigned", "statusLastChangedAt": "2025-02-21T15:18:34.872Z", "user": { "_id": "63797f727df2fefdcaf3ff7e", "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/1668906853549-noauth.jpeg", "fullname": "Song", "isPro": false, "type": "user", "user": "songhan" } } ]
2025-02-20T18:59:52
LServe: Efficient Long-sequence LLM Serving with Unified Sparse Attention
Large language models (LLMs) have shown remarkable potential in processing long sequences, yet efficiently serving these long-context models remains challenging due to the quadratic computational complexity of attention in the prefilling stage and the large memory footprint of the KV cache in the decoding stage. To address these issues, we introduce LServe, an efficient system that accelerates long-sequence LLM serving via hybrid sparse attention. This method unifies different hardware-friendly, structured sparsity patterns for both prefilling and decoding attention into a single framework, where computations on less important tokens are skipped block-wise. LServe demonstrates the compatibility of static and dynamic sparsity in long-context LLM attention. This design enables multiplicative speedups by combining these optimizations. Specifically, we convert half of the attention heads to nearly free streaming heads in both the prefilling and decoding stages. Additionally, we find that only a constant number of KV pages is required to preserve long-context capabilities, irrespective of context length. We then design a hierarchical KV page selection policy that dynamically prunes KV pages based on query-centric similarity. On average, LServe accelerates LLM prefilling by up to 2.9x and decoding by 1.3-2.1x over vLLM, maintaining long-context accuracy. Code is released at https://github.com/mit-han-lab/omniserve.
12
67b7f46318d8b6a80a142267
null
null
2025-02-21T08:26:31.100000
Enhancing Cognition and Explainability of Multimodal Foundation Models with Self-Synthesized Data
https://cdn-thumbnails.h…s/2502.14044.png
3
{ "_id": "64beb6b6140491ca9f803ebf", "avatarUrl": "/avatars/0daa2e813a13668b8b708cd8c12763d9.svg", "followerCount": null, "fullname": "Yucheng SHi", "isHf": false, "isMod": false, "isPro": false, "name": "YuchengShi", "type": "user" }
true
null
2502.14044
[ { "_id": "67b87e3a346553e4006bf37c", "hidden": false, "name": "Yucheng Shi", "status": "admin_assigned", "statusLastChangedAt": "2025-02-21T15:14:19.237Z", "user": { "_id": "64beb6b6140491ca9f803ebf", "avatarUrl": "/avatars/0daa2e813a13668b8b708cd8c12763d9.svg", "fullname": "Yucheng SHi", "isPro": false, "type": "user", "user": "YuchengShi" } }, { "_id": "67b87e3a346553e4006bf37d", "hidden": false, "name": "Quanzheng Li", "status": null, "statusLastChangedAt": null, "user": null }, { "_id": "67b87e3a346553e4006bf37e", "hidden": false, "name": "Jin Sun", "status": "admin_assigned", "statusLastChangedAt": "2025-02-21T15:15:13.205Z", "user": { "_id": "6409cde91ee054d66a66c817", "avatarUrl": "/avatars/ed18aa9902760a7ad6e9c5789b26dbe3.svg", "fullname": "jin sun", "isPro": false, "type": "user", "user": "jinsun" } }, { "_id": "67b87e3a346553e4006bf37f", "hidden": false, "name": "Xiang Li", "status": null, "statusLastChangedAt": null, "user": null }, { "_id": "67b87e3a346553e4006bf380", "hidden": false, "name": "Ninghao Liu", "status": null, "statusLastChangedAt": null, "user": null } ]
2025-02-19T19:05:45
Enhancing Cognition and Explainability of Multimodal Foundation Models with Self-Synthesized Data
Large multimodal models (LMMs) have shown impressive capabilities in a wide range of visual tasks. However, they often struggle with fine-grained visual reasoning, failing to identify domain-specific objectives and provide justifiable explanations for their predictions. To address this, we propose a novel visual rejection sampling framework to improve the cognition and explainability of LMMs using self-synthesized data. Specifically, visual fine-tuning requires images, queries, and target answers. Our approach begins by synthesizing interpretable answers that include human-verifiable visual features. These features are based on expert-defined concepts, carefully selected based on their alignment with the image content. After each round of fine-tuning, we apply a reward model-free filtering mechanism to select the highest-quality interpretable answers for the next round of tuning. This iterative process of data synthesis and fine-tuning progressively improves the model's ability to generate accurate and reasonable explanations. Experimental results demonstrate the effectiveness of our method in improving both the accuracy and explainability of specialized visual classification tasks.
7
67b87e3d346553e4006bf416
null
null
2025-02-21T08:18:34.557000
NAVIG: Natural Language-guided Analysis with Vision Language Models for Image Geo-localization
https://cdn-thumbnails.h…s/2502.14638.png
2
{ "_id": "648c4af819bb04c06467189c", "avatarUrl": "/avatars/8b9372a233d4c00b555625fa7b5203e2.svg", "followerCount": 2, "fullname": "Zheyuan Zhang", "isHf": false, "isMod": false, "isPro": false, "name": "Zheyuan22", "type": "user" }
true
null
2502.14638
[ { "_id": "67b8760bf8311235c642d7a4", "hidden": false, "name": "Zheyuan Zhang", "status": "claimed_verified", "statusLastChangedAt": "2025-02-21T14:42:43.700Z", "user": { "_id": "648c4af819bb04c06467189c", "avatarUrl": "/avatars/8b9372a233d4c00b555625fa7b5203e2.svg", "fullname": "Zheyuan Zhang", "isPro": false, "type": "user", "user": "Zheyuan22" } }, { "_id": "67b8760bf8311235c642d7a5", "hidden": false, "name": "Runze Li", "status": "claimed_verified", "statusLastChangedAt": "2025-02-24T09:21:43.993Z", "user": { "_id": "66482dea53317bdff335b006", "avatarUrl": "/avatars/5079ed975c5689739e1e8e4ae8a47a3d.svg", "fullname": "RUNZE LI", "isPro": false, "type": "user", "user": "huggingCode11" } }, { "_id": "67b8760bf8311235c642d7a6", "hidden": false, "name": "Tasnim Kabir", "status": "admin_assigned", "statusLastChangedAt": "2025-02-21T15:01:51.663Z", "user": { "_id": "6676067b8a4064c02b4ef6b7", "avatarUrl": "/avatars/319ff99740183793cab3045ae3bf1395.svg", "fullname": "Tasnim Kabir", "isPro": false, "type": "user", "user": "TasnimKabir12" } }, { "_id": "67b8760bf8311235c642d7a7", "hidden": false, "name": "Jordan Boyd-Graber", "status": null, "statusLastChangedAt": null, "user": null } ]
2025-02-20T15:21:35
NAVIG: Natural Language-guided Analysis with Vision Language Models for Image Geo-localization
Image geo-localization is the task of predicting the specific location of an image and requires complex reasoning across visual, geographical, and cultural contexts. While prior Vision Language Models (VLMs) have the best accuracy at this task, there is a dearth of high-quality datasets and models for analytical reasoning. We first create NaviClues, a high-quality dataset derived from GeoGuessr, a popular geography game, to supply examples of expert reasoning from language. Using this dataset, we present Navig, a comprehensive image geo-localization framework integrating global and fine-grained image information. By reasoning with language, Navig reduces the average distance error by 14% compared to previous state-of-the-art models while requiring fewer than 1000 training samples. Our dataset and code are available at https://github.com/SparrowZheyuan18/Navig/.
11
67b8760ef8311235c642d89d
null
null
2025-02-21T08:00:41.165000
From RAG to Memory: Non-Parametric Continual Learning for Large Language Models
https://cdn-thumbnails.h…s/2502.14802.png
2
{ "_id": "60a4ebfbaa9320dbbe69e37c", "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/60a4ebfbaa9320dbbe69e37c/QLaEohXCWaUy8YX3wKQ_w.jpeg", "followerCount": 2, "fullname": "Yiheng Shu", "isHf": false, "isMod": false, "isPro": false, "name": "yhshu", "type": "user" }
true
null
2502.14802
[ { "_id": "67b878b8f17ca6989fd21e92", "hidden": false, "name": "Bernal Jiménez Gutiérrez", "status": null, "statusLastChangedAt": null, "user": null }, { "_id": "67b878b8f17ca6989fd21e93", "hidden": false, "name": "Yiheng Shu", "status": "admin_assigned", "statusLastChangedAt": "2025-02-21T15:15:54.523Z", "user": { "_id": "60a4ebfbaa9320dbbe69e37c", "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/60a4ebfbaa9320dbbe69e37c/QLaEohXCWaUy8YX3wKQ_w.jpeg", "fullname": "Yiheng Shu", "isPro": false, "type": "user", "user": "yhshu" } }, { "_id": "67b878b8f17ca6989fd21e94", "hidden": false, "name": "Weijian Qi", "status": "claimed_verified", "statusLastChangedAt": "2025-02-24T09:21:41.970Z", "user": { "_id": "67169e3fd720d7d51e36a67e", "avatarUrl": "/avatars/91113e5520009a4ed709bc62b96f2150.svg", "fullname": "WeijianQi", "isPro": false, "type": "user", "user": "WeijianQi1999" } }, { "_id": "67b878b8f17ca6989fd21e95", "hidden": false, "name": "Sizhe Zhou", "status": "admin_assigned", "statusLastChangedAt": "2025-02-21T15:16:08.161Z", "user": { "_id": "65030fc90a57e8f2b26bcaa3", "avatarUrl": "/avatars/8c25a4a9735f268ee8541f3e2017d92c.svg", "fullname": "Sizhe Zhou", "isPro": false, "type": "user", "user": "KevinSRR" } }, { "_id": "67b878b8f17ca6989fd21e96", "hidden": false, "name": "Yu Su", "status": null, "statusLastChangedAt": null, "user": null } ]
2025-02-20T18:26:02
From RAG to Memory: Non-Parametric Continual Learning for Large Language Models
Our ability to continuously acquire, organize, and leverage knowledge is a key feature of human intelligence that AI systems must approximate to unlock their full potential. Given the challenges in continual learning with large language models (LLMs), retrieval-augmented generation (RAG) has become the dominant way to introduce new information. However, its reliance on vector retrieval hinders its ability to mimic the dynamic and interconnected nature of human long-term memory. Recent RAG approaches augment vector embeddings with various structures like knowledge graphs to address some of these gaps, namely sense-making and associativity. However, their performance on more basic factual memory tasks drops considerably below standard RAG. We address this unintended deterioration and propose HippoRAG 2, a framework that outperforms standard RAG comprehensively on factual, sense-making, and associative memory tasks. HippoRAG 2 builds upon the Personalized PageRank algorithm used in HippoRAG and enhances it with deeper passage integration and more effective online use of an LLM. This combination pushes this RAG system closer to the effectiveness of human long-term memory, achieving a 7% improvement in associative memory tasks over the state-of-the-art embedding model while also exhibiting superior factual knowledge and sense-making memory capabilities. This work paves the way for non-parametric continual learning for LLMs. Our code and data will be released at https://github.com/OSU-NLP-Group/HippoRAG.
11
67b878bcf17ca6989fd21f7a
null
null
2025-02-21T07:52:55.537000
CLIPPER: Compression enables long-context synthetic data generation
https://cdn-thumbnails.h…s/2502.14854.png
2
{ "_id": "65b976fdf69f4d0377aef3fe", "avatarUrl": "/avatars/1201194e2956c56b50098cc465a04c11.svg", "followerCount": 5, "fullname": "Chau Minh Pham", "isHf": false, "isMod": false, "isPro": false, "name": "chtmp223", "type": "user" }
true
null
2502.14854
[ { "_id": "67b7edf6a1d1394d1682c085", "hidden": false, "name": "Chau Minh Pham", "status": "claimed_verified", "statusLastChangedAt": "2025-02-21T09:58:36.388Z", "user": { "_id": "65b976fdf69f4d0377aef3fe", "avatarUrl": "/avatars/1201194e2956c56b50098cc465a04c11.svg", "fullname": "Chau Minh Pham", "isPro": false, "type": "user", "user": "chtmp223" } }, { "_id": "67b7edf6a1d1394d1682c086", "hidden": false, "name": "Yapei Chang", "status": "admin_assigned", "statusLastChangedAt": "2025-02-21T15:17:25.220Z", "user": { "_id": "5f1dcc06cb8f993fa01f4775", "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/1668660782327-5f1dcc06cb8f993fa01f4775.png", "fullname": "Yapei Chang", "isPro": false, "type": "user", "user": "yapeichang" } }, { "_id": "67b7edf6a1d1394d1682c087", "hidden": false, "name": "Mohit Iyyer", "status": "admin_assigned", "statusLastChangedAt": "2025-02-21T15:17:30.925Z", "user": { "_id": "6669df71d1652853e4b66ee5", "avatarUrl": "/avatars/8a40bca9423ef76f39ae24d7a9e63478.svg", "fullname": "Mohit Iyyer", "isPro": false, "type": "user", "user": "mohitiyyer" } } ]
2025-02-20T18:58:03
CLIPPER: Compression enables long-context synthetic data generation
LLM developers are increasingly reliant on synthetic data, but generating high-quality data for complex long-context reasoning tasks remains challenging. We introduce CLIPPER, a compression-based approach for generating synthetic data tailored to narrative claim verification - a task that requires reasoning over a book to verify a given claim. Instead of generating claims directly from the raw text of the book, which results in artifact-riddled claims, CLIPPER first compresses the book into chapter outlines and book summaries and then uses these intermediate representations to generate complex claims and corresponding chain-of-thoughts. Compared to naive approaches, CLIPPER produces claims that are more valid, grounded, and complex. Using CLIPPER, we construct a dataset of 19K synthetic book claims paired with their source texts and chain-of-thought reasoning, and use it to fine-tune three open-weight models. Our best model achieves breakthrough results on narrative claim verification (from 28% to 76% accuracy on our test set) and sets a new state-of-the-art for sub-10B models on the NoCha leaderboard. Further analysis shows that our models generate more detailed and grounded chain-of-thought reasoning while also improving performance on other narrative understanding tasks (e.g., NarrativeQA).
7
67b7edf8a1d1394d1682c0d4
null
null
2025-02-21T07:16:00.307000
LLM-based User Profile Management for Recommender System
https://cdn-thumbnails.h…s/2502.14541.png
2
{ "_id": "67b841b821956199df64926b", "avatarUrl": "/avatars/e714df967ca1b78425fa188b6843f057.svg", "followerCount": null, "fullname": "Seunghwan Bang", "isHf": false, "isMod": false, "isPro": false, "name": "Breadbang", "type": "user" }
true
null
2502.14541
[ { "_id": "67b8439499159e6fc939970b", "hidden": false, "name": "Seunghwan Bang", "status": "claimed_verified", "statusLastChangedAt": "2025-02-21T09:49:31.964Z", "user": { "_id": "67b841b821956199df64926b", "avatarUrl": "/avatars/e714df967ca1b78425fa188b6843f057.svg", "fullname": "Seunghwan Bang", "isPro": false, "type": "user", "user": "Breadbang" } }, { "_id": "67b8439499159e6fc939970c", "hidden": false, "name": "Hwanjun Song", "status": null, "statusLastChangedAt": null, "user": null } ]
2025-02-20T13:20:19
LLM-based User Profile Management for Recommender System
The rapid advancement of Large Language Models (LLMs) has opened new opportunities in recommender systems by enabling zero-shot recommendation without conventional training. Despite their potential, most existing works rely solely on users' purchase histories, leaving significant room for improvement by incorporating user-generated textual data, such as reviews and product descriptions. Addressing this gap, we propose PURE, a novel LLM-based recommendation framework that builds and maintains evolving user profiles by systematically extracting and summarizing key information from user reviews. PURE consists of three core components: a Review Extractor for identifying user preferences and key product features, a Profile Updater for refining and updating user profiles, and a Recommender for generating personalized recommendations using the most current profile. To evaluate PURE, we introduce a continuous sequential recommendation task that reflects real-world scenarios by adding reviews over time and updating predictions incrementally. Our experimental results on Amazon datasets demonstrate that PURE outperforms existing LLM-based methods, effectively leveraging long-term user information while managing token limitations.
5
67b8439599159e6fc9399735
null
null
2025-02-21T05:29:18.157000
How Much Knowledge Can You Pack into a LoRA Adapter without Harming LLM?
https://cdn-thumbnails.h…s/2502.14502.png
8
{ "_id": "62bd6c6baaf1480f1aa2222e", "avatarUrl": "/avatars/fd92ae2986d435a47eb1e382ac11d8e0.svg", "followerCount": null, "fullname": "Mikhail Salnikov", "isHf": false, "isMod": false, "isPro": false, "name": "msalnikov", "type": "user" }
true
[ "https://cdn-uploads.huggingface.co/production/uploads/62bd6c6baaf1480f1aa2222e/_N4zn03NcZY7lGoHmp9-j.png", "https://cdn-uploads.huggingface.co/production/uploads/62bd6c6baaf1480f1aa2222e/nh3VgACDbU_BXjhHG8nsF.png" ]
2502.14502
[ { "_id": "67b83fd69fb3eedaf6d0aef3", "hidden": false, "name": "Sergey Pletenev", "status": "claimed_verified", "statusLastChangedAt": "2025-02-21T09:49:33.682Z", "user": { "_id": "5dfa8e07da6d0311fd3d5430", "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/1651090418656-5dfa8e07da6d0311fd3d5430.png", "fullname": "Sergey Pletenev", "isPro": false, "type": "user", "user": "memyprokotow" } }, { "_id": "67b83fd69fb3eedaf6d0aef4", "hidden": false, "name": "Maria Marina", "status": "claimed_verified", "statusLastChangedAt": "2025-02-21T14:42:47.555Z", "user": { "_id": "660ee18e2dcd816ad14b3739", "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/660ee18e2dcd816ad14b3739/2pPMurtSOHMA96eVk0k7w.jpeg", "fullname": "Maria Marina", "isPro": false, "type": "user", "user": "zlatamaria" } }, { "_id": "67b83fd69fb3eedaf6d0aef5", "hidden": false, "name": "Daniil Moskovskiy", "status": "claimed_verified", "statusLastChangedAt": "2025-02-21T14:42:49.828Z", "user": { "_id": "61ade264f602880813dbe10b", "avatarUrl": "/avatars/a92dea7d853bbabbf60b351c207b6875.svg", "fullname": "Daniil Moskovskiy", "isPro": false, "type": "user", "user": "etomoscow" } }, { "_id": "67b83fd69fb3eedaf6d0aef6", "hidden": false, "name": "Vasily Konovalov", "status": null, "statusLastChangedAt": null, "user": null }, { "_id": "67b83fd69fb3eedaf6d0aef7", "hidden": false, "name": "Pavel Braslavski", "status": null, "statusLastChangedAt": null, "user": null }, { "_id": "67b83fd69fb3eedaf6d0aef8", "hidden": false, "name": "Alexander Panchenko", "status": null, "statusLastChangedAt": null, "user": null }, { "_id": "67b83fd69fb3eedaf6d0aef9", "hidden": false, "name": "Mikhail Salnikov", "status": "extracted_confirmed", "statusLastChangedAt": "2025-02-21T09:01:04.770Z", "user": { "_id": "62bd6c6baaf1480f1aa2222e", "avatarUrl": "/avatars/fd92ae2986d435a47eb1e382ac11d8e0.svg", "fullname": "Mikhail Salnikov", "isPro": false, "type": "user", "user": "msalnikov" } } ]
2025-02-20T12:31:03
How Much Knowledge Can You Pack into a LoRA Adapter without Harming LLM?
The performance of Large Language Models (LLMs) on many tasks is greatly limited by the knowledge learned during pre-training and stored in the model's parameters. Low-rank adaptation (LoRA) is a popular and efficient training technique for updating or domain-specific adaptation of LLMs. In this study, we investigate how new facts can be incorporated into the LLM using LoRA without compromising the previously learned knowledge. We fine-tuned Llama-3.1-8B-instruct using LoRA with varying amounts of new knowledge. Our experiments have shown that the best results are obtained when the training data contains a mixture of known and new facts. However, this approach is still potentially harmful because the model's performance on external question-answering benchmarks declines after such fine-tuning. When the training data is biased towards certain entities, the model tends to regress to few overrepresented answers. In addition, we found that the model becomes more confident and refuses to provide an answer in only few cases. These findings highlight the potential pitfalls of LoRA-based LLM updates and underscore the importance of training data composition and tuning parameters to balance new knowledge integration and general model capabilities.
82
67b83fd79fb3eedaf6d0af16
null
null
2025-02-21T05:28:42.882000
How Much Do LLMs Hallucinate across Languages? On Multilingual Estimation of LLM Hallucination in the Wild
https://cdn-thumbnails.h…s/2502.12769.png
2
{ "_id": "6182910a68444be3259d8b67", "avatarUrl": "/avatars/b47b0609f61b1192a1337fd7c9f8a75b.svg", "followerCount": 3, "fullname": "Saad Obaid ul Islam", "isHf": false, "isMod": false, "isPro": false, "name": "saadob12", "type": "user" }
true
null
2502.12769
[ { "_id": "67b597146e53744c2a39e335", "hidden": false, "name": "Saad Obaid ul Islam", "status": "claimed_verified", "statusLastChangedAt": "2025-02-20T15:53:18.182Z", "user": { "_id": "6182910a68444be3259d8b67", "avatarUrl": "/avatars/b47b0609f61b1192a1337fd7c9f8a75b.svg", "fullname": "Saad Obaid ul Islam", "isPro": false, "type": "user", "user": "saadob12" } }, { "_id": "67b597146e53744c2a39e336", "hidden": false, "name": "Anne Lauscher", "status": "admin_assigned", "statusLastChangedAt": "2025-02-21T15:05:49.990Z", "user": { "_id": "626c02e7703f3b27dd590896", "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/1654503075060-626c02e7703f3b27dd590896.jpeg", "fullname": "Anne Lauscher", "isPro": false, "type": "user", "user": "anlausch" } }, { "_id": "67b597146e53744c2a39e337", "hidden": false, "name": "Goran Glavaš", "status": "admin_assigned", "statusLastChangedAt": "2025-02-21T15:05:56.804Z", "user": { "_id": "6335af67a09fc16c7e7b4879", "avatarUrl": "/avatars/047fad65ceb33203f97064d6a92ecdc1.svg", "fullname": "Goran Glavaš", "isPro": false, "type": "user", "user": "gg42554" } } ]
2025-02-18T11:32:43
How Much Do LLMs Hallucinate across Languages? On Multilingual Estimation of LLM Hallucination in the Wild
In the age of misinformation, hallucination -- the tendency of Large Language Models (LLMs) to generate non-factual or unfaithful responses -- represents the main risk for their global utility. Despite LLMs becoming increasingly multilingual, the vast majority of research on detecting and quantifying LLM hallucination are (a) English-centric and (b) focus on machine translation (MT) and summarization, tasks that are less common ``in the wild'' than open information seeking. In contrast, we aim to quantify the extent of LLM hallucination across languages in knowledge-intensive long-form question answering. To this end, we train a multilingual hallucination detection model and conduct a large-scale study across 30 languages and 6 open-source LLM families. We start from an English hallucination detection dataset and rely on MT to generate (noisy) training data in other languages. We also manually annotate gold data for five high-resource languages; we then demonstrate, for these languages, that the estimates of hallucination rates are similar between silver (LLM-generated) and gold test sets, validating the use of silver data for estimating hallucination rates for other languages. For the final rates estimation, we build a knowledge-intensive QA dataset for 30 languages with LLM-generated prompts and Wikipedia articles as references. We find that, while LLMs generate longer responses with more hallucinated tokens for higher-resource languages, there is no correlation between length-normalized hallucination rates of languages and their digital representation. Further, we find that smaller LLMs exhibit larger hallucination rates than larger models.
3
67b597156e53744c2a39e36f
null
null
2025-02-21T05:00:18.645000
S$^2$R: Teaching LLMs to Self-verify and Self-correct via Reinforcement Learning
https://cdn-thumbnails.h…s/2502.12853.png
2
{ "_id": "648294b2eb4befee378951c1", "avatarUrl": "/avatars/da5d8bf9d8662cc2ffa2c0de49bd66a3.svg", "followerCount": null, "fullname": "Ruotian Ma", "isHf": false, "isMod": false, "isPro": false, "name": "vvibt", "type": "user" }
true
null
2502.12853
[ { "_id": "67b69b6717ccb022c6a95b38", "hidden": false, "name": "Ruotian Ma", "status": "admin_assigned", "statusLastChangedAt": "2025-02-21T14:58:55.028Z", "user": { "_id": "648294b2eb4befee378951c1", "avatarUrl": "/avatars/da5d8bf9d8662cc2ffa2c0de49bd66a3.svg", "fullname": "Ruotian Ma", "isPro": false, "type": "user", "user": "vvibt" } }, { "_id": "67b69b6717ccb022c6a95b39", "hidden": false, "name": "Peisong Wang", "status": "admin_assigned", "statusLastChangedAt": "2025-02-21T14:59:00.273Z", "user": { "_id": "626f98528a894872cfbf620c", "avatarUrl": "/avatars/fe31d20313e6ca85e96bc249424c5383.svg", "fullname": "Peisong Wang", "isPro": false, "type": "user", "user": "duke1852022" } }, { "_id": "67b69b6717ccb022c6a95b3a", "hidden": false, "name": "Cheng Liu", "status": "claimed_verified", "statusLastChangedAt": "2025-02-24T09:25:27.094Z", "user": { "_id": "6500234be0c94282ab38cd00", "avatarUrl": "/avatars/90fc160919cdbb28cfa82becf720b062.svg", "fullname": "soso", "isPro": false, "type": "user", "user": "chengliu" } }, { "_id": "67b69b6717ccb022c6a95b3b", "hidden": false, "name": "Xingyan Liu", "status": null, "statusLastChangedAt": null, "user": null }, { "_id": "67b69b6717ccb022c6a95b3c", "hidden": false, "name": "Jiaqi Chen", "status": null, "statusLastChangedAt": null, "user": null }, { "_id": "67b69b6717ccb022c6a95b3d", "hidden": false, "name": "Bang Zhang", "status": null, "statusLastChangedAt": null, "user": null }, { "_id": "67b69b6717ccb022c6a95b3e", "hidden": false, "name": "Xin Zhou", "status": null, "statusLastChangedAt": null, "user": null }, { "_id": "67b69b6717ccb022c6a95b3f", "hidden": false, "name": "Nan Du", "status": null, "statusLastChangedAt": null, "user": null }, { "_id": "67b69b6717ccb022c6a95b40", "hidden": false, "name": "Jia Li", "status": null, "statusLastChangedAt": null, "user": null } ]
2025-02-18T13:40:22
S^2R: Teaching LLMs to Self-verify and Self-correct via Reinforcement Learning
Recent studies have demonstrated the effectiveness of LLM test-time scaling. However, existing approaches to incentivize LLMs' deep thinking abilities generally require large-scale data or significant training efforts. Meanwhile, it remains unclear how to improve the thinking abilities of less powerful base models. In this work, we introduce S^2R, an efficient framework that enhances LLM reasoning by teaching models to self-verify and self-correct during inference. Specifically, we first initialize LLMs with iterative self-verification and self-correction behaviors through supervised fine-tuning on carefully curated data. The self-verification and self-correction skills are then further strengthened by both outcome-level and process-level reinforcement learning, with minimized resource requirements, enabling the model to adaptively refine its reasoning process during inference. Our results demonstrate that, with only 3.1k self-verifying and self-correcting behavior initialization samples, Qwen2.5-math-7B achieves an accuracy improvement from 51.0\% to 81.6\%, outperforming models trained on an equivalent amount of long-CoT distilled data. Extensive experiments and analysis based on three base models across both in-domain and out-of-domain benchmarks validate the effectiveness of S^2R. Our code and data are available at https://github.com/NineAbyss/S2R.
28
67b69b6817ccb022c6a95b6e
null
null
2025-02-21T03:33:40.641000
Unstructured Evidence Attribution for Long Context Query Focused Summarization
https://cdn-thumbnails.h…s/2502.14409.png
2
{ "_id": "60a643b9213fe60589b8fdf9", "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/60a643b9213fe60589b8fdf9/OOXmW3MkSf88r63tAE6-n.jpeg", "followerCount": 4, "fullname": "Dustin Wright", "isHf": false, "isMod": false, "isPro": false, "name": "dwright37", "type": "user" }
true
null
2502.14409
[ { "_id": "67b83a20a9fa331061e84ecd", "hidden": false, "name": "Dustin Wright", "status": "claimed_verified", "statusLastChangedAt": "2025-02-21T09:58:02.288Z", "user": { "_id": "60a643b9213fe60589b8fdf9", "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/60a643b9213fe60589b8fdf9/OOXmW3MkSf88r63tAE6-n.jpeg", "fullname": "Dustin Wright", "isPro": false, "type": "user", "user": "dwright37" } }, { "_id": "67b83a20a9fa331061e84ece", "hidden": false, "name": "Zain Muhammad Mujahid", "status": "admin_assigned", "statusLastChangedAt": "2025-02-21T15:16:52.600Z", "user": { "_id": "637e8b1b66ee00bcb2468ed0", "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/1669240174964-637e8b1b66ee00bcb2468ed0.jpeg", "fullname": "Zain", "isPro": false, "type": "user", "user": "zainmujahid" } }, { "_id": "67b83a20a9fa331061e84ecf", "hidden": false, "name": "Lu Wang", "status": null, "statusLastChangedAt": null, "user": null }, { "_id": "67b83a20a9fa331061e84ed0", "hidden": false, "name": "Isabelle Augenstein", "status": "admin_assigned", "statusLastChangedAt": "2025-02-21T15:17:02.420Z", "user": { "_id": "608918b7df398c3b285ce960", "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/1621507769190-608918b7df398c3b285ce960.jpeg", "fullname": "Isabelle Augenstein", "isPro": false, "type": "user", "user": "IAugenstein" } }, { "_id": "67b83a20a9fa331061e84ed1", "hidden": false, "name": "David Jurgens", "status": "admin_assigned", "statusLastChangedAt": "2025-02-21T15:17:08.686Z", "user": { "_id": "63516acdce7cf1fe8a854cdc", "avatarUrl": "/avatars/980124c58796fbbf43008bacc3dc2261.svg", "fullname": "David Jurgens", "isPro": false, "type": "user", "user": "davidjurgens" } } ]
2025-02-20T09:57:42
Unstructured Evidence Attribution for Long Context Query Focused Summarization
Large language models (LLMs) are capable of generating coherent summaries from very long contexts given a user query. Extracting and properly citing evidence spans could help improve the transparency and reliability of these summaries. At the same time, LLMs suffer from positional biases in terms of which information they understand and attend to, which could affect evidence citation. Whereas previous work has focused on evidence citation with predefined levels of granularity (e.g. sentence, paragraph, document, etc.), we propose the task of long-context query focused summarization with unstructured evidence citation. We show how existing systems struggle to generate and properly cite unstructured evidence from their context, and that evidence tends to be "lost-in-the-middle". To help mitigate this, we create the Summaries with Unstructured Evidence Text dataset (SUnsET), a synthetic dataset generated using a novel domain-agnostic pipeline which can be used as supervision to adapt LLMs to this task. We demonstrate across 5 LLMs of different sizes and 4 datasets with varying document types and lengths that LLMs adapted with SUnsET data generate more relevant and factually consistent evidence than their base models, extract evidence from more diverse locations in their context, and can generate more relevant and consistent summaries.
3
67b83a21a9fa331061e84f36
null
null
2025-02-21T03:33:28.852000
Geolocation with Real Human Gameplay Data: A Large-Scale Dataset and Human-Like Reasoning Framework
https://cdn-thumbnails.h…s/2502.13759.png
2
{ "_id": "65407ba7a38390065750233f", "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/65407ba7a38390065750233f/1_IPMZbk-S9u2t18PQgMp.jpeg", "followerCount": 1, "fullname": "Zirui Song", "isHf": false, "isMod": false, "isPro": false, "name": "Ziruibest", "type": "user" }
true
null
2502.13759
[ { "_id": "67b83a1f26e7d5f7cb0b7c9d", "hidden": false, "name": "Zirui Song", "status": "claimed_verified", "statusLastChangedAt": "2025-02-21T09:58:04.247Z", "user": { "_id": "65407ba7a38390065750233f", "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/65407ba7a38390065750233f/1_IPMZbk-S9u2t18PQgMp.jpeg", "fullname": "Zirui Song", "isPro": false, "type": "user", "user": "Ziruibest" } }, { "_id": "67b83a1f26e7d5f7cb0b7c9e", "hidden": false, "name": "Jingpu Yang", "status": "admin_assigned", "statusLastChangedAt": "2025-02-21T15:06:10.877Z", "user": { "_id": "67551c3578f56eff362039ab", "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/no-auth/87GrxXfW2VCgRHweCJzWz.png", "fullname": "Jingpu Yang", "isPro": false, "type": "user", "user": "yyds404" } }, { "_id": "67b83a1f26e7d5f7cb0b7c9f", "hidden": false, "name": "Yuan Huang", "status": null, "statusLastChangedAt": null, "user": null }, { "_id": "67b83a1f26e7d5f7cb0b7ca0", "hidden": false, "name": "Jonathan Tonglet", "status": "admin_assigned", "statusLastChangedAt": "2025-02-21T15:06:50.179Z", "user": { "_id": "641ed835f8c8b04c0ba7ac2a", "avatarUrl": "/avatars/73af2b882e10938b230d4a2073e64098.svg", "fullname": "Jonathan Tonglet", "isPro": false, "type": "user", "user": "saiga1420" } }, { "_id": "67b83a1f26e7d5f7cb0b7ca1", "hidden": true, "name": "Zeyu Zhang", "status": "claimed_verified", "statusLastChangedAt": "2025-02-27T12:54:53.512Z", "user": { "_id": "64ec877bb93654d4ca5c92e9", "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/64ec877bb93654d4ca5c92e9/GvHk_KSdE9Rhnk_o-NaZX.jpeg", "fullname": "Zeyu Zhang", "isPro": false, "type": "user", "user": "SteveZeyuZhang" } }, { "_id": "67b83a1f26e7d5f7cb0b7ca2", "hidden": false, "name": "Tao Cheng", "status": null, "statusLastChangedAt": null, "user": null }, { "_id": "67b83a1f26e7d5f7cb0b7ca3", "hidden": false, "name": "Meng Fang", "status": null, "statusLastChangedAt": null, "user": null }, { "_id": "67b83a1f26e7d5f7cb0b7ca4", "hidden": false, "name": "Iryna Gurevych", "status": null, "statusLastChangedAt": null, "user": null }, { "_id": "67b83a1f26e7d5f7cb0b7ca5", "hidden": false, "name": "Xiuying Chen", "status": null, "statusLastChangedAt": null, "user": null } ]
2025-02-19T14:21:25
Geolocation with Real Human Gameplay Data: A Large-Scale Dataset and Human-Like Reasoning Framework
Geolocation, the task of identifying an image's location, requires complex reasoning and is crucial for navigation, monitoring, and cultural preservation. However, current methods often produce coarse, imprecise, and non-interpretable localization. A major challenge lies in the quality and scale of existing geolocation datasets. These datasets are typically small-scale and automatically constructed, leading to noisy data and inconsistent task difficulty, with images that either reveal answers too easily or lack sufficient clues for reliable inference. To address these challenges, we introduce a comprehensive geolocation framework with three key components: GeoComp, a large-scale dataset; GeoCoT, a novel reasoning method; and GeoEval, an evaluation metric, collectively designed to address critical challenges and drive advancements in geolocation research. At the core of this framework is GeoComp (Geolocation Competition Dataset), a large-scale dataset collected from a geolocation game platform involving 740K users over two years. It comprises 25 million entries of metadata and 3 million geo-tagged locations spanning much of the globe, with each location annotated thousands to tens of thousands of times by human users. The dataset offers diverse difficulty levels for detailed analysis and highlights key gaps in current models. Building on this dataset, we propose Geographical Chain-of-Thought (GeoCoT), a novel multi-step reasoning framework designed to enhance the reasoning capabilities of Large Vision Models (LVMs) in geolocation tasks. GeoCoT improves performance by integrating contextual and spatial cues through a multi-step process that mimics human geolocation reasoning. Finally, using the GeoEval metric, we demonstrate that GeoCoT significantly boosts geolocation accuracy by up to 25% while enhancing interpretability.
4
67b83a2226e7d5f7cb0b7d66
null
null
2025-02-21T01:11:34.971000
Discovering highly efficient low-weight quantum error-correcting codes with reinforcement learning
https://cdn-thumbnails.h…s/2502.14372.png
4
{ "_id": "6530a78069751712276d60ed", "avatarUrl": "/avatars/2ef4f16d0be557ed60c11d8dcef85f6f.svg", "followerCount": null, "fullname": "Austin He", "isHf": false, "isMod": false, "isPro": false, "name": "basil2115", "type": "user" }
true
null
2502.14372
[ { "_id": "67b81870cc6b0136b3d84254", "hidden": false, "name": "Austin Yubo He", "status": "extracted_confirmed", "statusLastChangedAt": "2025-02-21T06:30:16.645Z", "user": { "_id": "6530a78069751712276d60ed", "avatarUrl": "/avatars/2ef4f16d0be557ed60c11d8dcef85f6f.svg", "fullname": "Austin He", "isPro": false, "type": "user", "user": "basil2115" } }, { "_id": "67b81870cc6b0136b3d84255", "hidden": false, "name": "Zi-Wen Liu", "status": null, "statusLastChangedAt": null, "user": null } ]
2025-02-20T09:05:34
Discovering highly efficient low-weight quantum error-correcting codes with reinforcement learning
The realization of scalable fault-tolerant quantum computing is expected to hinge on quantum error-correcting codes. In the quest for more efficient quantum fault tolerance, a critical code parameter is the weight of measurements that extract information about errors to enable error correction: as higher measurement weights require higher implementation costs and introduce more errors, it is important in code design to optimize measurement weight. This underlies the surging interest in quantum low-density parity-check (qLDPC) codes, the study of which has primarily focused on the asymptotic (large-code-limit) properties. In this work, we introduce a versatile and computationally efficient approach to stabilizer code weight reduction based on reinforcement learning (RL), which produces new low-weight codes that substantially outperform the state of the art in practically relevant parameter regimes, extending significantly beyond previously accessible small distances. For example, our approach demonstrates savings in physical qubit overhead compared to existing results by 1 to 2 orders of magnitude for weight 6 codes and brings the overhead into a feasible range for near-future experiments. We also investigate the interplay between code parameters using our RL framework, offering new insights into the potential efficiency and power of practically viable coding strategies. Overall, our results demonstrate how RL can effectively advance the crucial yet challenging problem of quantum code discovery and thereby facilitate a faster path to the practical implementation of fault-tolerant quantum technologies.
36
67b81873cc6b0136b3d8430a
null
null
2025-02-20T23:02:42.672000
Does Time Have Its Place? Temporal Heads: Where Language Models Recall Time-specific Information
https://cdn-thumbnails.h…s/2502.14258.png
2
{ "_id": "64587be872b60ae7a3817858", "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/64587be872b60ae7a3817858/BbdOOxOCEzWTvEpkWp8MM.png", "followerCount": 3, "fullname": "Minbyul Jeong", "isHf": false, "isMod": false, "isPro": false, "name": "Minbyul", "type": "user" }
true
null
2502.14258
[ { "_id": "67b7fa96c3f48f8b3fc632fe", "hidden": false, "name": "Yein Park", "status": "admin_assigned", "statusLastChangedAt": "2025-02-21T14:46:28.888Z", "user": { "_id": "64e5c8e594aa0690321f6b29", "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/no-auth/IW5LRzmPcAM-dri8taMN7.png", "fullname": "Yein Park", "isPro": false, "type": "user", "user": "P-YI" } }, { "_id": "67b7fa96c3f48f8b3fc632ff", "hidden": false, "name": "Chanwoong Yoon", "status": "admin_assigned", "statusLastChangedAt": "2025-02-21T14:46:35.045Z", "user": { "_id": "66569dbaed45f790fbbebb83", "avatarUrl": "/avatars/a4915e88d2bdff48cb30dd9972640d1e.svg", "fullname": "Chanwoong Yoon", "isPro": false, "type": "user", "user": "cwyoon99" } }, { "_id": "67b7fa96c3f48f8b3fc63300", "hidden": false, "name": "Jungwoo Park", "status": "admin_assigned", "statusLastChangedAt": "2025-02-21T14:46:49.118Z", "user": { "_id": "60f8435644e75317cc02ed51", "avatarUrl": "/avatars/68b7fc077fe2bda6607b1c470add8140.svg", "fullname": "Jungwoo Park", "isPro": false, "type": "user", "user": "affjljoo3581" } }, { "_id": "67b7fa96c3f48f8b3fc63301", "hidden": false, "name": "Minbyul Jeong", "status": "admin_assigned", "statusLastChangedAt": "2025-02-21T14:46:55.040Z", "user": { "_id": "64587be872b60ae7a3817858", "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/64587be872b60ae7a3817858/BbdOOxOCEzWTvEpkWp8MM.png", "fullname": "Minbyul Jeong", "isPro": false, "type": "user", "user": "Minbyul" } }, { "_id": "67b7fa96c3f48f8b3fc63302", "hidden": false, "name": "Jaewoo Kang", "status": null, "statusLastChangedAt": null, "user": null } ]
2025-02-20T04:52:05
Does Time Have Its Place? Temporal Heads: Where Language Models Recall Time-specific Information
While the ability of language models to elicit facts has been widely investigated, how they handle temporally changing facts remains underexplored. We discover Temporal Heads, specific attention heads primarily responsible for processing temporal knowledge through circuit analysis. We confirm that these heads are present across multiple models, though their specific locations may vary, and their responses differ depending on the type of knowledge and its corresponding years. Disabling these heads degrades the model's ability to recall time-specific knowledge while maintaining its general capabilities without compromising time-invariant and question-answering performances. Moreover, the heads are activated not only numeric conditions ("In 2004") but also textual aliases ("In the year ..."), indicating that they encode a temporal dimension beyond simple numerical representation. Furthermore, we expand the potential of our findings by demonstrating how temporal knowledge can be edited by adjusting the values of these heads.
25
67b7fa9ac3f48f8b3fc63452
null
null
2025-02-20T22:41:47.210000
Dynamic Concepts Personalization from Single Videos
https://cdn-thumbnails.h…s/2502.14844.png
2
{ "_id": "60f1abe7544c2adfd699860c", "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/1674929746905-60f1abe7544c2adfd699860c.jpeg", "followerCount": 6280, "fullname": "AK", "isHf": true, "isMod": false, "isPro": false, "name": "akhaliq", "type": "user" }
false
null
2502.14844
[ { "_id": "67b7f5ee8b3dff28b749be78", "hidden": false, "name": "Rameen Abdal", "status": "admin_assigned", "statusLastChangedAt": "2025-02-21T15:00:23.357Z", "user": { "_id": "630428fa7b50dd9d0a38cde0", "avatarUrl": "/avatars/d1baf7fd17daf4be16ba5bd6cd4f2277.svg", "fullname": "Rameen Abdal", "isPro": false, "type": "user", "user": "RameenAbdal" } }, { "_id": "67b7f5ee8b3dff28b749be79", "hidden": false, "name": "Or Patashnik", "status": "admin_assigned", "statusLastChangedAt": "2025-02-21T15:00:32.474Z", "user": { "_id": "62853516e483e0d37b354ce1", "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/62853516e483e0d37b354ce1/t5Tyd3E07w26B9Z3XpZWI.jpeg", "fullname": "Or Patashnik", "isPro": false, "type": "user", "user": "orpatashnik" } }, { "_id": "67b7f5ee8b3dff28b749be7a", "hidden": false, "name": "Ivan Skorokhodov", "status": "admin_assigned", "statusLastChangedAt": "2025-02-21T15:00:39.038Z", "user": { "_id": "63610db13c7147fae7de88e3", "avatarUrl": "/avatars/d7e97a16cfee39e1e50d7a5b747876f1.svg", "fullname": "Ivan Skorokhodov", "isPro": false, "type": "user", "user": "universome" } }, { "_id": "67b7f5ee8b3dff28b749be7b", "hidden": false, "name": "Willi Menapace", "status": "admin_assigned", "statusLastChangedAt": "2025-02-21T15:00:45.032Z", "user": { "_id": "6315358a362e3e95ea538081", "avatarUrl": "/avatars/3b089a25a87c2e83c6b23ccb5d2dc73e.svg", "fullname": "Willi Menapace", "isPro": false, "type": "user", "user": "willi-menapace" } }, { "_id": "67b7f5ee8b3dff28b749be7c", "hidden": false, "name": "Aliaksandr Siarohin", "status": "admin_assigned", "statusLastChangedAt": "2025-02-21T15:00:51.221Z", "user": { "_id": "64276311eb9a0ed86180715b", "avatarUrl": "/avatars/76f933cd549f10e5e2db379de235d304.svg", "fullname": "Aliaksandr Siarohin", "isPro": false, "type": "user", "user": "aliaksandr-siarohin" } }, { "_id": "67b7f5ee8b3dff28b749be7d", "hidden": false, "name": "Sergey Tulyakov", "status": null, "statusLastChangedAt": null, "user": null }, { "_id": "67b7f5ee8b3dff28b749be7e", "hidden": false, "name": "Daniel Cohen-Or", "status": "admin_assigned", "statusLastChangedAt": "2025-02-21T15:01:00.737Z", "user": { "_id": "628507161949ebcae8e24ec3", "avatarUrl": "/avatars/008ecb3daa4c8187b5f339f1176b3c39.svg", "fullname": "Daniel Cohen-Or", "isPro": false, "type": "user", "user": "cohenor" } }, { "_id": "67b7f5ee8b3dff28b749be7f", "hidden": false, "name": "Kfir Aberman", "status": "admin_assigned", "statusLastChangedAt": "2025-02-21T15:01:06.434Z", "user": { "_id": "64db29097266618e853dd6ec", "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/64db29097266618e853dd6ec/r0MaPQCfAxeKv3ycdKYLK.jpeg", "fullname": "Kfir Aberman", "isPro": false, "type": "user", "user": "kaberman" } } ]
2025-02-20T18:53:39
Dynamic Concepts Personalization from Single Videos
Personalizing generative text-to-image models has seen remarkable progress, but extending this personalization to text-to-video models presents unique challenges. Unlike static concepts, personalizing text-to-video models has the potential to capture dynamic concepts, i.e., entities defined not only by their appearance but also by their motion. In this paper, we introduce Set-and-Sequence, a novel framework for personalizing Diffusion Transformers (DiTs)-based generative video models with dynamic concepts. Our approach imposes a spatio-temporal weight space within an architecture that does not explicitly separate spatial and temporal features. This is achieved in two key stages. First, we fine-tune Low-Rank Adaptation (LoRA) layers using an unordered set of frames from the video to learn an identity LoRA basis that represents the appearance, free from temporal interference. In the second stage, with the identity LoRAs frozen, we augment their coefficients with Motion Residuals and fine-tune them on the full video sequence, capturing motion dynamics. Our Set-and-Sequence framework results in a spatio-temporal weight space that effectively embeds dynamic concepts into the video model's output domain, enabling unprecedented editability and compositionality while setting a new benchmark for personalizing dynamic concepts.
15
67b7f5f18b3dff28b749bf45
null
null
2025-02-20T22:39:48.180000
PC-Agent: A Hierarchical Multi-Agent Collaboration Framework for Complex Task Automation on PC
https://cdn-thumbnails.h…s/2502.14282.png
3
{ "_id": "645b10e80c73ea27d13f7aca", "avatarUrl": "/avatars/95e565306472a15067440b5b43e07a6f.svg", "followerCount": 3, "fullname": "xuhaiyang", "isHf": false, "isMod": false, "isPro": false, "name": "xhyandwyy", "type": "user" }
false
[ "https://cdn-uploads.huggingface.co/production/uploads/645b10e80c73ea27d13f7aca/feg9OYb4onJJermpjc6nh.jpeg" ]
2502.14282
[ { "_id": "67b7f5587f4d732dc469270e", "hidden": false, "name": "Haowei Liu", "status": null, "statusLastChangedAt": null, "user": null }, { "_id": "67b7f5587f4d732dc469270f", "hidden": false, "name": "Xi Zhang", "status": null, "statusLastChangedAt": null, "user": null }, { "_id": "67b7f5587f4d732dc4692710", "hidden": false, "name": "Haiyang Xu", "status": "admin_assigned", "statusLastChangedAt": "2025-02-21T14:58:29.601Z", "user": { "_id": "66e8d7d2483df532fd364913", "avatarUrl": "/avatars/300aea4b8c571b2aeac629de58281444.svg", "fullname": "Haiyang Xu", "isPro": false, "type": "user", "user": "msxxx" } }, { "_id": "67b7f5587f4d732dc4692711", "hidden": false, "name": "Yuyang Wanyan", "status": null, "statusLastChangedAt": null, "user": null }, { "_id": "67b7f5587f4d732dc4692712", "hidden": false, "name": "Junyang Wang", "status": "admin_assigned", "statusLastChangedAt": "2025-02-21T14:58:16.343Z", "user": { "_id": "6438f6415aa69077ffb16942", "avatarUrl": "/avatars/c83dbd3e10e88db97c2a86092bad5917.svg", "fullname": "Junyang Wang", "isPro": false, "type": "user", "user": "junyangwang0410" } }, { "_id": "67b7f5587f4d732dc4692713", "hidden": false, "name": "Ming Yan", "status": null, "statusLastChangedAt": null, "user": null }, { "_id": "67b7f5587f4d732dc4692714", "hidden": false, "name": "Ji Zhang", "status": null, "statusLastChangedAt": null, "user": null }, { "_id": "67b7f5587f4d732dc4692715", "hidden": false, "name": "Chunfeng Yuan", "status": null, "statusLastChangedAt": null, "user": null }, { "_id": "67b7f5587f4d732dc4692716", "hidden": true, "name": "Changsheng Xu", "status": "admin_assigned", "statusLastChangedAt": "2025-02-21T14:57:51.040Z", "user": { "_id": "6222e721271a284f976f43d8", "avatarUrl": "/avatars/36ce9f16de6f4ae6ea0968c49207f191.svg", "fullname": "ChangshengXu", "isPro": false, "type": "user", "user": "ChangshengXu" } }, { "_id": "67b7f5587f4d732dc4692717", "hidden": false, "name": "Weiming Hu", "status": null, "statusLastChangedAt": null, "user": null }, { "_id": "67b7f5587f4d732dc4692718", "hidden": false, "name": "Fei Huang", "status": null, "statusLastChangedAt": null, "user": null } ]
2025-02-20T05:41:55
PC-Agent: A Hierarchical Multi-Agent Collaboration Framework for Complex Task Automation on PC
In the field of MLLM-based GUI agents, compared to smartphones, the PC scenario not only features a more complex interactive environment, but also involves more intricate intra- and inter-app workflows. To address these issues, we propose a hierarchical agent framework named PC-Agent. Specifically, from the perception perspective, we devise an Active Perception Module (APM) to overcome the inadequate abilities of current MLLMs in perceiving screenshot content. From the decision-making perspective, to handle complex user instructions and interdependent subtasks more effectively, we propose a hierarchical multi-agent collaboration architecture that decomposes decision-making processes into Instruction-Subtask-Action levels. Within this architecture, three agents (i.e., Manager, Progress and Decision) are set up for instruction decomposition, progress tracking and step-by-step decision-making respectively. Additionally, a Reflection agent is adopted to enable timely bottom-up error feedback and adjustment. We also introduce a new benchmark PC-Eval with 25 real-world complex instructions. Empirical results on PC-Eval show that our PC-Agent achieves a 32% absolute improvement of task success rate over previous state-of-the-art methods. The code will be publicly available.
18
67b7f55b7f4d732dc46927c1
null
https://github.com/X-PLUG/MobileAgent/tree/main
2025-02-20T22:39:21.551000
LongWriter-V: Enabling Ultra-Long and High-Fidelity Generation in Vision-Language Models
https://cdn-thumbnails.h…s/2502.14834.png
2
{ "_id": "648c48d8c0ddeee6df5b6d22", "avatarUrl": "/avatars/8706b0b16dfc332b96c91d3ced31bd0b.svg", "followerCount": null, "fullname": "Shangqing Tu", "isHf": false, "isMod": false, "isPro": false, "name": "tsq2000", "type": "user" }
true
[ "https://cdn-uploads.huggingface.co/production/uploads/648c48d8c0ddeee6df5b6d22/8AYx7CcK4CT6flX3nRDlB.png" ]
2502.14834
[ { "_id": "67b7f3c4d00e69f10cff219e", "hidden": false, "name": "Shangqing Tu", "status": "admin_assigned", "statusLastChangedAt": "2025-02-21T14:47:11.953Z", "user": { "_id": "648c48d8c0ddeee6df5b6d22", "avatarUrl": "/avatars/8706b0b16dfc332b96c91d3ced31bd0b.svg", "fullname": "Shangqing Tu", "isPro": false, "type": "user", "user": "tsq2000" } }, { "_id": "67b7f3c4d00e69f10cff219f", "hidden": false, "name": "Yucheng Wang", "status": null, "statusLastChangedAt": null, "user": null }, { "_id": "67b7f3c4d00e69f10cff21a0", "hidden": false, "name": "Daniel Zhang-Li", "status": null, "statusLastChangedAt": null, "user": null }, { "_id": "67b7f3c4d00e69f10cff21a1", "hidden": false, "name": "Yushi Bai", "status": "admin_assigned", "statusLastChangedAt": "2025-02-21T14:47:42.383Z", "user": { "_id": "64ed568ccf6118a9379a61b8", "avatarUrl": "/avatars/6d040cbcb4a9b624cbe64c9d01cd5c88.svg", "fullname": "Yushi Bai", "isPro": false, "type": "user", "user": "bys0318" } }, { "_id": "67b7f3c4d00e69f10cff21a2", "hidden": false, "name": "Jifan Yu", "status": null, "statusLastChangedAt": null, "user": null }, { "_id": "67b7f3c4d00e69f10cff21a3", "hidden": false, "name": "Yuhao Wu", "status": null, "statusLastChangedAt": null, "user": null }, { "_id": "67b7f3c4d00e69f10cff21a4", "hidden": false, "name": "Lei Hou", "status": null, "statusLastChangedAt": null, "user": null }, { "_id": "67b7f3c4d00e69f10cff21a5", "hidden": false, "name": "Huiqin Liu", "status": null, "statusLastChangedAt": null, "user": null }, { "_id": "67b7f3c4d00e69f10cff21a6", "hidden": false, "name": "Zhiyuan Liu", "status": "admin_assigned", "statusLastChangedAt": "2025-02-21T14:48:24.334Z", "user": { "_id": "6310a3cd531cc21f9e06de6a", "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/6310a3cd531cc21f9e06de6a/aTGMx3O41lUARK9s3dAik.jpeg", "fullname": "Zhiyuan Liu", "isPro": false, "type": "user", "user": "acharkq" } }, { "_id": "67b7f3c4d00e69f10cff21a7", "hidden": false, "name": "Bin Xu", "status": null, "statusLastChangedAt": null, "user": null }, { "_id": "67b7f3c4d00e69f10cff21a8", "hidden": false, "name": "Juanzi Li", "status": "admin_assigned", "statusLastChangedAt": "2025-02-21T14:48:30.590Z", "user": { "_id": "65df8cbc2705d9672f55d1aa", "avatarUrl": "/avatars/63e46f15bb76bd9d4508fd0f54f39829.svg", "fullname": "Juanzi Li", "isPro": false, "type": "user", "user": "juanli" } } ]
2025-02-20T18:47:36
LongWriter-V: Enabling Ultra-Long and High-Fidelity Generation in Vision-Language Models
Existing Large Vision-Language Models (LVLMs) can process inputs with context lengths up to 128k visual and text tokens, yet they struggle to generate coherent outputs beyond 1,000 words. We find that the primary limitation is the absence of long output examples during supervised fine-tuning (SFT). To tackle this issue, we introduce LongWriter-V-22k, a SFT dataset comprising 22,158 examples, each with multiple input images, an instruction, and corresponding outputs ranging from 0 to 10,000 words. Moreover, to achieve long outputs that maintain high-fidelity to the input images, we employ Direct Preference Optimization (DPO) to the SFT model. Given the high cost of collecting human feedback for lengthy outputs (e.g., 3,000 words), we propose IterDPO, which breaks long outputs into segments and uses iterative corrections to form preference pairs with the original outputs. Additionally, we develop MMLongBench-Write, a benchmark featuring six tasks to evaluate the long-generation capabilities of VLMs. Our 7B parameter model, trained with LongWriter-V-22k and IterDPO, achieves impressive performance on this benchmark, outperforming larger proprietary models like GPT-4o. Code and data: https://github.com/THU-KEG/LongWriter-V
24
67b7f3c7d00e69f10cff2258
null
null
2025-02-20T22:38:36.406000
Scaling Text-Rich Image Understanding via Code-Guided Synthetic Multimodal Data Generation
https://cdn-thumbnails.h…s/2502.14846.png
2
{ "_id": "60f1abe7544c2adfd699860c", "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/1674929746905-60f1abe7544c2adfd699860c.jpeg", "followerCount": 6280, "fullname": "AK", "isHf": true, "isMod": false, "isPro": false, "name": "akhaliq", "type": "user" }
false
null
2502.14846
[ { "_id": "67b7f4f1b15c19d57189fc5e", "hidden": false, "name": "Yue Yang", "status": "claimed_verified", "statusLastChangedAt": "2025-02-21T15:06:20.097Z", "user": { "_id": "62f6c68904e5e02f82b04690", "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/62f6c68904e5e02f82b04690/kK2-PkeAGzAOLhkfajswf.jpeg", "fullname": "Yue Yang", "isPro": true, "type": "user", "user": "yyupenn" } }, { "_id": "67b7f4f1b15c19d57189fc5f", "hidden": false, "name": "Ajay Patel", "status": null, "statusLastChangedAt": null, "user": null }, { "_id": "67b7f4f1b15c19d57189fc60", "hidden": false, "name": "Matt Deitke", "status": "admin_assigned", "statusLastChangedAt": "2025-02-21T15:03:20.545Z", "user": { "_id": "61c388aa727d1257bf3cf58b", "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/1670871898141-61c388aa727d1257bf3cf58b.jpeg", "fullname": "Matt Deitke", "isPro": true, "type": "user", "user": "mattdeitke" } }, { "_id": "67b7f4f1b15c19d57189fc61", "hidden": false, "name": "Tanmay Gupta", "status": null, "statusLastChangedAt": null, "user": null }, { "_id": "67b7f4f1b15c19d57189fc62", "hidden": false, "name": "Luca Weihs", "status": "admin_assigned", "statusLastChangedAt": "2025-02-21T15:02:58.922Z", "user": { "_id": "620acbdb3c0931626a7c9297", "avatarUrl": "/avatars/f63b1d225ed81e223d3e8876a5c708c4.svg", "fullname": "Luca Weihs", "isPro": false, "type": "user", "user": "lucaweihs" } }, { "_id": "67b7f4f1b15c19d57189fc63", "hidden": false, "name": "Andrew Head", "status": "admin_assigned", "statusLastChangedAt": "2025-02-21T15:02:53.395Z", "user": { "_id": "6360289588e41d249ecd3e26", "avatarUrl": "/avatars/0e84dbd72f07e99967a8d25cda938efe.svg", "fullname": "Andrew Head", "isPro": false, "type": "user", "user": "ChittyChins" } }, { "_id": "67b7f4f1b15c19d57189fc64", "hidden": false, "name": "Mark Yatskar", "status": "admin_assigned", "statusLastChangedAt": "2025-02-21T15:02:47.575Z", "user": { "_id": "631f42e1b6628770f6efd87a", "avatarUrl": "/avatars/0fa93b3513ebca737cce26dfa5611cf1.svg", "fullname": "Mark Yatskar", "isPro": false, "type": "user", "user": "myatskar" } }, { "_id": "67b7f4f1b15c19d57189fc65", "hidden": false, "name": "Chris Callison-Burch", "status": "admin_assigned", "statusLastChangedAt": "2025-02-21T15:02:41.757Z", "user": { "_id": "6303ce25fc783bfc744216af", "avatarUrl": "/avatars/09f5e87c1f56a1b7f6ef9c5037682285.svg", "fullname": "Chris Callison-Burch", "isPro": false, "type": "user", "user": "CCB" } }, { "_id": "67b7f4f1b15c19d57189fc66", "hidden": false, "name": "Ranjay Krishna", "status": "admin_assigned", "statusLastChangedAt": "2025-02-21T15:02:35.267Z", "user": { "_id": "66429868ab89e3a3a85668b0", "avatarUrl": "/avatars/170e0daa454838deee2bf946f7118651.svg", "fullname": "Ranjay Krishna", "isPro": false, "type": "user", "user": "ranjaykrishna" } }, { "_id": "67b7f4f1b15c19d57189fc67", "hidden": false, "name": "Aniruddha Kembhavi", "status": null, "statusLastChangedAt": null, "user": null }, { "_id": "67b7f4f1b15c19d57189fc68", "hidden": false, "name": "Christopher Clark", "status": null, "statusLastChangedAt": null, "user": null } ]
2025-02-20T18:55:30
Scaling Text-Rich Image Understanding via Code-Guided Synthetic Multimodal Data Generation
Reasoning about images with rich text, such as charts and documents, is a critical application of vision-language models (VLMs). However, VLMs often struggle in these domains due to the scarcity of diverse text-rich vision-language data. To address this challenge, we present CoSyn, a framework that leverages the coding capabilities of text-only large language models (LLMs) to automatically create synthetic text-rich multimodal data. Given input text describing a target domain (e.g., "nutrition fact labels"), CoSyn prompts an LLM to generate code (Python, HTML, LaTeX, etc.) for rendering synthetic images. With the underlying code as textual representations of the synthetic images, CoSyn can generate high-quality instruction-tuning data, again relying on a text-only LLM. Using CoSyn, we constructed a dataset comprising 400K images and 2.7M rows of vision-language instruction-tuning data. Comprehensive experiments on seven benchmarks demonstrate that models trained on our synthetic data achieve state-of-the-art performance among competitive open-source models, including Llama 3.2, and surpass proprietary models such as GPT-4V and Gemini 1.5 Flash. Furthermore, CoSyn can produce synthetic pointing data, enabling VLMs to ground information within input images, showcasing its potential for developing multimodal agents capable of acting in real-world environments.
13
67b7f4f2b15c19d57189fc95
null
null