Problem
stringlengths 3
32
| Rationale
stringlengths 1
2.74k
| options
stringlengths 37
137
| correct
stringclasses 5
values | annotated_formula
stringlengths 6
848
| linear_formula
stringlengths 7
357
| category
stringclasses 6
values |
---|---|---|---|---|---|---|
8 bill unit? | "if the last three digits of a whole number are divisible by 8 , then the entire number is divisible by 8 the last 3 digit 415 not divisible by a hence , we need to add 1 to this number for it to be divisible by 8 correct option : a" | a ) $ 214.16 , b ) $ 214.17 , c ) $ 214.18 , d ) $ 214.19 , e ) $ 214.20 | a | add(214.15, divide(const_3, const_100)) | divide(const_3,const_100)|add(n1,#0)| | general |
in liter bigger? | "lots of calculations . 1.50 * 4 + 3 * . 35 * 32 + 2 * ( 7 / 4 ) * 32 * . 35 answer = $ 78.80 the correct option is a" | a ) $ 78.80 , b ) $ 79.80 , c ) $ 78.90 , d ) $ 79.90 , e ) $ 77.80 | a | multiply(multiply(0.35, 2), 3) | multiply(n1,n3)|multiply(n2,#0)| | general |
a the price? | "let the list price be 2 x for min sale price , the first discount given should be 50 % , 2 x becomes x here now , during summer sale additional 20 % off is given ie sale price becomes 0.8 x it is given lise price is $ 80 = > 2 x = 80 = > x = 40 and 0.8 x = 32 so lowest sale price is 32 , which y is 40 % of 80 hence , d is the answer" | a ) 20 , b ) 25 , c ) 30 , d ) 40 , e ) 50 | d | divide(80, const_2) | divide(n3,const_2)| | general |
each year period. | "trees increase by 1 / 4 the number of trees in preceding year . hence , correct answer must be divisible by 4 . based on divisibility rules , if last 2 digits are divisible by 4 then the number is divisible by 4 . thus , we can eliminate a , b , d , e the answer to be c again , trees increase by 1 / 4 the number of trees in preceding year . hence , the number of trees increase by 5 / 4 times the number of trees the preceding year . if x = initial number of trees = 5120 year 1 = 5 / 4 x year 2 = ( 5 / 4 ) ( 5 / 4 ) x year 3 = ( 5 / 4 ) ( 5 / 4 ) ( 5 / 4 ) x year 4 = ( 5 / 4 ) ( 5 / 4 ) ( 5 / 4 ) ( 5 / 4 ) x only for answer d : ( 5 / 4 ) ( 5 / 4 ) ( 5 / 4 ) ( 5 / 4 ) 5120 = 12500 hence , correct answer = c" | a ) 5113 , b ) 5117 , c ) 5120 , d ) 8119 , e ) 10115 | c | divide(12500, power(add(divide(1, 4), 1), 4)) | divide(n1,n0)|add(n1,#0)|power(#1,n0)|divide(n3,#2)| | general |
a000 a. | explanation : ( 3 * 8 + 2 * 4 ) : ( 4 * 8 + 5 * 4 ) 8 : 13 8 / 21 * 714 = 272 answer : b | a ) 240 , b ) 272 , c ) 379 , d ) 277 , e ) 122 | b | multiply(divide(714, add(add(multiply(3000, 8), multiply(subtract(3000, 1000), subtract(const_12, 8))), add(multiply(4000, 8), multiply(add(4000, 1000), subtract(const_12, 8))))), add(multiply(3000, 8), multiply(subtract(3000, 1000), subtract(const_12, 8)))) | add(n1,n3)|multiply(n0,n2)|multiply(n1,n2)|subtract(n0,n3)|subtract(const_12,n2)|multiply(#3,#4)|multiply(#0,#4)|add(#1,#5)|add(#2,#6)|add(#7,#8)|divide(n5,#9)|multiply(#7,#10) | gain |
a the platform? | "d = 60 * 5 / 18 = 35 = 583 – 120 = 463 answer : c" | a ) 338 , b ) 277 , c ) 463 , d ) 456 , e ) 271 | c | subtract(multiply(35, multiply(60, const_0_2778)), 120) | multiply(n1,const_0_2778)|multiply(n2,#0)|subtract(#1,n0)| | physics |
jar marbles? | "an easy way to solve this question is by number plugging . assume there are 100 marbles in jar b then in jar a there will be 106 marbles . now , for both jars to have equal marbles we should move 3 marbles from a to b , which is 3 / 106 = ~ 2.8 % of a . answer : a ." | a ) 2.8 % , b ) 3.0 % , c ) 3.2 % , d ) 3.4 % , e ) 3.6 % | a | multiply(divide(divide(6, const_2), add(6, const_100)), const_100) | add(n0,const_100)|divide(n0,const_2)|divide(#1,#0)|multiply(#2,const_100)| | gain |
for, inclusive? | "given that n * denotes the product of all the integers from 1 to n , inclusive so , 6 * + 2 = 6 ! + 2 and 6 * + 6 = 6 ! + 6 . now , notice that we can factor out 2 our of 6 ! + 2 so it can not be a prime number , we can factor out 3 our of 6 ! + 3 so it can not be a prime number , we can factor out 4 our of 6 ! + 4 so it can not be a prime number , . . . the same way for all numbers between 6 * + 2 = 6 ! + 2 and 6 * + 6 = 6 ! + 6 , inclusive . which means that there are no primes t in this range . answer : a ." | a ) none , b ) one , c ) two , d ) three , e ) four | a | divide(add(factorial(6), 6), add(factorial(6), 6)) | factorial(n2)|add(n2,#0)|divide(#1,#1)| | general |
sh compounded bonds? | "so , we know that shawn received 20 % of the amount he invested in a year . we also know that in one year shawn received $ 200 , thus 0.2 x = $ 200 - - > x = $ 1,000 . since , he invested equal sums in his 2 bonds , then his total savings before investing was 2 * $ 1,000 = $ 2,000 . answer : c" | a ) 3000 , b ) 5000 , c ) 2000 , d ) 4000 , e ) 6000 | c | multiply(divide(multiply(divide(400, 2), divide(400, 2)), subtract(605, 400)), 2) | divide(n1,n0)|subtract(n3,n1)|multiply(#0,#0)|divide(#2,#1)|multiply(n0,#3)| | gain |
a in hours? | "the number of gallons in the tank is ( 1 / 4 ) 24 = 6 gallons the amount of sodium chloride is 0.4 ( 6 ) = 2.4 gallons at the start , the amount of water is 0.6 ( 6 ) = 3.6 gallons after 4 hours , the amount of water is 3.6 - 0.5 ( 4 ) = 1.6 gallons the concentration of water is 1.6 / ( 2.4 + 1.6 ) = 40 % the answer is a ." | a ) 40 % , b ) 44 % , c ) 48 % , d ) 52 % , e ) 56 % | a | multiply(divide(subtract(divide(multiply(4, subtract(const_100, 40)), const_100), multiply(0.5, 4)), subtract(4, multiply(0.5, 4))), const_100) | multiply(n2,n3)|subtract(const_100,n0)|multiply(n3,#1)|subtract(n3,#0)|divide(#2,const_100)|subtract(#4,#0)|divide(#5,#3)|multiply(#6,const_100)| | gain |
what110? | "answer : option b explanation : 5 : 1 = x : 10 x = 50 answer : option b" | a ) 74 , b ) 50 , c ) 94 , d ) 59 , e ) 48 | b | multiply(10, 5) | multiply(n0,n2)| | other |
a on train? | "s = 125 / 5 * 18 / 5 = 90 kmph answer : e" | a ) 229 , b ) 108 , c ) 278 , d ) 126 , e ) 90 | e | multiply(divide(125, 5), const_3_6) | divide(n0,n1)|multiply(#0,const_3_6)| | physics |
excluding is hour? | "due to stoppages , it covers 10 km less . time taken to cover 10 km = 10 / 80 * 60 = 8 min . answer : c" | a ) 11 min , b ) 10 min , c ) 8 min , d ) 6 min , e ) 5 min | c | multiply(const_60, divide(subtract(80, 70), 80)) | subtract(n0,n1)|divide(#0,n0)|multiply(#1,const_60)| | physics |
a in together? | "1 / 7 + 1 / 14 + 1 / 28 = 7 / 28 = 1 / 4 all three can finish the work in 4 days answer : a" | a ) 4 , b ) 9 , c ) 2 , d ) 11 , e ) none | a | inverse(add(inverse(28), add(inverse(7), inverse(14)))) | inverse(n0)|inverse(n1)|inverse(n2)|add(#0,#1)|add(#3,#2)|inverse(#4)| | physics |
in working shower? | total = 200 not working = 100 having family = 75 like to sing in shower = 125 working = 200 - 100 = 100 not having family = 200 - 75 = 125 like to sing in shower = 125 largest possible number is the lowest possible among the above thus 100 c | a ) 125 , b ) 150 , c ) 100 , d ) 130 , e ) 140 | c | subtract(add(add(100, 75), 125), 200) | add(n1,n2)|add(n3,#0)|subtract(#1,n0) | general |
nit last? | "explanation : number students behind the nitin in rank = ( 49 - 18 ) = 31 nitin is 32 nd from the last answer : c ) 32" | a ) 33 , b ) 38 , c ) 32 , d ) 28 , e ) 19 | c | subtract(49, 18) | subtract(n1,n0)| | other |
lamp every. ) | 6 minutes is 360 seconds . lamp a and lamp b will flash together every 24 seconds . 360 / 24 = 15 . in the time period , lamp a and lamp b will flash together 15 times . lamp a and lamp c will flash together every 30 seconds . 360 / 30 = 12 . in the time period , lamp a and lamp c will flash together 12 times . lamp b and lamp c will flash together every 40 seconds . 360 / 40 = 9 . in the time period , lamp b and lamp c will flash together 9 times . all three lights will flash together every 2 * 2 * 2 * 3 * 5 = 120 seconds . 360 / 120 = 3 . we have counted these triple flashes three times , so we need to subtract three times the number of times that all three lights flash together . the number of times that exactly two lights flash together is 15 + 12 + 9 - 9 = 27 times . the answer is d . | a ) 24 , b ) 25 , c ) 26 , d ) 27 , e ) 28 | d | subtract(add(add(divide(multiply(6, const_60), lcm(6, 8)), divide(multiply(6, const_60), lcm(6, 10))), divide(multiply(6, const_60), lcm(8, 10))), multiply(divide(multiply(6, const_60), lcm(lcm(6, 8), 10)), 3)) | lcm(n0,n1)|lcm(n0,n2)|lcm(n1,n2)|multiply(n0,const_60)|divide(#3,#0)|divide(#3,#1)|divide(#3,#2)|lcm(n2,#0)|add(#4,#5)|divide(#3,#7)|add(#8,#6)|multiply(n3,#9)|subtract(#10,#11) | physics |
when divided y? | "ans b 616 . . . remainders = . 32 = 32 / 100 = 8 / 25 = 16 / 50 and so on . . so two digit remainders are 16 + 24 + 32 + . . . . + 96 . . q = 8 ( 2 + 3 + 4 . . . . + 12 ) = 616" | a ) 560 , b ) 616 , c ) 672 , d ) 728 , e ) 784 | b | divide(59.32, subtract(2, floor(2))) | floor(n1)|subtract(n1,#0)|divide(n0,#1)| | general |
a rate is? | speed = 10 * 5 / 18 = 50 / 18 m / sec distance covered in 10 minutes = 50 / 18 * 12 * 60 = 2000 m answer is a | a ) 2000 , b ) 1492 , c ) 1667 , d ) 1254 , e ) 1112 | a | multiply(divide(multiply(10, const_1000), const_60), 12) | multiply(n0,const_1000)|divide(#0,const_60)|multiply(n1,#1) | gain |
there. attends? | 30 % of 1000 gives 300 . so 300 attends chess and 10 % of 300 gives 30 . so 30 enrolled for swimming answer : d | a ) 1 , b ) 10 , c ) 100 , d ) 30 , e ) 20 | d | divide(multiply(divide(multiply(30, 1000), const_100), 10), const_100) | multiply(n0,n1)|divide(#0,const_100)|multiply(n2,#1)|divide(#2,const_100) | gain |
a % price. | "cost price = 800 profit = 10 % = 10 % of 800 = 80 selling price = cp + profit sp = 880 a discount of 10 % to employees means 10 % off on 880 so 10 % of 880 = 88 ans b" | a ) 86 , b ) 88 , c ) 90 , d ) 92 , e ) 94 | b | divide(add(divide(multiply(800, 10), const_100), 800), multiply(divide(800, const_100), const_2)) | divide(n1,const_100)|multiply(n0,n1)|divide(#1,const_100)|multiply(#0,const_2)|add(n1,#2)|divide(#4,#3)| | gain |
ex politics politics? | "let ' s assume there are 100 reporters - - > 15 reporters cover local politics . now , as 25 % of the reporters who cover all politics do not cover local politics then the rest 75 % of the reporters who cover politics do cover local politics , so if there are x reporters who cover politics then 75 % of them equal to 15 ( # of reporters who cover local politics ) : 0.75 x = 15 - - > x = 20 , hence 20 reporters cover politics and the rest 100 - 20 = 80 reporters do not cover politics at all . answer : d ." | a ) 20 % , b ) 42 % , c ) 44 % , d ) 80 % , e ) 84 % | d | multiply(subtract(const_1, divide(15, subtract(const_100, 25))), const_100) | subtract(const_100,n1)|divide(n0,#0)|subtract(const_1,#1)|multiply(#2,const_100)| | gain |
two is? | "i ii iii 150 120 100 120 - - - - - - - - - - 150 100 - - - - - - - - - - - ? = > 125 % answer : a" | a ) 125 % , b ) 97 % , c ) 118 % , d ) 52 % , e ) 83 % | a | subtract(const_100, multiply(divide(add(50, const_100), add(20, const_100)), const_100)) | add(n0,const_100)|add(n1,const_100)|divide(#0,#1)|multiply(#2,const_100)|subtract(const_100,#3)| | gain |
of many total? | "total = 70 thrower = 43 rest = 70 - 43 = 27 left handed = 27 / 3 = 9 right handed = 18 if all thrower are right handed then total right handed is 43 + 18 = 61 so c . 61 is the right answer" | a ) 54 , b ) 59 , c ) 61 , d ) 71 , e ) 92 | c | add(multiply(subtract(const_1, divide(const_1, const_3)), subtract(70, 43)), 43) | divide(const_1,const_3)|subtract(n0,n1)|subtract(const_1,#0)|multiply(#2,#1)|add(n1,#3)| | general |
in tree hr? | "speed = 36 * 5 / 18 = 10 m / s time = 100 / 10 = 10 seconds the answer is c ." | a ) 6 , b ) 8 , c ) 10 , d ) 12 , e ) 14 | c | divide(100, multiply(const_0_2778, 36)) | multiply(n1,const_0_2778)|divide(n0,#0)| | physics |
a what article? | "s . p . of each of the article = 1000 / 2 = $ 500 let m . p = $ x 90 % of x = 500 x = 500 * 100 / 90 = $ 555.55 answer is a" | a ) $ 555.55 , b ) $ 500 , c ) $ 350 , d ) $ 400 , e ) $ 600 | a | divide(multiply(subtract(const_100, 10), divide(1000, const_2)), const_100) | divide(n0,const_2)|subtract(const_100,n1)|multiply(#0,#1)|divide(#2,const_100)| | gain |
what of5? | "the best way to solve these questions is to convert every term into fraction ( 15 / 100 ) * ( 2 / 3 ) * ( 5 / 10 ) = 150 / 3000 = 0.05 option a" | a ) 0.05 , b ) 0.9 , c ) 9 , d ) 90 , e ) none of the above | a | divide(multiply(15, add(add(multiply(multiply(add(const_3, const_2), const_2), multiply(multiply(const_3, const_4), const_100)), multiply(multiply(add(const_3, const_4), add(const_3, const_2)), multiply(add(const_3, const_2), const_2))), add(const_3, const_3))), const_100) | add(const_2,const_3)|add(const_3,const_4)|add(const_3,const_3)|multiply(const_3,const_4)|multiply(#0,const_2)|multiply(#3,const_100)|multiply(#1,#0)|multiply(#4,#5)|multiply(#6,#4)|add(#7,#8)|add(#9,#2)|multiply(n0,#10)|divide(#11,const_100)| | gain |
the one person? | let the train fare between the two places for one person be rs . t bus fare between the two places for two persons rs . 4 / 3 t = > 6 / 2 ( 4 / 3 t ) + 8 ( t ) = 1512 = > 12 t = 1512 = > t = 126 . answer : a | a ) rs . 126 , b ) rs . 132 , c ) rs . 120 , d ) rs . 114 , e ) none of these | a | divide(1512, add(multiply(divide(6, const_2), divide(4, const_3)), 8)) | divide(n1,const_2)|divide(n0,const_3)|multiply(#0,#1)|add(n2,#2)|divide(n3,#3) | general |
a top? | "in 2 minutes , he ascends = 1 metre â ˆ ´ 15 metres , he ascends in 30 minutes . â ˆ ´ he reaches the top in 31 st minute . answer a" | a ) 31 st , b ) 22 nd , c ) 23 rd , d ) 24 th , e ) none of these | a | subtract(multiply(2, 17), 1) | multiply(n0,n1)|subtract(#0,n2)| | physics |
a bullet train? | e 270 m | a ) 220 m , b ) 250 m , c ) 280 m , d ) 210 m , e ) 270 m | e | subtract(multiply(multiply(72, const_0_2778), 26), 250) | multiply(n0,const_0_2778)|multiply(n2,#0)|subtract(#1,n1) | physics |
a to deal? | "explanation : let the cp of the article = rs . 100 . then labeled price = rs . 140 . sp = rs . 140 - 10 % of 140 = rs . 140 - 14 = rs . 126 . gain = rs . 126 â € “ rs . 100 = rs . 26 therefore , gain / profit percent = 26 % . answer : option a" | a ) 26 % , b ) 20 % , c ) 17 % , d ) 18 % , e ) none of these | a | subtract(subtract(add(const_100, 40), multiply(add(const_100, 40), divide(10, const_100))), const_100) | add(n0,const_100)|divide(n1,const_100)|multiply(#0,#1)|subtract(#0,#2)|subtract(#3,const_100)| | gain |
what tens5? | "36 ^ 5 = 6 ^ 7 ( 6 ^ 2 ) = 6 * 6 = 36 ( 6 ^ 3 ) = 36 * 6 = . 16 ( 6 ^ 4 ) = . 16 * 6 = . . 96 ( 6 ^ 5 ) = . . 96 * 6 = . . 76 ( 6 ^ 6 ) = . . 76 * 6 = . . . 56 ( 6 ^ 7 ) = . . . . 56 * 6 = . . . . 36 if you see there is a pattern here in tens digits 3 , 1,9 , 7,5 , 3,1 and so on . . . continue the pattern up to 6 ^ 7 ( dont actually calculate full values ) and answer is d : 3" | a ) 1 , b ) 7 , c ) 5 , d ) 3 , e ) 9 | d | floor(divide(reminder(power(36, reminder(5, add(const_4, const_1))), const_100), const_10)) | add(const_1,const_4)|reminder(n1,#0)|power(n0,#1)|reminder(#2,const_100)|divide(#3,const_10)|floor(#4)| | general |
evaluate11 =? | "according to order of operations , inner brackets first . hence | 6 - 8 ( 3 - 12 ) | - | 5 - 11 | = | 6 - 8 * ( - 9 ) | - | 5 - 11 | according to order of operations , multiplication within absolute value signs ( which may be considered as brackets when it comes to order of operations ) next . hence = | 6 + 72 | - | 5 - 11 | = | 78 | - | - 6 | = 78 - 6 = 72 correct answer c ) 72" | a ) 40 , b ) 50 , c ) 72 , d ) 70 , e ) 80 | c | subtract(subtract(6, multiply(8, subtract(3, 12))), negate(subtract(5, 11))) | subtract(n2,n3)|subtract(n4,n5)|multiply(n1,#0)|negate(#1)|subtract(n0,#2)|subtract(#4,#3)| | general |
find month month? | "i = ( 500 * 9 * 6 ) / 100 = 270 answer : b" | a ) 287 , b ) 270 , c ) 276 , d ) 129 , e ) 211 | b | multiply(500, divide(9, const_100)) | divide(n1,const_100)|multiply(n0,#0)| | gain |
evaluate -2 = | "according to order of operations , 12 ÷ 4 × 2 ( division and multiplication ) is done first from left to right 12 ÷ 4 × 2 = 3 × 2 = 6 hence 60 - 12 ÷ 4 × 2 = 60 - 6 = 54 correct answer is b ) 54" | a ) a ) 45 , b ) b ) 54 , c ) c ) 63 , d ) d ) 72 , e ) e ) 81 | b | subtract(60, multiply(multiply(12, 4), 2)) | multiply(n1,n2)|multiply(n3,#0)|subtract(n0,#1)| | general |
on, trip? | the time to go 42 miles was 22 / 11 + 20 / 10 = 2 + 2 = 4 hours . the average speed for the return trip was 42 miles / 5 hours = 8.4 mph . the answer is e . | a ) 7.6 , b ) 7.8 , c ) 8 , d ) 8.2 , e ) 8.4 | e | divide(add(22, 20), subtract(9, add(divide(22, 11), divide(20, 10)))) | add(n1,n3)|divide(n1,n0)|divide(n3,n2)|add(#1,#2)|subtract(n4,#3)|divide(#0,#4) | physics |
on by page? | "explanation : number of pages increased = 100 now , the number of pages of book = 240 number of pages of the books before increase = 240 – 100 = 140 % increase in the number of pages in the book = 100 / 140 x 100 % = 71.4 % d" | a ) 20 % , b ) 305 , c ) 50 % , d ) 71.4 % , e ) 60 % | d | subtract(multiply(divide(240, subtract(240, 100)), const_100), const_100) | subtract(n1,n0)|divide(n1,#0)|multiply(#1,const_100)|subtract(#2,const_100)| | general |
find form? | answer 3 / 10 + 5 / 100 + 8 / 1000 = 0.3 + 0.05 + 0.008 = 0.358 correct option : b | a ) 0.853 , b ) 0.358 , c ) 3.58 , d ) 8.35 , e ) none | b | add(divide(8, 1000), add(divide(3, 10), divide(5, 100))) | divide(n0,n1)|divide(n2,n3)|divide(n4,n5)|add(#0,#1)|add(#3,#2) | general |
3 possible ) is | if a = 1 , r = 2 then a = 1 , b = 2 , c = 4 then abs ( a + b - c ) = 1 if a = 1 , r = 3 then a = 1 , a = 3 , a = 9 then abs ( 1 + 3 - 9 ) = 5 if a = 2 , r = 2 , then a = 2 , b = 4 , c = 8 then abs ( 2 + 4 - 8 ) = 2 if a = 1 , r = - 2 then a = 1 , b = - 2 , c = 4 the abs ( 1 - 2 - 4 ) = 5 if a = 1 , r = - 3 then a = 1 , b = - 3 , c = 9 then abs ( 1 - 3 - 9 ) = 11 if a = 2 , r = - 2 then a = 2 , b = - 4 , c = - 8 then abs ( 2 - 4 - 8 ) = 10 so total 5 abs ( ) values answer : d | a ) 6 , b ) 4 , c ) 3 , d ) 5 , e ) 2 | d | add(3, const_2) | add(n0,const_2) | general |
sum numbers is? | "sum of 1 st n odd no . s = 1 + 3 + 5 + 7 + . . . = n ^ 2 so , sum of 1 st 19 odd numbers = 19 ^ 2 = 361 answer : c" | a ) 341 , b ) 351 , c ) 361 , d ) 371 , e ) 381 | c | multiply(multiply(19, const_2), divide(19, const_2)) | divide(n0,const_2)|multiply(n0,const_2)|multiply(#0,#1)| | general |
an decreases attached. | "1 . no . of coaches = 9 sqr root = 3 speed decreases by 12 12 = k * 3 k = 4 no . of coaches = 25 swr root = 5 decrease = 5 * 4 = 20 new speed = 90 - 20 = 70 e" | a ) 90 , b ) 85 , c ) 80 , d ) 60 , e ) 70 | e | subtract(90, multiply(sqrt(25), divide(subtract(90, 78), sqrt(9)))) | sqrt(n1)|sqrt(n3)|subtract(n0,n2)|divide(#2,#0)|multiply(#3,#1)|subtract(n0,#4)| | physics |
a metres is : | "explanation : let the length of train be l m . acc . to question ( 264 + l ) / 20 = l / 8 2112 + 8 l = 20 l l = 2112 / 12 = 176 m answer b" | a ) 188 , b ) 176 , c ) 175 , d ) 96 , e ) none of these | b | multiply(divide(264, subtract(20, 8)), 8) | subtract(n2,n0)|divide(n1,#0)|multiply(n0,#1)| | physics |
a averaged c? | "step 1 ) took lcm of 10 and 12 . . came as 30 . just multiplied by 10 . . . ( to make easy calculation ) step 2 ) 300 distance between b to c . . . do 300 / 12 hence 25 gallons used step 3 ) twice distance . . hence 300 * 2 = 600 . . . do as above . . 600 / 10 = 60 gallons used step 4 ) total gallons . . 25 + 60 = 85 gallons step ) total miles = 300 + 600 = 900 miles hence . . average of whole journey = 900 / 85 which comes to 10.6 answer : d" | a ) 11.5 , b ) 9.5 , c ) 13.5 , d ) 10.6 , e ) 14.5 | d | divide(add(multiply(12, const_10), divide(multiply(12, const_10), const_2)), add(divide(multiply(12, const_10), 10), divide(divide(multiply(12, const_10), const_2), 12))) | multiply(n1,const_10)|divide(#0,const_2)|divide(#0,n0)|add(#1,#0)|divide(#1,n1)|add(#2,#4)|divide(#3,#5)| | general |
apee percent? | "explanation : the total number of mangoes bought by the shopkeeper be 12 . if he buys 4 a rupee , his cp = 3 he selling at 3 a rupee , his sp = 4 profit = sp - cp = 4 - 3 = 1 profit percent = 1 / 3 * 100 = 33 1 / 3 % answer : c" | a ) 73 1 / 3 % , b ) 13 1 / 3 % , c ) 33 1 / 3 % , d ) 23 1 / 3 % , e ) 93 1 / 3 % | c | divide(multiply(3, const_100), 4) | multiply(n1,const_100)|divide(#0,n0)| | gain |
a each post in | "length of train = 12 × 15 = 180 m . then , speed of train = 180 ⁄ 18 = 10 m / s now , length of train = 10 × 15 = 150 m ∴ required time = 150 ⁄ 10 = 15 sec . answer c" | a ) 18 sec , b ) 12 sec , c ) 15 sec , d ) 20 sec , e ) none of these | c | divide(subtract(multiply(12, 15), 15), divide(multiply(12, 15), 18)) | multiply(n0,n1)|divide(#0,n2)|subtract(#0,n1)|divide(#2,#1)| | physics |
on ran sunday? | "let bill run x on saturday , so he will run x + 4 on sunday . . julia will run 2 * ( x + 4 ) on sunday . . totai = x + x + 4 + 2 x + 8 = 16 . . 4 x + 12 = 16 . . x = 1 . . ans = x + 4 = 1 + 4 = 5 answer a" | a ) 5 , b ) 6 , c ) 7 , d ) 8 , e ) 9 | a | add(divide(subtract(16, add(4, multiply(const_2, 4))), 4), 4) | multiply(n0,const_2)|add(n0,#0)|subtract(n1,#1)|divide(#2,n0)|add(n0,#3)| | general |
prints20 it print | 40 pages - - - - - - - > 1 min 2 hrs except 20 mints means = 2 * 60 = 120 - 20 = 100 mints i . e . , 100 * 40 = 4,000 pages printed . answer : a | a ) 4,000 , b ) 12,880 , c ) 14,880 , d ) 8,880 , e ) 18,880 | a | divide(multiply(subtract(multiply(2, const_60), 20), 40), multiply(const_10, const_100)) | multiply(n1,const_60)|multiply(const_10,const_100)|subtract(#0,n2)|multiply(n0,#2)|divide(#3,#1) | general |
a the train? | "speed of the train relative to man = ( 68 - 8 ) kmph = ( 60 * 5 / 18 ) m / sec = ( 50 / 3 ) m / sec time taken by the train to cross the man = time taken by it to cover 450 m at 50 / 3 m / sec = 450 * 3 / 50 sec = 27 sec answer : c ." | a ) 5 sec , b ) 39 sec , c ) 27 sec , d ) 15 sec , e ) 18 sec | c | divide(450, multiply(subtract(68, 8), const_0_2778)) | subtract(n1,n2)|multiply(#0,const_0_2778)|divide(n0,#1)| | physics |
during4ds? | 4 / 10 of all the vehicles were not rented . ( 3 / 5 ) ( 2 / 5 ) = 6 / 25 of all the vehicles are 4 wds that were not rented . ( 6 / 25 ) / ( 4 / 10 ) = 3 / 5 is the fraction of non - rented vehicles that were 4 wds 1 - 3 / 5 = 40 % of non - rented vehicles were not 4 wds . the answer is c . | a ) 20 % , b ) 30 % , c ) 40 % , d ) 50 % , e ) 60 % | c | multiply(divide(divide(multiply(const_2, 40), add(const_3, const_2)), 40), const_100) | add(const_2,const_3)|multiply(n2,const_2)|divide(#1,#0)|divide(#2,n2)|multiply(#3,const_100) | gain |
if x? | "we have : 1 ) x < y < z 2 ) y - x > 5 3 ) x = 2 k ( x is an even number ) 4 ) y = 2 n + 1 ( y is an odd number ) 5 ) z = 2 p + 1 ( z is an odd number ) 6 ) z - x = ? least value z - x = 2 p + 1 - 2 k = 2 p - 2 k + 1 = 2 ( p - k ) + 1 - that means that z - x must be an odd number . we can eliminate answer choices a , c and e we are asked to find the least value , so we have to pick the least numbers since y is odd and x is even , y - x must be odd . since y - x > 7 the least value for y - x must be 11 , the least value for x must be 2 , and , thus , the least possible value for y must be 11 ( y - 2 = 9 , y = 11 ) 2 < 11 < z , since z is odd , the least possible value for z is 13 z - x = 13 - 2 = 11 answer c" | a ) 6 , b ) 7 , c ) 11 , d ) 8 , e ) 10 | c | add(add(7, const_2), const_2) | add(n0,const_2)|add(#0,const_2)| | general |
a anyone winner? | "a contest will consist of n questions , each of which is to be answered eithertrueorfalse . anyone who answers all n questions correctly will be a winner . what is the least value of n for which the probability is less than 1 / 1000 that a person who randomly guesses the answer to each question will be a winner ? a . 5 b . 10 c . 50 d . 100 e . 1000 soln : ans is b probability that one question is answered right is 1 / 2 . now for minimum number of questions needed to take probability less than 1 / 1000 is = > ( 1 / 2 ) ^ n < 1 / 100000 n = 1000 satisfies this . e" | a ) 5 , b ) 10 , c ) 50 , d ) 100 , e ) 1000 | e | multiply(const_1000, divide(1, 100000)) | divide(n0,n1)|multiply(#0,const_1000)| | general |
j more journey? | "the number of miles to drive to finish his journey is given by 1200 - 1096 = 104 miles correct answer a" | a ) 104 miles , b ) 432 miles , c ) 456 miles , d ) 887 miles , e ) 767 miles | a | subtract(1200, 1096) | subtract(n1,n0)| | physics |
ram18 task? | "number of days taken by ram to complete task = 18 since ram is half as efficient as krish , amount of work done by krish in 1 day = amount of work done by ram in 2 days if total work done by ram in 18 days is 18 w amount of work done by ram in 1 day = w amount of work done by krish in 1 day = 2 w total amount of work done by krish and ram in a day = 3 w total amount of time needed by krish and ram to complete task = 18 w / 3 w = 6 days answer d" | a ) 16 days , b ) 12 days , c ) 8 days , d ) 6 days , e ) 18 days | d | inverse(add(divide(const_1, 18), divide(const_1, divide(18, const_2)))) | divide(const_1,n0)|divide(n0,const_2)|divide(const_1,#1)|add(#0,#2)|inverse(#3)| | physics |
a g is : | "external radius = 4 cm , internal radius = 3 cm . volume of iron = ( 22 / 7 x [ ( 4 ) ^ 2 - ( 3 ) ^ 2 ] x 21 ) cm ^ 3 ( 22 / 7 x 7 x 1 x 21 ) cm ^ 3 462 cm ^ 3 . weight of iron = ( 462 x 8 ) gm = 3696 gm = 3.696 kg . answer b" | a ) 3.6 kg , b ) 3.696 kg , c ) 36 kg , d ) 36.9 kg , e ) 3.06 kg | b | divide(multiply(subtract(volume_cylinder(divide(8, const_2), 21), volume_cylinder(subtract(divide(8, const_2), 1), 21)), 8), const_1000) | divide(n1,const_2)|subtract(#0,n2)|volume_cylinder(#0,n0)|volume_cylinder(#1,n0)|subtract(#2,#3)|multiply(n1,#4)|divide(#5,const_1000)| | general |
the7 person? | "total weight increases = 7 × 1.5 = 10.5 kg so the weight of new person = 65 + 10.5 = 75.5 kg answer c" | a ) 76 kg , b ) 77 kg , c ) 75.5 kg , d ) data inadequate , e ) none of these | c | add(65, multiply(7, 1.5)) | multiply(n0,n1)|add(n2,#0)| | general |
mr his initially? | explanation : let the initial amount be x , amount given to his wife = ( 40 / 100 ) x = 2 x / 5 balance = ( x - ( 2 x / 5 ) ) = 3 x / 5 amount given to his wife = ( 20 / 100 ) * ( 3 x / 5 ) = 3 x / 25 balance = 3 x / 5 - 3 x / 25 = 12 x / 25 amountt spent on miscellaneous items = ( 1 / 2 ) * ( 12 x / 25 ) = 6 x / 25 which is equal to 12000 hence , = > 6 x / 25 = 12000 = > x = 50000 answer : c | a ) 40000 , b ) 45000 , c ) 50000 , d ) 62000 , e ) none of these | c | divide(12000, multiply(divide(divide(const_100, const_2), const_100), multiply(subtract(const_1, divide(40, const_100)), subtract(const_1, divide(20, const_100))))) | divide(const_100,const_2)|divide(n0,const_100)|divide(n1,const_100)|divide(#0,const_100)|subtract(const_1,#1)|subtract(const_1,#2)|multiply(#4,#5)|multiply(#3,#6)|divide(n3,#7) | gain |
he than mathematics? | "let the marks obtained by the student in physics , chemistry and mathematics be p , c and m respectively . p + c + m = 170 + p c + m = 170 average mark obtained by the student in chemistry and mathematics = ( c + m ) / 2 = 170 / 2 = 85 . answer : d" | a ) 55 , b ) 65 , c ) 75 , d ) 85 , e ) 95 | d | divide(170, const_2) | divide(n0,const_2)| | general |
find rate - yearly | "amount with ci = 10000 [ 1 + ( 12 / 2 * 100 ) ] 2 = rs . 11236 therefore , ci = 11236 – 10000 = rs . 1236 answer : b" | a ) rs . 1036 , b ) rs . 1236 , c ) rs . 1186 , d ) rs . 1206 , e ) rs . 1226 | b | subtract(multiply(power(add(const_1, divide(divide(12, const_4), const_100)), const_3), multiply(multiply(multiply(const_4, const_4), const_100), sqrt(const_100))), multiply(multiply(multiply(const_4, const_4), const_100), sqrt(const_100))) | divide(n1,const_4)|multiply(const_4,const_4)|sqrt(const_100)|divide(#0,const_100)|multiply(#1,const_100)|add(#3,const_1)|multiply(#4,#2)|power(#5,const_3)|multiply(#6,#7)|subtract(#8,#6)| | gain |
25. removed? | 22 * 200 = 4400 . the other 3 onions weigh a total of 720 grams . the average weight is 720 / 3 = 240 grams . the answer is c . | a ) 200 , b ) 220 , c ) 240 , d ) 260 , e ) 280 | c | divide(subtract(multiply(5.12, const_1000), multiply(22, 200)), 3) | multiply(n1,const_1000)|multiply(n3,n4)|subtract(#0,#1)|divide(#2,n2) | general |
a the shares? | "a profit of rs . 600 is divided between x and y in the ratio of 1 / 2 : 1 / 3 or 3 : 2 . so profits are 360 and 240 . difference in profit share = 360 - 240 = 120 answer : b" | a ) s . 220 , b ) s . 120 , c ) s . 320 , d ) s . 50 , e ) s . 90 | b | subtract(divide(divide(600, add(divide(1, 2), divide(1, 3))), 2), divide(divide(600, add(divide(1, 2), divide(1, 3))), 3)) | divide(n1,n2)|divide(n1,n4)|add(#0,#1)|divide(n0,#2)|divide(#3,n2)|divide(#3,n4)|subtract(#4,#5)| | general |
a side inches? | "let x and y be the width and length of the photograph . ( x + 2 ) ( y + 2 ) = m and so ( 1 ) xy + 2 x + 2 y + 4 = m ( x + 10 ) ( y + 10 ) = m and so ( 2 ) xy + 10 x + 10 y + 100 = m + 144 let ' s subtract equation ( 1 ) from equation ( 2 ) . 8 x + 8 y + 96 = 144 2 x + 2 y = 12 , which is the perimeter of the photograph . the answer is b ." | a ) 10 , b ) 12 , c ) 14 , d ) 16 , e ) 18 | b | divide(subtract(144, subtract(power(multiply(5, const_2), const_2), power(multiply(1, const_2), const_2))), const_2) | multiply(n1,const_2)|multiply(n0,const_2)|power(#0,const_2)|power(#1,const_2)|subtract(#2,#3)|subtract(n2,#4)|divide(#5,const_2)| | geometry |
3 got got? | total number of votes polled = ( 1000 + 2000 + 4000 ) = 7000 required percentage = 4000 / 7000 * 100 = 57 % ( approximately ) answer : option c | a ) 30 % , b ) 50 % , c ) 57 % , d ) 62 % , e ) 75 % | c | multiply(divide(4000, add(add(1000, 2000), 4000)), const_100) | add(n1,n2)|add(n3,#0)|divide(n3,#1)|multiply(#2,const_100) | general |
the sides sides? | s = ( 3 + 5 + 10 ) / 2 = 9 answer : d | a ) 3 , b ) 6 , c ) 4 , d ) 9 , e ) 1 | d | divide(add(add(3, 5), 10), 5) | add(n0,n1)|add(n2,#0)|divide(#1,n1)| | geometry |
what,ation? | "10 ( 11111 ) * 4 ! - 10 ( 1111 ) 3 ! = 2599980 answer : a" | a ) 2599980 , b ) 235500 , c ) 923580 , d ) 765432 , e ) 765434 | a | multiply(divide(add(divide(subtract(subtract(const_1000, 5), add(add(multiply(multiply(5, 5), const_10), multiply(5, 5)), 5)), 1,2), const_1), 0), add(subtract(const_1000, 5), add(add(multiply(multiply(5, 5), const_10), multiply(5, 5)), 5))) | multiply(n0,n0)|subtract(const_1000,n0)|multiply(#0,const_10)|add(#2,#0)|add(n0,#3)|add(#4,#1)|subtract(#1,#4)|divide(#6,n2)|add(#7,const_1)|divide(#8,n1)|multiply(#5,#9)| | probability |
an64 have? | "let the number of coins one son got be x and the number of coins another got be y . total = x + y . x ^ 2 - y ^ 2 = 64 ( x - y ) - - > x + y = 64 . answer : d ." | a ) 24 , b ) 26 , c ) 30 , d ) 64 , e ) 40 | d | floor(64) | floor(n0)| | general |
20 and be? | "alcohol in the 20 litres of mix . = 40 % of 20 litres = ( 40 * 20 / 100 ) = 8 litres water in it = 20 - 8 = 12 litres new quantity of mix . = 20 + 8 = 28 litres quantity of alcohol in it = 8 litres percentage of alcohol in new mix . = 8 * 100 / 28 = 50 / 3 = 28.57 % answer is c" | a ) 26.32 % , b ) 35.14 % , c ) 28.57 % , d ) 25 % , e ) 31.14 % | c | multiply(divide(subtract(add(20, 8), add(multiply(divide(subtract(const_100, 40), const_100), 20), 8)), add(20, 8)), const_100) | add(n0,n2)|subtract(const_100,n1)|divide(#1,const_100)|multiply(n0,#2)|add(n2,#3)|subtract(#0,#4)|divide(#5,#0)|multiply(#6,const_100)| | gain |
j output percent? | "we can use fractional equivalents here to solve the problem 80 % = 4 / 5 ; this means that in 1 st case if she prepares 5 bears , in 2 nd case she prepares 9 bears 10 % = 1 / 10 ; this means that in 1 st case if she needs 10 hours , in 2 nd case she needs 9 hours now we come to productivity based on above fractional values the productivity in 1 st case is 0.5 bears / hour and in the 2 nd case it is 1 bear / hour hence the productivity is double with the assistant i . e . the increase in productivity is 120 % d" | a ) 20 % , b ) 80 % , c ) 100 % , d ) 120 % , e ) 200 % | d | multiply(divide(10, subtract(subtract(const_100, 90), 10)), const_100) | subtract(const_100,n0)|subtract(#0,n1)|divide(n1,#1)|multiply(#2,const_100)| | physics |
12 gives gives : | "= 12.036 / 0.04 = 1203.6 / 4 = 300.9 answer is b ." | a ) 30.09 , b ) 300.9 , c ) 30.06 , d ) 100.9 , e ) 300.6 | b | divide(12.036, 0.04) | divide(n0,n1)| | general |
if x x? | "the amount of chemical x in the solution is 20 + 0.05 ( 80 ) = 24 liters . 24 liters / 100 liters = 24 % the answer is a ." | a ) 24 % , b ) 26 % , c ) 28 % , d ) 30 % , e ) 32 % | a | add(20, multiply(divide(5, const_100), 80)) | divide(n2,const_100)|multiply(n1,#0)|add(n0,#1)| | general |
the successive interval? | "( 4.4 miles / 8 minutes ) * 60 minutes / hour = 33 mph let x be the original speed . x - 5 ( 3 ) = 33 x = 48 mph the answer is c ." | a ) 35 , b ) 40 , c ) 48 , d ) 51 , e ) 54 | c | add(add(add(add(divide(4.4, divide(8, const_60)), 3), 3), 3), 3) | divide(n1,const_60)|divide(n2,#0)|add(n0,#1)|add(n0,#2)|add(n0,#3)|add(n0,#4)| | general |
for above exam? | "a score of 58 was 2 standard deviations below the mean - - > 58 = mean - 2 d a score of 98 was 3 standard deviations above the mean - - > 98 = mean + 3 d solving above for mean r = 74 . answer : a ." | a ) 74 , b ) 76 , c ) 78 , d ) 80 , e ) 82 | a | divide(add(multiply(58, 3), multiply(98, 2)), add(2, 3)) | add(n1,n3)|multiply(n0,n3)|multiply(n1,n2)|add(#1,#2)|divide(#3,#0)| | general |
a running length? | "speed = 45 km / hr = 45 * ( 5 / 18 ) m / sec = 25 / 2 m / sec total distance = 360 + 240 = 600 meter time = distance / speed = 600 * ( 2 / 25 ) = 48 seconds answer : e" | a ) 65 seconds , b ) 46 seconds , c ) 40 seconds , d ) 97 seconds , e ) 48 seconds | e | divide(add(360, 240), divide(multiply(45, const_1000), const_3600)) | add(n0,n2)|multiply(n1,const_1000)|divide(#1,const_3600)|divide(#0,#2)| | physics |
in792 beginning? | "x * 110 / 100 * 90 / 100 = 7920 x * 0.99 = 7920 x = 7920 / 0.99 = > 8000 answer : b" | a ) 8008 , b ) 8000 , c ) 8022 , d ) 8021 , e ) 8022 | b | divide(divide(7920, subtract(const_1, divide(10, const_100))), add(const_1, divide(10, const_100))) | divide(n0,const_100)|add(#0,const_1)|subtract(const_1,#0)|divide(n3,#2)|divide(#3,#1)| | general |
the for profit? | "let c . p . = $ x . then , 832 - x = x - 448 2 x = 1280 = > x = 640 required s . p . = 135 % of $ 640 = $ 864 d" | a ) $ 480 , b ) $ 450 , c ) $ 960 , d ) $ 864 , e ) $ 660 | d | add(divide(multiply(divide(add(832, 448), const_2), 35), const_100), divide(add(832, 448), const_2)) | add(n0,n1)|divide(#0,const_2)|multiply(n2,#1)|divide(#2,const_100)|add(#3,#1)| | gain |
if ) will receive | "explanation : let p ' s capital = p , q ' s capital = q and r ' s capital = r then 4 p = 6 q = 10 r = > 2 p = 3 q = 5 r = > q = 2 p / 3 r = 2 p / 5 p : q : r = p : 2 p / 3 : 2 p / 5 = 15 : 10 : 6 r ' s share = 3720 * ( 6 / 31 ) = 120 * 6 = 720 . answer : option a" | a ) 720 , b ) 700 , c ) 800 , d ) 900 , e ) none of these | a | multiply(3720, divide(6, add(add(add(10, add(4, const_1)), 10), 6))) | add(n0,const_1)|add(n2,#0)|add(n2,#1)|add(n1,#2)|divide(n1,#3)|multiply(n3,#4)| | general |
it minutes him? | 3 hrs 25 min = 205 min first 15 min - - - - - - > $ 2 time left is 190 min . . . now , 60 min costs $ 6 1 min costs $ 6 / 60 190 min costs $ 6 / 60 * 190 = > $ 19 so , total cost will be $ 19 + $ 2 = > $ 21 the answer will be ( d ) $ 21 | a ) $ 22 , b ) $ 3 , c ) $ 15 , d ) $ 21 , e ) $ 30 | d | add(multiply(divide(6, const_60), subtract(add(multiply(3, const_60), 25), 15)), 2) | divide(n3,const_60)|multiply(n4,const_60)|add(n5,#1)|subtract(#2,n1)|multiply(#0,#3)|add(n0,#4) | physics |
a.. metre | "area of the plot = 110 m * 65 m = 7150 sq . m area of plot excluding gravel = 105 m * 60 m = 6300 sq . m area of gravel = 7150 sq . m - 6300 sq . m = 850 sq . m cost of building it = 850 sq . m * 30 = 25500 p in rs = 25500 / 100 = rs 255 answer : a" | a ) s 255 , b ) s 780 , c ) s 880 , d ) s 480 , e ) s 980 | a | divide(multiply(subtract(multiply(110, 65), multiply(subtract(110, multiply(2.5, const_2)), subtract(65, multiply(2.5, const_2)))), 30), const_100) | multiply(n0,n1)|multiply(n2,const_2)|subtract(n0,#1)|subtract(n1,#1)|multiply(#2,#3)|subtract(#0,#4)|multiply(n3,#5)|divide(#6,const_100)| | physics |
john6 work? | amount of work done by john and andrew in 1 day = 1 / 9 amount of work done by john and andrew in 6 days = 6 ã — ( 1 / 9 ) = 2 / 3 remaining work â € “ 1 â € “ 2 / 3 = 1 / 3 john completes 1 / 3 work in 6 days amount of work john can do in 1 day = ( 1 / 3 ) / 6 = 1 / 18 = > john can complete the work in 18 days answer : c | a ) 30 days , b ) 60 days , c ) 18 days , d ) 80 days , e ) 90 days | c | divide(6, subtract(const_1, divide(6, 9))) | divide(n1,n0)|subtract(const_1,#0)|divide(n1,#1) | physics |
of woulden? | "the exam gives us a number that is easily divisible by 7 to pique our curiosity and tempt us into calculating actual numbers ( also because otherwise the ratio would be incorrect ) . since the question is about percentages , the actual numbers will be meaningless , as only the ratio of that number versus others will be meaningful . nonetheless , for those who are curious , each 1 / 7 portion represents ( 14210 / 7 ) 2,030 employees . this in turn means that 4,060 employees are journeymen and the remaining 10,150 are full time workers . if half the journeymen were laid off , that would mean 1 / 7 of the total current workforce would be removed . this statistic is what leads many students to think that since half the journeymen are left , the remaining journeymen would represent half of what they used to be , which means 1 / 7 of the total workforce . if 1 / 7 of the workforce is journeymen , and 1 / 7 is roughly 14.3 % , then answer choice a should be the right answer . in this case , though , it is merely the tempting trap answer choice . what changed between the initial statement and the final tally ? well , you let go of 1 / 7 of the workforce , so the total number of workers went down . the remaining workers are still 1 / 7 of the initial workers , but the group has changed . the new workforce is smaller than the original group , specifically 6 / 7 of it because 1 / 7 was eliminated . the remaining workers now account for 1 / 7 out of 6 / 7 of the force , which if we multiply by 7 gives us 1 out of 6 . this number as a percentage is answer choice b , 14.3 % . using the absolute numbers we calculated before , there were 4,060 journeymen employees out of 14,210 total . if 2,030 of them are laid off , then there are 2,030 journeyman employees left , but now out of a total of ( 14,210 - 2,030 ) 12,180 employees . 2,030 / 12,180 is exactly 1 / 6 , or 16.67 % . the answer will work with either percentages or absolute numbers , but the percentage calculation will be significantly faster and applicable to any similar situation . the underlying principle of percentages ( and , on a related note , ratios ) can be summed up in the brainteaser i like to ask my students : if you ’ re running a race and you overtake the 2 nd place runner just before the end , what position do you end up in ? the correct answer is 2 nd place . percentages , like ratios and other concepts of relative math , depend entirely on the context . whether 100 % more of something is better than 50 % more of something else depends on the context much more than the percentages quoted . when it comes to percentages on the gmat , the goal is to understand them enough to instinctively not fall into the traps laid out for you . a" | a ) 14.3 % , b ) 16.67 % , c ) 33 % , d ) 28.6 % , e ) 49.67 % | a | multiply(multiply(divide(divide(divide(3, 7), 3), add(divide(divide(3, 7), 3), subtract(const_1, divide(3, 7)))), const_100), const_3) | divide(n1,n2)|divide(#0,n1)|subtract(const_1,#0)|add(#1,#2)|divide(#1,#3)|multiply(#4,const_100)|multiply(#5,const_3)| | general |
what of kg? | "1 kg = 1000 gm 400 / 1000 ã — 100 = 40000 / 1000 = 40 % answer is b" | a ) 25 % , b ) 40 % , c ) 10 % , d ) 8 % , e ) 12 % | b | multiply(divide(400, 1), const_100) | divide(n0,n1)|multiply(#0,const_100)| | gain |
the in score. | "explanation : total runs scored by the batsman = 60 * 46 = 2760 runs now excluding the two innings the runs scored = 58 * 44 = 2552 runs hence the runs scored in the two innings = 2760 â € “ 2552 = 208 runs . let the highest score be x , hence the lowest score = x â € “ 160 x + ( x - 160 ) = 208 2 x = 368 x = 184 runs answer : a" | a ) 184 , b ) 367 , c ) 269 , d ) 177 , e ) 191 | a | divide(add(160, subtract(multiply(60, 46), multiply(58, subtract(46, const_2)))), const_2) | multiply(n0,n1)|subtract(n1,const_2)|multiply(n3,#1)|subtract(#0,#2)|add(n2,#3)|divide(#4,const_2)| | general |
the is than a | "explanation : given that a + b = 14 + b + c = > a ? c = 14 + b ? b = 14 = > c is younger than a by 14 years answer : option d" | a ) 11 , b ) 12 , c ) 13 , d ) 14 , e ) 15 | d | multiply(14, const_1) | multiply(n0,const_1)| | general |
a what2? | "price in 96 = 22000 price decrease each year = 2.5 / 100 * 22000 = 550 price in 97 = 22000 - 550 price in 98 = 22000 - 2 * 550 price in 99 = 22000 - 3 * 550 price in 00 = 22000 - 4 * 550 price in 01 = 22000 - 5 * 550 price in 02 = 22000 - 6 * 550 = 18700 investment in the car = 3500 net price of the car in 02 = 18700 + 3500 = $ 22200 correct option : c" | a ) $ 18,400 , b ) $ 19,500 , c ) $ 22,200 , d ) $ 20,400 , e ) $ 21,100 | c | multiply(const_2, const_10) | multiply(const_10,const_2)| | gain |
if and area? | l - b = 23 . . . ( 1 ) perimeter = 206 2 ( l = b ) = 206 l + b = 103 . . . ( 2 ) ( 1 ) + ( 2 ) 2 l = 23 + 103 = 126 l = 126 / 2 = 63 metre substituting the value of l in ( 1 ) , we get 63 - b = 23 b = 63 - 23 = 40 metre area = lb = 63 ã — 40 = 2520 m 2 answer : a | ['a ) 2520', 'b ) 2510', 'c ) 2525', 'd ) 2025', 'e ) 2020'] | a | rectangle_area(add(divide(subtract(206, multiply(const_2, 23)), const_4), 23), divide(subtract(206, multiply(const_2, 23)), const_4)) | multiply(n0,const_2)|subtract(n1,#0)|divide(#1,const_4)|add(n0,#2)|rectangle_area(#3,#2) | geometry |
a gets is : | "explanation : volume of water displaced = ( 5 x 2 x 0.01 ) m 3 = 0.10 m 3 . ∴ mass of man = volume of water displaced x density of water = ( 0.10 x 1000 ) kg = 100 kg . answer : a" | a ) 100 kg , b ) 60 kg , c ) 72 kg , d ) 96 kg , e ) none of these | a | multiply(multiply(multiply(5, 2), divide(1, const_100)), const_1000) | divide(n2,const_100)|multiply(n0,n1)|multiply(#0,#1)|multiply(#2,const_1000)| | physics |
if days days? | as 100 cats kill 100 mice in 100 days 1 cats kill 1 mouse in 100 days then 4 cats kill 4 mice in 100 days answer : d | a ) 1 day , b ) 4 days , c ) 40 days , d ) 100 days , e ) 50 days | d | divide(multiply(multiply(4, 100), 100), multiply(100, 4)) | multiply(n0,n3)|multiply(n0,#0)|divide(#1,#0) | physics |
what is5? | "unit digit in 7105 = unit digit in [ ( 74 ) 26 * 7 ] but , unit digit in ( 74 ) 26 = 1 unit digit in 7105 = ( 1 * 7 ) = 7 answer : c" | a ) 1 , b ) 5 , c ) 7 , d ) 9 , e ) 11 | c | circle_area(divide(7105, multiply(const_2, const_pi))) | multiply(const_2,const_pi)|divide(n0,#0)|circle_area(#1)| | general |
of air windows? | total - neither = all air conditioning + all power windows - both or 55 - neither = 40 + 25 - 12 = 53 . = > neither = 2 , hence d . answer : d | a ) 15 , b ) 8 , c ) 10 , d ) 2 , e ) 18 | d | subtract(55, subtract(add(40, 25), 12)) | add(n1,n2)|subtract(#0,n3)|subtract(n0,#1) | other |
what 24? | "easiest way for me : 49 ^ 74 - 5 ^ 74 = ( 49 ) ^ 37 - 25 ^ 37 = ( 24 * 2 + 1 ) ^ 37 - ( 24 + 1 ) ^ 37 - > remainder is 1 ^ 37 - 1 ^ 37 = 0 ans : c" | a ) 2 , b ) 1 , c ) 0 , d ) 3 , e ) none of these | c | reminder(multiply(74, 49), 5) | multiply(n0,n1)|reminder(#0,n2)| | general |
a interest? | "d 4 % s . i . = ( 14400 - 13400 ) = 1000 . rate = ( 100 x 1000 ) / ( 13400 x 2 ) % = 4 %" | a ) 2 % , b ) 1 % , c ) 6 % , d ) 4 % , e ) 8 % | d | multiply(divide(divide(const_3, 2), add(multiply(const_3, 2), add(const_0_25, const_0_25))), const_100) | add(const_0_25,const_0_25)|divide(const_3,n2)|multiply(const_3,n2)|add(#0,#2)|divide(#1,#3)|multiply(#4,const_100)| | gain |
a years lent? | "p - 420 = ( p * 5 * 8 ) / 100 p = 700 the answer is c ." | a ) 500 , b ) 600 , c ) 700 , d ) 800 , e ) 900 | c | divide(420, subtract(const_1, divide(multiply(5, 8), const_100))) | multiply(n0,n1)|divide(#0,const_100)|subtract(const_1,#1)|divide(n2,#2)| | gain |
30 can work? | "explanation : less men , means more days { indirect proportion } let the number of days be x then , 27 : 30 : : 18 : x [ please pay attention , we have written 27 : 30 rather than 30 : 27 , in indirect proportion , if you get it then chain rule is clear to you : ) ] { \ color { blue } x = \ frac { 30 \ times 18 } { 27 } } x = 20 so 20 days will be required to get work done by 27 men . answer : a" | a ) 20 , b ) 77 , c ) 36 , d ) 25 , e ) 13 | a | divide(multiply(18, 30), 27) | multiply(n0,n1)|divide(#0,n2)| | physics |
if what n? | 200 = 2 ^ 3 * 5 ^ 2 if 200 divides n ^ 2 , then n must be divisible by 2 ^ 2 * 5 = 20 the answer is c . | a ) 10 , b ) 15 , c ) 20 , d ) 36 , e ) 50 | c | multiply(sqrt(divide(200, 2)), 2) | divide(n1,n0)|sqrt(#0)|multiply(n0,#1) | general |
john was pen? | a 100 % if the sum he paid whilst purchasing 20 pens = a , then the cost price of each pen = a / 20 . since the amount he got whilst selling 10 pens is also = a then the selling price of each pen = a / 10 . since selling price > cost price , he made a profit . profit per pen = selling price - cost price = a / 10 - a / 20 = a / 20 . profit percentage per pen = profit per pen / cost per pen x 100 = ( a / 20 ) / ( a / 20 ) x 100 = 100 % | a ) 100 % , b ) 150 % , c ) 90 % , d ) 80 % , e ) 95 % | a | multiply(divide(subtract(20, 10), 10), const_100) | subtract(n0,n1)|divide(#0,n1)|multiply(#1,const_100) | gain |
if number x = | "1 / 3 of sqrt ( x ) = 3 x , which means that sqrt ( x ) = 9 x or x = 81 x ^ 2 - > divide by x 1 = 81 x x = 1 / 81 c ." | a ) 1 / 3 , b ) 1 / 9 , c ) 1 / 81 , d ) 1 , e ) 81 | c | power(3, multiply(3, const_3)) | multiply(n1,const_3)|power(n1,#0)| | general |
find 15. | smallest number of six digits is 100000 . required number must be divisible by l . c . m . of 25,35 , 45,15 i . e 1575 , on dividing 100000 by 1575 , we get 800 as remainder . therefore , required number = 100000 + ( 1575 â € “ 800 ) = 100775 . answer is b . | a ) 100555 , b ) 100775 , c ) 100885 , d ) 100995 , e ) 100665 | b | multiply(power(const_100, const_2), const_10) | power(const_100,const_2)|multiply(#0,const_10) | general |
two if speeds? | "let the speed of the trains be x and y respectively length of train 1 = 27 x length of train 2 = 17 y relative speed = x + y time taken to cross each other = 21 s = ( 27 x + 17 y ) / ( x + y ) = 21 = ( 27 x + 17 y ) / = 21 ( x + y ) = 6 x = 4 y = x / y = 4 / 6 = 2 / 3 i . e 2 : 3 answer : c" | a ) 1 : 3 , b ) 3 : 1 , c ) 2 : 3 , d ) 3 : 2 , e ) 3 : 4 | c | divide(subtract(27, 21), subtract(21, 17)) | subtract(n0,n2)|subtract(n2,n1)|divide(#0,#1)| | physics |
in average apartments? | ratio of 2 bedroom apartment : 1 bedroom apartment = 700 : 2100 - - - - - > 1 : 3 let total number of apartments be x no . of 2 bedroom apartment = ( 1 / 4 ) * x percentage of apartments in the building are two - bedroom apartments - - - - > ( 1 / 4 ) * 100 - - - > 25 % answer : a | a ) 25 % , b ) 15 % , c ) 20 % , d ) 40 % , e ) 45 % | a | multiply(divide(const_1, add(const_3, const_1)), const_100) | add(const_1,const_3)|divide(const_1,#0)|multiply(#1,const_100) | general |
if - be. | "2 / 3 filled in 6 mint 1 / 3 filled in 3 mint thn 2 / 3 + 1 / 3 = 6 + 3 = 9 minutes answer : d" | a ) 90 seconds , b ) 70 seconds , c ) 60 seconds , d ) 9 minutes , e ) 120 seconds | d | multiply(divide(6, const_2), const_3) | divide(n0,const_2)|multiply(#0,const_3)| | physics |
a3 inning. | "let the average after 17 th inning = x . then , average after 16 th inning = ( x – 3 ) . ∴ 16 ( x – 3 ) + 76 = 17 x or x = ( 76 – 48 ) = 28 . answer b" | a ) 36 , b ) 28 , c ) 42 , d ) 45 , e ) none of the above | b | add(subtract(76, multiply(17, 3)), 3) | multiply(n1,n2)|subtract(n0,#0)|add(n2,#1)| | general |
Subsets and Splits