central_florida_native_plants / dataset_viewer.py
ecodash's picture
Upload dataset_viewer.py with huggingface_hub
87b039b verified
#!/usr/bin/env python3
"""
Dataset viewer for Central Florida Native Plants embeddings
"""
import os
import torch
import pandas as pd
import numpy as np
from pathlib import Path
def load_species_list():
"""Load list of species from embeddings directory"""
embeddings_dir = Path(__file__).parent / "embeddings"
if not embeddings_dir.exists():
print("Error: embeddings directory not found. Please run download_dataset.sh first.")
return []
species_ids = []
for file in sorted(embeddings_dir.glob("*.pt")):
species_id = file.stem
species_ids.append(species_id)
return species_ids
def load_embedding(species_id):
"""Load embedding for a specific species"""
embedding_path = Path(__file__).parent / "embeddings" / f"{species_id}.pt"
if not embedding_path.exists():
return None
return torch.load(embedding_path)
def load_tokens(species_id):
"""Load token mapping for a specific species"""
token_path = Path(__file__).parent / "tokens" / f"{species_id}.csv"
if not token_path.exists():
return None
return pd.read_csv(token_path)
def analyze_dataset():
"""Analyze the dataset and print summary statistics"""
species_ids = load_species_list()
print(f"Total species: {len(species_ids)}")
print("\nFirst 10 species IDs:")
for i, species_id in enumerate(species_ids[:10]):
print(f" {i+1}. {species_id}")
if species_ids:
# Analyze first species as example
example_id = species_ids[0]
data = load_embedding(example_id)
tokens = load_tokens(example_id)
print(f"\nExample species: {example_id}")
print(f"Species name: {data['species_name']}")
print(f"Taxon ID: {data['taxon_id']}")
print(f"Number of tokens: {data['num_tokens']}")
# Mean embedding info
mean_emb = data['mean_embedding']
print(f"\nMean embedding:")
print(f" Shape: {mean_emb.shape}")
print(f" Dtype: {mean_emb.dtype}")
print(f" Min/Max: {mean_emb.min():.4f} / {mean_emb.max():.4f}")
print(f" Mean/Std: {mean_emb.mean():.4f} / {mean_emb.std():.4f}")
# Show first 10 and last 10 values of mean embedding
print(f"\n First 10 values: {mean_emb[:10].numpy()}")
print(f" Last 10 values: {mean_emb[-10:].numpy()}")
# Token embeddings info
token_embs = data['token_embeddings']
print(f"\nToken embeddings:")
print(f" Shape: {token_embs.shape}")
print(f" Per-token dimension: {token_embs.shape[1]}")
# Show embedding values for first token
print(f"\n First token embedding (first 10 dims): {token_embs[0, :10].numpy()}")
print(f" First token embedding (last 10 dims): {token_embs[0, -10:].numpy()}")
# Show embedding statistics
print(f"\n Token embeddings statistics:")
print(f" Min/Max across all: {token_embs.min():.4f} / {token_embs.max():.4f}")
print(f" Mean/Std across all: {token_embs.mean():.4f} / {token_embs.std():.4f}")
if tokens is not None:
print(f"\nToken information:")
print(f"Number of tokens in CSV: {len(tokens)}")
print("\nFirst 5 tokens:")
print(tokens.head())
# Reconstruct text
text = ''.join(tokens['token'].tolist())
print(f"\nReconstructed text: {text}")
def compute_similarity_matrix(n_samples=10):
"""Compute pairwise cosine similarities between species using mean embeddings"""
species_ids = load_species_list()[:n_samples]
embeddings = []
species_names = []
for species_id in species_ids:
data = load_embedding(species_id)
if data is not None:
embeddings.append(data['mean_embedding'].numpy())
species_names.append(data['species_name'])
if len(embeddings) < 2:
print("Not enough embeddings to compute similarities")
return
# Stack embeddings
embeddings = np.stack(embeddings)
# Normalize embeddings
norms = np.linalg.norm(embeddings, axis=1, keepdims=True)
normalized = embeddings / norms
# Compute cosine similarity matrix
similarity_matrix = normalized @ normalized.T
print(f"\nCosine similarity matrix ({n_samples}x{n_samples}):")
print("Species:", species_names)
print("\nSimilarity matrix (first 5x5):")
print(similarity_matrix[:5, :5])
# Find most similar pairs
mask = np.triu(np.ones_like(similarity_matrix), k=1).astype(bool)
similarities = similarity_matrix[mask]
indices = np.argwhere(mask)
sorted_idx = np.argsort(similarities)[::-1]
print(f"\nMost similar pairs:")
for i in range(min(5, len(sorted_idx))):
idx = sorted_idx[i]
i1, i2 = indices[idx]
sim = similarities[idx]
print(f" {species_names[i1]} - {species_names[i2]}: {sim:.4f}")
def explore_species(species_id=None):
"""Explore a specific species' embeddings in detail"""
species_ids = load_species_list()
if species_id is None:
# Pick a random species
import random
species_id = random.choice(species_ids)
if species_id not in species_ids:
print(f"Species ID {species_id} not found in dataset")
return
data = load_embedding(species_id)
tokens = load_tokens(species_id)
print(f"\nDetailed exploration of species: {species_id}")
print("=" * 60)
print(f"Species name: {data['species_name']}")
print(f"Taxon ID: {data['taxon_id']}")
print(f"Timestamp: {data.get('timestamp', 'N/A')}")
# Mean embedding analysis
mean_emb = data['mean_embedding']
print(f"\nMean Embedding Analysis:")
print(f" Dimension: {mean_emb.shape[0]}")
print(f" Norm (L2): {torch.norm(mean_emb).item():.4f}")
print(f" Top 5 positive values: {torch.topk(mean_emb, 5).values.numpy()}")
print(f" Top 5 negative values: {torch.topk(-mean_emb, 5).values.numpy() * -1}")
# Embedding statistics from stored data
if 'embedding_stats' in data:
stats = data['embedding_stats']
print(f"\nStored embedding statistics:")
for key, value in stats.items():
if isinstance(value, (int, float)):
print(f" {key}: {value:.4f}" if isinstance(value, float) else f" {key}: {value}")
# Token-level analysis
token_embs = data['token_embeddings']
print(f"\nToken-level Analysis:")
print(f" Number of tokens: {token_embs.shape[0]}")
print(f" Embedding dimension per token: {token_embs.shape[1]}")
if tokens is not None and len(tokens) > 0:
print(f"\nToken Details:")
for idx, row in tokens.iterrows():
if idx < 5: # Show first 5 tokens
token_emb = token_embs[idx]
print(f" Token {idx}: '{row['token']}' (ID: {row['token_id']})")
print(f" Norm: {torch.norm(token_emb).item():.4f}")
print(f" Mean: {token_emb.mean().item():.4f}, Std: {token_emb.std().item():.4f}")
print(f" First 5 dims: {token_emb[:5].numpy()}")
# Variance analysis across dimensions
print(f"\nDimensional Variance Analysis:")
dim_vars = mean_emb.var()
print(f" Overall variance: {dim_vars:.6f}")
# Find most variable dimensions
token_vars = token_embs.var(dim=0) # Variance across tokens for each dimension
top_var_dims = torch.topk(token_vars, 10).indices
print(f" Top 10 most variable dimensions across tokens: {top_var_dims.numpy()}")
return data, tokens
if __name__ == "__main__":
print("Central Florida Native Plants Dataset Viewer")
print("=" * 50)
analyze_dataset()
print("\n" + "=" * 50)
compute_similarity_matrix(n_samples=10)
print("\n" + "=" * 50)
explore_species() # Explore a random species in detail