Dataset Viewer
Auto-converted to Parquet
publishedAt
timestamp[ns]date
2023-02-13 12:55:54
2025-05-02 03:36:49
title
stringlengths
8
206
thumbnail
stringlengths
77
77
numComments
int64
0
143
submittedBy
dict
isAuthorParticipating
bool
2 classes
mediaUrls
sequencelengths
0
12
paper_id
stringlengths
10
10
paper_authors
listlengths
1
942
paper_publishedAt
timestamp[ns]date
2023-02-13 17:55:54
2025-05-02 07:36:49
paper_title
stringlengths
8
206
paper_summary
stringlengths
165
1.92k
paper_upvotes
int64
0
615
paper_discussionId
stringlengths
24
24
paper_projectPage
stringclasses
572 values
paper_githubRepo
stringclasses
813 values
2025-03-04T12:05:25.041000
Efficient Test-Time Scaling via Self-Calibration
https://cdn-thumbnails.h…s/2503.00031.png
1
{ "_id": "62ea79dd01ed9b0e8f61ccd3", "avatarUrl": "/avatars/70af83e0e267be39fcd5f23b85e2dafa.svg", "followerCount": 2, "fullname": "Chengsong Huang", "isHf": false, "isMod": false, "isPro": false, "name": "ChengsongHuang", "type": "user" }
true
null
2503.00031
[ { "_id": "67c732c14aaf26f75cea0d82", "hidden": false, "name": "Chengsong Huang", "status": "claimed_verified", "statusLastChangedAt": "2025-03-04T21:15:36.013Z", "user": { "_id": "62ea79dd01ed9b0e8f61ccd3", "avatarUrl": "/avatars/70af83e0e267be39fcd5f23b85e2dafa.svg", "fullname": "Chengsong Huang", "isPro": false, "type": "user", "user": "ChengsongHuang" } }, { "_id": "67c732c14aaf26f75cea0d83", "hidden": false, "name": "Langlin Huang", "status": null, "statusLastChangedAt": null, "user": null }, { "_id": "67c732c14aaf26f75cea0d84", "hidden": false, "name": "Jixuan Leng", "status": null, "statusLastChangedAt": null, "user": null }, { "_id": "67c732c14aaf26f75cea0d85", "hidden": false, "name": "Jiacheng Liu", "status": null, "statusLastChangedAt": null, "user": null }, { "_id": "67c732c14aaf26f75cea0d86", "hidden": false, "name": "Jiaxin Huang", "status": null, "statusLastChangedAt": null, "user": null } ]
2025-02-25T00:21:14
Efficient Test-Time Scaling via Self-Calibration
Increasing test-time computation is a straightforward approach to enhancing the quality of responses in Large Language Models (LLMs). While Best-of-N sampling and Self-Consistency with majority voting are simple and effective, they require a fixed number of sampling responses for each query, regardless of its complexity. This could result in wasted computation for simpler questions and insufficient exploration for more challenging ones. In this work, we argue that model confidence of responses can be used for improving the efficiency of test-time scaling. Unfortunately, LLMs are known to be overconfident and provide unreliable confidence estimation. To address this limitation, we introduce Self-Calibration by distilling Self-Consistency-derived confidence into the model itself. This enables reliable confidence estimation at test time with one forward pass. We then design confidence-based efficient test-time scaling methods to handle queries of various difficulty, such as Early-Stopping for Best-of-N and Self-Consistency with calibrated confidence. Experiments on three LLMs across six datasets demonstrate the effectiveness of our approach. Specifically, applying confidence-based Early Stopping to Best-of-N improves MathQA accuracy from 81.0 to 83.6 with a sample budget of 16 responses, indicating the efficacy of confidence-based sampling strategy at inference time.
8
67c732c34aaf26f75cea0df7
null
null
2025-03-04T10:47:26.717000
Why Are Web AI Agents More Vulnerable Than Standalone LLMs? A Security Analysis
https://cdn-thumbnails.h…s/2502.20383.png
1
{ "_id": "63e0b1925ba41def87930c47", "avatarUrl": "/avatars/4d55fdbe979ddf72a21430d66518d24f.svg", "followerCount": 1, "fullname": "Jeffrey Yang Fan Chiang", "isHf": false, "isMod": false, "isPro": false, "name": "RandomHakkaDude", "type": "user" }
true
[ "https://cdn-uploads.huggingface.co/production/uploads/63e0b1925ba41def87930c47/OQIn8hn8i8nP9HMjOk5cR.mp4" ]
2502.20383
[ { "_id": "67c284e76e9f0735ea1c436d", "hidden": false, "name": "Jeffrey Yang Fan Chiang", "status": "claimed_verified", "statusLastChangedAt": "2025-03-04T08:51:34.456Z", "user": { "_id": "63e0b1925ba41def87930c47", "avatarUrl": "/avatars/4d55fdbe979ddf72a21430d66518d24f.svg", "fullname": "Jeffrey Yang Fan Chiang", "isPro": false, "type": "user", "user": "RandomHakkaDude" } }, { "_id": "67c284e76e9f0735ea1c436e", "hidden": false, "name": "Seungjae Lee", "status": "admin_assigned", "statusLastChangedAt": "2025-03-04T16:07:28.645Z", "user": { "_id": "64081a908dca6cec91caf136", "avatarUrl": "/avatars/c45d7fcdf879f4d6020863fd3be39771.svg", "fullname": "SeungJae Lee", "isPro": false, "type": "user", "user": "SeungJaeLee" } }, { "_id": "67c284e76e9f0735ea1c436f", "hidden": false, "name": "Jia-Bin Huang", "status": "admin_assigned", "statusLastChangedAt": "2025-03-04T16:07:55.181Z", "user": { "_id": "641c139b73296f7ee256970c", "avatarUrl": "/avatars/5a2550d95e686640242840ad3bd0e680.svg", "fullname": "Jiabin Huang", "isPro": false, "type": "user", "user": "YellowAddice" } }, { "_id": "67c284e76e9f0735ea1c4370", "hidden": false, "name": "Furong Huang", "status": "admin_assigned", "statusLastChangedAt": "2025-03-04T16:07:44.428Z", "user": { "_id": "64cbc3e2a257a3212c00a115", "avatarUrl": "/avatars/836e61be4aeda2080ddf2db9f2626cc6.svg", "fullname": "Furong Huang Lab at UMD", "isPro": false, "type": "user", "user": "furongh-lab" } }, { "_id": "67c284e76e9f0735ea1c4371", "hidden": false, "name": "Yizheng Chen", "status": "admin_assigned", "statusLastChangedAt": "2025-03-04T16:07:37.149Z", "user": { "_id": "660daf1d62d63ad000a53b9b", "avatarUrl": "/avatars/2f79d4b7db395e94b614358c7f322efe.svg", "fullname": "Yizheng Chen", "isPro": false, "type": "user", "user": "surrealyz" } } ]
2025-02-27T18:56:26
Why Are Web AI Agents More Vulnerable Than Standalone LLMs? A Security Analysis
Recent advancements in Web AI agents have demonstrated remarkable capabilities in addressing complex web navigation tasks. However, emerging research shows that these agents exhibit greater vulnerability compared to standalone Large Language Models (LLMs), despite both being built upon the same safety-aligned models. This discrepancy is particularly concerning given the greater flexibility of Web AI Agent compared to standalone LLMs, which may expose them to a wider range of adversarial user inputs. To build a scaffold that addresses these concerns, this study investigates the underlying factors that contribute to the increased vulnerability of Web AI agents. Notably, this disparity stems from the multifaceted differences between Web AI agents and standalone LLMs, as well as the complex signals - nuances that simple evaluation metrics, such as success rate, often fail to capture. To tackle these challenges, we propose a component-level analysis and a more granular, systematic evaluation framework. Through this fine-grained investigation, we identify three critical factors that amplify the vulnerability of Web AI agents; (1) embedding user goals into the system prompt, (2) multi-step action generation, and (3) observational capabilities. Our findings highlights the pressing need to enhance security and robustness in AI agent design and provide actionable insights for targeted defense strategies.
1
67c284e96e9f0735ea1c43dd
https://vulnerable-ai-agents.github.io/
null
2025-03-04T08:19:57.557000
General Reasoning Requires Learning to Reason from the Get-go
https://cdn-thumbnails.h…s/2502.19402.png
1
{ "_id": "6520d6db2a16045c092b3b36", "avatarUrl": "/avatars/dab34f141a1aef39d00c789ff85e729f.svg", "followerCount": null, "fullname": "Seungwook Han", "isHf": false, "isMod": false, "isPro": false, "name": "hanseungwook", "type": "user" }
true
null
2502.19402
[ { "_id": "67c66a6321d722b4247e5959", "hidden": false, "name": "Seungwook Han", "status": "admin_assigned", "statusLastChangedAt": "2025-03-04T16:08:58.266Z", "user": { "_id": "6520d6db2a16045c092b3b36", "avatarUrl": "/avatars/dab34f141a1aef39d00c789ff85e729f.svg", "fullname": "Seungwook Han", "isPro": false, "type": "user", "user": "hanseungwook" } }, { "_id": "67c66a6321d722b4247e595a", "hidden": false, "name": "Jyothish Pari", "status": null, "statusLastChangedAt": null, "user": null }, { "_id": "67c66a6321d722b4247e595b", "hidden": false, "name": "Samuel J. Gershman", "status": "extracted_confirmed", "statusLastChangedAt": "2025-03-04T13:57:29.748Z", "user": { "_id": "6520d6db2a16045c092b3b36", "avatarUrl": "/avatars/dab34f141a1aef39d00c789ff85e729f.svg", "fullname": "Seungwook Han", "isPro": false, "type": "user", "user": "hanseungwook" } }, { "_id": "67c66a6321d722b4247e595c", "hidden": false, "name": "Pulkit Agrawal", "status": null, "statusLastChangedAt": null, "user": null } ]
2025-02-26T18:51:12
General Reasoning Requires Learning to Reason from the Get-go
Large Language Models (LLMs) have demonstrated impressive real-world utility, exemplifying artificial useful intelligence (AUI). However, their ability to reason adaptively and robustly -- the hallmarks of artificial general intelligence (AGI) -- remains fragile. While LLMs seemingly succeed in commonsense reasoning, programming, and mathematics, they struggle to generalize algorithmic understanding across novel contexts. Our experiments with algorithmic tasks in esoteric programming languages reveal that LLM's reasoning overfits to the training data and is limited in its transferability. We hypothesize that the core issue underlying such limited transferability is the coupling of reasoning and knowledge in LLMs. To transition from AUI to AGI, we propose disentangling knowledge and reasoning through three key directions: (1) pretaining to reason using RL from scratch as an alternative to the widely used next-token prediction pretraining, (2) using a curriculum of synthetic tasks to ease the learning of a reasoning prior for RL that can then be transferred to natural language tasks, and (3) learning more generalizable reasoning functions using a small context window to reduce exploiting spurious correlations between tokens. Such a reasoning system coupled with a trained retrieval system and a large external memory bank as a knowledge store can overcome several limitations of existing architectures at learning to reason in novel scenarios.
4
67c66a6521d722b4247e59c8
null
null
2025-03-04T08:11:33.371000
PodAgent: A Comprehensive Framework for Podcast Generation
https://cdn-thumbnails.h…s/2503.00455.png
1
{ "_id": "674836767b7151c3ff30f865", "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/no-auth/jcwK5NW-efhCt8s2TE6vK.png", "followerCount": null, "fullname": "Yujia Xiao", "isHf": false, "isMod": false, "isPro": false, "name": "Yogurt928", "type": "user" }
true
null
2503.00455
[ { "_id": "67c6facdd8af5b36fd4b59cf", "hidden": false, "name": "Yujia Xiao", "status": "claimed_verified", "statusLastChangedAt": "2025-03-04T16:08:12.490Z", "user": { "_id": "674836767b7151c3ff30f865", "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/no-auth/jcwK5NW-efhCt8s2TE6vK.png", "fullname": "Yujia Xiao", "isPro": false, "type": "user", "user": "Yogurt928" } }, { "_id": "67c6facdd8af5b36fd4b59d0", "hidden": false, "name": "Lei He", "status": null, "statusLastChangedAt": null, "user": null }, { "_id": "67c6facdd8af5b36fd4b59d1", "hidden": false, "name": "Haohan Guo", "status": null, "statusLastChangedAt": null, "user": null }, { "_id": "67c6facdd8af5b36fd4b59d2", "hidden": false, "name": "Fenglong Xie", "status": null, "statusLastChangedAt": null, "user": null }, { "_id": "67c6facdd8af5b36fd4b59d3", "hidden": false, "name": "Tan Lee", "status": null, "statusLastChangedAt": null, "user": null } ]
2025-03-01T11:35:17
PodAgent: A Comprehensive Framework for Podcast Generation
Existing Existing automatic audio generation methods struggle to generate podcast-like audio programs effectively. The key challenges lie in in-depth content generation, appropriate and expressive voice production. This paper proposed PodAgent, a comprehensive framework for creating audio programs. PodAgent 1) generates informative topic-discussion content by designing a Host-Guest-Writer multi-agent collaboration system, 2) builds a voice pool for suitable voice-role matching and 3) utilizes LLM-enhanced speech synthesis method to generate expressive conversational speech. Given the absence of standardized evaluation criteria for podcast-like audio generation, we developed comprehensive assessment guidelines to effectively evaluate the model's performance. Experimental results demonstrate PodAgent's effectiveness, significantly surpassing direct GPT-4 generation in topic-discussion dialogue content, achieving an 87.4% voice-matching accuracy, and producing more expressive speech through LLM-guided synthesis. Demo page: https://podcast-agent.github.io/demo/. Source code: https://github.com/yujxx/PodAgent.
5
67c6facfd8af5b36fd4b5a45
https://podcast-agent.github.io/demo/
https://github.com/yujxx/PodAgent
2025-03-04T06:41:49.997000
When an LLM is apprehensive about its answers -- and when its uncertainty is justified
https://cdn-thumbnails.h…s/2503.01688.png
1
{ "_id": "675708985b91dea24c3ef642", "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/675708985b91dea24c3ef642/8KmerI1LwJEBHM2vrC54d.jpeg", "followerCount": null, "fullname": "Andrey Goncharov", "isHf": false, "isMod": false, "isPro": false, "name": "aigoncharov", "type": "user" }
true
[ "https://cdn-uploads.huggingface.co/production/uploads/675708985b91dea24c3ef642/9wCzAalApYA8hPN94CaEu.png" ]
2503.01688
[ { "_id": "67c6e6735aea9d8918635ac2", "hidden": false, "name": "Petr Sychev", "status": "claimed_verified", "statusLastChangedAt": "2025-03-04T12:01:33.230Z", "user": { "_id": "6728224623d75cbd1cdbe568", "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/noauth/4sb6TjuzeDc8-PG9hYhjW.jpeg", "fullname": "Petr Sychev", "isPro": false, "type": "user", "user": "sspetya" } }, { "_id": "67c6e6735aea9d8918635ac3", "hidden": false, "name": "Andrey Goncharov", "status": "extracted_pending", "statusLastChangedAt": "2025-03-04T11:39:33.550Z", "user": { "_id": "675708985b91dea24c3ef642", "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/675708985b91dea24c3ef642/8KmerI1LwJEBHM2vrC54d.jpeg", "fullname": "Andrey Goncharov", "isPro": false, "type": "user", "user": "aigoncharov" } }, { "_id": "67c6e6735aea9d8918635ac4", "hidden": false, "name": "Daniil Vyazhev", "status": "claimed_verified", "statusLastChangedAt": "2025-03-04T12:01:34.869Z", "user": { "_id": "659e049c01805191e5f67b12", "avatarUrl": "/avatars/4f33e39d85f8fbdfaeb34143e5038b92.svg", "fullname": "Vyazhev", "isPro": false, "type": "user", "user": "DanielVyazhev" } }, { "_id": "67c6e6735aea9d8918635ac5", "hidden": false, "name": "Edvard Khalafyan", "status": null, "statusLastChangedAt": null, "user": null }, { "_id": "67c6e6735aea9d8918635ac6", "hidden": false, "name": "Alexey Zaytsev", "status": null, "statusLastChangedAt": null, "user": null } ]
2025-03-03T16:03:46
When an LLM is apprehensive about its answers -- and when its uncertainty is justified
Uncertainty estimation is crucial for evaluating Large Language Models (LLMs), particularly in high-stakes domains where incorrect answers result in significant consequences. Numerous approaches consider this problem, while focusing on a specific type of uncertainty, ignoring others. We investigate what estimates, specifically token-wise entropy and model-as-judge (MASJ), would work for multiple-choice question-answering tasks for different question topics. Our experiments consider three LLMs: Phi-4, Mistral, and Qwen of different sizes from 1.5B to 72B and 14 topics. While MASJ performs similarly to a random error predictor, the response entropy predicts model error in knowledge-dependent domains and serves as an effective indicator of question difficulty: for biology ROC AUC is 0.73. This correlation vanishes for the reasoning-dependent domain: for math questions ROC-AUC is 0.55. More principally, we found out that the entropy measure required a reasoning amount. Thus, data-uncertainty related entropy should be integrated within uncertainty estimates frameworks, while MASJ requires refinement. Moreover, existing MMLU-Pro samples are biased, and should balance required amount of reasoning for different subdomains to provide a more fair assessment of LLMs performance.
16
67c6e6755aea9d8918635b20
null
https://github.com/LabARSS/question-complextiy-estimation
2025-03-04T05:28:10.012000
SampleMix: A Sample-wise Pre-training Data Mixing Strategey by Coordinating Data Quality and Diversity
https://cdn-thumbnails.h…s/2503.01506.png
1
{ "_id": "65a0aade5fafc248c2156e95", "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/65a0aade5fafc248c2156e95/S9YjJMTuKc-U1cFizqUMA.jpeg", "followerCount": 1, "fullname": "DeyangKong", "isHf": false, "isMod": false, "isPro": false, "name": "DeyangKong", "type": "user" }
true
null
2503.01506
[ { "_id": "67c67cf5c8d296910ca74711", "hidden": false, "name": "Xiangyu Xi", "status": "claimed_verified", "statusLastChangedAt": "2025-03-04T12:01:25.632Z", "user": { "_id": "63edb098679c2cc40abc6c2e", "avatarUrl": "/avatars/288c7229937c2c3f29fda6d17c7df2eb.svg", "fullname": "Xiangyu", "isPro": false, "type": "user", "user": "xixy" } }, { "_id": "67c67cf5c8d296910ca74712", "hidden": false, "name": "Deyang Kong", "status": "claimed_verified", "statusLastChangedAt": "2025-03-04T08:40:21.910Z", "user": { "_id": "65a0aade5fafc248c2156e95", "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/65a0aade5fafc248c2156e95/S9YjJMTuKc-U1cFizqUMA.jpeg", "fullname": "DeyangKong", "isPro": false, "type": "user", "user": "DeyangKong" } }, { "_id": "67c67cf5c8d296910ca74713", "hidden": false, "name": "Jian Yang", "status": null, "statusLastChangedAt": null, "user": null }, { "_id": "67c67cf5c8d296910ca74714", "hidden": false, "name": "Jiawei Yang", "status": null, "statusLastChangedAt": null, "user": null }, { "_id": "67c67cf5c8d296910ca74715", "hidden": false, "name": "Zhengyu Chen", "status": "admin_assigned", "statusLastChangedAt": "2025-03-04T11:16:14.018Z", "user": { "_id": "67b7ebf3d00e69f10cfcf551", "avatarUrl": "/avatars/8adea7ae44c459079113a690ec7da73a.svg", "fullname": "Chen Zhengyu", "isPro": false, "type": "user", "user": "WQYC" } }, { "_id": "67c67cf5c8d296910ca74716", "hidden": false, "name": "Wei Wang", "status": "admin_assigned", "statusLastChangedAt": "2025-03-04T11:16:23.635Z", "user": { "_id": "62fa0ffe0697d224219a0cb7", "avatarUrl": "/avatars/f0ef59e1c0cf4ab4fe5cee08d488bd03.svg", "fullname": "Wei Wang", "isPro": false, "type": "user", "user": "WeiWang" } }, { "_id": "67c67cf5c8d296910ca74717", "hidden": false, "name": "Jingang Wang", "status": "admin_assigned", "statusLastChangedAt": "2025-03-04T11:16:00.303Z", "user": { "_id": "647097cbcfd57849518e656b", "avatarUrl": "/avatars/c66fe0add29c1bde9e3a98bf4a8793b9.svg", "fullname": "Jingang Wang", "isPro": false, "type": "user", "user": "bitwjg" } }, { "_id": "67c67cf5c8d296910ca74718", "hidden": false, "name": "Xunliang Cai", "status": null, "statusLastChangedAt": null, "user": null }, { "_id": "67c67cf5c8d296910ca74719", "hidden": false, "name": "Shikun Zhang", "status": null, "statusLastChangedAt": null, "user": null }, { "_id": "67c67cf5c8d296910ca7471a", "hidden": false, "name": "Wei Ye", "status": null, "statusLastChangedAt": null, "user": null } ]
2025-03-03T13:22:11
SampleMix: A Sample-wise Pre-training Data Mixing Strategey by Coordinating Data Quality and Diversity
Existing pretraining data mixing methods for large language models (LLMs) typically follow a domain-wise methodology, a top-down process that first determines domain weights and then performs uniform data sampling across each domain. However, these approaches neglect significant inter-domain overlaps and commonalities, failing to control the global diversity of the constructed training dataset. Further, uniform sampling within domains ignores fine-grained sample-specific features, potentially leading to suboptimal data distribution. To address these shortcomings, we propose a novel sample-wise data mixture approach based on a bottom-up paradigm. This method performs global cross-domain sampling by systematically evaluating the quality and diversity of each sample, thereby dynamically determining the optimal domain distribution. Comprehensive experiments across multiple downstream tasks and perplexity assessments demonstrate that SampleMix surpasses existing domain-based methods. Meanwhile, SampleMix requires 1.4x to 2.1x training steps to achieves the baselines' performance, highlighting the substantial potential of SampleMix to optimize pre-training data.
7
67c67d03c8d296910ca7494f
null
null
2025-03-04T05:13:44.578000
Word Form Matters: LLMs' Semantic Reconstruction under Typoglycemia
https://cdn-thumbnails.h…s/2503.01714.png
1
{ "_id": "65407ba7a38390065750233f", "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/65407ba7a38390065750233f/1_IPMZbk-S9u2t18PQgMp.jpeg", "followerCount": 1, "fullname": "Zirui Song", "isHf": false, "isMod": false, "isPro": false, "name": "Ziruibest", "type": "user" }
true
null
2503.01714
[ { "_id": "67c6d22d983375492193aab0", "hidden": false, "name": "Chenxi Wang", "status": "claimed_verified", "statusLastChangedAt": "2025-03-04T11:16:44.551Z", "user": { "_id": "679bc0ec7f3c28bf968321c8", "avatarUrl": "/avatars/9d5ab9c6af32878e28987518c0210c1a.svg", "fullname": "Chenxi Wang", "isPro": false, "type": "user", "user": "Aurora-cx" } }, { "_id": "67c6d22d983375492193aab1", "hidden": false, "name": "Tianle Gu", "status": "admin_assigned", "statusLastChangedAt": "2025-03-04T10:54:29.015Z", "user": { "_id": "6346361c5efccdc07f179cae", "avatarUrl": "/avatars/217818114a4c19ea4f3e5cdafefb625e.svg", "fullname": "Gu Tianle", "isPro": false, "type": "user", "user": "Carol0110" } }, { "_id": "67c6d22d983375492193aab2", "hidden": false, "name": "Zhongyu Wei", "status": null, "statusLastChangedAt": null, "user": null }, { "_id": "67c6d22d983375492193aab3", "hidden": false, "name": "Lang Gao", "status": null, "statusLastChangedAt": null, "user": null }, { "_id": "67c6d22d983375492193aab4", "hidden": false, "name": "Zirui Song", "status": "claimed_verified", "statusLastChangedAt": "2025-03-04T10:17:25.935Z", "user": { "_id": "65407ba7a38390065750233f", "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/65407ba7a38390065750233f/1_IPMZbk-S9u2t18PQgMp.jpeg", "fullname": "Zirui Song", "isPro": false, "type": "user", "user": "Ziruibest" } }, { "_id": "67c6d22d983375492193aab5", "hidden": false, "name": "Xiuying Chen", "status": null, "statusLastChangedAt": null, "user": null } ]
2025-03-03T16:31:45
Word Form Matters: LLMs' Semantic Reconstruction under Typoglycemia
Human readers can efficiently comprehend scrambled words, a phenomenon known as Typoglycemia, primarily by relying on word form; if word form alone is insufficient, they further utilize contextual cues for interpretation. While advanced large language models (LLMs) exhibit similar abilities, the underlying mechanisms remain unclear. To investigate this, we conduct controlled experiments to analyze the roles of word form and contextual information in semantic reconstruction and examine LLM attention patterns. Specifically, we first propose SemRecScore, a reliable metric to quantify the degree of semantic reconstruction, and validate its effectiveness. Using this metric, we study how word form and contextual information influence LLMs' semantic reconstruction ability, identifying word form as the core factor in this process. Furthermore, we analyze how LLMs utilize word form and find that they rely on specialized attention heads to extract and process word form information, with this mechanism remaining stable across varying levels of word scrambling. This distinction between LLMs' fixed attention patterns primarily focused on word form and human readers' adaptive strategy in balancing word form and contextual information provides insights into enhancing LLM performance by incorporating human-like, context-aware mechanisms.
5
67c6d22e983375492193ab13
null
null
2025-03-04T05:12:10.849000
Direct Discriminative Optimization: Your Likelihood-Based Visual Generative Model is Secretly a GAN Discriminator
https://cdn-thumbnails.h…s/2503.01103.png
1
{ "_id": "652bf7edc3cba555d5673c6e", "avatarUrl": "/avatars/78f6416c30203b30671f8423f061c657.svg", "followerCount": null, "fullname": "Kaiwen Zheng", "isHf": false, "isMod": false, "isPro": false, "name": "worstcoder", "type": "user" }
true
null
2503.01103
[ { "_id": "67c6d1c35e896ed915374027", "hidden": false, "name": "Kaiwen Zheng", "status": "claimed_verified", "statusLastChangedAt": "2025-03-04T10:17:24.142Z", "user": { "_id": "652bf7edc3cba555d5673c6e", "avatarUrl": "/avatars/78f6416c30203b30671f8423f061c657.svg", "fullname": "Kaiwen Zheng", "isPro": false, "type": "user", "user": "worstcoder" } }, { "_id": "67c6d1c35e896ed915374028", "hidden": false, "name": "Yongxin Chen", "status": "admin_assigned", "statusLastChangedAt": "2025-03-04T11:16:59.170Z", "user": { "_id": "66f4cf1a03b5ba8a7f1f6522", "avatarUrl": "/avatars/2768d6e37d3f280194cfb8ed274f6015.svg", "fullname": "Yongxin Chen", "isPro": false, "type": "user", "user": "Ema11" } }, { "_id": "67c6d1c35e896ed915374029", "hidden": false, "name": "Huayu Chen", "status": "admin_assigned", "statusLastChangedAt": "2025-03-04T11:17:06.080Z", "user": { "_id": "6630f87ee53fcb71c3887df0", "avatarUrl": "/avatars/50191a3d45bebf90cf08df09477e95db.svg", "fullname": "HuayuChen", "isPro": false, "type": "user", "user": "HuayuChen" } }, { "_id": "67c6d1c35e896ed91537402a", "hidden": false, "name": "Guande He", "status": "admin_assigned", "statusLastChangedAt": "2025-03-04T11:17:20.266Z", "user": { "_id": "67492ee82ad3cfc108a41bbb", "avatarUrl": "/avatars/7ad03e55a8791c62f1271a5c9bf8cc60.svg", "fullname": "Guande He", "isPro": false, "type": "user", "user": "gdhe17" } }, { "_id": "67c6d1c35e896ed91537402b", "hidden": false, "name": "Ming-Yu Liu", "status": "admin_assigned", "statusLastChangedAt": "2025-03-04T11:17:27.270Z", "user": { "_id": "62f049afdf4b93aad5c7f2d6", "avatarUrl": "/avatars/e272e58ad996733d7098e50248e5b57e.svg", "fullname": "Ming-Yu Liu", "isPro": false, "type": "user", "user": "mingyuliutw" } }, { "_id": "67c6d1c35e896ed91537402c", "hidden": false, "name": "Jun Zhu", "status": null, "statusLastChangedAt": null, "user": null }, { "_id": "67c6d1c35e896ed91537402d", "hidden": false, "name": "Qinsheng Zhang", "status": "admin_assigned", "statusLastChangedAt": "2025-03-04T11:17:33.763Z", "user": { "_id": "6732d5dea24987c43bfbafd8", "avatarUrl": "/avatars/1581373b9de5069975716932fceb976b.svg", "fullname": "Qinsheng Zhang", "isPro": false, "type": "user", "user": "qsh-zh" } } ]
2025-03-03T02:06:22
Direct Discriminative Optimization: Your Likelihood-Based Visual Generative Model is Secretly a GAN Discriminator
While likelihood-based generative models, particularly diffusion and autoregressive models, have achieved remarkable fidelity in visual generation, the maximum likelihood estimation (MLE) objective inherently suffers from a mode-covering tendency that limits the generation quality under limited model capacity. In this work, we propose Direct Discriminative Optimization (DDO) as a unified framework that bridges likelihood-based generative training and the GAN objective to bypass this fundamental constraint. Our key insight is to parameterize a discriminator implicitly using the likelihood ratio between a learnable target model and a fixed reference model, drawing parallels with the philosophy of Direct Preference Optimization (DPO). Unlike GANs, this parameterization eliminates the need for joint training of generator and discriminator networks, allowing for direct, efficient, and effective finetuning of a well-trained model to its full potential beyond the limits of MLE. DDO can be performed iteratively in a self-play manner for progressive model refinement, with each round requiring less than 1% of pretraining epochs. Our experiments demonstrate the effectiveness of DDO by significantly advancing the previous SOTA diffusion model EDM, reducing FID scores from 1.79/1.58 to new records of 1.30/0.97 on CIFAR-10/ImageNet-64 datasets, and by consistently improving both guidance-free and CFG-enhanced FIDs of visual autoregressive models on ImageNet 256times256.
2
67c6d1c65e896ed9153740e4
https://research.nvidia.com/labs/dir/ddo/
null
2025-03-04T04:56:33.061000
From Hours to Minutes: Lossless Acceleration of Ultra Long Sequence Generation up to 100K Tokens
https://cdn-thumbnails.h…s/2502.18890.png
1
{ "_id": "63a95a6a7930fa8c7dd63d4e", "avatarUrl": "/avatars/d9d0420f7ddfe2f3a7e029fb05f1c89f.svg", "followerCount": 3, "fullname": "Zilong Zheng", "isHf": false, "isMod": false, "isPro": false, "name": "zlzheng", "type": "user" }
true
[ "https://cdn-uploads.huggingface.co/production/uploads/63a95a6a7930fa8c7dd63d4e/3WZ10b-Ku3GcY1fc1MWx8.mp4" ]
2502.18890
[ { "_id": "67c6cbd6e52534aa6ada2e26", "hidden": false, "name": "Tong Wu", "status": "admin_assigned", "statusLastChangedAt": "2025-03-04T10:58:45.670Z", "user": { "_id": "668f7fee5156d55f72af4f21", "avatarUrl": "/avatars/02edf8d7d5f288d80dc665b18dda4d0a.svg", "fullname": "TongWu", "isPro": false, "type": "user", "user": "TongWu" } }, { "_id": "67c6cbd6e52534aa6ada2e27", "hidden": false, "name": "Junzhe Shen", "status": "admin_assigned", "statusLastChangedAt": "2025-03-04T10:58:27.834Z", "user": { "_id": "6530c9d7d107f378e105d667", "avatarUrl": "/avatars/889dfcb6514c90351802bebb4a34a78f.svg", "fullname": "Junzhe Shen", "isPro": false, "type": "user", "user": "JunzheS" } }, { "_id": "67c6cbd6e52534aa6ada2e28", "hidden": false, "name": "Zixia Jia", "status": "admin_assigned", "statusLastChangedAt": "2025-03-04T10:58:34.128Z", "user": { "_id": "64b7ae6cf53ae848e72b997d", "avatarUrl": "/avatars/b55dd3d6fcb3ccac2e3880d01a9bdc63.svg", "fullname": "Zixia Jia", "isPro": false, "type": "user", "user": "vickyandkekey" } }, { "_id": "67c6cbd6e52534aa6ada2e29", "hidden": false, "name": "Yuxuan Wang", "status": null, "statusLastChangedAt": null, "user": null }, { "_id": "67c6cbd6e52534aa6ada2e2a", "hidden": false, "name": "Zilong Zheng", "status": "extracted_pending", "statusLastChangedAt": "2025-03-04T09:45:59.571Z", "user": { "_id": "63a95a6a7930fa8c7dd63d4e", "avatarUrl": "/avatars/d9d0420f7ddfe2f3a7e029fb05f1c89f.svg", "fullname": "Zilong Zheng", "isPro": false, "type": "user", "user": "zlzheng" } } ]
2025-02-26T07:10:08
From Hours to Minutes: Lossless Acceleration of Ultra Long Sequence Generation up to 100K Tokens
Generating ultra-long sequences with large language models (LLMs) has become increasingly crucial but remains a highly time-intensive task, particularly for sequences up to 100K tokens. While traditional speculative decoding methods exist, simply extending their generation limits fails to accelerate the process and can be detrimental. Through an in-depth analysis, we identify three major challenges hindering efficient generation: frequent model reloading, dynamic key-value (KV) management and repetitive generation. To address these issues, we introduce TOKENSWIFT, a novel framework designed to substantially accelerate the generation process of ultra-long sequences while maintaining the target model's inherent quality. Experimental results demonstrate that TOKENSWIFT achieves over 3 times speedup across models of varying scales (1.5B, 7B, 8B, 14B) and architectures (MHA, GQA). This acceleration translates to hours of time savings for ultra-long sequence generation, establishing TOKENSWIFT as a scalable and effective solution at unprecedented lengths. Code can be found at https://github.com/bigai-nlco/TokenSwift.
7
67c6cbd7e52534aa6ada2e79
null
https://github.com/bigai-nlco/TokenSwift
2025-03-04T04:54:04.054000
DiffRhythm: Blazingly Fast and Embarrassingly Simple End-to-End Full-Length Song Generation with Latent Diffusion
https://cdn-thumbnails.h…s/2503.01183.png
1
{ "_id": "624bebf604abc7ebb01789af", "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/1649143001781-624bebf604abc7ebb01789af.jpeg", "followerCount": 3863, "fullname": "Apolinário from multimodal AI art", "isHf": true, "isMod": false, "isPro": true, "name": "multimodalart", "type": "user" }
false
null
2503.01183
[ { "_id": "67c6a15e21d722b4248bd9c2", "hidden": false, "name": "Ziqian Ning", "status": null, "statusLastChangedAt": null, "user": null }, { "_id": "67c6a15e21d722b4248bd9c3", "hidden": false, "name": "Huakang Chen", "status": null, "statusLastChangedAt": null, "user": null }, { "_id": "67c6a15e21d722b4248bd9c4", "hidden": false, "name": "Yuepeng Jiang", "status": null, "statusLastChangedAt": null, "user": null }, { "_id": "67c6a15e21d722b4248bd9c5", "hidden": false, "name": "Chunbo Hao", "status": null, "statusLastChangedAt": null, "user": null }, { "_id": "67c6a15e21d722b4248bd9c6", "hidden": false, "name": "Guobin Ma", "status": null, "statusLastChangedAt": null, "user": null }, { "_id": "67c6a15e21d722b4248bd9c7", "hidden": false, "name": "Shuai Wang", "status": null, "statusLastChangedAt": null, "user": null }, { "_id": "67c6a15e21d722b4248bd9c8", "hidden": false, "name": "Jixun Yao", "status": null, "statusLastChangedAt": null, "user": null }, { "_id": "67c6a15e21d722b4248bd9c9", "hidden": false, "name": "Lei Xie", "status": null, "statusLastChangedAt": null, "user": null } ]
2025-03-03T05:15:34
DiffRhythm: Blazingly Fast and Embarrassingly Simple End-to-End Full-Length Song Generation with Latent Diffusion
Recent advancements in music generation have garnered significant attention, yet existing approaches face critical limitations. Some current generative models can only synthesize either the vocal track or the accompaniment track. While some models can generate combined vocal and accompaniment, they typically rely on meticulously designed multi-stage cascading architectures and intricate data pipelines, hindering scalability. Additionally, most systems are restricted to generating short musical segments rather than full-length songs. Furthermore, widely used language model-based methods suffer from slow inference speeds. To address these challenges, we propose DiffRhythm, the first latent diffusion-based song generation model capable of synthesizing complete songs with both vocal and accompaniment for durations of up to 4m45s in only ten seconds, maintaining high musicality and intelligibility. Despite its remarkable capabilities, DiffRhythm is designed to be simple and elegant: it eliminates the need for complex data preparation, employs a straightforward model structure, and requires only lyrics and a style prompt during inference. Additionally, its non-autoregressive structure ensures fast inference speeds. This simplicity guarantees the scalability of DiffRhythm. Moreover, we release the complete training code along with the pre-trained model on large-scale data to promote reproducibility and further research.
18
67c6a16021d722b4248bda37
https://aslp-lab.github.io/DiffRhythm.github.io/
https://github.com/ASLP-lab/DiffRhythm
2025-03-04T04:17:23.806000
Unposed Sparse Views Room Layout Reconstruction in the Age of Pretrain Model
https://cdn-thumbnails.h…s/2502.16779.png
1
{ "_id": "642bdfc65edcc5760cb1ea12", "avatarUrl": "/avatars/599b0bbb379b43cd39097c204c946075.svg", "followerCount": null, "fullname": "huang", "isHf": false, "isMod": false, "isPro": false, "name": "yxuan", "type": "user" }
true
null
2502.16779
[ { "_id": "67c65c06e116e361574405e9", "hidden": false, "name": "Yaxuan Huang", "status": "claimed_verified", "statusLastChangedAt": "2025-03-04T08:51:27.582Z", "user": { "_id": "642bdfc65edcc5760cb1ea12", "avatarUrl": "/avatars/599b0bbb379b43cd39097c204c946075.svg", "fullname": "huang", "isPro": false, "type": "user", "user": "yxuan" } }, { "_id": "67c65c06e116e361574405ea", "hidden": false, "name": "Xili Dai", "status": null, "statusLastChangedAt": null, "user": null }, { "_id": "67c65c06e116e361574405eb", "hidden": false, "name": "Jianan Wang", "status": null, "statusLastChangedAt": null, "user": null }, { "_id": "67c65c06e116e361574405ec", "hidden": false, "name": "Xianbiao Qi", "status": "admin_assigned", "statusLastChangedAt": "2025-03-04T11:01:12.106Z", "user": { "_id": "6494483aa13255720397287a", "avatarUrl": "/avatars/61ff2e0371df513194246cf6fbb2b78a.svg", "fullname": "Xianbiao Qi", "isPro": false, "type": "user", "user": "qixianbiao" } }, { "_id": "67c65c06e116e361574405ed", "hidden": false, "name": "Yixing Yuan", "status": null, "statusLastChangedAt": null, "user": null }, { "_id": "67c65c06e116e361574405ee", "hidden": false, "name": "Xiangyu Yue", "status": "admin_assigned", "statusLastChangedAt": "2025-03-04T11:00:56.439Z", "user": { "_id": "666a8f24e2990b0cb16b7bf9", "avatarUrl": "/avatars/fcbaf8f1e3e53a2a4a819b7cb2c53aa4.svg", "fullname": "Xiangyu Yue", "isPro": false, "type": "user", "user": "xyyue" } } ]
2025-02-24T02:14:19
Unposed Sparse Views Room Layout Reconstruction in the Age of Pretrain Model
Room layout estimation from multiple-perspective images is poorly investigated due to the complexities that emerge from multi-view geometry, which requires muti-step solutions such as camera intrinsic and extrinsic estimation, image matching, and triangulation. However, in 3D reconstruction, the advancement of recent 3D foundation models such as DUSt3R has shifted the paradigm from the traditional multi-step structure-from-motion process to an end-to-end single-step approach. To this end, we introduce Plane-DUSt3R, a novel method for multi-view room layout estimation leveraging the 3D foundation model DUSt3R. Plane-DUSt3R incorporates the DUSt3R framework and fine-tunes on a room layout dataset (Structure3D) with a modified objective to estimate structural planes. By generating uniform and parsimonious results, Plane-DUSt3R enables room layout estimation with only a single post-processing step and 2D detection results. Unlike previous methods that rely on single-perspective or panorama image, Plane-DUSt3R extends the setting to handle multiple-perspective images. Moreover, it offers a streamlined, end-to-end solution that simplifies the process and reduces error accumulation. Experimental results demonstrate that Plane-DUSt3R not only outperforms state-of-the-art methods on the synthetic dataset but also proves robust and effective on in the wild data with different image styles such as cartoon.Our code is available at: https://github.com/justacar/Plane-DUSt3R
2
67c65c0be116e36157440751
null
https://github.com/justacar/Plane-DUSt3R
2025-03-04T03:56:04.503000
OneRec: Unifying Retrieve and Rank with Generative Recommender and Iterative Preference Alignment
https://cdn-thumbnails.h…s/2502.18965.png
1
{ "_id": "668f5875b5b3081d776e4094", "avatarUrl": "/avatars/8c763393f25afbe5fb8b132f775e746a.svg", "followerCount": 1, "fullname": "Xiaohuan Zhou", "isHf": false, "isMod": false, "isPro": false, "name": "XiaohuanZhou", "type": "user" }
false
null
2502.18965
[ { "_id": "67c6bfdf96b9f5fa18c517db", "hidden": false, "name": "Jiaxin Deng", "status": "admin_assigned", "statusLastChangedAt": "2025-03-04T10:16:32.410Z", "user": { "_id": "625f6ebee1994410eef16a42", "avatarUrl": "/avatars/eaa353afe91e849adcd35656477a6462.svg", "fullname": "Jiaxin Deng", "isPro": false, "type": "user", "user": "OrpheusBetter" } }, { "_id": "67c6bfdf96b9f5fa18c517dc", "hidden": false, "name": "Shiyao Wang", "status": "admin_assigned", "statusLastChangedAt": "2025-03-04T10:16:39.957Z", "user": { "_id": "641f8e596d51620635e49707", "avatarUrl": "/avatars/f30b24da53fea2278f343c318007bb60.svg", "fullname": "shiyao wang", "isPro": false, "type": "user", "user": "oneself" } }, { "_id": "67c6bfdf96b9f5fa18c517dd", "hidden": false, "name": "Kuo Cai", "status": "claimed_verified", "statusLastChangedAt": "2025-03-04T12:01:27.669Z", "user": { "_id": "65e6cc77e999cde61fcbc097", "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/no-auth/5NxDLRmS2cQgNeZ6ScSNW.png", "fullname": "CaiKuo", "isPro": false, "type": "user", "user": "caikuo" } }, { "_id": "67c6bfdf96b9f5fa18c517de", "hidden": false, "name": "Lejian Ren", "status": null, "statusLastChangedAt": null, "user": null }, { "_id": "67c6bfdf96b9f5fa18c517df", "hidden": false, "name": "Qigen Hu", "status": null, "statusLastChangedAt": null, "user": null }, { "_id": "67c6bfdf96b9f5fa18c517e0", "hidden": false, "name": "Weifeng Ding", "status": "admin_assigned", "statusLastChangedAt": "2025-03-04T10:17:03.422Z", "user": { "_id": "64aeb9342cda6a37a4781b7d", "avatarUrl": "/avatars/c1584c10ff0f9871315872245c9934fc.svg", "fullname": "Weifeng Ding", "isPro": false, "type": "user", "user": "DingWF" } }, { "_id": "67c6bfdf96b9f5fa18c517e1", "hidden": false, "name": "Qiang Luo", "status": null, "statusLastChangedAt": null, "user": null }, { "_id": "67c6bfdf96b9f5fa18c517e2", "hidden": false, "name": "Guorui Zhou", "status": "admin_assigned", "statusLastChangedAt": "2025-03-04T10:16:52.106Z", "user": { "_id": "67c6c570cf87e2d2ebfc81aa", "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/67c6c570cf87e2d2ebfc81aa/7qAstZtIT86Uwrz3u_anv.jpeg", "fullname": "Guorui Zhou", "isPro": false, "type": "user", "user": "GuoruiZhou" } } ]
2025-02-26T09:25:10
OneRec: Unifying Retrieve and Rank with Generative Recommender and Iterative Preference Alignment
Recently, generative retrieval-based recommendation systems have emerged as a promising paradigm. However, most modern recommender systems adopt a retrieve-and-rank strategy, where the generative model functions only as a selector during the retrieval stage. In this paper, we propose OneRec, which replaces the cascaded learning framework with a unified generative model. To the best of our knowledge, this is the first end-to-end generative model that significantly surpasses current complex and well-designed recommender systems in real-world scenarios. Specifically, OneRec includes: 1) an encoder-decoder structure, which encodes the user's historical behavior sequences and gradually decodes the videos that the user may be interested in. We adopt sparse Mixture-of-Experts (MoE) to scale model capacity without proportionally increasing computational FLOPs. 2) a session-wise generation approach. In contrast to traditional next-item prediction, we propose a session-wise generation, which is more elegant and contextually coherent than point-by-point generation that relies on hand-crafted rules to properly combine the generated results. 3) an Iterative Preference Alignment module combined with Direct Preference Optimization (DPO) to enhance the quality of the generated results. Unlike DPO in NLP, a recommendation system typically has only one opportunity to display results for each user's browsing request, making it impossible to obtain positive and negative samples simultaneously. To address this limitation, We design a reward model to simulate user generation and customize the sampling strategy. Extensive experiments have demonstrated that a limited number of DPO samples can align user interest preferences and significantly improve the quality of generated results. We deployed OneRec in the main scene of Kuaishou, achieving a 1.6\% increase in watch-time, which is a substantial improvement.
18
67c6bfe396b9f5fa18c518e5
null
null
2025-03-04T03:20:03.380000
AI-Invented Tonal Languages: Preventing a Machine Lingua Franca Beyond Human Understanding
https://cdn-thumbnails.h…s/2503.01063.png
1
{ "_id": "63136a82e29fb2e86d5e5bdd", "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/63136a82e29fb2e86d5e5bdd/pFZDuQtzfUStovbwwZGvn.png", "followerCount": null, "fullname": "David Noever", "isHf": false, "isMod": false, "isPro": false, "name": "dnoever", "type": "user" }
true
[ "https://cdn-uploads.huggingface.co/production/uploads/63136a82e29fb2e86d5e5bdd/mgIPjnhtUaGLR2Iv4ViL6.jpeg" ]
2503.01063
[ { "_id": "67c6b72b7aad9a016ae60797", "hidden": false, "name": "David Noever", "status": "admin_assigned", "statusLastChangedAt": "2025-03-04T11:17:50.200Z", "user": { "_id": "63136a82e29fb2e86d5e5bdd", "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/63136a82e29fb2e86d5e5bdd/pFZDuQtzfUStovbwwZGvn.png", "fullname": "David Noever", "isPro": false, "type": "user", "user": "dnoever" } } ]
2025-03-02T23:59:52
AI-Invented Tonal Languages: Preventing a Machine Lingua Franca Beyond Human Understanding
This paper investigates the potential for large language models (LLMs) to develop private tonal languages for machine-to-machine (M2M) communication. Inspired by cryptophasia in human twins (affecting up to 50% of twin births) and natural tonal languages like Mandarin and Vietnamese, we implement a precise character-to-frequency mapping system that encodes the full ASCII character set (32-126) using musical semitones. Each character is assigned a unique frequency, creating a logarithmic progression beginning with space (220 Hz) and ending with tilde (50,175.42 Hz). This spans approximately 7.9 octaves, with higher characters deliberately mapped to ultrasonic frequencies beyond human perception (>20 kHz). Our implemented software prototype demonstrates this encoding through visualization, auditory playback, and ABC musical notation, allowing for analysis of information density and transmission speed. Testing reveals that tonal encoding can achieve information rates exceeding human speech while operating partially outside human perceptual boundaries. This work responds directly to concerns about AI systems catastrophically developing private languages within the next five years, providing a concrete prototype software example of how such communication might function and the technical foundation required for its emergence, detection, and governance.
1
67c6b72c7aad9a016ae607bb
null
null
2025-03-04T02:48:58.261000
Liger: Linearizing Large Language Models to Gated Recurrent Structures
https://cdn-thumbnails.h…s/2503.01496.png
1
{ "_id": "6246bb33da617c00b48e4d92", "avatarUrl": "/avatars/0304a9f6eb7f5dee4d933d03222f94e9.svg", "followerCount": 3, "fullname": "Weigao Sun", "isHf": false, "isMod": false, "isPro": false, "name": "weigao266", "type": "user" }
true
null
2503.01496
[ { "_id": "67c6b05f35198d0f397adc98", "hidden": false, "name": "Disen Lan", "status": "claimed_verified", "statusLastChangedAt": "2025-03-04T08:34:46.117Z", "user": { "_id": "66ea643899af9ac3463639b1", "avatarUrl": "/avatars/252d470e761a57834dee3dbc60dfefed.svg", "fullname": "Disen Lan", "isPro": false, "type": "user", "user": "landisen" } }, { "_id": "67c6b05f35198d0f397adc99", "hidden": false, "name": "Weigao Sun", "status": "extracted_confirmed", "statusLastChangedAt": "2025-03-04T08:10:52.130Z", "user": { "_id": "6246bb33da617c00b48e4d92", "avatarUrl": "/avatars/0304a9f6eb7f5dee4d933d03222f94e9.svg", "fullname": "Weigao Sun", "isPro": false, "type": "user", "user": "weigao266" } }, { "_id": "67c6b05f35198d0f397adc9a", "hidden": false, "name": "Jiaxi Hu", "status": "admin_assigned", "statusLastChangedAt": "2025-03-04T10:04:18.982Z", "user": { "_id": "665dc35752ff9daa9ba5a4ed", "avatarUrl": "/avatars/df8b01879d97e599b610fa51414d3a18.svg", "fullname": "Hu Jiaxi", "isPro": false, "type": "user", "user": "Jiaxihu2" } }, { "_id": "67c6b05f35198d0f397adc9b", "hidden": false, "name": "Jusen Du", "status": "admin_assigned", "statusLastChangedAt": "2025-03-04T10:04:26.432Z", "user": { "_id": "65003e857804f04a163328d9", "avatarUrl": "/avatars/fe32150aabfde8d283b38ccebcf6982e.svg", "fullname": "Jusen Du", "isPro": false, "type": "user", "user": "JusenK" } }, { "_id": "67c6b05f35198d0f397adc9c", "hidden": false, "name": "Yu Cheng", "status": null, "statusLastChangedAt": null, "user": null } ]
2025-03-03T13:08:00
Liger: Linearizing Large Language Models to Gated Recurrent Structures
Transformers with linear recurrent modeling offer linear-time training and constant-memory inference. Despite their demonstrated efficiency and performance, pretraining such non-standard architectures from scratch remains costly and risky. The linearization of large language models (LLMs) transforms pretrained standard models into linear recurrent structures, enabling more efficient deployment. However, current linearization methods typically introduce additional feature map modules that require extensive fine-tuning and overlook the gating mechanisms used in state-of-the-art linear recurrent models. To address these issues, this paper presents Liger, short for Linearizing LLMs to gated recurrent structures. Liger is a novel approach for converting pretrained LLMs into gated linear recurrent models without adding extra parameters. It repurposes the pretrained key matrix weights to construct diverse gating mechanisms, facilitating the formation of various gated recurrent structures while avoiding the need to train additional components from scratch. Using lightweight fine-tuning with Low-Rank Adaptation (LoRA), Liger restores the performance of the linearized gated recurrent models to match that of the original LLMs. Additionally, we introduce Liger Attention, an intra-layer hybrid attention mechanism, which significantly recovers 93\% of the Transformer-based LLM at 0.02\% pre-training tokens during the linearization process, achieving competitive results across multiple benchmarks, as validated on models ranging from 1B to 8B parameters. Code is available at https://github.com/OpenSparseLLMs/Linearization.
13
67c6b06035198d0f397adcc4
null
null
2025-03-04T02:27:17.351000
CLEA: Closed-Loop Embodied Agent for Enhancing Task Execution in Dynamic Environments
https://cdn-thumbnails.h…s/2503.00729.png
1
{ "_id": "6628c6107751d297d7025a71", "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/6628c6107751d297d7025a71/S1rm5VIwV2Uxfv8GetKMU.jpeg", "followerCount": 1, "fullname": "Lei Mingcong", "isHf": false, "isMod": false, "isPro": false, "name": "SP4595", "type": "user" }
true
null
2503.00729
[ { "_id": "67c6ab3ec0b62d612c54ddf5", "hidden": false, "name": "Mingcong Lei", "status": "claimed_verified", "statusLastChangedAt": "2025-03-04T08:34:48.061Z", "user": { "_id": "6628c6107751d297d7025a71", "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/6628c6107751d297d7025a71/S1rm5VIwV2Uxfv8GetKMU.jpeg", "fullname": "Lei Mingcong", "isPro": false, "type": "user", "user": "SP4595" } }, { "_id": "67c6ab3ec0b62d612c54ddf6", "hidden": false, "name": "Ge Wang", "status": null, "statusLastChangedAt": null, "user": null }, { "_id": "67c6ab3ec0b62d612c54ddf7", "hidden": false, "name": "Yiming Zhao", "status": null, "statusLastChangedAt": null, "user": null }, { "_id": "67c6ab3ec0b62d612c54ddf8", "hidden": false, "name": "Zhixin Mai", "status": null, "statusLastChangedAt": null, "user": null }, { "_id": "67c6ab3ec0b62d612c54ddf9", "hidden": false, "name": "Qing Zhao", "status": null, "statusLastChangedAt": null, "user": null }, { "_id": "67c6ab3ec0b62d612c54ddfa", "hidden": false, "name": "Yao Guo", "status": null, "statusLastChangedAt": null, "user": null }, { "_id": "67c6ab3ec0b62d612c54ddfb", "hidden": false, "name": "Zhen Li", "status": null, "statusLastChangedAt": null, "user": null }, { "_id": "67c6ab3ec0b62d612c54ddfc", "hidden": false, "name": "Shuguang Cui", "status": null, "statusLastChangedAt": null, "user": null }, { "_id": "67c6ab3ec0b62d612c54ddfd", "hidden": false, "name": "Yatong Han", "status": null, "statusLastChangedAt": null, "user": null }, { "_id": "67c6ab3ec0b62d612c54ddfe", "hidden": false, "name": "Jinke Ren", "status": null, "statusLastChangedAt": null, "user": null } ]
2025-03-02T04:50:59
CLEA: Closed-Loop Embodied Agent for Enhancing Task Execution in Dynamic Environments
Large Language Models (LLMs) exhibit remarkable capabilities in the hierarchical decomposition of complex tasks through semantic reasoning. However, their application in embodied systems faces challenges in ensuring reliable execution of subtask sequences and achieving one-shot success in long-term task completion. To address these limitations in dynamic environments, we propose Closed-Loop Embodied Agent (CLEA) -- a novel architecture incorporating four specialized open-source LLMs with functional decoupling for closed-loop task management. The framework features two core innovations: (1) Interactive task planner that dynamically generates executable subtasks based on the environmental memory, and (2) Multimodal execution critic employing an evaluation framework to conduct a probabilistic assessment of action feasibility, triggering hierarchical re-planning mechanisms when environmental perturbations exceed preset thresholds. To validate CLEA's effectiveness, we conduct experiments in a real environment with manipulable objects, using two heterogeneous robots for object search, manipulation, and search-manipulation integration tasks. Across 12 task trials, CLEA outperforms the baseline model, achieving a 67.3% improvement in success rate and a 52.8% increase in task completion rate. These results demonstrate that CLEA significantly enhances the robustness of task planning and execution in dynamic environments.
2
67c6ab42c0b62d612c54df71
https://sp4595.github.io/CLEA/
https://github.com/SP4595/CLEA-Closed-Loop-Embodied-Agent
2025-03-04T02:21:00.460000
Speculative Ad-hoc Querying
https://cdn-thumbnails.h…s/2503.00714.png
1
{ "_id": "6577437552f02732a463d97d", "avatarUrl": "/avatars/8eb271ec249fa9b0d97dfe0eace6da88.svg", "followerCount": null, "fullname": "Haoyu Li", "isHf": false, "isMod": false, "isPro": false, "name": "Haoyu0529", "type": "user" }
true
[ "https://cdn-uploads.huggingface.co/production/uploads/6577437552f02732a463d97d/fEkQ4BZ8Yx_CzsjvHBWFq.qt" ]
2503.00714
[ { "_id": "67c6a803025b72f14ccb0939", "hidden": false, "name": "Haoyu Li", "status": "extracted_pending", "statusLastChangedAt": "2025-03-04T07:13:08.306Z", "user": { "_id": "6577437552f02732a463d97d", "avatarUrl": "/avatars/8eb271ec249fa9b0d97dfe0eace6da88.svg", "fullname": "Haoyu Li", "isPro": false, "type": "user", "user": "Haoyu0529" } }, { "_id": "67c6a803025b72f14ccb093a", "hidden": false, "name": "Srikanth Kandula", "status": null, "statusLastChangedAt": null, "user": null }, { "_id": "67c6a803025b72f14ccb093b", "hidden": false, "name": "Maria Angels de Luis Balaguer", "status": null, "statusLastChangedAt": null, "user": null }, { "_id": "67c6a803025b72f14ccb093c", "hidden": false, "name": "Aditya Akella", "status": null, "statusLastChangedAt": null, "user": null }, { "_id": "67c6a803025b72f14ccb093d", "hidden": false, "name": "Venkat Arun", "status": null, "statusLastChangedAt": null, "user": null } ]
2025-03-02T03:44:31
Speculative Ad-hoc Querying
Analyzing large datasets requires responsive query execution, but executing SQL queries on massive datasets can be slow. This paper explores whether query execution can begin even before the user has finished typing, allowing results to appear almost instantly. We propose SpeQL, a system that leverages Large Language Models (LLMs) to predict likely queries based on the database schema, the user's past queries, and their incomplete query. Since exact query prediction is infeasible, SpeQL speculates on partial queries in two ways: 1) it predicts the query structure to compile and plan queries in advance, and 2) it precomputes smaller temporary tables that are much smaller than the original database, but are still predicted to contain all information necessary to answer the user's final query. Additionally, SpeQL continuously displays results for speculated queries and subqueries in real time, aiding exploratory analysis. A utility/user study showed that SpeQL improved task completion time, and participants reported that its speculative display of results helped them discover patterns in the data more quickly. In the study, SpeQL improves user's query latency by up to 289times and kept the overhead reasonable, at 4$ per hour.
8
67c6a804025b72f14ccb0994
https://github.com/lihy0529/SpeQL
https://github.com/lihy0529/SpeQL
2025-03-04T02:16:25.633000
CodeArena: A Collective Evaluation Platform for LLM Code Generation
https://cdn-thumbnails.h…s/2503.01295.png
1
{ "_id": "61711f02e0b1ddb56eb9b526", "avatarUrl": "/avatars/3e2fdf774f5bc1f73b450486d6da42d4.svg", "followerCount": 3, "fullname": "Mingzhe Du", "isHf": false, "isMod": false, "isPro": false, "name": "Elfsong", "type": "user" }
true
null
2503.01295
[ { "_id": "67c6a8b534aeb86063e94010", "hidden": false, "name": "Mingzhe Du", "status": "claimed_verified", "statusLastChangedAt": "2025-03-04T08:34:49.954Z", "user": { "_id": "61711f02e0b1ddb56eb9b526", "avatarUrl": "/avatars/3e2fdf774f5bc1f73b450486d6da42d4.svg", "fullname": "Mingzhe Du", "isPro": false, "type": "user", "user": "Elfsong" } }, { "_id": "67c6a8b534aeb86063e94011", "hidden": false, "name": "Anh Tuan Luu", "status": "admin_assigned", "statusLastChangedAt": "2025-03-04T11:02:20.575Z", "user": { "_id": "655722e80438e0854fae7554", "avatarUrl": "/avatars/b93a74f7c7880f9fe0f3ffb47e2aef5e.svg", "fullname": "Luu Anh Tuan", "isPro": false, "type": "user", "user": "anhtuanluu36" } }, { "_id": "67c6a8b534aeb86063e94012", "hidden": false, "name": "Bin Ji", "status": null, "statusLastChangedAt": null, "user": null }, { "_id": "67c6a8b534aeb86063e94013", "hidden": false, "name": "Xiaobao Wu", "status": "admin_assigned", "statusLastChangedAt": "2025-03-04T11:02:48.996Z", "user": { "_id": "64cb02869e30a46f7b80b355", "avatarUrl": "/avatars/81ce4ba78826b54f0e1b53eeaff87ee6.svg", "fullname": "Xiaobao Wu", "isPro": false, "type": "user", "user": "bobxwu" } }, { "_id": "67c6a8b534aeb86063e94014", "hidden": false, "name": "Dong Huang", "status": "admin_assigned", "statusLastChangedAt": "2025-03-04T11:02:43.013Z", "user": { "_id": "67c56a7f083bb2c50254bbe5", "avatarUrl": "/avatars/bdf6fd8934c2199ff169b178f6482773.svg", "fullname": "Huang, Dong", "isPro": false, "type": "user", "user": "DongHuang-ebay" } }, { "_id": "67c6a8b534aeb86063e94015", "hidden": false, "name": "Terry Yue Zhuo", "status": "admin_assigned", "statusLastChangedAt": "2025-03-04T11:02:33.977Z", "user": { "_id": "62b7fb545233925f253531c8", "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/62b7fb545233925f253531c8/W50u2G1HK3EtUKHRU189V.jpeg", "fullname": "Terry Yue Zhuo", "isPro": false, "type": "user", "user": "terryyz" } }, { "_id": "67c6a8b534aeb86063e94016", "hidden": false, "name": "Qian Liu", "status": null, "statusLastChangedAt": null, "user": null }, { "_id": "67c6a8b534aeb86063e94017", "hidden": false, "name": "See-Kiong Ng", "status": null, "statusLastChangedAt": null, "user": null } ]
2025-03-03T08:31:16
CodeArena: A Collective Evaluation Platform for LLM Code Generation
Large Language Models (LLMs) have reshaped code generation by synergizing their exceptional comprehension of natural language and programming syntax, thereby substantially boosting developer productivity. These advancements have prompted numerous efforts to quantitatively evaluate their coding capabilities. However, persistent challenges, such as benchmark leakage, data dissipation, and limited system accessibility, continue to impede a timely and accurate assessment. To address these limitations, we introduce CodeArena, an online evaluation framework tailored for LLM code generation. The key innovation is a collective evaluation mechanism, which dynamically recalibrates individual model scores based on the holistic performance of all participating models, mitigating score biases caused by widespread benchmark leakage. In addition, CodeArena ensures open access to all submitted solutions and test cases and provides automation-friendly APIs to streamline the code evaluation workflow. Our main contributions are: (1) a collective evaluation system for unbiased assessment, (2) a public repository of solutions and test cases, and (3) automation-ready APIs for seamless integration.
5
67c6a8b634aeb86063e9406a
null
null
2025-03-04T01:56:03.632000
Qilin: A Multimodal Information Retrieval Dataset with APP-level User Sessions
https://cdn-thumbnails.h…s/2503.00501.png
1
{ "_id": "60c0ed29d8bc072769d78f48", "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/60c0ed29d8bc072769d78f48/V6q6Tn4kzB46NIbTYw9pQ.jpeg", "followerCount": 2, "fullname": "Qian Dong", "isHf": false, "isMod": false, "isPro": false, "name": "qian", "type": "user" }
true
null
2503.00501
[ { "_id": "67c6a343ad6b7c2fa29d5e7e", "hidden": false, "name": "Jia Chen", "status": "claimed_verified", "statusLastChangedAt": "2025-03-04T16:08:10.744Z", "user": { "_id": "67c03221aed8409476d39da8", "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/67c03221aed8409476d39da8/eQIhOPRLNoiphsR145mfB.png", "fullname": "Jia Chen", "isPro": false, "type": "user", "user": "Regulus309" } }, { "_id": "67c6a343ad6b7c2fa29d5e7f", "hidden": false, "name": "Qian Dong", "status": "claimed_verified", "statusLastChangedAt": "2025-03-04T08:34:51.762Z", "user": { "_id": "60c0ed29d8bc072769d78f48", "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/60c0ed29d8bc072769d78f48/V6q6Tn4kzB46NIbTYw9pQ.jpeg", "fullname": "Qian Dong", "isPro": false, "type": "user", "user": "qian" } }, { "_id": "67c6a343ad6b7c2fa29d5e80", "hidden": false, "name": "Haitao Li", "status": "admin_assigned", "statusLastChangedAt": "2025-03-04T10:20:57.898Z", "user": { "_id": "67b5d91558369f6b38c5b596", "avatarUrl": "/avatars/18b08d5d9b05786cad34bc000c7606aa.svg", "fullname": "Haitao Li", "isPro": false, "type": "user", "user": "haitaoli" } }, { "_id": "67c6a343ad6b7c2fa29d5e81", "hidden": false, "name": "Xiaohui He", "status": null, "statusLastChangedAt": null, "user": null }, { "_id": "67c6a343ad6b7c2fa29d5e82", "hidden": false, "name": "Yan Gao", "status": null, "statusLastChangedAt": null, "user": null }, { "_id": "67c6a343ad6b7c2fa29d5e83", "hidden": false, "name": "Shaosheng Cao", "status": null, "statusLastChangedAt": null, "user": null }, { "_id": "67c6a343ad6b7c2fa29d5e84", "hidden": false, "name": "Yi Wu", "status": null, "statusLastChangedAt": null, "user": null }, { "_id": "67c6a343ad6b7c2fa29d5e85", "hidden": false, "name": "Ping Yang", "status": null, "statusLastChangedAt": null, "user": null }, { "_id": "67c6a343ad6b7c2fa29d5e86", "hidden": false, "name": "Chen Xu", "status": null, "statusLastChangedAt": null, "user": null }, { "_id": "67c6a343ad6b7c2fa29d5e87", "hidden": false, "name": "Yao Hu", "status": null, "statusLastChangedAt": null, "user": null }, { "_id": "67c6a343ad6b7c2fa29d5e88", "hidden": false, "name": "Qingyao Ai", "status": "admin_assigned", "statusLastChangedAt": "2025-03-04T10:21:22.100Z", "user": { "_id": "6657e7045f6e35c7d541bdd8", "avatarUrl": "/avatars/368e5cef6c93543b2b92fbca79a4e4b9.svg", "fullname": "Qingyao Ai", "isPro": false, "type": "user", "user": "aiqy" } }, { "_id": "67c6a343ad6b7c2fa29d5e89", "hidden": false, "name": "Yiqun Liu", "status": null, "statusLastChangedAt": null, "user": null } ]
2025-03-01T14:15:00
Qilin: A Multimodal Information Retrieval Dataset with APP-level User Sessions
User-generated content (UGC) communities, especially those featuring multimodal content, improve user experiences by integrating visual and textual information into results (or items). The challenge of improving user experiences in complex systems with search and recommendation (S\&R) services has drawn significant attention from both academia and industry these years. However, the lack of high-quality datasets has limited the research progress on multimodal S\&R. To address the growing need for developing better S\&R services, we present a novel multimodal information retrieval dataset in this paper, namely Qilin. The dataset is collected from Xiaohongshu, a popular social platform with over 300 million monthly active users and an average search penetration rate of over 70\%. In contrast to existing datasets, Qilin offers a comprehensive collection of user sessions with heterogeneous results like image-text notes, video notes, commercial notes, and direct answers, facilitating the development of advanced multimodal neural retrieval models across diverse task settings. To better model user satisfaction and support the analysis of heterogeneous user behaviors, we also collect extensive APP-level contextual signals and genuine user feedback. Notably, Qilin contains user-favored answers and their referred results for search requests triggering the Deep Query Answering (DQA) module. This allows not only the training \& evaluation of a Retrieval-augmented Generation (RAG) pipeline, but also the exploration of how such a module would affect users' search behavior. Through comprehensive analysis and experiments, we provide interesting findings and insights for further improving S\&R systems. We hope that Qilin will significantly contribute to the advancement of multimodal content platforms with S\&R services in the future.
11
67c6a346ad6b7c2fa29d5f88
https://huggingface.co/datasets/THUIR/Qilin
https://github.com/RED-Search/Qilin/
2025-03-04T01:19:45.715000
Kiss3DGen: Repurposing Image Diffusion Models for 3D Asset Generation
https://cdn-thumbnails.h…s/2503.01370.png
1
{ "_id": "6332e2689bf698ce68a22e8c", "avatarUrl": "/avatars/c1922acfda2e6d2fe7b03194a404eb10.svg", "followerCount": 2, "fullname": "JIANTAO LIN", "isHf": false, "isMod": false, "isPro": true, "name": "LTT", "type": "user" }
true
null
2503.01370
[ { "_id": "67c691673ff65c55829685a0", "hidden": false, "name": "Jiantao Lin", "status": "admin_assigned", "statusLastChangedAt": "2025-03-04T10:52:36.682Z", "user": { "_id": "6332e2689bf698ce68a22e8c", "avatarUrl": "/avatars/c1922acfda2e6d2fe7b03194a404eb10.svg", "fullname": "JIANTAO LIN", "isPro": true, "type": "user", "user": "LTT" } }, { "_id": "67c691673ff65c55829685a1", "hidden": false, "name": "Xin Yang", "status": null, "statusLastChangedAt": null, "user": null }, { "_id": "67c691673ff65c55829685a2", "hidden": false, "name": "Meixi Chen", "status": "admin_assigned", "statusLastChangedAt": "2025-03-04T10:52:44.047Z", "user": { "_id": "63641f09a53b71b7a1b02955", "avatarUrl": "/avatars/2f43703cbbc56f3e3f98090f44bccfe6.svg", "fullname": "Meixi Chen", "isPro": false, "type": "user", "user": "MeixiChen" } }, { "_id": "67c691673ff65c55829685a3", "hidden": false, "name": "Yingjie Xu", "status": null, "statusLastChangedAt": null, "user": null }, { "_id": "67c691673ff65c55829685a4", "hidden": false, "name": "Dongyu Yan", "status": "claimed_verified", "statusLastChangedAt": "2025-03-04T08:34:56.252Z", "user": { "_id": "64049ae20ab5e22719f35103", "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/1678023295407-noauth.jpeg", "fullname": "Dongyu Yan", "isPro": false, "type": "user", "user": "StarYDY" } }, { "_id": "67c691673ff65c55829685a5", "hidden": false, "name": "Leyi Wu", "status": null, "statusLastChangedAt": null, "user": null }, { "_id": "67c691673ff65c55829685a6", "hidden": false, "name": "Xinli Xu", "status": "admin_assigned", "statusLastChangedAt": "2025-03-04T10:53:15.555Z", "user": { "_id": "64b4ab62eec33e27dcd733b5", "avatarUrl": "/avatars/0a9bf220c9a5efe7279f9b287b087d36.svg", "fullname": "Xinli XU", "isPro": false, "type": "user", "user": "Xxlbigbrother" } }, { "_id": "67c691673ff65c55829685a7", "hidden": false, "name": "Lie XU", "status": null, "statusLastChangedAt": null, "user": null }, { "_id": "67c691673ff65c55829685a8", "hidden": false, "name": "Shunsi Zhang", "status": null, "statusLastChangedAt": null, "user": null }, { "_id": "67c691673ff65c55829685a9", "hidden": false, "name": "Ying-Cong Chen", "status": "admin_assigned", "statusLastChangedAt": "2025-03-04T10:53:33.509Z", "user": { "_id": "655cba1d87b67834000590e8", "avatarUrl": "/avatars/3bd43b7c9351f65b8f38f4c8237a0146.svg", "fullname": "Yingcong Chen", "isPro": false, "type": "user", "user": "yingcongchen" } } ]
2025-03-03T10:07:19
Kiss3DGen: Repurposing Image Diffusion Models for 3D Asset Generation
Diffusion models have achieved great success in generating 2D images. However, the quality and generalizability of 3D content generation remain limited. State-of-the-art methods often require large-scale 3D assets for training, which are challenging to collect. In this work, we introduce Kiss3DGen (Keep It Simple and Straightforward in 3D Generation), an efficient framework for generating, editing, and enhancing 3D objects by repurposing a well-trained 2D image diffusion model for 3D generation. Specifically, we fine-tune a diffusion model to generate ''3D Bundle Image'', a tiled representation composed of multi-view images and their corresponding normal maps. The normal maps are then used to reconstruct a 3D mesh, and the multi-view images provide texture mapping, resulting in a complete 3D model. This simple method effectively transforms the 3D generation problem into a 2D image generation task, maximizing the utilization of knowledge in pretrained diffusion models. Furthermore, we demonstrate that our Kiss3DGen model is compatible with various diffusion model techniques, enabling advanced features such as 3D editing, mesh and texture enhancement, etc. Through extensive experiments, we demonstrate the effectiveness of our approach, showcasing its ability to produce high-quality 3D models efficiently.
7
67c6916b3ff65c5582968702
https://ltt-o.github.io/Kiss3dgen.github.io/
https://github.com/EnVision-Research/Kiss3DGen
2025-03-04T00:52:22.204000
Difix3D+: Improving 3D Reconstructions with Single-Step Diffusion Models
https://cdn-thumbnails.h…s/2503.01774.png
1
{ "_id": "633aaf695df91da9cea92960", "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/633aaf695df91da9cea92960/9T4y1ru5wt5iKUUqf9_Tt.png", "followerCount": 12, "fullname": "Jay Wu", "isHf": false, "isMod": false, "isPro": false, "name": "jayw", "type": "user" }
true
null
2503.01774
[ { "_id": "67c694febdab31ec59fea175", "hidden": false, "name": "Jay Zhangjie Wu", "status": "claimed_verified", "statusLastChangedAt": "2025-03-04T08:34:53.874Z", "user": { "_id": "633aaf695df91da9cea92960", "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/633aaf695df91da9cea92960/9T4y1ru5wt5iKUUqf9_Tt.png", "fullname": "Jay Wu", "isPro": false, "type": "user", "user": "jayw" } }, { "_id": "67c694febdab31ec59fea176", "hidden": false, "name": "Yuxuan Zhang", "status": null, "statusLastChangedAt": null, "user": null }, { "_id": "67c694febdab31ec59fea177", "hidden": false, "name": "Haithem Turki", "status": "admin_assigned", "statusLastChangedAt": "2025-03-04T09:13:26.878Z", "user": { "_id": "656e000253703dd78fd072a9", "avatarUrl": "/avatars/6702ba8fabe3d08884aa757f90cea333.svg", "fullname": "Haithem Turki", "isPro": false, "type": "user", "user": "hturki" } }, { "_id": "67c694febdab31ec59fea178", "hidden": false, "name": "Xuanchi Ren", "status": "admin_assigned", "statusLastChangedAt": "2025-03-04T09:13:33.467Z", "user": { "_id": "658529d61c461dfe88afe8e8", "avatarUrl": "/avatars/a22c1b07d28c2662833c462c6537d835.svg", "fullname": "Xuanchi Ren", "isPro": false, "type": "user", "user": "xrenaa" } }, { "_id": "67c694febdab31ec59fea179", "hidden": false, "name": "Jun Gao", "status": null, "statusLastChangedAt": null, "user": null }, { "_id": "67c694febdab31ec59fea17a", "hidden": false, "name": "Mike Zheng Shou", "status": "admin_assigned", "statusLastChangedAt": "2025-03-04T09:27:21.825Z", "user": { "_id": "661ab3da2b14565c7acccf5c", "avatarUrl": "/avatars/fa4fc03664803e02aede4d4c3d50b393.svg", "fullname": "Mike Zheng Shou", "isPro": false, "type": "user", "user": "AnalMom" } }, { "_id": "67c694febdab31ec59fea17b", "hidden": false, "name": "Sanja Fidler", "status": null, "statusLastChangedAt": null, "user": null }, { "_id": "67c694febdab31ec59fea17c", "hidden": false, "name": "Zan Gojcic", "status": "admin_assigned", "statusLastChangedAt": "2025-03-04T09:27:34.034Z", "user": { "_id": "6366cda3361a96184dc22139", "avatarUrl": "/avatars/d8a88c84cb5f69e69dd038674a29be89.svg", "fullname": "Zan Gojcic", "isPro": false, "type": "user", "user": "zgojcic" } }, { "_id": "67c694febdab31ec59fea17d", "hidden": false, "name": "Huan Ling", "status": null, "statusLastChangedAt": null, "user": null } ]
2025-03-03T17:58:33
Difix3D+: Improving 3D Reconstructions with Single-Step Diffusion Models
Neural Radiance Fields and 3D Gaussian Splatting have revolutionized 3D reconstruction and novel-view synthesis task. However, achieving photorealistic rendering from extreme novel viewpoints remains challenging, as artifacts persist across representations. In this work, we introduce Difix3D+, a novel pipeline designed to enhance 3D reconstruction and novel-view synthesis through single-step diffusion models. At the core of our approach is Difix, a single-step image diffusion model trained to enhance and remove artifacts in rendered novel views caused by underconstrained regions of the 3D representation. Difix serves two critical roles in our pipeline. First, it is used during the reconstruction phase to clean up pseudo-training views that are rendered from the reconstruction and then distilled back into 3D. This greatly enhances underconstrained regions and improves the overall 3D representation quality. More importantly, Difix also acts as a neural enhancer during inference, effectively removing residual artifacts arising from imperfect 3D supervision and the limited capacity of current reconstruction models. Difix3D+ is a general solution, a single model compatible with both NeRF and 3DGS representations, and it achieves an average 2times improvement in FID score over baselines while maintaining 3D consistency.
29
67c69500bdab31ec59fea24d
https://research.nvidia.com/labs/toronto-ai/difix3d
null
2025-03-04T00:29:56.570000
VideoUFO: A Million-Scale User-Focused Dataset for Text-to-Video Generation
https://cdn-thumbnails.h…s/2503.01739.png
1
{ "_id": "62b32a4429a410b7f6b06710", "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/62b32a4429a410b7f6b06710/VzgvmnlYZWuifZTkIkCxy.jpeg", "followerCount": 14, "fullname": "Wenhao Wang", "isHf": false, "isMod": false, "isPro": false, "name": "WenhaoWang", "type": "user" }
true
null
2503.01739
[ { "_id": "67c68f7828a037872c5ce5bb", "hidden": false, "name": "Wenhao Wang", "status": "admin_assigned", "statusLastChangedAt": "2025-03-04T11:14:37.907Z", "user": { "_id": "62b32a4429a410b7f6b06710", "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/62b32a4429a410b7f6b06710/VzgvmnlYZWuifZTkIkCxy.jpeg", "fullname": "Wenhao Wang", "isPro": false, "type": "user", "user": "WenhaoWang" } }, { "_id": "67c68f7828a037872c5ce5bc", "hidden": false, "name": "Yi Yang", "status": null, "statusLastChangedAt": null, "user": null } ]
2025-03-03T17:00:36
VideoUFO: A Million-Scale User-Focused Dataset for Text-to-Video Generation
Text-to-video generative models convert textual prompts into dynamic visual content, offering wide-ranging applications in film production, gaming, and education. However, their real-world performance often falls short of user expectations. One key reason is that these models have not been trained on videos related to some topics users want to create. In this paper, we propose VideoUFO, the first Video dataset specifically curated to align with Users' FOcus in real-world scenarios. Beyond this, our VideoUFO also features: (1) minimal (0.29%) overlap with existing video datasets, and (2) videos searched exclusively via YouTube's official API under the Creative Commons license. These two attributes provide future researchers with greater freedom to broaden their training sources. The VideoUFO comprises over 1.09 million video clips, each paired with both a brief and a detailed caption (description). Specifically, through clustering, we first identify 1,291 user-focused topics from the million-scale real text-to-video prompt dataset, VidProM. Then, we use these topics to retrieve videos from YouTube, split the retrieved videos into clips, and generate both brief and detailed captions for each clip. After verifying the clips with specified topics, we are left with about 1.09 million video clips. Our experiments reveal that (1) current 16 text-to-video models do not achieve consistent performance across all user-focused topics; and (2) a simple model trained on VideoUFO outperforms others on worst-performing topics. The dataset is publicly available at https://huggingface.co/datasets/WenhaoWang/VideoUFO under the CC BY 4.0 License.
3
67c68f7a28a037872c5ce60d
null
null
2025-03-04T00:09:04.418000
Cognitive Behaviors that Enable Self-Improving Reasoners, or, Four Habits of Highly Effective STaRs
https://cdn-thumbnails.h…s/2503.01307.png
1
{ "_id": "63e6a880f2e9a8f22c5a1630", "avatarUrl": "/avatars/53b57690fe052ce6882bbfc87b11567c.svg", "followerCount": null, "fullname": "Kanishk Gandhi", "isHf": false, "isMod": false, "isPro": false, "name": "obiwan96", "type": "user" }
true
null
2503.01307
[ { "_id": "67c68adc0457c9f809c22df8", "hidden": false, "name": "Kanishk Gandhi", "status": "claimed_verified", "statusLastChangedAt": "2025-03-04T08:35:01.161Z", "user": { "_id": "63e6a880f2e9a8f22c5a1630", "avatarUrl": "/avatars/53b57690fe052ce6882bbfc87b11567c.svg", "fullname": "Kanishk Gandhi", "isPro": false, "type": "user", "user": "obiwan96" } }, { "_id": "67c68adc0457c9f809c22df9", "hidden": false, "name": "Ayush Chakravarthy", "status": "admin_assigned", "statusLastChangedAt": "2025-03-04T10:04:44.344Z", "user": { "_id": "624f9e3d07bd004fb855f5e9", "avatarUrl": "/avatars/86a349cd4053bc0317e27e75a51c69fa.svg", "fullname": "Ayush Chakravarthy", "isPro": false, "type": "user", "user": "ayushchakravarthy" } }, { "_id": "67c68adc0457c9f809c22dfa", "hidden": false, "name": "Anikait Singh", "status": "admin_assigned", "statusLastChangedAt": "2025-03-04T10:05:05.759Z", "user": { "_id": "6511ee845b7e52b0251fdee9", "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/6511ee845b7e52b0251fdee9/hTIwiIYBGOVnIrxtpri83.png", "fullname": "Anikait Singh", "isPro": false, "type": "user", "user": "Asap7772" } }, { "_id": "67c68adc0457c9f809c22dfb", "hidden": false, "name": "Nathan Lile", "status": "claimed_verified", "statusLastChangedAt": "2025-03-04T08:34:58.582Z", "user": { "_id": "61aa15fd8a9625ebfe284286", "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/61aa15fd8a9625ebfe284286/KaGzIeijcgcN15JErCqft.jpeg", "fullname": "nathan lile", "isPro": false, "type": "user", "user": "nlile" } }, { "_id": "67c68adc0457c9f809c22dfc", "hidden": false, "name": "Noah D. Goodman", "status": "admin_assigned", "statusLastChangedAt": "2025-03-04T10:05:12.186Z", "user": { "_id": "67321274c1f20c742bcf7a8d", "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/no-auth/ltcQhre6eDRVzn6Vbbyhu.png", "fullname": "Noah D. Goodman", "isPro": false, "type": "user", "user": "ngoodman" } } ]
2025-03-03T08:46:22
Cognitive Behaviors that Enable Self-Improving Reasoners, or, Four Habits of Highly Effective STaRs
Test-time inference has emerged as a powerful paradigm for enabling language models to ``think'' longer and more carefully about complex challenges, much like skilled human experts. While reinforcement learning (RL) can drive self-improvement in language models on verifiable tasks, some models exhibit substantial gains while others quickly plateau. For instance, we find that Qwen-2.5-3B far exceeds Llama-3.2-3B under identical RL training for the game of Countdown. This discrepancy raises a critical question: what intrinsic properties enable effective self-improvement? We introduce a framework to investigate this question by analyzing four key cognitive behaviors -- verification, backtracking, subgoal setting, and backward chaining -- that both expert human problem solvers and successful language models employ. Our study reveals that Qwen naturally exhibits these reasoning behaviors, whereas Llama initially lacks them. In systematic experimentation with controlled behavioral datasets, we find that priming Llama with examples containing these reasoning behaviors enables substantial improvements during RL, matching or exceeding Qwen's performance. Importantly, the presence of reasoning behaviors, rather than correctness of answers, proves to be the critical factor -- models primed with incorrect solutions containing proper reasoning patterns achieve comparable performance to those trained on correct solutions. Finally, leveraging continued pretraining with OpenWebMath data, filtered to amplify reasoning behaviors, enables the Llama model to match Qwen's self-improvement trajectory. Our findings establish a fundamental relationship between initial reasoning behaviors and the capacity for improvement, explaining why some language models effectively utilize additional computation while others plateau.
13
67c68add0457c9f809c22e31
null
null
2025-03-03T23:44:06.105000
Large-Scale Data Selection for Instruction Tuning
https://cdn-thumbnails.h…s/2503.01807.png
1
{ "_id": "62608fc2ffe8827cb1d89f9f", "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/1654027835241-62608fc2ffe8827cb1d89f9f.png", "followerCount": 11, "fullname": "Hamish Ivison", "isHf": false, "isMod": false, "isPro": false, "name": "hamishivi", "type": "user" }
true
null
2503.01807
[ { "_id": "67c67ff6dec55d10cb10fc9e", "hidden": false, "name": "Hamish Ivison", "status": "claimed_verified", "statusLastChangedAt": "2025-03-04T08:40:13.649Z", "user": { "_id": "62608fc2ffe8827cb1d89f9f", "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/1654027835241-62608fc2ffe8827cb1d89f9f.png", "fullname": "Hamish Ivison", "isPro": false, "type": "user", "user": "hamishivi" } }, { "_id": "67c67ff6dec55d10cb10fc9f", "hidden": false, "name": "Muru Zhang", "status": "admin_assigned", "statusLastChangedAt": "2025-03-04T11:14:59.402Z", "user": { "_id": "61cc2cf4dcb47bd5ed3cd3b8", "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/1640770780085-noauth.jpeg", "fullname": "Muru Zhang", "isPro": false, "type": "user", "user": "nanami" } }, { "_id": "67c67ff6dec55d10cb10fca0", "hidden": false, "name": "Faeze Brahman", "status": "admin_assigned", "statusLastChangedAt": "2025-03-04T11:15:05.562Z", "user": { "_id": "65282b8d578679aac7888aec", "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/65282b8d578679aac7888aec/dibBkhH-z1c70mJZZxJ7u.jpeg", "fullname": "Faeze Brahman", "isPro": false, "type": "user", "user": "faezeb" } }, { "_id": "67c67ff6dec55d10cb10fca1", "hidden": false, "name": "Pang Wei Koh", "status": "admin_assigned", "statusLastChangedAt": "2025-03-04T11:15:14.558Z", "user": { "_id": "641b4263abfce26bcf7b27de", "avatarUrl": "/avatars/e91b4205e4f74b0dd8c333c23203a924.svg", "fullname": "Pang Wei Koh", "isPro": false, "type": "user", "user": "pangwei" } }, { "_id": "67c67ff6dec55d10cb10fca2", "hidden": false, "name": "Pradeep Dasigi", "status": "admin_assigned", "statusLastChangedAt": "2025-03-04T11:15:20.400Z", "user": { "_id": "6408fcc93461c51cf735a61e", "avatarUrl": "/avatars/619f3653911d111f046a5a6c30fc8319.svg", "fullname": "Pradeep Dasigi", "isPro": false, "type": "user", "user": "pradeepd" } } ]
2025-03-03T18:37:26
Large-Scale Data Selection for Instruction Tuning
Selecting high-quality training data from a larger pool is a crucial step when instruction-tuning language models, as carefully curated datasets often produce models that outperform those trained on much larger, noisier datasets. Automated data selection approaches for instruction-tuning are typically tested by selecting small datasets (roughly 10k samples) from small pools (100-200k samples). However, popular deployed instruction-tuned models often train on hundreds of thousands to millions of samples, subsampled from even larger data pools. We present a systematic study of how well data selection methods scale to these settings, selecting up to 2.5M samples from pools of up to 5.8M samples and evaluating across 7 diverse tasks. We show that many recently proposed methods fall short of random selection in this setting (while using more compute), and even decline in performance when given access to larger pools of data to select over. However, we find that a variant of representation-based data selection (RDS+), which uses weighted mean pooling of pretrained LM hidden states, consistently outperforms more complex methods across all settings tested -- all whilst being more compute-efficient. Our findings highlight that the scaling properties of proposed automated selection methods should be more closely examined. We release our code, data, and models at https://github.com/hamishivi/automated-instruction-selection.
5
67c67ff9dec55d10cb10fcef
null
null
2025-03-03T23:29:27.952000
Visual-RFT: Visual Reinforcement Fine-Tuning
https://cdn-thumbnails.h…s/2503.01785.png
1
{ "_id": "63fda3fced9eead590ff6918", "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/1677566802735-noauth.jpeg", "followerCount": 16, "fullname": "Zeyi Sun", "isHf": false, "isMod": false, "isPro": false, "name": "Zery", "type": "user" }
true
null
2503.01785
[ { "_id": "67c6816614a1bf9855188b8b", "hidden": false, "name": "Ziyu Liu", "status": "admin_assigned", "statusLastChangedAt": "2025-03-04T09:12:57.481Z", "user": { "_id": "66fe1334ff3ee1f7569fab6d", "avatarUrl": "/avatars/6868b1a545028a9b8bbded52490dc093.svg", "fullname": "ziyuliu", "isPro": false, "type": "user", "user": "ziyuliu" } }, { "_id": "67c6816614a1bf9855188b8c", "hidden": false, "name": "Zeyi Sun", "status": "claimed_verified", "statusLastChangedAt": "2025-03-04T08:35:03.275Z", "user": { "_id": "63fda3fced9eead590ff6918", "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/1677566802735-noauth.jpeg", "fullname": "Zeyi Sun", "isPro": false, "type": "user", "user": "Zery" } }, { "_id": "67c6816614a1bf9855188b8d", "hidden": false, "name": "Yuhang Zang", "status": "admin_assigned", "statusLastChangedAt": "2025-03-04T09:12:32.723Z", "user": { "_id": "63859cf3b2906edaf83af9f0", "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/63859cf3b2906edaf83af9f0/iUQm5FAomzqYi6fkqIn9F.jpeg", "fullname": "Yuhang Zang", "isPro": false, "type": "user", "user": "yuhangzang" } }, { "_id": "67c6816614a1bf9855188b8e", "hidden": false, "name": "Xiaoyi Dong", "status": "admin_assigned", "statusLastChangedAt": "2025-03-04T09:12:25.627Z", "user": { "_id": "67c0849ee08c178ef8d4e05c", "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/no-auth/mQ6VdnjZnRhb0H_waPclo.png", "fullname": "Xiaoyi Dong", "isPro": false, "type": "user", "user": "sweetFruit" } }, { "_id": "67c6816614a1bf9855188b8f", "hidden": false, "name": "Yuhang Cao", "status": "admin_assigned", "statusLastChangedAt": "2025-03-04T09:12:19.177Z", "user": { "_id": "65000bef18830fabea469fdd", "avatarUrl": "/avatars/b320c77dfad039d9f9c54127f610d44f.svg", "fullname": "Cao Yuhang", "isPro": false, "type": "user", "user": "yhcao" } }, { "_id": "67c6816614a1bf9855188b90", "hidden": false, "name": "Haodong Duan", "status": "admin_assigned", "statusLastChangedAt": "2025-03-04T09:12:05.281Z", "user": { "_id": "63ee1379190ddd6214efd73a", "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/1676546883247-noauth.png", "fullname": "HAODONG DUAN", "isPro": false, "type": "user", "user": "KennyUTC" } }, { "_id": "67c6816614a1bf9855188b91", "hidden": false, "name": "Dahua Lin", "status": "admin_assigned", "statusLastChangedAt": "2025-03-04T09:11:57.087Z", "user": { "_id": "636317ed80c1a705a6eff396", "avatarUrl": "/avatars/3db090e101b916d9256d0d3e043db71d.svg", "fullname": "Dahua Lin", "isPro": false, "type": "user", "user": "lindahua" } }, { "_id": "67c6816614a1bf9855188b92", "hidden": false, "name": "Jiaqi Wang", "status": "admin_assigned", "statusLastChangedAt": "2025-03-04T09:11:48.889Z", "user": { "_id": "64638c4d51fa6e63060521b5", "avatarUrl": "/avatars/c863ace5b1dc788a341bcf4ddbdfaec1.svg", "fullname": "JIaqi", "isPro": false, "type": "user", "user": "Jiaqiwang" } } ]
2025-03-03T18:16:32
Visual-RFT: Visual Reinforcement Fine-Tuning
Reinforcement Fine-Tuning (RFT) in Large Reasoning Models like OpenAI o1 learns from feedback on its answers, which is especially useful in applications when fine-tuning data is scarce. Recent open-source work like DeepSeek-R1 demonstrates that reinforcement learning with verifiable reward is one key direction in reproducing o1. While the R1-style model has demonstrated success in language models, its application in multi-modal domains remains under-explored. This work introduces Visual Reinforcement Fine-Tuning (Visual-RFT), which further extends the application areas of RFT on visual tasks. Specifically, Visual-RFT first uses Large Vision-Language Models (LVLMs) to generate multiple responses containing reasoning tokens and final answers for each input, and then uses our proposed visual perception verifiable reward functions to update the model via the policy optimization algorithm such as Group Relative Policy Optimization (GRPO). We design different verifiable reward functions for different perception tasks, such as the Intersection over Union (IoU) reward for object detection. Experimental results on fine-grained image classification, few-shot object detection, reasoning grounding, as well as open-vocabulary object detection benchmarks show the competitive performance and advanced generalization ability of Visual-RFT compared with Supervised Fine-tuning (SFT). For example, Visual-RFT improves accuracy by 24.3% over the baseline in one-shot fine-grained image classification with around 100 samples. In few-shot object detection, Visual-RFT also exceeds the baseline by 21.9 on COCO's two-shot setting and 15.4 on LVIS. Our Visual-RFT represents a paradigm shift in fine-tuning LVLMs, offering a data-efficient, reward-driven approach that enhances reasoning and adaptability for domain-specific tasks.
43
67c6816c14a1bf9855188d8c
https://github.com/Liuziyu77/Visual-RFT
https://github.com/Liuziyu77/Visual-RFT
2025-03-03T23:15:05.187000
Phi-4-Mini Technical Report: Compact yet Powerful Multimodal Language Models via Mixture-of-LoRAs
https://cdn-thumbnails.h…s/2503.01743.png
3
{ "_id": "63f5173bb51da4d61da6c038", "avatarUrl": "/avatars/0ee530cf80476aa3985c4d591cd384a1.svg", "followerCount": 6, "fullname": "Young Jin Kim", "isHf": false, "isMod": false, "isPro": false, "name": "ykim362", "type": "user" }
true
null
2503.01743
[ { "_id": "67c67d0dfe135a5f482599bb", "hidden": false, "name": "Abdelrahman Abouelenin", "status": null, "statusLastChangedAt": null, "user": null }, { "_id": "67c67d0dfe135a5f482599bc", "hidden": false, "name": "Atabak Ashfaq", "status": "admin_assigned", "statusLastChangedAt": "2025-03-04T09:45:15.511Z", "user": { "_id": "669ed17498ba26df962584f5", "avatarUrl": "/avatars/996c9cf05a4f8e5447552220085157c7.svg", "fullname": "Atabak Ashfaq", "isPro": false, "type": "user", "user": "atabakashfaqMSFT" } }, { "_id": "67c67d0dfe135a5f482599bd", "hidden": false, "name": "Adam Atkinson", "status": null, "statusLastChangedAt": null, "user": null }, { "_id": "67c67d0dfe135a5f482599be", "hidden": false, "name": "Hany Awadalla", "status": null, "statusLastChangedAt": null, "user": null }, { "_id": "67c67d0dfe135a5f482599bf", "hidden": false, "name": "Nguyen Bach", "status": null, "statusLastChangedAt": null, "user": null }, { "_id": "67c67d0dfe135a5f482599c0", "hidden": false, "name": "Jianmin Bao", "status": "admin_assigned", "statusLastChangedAt": "2025-03-04T09:46:34.578Z", "user": { "_id": "6481e690f9ed842838a2b106", "avatarUrl": "/avatars/e89a3c8366df504a95dc08a1a412bf3d.svg", "fullname": "Jianmin Bao", "isPro": false, "type": "user", "user": "jianmin-ustc" } }, { "_id": "67c67d0dfe135a5f482599c1", "hidden": false, "name": "Alon Benhaim", "status": "admin_assigned", "statusLastChangedAt": "2025-03-04T09:46:41.117Z", "user": { "_id": "65b9b627e7c838136275a681", "avatarUrl": "/avatars/22423f3d9a6c4ee34cad3b0894d27d23.svg", "fullname": "Alon Benhaim", "isPro": false, "type": "user", "user": "alonbenhaim" } }, { "_id": "67c67d0dfe135a5f482599c2", "hidden": false, "name": "Martin Cai", "status": "admin_assigned", "statusLastChangedAt": "2025-03-04T09:46:47.556Z", "user": { "_id": "66f81b5b3c7ffa7931b4829a", "avatarUrl": "/avatars/a7f34e8e3fd92fdb96affc367b522fbe.svg", "fullname": "cai", "isPro": false, "type": "user", "user": "martincai" } }, { "_id": "67c67d0dfe135a5f482599c3", "hidden": false, "name": "Vishrav Chaudhary", "status": "admin_assigned", "statusLastChangedAt": "2025-03-04T09:46:56.428Z", "user": { "_id": "659c7ac977ac6f1bf5e63d7e", "avatarUrl": "/avatars/86a6efde0d483564a67ed5f344d479a0.svg", "fullname": "Vishrav Chaudhary", "isPro": false, "type": "user", "user": "vishravmsft" } }, { "_id": "67c67d0dfe135a5f482599c4", "hidden": false, "name": "Congcong Chen", "status": "admin_assigned", "statusLastChangedAt": "2025-03-04T09:47:04.205Z", "user": { "_id": "66c7a93b92e9f5b19f7533ab", "avatarUrl": "/avatars/e26ebf5cf083a3ec09fce24026ecc76e.svg", "fullname": "Chen", "isPro": false, "type": "user", "user": "congcongchen" } }, { "_id": "67c67d0dfe135a5f482599c5", "hidden": false, "name": "Dong Chen", "status": "admin_assigned", "statusLastChangedAt": "2025-03-04T09:47:11.865Z", "user": { "_id": "666470a28f5513b0cf11e850", "avatarUrl": "/avatars/7beea758882677ad32a12ce56d4d084a.svg", "fullname": "Dong Chen", "isPro": false, "type": "user", "user": "DongChen06" } }, { "_id": "67c67d0dfe135a5f482599c6", "hidden": false, "name": "Dongdong Chen", "status": "admin_assigned", "statusLastChangedAt": "2025-03-04T09:47:18.197Z", "user": { "_id": "6567651c6fcc82e5e8c36d4d", "avatarUrl": "/avatars/ba3cc037a7688c4f8d967fc6043e540d.svg", "fullname": "Dongdong Chen", "isPro": false, "type": "user", "user": "dongdongchen" } }, { "_id": "67c67d0dfe135a5f482599c7", "hidden": false, "name": "Junkun Chen", "status": "admin_assigned", "statusLastChangedAt": "2025-03-04T09:47:43.236Z", "user": { "_id": "669db44d61278f96d8c608a4", "avatarUrl": "/avatars/92a493da10c086af5f2af680f4e2c6c6.svg", "fullname": "Junkun Chen", "isPro": false, "type": "user", "user": "shtpgshus" } }, { "_id": "67c67d0dfe135a5f482599c8", "hidden": false, "name": "Weizhu Chen", "status": "admin_assigned", "statusLastChangedAt": "2025-03-04T09:47:51.832Z", "user": { "_id": "64da876370446182be5b608d", "avatarUrl": "/avatars/e412fdc71404ecdf638e416846e3ebfb.svg", "fullname": "Weizhu Chen", "isPro": false, "type": "user", "user": "chenweizhu" } }, { "_id": "67c67d0dfe135a5f482599c9", "hidden": false, "name": "Yen-Chun Chen", "status": "admin_assigned", "statusLastChangedAt": "2025-03-04T09:47:58.051Z", "user": { "_id": "662d6b09a47b4da4b23c8b2a", "avatarUrl": "/avatars/6770b1d7e25b2cdce04f9904b543d122.svg", "fullname": "Yen-Chun Chen", "isPro": false, "type": "user", "user": "Yen-ChunChen" } }, { "_id": "67c67d0dfe135a5f482599ca", "hidden": false, "name": "Yi-ling Chen", "status": null, "statusLastChangedAt": null, "user": null }, { "_id": "67c67d0dfe135a5f482599cb", "hidden": false, "name": "Qi Dai", "status": null, "statusLastChangedAt": null, "user": null }, { "_id": "67c67d0dfe135a5f482599cc", "hidden": false, "name": "Xiyang Dai", "status": null, "statusLastChangedAt": null, "user": null }, { "_id": "67c67d0dfe135a5f482599cd", "hidden": false, "name": "Ruchao Fan", "status": "claimed_verified", "statusLastChangedAt": "2025-03-04T08:40:17.936Z", "user": { "_id": "64a8b800b35f48e37dfd20fe", "avatarUrl": "/avatars/1e66be9a5238ce86df8b54150520bcc8.svg", "fullname": "Ruchao Fan", "isPro": false, "type": "user", "user": "fanruchao" } }, { "_id": "67c67d0dfe135a5f482599ce", "hidden": false, "name": "Mei Gao", "status": null, "statusLastChangedAt": null, "user": null }, { "_id": "67c67d0dfe135a5f482599cf", "hidden": false, "name": "Min Gao", "status": null, "statusLastChangedAt": null, "user": null }, { "_id": "67c67d0dfe135a5f482599d0", "hidden": false, "name": "Amit Garg", "status": null, "statusLastChangedAt": null, "user": null }, { "_id": "67c67d0dfe135a5f482599d1", "hidden": false, "name": "Abhishek Goswami", "status": "admin_assigned", "statusLastChangedAt": "2025-03-04T09:49:02.466Z", "user": { "_id": "62cdae333529c21a2283a0a1", "avatarUrl": "/avatars/cafc2821e522bbd06d49830e36a073e3.svg", "fullname": "Abhishek GOSWAMI", "isPro": false, "type": "user", "user": "abgoswam" } }, { "_id": "67c67d0dfe135a5f482599d2", "hidden": false, "name": "Junheng Hao", "status": "admin_assigned", "statusLastChangedAt": "2025-03-04T09:53:16.356Z", "user": { "_id": "5f04c4394ec31d33a72116d6", "avatarUrl": "/avatars/75d4b9020070e73604b12e5adc1c8201.svg", "fullname": "Junheng Hao", "isPro": false, "type": "user", "user": "jeffhao" } }, { "_id": "67c67d0dfe135a5f482599d3", "hidden": false, "name": "Amr Hendy", "status": "admin_assigned", "statusLastChangedAt": "2025-03-04T09:53:24.716Z", "user": { "_id": "660480db07619487a3718a16", "avatarUrl": "/avatars/9c08d541913e57fd79988ef93d5095d4.svg", "fullname": "Amr Hendy", "isPro": false, "type": "user", "user": "amrhendy" } }, { "_id": "67c67d0dfe135a5f482599d4", "hidden": false, "name": "Yuxuan Hu", "status": null, "statusLastChangedAt": null, "user": null }, { "_id": "67c67d0dfe135a5f482599d5", "hidden": false, "name": "Xin Jin", "status": null, "statusLastChangedAt": null, "user": null }, { "_id": "67c67d0dfe135a5f482599d6", "hidden": false, "name": "Mahmoud Khademi", "status": "admin_assigned", "statusLastChangedAt": "2025-03-04T09:53:53.225Z", "user": { "_id": "6440905e27dc46cca590994c", "avatarUrl": "/avatars/0346f8ad17038fba87649a0fc59d64ab.svg", "fullname": "Mahmoud Khademi", "isPro": false, "type": "user", "user": "mkhademi" } }, { "_id": "67c67d0dfe135a5f482599d7", "hidden": false, "name": "Dongwoo Kim", "status": "admin_assigned", "statusLastChangedAt": "2025-03-04T09:54:04.257Z", "user": { "_id": "662476aec8920ec351b8d3d8", "avatarUrl": "/avatars/791e40f53073563680ef18f75b3ea95e.svg", "fullname": "Dongwoo Kim", "isPro": false, "type": "user", "user": "dongwookim-ms" } }, { "_id": "67c67d0dfe135a5f482599d8", "hidden": false, "name": "Young Jin Kim", "status": "claimed_verified", "statusLastChangedAt": "2025-03-04T08:40:19.902Z", "user": { "_id": "63f5173bb51da4d61da6c038", "avatarUrl": "/avatars/0ee530cf80476aa3985c4d591cd384a1.svg", "fullname": "Young Jin Kim", "isPro": false, "type": "user", "user": "ykim362" } }, { "_id": "67c67d0dfe135a5f482599d9", "hidden": false, "name": "Gina Lee", "status": null, "statusLastChangedAt": null, "user": null }, { "_id": "67c67d0dfe135a5f482599da", "hidden": false, "name": "Jinyu Li", "status": "admin_assigned", "statusLastChangedAt": "2025-03-04T09:54:17.115Z", "user": { "_id": "64004b72330a45b03604303b", "avatarUrl": "/avatars/a1fa3fc700173238d0336258b000d934.svg", "fullname": "Jinyu Li", "isPro": false, "type": "user", "user": "FallTraveler" } }, { "_id": "67c67d0dfe135a5f482599db", "hidden": false, "name": "Yunsheng Li", "status": null, "statusLastChangedAt": null, "user": null }, { "_id": "67c67d0dfe135a5f482599dc", "hidden": false, "name": "Chen Liang", "status": null, "statusLastChangedAt": null, "user": null }, { "_id": "67c67d0dfe135a5f482599dd", "hidden": false, "name": "Xihui Lin", "status": "admin_assigned", "statusLastChangedAt": "2025-03-04T09:56:29.024Z", "user": { "_id": "6464f05e5cdb9ab50f846c98", "avatarUrl": "/avatars/3cb2f60a909b59289209ecc7ba75a338.svg", "fullname": "Xihui Lin", "isPro": false, "type": "user", "user": "linxihui" } }, { "_id": "67c67d0dfe135a5f482599de", "hidden": false, "name": "Zeqi Lin", "status": "admin_assigned", "statusLastChangedAt": "2025-03-04T09:56:38.534Z", "user": { "_id": "62c3a0caf5e2eb44f51de87d", "avatarUrl": "/avatars/3c535c5488476b75443666176fcb4c9b.svg", "fullname": "Zeqi Lin", "isPro": false, "type": "user", "user": "linzeqi" } }, { "_id": "67c67d0dfe135a5f482599df", "hidden": false, "name": "Mengchen Liu", "status": null, "statusLastChangedAt": null, "user": null }, { "_id": "67c67d0dfe135a5f482599e0", "hidden": false, "name": "Yang Liu", "status": null, "statusLastChangedAt": null, "user": null }, { "_id": "67c67d0dfe135a5f482599e1", "hidden": false, "name": "Gilsinia Lopez", "status": "admin_assigned", "statusLastChangedAt": "2025-03-04T09:59:55.169Z", "user": { "_id": "60c790f1accf7da31ed8240d", "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/60c790f1accf7da31ed8240d/YDohCmgf9OUeWqZIs3Thh.jpeg", "fullname": "Gilsinia Lopez", "isPro": false, "type": "user", "user": "lgg" } }, { "_id": "67c67d0dfe135a5f482599e2", "hidden": false, "name": "Chong Luo", "status": null, "statusLastChangedAt": null, "user": null }, { "_id": "67c67d0dfe135a5f482599e3", "hidden": false, "name": "Piyush Madan", "status": "admin_assigned", "statusLastChangedAt": "2025-03-04T10:02:38.019Z", "user": { "_id": "66269a329014ef4d10f55d9d", "avatarUrl": "/avatars/d4866c32419a7dd07e9aa0660f4bafa9.svg", "fullname": "Piyush Madan", "isPro": false, "type": "user", "user": "PiyushMadan" } }, { "_id": "67c67d0dfe135a5f482599e4", "hidden": false, "name": "Vadim Mazalov", "status": "admin_assigned", "statusLastChangedAt": "2025-03-04T10:02:47.430Z", "user": { "_id": "65301591944086d1d5fcf656", "avatarUrl": "/avatars/250a2e898a4fcbe78feaf6e812851bd6.svg", "fullname": "Vadim Mazalovskii", "isPro": false, "type": "user", "user": "JakeRiley" } }, { "_id": "67c67d0dfe135a5f482599e5", "hidden": false, "name": "Ali Mousavi", "status": null, "statusLastChangedAt": null, "user": null }, { "_id": "67c67d0dfe135a5f482599e6", "hidden": false, "name": "Anh Nguyen", "status": "admin_assigned", "statusLastChangedAt": "2025-03-04T09:57:52.311Z", "user": { "_id": "649bc84833486cdd77c01c66", "avatarUrl": "/avatars/36f4e4bb15c337c4391bfbd234051f4c.svg", "fullname": "Nguyen Anh", "isPro": false, "type": "user", "user": "Anhnguyen" } }, { "_id": "67c67d0dfe135a5f482599e7", "hidden": false, "name": "Jing Pan", "status": null, "statusLastChangedAt": null, "user": null }, { "_id": "67c67d0dfe135a5f482599e8", "hidden": false, "name": "Daniel Perez-Becker", "status": "admin_assigned", "statusLastChangedAt": "2025-03-04T09:59:09.929Z", "user": { "_id": "673b7f70cdc852f69bebfed1", "avatarUrl": "/avatars/1efad61a42b948c750c96472a6192de5.svg", "fullname": "Daniel Perez-Becker", "isPro": false, "type": "user", "user": "perezbecker" } }, { "_id": "67c67d0dfe135a5f482599e9", "hidden": false, "name": "Jacob Platin", "status": null, "statusLastChangedAt": null, "user": null }, { "_id": "67c67d0dfe135a5f482599ea", "hidden": false, "name": "Thomas Portet", "status": "admin_assigned", "statusLastChangedAt": "2025-03-04T09:59:39.865Z", "user": { "_id": "65c52dad286bf45e79491697", "avatarUrl": "/avatars/01ebc7979273df6e53971ae9835b503f.svg", "fullname": "Thomas Portet", "isPro": false, "type": "user", "user": "thopo" } }, { "_id": "67c67d0dfe135a5f482599eb", "hidden": false, "name": "Kai Qiu", "status": null, "statusLastChangedAt": null, "user": null }, { "_id": "67c67d0dfe135a5f482599ec", "hidden": false, "name": "Bo Ren", "status": "claimed_verified", "statusLastChangedAt": "2025-03-04T08:40:15.919Z", "user": { "_id": "668dcf92835bf7e64bbca904", "avatarUrl": "/avatars/416eb3a3c5318a6a45aad87012296470.svg", "fullname": "Bo Ren", "isPro": false, "type": "user", "user": "rosrad" } }, { "_id": "67c67d0dfe135a5f482599ed", "hidden": false, "name": "Liliang Ren", "status": "admin_assigned", "statusLastChangedAt": "2025-03-04T09:57:37.996Z", "user": { "_id": "63815eff4761ddfa00903762", "avatarUrl": "/avatars/3419b239d42e091586f1c51b526d88e5.svg", "fullname": "Liliang Ren", "isPro": false, "type": "user", "user": "renll" } }, { "_id": "67c67d0dfe135a5f482599ee", "hidden": false, "name": "Sambuddha Roy", "status": null, "statusLastChangedAt": null, "user": null }, { "_id": "67c67d0dfe135a5f482599ef", "hidden": false, "name": "Ning Shang", "status": null, "statusLastChangedAt": null, "user": null }, { "_id": "67c67d0dfe135a5f482599f0", "hidden": false, "name": "Yelong Shen", "status": "admin_assigned", "statusLastChangedAt": "2025-03-04T10:00:05.457Z", "user": { "_id": "6454c337a13edf669cd5d8ea", "avatarUrl": "/avatars/a383a0dda7c2ef6a0d6c3c64651f42ff.svg", "fullname": "Yelong Shen", "isPro": false, "type": "user", "user": "uuu6" } }, { "_id": "67c67d0dfe135a5f482599f1", "hidden": false, "name": "Saksham Singhal", "status": "admin_assigned", "statusLastChangedAt": "2025-03-04T09:59:03.188Z", "user": { "_id": "62743aec8cb70eed79073bc0", "avatarUrl": "/avatars/3c8b9a91d898f616265f823ab7d432df.svg", "fullname": "Saksham Singhal", "isPro": false, "type": "user", "user": "sakshamsinghal" } }, { "_id": "67c67d0dfe135a5f482599f2", "hidden": false, "name": "Subhojit Som", "status": "admin_assigned", "statusLastChangedAt": "2025-03-04T09:59:47.241Z", "user": { "_id": "678bc6b432ee4968eca9bb6a", "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/no-auth/wT-Xa3TYem_EzkZZMyDG0.png", "fullname": "Subhojit Som", "isPro": false, "type": "user", "user": "susom" } }, { "_id": "67c67d0dfe135a5f482599f3", "hidden": false, "name": "Xia Song", "status": null, "statusLastChangedAt": null, "user": null }, { "_id": "67c67d0dfe135a5f482599f4", "hidden": false, "name": "Tetyana Sych", "status": "admin_assigned", "statusLastChangedAt": "2025-03-04T09:58:27.814Z", "user": { "_id": "64692ad25d701566394fd8da", "avatarUrl": "/avatars/d6811ccceb14788bfa0aa10fe4ee1054.svg", "fullname": "Tetyana Sych", "isPro": false, "type": "user", "user": "tesych" } }, { "_id": "67c67d0dfe135a5f482599f5", "hidden": false, "name": "Praneetha Vaddamanu", "status": null, "statusLastChangedAt": null, "user": null }, { "_id": "67c67d0dfe135a5f482599f6", "hidden": false, "name": "Shuohang Wang", "status": null, "statusLastChangedAt": null, "user": null }, { "_id": "67c67d0dfe135a5f482599f7", "hidden": false, "name": "Yiming Wang", "status": "claimed_verified", "statusLastChangedAt": "2025-03-04T21:16:18.278Z", "user": { "_id": "6786f93b3ad5585f2c2828b1", "avatarUrl": "/avatars/41411af6f7d547041032a29b34041fe8.svg", "fullname": "Yiming Wang", "isPro": false, "type": "user", "user": "freewym" } }, { "_id": "67c67d0dfe135a5f482599f8", "hidden": false, "name": "Zhenghao Wang", "status": null, "statusLastChangedAt": null, "user": null }, { "_id": "67c67d0dfe135a5f482599f9", "hidden": false, "name": "Haibin Wu", "status": null, "statusLastChangedAt": null, "user": null }, { "_id": "67c67d0dfe135a5f482599fa", "hidden": false, "name": "Haoran Xu", "status": "admin_assigned", "statusLastChangedAt": "2025-03-04T09:56:04.939Z", "user": { "_id": "61384b860317b0a5c10877d3", "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/1631080954171-61384b860317b0a5c10877d3.jpeg", "fullname": "Haoran Xu", "isPro": false, "type": "user", "user": "haoranxu" } }, { "_id": "67c67d0dfe135a5f482599fb", "hidden": false, "name": "Weijian Xu", "status": "admin_assigned", "statusLastChangedAt": "2025-03-04T09:58:36.082Z", "user": { "_id": "6398f4b32c20654083f36cde", "avatarUrl": "/avatars/4591f514483890997c55e9e6d60bbb0f.svg", "fullname": "Weijian Xu", "isPro": false, "type": "user", "user": "xwjabc" } }, { "_id": "67c67d0dfe135a5f482599fc", "hidden": false, "name": "Yifan Yang", "status": null, "statusLastChangedAt": null, "user": null }, { "_id": "67c67d0dfe135a5f482599fd", "hidden": false, "name": "Ziyi Yang", "status": null, "statusLastChangedAt": null, "user": null }, { "_id": "67c67d0dfe135a5f482599fe", "hidden": false, "name": "Donghan Yu", "status": "admin_assigned", "statusLastChangedAt": "2025-03-04T09:55:41.798Z", "user": { "_id": "65b01b8a29ae836e9ed5af24", "avatarUrl": "/avatars/a8b78a4b54d3f10858c5925521357001.svg", "fullname": "Donghan Yu", "isPro": false, "type": "user", "user": "donghanyu" } }, { "_id": "67c67d0dfe135a5f482599ff", "hidden": false, "name": "Ishmam Zabir", "status": null, "statusLastChangedAt": null, "user": null }, { "_id": "67c67d0dfe135a5f48259a00", "hidden": false, "name": "Jianwen Zhang", "status": "admin_assigned", "statusLastChangedAt": "2025-03-04T09:55:12.465Z", "user": { "_id": "63601ee38fb9c2420ffbe45d", "avatarUrl": "/avatars/56af091aaff1b42dcfbae84a6ee1e7f7.svg", "fullname": "Zhang", "isPro": false, "type": "user", "user": "Jianwen" } }, { "_id": "67c67d0dfe135a5f48259a01", "hidden": false, "name": "Li Lyna Zhang", "status": "admin_assigned", "statusLastChangedAt": "2025-03-04T09:55:01.540Z", "user": { "_id": "62b0009c72043b05d29492b2", "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/62b0009c72043b05d29492b2/NqRkX2YLhlfOLvYysa7dD.png", "fullname": "Li Lyna Zhang", "isPro": false, "type": "user", "user": "lynazhang" } }, { "_id": "67c67d0dfe135a5f48259a02", "hidden": false, "name": "Yunan Zhang", "status": null, "statusLastChangedAt": null, "user": null }, { "_id": "67c67d0dfe135a5f48259a03", "hidden": false, "name": "Xiren Zhou", "status": "admin_assigned", "statusLastChangedAt": "2025-03-04T09:54:26.629Z", "user": { "_id": "66ce4c9f864befb39cfc74e9", "avatarUrl": "/avatars/ef66398466c470fc1d384c6817d9e461.svg", "fullname": "Xiren Zhou", "isPro": false, "type": "user", "user": "XirenZhou" } } ]
2025-03-03T17:05:52
Phi-4-Mini Technical Report: Compact yet Powerful Multimodal Language Models via Mixture-of-LoRAs
We introduce Phi-4-Mini and Phi-4-Multimodal, compact yet highly capable language and multimodal models. Phi-4-Mini is a 3.8-billion-parameter language model trained on high-quality web and synthetic data, significantly outperforming recent open-source models of similar size and matching the performance of models twice its size on math and coding tasks requiring complex reasoning. This achievement is driven by a carefully curated synthetic data recipe emphasizing high-quality math and coding datasets. Compared to its predecessor, Phi-3.5-Mini, Phi-4-Mini features an expanded vocabulary size of 200K tokens to better support multilingual applications, as well as group query attention for more efficient long-sequence generation. Phi-4-Multimodal is a multimodal model that integrates text, vision, and speech/audio input modalities into a single model. Its novel modality extension approach leverages LoRA adapters and modality-specific routers to allow multiple inference modes combining various modalities without interference. For example, it now ranks first in the OpenASR leaderboard to date, although the LoRA component of the speech/audio modality has just 460 million parameters. Phi-4-Multimodal supports scenarios involving (vision + language), (vision + speech), and (speech/audio) inputs, outperforming larger vision-language and speech-language models on a wide range of tasks. Additionally, we experiment to further train Phi-4-Mini to enhance its reasoning capabilities. Despite its compact 3.8-billion-parameter size, this experimental version achieves reasoning performance on par with or surpassing significantly larger models, including DeepSeek-R1-Distill-Qwen-7B and DeepSeek-R1-Distill-Llama-8B.
42
67c67d0efe135a5f48259a38
https://huggingface.co/microsoft/Phi-4-multimodal-instruct
null
2025-03-03T22:35:45.299000
DuoDecoding: Hardware-aware Heterogeneous Speculative Decoding with Dynamic Multi-Sequence Drafting
https://cdn-thumbnails.h…s/2503.00784.png
1
{ "_id": "6485d5b300c9cfe5c2470c81", "avatarUrl": "/avatars/c29aa81d2add795e8448b99274a04b83.svg", "followerCount": 3, "fullname": "Kai", "isHf": false, "isMod": false, "isPro": false, "name": "KaiLv", "type": "user" }
true
null
2503.00784
[ { "_id": "67c673bcf47209364f0cec96", "hidden": false, "name": "Kai Lv", "status": "admin_assigned", "statusLastChangedAt": "2025-03-04T10:14:11.523Z", "user": { "_id": "6485d5b300c9cfe5c2470c81", "avatarUrl": "/avatars/c29aa81d2add795e8448b99274a04b83.svg", "fullname": "Kai", "isPro": false, "type": "user", "user": "KaiLv" } }, { "_id": "67c673bcf47209364f0cec97", "hidden": false, "name": "Honglin Guo", "status": "admin_assigned", "statusLastChangedAt": "2025-03-04T10:14:04.672Z", "user": { "_id": "638ef0b0c67af472d31674a6", "avatarUrl": "/avatars/02df97d15a0f46b47f9162221733b121.svg", "fullname": "Honglin Guo", "isPro": false, "type": "user", "user": "KYLN24" } }, { "_id": "67c673bcf47209364f0cec98", "hidden": false, "name": "Qipeng Guo", "status": "admin_assigned", "statusLastChangedAt": "2025-03-04T10:13:46.322Z", "user": { "_id": "6491cd52b1e5d3444528edb1", "avatarUrl": "/avatars/a85635d886c7f157b6723dec5c01c030.svg", "fullname": "Qipeng Guo", "isPro": false, "type": "user", "user": "QipengGuo" } }, { "_id": "67c673bcf47209364f0cec99", "hidden": false, "name": "Xipeng Qiu", "status": "admin_assigned", "statusLastChangedAt": "2025-03-04T10:13:40.885Z", "user": { "_id": "61457b8deff2c9fdb4de4988", "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/1632381702899-61457b8deff2c9fdb4de4988.jpeg", "fullname": "Xipeng Qiu", "isPro": false, "type": "user", "user": "xpqiu" } } ]
2025-03-02T08:27:48
DuoDecoding: Hardware-aware Heterogeneous Speculative Decoding with Dynamic Multi-Sequence Drafting
Large language models (LLMs) exhibit exceptional performance across a wide range of tasks; however, their token-by-token autoregressive generation process significantly hinders inference speed. Speculative decoding presents a promising draft-then-verify framework that reduces generation latency while maintaining output distribution fidelity. Nevertheless, the draft model introduces additional computational overhead, becoming a performance bottleneck and increasing the time to first token (TTFT). Previous approaches to mitigate draft model overhead have primarily relied on heuristics and generally failed to match the quality of the draft language models. To address these challenges, we propose DuoDecoding, a novel approach that strategically deploys the draft and target models on the CPU and GPU respectively, enabling parallel decoding while preserving draft quality. Our method incorporates a hardware-aware optimal draft budget to minimize idle times and employs dynamic multi-sequence drafting to enhance draft quality. Extensive experiments across seven tasks show that DuoDecoding achieves up to 2.61x speedup in generation latency, while reducing TTFT to 83% of that in conventional speculative decoding. The Code is available at https://github.com/KaiLv69/DuoDecoding.
8
67c673bdf47209364f0cecb7
null
https://github.com/KaiLv69/DuoDecoding
2025-03-03T21:22:16.512000
Predictive Data Selection: The Data That Predicts Is the Data That Teaches
https://cdn-thumbnails.h…s/2503.00808.png
1
{ "_id": "641c9662043963b1c0a1df52", "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/641c9662043963b1c0a1df52/L1o85EHztv_xP9r6ppljf.jpeg", "followerCount": 2, "fullname": "KaShun SHUM", "isHf": false, "isMod": false, "isPro": false, "name": "ksshumab", "type": "user" }
true
null
2503.00808
[ { "_id": "67c66382e5394bda7cbd03f9", "hidden": false, "name": "Kashun Shum", "status": "claimed_verified", "statusLastChangedAt": "2025-03-04T08:51:25.484Z", "user": { "_id": "641c9662043963b1c0a1df52", "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/641c9662043963b1c0a1df52/L1o85EHztv_xP9r6ppljf.jpeg", "fullname": "KaShun SHUM", "isPro": false, "type": "user", "user": "ksshumab" } }, { "_id": "67c66382e5394bda7cbd03fa", "hidden": false, "name": "Yuzhen Huang", "status": "claimed_verified", "statusLastChangedAt": "2025-03-04T08:51:23.329Z", "user": { "_id": "6462def82a83863b97c0611e", "avatarUrl": "/avatars/c03e9cc7d75b0266fcc56ecb6ee62148.svg", "fullname": "Yuzhen Huang", "isPro": false, "type": "user", "user": "yuzhen17" } }, { "_id": "67c66382e5394bda7cbd03fb", "hidden": false, "name": "Hongjian Zou", "status": null, "statusLastChangedAt": null, "user": null }, { "_id": "67c66382e5394bda7cbd03fc", "hidden": false, "name": "Ding Qi", "status": null, "statusLastChangedAt": null, "user": null }, { "_id": "67c66382e5394bda7cbd03fd", "hidden": false, "name": "Yixuan Liao", "status": null, "statusLastChangedAt": null, "user": null }, { "_id": "67c66382e5394bda7cbd03fe", "hidden": false, "name": "Xiaoxin Chen", "status": null, "statusLastChangedAt": null, "user": null }, { "_id": "67c66382e5394bda7cbd03ff", "hidden": false, "name": "Qian Liu", "status": null, "statusLastChangedAt": null, "user": null }, { "_id": "67c66382e5394bda7cbd0400", "hidden": false, "name": "Junxian He", "status": null, "statusLastChangedAt": null, "user": null } ]
2025-03-02T09:21:28
Predictive Data Selection: The Data That Predicts Is the Data That Teaches
Language model pretraining involves training on extensive corpora, where data quality plays a pivotal role. In this work, we aim to directly estimate the contribution of data during pretraining and select pretraining data in an efficient manner. Specifically, we draw inspiration from recent findings showing that compression efficiency (i.e., the normalized loss) of diverse models on certain text correlates strongly with their downstream performance, when the text domain aligns with the downstream benchmark (Huang et al., 2024). Building on this observation, we hypothesize that data on which model losses are predictive of downstream abilities also contribute effectively to learning. To leverage this insight, we introduce data selection based on data's Predictive strength (Preselect), a lightweight and efficient data selection method that requires training and deploying only a fastText-based scorer. Through comprehensive experiments with 1B and 3B parameter models, we demonstrate that models trained on 30B tokens selected with PreSelect surpasses the performance of a vanilla baseline trained on 300B tokens, achieving a 10x reduction in compute requirements. Furthermore, PreSelect significantly outperforms other competitive data selection baselines, such as DCLM and FineWeb-Edu on a scale of 3B models trained on 100B tokens. We open-source our trained data selection scorer along with the curated datasets at https://github.com/hkust-nlp/PreSelect.
45
67c66383e5394bda7cbd0428
null
https://github.com/hkust-nlp/PreSelect
2025-03-03T11:25:57.425000
Multi-Turn Code Generation Through Single-Step Rewards
https://cdn-thumbnails.h…s/2502.20380.png
2
{ "_id": "6421d2972143035270db37b9", "avatarUrl": "/avatars/4fadeafc273d32cf72fe2f12d444c5e8.svg", "followerCount": 2, "fullname": "Gonzalo Gonzalez", "isHf": false, "isMod": false, "isPro": false, "name": "chalo2000", "type": "user" }
true
null
2502.20380
[ { "_id": "67c34e3beae05d8f94f800b4", "hidden": false, "name": "Arnav Kumar Jain", "status": null, "statusLastChangedAt": null, "user": null }, { "_id": "67c34e3beae05d8f94f800b5", "hidden": false, "name": "Gonzalo Gonzalez-Pumariega", "status": "claimed_verified", "statusLastChangedAt": "2025-03-02T20:15:14.593Z", "user": { "_id": "6421d2972143035270db37b9", "avatarUrl": "/avatars/4fadeafc273d32cf72fe2f12d444c5e8.svg", "fullname": "Gonzalo Gonzalez", "isPro": false, "type": "user", "user": "chalo2000" } }, { "_id": "67c34e3beae05d8f94f800b6", "hidden": false, "name": "Wayne Chen", "status": null, "statusLastChangedAt": null, "user": null }, { "_id": "67c34e3beae05d8f94f800b7", "hidden": false, "name": "Alexander M Rush", "status": null, "statusLastChangedAt": null, "user": null }, { "_id": "67c34e3beae05d8f94f800b8", "hidden": false, "name": "Wenting Zhao", "status": null, "statusLastChangedAt": null, "user": null }, { "_id": "67c34e3beae05d8f94f800b9", "hidden": false, "name": "Sanjiban Choudhury", "status": null, "statusLastChangedAt": null, "user": null } ]
2025-02-27T18:55:05
Multi-Turn Code Generation Through Single-Step Rewards
We address the problem of code generation from multi-turn execution feedback. Existing methods either generate code without feedback or use complex, hierarchical reinforcement learning to optimize multi-turn rewards. We propose a simple yet scalable approach, muCode, that solves multi-turn code generation using only single-step rewards. Our key insight is that code generation is a one-step recoverable MDP, where the correct code can be recovered from any intermediate code state in a single turn. muCode iteratively trains both a generator to provide code solutions conditioned on multi-turn execution feedback and a verifier to score the newly generated code. Experimental evaluations show that our approach achieves significant improvements over the state-of-the-art baselines. We provide analysis of the design choices of the reward models and policy, and show the efficacy of muCode at utilizing the execution feedback. Our code is available at https://github.com/portal-cornell/muCode.
24
67c34e3ceae05d8f94f8010e
https://portal-cornell.github.io/muCode/
https://github.com/portal-cornell/muCode
2025-03-03T10:56:33.810000
Preference Learning Unlocks LLMs' Psycho-Counseling Skills
https://cdn-thumbnails.h…s/2502.19731.png
2
{ "_id": "650857fef3060ea840ffbbfe", "avatarUrl": "/avatars/3a339936021c040f19a21838ae1382c4.svg", "followerCount": 1, "fullname": "Mian Zhang", "isHf": false, "isMod": false, "isPro": false, "name": "billmianz", "type": "user" }
true
null
2502.19731
[ { "_id": "67c36b35e12b50f698e7db1d", "hidden": false, "name": "Mian Zhang", "status": "claimed_verified", "statusLastChangedAt": "2025-03-04T08:51:31.238Z", "user": { "_id": "650857fef3060ea840ffbbfe", "avatarUrl": "/avatars/3a339936021c040f19a21838ae1382c4.svg", "fullname": "Mian Zhang", "isPro": false, "type": "user", "user": "billmianz" } }, { "_id": "67c36b35e12b50f698e7db1e", "hidden": false, "name": "Shaun M. Eack", "status": null, "statusLastChangedAt": null, "user": null }, { "_id": "67c36b35e12b50f698e7db1f", "hidden": false, "name": "Zhiyu Zoey Chen", "status": null, "statusLastChangedAt": null, "user": null } ]
2025-02-27T03:50:25
Preference Learning Unlocks LLMs' Psycho-Counseling Skills
Applying large language models (LLMs) to assist in psycho-counseling is an emerging and meaningful approach, driven by the significant gap between patient needs and the availability of mental health support. However, current LLMs struggle to consistently provide effective responses to client speeches, largely due to the lack of supervision from high-quality real psycho-counseling data, whose content is typically inaccessible due to client privacy concerns. Furthermore, the quality of therapists' responses in available sessions can vary significantly based on their professional training and experience. Assessing the quality of therapists' responses remains an open challenge. In this work, we address these challenges by first proposing a set of professional and comprehensive principles to evaluate therapists' responses to client speeches. Using these principles, we create a preference dataset, PsychoCounsel-Preference, which contains 36k high-quality preference comparison pairs. This dataset aligns with the preferences of professional psychotherapists, providing a robust foundation for evaluating and improving LLMs in psycho-counseling. Experiments on reward modeling and preference learning demonstrate that PsychoCounsel-Preference is an excellent resource for LLMs to acquire essential skills for responding to clients in a counseling session. Our best-aligned model, PsychoCounsel-Llama3-8B, achieves an impressive win rate of 87% against GPT-4o. We release PsychoCounsel-Preference, PsychoCounsel-Llama3-8B and the reward model PsychoCounsel Llama3-8B-Reward to facilitate the research of psycho-counseling with LLMs at: https://hf.co/Psychotherapy-LLM.
6
67c36b36e12b50f698e7db51
null
null
2025-03-03T10:26:31.746000
EgoNormia: Benchmarking Physical Social Norm Understanding
https://cdn-thumbnails.h…s/2502.20490.png
2
{ "_id": "61aa376688c20eebf1e8deb3", "avatarUrl": "/avatars/7c11dcb232c73547d7d87834be287822.svg", "followerCount": 7, "fullname": "Hao Zhu", "isHf": false, "isMod": false, "isPro": false, "name": "ProKil", "type": "user" }
true
null
2502.20490
[ { "_id": "67c5c853e7c5cfb1d2b52858", "hidden": false, "name": "MohammadHossein Rezaei", "status": "extracted_confirmed", "statusLastChangedAt": "2025-03-03T16:56:51.354Z", "user": { "_id": "63f6ba02a67b8acfa50407bb", "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/63f6ba02a67b8acfa50407bb/ueUb01p1mhuRNrkyfEHtc.jpeg", "fullname": "MohammadHossein Rezaei", "isPro": false, "type": "user", "user": "mhr2004" } }, { "_id": "67c5c853e7c5cfb1d2b52859", "hidden": false, "name": "Yicheng Fu", "status": null, "statusLastChangedAt": null, "user": null }, { "_id": "67c5c853e7c5cfb1d2b5285a", "hidden": false, "name": "Phil Cuvin", "status": null, "statusLastChangedAt": null, "user": null }, { "_id": "67c5c853e7c5cfb1d2b5285b", "hidden": false, "name": "Caleb Ziems", "status": null, "statusLastChangedAt": null, "user": null }, { "_id": "67c5c853e7c5cfb1d2b5285c", "hidden": false, "name": "Yanzhe Zhang", "status": null, "statusLastChangedAt": null, "user": null }, { "_id": "67c5c853e7c5cfb1d2b5285d", "hidden": false, "name": "Hao Zhu", "status": "claimed_verified", "statusLastChangedAt": "2025-03-03T16:07:08.219Z", "user": { "_id": "61aa376688c20eebf1e8deb3", "avatarUrl": "/avatars/7c11dcb232c73547d7d87834be287822.svg", "fullname": "Hao Zhu", "isPro": false, "type": "user", "user": "ProKil" } }, { "_id": "67c5c853e7c5cfb1d2b5285e", "hidden": false, "name": "Diyi Yang", "status": null, "statusLastChangedAt": null, "user": null } ]
2025-02-27T19:54:16
EgoNormia: Benchmarking Physical Social Norm Understanding
Human activity is moderated by norms. When performing actions in the real world, humans not only follow norms, but also consider the trade-off between different norms However, machines are often trained without explicit supervision on norm understanding and reasoning, especially when the norms are grounded in a physical and social context. To improve and evaluate the normative reasoning capability of vision-language models (VLMs), we present EgoNormia |epsilon|, consisting of 1,853 ego-centric videos of human interactions, each of which has two related questions evaluating both the prediction and justification of normative actions. The normative actions encompass seven categories: safety, privacy, proxemics, politeness, cooperation, coordination/proactivity, and communication/legibility. To compile this dataset at scale, we propose a novel pipeline leveraging video sampling, automatic answer generation, filtering, and human validation. Our work demonstrates that current state-of-the-art vision-language models lack robust norm understanding, scoring a maximum of 45% on EgoNormia (versus a human bench of 92%). Our analysis of performance in each dimension highlights the significant risks of safety, privacy, and the lack of collaboration and communication capability when applied to real-world agents. We additionally show that through a retrieval-based generation method, it is possible to use EgoNomia to enhance normative reasoning in VLMs.
4
67c5c857e7c5cfb1d2b52994
https://egonormia.org
https://github.com/open-social-world/egonormia
2025-03-03T09:49:10.381000
How far can we go with ImageNet for Text-to-Image generation?
https://cdn-thumbnails.h…s/2502.21318.png
2
{ "_id": "630652803aed65d34e98eee3", "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/630652803aed65d34e98eee3/XG_PuVFA6ziGQZd3UUZSF.jpeg", "followerCount": 3, "fullname": "Nicolas Dufour", "isHf": false, "isMod": false, "isPro": false, "name": "nicolas-dufour", "type": "user" }
true
[ "https://cdn-uploads.huggingface.co/production/uploads/630652803aed65d34e98eee3/8GIi2e6959v5dl4XUVqkc.png" ]
2502.21318
[ { "_id": "67c5c13ca10c7059c3d3d4c9", "hidden": false, "name": "L. Degeorge", "status": "claimed_verified", "statusLastChangedAt": "2025-03-03T16:07:10.195Z", "user": { "_id": "63bb08b07fd5e883e13efd32", "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/63bb08b07fd5e883e13efd32/aKAR8alYsYteEQImBrWO7.jpeg", "fullname": "Lucas Degeorge", "isPro": false, "type": "user", "user": "Lucasdegeorge" } }, { "_id": "67c5c13ca10c7059c3d3d4ca", "hidden": false, "name": "A. Ghosh", "status": "extracted_confirmed", "statusLastChangedAt": "2025-03-03T18:07:11.151Z", "user": { "_id": "66f971c83d94062a4aa808ef", "avatarUrl": "/avatars/f1d6c4d85d20fd4a614278ecd784c772.svg", "fullname": "Arijit Ghosh", "isPro": false, "type": "user", "user": "arijitghosh" } }, { "_id": "67c5c13ca10c7059c3d3d4cb", "hidden": false, "name": "N. Dufour", "status": "claimed_verified", "statusLastChangedAt": "2025-03-03T16:07:14.366Z", "user": { "_id": "630652803aed65d34e98eee3", "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/630652803aed65d34e98eee3/XG_PuVFA6ziGQZd3UUZSF.jpeg", "fullname": "Nicolas Dufour", "isPro": false, "type": "user", "user": "nicolas-dufour" } }, { "_id": "67c5c13ca10c7059c3d3d4cc", "hidden": false, "name": "D. Picard", "status": null, "statusLastChangedAt": null, "user": null }, { "_id": "67c5c13ca10c7059c3d3d4cd", "hidden": false, "name": "V. Kalogeiton", "status": null, "statusLastChangedAt": null, "user": null } ]
2025-02-28T18:59:42
How far can we go with ImageNet for Text-to-Image generation?
Recent text-to-image (T2I) generation models have achieved remarkable results by training on billion-scale datasets, following a `bigger is better' paradigm that prioritizes data quantity over quality. We challenge this established paradigm by demonstrating that strategic data augmentation of small, well-curated datasets can match or outperform models trained on massive web-scraped collections. Using only ImageNet enhanced with well-designed text and image augmentations, we achieve a +2 overall score over SD-XL on GenEval and +5 on DPGBench while using just 1/10th the parameters and 1/1000th the training images. Our results suggest that strategic data augmentation, rather than massive datasets, could offer a more sustainable path forward for T2I generation.
22
67c5c145a10c7059c3d3d693
https://lucasdegeorge.github.io/projects/t2i_imagenet/
https://github.com/lucasdegeorge/T2I-ImageNet
2025-03-03T09:44:46.734000
DexGraspVLA: A Vision-Language-Action Framework Towards General Dexterous Grasping
https://cdn-thumbnails.h…s/2502.20900.png
2
{ "_id": "655d9f43b5da99edaf3f2f81", "avatarUrl": "/avatars/c7225b3ed54d099a4fd87682427fb5bf.svg", "followerCount": 2, "fullname": "Yifan Zhong", "isHf": false, "isMod": false, "isPro": false, "name": "Yifan-Zhong", "type": "user" }
false
null
2502.20900
[ { "_id": "67c5beea1b2c18e03a3d5218", "hidden": false, "name": "Yifan Zhong", "status": null, "statusLastChangedAt": null, "user": null }, { "_id": "67c5beea1b2c18e03a3d5219", "hidden": false, "name": "Xuchuan Huang", "status": null, "statusLastChangedAt": null, "user": null }, { "_id": "67c5beea1b2c18e03a3d521a", "hidden": false, "name": "Ruochong Li", "status": null, "statusLastChangedAt": null, "user": null }, { "_id": "67c5beea1b2c18e03a3d521b", "hidden": false, "name": "Ceyao Zhang", "status": null, "statusLastChangedAt": null, "user": null }, { "_id": "67c5beea1b2c18e03a3d521c", "hidden": false, "name": "Yitao Liang", "status": null, "statusLastChangedAt": null, "user": null }, { "_id": "67c5beea1b2c18e03a3d521d", "hidden": false, "name": "Yaodong Yang", "status": null, "statusLastChangedAt": null, "user": null }, { "_id": "67c5beea1b2c18e03a3d521e", "hidden": false, "name": "Yuanpei Chen", "status": "extracted_pending", "statusLastChangedAt": "2025-03-03T14:38:37.342Z", "user": { "_id": "6393a8af84c565d2c3419b7c", "avatarUrl": "/avatars/f2a237a58dd0a25ef5c1a98e60acbb5c.svg", "fullname": "chen", "isPro": false, "type": "user", "user": "yuanpei" } } ]
2025-02-28T09:57:20
DexGraspVLA: A Vision-Language-Action Framework Towards General Dexterous Grasping
Dexterous grasping remains a fundamental yet challenging problem in robotics. A general-purpose robot must be capable of grasping diverse objects in arbitrary scenarios. However, existing research typically relies on specific assumptions, such as single-object settings or limited environments, leading to constrained generalization. Our solution is DexGraspVLA, a hierarchical framework that utilizes a pre-trained Vision-Language model as the high-level task planner and learns a diffusion-based policy as the low-level Action controller. The key insight lies in iteratively transforming diverse language and visual inputs into domain-invariant representations, where imitation learning can be effectively applied due to the alleviation of domain shift. Thus, it enables robust generalization across a wide range of real-world scenarios. Notably, our method achieves a 90+% success rate under thousands of unseen object, lighting, and background combinations in a ``zero-shot'' environment. Empirical analysis further confirms the consistency of internal model behavior across environmental variations, thereby validating our design and explaining its generalization performance. We hope our work can be a step forward in achieving general dexterous grasping. Our demo and code can be found at https://dexgraspvla.github.io/.
6
67c5beed1b2c18e03a3d52c0
null
null
2025-03-03T09:33:49.658000
TeleRAG: Efficient Retrieval-Augmented Generation Inference with Lookahead Retrieval
https://cdn-thumbnails.h…s/2502.20969.png
2
{ "_id": "6304ac1a412a1b9d381ca378", "avatarUrl": "/avatars/f4724eb5afc2a3b0e61e6da7bfa7be27.svg", "followerCount": null, "fullname": "Keisuke Kamahori", "isHf": false, "isMod": false, "isPro": false, "name": "kamahori", "type": "user" }
true
[ "https://cdn-uploads.huggingface.co/production/uploads/6304ac1a412a1b9d381ca378/BYM8EdFZVDrDbfX8LKVC2.png" ]
2502.20969
[ { "_id": "67c5bc8babe08983d98a4248", "hidden": false, "name": "Chien-Yu Lin", "status": null, "statusLastChangedAt": null, "user": null }, { "_id": "67c5bc8babe08983d98a4249", "hidden": false, "name": "Keisuke Kamahori", "status": "claimed_verified", "statusLastChangedAt": "2025-03-03T16:07:17.078Z", "user": { "_id": "6304ac1a412a1b9d381ca378", "avatarUrl": "/avatars/f4724eb5afc2a3b0e61e6da7bfa7be27.svg", "fullname": "Keisuke Kamahori", "isPro": false, "type": "user", "user": "kamahori" } }, { "_id": "67c5bc8babe08983d98a424a", "hidden": false, "name": "Yiyu Liu", "status": null, "statusLastChangedAt": null, "user": null }, { "_id": "67c5bc8babe08983d98a424b", "hidden": false, "name": "Xiaoxiang Shi", "status": null, "statusLastChangedAt": null, "user": null }, { "_id": "67c5bc8babe08983d98a424c", "hidden": false, "name": "Madhav Kashyap", "status": null, "statusLastChangedAt": null, "user": null }, { "_id": "67c5bc8babe08983d98a424d", "hidden": false, "name": "Yile Gu", "status": null, "statusLastChangedAt": null, "user": null }, { "_id": "67c5bc8babe08983d98a424e", "hidden": false, "name": "Rulin Shao", "status": null, "statusLastChangedAt": null, "user": null }, { "_id": "67c5bc8babe08983d98a424f", "hidden": false, "name": "Zihao Ye", "status": null, "statusLastChangedAt": null, "user": null }, { "_id": "67c5bc8babe08983d98a4250", "hidden": false, "name": "Kan Zhu", "status": null, "statusLastChangedAt": null, "user": null }, { "_id": "67c5bc8babe08983d98a4251", "hidden": false, "name": "Stephanie Wang", "status": null, "statusLastChangedAt": null, "user": null }, { "_id": "67c5bc8babe08983d98a4252", "hidden": false, "name": "Arvind Krishnamurthy", "status": null, "statusLastChangedAt": null, "user": null }, { "_id": "67c5bc8babe08983d98a4253", "hidden": false, "name": "Rohan Kadekodi", "status": null, "statusLastChangedAt": null, "user": null }, { "_id": "67c5bc8babe08983d98a4254", "hidden": false, "name": "Luis Ceze", "status": null, "statusLastChangedAt": null, "user": null }, { "_id": "67c5bc8babe08983d98a4255", "hidden": false, "name": "Baris Kasikci", "status": null, "statusLastChangedAt": null, "user": null } ]
2025-02-28T11:32:22
TeleRAG: Efficient Retrieval-Augmented Generation Inference with Lookahead Retrieval
Retrieval-augmented generation (RAG) extends large language models (LLMs) with external data sources to enhance factual correctness and domain coverage. Modern RAG pipelines rely on large datastores, leading to system challenges in latency-sensitive deployments, especially when limited GPU memory is available. To address these challenges, we propose TeleRAG, an efficient inference system that reduces RAG latency with minimal GPU memory requirements. The core innovation of TeleRAG is lookahead retrieval, a prefetching mechanism that anticipates required data and transfers it from CPU to GPU in parallel with LLM generation. By leveraging the modularity of RAG pipelines, the inverted file index (IVF) search algorithm and similarities between queries, TeleRAG optimally overlaps data movement and computation. Experimental results show that TeleRAG reduces end-to-end RAG inference latency by up to 1.72x on average compared to state-of-the-art systems, enabling faster, more memory-efficient deployments of advanced RAG applications.
7
67c5bc8cabe08983d98a426c
null
null
2025-03-03T08:13:06.912000
MIGE: A Unified Framework for Multimodal Instruction-Based Image Generation and Editing
https://cdn-thumbnails.h…s/2502.21291.png
2
{ "_id": "63468720dd6d90d82ccf3450", "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/63468720dd6d90d82ccf3450/tVBFlmZNz8FRMkOrDaDID.jpeg", "followerCount": 32, "fullname": "YSH", "isHf": false, "isMod": false, "isPro": false, "name": "BestWishYsh", "type": "user" }
false
null
2502.21291
[ { "_id": "67c5aad632a7208c9ae1d020", "hidden": false, "name": "Xueyun Tian", "status": null, "statusLastChangedAt": null, "user": null }, { "_id": "67c5aad632a7208c9ae1d021", "hidden": false, "name": "Wei Li", "status": "extracted_pending", "statusLastChangedAt": "2025-03-03T13:12:57.839Z", "user": { "_id": "63044e025c70c21d0eaf08bc", "avatarUrl": "/avatars/a2d39973d7fbcbe9d4cce5648b3149c2.svg", "fullname": "Wei Li", "isPro": false, "type": "user", "user": "Wiley085" } }, { "_id": "67c5aad632a7208c9ae1d022", "hidden": false, "name": "Bingbing Xu", "status": null, "statusLastChangedAt": null, "user": null }, { "_id": "67c5aad632a7208c9ae1d023", "hidden": false, "name": "Yige Yuan", "status": null, "statusLastChangedAt": null, "user": null }, { "_id": "67c5aad632a7208c9ae1d024", "hidden": false, "name": "Yuanzhuo Wang", "status": null, "statusLastChangedAt": null, "user": null }, { "_id": "67c5aad632a7208c9ae1d025", "hidden": false, "name": "Huawei Shen", "status": null, "statusLastChangedAt": null, "user": null } ]
2025-02-28T18:21:08
MIGE: A Unified Framework for Multimodal Instruction-Based Image Generation and Editing
Despite significant progress in diffusion-based image generation, subject-driven generation and instruction-based editing remain challenging. Existing methods typically treat them separately, struggling with limited high-quality data and poor generalization. However, both tasks require capturing complex visual variations while maintaining consistency between inputs and outputs. Therefore, we propose MIGE, a unified framework that standardizes task representations using multimodal instructions. It treats subject-driven generation as creation on a blank canvas and instruction-based editing as modification of an existing image, establishing a shared input-output formulation. MIGE introduces a novel multimodal encoder that maps free-form multimodal instructions into a unified vision-language space, integrating visual and semantic features through a feature fusion mechanism.This unification enables joint training of both tasks, providing two key advantages: (1) Cross-Task Enhancement: By leveraging shared visual and semantic representations, joint training improves instruction adherence and visual consistency in both subject-driven generation and instruction-based editing. (2) Generalization: Learning in a unified format facilitates cross-task knowledge transfer, enabling MIGE to generalize to novel compositional tasks, including instruction-based subject-driven editing. Experiments show that MIGE excels in both subject-driven generation and instruction-based editing while setting a state-of-the-art in the new task of instruction-based subject-driven editing. Code and model have been publicly available at https://github.com/Eureka-Maggie/MIGE.
4
67c5aad932a7208c9ae1d19a
null
https://github.com/Eureka-Maggie/MIGE
2025-03-03T07:33:14.717000
LettuceDetect: A Hallucination Detection Framework for RAG Applications
https://cdn-thumbnails.h…s/2502.17125.png
2
{ "_id": "646264832538819c729e32ba", "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/646264832538819c729e32ba/syc-UpPQyR3Nbf-gYndc4.jpeg", "followerCount": 1, "fullname": "Adam Kovacs", "isHf": false, "isMod": false, "isPro": true, "name": "adaamko", "type": "user" }
true
null
2502.17125
[ { "_id": "67c0536530abbab5c723f2e0", "hidden": false, "name": "Ádám Kovács", "status": "claimed_verified", "statusLastChangedAt": "2025-03-02T20:18:13.294Z", "user": { "_id": "646264832538819c729e32ba", "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/646264832538819c729e32ba/syc-UpPQyR3Nbf-gYndc4.jpeg", "fullname": "Adam Kovacs", "isPro": true, "type": "user", "user": "adaamko" } }, { "_id": "67c0536530abbab5c723f2e1", "hidden": false, "name": "Gábor Recski", "status": null, "statusLastChangedAt": null, "user": null } ]
2025-02-24T13:11:47
LettuceDetect: A Hallucination Detection Framework for RAG Applications
Retrieval Augmented Generation (RAG) systems remain vulnerable to hallucinated answers despite incorporating external knowledge sources. We present LettuceDetect a framework that addresses two critical limitations in existing hallucination detection methods: (1) the context window constraints of traditional encoder-based methods, and (2) the computational inefficiency of LLM based approaches. Building on ModernBERT's extended context capabilities (up to 8k tokens) and trained on the RAGTruth benchmark dataset, our approach outperforms all previous encoder-based models and most prompt-based models, while being approximately 30 times smaller than the best models. LettuceDetect is a token-classification model that processes context-question-answer triples, allowing for the identification of unsupported claims at the token level. Evaluations on the RAGTruth corpus demonstrate an F1 score of 79.22% for example-level detection, which is a 14.8% improvement over Luna, the previous state-of-the-art encoder-based architecture. Additionally, the system can process 30 to 60 examples per second on a single GPU, making it more practical for real-world RAG applications.
5
67c0536630abbab5c723f31e
null
https://github.com/KRLabsOrg/LettuceDetect
2025-03-03T07:04:47.515000
Optimal Brain Apoptosis
https://cdn-thumbnails.h…s/2502.17941.png
2
{ "_id": "668e62f6514c46e257387f6b", "avatarUrl": "/avatars/601b111141141cb2ea710b3166e62cd0.svg", "followerCount": null, "fullname": "Mingyuan Sun", "isHf": false, "isMod": false, "isPro": false, "name": "mingyuansun", "type": "user" }
true
null
2502.17941
[ { "_id": "67c59a7e6eb050aa82406452", "hidden": false, "name": "Mingyuan Sun", "status": "claimed_verified", "statusLastChangedAt": "2025-03-03T16:07:21.192Z", "user": { "_id": "668e62f6514c46e257387f6b", "avatarUrl": "/avatars/601b111141141cb2ea710b3166e62cd0.svg", "fullname": "Mingyuan Sun", "isPro": false, "type": "user", "user": "mingyuansun" } }, { "_id": "67c59a7e6eb050aa82406453", "hidden": false, "name": "Zheng Fang", "status": null, "statusLastChangedAt": null, "user": null }, { "_id": "67c59a7e6eb050aa82406454", "hidden": false, "name": "Jiaxu Wang", "status": null, "statusLastChangedAt": null, "user": null }, { "_id": "67c59a7e6eb050aa82406455", "hidden": false, "name": "Junjie Jiang", "status": null, "statusLastChangedAt": null, "user": null }, { "_id": "67c59a7e6eb050aa82406456", "hidden": false, "name": "Delei Kong", "status": null, "statusLastChangedAt": null, "user": null }, { "_id": "67c59a7e6eb050aa82406457", "hidden": false, "name": "Chenming Hu", "status": null, "statusLastChangedAt": null, "user": null }, { "_id": "67c59a7e6eb050aa82406458", "hidden": false, "name": "Yuetong Fang", "status": null, "statusLastChangedAt": null, "user": null }, { "_id": "67c59a7e6eb050aa82406459", "hidden": false, "name": "Renjing Xu", "status": null, "statusLastChangedAt": null, "user": null } ]
2025-02-25T08:03:04
Optimal Brain Apoptosis
The increasing complexity and parameter count of Convolutional Neural Networks (CNNs) and Transformers pose challenges in terms of computational efficiency and resource demands. Pruning has been identified as an effective strategy to address these challenges by removing redundant elements such as neurons, channels, or connections, thereby enhancing computational efficiency without heavily compromising performance. This paper builds on the foundational work of Optimal Brain Damage (OBD) by advancing the methodology of parameter importance estimation using the Hessian matrix. Unlike previous approaches that rely on approximations, we introduce Optimal Brain Apoptosis (OBA), a novel pruning method that calculates the Hessian-vector product value directly for each parameter. By decomposing the Hessian matrix across network layers and identifying conditions under which inter-layer Hessian submatrices are non-zero, we propose a highly efficient technique for computing the second-order Taylor expansion of parameters. This approach allows for a more precise pruning process, particularly in the context of CNNs and Transformers, as validated in our experiments including VGG19, ResNet32, ResNet50, and ViT-B/16 on CIFAR10, CIFAR100 and Imagenet datasets. Our code is available at https://github.com/NEU-REAL/OBA.
7
67c59a7f6eb050aa824064b9
null
https://github.com/NEU-REAL/OBA
2025-03-03T04:21:42.563000
Tell me why: Visual foundation models as self-explainable classifiers
https://cdn-thumbnails.h…s/2502.19577.png
2
{ "_id": "66588b6fd22637bfab498709", "avatarUrl": "/avatars/9007f0d3b078bd6193912a5359107f24.svg", "followerCount": null, "fullname": "Hugues Turbé", "isHf": false, "isMod": false, "isPro": false, "name": "hturbe", "type": "user" }
true
[ "https://cdn-uploads.huggingface.co/production/uploads/66588b6fd22637bfab498709/4VG_eDtZKZ4kj1AdG_P14.png" ]
2502.19577
[ { "_id": "67c42356054ae6d1c760b643", "hidden": false, "name": "Hugues Turbé", "status": "claimed_verified", "statusLastChangedAt": "2025-03-02T20:15:04.391Z", "user": { "_id": "66588b6fd22637bfab498709", "avatarUrl": "/avatars/9007f0d3b078bd6193912a5359107f24.svg", "fullname": "Hugues Turbé", "isPro": false, "type": "user", "user": "hturbe" } }, { "_id": "67c42356054ae6d1c760b644", "hidden": false, "name": "Mina Bjelogrlic", "status": null, "statusLastChangedAt": null, "user": null }, { "_id": "67c42356054ae6d1c760b645", "hidden": false, "name": "Gianmarco Mengaldo", "status": null, "statusLastChangedAt": null, "user": null }, { "_id": "67c42356054ae6d1c760b646", "hidden": false, "name": "Christian Lovis", "status": null, "statusLastChangedAt": null, "user": null } ]
2025-02-26T21:40:30
Tell me why: Visual foundation models as self-explainable classifiers
Visual foundation models (VFMs) have become increasingly popular due to their state-of-the-art performance. However, interpretability remains crucial for critical applications. In this sense, self-explainable models (SEM) aim to provide interpretable classifiers that decompose predictions into a weighted sum of interpretable concepts. Despite their promise, recent studies have shown that these explanations often lack faithfulness. In this work, we combine VFMs with a novel prototypical architecture and specialized training objectives. By training only a lightweight head (approximately 1M parameters) on top of frozen VFMs, our approach (ProtoFM) offers an efficient and interpretable solution. Evaluations demonstrate that our approach achieves competitive classification performance while outperforming existing models across a range of interpretability metrics derived from the literature. Code is available at https://github.com/hturbe/proto-fm.
9
67c4235c054ae6d1c760b806
null
null
2025-03-03T02:35:09.967000
Chain of Draft: Thinking Faster by Writing Less
https://cdn-thumbnails.h…s/2502.18600.png
4
{ "_id": "63da3d7ae697e5898cb86854", "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/1675246771355-noauth.jpeg", "followerCount": 86, "fullname": "Talha Rüzgar Akkuş", "isHf": false, "isMod": false, "isPro": false, "name": "Q-bert", "type": "user" }
true
null
2502.18600
[ { "_id": "67c0a8058589d8ecb79d472b", "hidden": false, "name": "Silei Xu", "status": "extracted_confirmed", "statusLastChangedAt": "2025-02-27T18:01:14.543Z", "user": { "_id": "6594b1bb57a556fbe162915e", "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/6594b1bb57a556fbe162915e/WuYxqbbvaJaT-xsk5KhoT.jpeg", "fullname": "Silei Xu", "isPro": false, "type": "user", "user": "sileixu" } }, { "_id": "67c0a8058589d8ecb79d472c", "hidden": false, "name": "Wenhao Xie", "status": null, "statusLastChangedAt": null, "user": null }, { "_id": "67c0a8058589d8ecb79d472d", "hidden": false, "name": "Lingxiao Zhao", "status": null, "statusLastChangedAt": null, "user": null }, { "_id": "67c0a8058589d8ecb79d472e", "hidden": false, "name": "Pengcheng He", "status": "admin_assigned", "statusLastChangedAt": "2025-03-03T09:30:43.479Z", "user": { "_id": "5efd09cf49ed724c8a135868", "avatarUrl": "/avatars/af12bc94657979677a9f26183f0c9727.svg", "fullname": "Pengcheng He", "isPro": false, "type": "user", "user": "DeBERTa" } } ]
2025-02-25T19:36:06
Chain of Draft: Thinking Faster by Writing Less
Large Language Models (LLMs) have demonstrated remarkable performance in solving complex reasoning tasks through mechanisms like Chain-of-Thought (CoT) prompting, which emphasizes verbose, step-by-step reasoning. However, humans typically employ a more efficient strategy: drafting concise intermediate thoughts that capture only essential information. In this work, we propose Chain of Draft (CoD), a novel paradigm inspired by human cognitive processes, where LLMs generate minimalistic yet informative intermediate reasoning outputs while solving tasks. By reducing verbosity and focusing on critical insights, CoD matches or surpasses CoT in accuracy while using as little as only 7.6% of the tokens, significantly reducing cost and latency across various reasoning tasks.
35
67c0a8078589d8ecb79d47ed
null
https://github.com/sileix/chain-of-draft
2025-03-02T22:22:01.895000
ViDoRAG: Visual Document Retrieval-Augmented Generation via Dynamic Iterative Reasoning Agents
https://cdn-thumbnails.h…s/2502.18017.png
2
{ "_id": "657429d833e5a4bf5b278615", "avatarUrl": "/avatars/ed7e28c1b9a7bed1cad864c992cdcc69.svg", "followerCount": 1, "fullname": "QiuchenWang", "isHf": false, "isMod": false, "isPro": false, "name": "autumncc", "type": "user" }
true
null
2502.18017
[ { "_id": "67bef5a6070ec160042d99f4", "hidden": false, "name": "Qiuchen Wang", "status": "claimed_verified", "statusLastChangedAt": "2025-02-28T12:15:57.850Z", "user": { "_id": "657429d833e5a4bf5b278615", "avatarUrl": "/avatars/ed7e28c1b9a7bed1cad864c992cdcc69.svg", "fullname": "QiuchenWang", "isPro": false, "type": "user", "user": "autumncc" } }, { "_id": "67bef5a6070ec160042d99f5", "hidden": false, "name": "Ruixue Ding", "status": null, "statusLastChangedAt": null, "user": null }, { "_id": "67bef5a6070ec160042d99f6", "hidden": false, "name": "Zehui Chen", "status": "admin_assigned", "statusLastChangedAt": "2025-03-03T09:32:18.129Z", "user": { "_id": "64892d31cbda0d1cdb956897", "avatarUrl": "/avatars/3cdafe03a8295124636347d15a099aaf.svg", "fullname": "Zehui Chen", "isPro": false, "type": "user", "user": "lovesnowbest" } }, { "_id": "67bef5a6070ec160042d99f7", "hidden": false, "name": "Weiqi Wu", "status": "admin_assigned", "statusLastChangedAt": "2025-03-03T09:32:12.075Z", "user": { "_id": "65351cbe6141b3927afaed17", "avatarUrl": "/avatars/5abf5f2c4ab329e63a7f45c15c9dfb93.svg", "fullname": "weiqi wu", "isPro": false, "type": "user", "user": "vickywu" } }, { "_id": "67bef5a6070ec160042d99f8", "hidden": false, "name": "Shihang Wang", "status": "admin_assigned", "statusLastChangedAt": "2025-03-03T09:32:05.679Z", "user": { "_id": "62e8efb14210d3fe69eacb42", "avatarUrl": "/avatars/2feadd75274bf353b910f4679ef72b39.svg", "fullname": "Shihang Wang", "isPro": false, "type": "user", "user": "shihang" } }, { "_id": "67bef5a6070ec160042d99f9", "hidden": false, "name": "Pengjun Xie", "status": "admin_assigned", "statusLastChangedAt": "2025-03-03T09:31:59.813Z", "user": { "_id": "63a091e42fabbbb89991f5ce", "avatarUrl": "/avatars/d55485b06461764c36c9edf9d6e8892c.svg", "fullname": "pengjun xie", "isPro": false, "type": "user", "user": "xpjandy" } }, { "_id": "67bef5a6070ec160042d99fa", "hidden": false, "name": "Feng Zhao", "status": null, "statusLastChangedAt": null, "user": null } ]
2025-02-25T09:26:12
ViDoRAG: Visual Document Retrieval-Augmented Generation via Dynamic Iterative Reasoning Agents
Understanding information from visually rich documents remains a significant challenge for traditional Retrieval-Augmented Generation (RAG) methods. Existing benchmarks predominantly focus on image-based question answering (QA), overlooking the fundamental challenges of efficient retrieval, comprehension, and reasoning within dense visual documents. To bridge this gap, we introduce ViDoSeek, a novel dataset designed to evaluate RAG performance on visually rich documents requiring complex reasoning. Based on it, we identify key limitations in current RAG approaches: (i) purely visual retrieval methods struggle to effectively integrate both textual and visual features, and (ii) previous approaches often allocate insufficient reasoning tokens, limiting their effectiveness. To address these challenges, we propose ViDoRAG, a novel multi-agent RAG framework tailored for complex reasoning across visual documents. ViDoRAG employs a Gaussian Mixture Model (GMM)-based hybrid strategy to effectively handle multi-modal retrieval. To further elicit the model's reasoning capabilities, we introduce an iterative agent workflow incorporating exploration, summarization, and reflection, providing a framework for investigating test-time scaling in RAG domains. Extensive experiments on ViDoSeek validate the effectiveness and generalization of our approach. Notably, ViDoRAG outperforms existing methods by over 10% on the competitive ViDoSeek benchmark.
17
67bef5a7070ec160042d9a65
null
https://github.com/Alibaba-NLP/ViDoRAG
2025-03-02T22:08:44.891000
Sim-to-Real Reinforcement Learning for Vision-Based Dexterous Manipulation on Humanoids
https://cdn-thumbnails.h…s/2502.20396.png
2
{ "_id": "60f1abe7544c2adfd699860c", "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/1674929746905-60f1abe7544c2adfd699860c.jpeg", "followerCount": 6280, "fullname": "AK", "isHf": true, "isMod": false, "isPro": false, "name": "akhaliq", "type": "user" }
false
null
2502.20396
[ { "_id": "67c51d36c830dcb76bbb5994", "hidden": false, "name": "Toru Lin", "status": "claimed_verified", "statusLastChangedAt": "2025-03-03T16:07:25.709Z", "user": { "_id": "65e8b34632f166badb8d893a", "avatarUrl": "/avatars/a55da1d08dc1104e6c539cd3f1ef1ebe.svg", "fullname": "T", "isPro": false, "type": "user", "user": "toruowo" } }, { "_id": "67c51d36c830dcb76bbb5995", "hidden": false, "name": "Kartik Sachdev", "status": null, "statusLastChangedAt": null, "user": null }, { "_id": "67c51d36c830dcb76bbb5996", "hidden": false, "name": "Linxi Fan", "status": null, "statusLastChangedAt": null, "user": null }, { "_id": "67c51d36c830dcb76bbb5997", "hidden": false, "name": "Jitendra Malik", "status": "admin_assigned", "statusLastChangedAt": "2025-03-03T09:36:34.177Z", "user": { "_id": "65369a95605a07338de78ab0", "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/noauth/sGFjOjLT2akN-sn5beVWL.jpeg", "fullname": "Jitendra Malik ", "isPro": false, "type": "user", "user": "jitendra1995" } }, { "_id": "67c51d36c830dcb76bbb5998", "hidden": false, "name": "Yuke Zhu", "status": null, "statusLastChangedAt": null, "user": null } ]
2025-02-27T18:59:52
Sim-to-Real Reinforcement Learning for Vision-Based Dexterous Manipulation on Humanoids
Reinforcement learning has delivered promising results in achieving human- or even superhuman-level capabilities across diverse problem domains, but success in dexterous robot manipulation remains limited. This work investigates the key challenges in applying reinforcement learning to solve a collection of contact-rich manipulation tasks on a humanoid embodiment. We introduce novel techniques to overcome the identified challenges with empirical validation. Our main contributions include an automated real-to-sim tuning module that brings the simulated environment closer to the real world, a generalized reward design scheme that simplifies reward engineering for long-horizon contact-rich manipulation tasks, a divide-and-conquer distillation process that improves the sample efficiency of hard-exploration problems while maintaining sim-to-real performance, and a mixture of sparse and dense object representations to bridge the sim-to-real perception gap. We show promising results on three humanoid dexterous manipulation tasks, with ablation studies on each technique. Our work presents a successful approach to learning humanoid dexterous manipulation using sim-to-real reinforcement learning, achieving robust generalization and high performance without the need for human demonstration.
11
67c51d39c830dcb76bbb5a1f
null
null
2025-03-02T22:04:15.087000
HAIC: Improving Human Action Understanding and Generation with Better Captions for Multi-modal Large Language Models
https://cdn-thumbnails.h…s/2502.20811.png
2
{ "_id": "60f1abe7544c2adfd699860c", "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/1674929746905-60f1abe7544c2adfd699860c.jpeg", "followerCount": 6280, "fullname": "AK", "isHf": true, "isMod": false, "isPro": false, "name": "akhaliq", "type": "user" }
false
null
2502.20811
[ { "_id": "67c51c198d02783fa3a6249d", "hidden": false, "name": "Xiao Wang", "status": null, "statusLastChangedAt": null, "user": null }, { "_id": "67c51c198d02783fa3a6249e", "hidden": false, "name": "Jingyun Hua", "status": null, "statusLastChangedAt": null, "user": null }, { "_id": "67c51c198d02783fa3a6249f", "hidden": false, "name": "Weihong Lin", "status": "admin_assigned", "statusLastChangedAt": "2025-03-03T09:42:30.547Z", "user": { "_id": "675a69699e086bd6250a36ef", "avatarUrl": "/avatars/95c72e3975d1a37f8655a2fe629746ec.svg", "fullname": "Weihong Lin", "isPro": false, "type": "user", "user": "lwher1996" } }, { "_id": "67c51c198d02783fa3a624a0", "hidden": false, "name": "Yuanxing Zhang", "status": null, "statusLastChangedAt": null, "user": null }, { "_id": "67c51c198d02783fa3a624a1", "hidden": false, "name": "Fuzheng Zhang", "status": null, "statusLastChangedAt": null, "user": null }, { "_id": "67c51c198d02783fa3a624a2", "hidden": false, "name": "Jianlong Wu", "status": null, "statusLastChangedAt": null, "user": null }, { "_id": "67c51c198d02783fa3a624a3", "hidden": false, "name": "Di Zhang", "status": null, "statusLastChangedAt": null, "user": null }, { "_id": "67c51c198d02783fa3a624a4", "hidden": false, "name": "Liqiang Nie", "status": null, "statusLastChangedAt": null, "user": null } ]
2025-02-28T07:53:40
HAIC: Improving Human Action Understanding and Generation with Better Captions for Multi-modal Large Language Models
Recent Multi-modal Large Language Models (MLLMs) have made great progress in video understanding. However, their performance on videos involving human actions is still limited by the lack of high-quality data. To address this, we introduce a two-stage data annotation pipeline. First, we design strategies to accumulate videos featuring clear human actions from the Internet. Second, videos are annotated in a standardized caption format that uses human attributes to distinguish individuals and chronologically details their actions and interactions. Through this pipeline, we curate two datasets, namely HAICTrain and HAICBench. HAICTrain comprises 126K video-caption pairs generated by Gemini-Pro and verified for training purposes. Meanwhile, HAICBench includes 500 manually annotated video-caption pairs and 1,400 QA pairs, for a comprehensive evaluation of human action understanding. Experimental results demonstrate that training with HAICTrain not only significantly enhances human understanding abilities across 4 benchmarks, but can also improve text-to-video generation results. Both the HAICTrain and HAICBench are released at https://huggingface.co/datasets/KuaishouHAIC/HAIC.
1
67c51c1b8d02783fa3a62543
null
null
2025-03-02T22:00:31.796000
SoS1: O1 and R1-Like Reasoning LLMs are Sum-of-Square Solvers
https://cdn-thumbnails.h…s/2502.20545.png
2
{ "_id": "60f1abe7544c2adfd699860c", "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/1674929746905-60f1abe7544c2adfd699860c.jpeg", "followerCount": 6280, "fullname": "AK", "isHf": true, "isMod": false, "isPro": false, "name": "akhaliq", "type": "user" }
false
null
2502.20545
[ { "_id": "67c51b459d5807d6674b3d3c", "hidden": false, "name": "Kechen Li", "status": "claimed_verified", "statusLastChangedAt": "2025-03-04T08:51:29.578Z", "user": { "_id": "6742deb4d3ad4510c12da658", "avatarUrl": "/avatars/91407d854560ef9a2facd80fa8fab6ec.svg", "fullname": "Kechen Li", "isPro": false, "type": "user", "user": "Kechen-Li" } }, { "_id": "67c51b459d5807d6674b3d3d", "hidden": false, "name": "Wenqi Zhu", "status": null, "statusLastChangedAt": null, "user": null }, { "_id": "67c51b459d5807d6674b3d3e", "hidden": false, "name": "Coralia Cartis", "status": null, "statusLastChangedAt": null, "user": null }, { "_id": "67c51b459d5807d6674b3d3f", "hidden": false, "name": "Tianbo Ji", "status": "admin_assigned", "statusLastChangedAt": "2025-03-03T09:35:49.782Z", "user": { "_id": "64bb61e876a6e2efcc728e22", "avatarUrl": "/avatars/b0ed1c9f13fd1f2c99d202155001e39b.svg", "fullname": "Tianbo Ji", "isPro": false, "type": "user", "user": "jitianbo" } }, { "_id": "67c51b459d5807d6674b3d40", "hidden": false, "name": "Shiwei Liu", "status": "claimed_verified", "statusLastChangedAt": "2025-03-03T11:14:45.635Z", "user": { "_id": "65b04d2291e63920a7898c9e", "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/65b04d2291e63920a7898c9e/iUHs235G4bqK-KnH_94ti.jpeg", "fullname": "Liu", "isPro": false, "type": "user", "user": "Shiweiliuiiiiiii" } } ]
2025-02-27T21:41:43
SoS1: O1 and R1-Like Reasoning LLMs are Sum-of-Square Solvers
Large Language Models (LLMs) have achieved human-level proficiency across diverse tasks, but their ability to perform rigorous mathematical problem solving remains an open challenge. In this work, we investigate a fundamental yet computationally intractable problem: determining whether a given multivariate polynomial is nonnegative. This problem, closely related to Hilbert's Seventeenth Problem, plays a crucial role in global polynomial optimization and has applications in various fields. First, we introduce SoS-1K, a meticulously curated dataset of approximately 1,000 polynomials, along with expert-designed reasoning instructions based on five progressively challenging criteria. Evaluating multiple state-of-the-art LLMs, we find that without structured guidance, all models perform only slightly above the random guess baseline 50%. However, high-quality reasoning instructions significantly improve accuracy, boosting performance up to 81%. Furthermore, our 7B model, SoS-7B, fine-tuned on SoS-1K for just 4 hours, outperforms the 671B DeepSeek-V3 and GPT-4o-mini in accuracy while only requiring 1.8% and 5% of the computation time needed for letters, respectively. Our findings highlight the potential of LLMs to push the boundaries of mathematical reasoning and tackle NP-hard problems.
17
67c51b469d5807d6674b3d88
null
null
2025-03-02T21:48:46.577000
LiteASR: Efficient Automatic Speech Recognition with Low-Rank Approximation
https://cdn-thumbnails.h…s/2502.20583.png
2
{ "_id": "6304ac1a412a1b9d381ca378", "avatarUrl": "/avatars/f4724eb5afc2a3b0e61e6da7bfa7be27.svg", "followerCount": null, "fullname": "Keisuke Kamahori", "isHf": false, "isMod": false, "isPro": false, "name": "kamahori", "type": "user" }
true
null
2502.20583
[ { "_id": "67c516998d02783fa3a52dc8", "hidden": false, "name": "Keisuke Kamahori", "status": "claimed_verified", "statusLastChangedAt": "2025-03-03T08:07:02.986Z", "user": { "_id": "6304ac1a412a1b9d381ca378", "avatarUrl": "/avatars/f4724eb5afc2a3b0e61e6da7bfa7be27.svg", "fullname": "Keisuke Kamahori", "isPro": false, "type": "user", "user": "kamahori" } }, { "_id": "67c516998d02783fa3a52dc9", "hidden": false, "name": "Jungo Kasai", "status": "admin_assigned", "statusLastChangedAt": "2025-03-03T09:43:49.097Z", "user": { "_id": "62908273c740ebb981a6dba4", "avatarUrl": "/avatars/465f50369c367b07670f5209c83d65f2.svg", "fullname": "Jungo Kasai", "isPro": false, "type": "user", "user": "jungok" } }, { "_id": "67c516998d02783fa3a52dca", "hidden": false, "name": "Noriyuki Kojima", "status": "admin_assigned", "statusLastChangedAt": "2025-03-03T09:43:56.698Z", "user": { "_id": "628c26a8b80bb09700d6af86", "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/1653352051245-noauth.jpeg", "fullname": "Noriyuki Kojima", "isPro": false, "type": "user", "user": "kojimano" } }, { "_id": "67c516998d02783fa3a52dcb", "hidden": false, "name": "Baris Kasikci", "status": "admin_assigned", "statusLastChangedAt": "2025-03-03T09:44:04.084Z", "user": { "_id": "654132fe5a9a913c6c870e79", "avatarUrl": "/avatars/2f6807eddef1929c571977e9af35f952.svg", "fullname": "Baris Kasikci", "isPro": false, "type": "user", "user": "kasikci" } } ]
2025-02-27T22:52:21
LiteASR: Efficient Automatic Speech Recognition with Low-Rank Approximation
Modern automatic speech recognition (ASR) models, such as OpenAI's Whisper, rely on deep encoder-decoder architectures, and their encoders are a critical bottleneck for efficient deployment due to high computational intensity. We introduce LiteASR, a low-rank compression scheme for ASR encoders that significantly reduces inference costs while maintaining transcription accuracy. Our approach leverages the strong low-rank properties observed in intermediate activations: by applying principal component analysis (PCA) with a small calibration dataset, we approximate linear transformations with a chain of low-rank matrix multiplications, and further optimize self-attention to work in the reduced dimension. Evaluation results show that our method can compress Whisper large-v3's encoder size by over 50%, matching Whisper medium's size with better transcription accuracy, thereby establishing a new Pareto-optimal frontier of efficiency and performance. The code of LiteASR is available at https://github.com/efeslab/LiteASR.
9
67c516998d02783fa3a52dfd
null
https://github.com/efeslab/LiteASR
2025-03-02T21:35:24.437000
DeepSolution: Boosting Complex Engineering Solution Design via Tree-based Exploration and Bi-point Thinking
https://cdn-thumbnails.h…s/2502.20730.png
4
{ "_id": "63664c8fa2abcdf2fd6425ed", "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/63664c8fa2abcdf2fd6425ed/IywpB0DXZ_twkmZmVSCCD.jpeg", "followerCount": 1, "fullname": "Li Zhuoqun", "isHf": false, "isMod": false, "isPro": false, "name": "lzq2021", "type": "user" }
true
[ "https://cdn-uploads.huggingface.co/production/uploads/63664c8fa2abcdf2fd6425ed/y_kT4GP3xgm-5RdguMNV7.png", "https://cdn-uploads.huggingface.co/production/uploads/63664c8fa2abcdf2fd6425ed/wDAS_USsxsVHbin1I5CEe.png", "https://cdn-uploads.huggingface.co/production/uploads/63664c8fa2abcdf2fd6425ed/4lJgWp9V8pm4vDBUH4I5n.png" ]
2502.20730
[ { "_id": "67c514aba3d873e41624a082", "hidden": false, "name": "Zhuoqun Li", "status": "claimed_verified", "statusLastChangedAt": "2025-03-03T08:07:26.218Z", "user": { "_id": "63664c8fa2abcdf2fd6425ed", "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/63664c8fa2abcdf2fd6425ed/IywpB0DXZ_twkmZmVSCCD.jpeg", "fullname": "Li Zhuoqun", "isPro": false, "type": "user", "user": "lzq2021" } }, { "_id": "67c514aba3d873e41624a083", "hidden": false, "name": "Haiyang Yu", "status": "claimed_verified", "statusLastChangedAt": "2025-03-03T09:31:12.493Z", "user": { "_id": "64a4ceda9a90f701134189b7", "avatarUrl": "/avatars/859a189c5d2ae2fcb9aa2d79104fbfe7.svg", "fullname": "Haiyang Yu", "isPro": false, "type": "user", "user": "yhycai" } }, { "_id": "67c514aba3d873e41624a084", "hidden": false, "name": "Xuanang Chen", "status": "admin_assigned", "statusLastChangedAt": "2025-03-03T09:29:31.384Z", "user": { "_id": "63ef664304b0e373992a2633", "avatarUrl": "/avatars/cba554ff88bd8b68ae51bea8ee991d13.svg", "fullname": "Xuanang Chen", "isPro": false, "type": "user", "user": "xuanang" } }, { "_id": "67c514aba3d873e41624a085", "hidden": false, "name": "Hongyu Lin", "status": "admin_assigned", "statusLastChangedAt": "2025-03-03T09:28:09.791Z", "user": { "_id": "6711c702f858a456b4b9f3a4", "avatarUrl": "/avatars/178e9567c3111ab22717c3c0dd003a6a.svg", "fullname": "Hongyu Lin", "isPro": false, "type": "user", "user": "sanmusunrise" } }, { "_id": "67c514aba3d873e41624a086", "hidden": false, "name": "Yaojie Lu", "status": "admin_assigned", "statusLastChangedAt": "2025-03-03T09:29:38.957Z", "user": { "_id": "6216496a9b34d2fb49144599", "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/6216496a9b34d2fb49144599/41CKA_h1Ffj3RzVabSAkm.jpeg", "fullname": "Yaojie Lu", "isPro": false, "type": "user", "user": "luyaojie" } }, { "_id": "67c514aba3d873e41624a087", "hidden": false, "name": "Fei Huang", "status": null, "statusLastChangedAt": null, "user": null }, { "_id": "67c514aba3d873e41624a088", "hidden": false, "name": "Xianpei Han", "status": "admin_assigned", "statusLastChangedAt": "2025-03-03T09:29:51.007Z", "user": { "_id": "65e99a77e71555ed193609cf", "avatarUrl": "/avatars/38ceb127883944677665da967d17dd18.svg", "fullname": "Xianpei Han", "isPro": false, "type": "user", "user": "xphan" } }, { "_id": "67c514aba3d873e41624a089", "hidden": false, "name": "Yongbin Li", "status": "admin_assigned", "statusLastChangedAt": "2025-03-03T09:29:57.561Z", "user": { "_id": "66641b2fd8e1e34bc621e688", "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/66641b2fd8e1e34bc621e688/csPETwnx2zCIHSWi9uAi-.png", "fullname": "Yongbin Li", "isPro": false, "type": "user", "user": "Yongbin-Li" } }, { "_id": "67c514aba3d873e41624a08a", "hidden": false, "name": "Le Sun", "status": null, "statusLastChangedAt": null, "user": null } ]
2025-02-28T05:23:10
DeepSolution: Boosting Complex Engineering Solution Design via Tree-based Exploration and Bi-point Thinking
Designing solutions for complex engineering challenges is crucial in human production activities. However, previous research in the retrieval-augmented generation (RAG) field has not sufficiently addressed tasks related to the design of complex engineering solutions. To fill this gap, we introduce a new benchmark, SolutionBench, to evaluate a system's ability to generate complete and feasible solutions for engineering problems with multiple complex constraints. To further advance the design of complex engineering solutions, we propose a novel system, SolutionRAG, that leverages the tree-based exploration and bi-point thinking mechanism to generate reliable solutions. Extensive experimental results demonstrate that SolutionRAG achieves state-of-the-art (SOTA) performance on the SolutionBench, highlighting its potential to enhance the automation and reliability of complex engineering solution design in real-world applications.
30
67c514aca3d873e41624a10b
null
https://github.com/Li-Z-Q/DeepSolution
2025-02-28T16:51:51.551000
PlanGEN: A Multi-Agent Framework for Generating Planning and Reasoning Trajectories for Complex Problem Solving
https://cdn-thumbnails.h…s/2502.16111.png
3
{ "_id": "61a00714f5119f1651f7e4be", "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/1651013366729-61a00714f5119f1651f7e4be.jpeg", "followerCount": 1, "fullname": "Mihir Parmar", "isHf": false, "isMod": false, "isPro": false, "name": "Mihir3009", "type": "user" }
false
[ "https://cdn-uploads.huggingface.co/production/uploads/61a00714f5119f1651f7e4be/dZJBpAQlVaJSFYXhuE1Rl.png" ]
2502.16111
[ { "_id": "67be18d2bb66802239ec8095", "hidden": false, "name": "Mihir Parmar", "status": null, "statusLastChangedAt": null, "user": null }, { "_id": "67be18d2bb66802239ec8096", "hidden": false, "name": "Xin Liu", "status": null, "statusLastChangedAt": null, "user": null }, { "_id": "67be18d2bb66802239ec8097", "hidden": false, "name": "Palash Goyal", "status": null, "statusLastChangedAt": null, "user": null }, { "_id": "67be18d2bb66802239ec8098", "hidden": false, "name": "Yanfei Chen", "status": null, "statusLastChangedAt": null, "user": null }, { "_id": "67be18d2bb66802239ec8099", "hidden": false, "name": "Long Le", "status": null, "statusLastChangedAt": null, "user": null }, { "_id": "67be18d2bb66802239ec809a", "hidden": false, "name": "Swaroop Mishra", "status": null, "statusLastChangedAt": null, "user": null }, { "_id": "67be18d2bb66802239ec809b", "hidden": false, "name": "Hossein Mobahi", "status": null, "statusLastChangedAt": null, "user": null }, { "_id": "67be18d2bb66802239ec809c", "hidden": false, "name": "Jindong Gu", "status": null, "statusLastChangedAt": null, "user": null }, { "_id": "67be18d2bb66802239ec809d", "hidden": false, "name": "Zifeng Wang", "status": null, "statusLastChangedAt": null, "user": null }, { "_id": "67be18d2bb66802239ec809e", "hidden": false, "name": "Hootan Nakhost", "status": null, "statusLastChangedAt": null, "user": null }, { "_id": "67be18d2bb66802239ec809f", "hidden": false, "name": "Chitta Baral", "status": null, "statusLastChangedAt": null, "user": null }, { "_id": "67be18d2bb66802239ec80a0", "hidden": false, "name": "Chen-Yu Lee", "status": null, "statusLastChangedAt": null, "user": null }, { "_id": "67be18d2bb66802239ec80a1", "hidden": false, "name": "Tomas Pfister", "status": null, "statusLastChangedAt": null, "user": null }, { "_id": "67be18d2bb66802239ec80a2", "hidden": false, "name": "Hamid Palangi", "status": null, "statusLastChangedAt": null, "user": null } ]
2025-02-22T06:21:56
PlanGEN: A Multi-Agent Framework for Generating Planning and Reasoning Trajectories for Complex Problem Solving
Recent agent frameworks and inference-time algorithms often struggle with complex planning problems due to limitations in verifying generated plans or reasoning and varying complexity of instances within a single task. Many existing methods for these tasks either perform task-level verification without considering constraints or apply inference-time algorithms without adapting to instance-level complexity. To address these limitations, we propose PlanGEN, a model-agnostic and easily scalable agent framework with three key components: constraint, verification, and selection agents. Specifically, our approach proposes constraint-guided iterative verification to enhance performance of inference-time algorithms--Best of N, Tree-of-Thought, and REBASE. In PlanGEN framework, the selection agent optimizes algorithm choice based on instance complexity, ensuring better adaptability to complex planning problems. Experimental results demonstrate significant improvements over the strongest baseline across multiple benchmarks, achieving state-of-the-art results on NATURAL PLAN (sim8%uparrow), OlympiadBench (sim4%uparrow), DocFinQA (sim7%uparrow), and GPQA (sim1%uparrow). Our key finding highlights that constraint-guided iterative verification improves inference-time algorithms, and adaptive selection further boosts performance on complex planning and reasoning problems.
7
67be18d3bb66802239ec80d1
null
null
2025-02-28T13:21:13.227000
Beyond Next-Token: Next-X Prediction for Autoregressive Visual Generation
https://cdn-thumbnails.h…s/2502.20388.png
2
{ "_id": "65317ea1501804124f011950", "avatarUrl": "/avatars/b055c3aba0c65d5377c69472e4576480.svg", "followerCount": 3, "fullname": "Ren", "isHf": false, "isMod": false, "isPro": false, "name": "OliverRen", "type": "user" }
false
null
2502.20388
[ { "_id": "67c1643aa4ccbde471532ba6", "hidden": false, "name": "Sucheng Ren", "status": null, "statusLastChangedAt": null, "user": null }, { "_id": "67c1643aa4ccbde471532ba7", "hidden": false, "name": "Qihang Yu", "status": null, "statusLastChangedAt": null, "user": null }, { "_id": "67c1643aa4ccbde471532ba8", "hidden": false, "name": "Ju He", "status": null, "statusLastChangedAt": null, "user": null }, { "_id": "67c1643aa4ccbde471532ba9", "hidden": false, "name": "Xiaohui Shen", "status": null, "statusLastChangedAt": null, "user": null }, { "_id": "67c1643aa4ccbde471532baa", "hidden": false, "name": "Alan Yuille", "status": null, "statusLastChangedAt": null, "user": null }, { "_id": "67c1643aa4ccbde471532bab", "hidden": false, "name": "Liang-Chieh Chen", "status": null, "statusLastChangedAt": null, "user": null } ]
2025-02-27T18:59:08
Beyond Next-Token: Next-X Prediction for Autoregressive Visual Generation
Autoregressive (AR) modeling, known for its next-token prediction paradigm, underpins state-of-the-art language and visual generative models. Traditionally, a ``token'' is treated as the smallest prediction unit, often a discrete symbol in language or a quantized patch in vision. However, the optimal token definition for 2D image structures remains an open question. Moreover, AR models suffer from exposure bias, where teacher forcing during training leads to error accumulation at inference. In this paper, we propose xAR, a generalized AR framework that extends the notion of a token to an entity X, which can represent an individual patch token, a cell (a ktimes k grouping of neighboring patches), a subsample (a non-local grouping of distant patches), a scale (coarse-to-fine resolution), or even a whole image. Additionally, we reformulate discrete token classification as continuous entity regression, leveraging flow-matching methods at each AR step. This approach conditions training on noisy entities instead of ground truth tokens, leading to Noisy Context Learning, which effectively alleviates exposure bias. As a result, xAR offers two key advantages: (1) it enables flexible prediction units that capture different contextual granularity and spatial structures, and (2) it mitigates exposure bias by avoiding reliance on teacher forcing. On ImageNet-256 generation benchmark, our base model, xAR-B (172M), outperforms DiT-XL/SiT-XL (675M) while achieving 20times faster inference. Meanwhile, xAR-H sets a new state-of-the-art with an FID of 1.24, running 2.2times faster than the previous best-performing model without relying on vision foundation modules (\eg, DINOv2) or advanced guidance interval sampling.
13
67c1643ba4ccbde471532c03
null
null
2025-02-28T08:54:03.125000
On Relation-Specific Neurons in Large Language Models
https://cdn-thumbnails.h…s/2502.17355.png
2
{ "_id": "61bf84c8ca59d6d196a1b4e8", "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/61bf84c8ca59d6d196a1b4e8/L_NvUwlMYcye9X35z6f7e.jpeg", "followerCount": 44, "fullname": "Amir Hossein Kargaran", "isHf": true, "isMod": false, "isPro": false, "name": "kargaranamir", "type": "user" }
true
null
2502.17355
[ { "_id": "67bf1808b91e7e6477d92c1e", "hidden": false, "name": "Yihong Liu", "status": "claimed_verified", "statusLastChangedAt": "2025-02-28T15:14:48.351Z", "user": { "_id": "653f7e569e84d1e8b6a66e70", "avatarUrl": "/avatars/24eaa6434508a162c349aebfc51990ff.svg", "fullname": "Yihong Liu", "isPro": false, "type": "user", "user": "yihongLiu" } }, { "_id": "67bf1808b91e7e6477d92c1f", "hidden": false, "name": "Runsheng Chen", "status": "admin_assigned", "statusLastChangedAt": "2025-02-28T15:16:28.041Z", "user": { "_id": "63629b9f2a84d82a8c8feb32", "avatarUrl": "/avatars/8484b5bf8311b28249757729b1ce80f8.svg", "fullname": "Chen", "isPro": false, "type": "user", "user": "Runsheng" } }, { "_id": "67bf1808b91e7e6477d92c20", "hidden": false, "name": "Lea Hirlimann", "status": "admin_assigned", "statusLastChangedAt": "2025-02-28T15:16:18.398Z", "user": { "_id": "658559148615630cb3ec5b6b", "avatarUrl": "/avatars/dd804ca277e6b19903bb550cc167ba4a.svg", "fullname": "Lea Hirlimann", "isPro": false, "type": "user", "user": "hirlimann" } }, { "_id": "67bf1808b91e7e6477d92c21", "hidden": false, "name": "Ahmad Dawar Hakimi", "status": "admin_assigned", "statusLastChangedAt": "2025-02-28T15:16:11.693Z", "user": { "_id": "62502669d2d191ac43320ade", "avatarUrl": "/avatars/7997e9b2012059edb22b745c3b737481.svg", "fullname": "Ahmad Dawar Hakimi", "isPro": false, "type": "user", "user": "adhakimi" } }, { "_id": "67bf1808b91e7e6477d92c22", "hidden": false, "name": "Mingyang Wang", "status": null, "statusLastChangedAt": null, "user": null }, { "_id": "67bf1808b91e7e6477d92c23", "hidden": false, "name": "Amir Hossein Kargaran", "status": "claimed_verified", "statusLastChangedAt": "2025-02-26T15:37:07.932Z", "user": { "_id": "61bf84c8ca59d6d196a1b4e8", "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/61bf84c8ca59d6d196a1b4e8/L_NvUwlMYcye9X35z6f7e.jpeg", "fullname": "Amir Hossein Kargaran", "isPro": false, "type": "user", "user": "kargaranamir" } }, { "_id": "67bf1808b91e7e6477d92c24", "hidden": false, "name": "Sascha Rothe", "status": null, "statusLastChangedAt": null, "user": null }, { "_id": "67bf1808b91e7e6477d92c25", "hidden": false, "name": "François Yvon", "status": "admin_assigned", "statusLastChangedAt": "2025-02-28T15:16:57.343Z", "user": { "_id": "62ab10f04bd2ebf5dbad205c", "avatarUrl": "/avatars/65356b3b057159cc67a86efb26b53486.svg", "fullname": "François Yvon", "isPro": false, "type": "user", "user": "fyvo" } }, { "_id": "67bf1808b91e7e6477d92c26", "hidden": false, "name": "Hinrich Schütze", "status": null, "statusLastChangedAt": null, "user": null } ]
2025-02-24T17:33:18
On Relation-Specific Neurons in Large Language Models
In large language models (LLMs), certain neurons can store distinct pieces of knowledge learned during pretraining. While knowledge typically appears as a combination of relations and entities, it remains unclear whether some neurons focus on a relation itself -- independent of any entity. We hypothesize such neurons detect a relation in the input text and guide generation involving such a relation. To investigate this, we study the Llama-2 family on a chosen set of relations with a statistics-based method. Our experiments demonstrate the existence of relation-specific neurons. We measure the effect of selectively deactivating candidate neurons specific to relation r on the LLM's ability to handle (1) facts whose relation is r and (2) facts whose relation is a different relation r' neq r. With respect to their capacity for encoding relation information, we give evidence for the following three properties of relation-specific neurons. (i) Neuron cumulativity. The neurons for r present a cumulative effect so that deactivating a larger portion of them results in the degradation of more facts in r. (ii) Neuron versatility. Neurons can be shared across multiple closely related as well as less related relations. Some relation neurons transfer across languages. (iii) Neuron interference. Deactivating neurons specific to one relation can improve LLM generation performance for facts of other relations. We will make our code publicly available at https://github.com/cisnlp/relation-specific-neurons.
6
67bf1808b91e7e6477d92c55
null
null
2025-02-28T08:46:19.110000
Guardians of the Agentic System: Preventing Many Shots Jailbreak with Agentic System
https://cdn-thumbnails.h…s/2502.16750.png
2
{ "_id": "653425f4ed74ace63395826c", "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/no-auth/QJlB0DOEel6U9b-95wasK.png", "followerCount": 3, "fullname": "Saikat Barua", "isHf": false, "isMod": false, "isPro": false, "name": "AlignAI", "type": "user" }
true
[ "https://cdn-uploads.huggingface.co/production/uploads/653425f4ed74ace63395826c/czZ9fF4yF6yz3E89YtU6e.jpeg" ]
2502.16750
[ { "_id": "67c1b63744d780e60d7c5274", "hidden": false, "name": "Saikat Barua", "status": "claimed_verified", "statusLastChangedAt": "2025-02-28T13:24:57.086Z", "user": { "_id": "653425f4ed74ace63395826c", "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/no-auth/QJlB0DOEel6U9b-95wasK.png", "fullname": "Saikat Barua", "isPro": false, "type": "user", "user": "AlignAI" } }, { "_id": "67c1b63744d780e60d7c5275", "hidden": false, "name": "Mostafizur Rahman", "status": null, "statusLastChangedAt": null, "user": null }, { "_id": "67c1b63744d780e60d7c5276", "hidden": false, "name": "Md Jafor Sadek", "status": "admin_assigned", "statusLastChangedAt": "2025-02-28T15:21:48.563Z", "user": { "_id": "63c99ab3dfac8071d01b61d4", "avatarUrl": "/avatars/9151241b8af4d64d7771740587d1b7a5.svg", "fullname": "MD Jafor Sadek Khan", "isPro": false, "type": "user", "user": "Jafor" } }, { "_id": "67c1b63744d780e60d7c5277", "hidden": false, "name": "Rafiul Islam", "status": null, "statusLastChangedAt": null, "user": null }, { "_id": "67c1b63744d780e60d7c5278", "hidden": false, "name": "Shehnaz Khaled", "status": null, "statusLastChangedAt": null, "user": null }, { "_id": "67c1b63744d780e60d7c5279", "hidden": false, "name": "Ahmedul Kabir", "status": null, "statusLastChangedAt": null, "user": null } ]
2025-02-23T23:35:15
Guardians of the Agentic System: Preventing Many Shots Jailbreak with Agentic System
The autonomous AI agents using large language models can create undeniable values in all span of the society but they face security threats from adversaries that warrants immediate protective solutions because trust and safety issues arise. Considering the many-shot jailbreaking and deceptive alignment as some of the main advanced attacks, that cannot be mitigated by the static guardrails used during the supervised training, points out a crucial research priority for real world robustness. The combination of static guardrails in dynamic multi-agent system fails to defend against those attacks. We intend to enhance security for LLM-based agents through the development of new evaluation frameworks which identify and counter threats for safe operational deployment. Our work uses three examination methods to detect rogue agents through a Reverse Turing Test and analyze deceptive alignment through multi-agent simulations and develops an anti-jailbreaking system by testing it with GEMINI 1.5 pro and llama-3.3-70B, deepseek r1 models using tool-mediated adversarial scenarios. The detection capabilities are strong such as 94\% accuracy for GEMINI 1.5 pro yet the system suffers persistent vulnerabilities when under long attacks as prompt length increases attack success rates (ASR) and diversity metrics become ineffective in prediction while revealing multiple complex system faults. The findings demonstrate the necessity of adopting flexible security systems based on active monitoring that can be performed by the agents themselves together with adaptable interventions by system admin as the current models can create vulnerabilities that can lead to the unreliable and vulnerable system. So, in our work, we try to address such situations and propose a comprehensive framework to counteract the security issues.
10
67c1b63a44d780e60d7c5317
null
null
End of preview. Expand in Data Studio

Weekly snapshots of Models, Datasets and Papers on the HF Hub

Sample code

To query the dataset to see which snapshots are observable, use e.g.:

import json

from datasets import load_dataset
from huggingface_hub import HfApi

REPO_ID = "hfmlsoc/hub_weekly_snapshots"

hf_api = HfApi()
all_files = hf_api.list_repo_files(repo_id=REPO_ID, repo_type="dataset")

repo_type_to_snapshots = {}
for repo_fpath in all_files:
    if ".parquet" in repo_fpath:
        repo_type = repo_fpath.split("/")[0]
        repo_type_to_snapshots[repo_type] = repo_type_to_snapshots.get(repo_type, []) + [repo_fpath]

for repo_type in repo_type_to_snapshots:
    repo_type_to_snapshots[repo_type] = sorted(repo_type_to_snapshots[repo_type], key=lambda x:x.split("/")[1])

repo_type_to_snapshots

You can then load a specific snapshot as e.g.:

date = "2025-01-01"
snapshot = load_dataset(REPO_ID, data_files={date.replace("-",""): f"datasets/{date}/datasets.parquet"})
snapshot

Returning:

DatasetDict({
    20250101: Dataset({
        features: ['_id', 'id', 'author', 'cardData', 'disabled', 'gated', 'lastModified', 'likes', 'trendingScore', 'private', 'sha', 'description', 'downloads', 'tags', 'createdAt', 'key', 'paperswithcode_id', 'citation'],
        num_rows: 276421
    })
})

Sample analysis of top datasets

To look at the 10 most liked datasets as of January 1st 2025, you can then run:

[{
    "id": row['id'],
    "tags": json.loads(row["cardData"]).get("tags", []),
    "tasks": json.loads(row["cardData"]).get("task_categories", []),
    "likes": row['likes'],
} for row in snapshot["20250101"].sort("likes", reverse=True).select(range(10))]

Most of the user-maintained metadata for Hub repositories is stored in the cardData field, which is saved as a JSON-formated string

Downloads last month
202