File size: 8,021 Bytes
87b039b
 
 
 
bdc4db2
87b039b
bdc4db2
 
87b039b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
#!/usr/bin/env python3
"""
Dataset viewer for Central Florida Native Plants embeddings
"""

import os
import torch
import pandas as pd
import numpy as np
from pathlib import Path

def load_species_list():
    """Load list of species from embeddings directory"""
    embeddings_dir = Path(__file__).parent / "embeddings"
    if not embeddings_dir.exists():
        print("Error: embeddings directory not found. Please run download_dataset.sh first.")
        return []
    
    species_ids = []
    for file in sorted(embeddings_dir.glob("*.pt")):
        species_id = file.stem
        species_ids.append(species_id)
    
    return species_ids

def load_embedding(species_id):
    """Load embedding for a specific species"""
    embedding_path = Path(__file__).parent / "embeddings" / f"{species_id}.pt"
    if not embedding_path.exists():
        return None
    return torch.load(embedding_path)

def load_tokens(species_id):
    """Load token mapping for a specific species"""
    token_path = Path(__file__).parent / "tokens" / f"{species_id}.csv"
    if not token_path.exists():
        return None
    return pd.read_csv(token_path)

def analyze_dataset():
    """Analyze the dataset and print summary statistics"""
    species_ids = load_species_list()
    
    print(f"Total species: {len(species_ids)}")
    print("\nFirst 10 species IDs:")
    for i, species_id in enumerate(species_ids[:10]):
        print(f"  {i+1}. {species_id}")
    
    if species_ids:
        # Analyze first species as example
        example_id = species_ids[0]
        data = load_embedding(example_id)
        tokens = load_tokens(example_id)
        
        print(f"\nExample species: {example_id}")
        print(f"Species name: {data['species_name']}")
        print(f"Taxon ID: {data['taxon_id']}")
        print(f"Number of tokens: {data['num_tokens']}")
        
        # Mean embedding info
        mean_emb = data['mean_embedding']
        print(f"\nMean embedding:")
        print(f"  Shape: {mean_emb.shape}")
        print(f"  Dtype: {mean_emb.dtype}")
        print(f"  Min/Max: {mean_emb.min():.4f} / {mean_emb.max():.4f}")
        print(f"  Mean/Std: {mean_emb.mean():.4f} / {mean_emb.std():.4f}")
        
        # Show first 10 and last 10 values of mean embedding
        print(f"\n  First 10 values: {mean_emb[:10].numpy()}")
        print(f"  Last 10 values: {mean_emb[-10:].numpy()}")
        
        # Token embeddings info
        token_embs = data['token_embeddings']
        print(f"\nToken embeddings:")
        print(f"  Shape: {token_embs.shape}")
        print(f"  Per-token dimension: {token_embs.shape[1]}")
        
        # Show embedding values for first token
        print(f"\n  First token embedding (first 10 dims): {token_embs[0, :10].numpy()}")
        print(f"  First token embedding (last 10 dims): {token_embs[0, -10:].numpy()}")
        
        # Show embedding statistics
        print(f"\n  Token embeddings statistics:")
        print(f"    Min/Max across all: {token_embs.min():.4f} / {token_embs.max():.4f}")
        print(f"    Mean/Std across all: {token_embs.mean():.4f} / {token_embs.std():.4f}")
        
        if tokens is not None:
            print(f"\nToken information:")
            print(f"Number of tokens in CSV: {len(tokens)}")
            print("\nFirst 5 tokens:")
            print(tokens.head())
            
            # Reconstruct text
            text = ''.join(tokens['token'].tolist())
            print(f"\nReconstructed text: {text}")

def compute_similarity_matrix(n_samples=10):
    """Compute pairwise cosine similarities between species using mean embeddings"""
    species_ids = load_species_list()[:n_samples]
    
    embeddings = []
    species_names = []
    for species_id in species_ids:
        data = load_embedding(species_id)
        if data is not None:
            embeddings.append(data['mean_embedding'].numpy())
            species_names.append(data['species_name'])
    
    if len(embeddings) < 2:
        print("Not enough embeddings to compute similarities")
        return
    
    # Stack embeddings
    embeddings = np.stack(embeddings)
    
    # Normalize embeddings
    norms = np.linalg.norm(embeddings, axis=1, keepdims=True)
    normalized = embeddings / norms
    
    # Compute cosine similarity matrix
    similarity_matrix = normalized @ normalized.T
    
    print(f"\nCosine similarity matrix ({n_samples}x{n_samples}):")
    print("Species:", species_names)
    print("\nSimilarity matrix (first 5x5):")
    print(similarity_matrix[:5, :5])
    
    # Find most similar pairs
    mask = np.triu(np.ones_like(similarity_matrix), k=1).astype(bool)
    similarities = similarity_matrix[mask]
    indices = np.argwhere(mask)
    
    sorted_idx = np.argsort(similarities)[::-1]
    print(f"\nMost similar pairs:")
    for i in range(min(5, len(sorted_idx))):
        idx = sorted_idx[i]
        i1, i2 = indices[idx]
        sim = similarities[idx]
        print(f"  {species_names[i1]} - {species_names[i2]}: {sim:.4f}")

def explore_species(species_id=None):
    """Explore a specific species' embeddings in detail"""
    species_ids = load_species_list()
    
    if species_id is None:
        # Pick a random species
        import random
        species_id = random.choice(species_ids)
    
    if species_id not in species_ids:
        print(f"Species ID {species_id} not found in dataset")
        return
    
    data = load_embedding(species_id)
    tokens = load_tokens(species_id)
    
    print(f"\nDetailed exploration of species: {species_id}")
    print("=" * 60)
    print(f"Species name: {data['species_name']}")
    print(f"Taxon ID: {data['taxon_id']}")
    print(f"Timestamp: {data.get('timestamp', 'N/A')}")
    
    # Mean embedding analysis
    mean_emb = data['mean_embedding']
    print(f"\nMean Embedding Analysis:")
    print(f"  Dimension: {mean_emb.shape[0]}")
    print(f"  Norm (L2): {torch.norm(mean_emb).item():.4f}")
    print(f"  Top 5 positive values: {torch.topk(mean_emb, 5).values.numpy()}")
    print(f"  Top 5 negative values: {torch.topk(-mean_emb, 5).values.numpy() * -1}")
    
    # Embedding statistics from stored data
    if 'embedding_stats' in data:
        stats = data['embedding_stats']
        print(f"\nStored embedding statistics:")
        for key, value in stats.items():
            if isinstance(value, (int, float)):
                print(f"  {key}: {value:.4f}" if isinstance(value, float) else f"  {key}: {value}")
    
    # Token-level analysis
    token_embs = data['token_embeddings']
    print(f"\nToken-level Analysis:")
    print(f"  Number of tokens: {token_embs.shape[0]}")
    print(f"  Embedding dimension per token: {token_embs.shape[1]}")
    
    if tokens is not None and len(tokens) > 0:
        print(f"\nToken Details:")
        for idx, row in tokens.iterrows():
            if idx < 5:  # Show first 5 tokens
                token_emb = token_embs[idx]
                print(f"  Token {idx}: '{row['token']}' (ID: {row['token_id']})")
                print(f"    Norm: {torch.norm(token_emb).item():.4f}")
                print(f"    Mean: {token_emb.mean().item():.4f}, Std: {token_emb.std().item():.4f}")
                print(f"    First 5 dims: {token_emb[:5].numpy()}")

    # Variance analysis across dimensions
    print(f"\nDimensional Variance Analysis:")
    dim_vars = mean_emb.var()
    print(f"  Overall variance: {dim_vars:.6f}")
    
    # Find most variable dimensions
    token_vars = token_embs.var(dim=0)  # Variance across tokens for each dimension
    top_var_dims = torch.topk(token_vars, 10).indices
    print(f"  Top 10 most variable dimensions across tokens: {top_var_dims.numpy()}")
    
    return data, tokens

if __name__ == "__main__":
    print("Central Florida Native Plants Dataset Viewer")
    print("=" * 50)
    
    analyze_dataset()
    print("\n" + "=" * 50)
    compute_similarity_matrix(n_samples=10)
    print("\n" + "=" * 50)
    explore_species()  # Explore a random species in detail