Problem
stringlengths 3
32
| Rationale
stringlengths 1
2.74k
| options
stringlengths 37
137
| correct
stringclasses 5
values | annotated_formula
stringlengths 6
848
| linear_formula
stringlengths 7
357
| category
stringclasses 6
values |
---|---|---|---|---|---|---|
find division7. | "find the pattern of the remainders after each power : ( 2 ^ 1 ) / 7 remainder 2 ( 2 ^ 2 ) / 7 remainder 4 ( 2 ^ 3 ) / 7 remainder 1 - - > this is where the cycle ends ( 2 ^ 4 ) / 7 remainder 2 - - > this is where the cycle begins again ( 2 ^ 5 ) / 7 remainder 4 continuing the pattern to ( 2 ^ 14 ) / 7 gives us a remainder of 4 final answer : d ) 4" | a ) 1 , b ) 2 , c ) 3 , d ) 4 , e ) 5 | d | reminder(power(2, 14), 7) | power(n0,n1)|reminder(#0,n2)| | general |
a and days? | "1 / 18 + 1 / 30 = 8 / 90 = 4 / 45 45 / 4 = 11 ¼ * 2 = 22 ½ days answer : b" | a ) 21 ½ days , b ) 22 ½ days , c ) 23 ½ days , d ) 12 ½ days , e ) none of these | b | add(divide(const_1, 18), divide(const_1, 30)) | divide(const_1,n0)|divide(const_1,n1)|add(#0,#1)| | physics |
bar invest investment? | "let the additional invested amount for 8 % interest be x ; equation will be ; 2600 + 0.05 * 2600 + x + 0.08 x = 2600 + x + 0.06 ( 2600 + x ) 0.05 * 2600 + 0.08 x = 0.06 x + 0.06 * 2600 0.02 x = 2600 ( 0.06 - 0.05 ) x = 2600 * 0.01 / 0.02 = 1300 ans : ` ` c ' '" | a ) 1200 , b ) 3000 , c ) 1300 , d ) 3600 , e ) 2400 | c | divide(subtract(multiply(divide(6, const_100), 2600), multiply(2600, divide(5, const_100))), subtract(divide(8, const_100), divide(6, const_100))) | divide(n3,const_100)|divide(n1,const_100)|divide(n2,const_100)|multiply(n0,#0)|multiply(n0,#1)|subtract(#2,#0)|subtract(#3,#4)|divide(#6,#5)| | general |
at,. ) | "most test takers would recognize thesystemof equations in this prompt and just do algebra to get to the solution ( and that ' s fine ) . the wording of the prompt and the ' spread ' of the answer choices actually provide an interesting ' brute force ' shortcut that you can take advantage of to eliminate the 4 wrong answers . . . . we ' re told that there are 2 types of boxes : those that hold 12 glasses and those that hold 16 glasses . since the average number of boxes is 15 , we know that there must be at least some of each . we ' re also told that that there are 16 more of the larger boxes . this means , at the minimum , we have . . . 1 small box and 17 large boxes = 1 ( 12 ) + 17 ( 16 ) = 12 + 272 = 284 glasses at the minimum since the question asks for the total number of glasses , we can now eliminate answers a , b and c . . . . the difference in the number of boxes must be 16 though , so we could have . . . . 2 small boxes and 18 large boxes 3 small boxes and 19 large boxes etc . with every additional small box + large box that we add , we add 12 + 16 = 28 more glasses . thus , we can justadd 28 suntil we hit the correct answer . . . . 284 + 28 = 312 312 + 28 = 340 340 + 28 = 368 368 + 28 = 396 at this point , we ' ve ' gone past ' answer d , so the correct answer must be answer e . . . . . but here ' s the proof . . . . 396 + 28 = 424 424 + 28 = 452 452 + 28 = 480 final answer : e" | a ) 96 , b ) 240 , c ) w = 256 , d ) w = 384 , e ) w = 480 | e | multiply(multiply(16, const_2), 15) | multiply(n1,const_2)|multiply(n2,#0)| | general |
if50 y? | "sum s = n / 2 { 2 a + ( n - 1 ) d } = 11 / 2 { 2 * 40 + ( 11 - 1 ) * 1 } = 11 * 45 = 495 = x number of even number = ( 50 - 40 ) / 2 + 1 = 6 = y x + y = 495 + 6 = 501 d" | a ) 171 , b ) 281 , c ) 391 , d ) 501 , e ) 613 | d | add(multiply(divide(add(40, 50), const_2), add(subtract(50, 40), const_1)), add(divide(subtract(50, 40), const_2), const_1)) | add(n0,n1)|subtract(n1,n0)|add(#1,const_1)|divide(#1,const_2)|divide(#0,const_2)|add(#3,const_1)|multiply(#2,#4)|add(#5,#6)| | general |
a time water? | "28 - - - 4 ds = 7 ? - - - - 1 16 - - - - 4 us = 4 ? - - - - 1 m = ? m = ( 7 + 4 ) / 2 = 5.5 answer : e" | a ) 6.5 , b ) 8.6 , c ) 7.5 , d ) 9.2 , e ) 5.5 | e | divide(add(divide(16, 4), divide(28, 4)), const_2) | divide(n1,n2)|divide(n0,n2)|add(#0,#1)|divide(#2,const_2)| | physics |
alice ) )? | alice and bob complete 200 km / 4 hours = 50 km / hour bob ' s speed is 50 - 30 = 20 km / hour the answer is a . | a ) 20 , b ) 24 , c ) 28 , d ) 32 , e ) 36 | a | subtract(divide(add(100, 100), subtract(11, 7)), 30) | add(n1,n1)|subtract(n4,n2)|divide(#0,#1)|subtract(#2,n0) | physics |
the year year? | "explanation : given year 2040 when divided by 4 , leaves a remainder 0 . note : when remainder is 0 , 28 is added to the given year to get the result . so , 2040 + 28 = 2068 answer : e" | a ) 2063 , b ) 2061 , c ) 2111 , d ) 2191 , e ) 2068 | e | add(multiply(subtract(multiply(const_4, const_4), const_2), const_2), 2040) | multiply(const_4,const_4)|subtract(#0,const_2)|multiply(#1,const_2)|add(n0,#2)| | gain |
how digit? | "5 , 15,25 , 35,40 , 50,55 , 65,75 , 85,95 so there are total 11 such type of numbers . answer : c" | a ) 10 , b ) 12 , c ) 11 , d ) 20 , e ) 25 | c | divide(100, const_10) | divide(n1,const_10)| | general |
in elect hr? | "sol . speed = [ 144 x 5 / 18 ] m / sec = 40 m / sec . time taken = ( 100 / 40 ) sec = 2.5 sec . answer a" | a ) 2.5 sec , b ) 4.25 sec , c ) 5 sec , d ) 12.5 sec , e ) none | a | divide(100, multiply(144, const_0_2778)) | multiply(n1,const_0_2778)|divide(n0,#0)| | physics |
a2 place? | "speed of down stream = 10 + 2 = 12 kmph speed of upstream = 10 - 2 = 8 kmph let the required distance be xkm x / 12 + x / 8 = 25 2 x + 3 x = 600 x = 120 km answer is d" | a ) 24 km , b ) 30 km , c ) 48 km , d ) 120 km , e ) 15 km | d | divide(multiply(multiply(subtract(10, 2), add(10, 2)), 25), add(subtract(10, 2), add(10, 2))) | add(n0,n1)|subtract(n0,n1)|add(#0,#1)|multiply(#0,#1)|multiply(n2,#3)|divide(#4,#2)| | physics |
from selected? | "the total number of ways to choose 4 children from 8 is 8 c 4 = 70 the number of ways to choose 2 boys and 2 girls is 4 c 2 * 4 c 2 = 6 * 6 = 36 p ( 2 boys and 2 girls ) = 36 / 70 = 18 / 35 the answer is d ." | a ) 12 / 29 , b ) 14 / 31 , c ) 16 / 33 , d ) 18 / 35 , e ) 20 / 37 | d | divide(multiply(choose(4, const_2), choose(4, const_2)), choose(add(4, 4), 4)) | add(n0,n0)|choose(n0,const_2)|choose(n0,const_2)|choose(#0,n2)|multiply(#1,#2)|divide(#4,#3)| | probability |
a., is | explanation : number = ( 800 * 300 * 600 ) / 8 * 3 * 2 = 3000000 answer : d | a ) 9800000 , b ) 1000000 , c ) 7500000 , d ) 3000000 , e ) none of these | d | divide(multiply(multiply(multiply(const_4.0, const_100), multiply(3, const_100)), multiply(const_4.0, const_100)), multiply(multiply(8, 3), 3)) | multiply(n2,const_100)|multiply(n1,const_100)|multiply(const_4.0,n1)|multiply(#0,#1)|multiply(n1,#2)|multiply(#3,#0)|divide(#5,#4)| | physics |
a can work? | "a rate = 1 / 8 b rate = 1 / 24 ( a + b ) rate = ( 1 / 8 ) + ( 1 / 24 ) = 1 / 6 a & b finish the work in 6 days correct option is e" | a ) 3 , b ) 5 , c ) 4 , d ) 2 , e ) 6 | e | divide(multiply(8, 24), add(8, 24)) | add(n0,n1)|multiply(n0,n1)|divide(#1,#0)| | physics |
what??? | "16 raise to 8 = 2 raise to 32 , now highest power of 2 divisible by 50 ! is 25 + 12 + 6 + 3 + 1 = 47 since 2 raise to 47 is divisible , 2 raise to 32 also will be divisible answer : a" | a ) 0 , b ) 1 , c ) 2 , d ) 3 , e ) 4 | a | reminder(multiply(16, 50), 8) | multiply(n0,n1)|reminder(#0,n2)| | general |
two hr one? | "relative speed = 45 + 30 = 75 km / hr . 75 * 5 / 18 = 125 / 6 m / sec . distance covered = 1250 + 1250 = 2500 m . required time = 2500 * 6 / 125 = 120 sec . answer : e" | a ) 228 , b ) 278 , c ) 48 , d ) 27 , e ) 120 | e | add(45, 30) | add(n1,n2)| | physics |
if gain percent is | "let c . p . of each pencil be re . 1 . then , c . p . of 100 pencils = rs . 100 ; s . p . of 100 pencils = rs . 140 . gain % = 40 / 100 * 100 = 40 % answer : e" | a ) 36 , b ) 37 , c ) 38 , d ) 39 , e ) 40 | e | divide(const_100, divide(100, subtract(140, 100))) | subtract(n0,n1)|divide(n1,#0)|divide(const_100,#1)| | gain |
mother what daughter? | "mother + daughter + child = 140 kg daughter + child = 60 kg mother = 140 - 60 = 80 kg child = 1 / 5 th of mother = ( 1 / 5 ) * 80 = 16 kg so now daughter = 140 - ( mother + child ) = 140 - ( 80 + 16 ) = 44 kg answer : a" | a ) 44 , b ) 47 , c ) 48 , d ) 49 , e ) 50 | a | subtract(60, divide(subtract(140, 60), 5)) | subtract(n0,n1)|divide(#0,n3)|subtract(n1,#1)| | general |
two. is : | "( 3 x - 9 ) : ( 5 x - 9 ) = 5 : 2 x = 1 = > 3 x = 3 answer : a" | a ) a ) 3 , b ) b ) 98 , c ) c ) 34 , d ) d ) 35 , e ) e ) 62 | a | add(multiply(3, divide(9, multiply(3, 5))), multiply(5, divide(9, multiply(3, 5)))) | multiply(n0,n1)|divide(n2,#0)|multiply(n0,#1)|multiply(n1,#1)|add(#2,#3)| | other |
a half cement? | we have total of 8 parts : 3 parts of sand and 5 parts of cement . in order there to be half sand and half cement ( 4 parts of sand and 4 parts of cement ) , we should remove 1 part of cement . with 1 part of cement comes 3 / 5 parts of sand , so we should remove 1 + 3 / 5 = 8 / 5 part of the mixture , which is ( 8 / 5 ) / 8 = 1 / 5 of the mixture . answer : c . | a ) 1 / 3 , b ) 1 / 4 , c ) 1 / 5 , d ) 1 / 7 , e ) 1 / 8 | c | divide(add(const_1, divide(3, 5)), add(5, 3)) | add(n0,n1)|divide(n0,n1)|add(#1,const_1)|divide(#2,#0) | general |
the the child? | "let the ages of children be x , ( x + 3 ) , ( x + 6 ) , ( x + 9 ) and ( x + 12 ) years . then , x + ( x + 3 ) + ( x + 6 ) + ( x + 9 ) + ( x + 12 ) = 65 5 x = 35 x = 7 . x + 12 = 7 + 12 = 19 b" | a ) 17 , b ) 19 , c ) 16 , d ) 18 , e ) 21 | b | divide(add(add(add(add(const_2.0, const_4), add(3, const_4)), add(const_4, const_4)), 65), 5) | add(const_2.0,const_4)|add(const_4,const_4)|add(#0,#0)|add(#2,#1)|add(n2,#3)|divide(#4,n0)| | general |
a how it? | let the cost price of book = x selling price of book = 24 $ markup % = 20 ( 120 / 100 ) x = 24 = > x = 20 answer e | a ) $ 14.40 , b ) $ 14.00 , c ) $ 10.00 , d ) $ 9.60 , e ) $ 20.00 | e | subtract(24, multiply(divide(20, const_100), 24)) | divide(n0,const_100)|multiply(n1,#0)|subtract(n1,#1) | gain |
in revenues8? | "the profit 0 f 2009 in terms of 2008 = 0.9 * 15 / 10 * 100 = 135 % c" | a ) 80 % , b ) 105 % , c ) 135 % , d ) 124.2 % , e ) 138 % | c | multiply(divide(multiply(15, subtract(const_1, divide(10, const_100))), 10), const_100) | divide(n3,const_100)|subtract(const_1,#0)|multiply(n4,#1)|divide(#2,n1)|multiply(#3,const_100)| | gain |
find simple months? | "p = $ 10000 r = 6 % t = 12 / 12 years = 1 year s . i . = p * r * t / 100 = 10000 * 6 * 1 / 100 = $ 600 answer is c" | a ) $ 410 , b ) $ 500 , c ) $ 600 , d ) $ 710 , e ) $ 1000 | c | multiply(10000, divide(6, const_100)) | divide(n1,const_100)|multiply(n0,#0)| | gain |
a to is? | "milk : water = 5 : 2 5 x : 2 x + 10 = 5 : 3 3 [ 5 x ] = 5 [ 2 x + 10 ] 15 x = 10 x + 50 15 x - 10 x = 50 x = 10 the quantity of milk in the original mixture is = 5 : 2 = 5 + 2 = 7 7 x = 70 short cut method : milk : water = 5 : 2 after adding 10 liters of water milk : water = 5 : 3 milk is same but water increse 10 liters then the water ratio is increse 1 parts 1 part - - - - - > 10 liters the quantity of milk in the original mixture is = 5 : 2 = 5 + 2 = 7 7 parts - - - - - > 70 liters ( answer is = 70 ) short cut method - 2 : for only milk problems milk : water 5 : 2 5 : 3 milk ratio same but water ratio 1 part incress per 10 liters 1 part of ratio - - - - - - - > 10 liters 7 part of ratio - - - - - - - > 70 liters c )" | a ) 30 , b ) 40 , c ) 50 , d ) 60 , e ) 70 | c | divide(multiply(10, divide(const_2.0, const_3.0)), subtract(divide(3, add(5, 2)), multiply(divide(2, add(5, 2)), divide(2, 5)))) | add(n4,n1)|divide(n3,n4)|divide(n0,#0)|divide(n1,#0)|multiply(n2,#1)|multiply(#3,#1)|subtract(#2,#5)|divide(#4,#6)| | general |
of4ical? | let ' s see , the way i did it was 12 / 25 are clerical out of 3600 so 1728 are clerical 1728 reduced by 1 / 4 is 1728 * 1 / 4 so it reduced 432 people , so there is 1296 clerical people left but since 432 people left , it also reduced from the total of 3600 so there are 3168 people total since 1296 clerical left / 3168 people total you get ( a ) 40 % | a ) 40 % , b ) 22.2 % , c ) 20 % , d ) 12.5 % , e ) 11.1 % | a | multiply(divide(multiply(divide(12, 25), subtract(1, divide(1, 4))), add(multiply(divide(12, 25), subtract(1, divide(1, 4))), subtract(const_1, divide(12, 25)))), const_100) | divide(n1,n2)|divide(n3,n4)|subtract(n3,#1)|subtract(const_1,#0)|multiply(#0,#2)|add(#4,#3)|divide(#4,#5)|multiply(#6,const_100) | general |
a for transaction? | "in such a case there is always a loss loss % = ( 13 / 10 ) ^ 2 = 120 / 71 = 1.69 % answer is a" | a ) 1.69 % , b ) 2.56 % , c ) 3.12 % , d ) 4.65 % , e ) 5.12 % | a | multiply(divide(subtract(add(multiply(divide(const_100, add(const_100, 13)), 675958), multiply(divide(const_100, subtract(const_100, 13)), 675958)), add(675958, 675958)), add(multiply(divide(const_100, add(const_100, 13)), 675958), multiply(divide(const_100, subtract(const_100, 13)), 675958))), const_100) | add(n1,const_100)|add(n0,n0)|subtract(const_100,n1)|divide(const_100,#0)|divide(const_100,#2)|multiply(n0,#3)|multiply(n0,#4)|add(#5,#6)|subtract(#7,#1)|divide(#8,#7)|multiply(#9,const_100)| | gain |
what sum30? | "30 / 3 = 10 the three numbers are 9 , 10 , and 11 . the answer is d ." | a ) 8 , b ) 9 , c ) 10 , d ) 11 , e ) 12 | d | add(divide(subtract(30, 3), 3), const_2) | subtract(n1,n0)|divide(#0,n0)|add(#1,const_2)| | physics |
students be classes? | solution : sum of pass students of first , second and third class , = ( 45 % of 10 ) + ( 60 % of 15 ) + ( 80 % of 25 ) = 4.5 + 9 + 20 = 33.5 total students appeared , = 10 + 15 + 25 = 50 pass average , = 33.5 * 100 / 50 = 67 % . answer : option c | a ) 74 % , b ) 75 % , c ) 67 % , d ) 72 % , e ) none | c | divide(multiply(add(add(divide(multiply(10, 45), const_100), divide(multiply(15, 60), const_100)), divide(multiply(25, 80), const_100)), const_100), add(add(10, 15), 25)) | add(n1,n3)|multiply(n1,n2)|multiply(n3,n4)|multiply(n5,n6)|add(n5,#0)|divide(#1,const_100)|divide(#2,const_100)|divide(#3,const_100)|add(#5,#6)|add(#8,#7)|multiply(#9,const_100)|divide(#10,#4) | general |
if16 area? | "the triangle with sides 20 cm , 12 cm and 16 cm is right angled , where the hypotenuse is 20 cm . area of the triangle = 1 / 2 * 12 * 16 = 96 cm 2 answer : option d" | a ) 70 , b ) 79 , c ) 85 , d ) 96 , e ) 92 | d | divide(multiply(12, 16), const_2) | multiply(n1,n2)|divide(#0,const_2)| | geometry |
how speedph? | "d = 100 + 150 = 250 s = 36 * 5 / 18 = 10 mps t = 250 / 10 = 25 sec . answer : c" | a ) 2 , b ) 28 , c ) 25 , d ) 99 , e ) 12 | c | divide(add(150, 100), multiply(36, const_0_2778)) | add(n0,n1)|multiply(n2,const_0_2778)|divide(#0,#1)| | physics |
3423 =? | 34.94 240.016 + 23.98 - - - - - - - - 298.936 answer is a . | a ) 298.936 , b ) 298.694 , c ) 289.496 , d ) 289.469 , e ) 298.964 | a | add(add(34.94, 240.016), 23.98) | add(n0,n1)|add(n2,#0) | general |
me - got? | total cost of items : 2000 / - amount paid : 3000 / - balance receivable : 3000 - 2000 = 1000 / - answer is b | a ) 650 , b ) 1000 , c ) 1500 , d ) 800 , e ) 750 | b | subtract(3000, 2000) | subtract(n3,n2) | general |
aema places. | "correct average = 35 x 72 + ( 86 - 36 ) / 35 ≈ 72 + 1.43 = 73.43 answer d" | a ) 73.41 , b ) 74.31 , c ) 72.43 , d ) 73.43 , e ) can not be determined | d | divide(subtract(multiply(35, 72), subtract(86, 36)), 35) | multiply(n0,n2)|subtract(n4,n3)|subtract(#0,#1)|divide(#2,n0)| | general |
what 10? | or u can just use the answer choices here . since the answers are already arranged in ascending order , the first number which gives remainder e as 1 for all three is the correct answer . in the given question , the first number which gives a remainder of 1 for 68 and 10 is 121 . c | a ) 21 , b ) 41 , c ) e = 121 , d ) 241 , e ) 481 | c | add(lcm(10, lcm(6, 8)), const_1) | lcm(n2,n3)|lcm(n4,#0)|add(#1,const_1) | general |
a his percentage. | "anyways , one can infer that he ' steals ' 30 % from suppliers and then charges 40 % extra to customers so basically 1.3 * 1.4 = 1.82 given that 1 is start point , we get 21 % more hence answer is b" | a ) 28 % , b ) 82 % , c ) 24.33 % , d ) 29.109 % , e ) 78 % | b | subtract(multiply(divide(add(const_100, 40), const_100), add(const_100, 30)), const_100) | add(n0,const_100)|add(n1,const_100)|divide(#1,const_100)|multiply(#0,#2)|subtract(#3,const_100)| | gain |
in60 2 | "milk quantity = 3 / 4 * 60 = 45 water quantity = 60 - 45 = 15 new ratio of m : w = 45 : 15 + x = 3 : 2 45 + 3 x = 90 x = 15 answer is b" | a ) 1 , b ) 15 , c ) 7 , d ) 5 , e ) 12 | b | multiply(subtract(divide(multiply(divide(3, add(3, 1)), 60), divide(3, add(3, 2))), 60), divide(add(const_10, 1), const_10)) | add(const_10,n2)|add(n1,n2)|add(n1,n4)|divide(#0,const_10)|divide(n1,#1)|divide(n1,#2)|multiply(n0,#4)|divide(#6,#5)|subtract(#7,n0)|multiply(#3,#8)| | general |
how 2? | "2 / 2 = 1 and 13 / 2 = 6 6 - 1 = 5 5 + 1 = 6 numbers . answer : e" | a ) a ) 2 , b ) b ) 3 , c ) c ) 5 , d ) d ) 7 , e ) e ) 6 | e | add(divide(subtract(multiply(floor(divide(13, 2)), 2), multiply(add(floor(divide(2, 2)), const_1), 2)), 2), const_1) | divide(n1,n2)|divide(n0,n2)|floor(#0)|floor(#1)|add(#3,const_1)|multiply(n2,#2)|multiply(n2,#4)|subtract(#5,#6)|divide(#7,n2)|add(#8,const_1)| | general |
in class neither? | "26 + 20 - 17 = 29 37 - 29 = 8 play neither answer is b" | a ) 6 , b ) 8 , c ) 10 , d ) 12 , e ) 14 | b | subtract(37, subtract(add(26, 20), 17)) | add(n1,n2)|subtract(#0,n3)|subtract(n0,#1)| | other |
a of downstream. | "speed of boat in still water = 15 km / hr speed of the stream = 6 km / hr speed downstream = ( 15 + 6 ) = 21 km / hr time taken to travel 86 km downstream = 86 â „ 16 = 17 â „ 4 = 4.1 hours answer is a" | a ) 4.1 hr , b ) 5.25 hr , c ) 8.25 hr , d ) 2.25 hr , e ) 2.50 hr | a | divide(86, add(15, 6)) | add(n0,n1)|divide(n2,#0)| | physics |
on by remainder? | "let x be the number and y be the quotient . then , x = 357 * y + 38 = ( 17 * 21 * y ) + ( 17 * 2 ) + 4 = 17 * ( 21 y + 2 ) + 4 . required number = 4 . answer is a" | a ) 4 , b ) 5 , c ) 8 , d ) 7 , e ) 2 | a | multiply(subtract(divide(power(38, const_2), 357), floor(divide(power(38, const_2), 357))), 357) | power(n1,const_2)|divide(#0,n0)|floor(#1)|subtract(#1,#2)|multiply(n0,#3)| | general |
b expenditure rent? | given 30 % ( income ) = 300 ⇒ ⇒ income = 1000 after having spent rs . 300 on petrol , he left with rs . 700 . his spending on house rent = 12 % ( 700 ) = rs . 84 answer : c | a ) 62 , b ) 140 , c ) 84 , d ) 60 , e ) 123 | c | multiply(subtract(divide(300, divide(30, const_100)), 300), divide(12, const_100)) | divide(n1,const_100)|divide(n0,const_100)|divide(n2,#1)|subtract(#2,n2)|multiply(#0,#3) | gain |
a h platform? | "let the length of the train be x meters . when a train crosses an electric pole , the distance covered is its own length x . speed = 36 km / h = 36000 m / 3600 s = 10 m / s x = 15 * 10 = 150 m . the time taken to pass the platform = ( 150 + 370 ) / 10 = 52 seconds the answer is d ." | a ) 46 , b ) 48 , c ) 50 , d ) 52 , e ) 54 | d | divide(add(multiply(multiply(36, const_0_2778), 15), 370), multiply(36, const_0_2778)) | multiply(n0,const_0_2778)|multiply(n1,#0)|add(n2,#1)|divide(#2,#0)| | physics |
a in? | "work done by the tank in 1 hour = ( 1 / 3 - 3 1 / 3 ) = 1 / 30 leak will empty the tank in 30 hrs . answer : c" | a ) 17 hr , b ) 19 hr , c ) 30 hr , d ) 14 hr , e ) 16 hr | c | inverse(subtract(divide(1, 3), inverse(divide(add(multiply(3, 3), 1), 3)))) | divide(n2,n0)|multiply(n0,n3)|add(n2,#1)|divide(#2,n3)|inverse(#3)|subtract(#0,#4)|inverse(#5)| | physics |
from75? | "soln : - 13 x = 45 - - > 87 / 77 * x = 45 - - > x = 45 * 77 / 87 = 677 / 17 = ~ 40 . answer : c ." | a ) 38 , b ) 39 , c ) 40 , d ) 41 , e ) 42 | c | multiply(divide(const_100, add(const_100, 13)), 45) | add(n4,const_100)|divide(const_100,#0)|multiply(n7,#1)| | gain |
in sevent single? | "let the universal set be x = { all students in the graduate physics course } , such that n ( x ) = 100 it will contain 2 mutually exclusive sets ; m ( all male students ) & f ( all female students ) , where n ( m ) = 70 , n ( f ) = 30 now 2 / 7 of all male students are married , implying their number = 20 . however the total number of married students = 30 , implying 10 married females . therefore 20 single females ; = 2 / 3 of total females . answer : d" | a ) 2 / 7 , b ) 1 / 3 , c ) 1 / 2 , d ) 2 / 3 , e ) 5 / 7 | d | divide(const_10, 30) | divide(const_10,n1)| | gain |
ann s meeting? | "say the rate of bob is 3 mph and he covers 6 miles then he needs 6 / 3 = 2 hours to do that . now , in this case the rate of ann would be 3 + 3 * 1 / 3 = 4 mph and the distance she covers would be 6 * 2 = 12 miles , so she needs 12 / 4 = 3 hours for that . the ratio r of ann ' s time to bob ' s time is 3 : 2 . answer : b ." | a ) 8 : 3 , b ) 3 : 2 , c ) 4 : 3 , d ) 2 : 3 , e ) 3 : 8 | b | divide(const_2, add(const_1, divide(const_1, const_3))) | divide(const_1,const_3)|add(#0,const_1)|divide(const_2,#1)| | general |
if,2? | "eq 1 : a - b - c + d = 18 eq 2 : a + b - c - d = 4 ( 1 ) subtract eq 1 from eq 2 a - b - c + d = 18 - a + b - c - d = 4 - - - - - - - - - - - - - - - - - - - - - - - - - 2 b + 2 d = 14 ( 2 ) simplify - b + d = 7 b - d = - 7 ( b - d ) ^ 2 = ( - 7 ) ^ 2 = 49 my answer : a" | a ) 49 . , b ) 8 . , c ) 12 . , d ) 16 . , e ) 64 . | a | power(subtract(4, divide(add(18, 4), 2)), 2) | add(n0,n1)|divide(#0,n2)|subtract(n1,#1)|power(#2,n2)| | general |
john a buy? | given that the total purchase of two items cost 800 . so the average purchase of one item will cost 800 / 2 = 400 . its given as total shirt cost 400 $ less . hence total shirt cost = 400 - 200 and total trouser cost = 400 + 200 5 shirts = 200 $ = = > one shirt = 40 $ one trouser = 40 + 20 = 60 $ total trousers = 600 / 60 = 10 . e | a ) 4 , b ) 5 , c ) 6 , d ) 7 , e ) 10 | e | divide(subtract(800, multiply(5, add(20, 20))), add(add(20, 20), 20)) | add(n3,n3)|add(n3,#0)|multiply(n2,#0)|subtract(n0,#2)|divide(#3,#1) | general |
the is teacher? | "total age of all students = 24 ã — 23 total age of all students + age of the teacher = 25 ã — 24 age of the teacher = 25 ã — 24 â ˆ ’ 24 ã — 23 = 24 ( 25 â ˆ ’ 23 ) = 24 ã — 2 = 48 answer is c ." | a ) 40 , b ) 41 , c ) 48 , d ) 52 , e ) 43 | c | subtract(multiply(add(24, 1), add(23, 1)), multiply(24, 23)) | add(n0,n2)|add(n1,n2)|multiply(n0,n1)|multiply(#0,#1)|subtract(#3,#2)| | general |
45 work? | "explanation : less men , means more days { indirect proportion } let the number of days be x then , 27 : 45 : : 18 : x [ please pay attention , we have written 27 : 45 rather than 45 : 27 , in indirect proportion , if you get it then chain rule is clear to you : ) ] { \ color { blue } x = \ frac { 45 \ times 18 } { 27 } } x = 30 so 30 days will be required to get work done by 27 men . answer : c" | a ) 24 , b ) 77 , c ) 30 , d ) 25 , e ) 13 | c | divide(multiply(18, 45), 27) | multiply(n0,n1)|divide(#0,n2)| | physics |
27 dig day? | "( 27 * 8 ) / 30 = ( x * 6 ) / 50 = > x = 60 60 – 27 = 33 answer : a" | a ) 33 , b ) 66 , c ) 88 , d ) 100 , e ) 281 | a | subtract(divide(multiply(divide(multiply(27, 8), 30), 50), 6), 27) | multiply(n0,n1)|divide(#0,n2)|multiply(n3,#1)|divide(#2,n4)|subtract(#3,n0)| | physics |
n. m? | "you have 6 digits : 2 , 3 , 4 , 5 , 6 , 7 each digit needs to be used to make two 3 digit numbers . this means that we will use each of the digits only once and in only one of the numbers . the numbers need to be as close to each other as possible . the numbers can not be equal so the greater number needs to be as small as possible and the smaller number needs to be as large as possible to be close to each other . the first digit ( hundreds digit ) of both numbers should be consecutive integers now let ' s think about the next digit ( the tens digit ) . to minimize the difference between the numbers , the tens digit of the greater number should be as small as possible and the tens digit of the smaller number should be as large as possible . so let ' s not use 2 and 7 in the hundreds places and reserve them for the tens places . now what are the options ? try and make a pair with ( 3 * * and 4 * * ) . make the 3 * * number as large as possible and make the 4 * * number as small as possible . 376 and 425 ( difference is 49 ) or try and make a pair with ( 5 * * and 6 * * ) . make the 5 * * number as large as possible and make the 6 * * number as small as possible . we get 574 and 623 ( difference is 49 ) b" | a ) 59 , b ) 49 , c ) 58 , d ) 113 , e ) 131 | b | subtract(subtract(const_100, multiply(subtract(7, 2), const_10)), const_1) | subtract(n5,n1)|multiply(#0,const_10)|subtract(const_100,#1)|subtract(#2,const_1)| | general |
546144 =? | "e if we calculate we will get 4749" | a ) 2449 , b ) 5449 , c ) 6749 , d ) 6449 , e ) 4749 | e | subtract(multiply(divide(54671, const_100), 14456), multiply(divide(const_1, const_3), multiply(divide(54671, const_100), 14456))) | divide(n0,const_100)|divide(const_1,const_3)|multiply(n1,#0)|multiply(#1,#2)|subtract(#2,#3)| | general |
15 men? | "let 1 man does 1 unit / hr of work 15 m in 21 days of 8 hrs will do ( 15 * 21 * 8 ) units 3 w = 2 m 1 w = ( 2 / 3 ) units / hr 21 w with 4 hrs a day will take ( 15 * 21 * 8 ) / ( 21 * 4 * ( 2 / 3 ) ) days = > 45 days answer : e" | a ) 30 , b ) 20 , c ) 15 , d ) 25 , e ) 45 | e | divide(multiply(multiply(15, 21), 8), multiply(multiply(21, 4), divide(2, 3))) | divide(n6,n5)|multiply(n0,n1)|multiply(n1,n3)|multiply(n2,#1)|multiply(#0,#2)|divide(#3,#4)| | physics |
from probability selected? | "the total number of ways to choose 6 children from 8 is 8 c 6 = 28 the number of ways to choose 3 boys and 3 girls is 4 c 3 * 4 c 3 = 4 * 4 = 16 p ( 3 boys and 3 girls ) = 16 / 28 = 4 / 7 the answer is d ." | a ) 1 / 2 , b ) 2 / 3 , c ) 3 / 5 , d ) 4 / 7 , e ) 5 / 9 | d | divide(multiply(choose(4, const_2), choose(4, const_2)), choose(add(4, 4), 6)) | add(n0,n0)|choose(n0,const_2)|choose(n0,const_2)|choose(#0,n2)|multiply(#1,#2)|divide(#4,#3)| | probability |
on dividing divisor. | "d = ( d - r ) / q = ( 21 - 1 ) / 10 = 20 / 10 = 2 b" | a ) 1 , b ) 2 , c ) 4 , d ) 6 , e ) 7 | b | floor(divide(21, 10)) | divide(n0,n1)|floor(#0)| | general |
if of rectangle? | side of square = √ 36 = 6 m . length = 6 m and breadth = 3 m area of rectangle = 6 * 3 = 18 sq . m answer a | ['a ) 18', 'b ) 20', 'c ) 27', 'd ) 32', 'e ) 25'] | a | multiply(sqrt(36), divide(sqrt(36), const_2)) | sqrt(n0)|divide(#0,const_2)|multiply(#1,#0) | geometry |
the be be? | "money paid in cash = rs . 1000 balance payment = ( 70000 - 1000 ) = rs . 69000 answer : c" | a ) 22678 , b ) 26699 , c ) 69000 , d ) 19000 , e ) 26711 | c | subtract(70000, 1000) | subtract(n0,n2)| | gain |
the store suit? | "0.8 * ( 1.2 * 200 ) = $ 192 the answer is a ." | a ) $ 192 , b ) $ 198 , c ) $ 200 , d ) $ 208 , e ) $ 216 | a | subtract(add(200, divide(multiply(200, 20), const_100)), divide(multiply(add(200, divide(multiply(200, 20), const_100)), 20), const_100)) | multiply(n0,n1)|divide(#0,const_100)|add(n0,#1)|multiply(n1,#2)|divide(#3,const_100)|subtract(#2,#4)| | general |
998 = =? | "998 x 998 = ( 998 ) 2 = ( 1000 - 2 ) 2 = ( 1000 ) 2 + ( 2 ) 2 - ( 2 x 1000 x 2 ) = 1000000 + 4 - 4000 = 1000004 - 4000 = 996004 . c )" | a ) 996000 , b ) 1000000 , c ) 996004 , d ) 4000 , e ) 996008 | c | multiply(divide(998, 998), const_100) | divide(n0,n1)|multiply(#0,const_100)| | general |
ste for journey? | "distance traveled in 2 hours = 2 * 55 = 110 m distance traveled in 3 hours = 3 * 80 = 240 m total distance covered = 240 + 110 = 350 m total time = 2 + 3 = 5 h hence avg speed = total distance covered / total time taken = 350 / 5 = 70 mph answer : c" | a ) 60 mph , b ) 56.67 mph , c ) 70 mph , d ) 64 mph , e ) 66.67 mph | c | add(divide(add(multiply(80, 3), multiply(55, 2)), add(3, 2)), subtract(divide(const_100, 3), const_0_33)) | add(n0,n2)|divide(const_100,n2)|multiply(n2,n3)|multiply(n0,n1)|add(#2,#3)|subtract(#1,const_0_33)|divide(#4,#0)|add(#6,#5)| | physics |
in3 score? | let dravid scored point = x then dhoni scored = x + 30 shewag scored = 2 * ( x + 30 ) = 2 x + 60 as given , x + x + 30 + 2 x + 60 = 150 points 4 x + 90 = 150 x = 150 - 90 / 4 = 15 so dhoni scored = x + 30 i . e ) 15 + 30 = 45 answer : e | a ) 50 , b ) 52 , c ) 35 , d ) 40 , e ) 45 | e | divide(add(150, 30), add(add(const_2, const_1), const_1)) | add(n0,n2)|add(const_1,const_2)|add(#1,const_1)|divide(#0,#2) | general |
on sun him? | if s is an integer and we know that the average speed is 2.8 , s must be = 2 . that meanss + 1 = 3 . this implies that the ratio of time for s = 2 is 1 / 4 of the total time . the formula for distance / rate is d = rt . . . so the distance travelled when s = 2 is 2 t . the distance travelled for s + 1 = 3 is 3 * 4 t or 12 t . therefore , total distance covered while the sun was shining over him is 2 / 14 = 1 / 7 . answer : d | a ) 1 / 5 , b ) 1 / 6 , c ) 1 / 4 , d ) 1 / 7 , e ) 1 / 3 | d | divide(1, divide(add(add(2.8, add(2.8, 2.8)), add(2.8, 2.8)), const_2)) | add(n1,n1)|add(n1,#0)|add(#1,#0)|divide(#2,const_2)|divide(n0,#3) | general |
if years rate? | rate = 10 % time = 2 years s . i . = $ 1200 principal = 100 * 1200 / 10 * 2 = $ 6000 amount = 6000 ( 1 + 10 / 100 ) ^ 2 = $ 7260 c . i . = 7260 - 6000 = $ 1260 answer is a | a ) $ 1260 , b ) $ 1520 , c ) $ 1356 , d ) $ 1440 , e ) $ 1210 | a | subtract(add(divide(multiply(add(divide(multiply(1200, const_100), multiply(10, 2)), divide(multiply(divide(multiply(1200, const_100), multiply(10, 2)), 10), const_100)), 10), const_100), add(divide(multiply(1200, const_100), multiply(10, 2)), divide(multiply(divide(multiply(1200, const_100), multiply(10, 2)), 10), const_100))), divide(multiply(1200, const_100), multiply(10, 2))) | multiply(n2,const_100)|multiply(n0,n1)|divide(#0,#1)|multiply(n0,#2)|divide(#3,const_100)|add(#2,#4)|multiply(n0,#5)|divide(#6,const_100)|add(#5,#7)|subtract(#8,#2) | gain |
if is? | "let the number be x . then , 50 % of x - 35 % of x = 12 50 / 100 x - 35 / 100 x = 12 x = ( 12 * 100 ) / 15 = 80 . answer : d" | a ) 40 , b ) 50 , c ) 60 , d ) 80 , e ) 70 | d | divide(12, divide(subtract(50, 35), const_100)) | subtract(n2,n0)|divide(#0,const_100)|divide(n1,#1)| | gain |
find the 441 | "explanation : l . c . m of 441 = 3 x 3 x 7 x 7 3 , 7 number of different prime factors is 2 . answer : option b" | a ) 4 , b ) 2 , c ) 3 , d ) 5 , e ) 6 | b | add(const_2, const_2) | add(const_2,const_2)| | other |
rs part %? | let first parrt is x and second part is y then x + y = 50000 - - - - - - - - - - eq 1 total profit = profit on x + profit on y 8000 = ( x * 10 * 1 ) / 100 + ( y * 20 * 1 ) / 100 80000 = x + 2 y - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - eq 2 80000 = 50000 + y so y = 30000 then x = 50000 - 30000 = 20000 first part = 20000 answer : a | a ) 20000 , b ) 40000 , c ) 50000 , d ) 60000 , e ) 70000 | a | divide(subtract(divide(multiply(50000, 20), const_100), 8000), divide(10, const_100)) | divide(n1,const_100)|multiply(n0,n2)|divide(#1,const_100)|subtract(#2,n3)|divide(#3,#0) | gain |
the what numbers? | "22 = ( n + n + 2 + n + 4 + . . . + ( n + 18 ) ) / 10 22 = ( 10 n + ( 2 + 4 + . . . + 18 ) ) / 10 220 = 10 n + 2 ( 1 + 2 + . . . + 9 ) 220 = 10 n + 2 ( 9 ) ( 10 ) / 2 220 = 10 n + 90 220 - 90 = 10 n 130 = 10 n n = 13 so the first three numbers are 13 , 15 , 17 13 + 15 + 17 = 45 option b" | a ) 13 , b ) 45 , c ) 17 , d ) 220 , e ) 90 | b | add(divide(subtract(multiply(22, 10), add(add(add(add(const_1, add(add(add(add(add(const_1, const_2), const_1), const_1), const_1), const_1)), const_1), const_1), add(add(add(add(const_1, add(add(add(add(add(const_1, const_2), const_1), const_1), const_1), const_1)), const_1), const_1), const_1))), 10), add(add(add(add(const_1, const_2), const_1), const_1), const_1)) | add(const_1,const_2)|multiply(n0,n1)|add(#0,const_1)|add(#2,const_1)|add(#3,const_1)|add(#4,const_1)|add(#5,const_1)|add(#6,const_1)|add(#7,const_1)|add(#8,const_1)|add(#8,#9)|subtract(#1,#10)|divide(#11,n0)|add(#4,#12)| | general |
a divisor divisor? | "easy solution : n = dq 1 + 245 2 n = 2 dq 1 + 490 - ( 1 ) 2 n = dq 2 + 112 - ( 2 ) as ( 1 ) = ( 2 ) = 2 n d * ( q 2 - 2 q 1 ) = 378 d * some integer = 378 checking all options only ( a ) syncs with it . answer a" | a ) 378 , b ) 365 , c ) 380 , d ) 456 , e ) 460 | a | subtract(multiply(245, const_2), 112) | multiply(n0,const_2)|subtract(#0,n1)| | general |
4 capable capable? | given 50 % of 8 employees including 4 who are capable of doing task . 60 % of 5 employeees = 50 / 100 * 4 = 4 employees = = = > 4 employees who are capable of doing the task and no one employee who is not capable . percentage of employees assigned who are not capable answer : e | a ) 43.33 % , b ) 33.33 % , c ) 13.33 % , d ) 38.33 % , e ) none | e | multiply(divide(subtract(5, 4), 5), const_100) | subtract(n2,n0)|divide(#0,n2)|multiply(#1,const_100) | general |
85 every used? | "answer = a please refer diagram below 85 - 10 = 75" | a ) 75 , b ) 80 , c ) 85 , d ) 90 , e ) 95 | a | subtract(85, 10) | subtract(n0,n1)| | general |
the is decimal places | "let the side of the square be a cm . parameter of the rectangle = 2 ( 16 + 14 ) = 60 cm parameter of the square = 60 cm i . e . 4 a = 60 a = 15 diameter of the semicircle = 15 cm circimference of the semicircle = 1 / 2 ( ∏ ) ( 15 ) = 1 / 2 ( 22 / 7 ) ( 15 ) = 330 / 14 = 23.57 cm to two decimal places answer : option e" | a ) 34 , b ) 35 , c ) 56 , d ) 67 , e ) 23.57 | e | divide(circumface(divide(square_edge_by_perimeter(rectangle_perimeter(16, 14)), const_2)), const_2) | rectangle_perimeter(n0,n1)|square_edge_by_perimeter(#0)|divide(#1,const_2)|circumface(#2)|divide(#3,const_2)| | geometry |
a high be : | "let height of the building be x meters 40.25 : 28.75 : : 17.5 < = > 40.25 x x = 28.75 x 17.5 x = 28.75 x 17.5 / 40.25 x = 12.5 answer : option b" | a ) 10 m , b ) 12.5 m , c ) 17.5 m , d ) 21.25 m , e ) none | b | multiply(28.75, divide(17.5, 40.25)) | divide(n0,n1)|multiply(n2,#0)| | physics |
x hours it? | x 1 hour ' s work = 1 / 4 ; y + z ' s hour ' s work = 1 / 3 x + y + z ' s 1 hour ' s work = 1 / 4 + 1 / 3 = 7 / 12 y ' s 1 hour ' s work = ( 7 / 12 - 1 / 2 ) = 1 / 12 . y alone will take 12 hours to do the work . c | a ) 5 hours , b ) 10 hours , c ) 12 hours , d ) 24 hours , e ) 15 hours | c | inverse(subtract(divide(const_1, 3), subtract(divide(const_1, 2), divide(const_1, 4)))) | divide(const_1,n1)|divide(const_1,n2)|divide(const_1,n0)|subtract(#1,#2)|subtract(#0,#3)|inverse(#4) | physics |
how a solution? | "6 % of a 50 liter solution is 3 l which is 10 % of the solution at the end . the solution at the end must be 30 l . we need to evaporate 20 liters . the answer is a ." | a ) 20 , b ) 22 , c ) 24 , d ) 26 , e ) 28 | a | subtract(50, multiply(divide(50, const_100), 10)) | divide(n0,const_100)|multiply(n2,#0)|subtract(n0,#1)| | gain |
in all picnic? | "total men in company 40 % means total women in company 60 % ( assume total people in company 100 % ) no of men employees attended picnic = 40 x ( 20 / 100 ) = 8 no of women employees attended picnic = 60 x ( 40 / 100 ) = 24 total percentage of employees attended the picnic = 8 + 24 = 32 % answer : a" | a ) 32 % , b ) 34 % , c ) 35 % , d ) 36 % , e ) 37 % | a | multiply(add(multiply(divide(40, const_100), divide(20, const_100)), multiply(divide(subtract(const_100, 40), const_100), divide(40, const_100))), const_100) | divide(n2,const_100)|divide(n0,const_100)|divide(n1,const_100)|subtract(const_100,n2)|divide(#3,const_100)|multiply(#0,#1)|multiply(#4,#2)|add(#5,#6)|multiply(#7,const_100)| | gain |
7 =? | "exponential and log functions are inverse of each other . hence aloga ( x ) = x , for all x real and positive . and therefore 7 log 7 ( 8 ) = 8 correct answer e" | a ) 1 , b ) 2 , c ) 3 , d ) 4 , e ) 8 | e | divide(log(multiply(7, 7)), log(const_10)) | log(const_10)|multiply(n0,n0)|log(#1)|divide(#2,#0)| | other |
excluding the hour? | "due to stoppages , it covers 14 km less . time taken to cover 14 km = ( 14 / 84 x 60 ) min = 10 min answer : b" | a ) 12 min , b ) 10 min , c ) 15 min , d ) 14 min , e ) 13 min | b | multiply(const_60, divide(subtract(84, 70), 84)) | subtract(n0,n1)|divide(#0,n0)|multiply(#1,const_60)| | physics |
40 160? | 40 / 160 × 100 = 25 % answer : e | a ) 35 % , b ) 40 % , c ) 45 % , d ) 50 % , e ) 25 % | e | multiply(divide(40, 160), const_100) | divide(n0,n1)|multiply(#0,const_100)| | gain |
in cars cars? | "total cost = ( 1.75 * 12 ) + ( 0.65 * 12 * 57 ) = 465.60 hence answer will be ( e )" | a ) 320.50 $ , b ) 380.50 $ , c ) 425.50 $ , d ) 450.50 $ , e ) 465.60 $ | e | multiply(multiply(0.65, 57), 12) | multiply(n1,n3)|multiply(n2,#0)| | general |
the,198 is | answer : c ) 5940 | a ) 5942 , b ) 2887 , c ) 5940 , d ) 2888 , e ) 28881 | c | multiply(multiply(multiply(multiply(const_2, const_2), multiply(multiply(const_3, const_3), const_3)), divide(divide(divide(135, const_3), const_3), const_3)), divide(22, const_2)) | divide(n0,const_2)|divide(n3,const_3)|multiply(const_2,const_2)|multiply(const_3,const_3)|divide(#1,const_3)|multiply(#3,const_3)|divide(#4,const_3)|multiply(#2,#5)|multiply(#6,#7)|multiply(#0,#8) | physics |
the and is? | "280 * ( 88 / 100 ) * ( 92 / 100 ) = 226 answer : b" | a ) 288 , b ) 226 , c ) 250 , d ) 230 , e ) 262 | b | subtract(subtract(280, divide(multiply(280, 12), const_100)), divide(multiply(subtract(280, divide(multiply(280, 12), const_100)), 8), const_100)) | multiply(n0,n1)|divide(#0,const_100)|subtract(n0,#1)|multiply(n2,#2)|divide(#3,const_100)|subtract(#2,#4)| | gain |
a at speed. | relative speed = ( 1120 / 12 ) m / s = ( 1120 / 12 ) * ( 18 / 5 ) = 336 kmph speed of goods train = 336 - 40 = 296 kmph answer is b | a ) 295 , b ) 296 , c ) 297 , d ) 298 , e ) 299 | b | subtract(divide(divide(1120, 12), const_0_2778), 40) | divide(n2,n1)|divide(#0,const_0_2778)|subtract(#1,n0) | physics |
a sum list? | "this is how i used to calculate which i think works pretty well : if you let the average of the 20 other numbers equal a , can you write this equation for sum of the list ( s ) n + 20 a = s the question tells us that n = 4 a plug this back into the first equation and you get that the sum is 24 a 4 a + 20 a = 24 a therefore fraction t of n to the total would be 4 a / 24 a or 1 / 6 answer b" | a ) 1 / 20 , b ) 1 / 6 , c ) 1 / 5 , d ) 4 / 21 , e ) 5 / 21 | b | divide(multiply(const_1, const_1), subtract(subtract(multiply(divide(add(divide(20, 4), 21), 4), const_2), 4), const_3)) | divide(n2,n1)|multiply(const_1,const_1)|add(n0,#0)|divide(#2,n1)|multiply(#3,const_2)|subtract(#4,n1)|subtract(#5,const_3)|divide(#1,#6)| | general |
107 = =? | "= ( 107 ) ^ 2 + ( 93 ) ^ 2 = ( 100 + 7 ) ^ 2 + ( 100 - 7 ) ^ 2 = 2 x [ ( 100 ) ^ 2 + 7 ^ 2 ] = 2 [ 10000 + 49 ] = 2 x 10049 = 20098 answer is c" | a ) 19578 , b ) 19418 , c ) 20098 , d ) 21908 , e ) none of them | c | multiply(107, power(107, 93)) | power(n1,n2)|multiply(n0,#0)| | general |
a had,480 | "1 percent for 3 years = 66 1 percent for 1 year = 22 = > 100 percent = 2200 answer : c" | a ) 2000 , b ) 2100 , c ) 2200 , d ) 2300 , e ) 2400 | c | multiply(divide(66, 3), const_100) | divide(n2,n0)|multiply(#0,const_100)| | gain |
the 973 is | "( place value of 6 ) - ( face value of 6 ) = ( 6000 - 6 ) = 5994 answer : option c" | a ) 973 , b ) 6973 , c ) 5994 , d ) 6084 , e ) none of these | c | subtract(multiply(const_10, 6), 6) | multiply(n0,const_10)|subtract(#0,n0)| | general |
60. number? | ": ( 60 / 100 ) * x + 180 = x 2 x = 900 x = 450 answer : e" | a ) 300 , b ) 277 , c ) 266 , d ) 99 , e ) 450 | e | divide(180, divide(180, const_100)) | divide(n1,const_100)|divide(n1,#0)| | gain |
and2 price? | ordering the data from least to greatest , we get : $ 1.61 , $ 1.75 , $ 1.79 , $ 1.82 , $ 1.96 , $ 2.09 , $ 2.11 the median gasoline price is $ 1.82 . ( there were 3 states with higher gasoline prices and 3 with lower prices . ) b | a ) $ 1 , b ) $ 1.82 , c ) $ 1.92 , d ) $ 2.13 , e ) $ 2.15 | b | min(divide(add(add(add(add(add(add(1.75, 1.61), 1.79), 2.11), 1.96), 2.09), 1.82), 7), 1.82) | add(n1,n2)|add(n3,#0)|add(n4,#1)|add(n5,#2)|add(n6,#3)|add(n7,#4)|divide(#5,n0)|min(n7,#6) | general |
if x x = | "5 ^ x = 1 / 625 5 ^ x = 1 / 5 ^ 4 5 ^ x = 5 ^ - 4 x = - 4 b" | a ) – 2 , b ) - 4 , c ) 0 , d ) - 1 , e ) 2 | b | divide(log(divide(1, 625)), log(5)) | divide(n2,n0)|log(n1)|log(#0)|divide(#2,#1)| | general |
find number itself? | "2 years answer : a" | a ) 2 , b ) 3 , c ) 4 , d ) 5 , e ) 6 | a | floor(add(divide(log(const_2), log(add(const_1, divide(45, const_100)))), const_1)) | divide(n0,const_100)|log(const_2)|add(#0,const_1)|log(#2)|divide(#1,#3)|add(#4,const_1)|floor(#5)| | general |
the upstream? | still water = 12 km / hr downstream = 45 / 3 = 15 km / hr upstream = > > still water = ( u + v / 2 ) = > > 12 = u + 15 / 2 = 9 km / hr so time taken in upstream = 45 / 9 = 5 hrs answer : d | a ) 8 hours , b ) 6 hours , c ) 4 hours , d ) 5 hours , e ) 6 hours | d | divide(45, subtract(12, subtract(divide(45, 3), 12))) | divide(n1,n2)|subtract(#0,n0)|subtract(n0,#1)|divide(n1,#2) | physics |
the kg a? | "a + b + c = 3 * 55 = 165 a + b + c + d = 4 * 60 = 240 - - - - ( i ) so , d = 75 & e = 75 + 3 = 78 b + c + d + e = 58 * 4 = 232 - - - ( ii ) from eq . ( i ) & ( ii ) a - e = 240 – 232 = 8 a = e + 8 = 78 + 8 = 86 answer : d" | a ) 56 , b ) 65 , c ) 75 , d ) 86 , e ) 90 | d | subtract(multiply(60, const_4), subtract(multiply(58, const_4), add(3, subtract(multiply(60, const_4), multiply(55, 3))))) | multiply(n1,const_4)|multiply(n3,const_4)|multiply(n0,n2)|subtract(#0,#2)|add(n2,#3)|subtract(#1,#4)|subtract(#0,#5)| | general |
a in is? | "s = 120 / 12 * 18 / 5 = 36 kmph answer : c" | a ) 16 kmph , b ) 88 kmph , c ) 36 kmph , d ) 18 kmph , e ) 19 kmph | c | multiply(const_3_6, divide(120, 12)) | divide(n0,n1)|multiply(#0,const_3_6)| | physics |
a find b. | "from the info that the maximum sides of the cubes is 4 , we know that the gcf of 12 ( = 2 ^ 2 * 3 ) andbis 4 ( = 2 ^ 2 ) , sob = 2 ^ x , where x > = 2 . from the second premise , we know that the lcm of 12 ( 2 ^ 2 * 3 ) andbis 32 ( 2 ^ 5 ) , sob = 2 ^ 5 combining 2 premises shows the answer is d ( 32 ) ." | a ) 8 , b ) 16 , c ) 24 , d ) 32 , e ) 48 | d | sqrt(subtract(power(divide(32, 4), const_2), power(12, const_2))) | divide(n2,n1)|power(n0,const_2)|power(#0,const_2)|subtract(#2,#1)|sqrt(#3)| | geometry |
if in together? | explanation : hint : a ' s one day work = 1 / 3 b ' s one day work = 1 / 5 c ' s one day work = 1 / 10 ( a + b + c ) ' s one day work = 1 / 3 + 1 / 5 + 1 / 10 = 1 / 1.5 hence , a , b & c together will take 1.5 days to complete the work . answer is a | a ) 1.5 days , b ) 4.5 days , c ) 7 days , d ) 9.8 days , e ) 9 days | a | add(subtract(3, const_2), divide(5, 10)) | divide(n1,n2)|subtract(n0,const_2)|add(#0,#1) | physics |
a b? | "in 105 liters of drink a , there are 60 liters of milk and 45 liters of juice . with 60 liters of milk , we need a total of 80 liters of juice to make drink b . we need to add 35 liters of juice . the answer is d ." | a ) 14 , b ) 21 , c ) 28 , d ) 35 , e ) 42 | d | subtract(divide(multiply(multiply(divide(4, add(4, 3)), 105), 4), 3), multiply(divide(3, add(4, 3)), 105)) | add(n0,n1)|divide(n0,#0)|divide(n1,#0)|multiply(n4,#1)|multiply(n4,#2)|multiply(n0,#3)|divide(#5,n1)|subtract(#6,#4)| | general |
at years years. | "let principal = p , then , s . i . = p and time = 8 years rate = [ ( 100 x p ) / ( p x 9 ) ] % = 11.1 % per annum . answer : d" | a ) 12.5 % , b ) 13.5 % , c ) 11.5 % , d ) 11.1 % , e ) 21.5 % | d | divide(const_100, 9) | divide(const_100,n0)| | gain |
evaluate 2 = | "according to order of operations , 12 ÷ 3 × 2 ( division and multiplication ) is done first from left to right 12 ÷ 3 × 2 = 4 × 2 = 8 hence 30 - 12 ÷ 3 × 2 = 30 - 8 = 22 correct answer is b ) 22" | a ) 11 , b ) 22 , c ) 33 , d ) 44 , e ) 55 | b | subtract(30, multiply(multiply(12, const_2.0), 2)) | multiply(n1,const_2.0)|multiply(n3,#0)|subtract(n0,#1)| | general |
Subsets and Splits