Datasets:
Upload dataset_viewer.py with huggingface_hub
Browse files- dataset_viewer.py +212 -152
dataset_viewer.py
CHANGED
@@ -1,155 +1,215 @@
|
|
1 |
-
|
2 |
-
|
3 |
-
|
4 |
-
|
5 |
-
language:
|
6 |
-
- en
|
7 |
-
tags:
|
8 |
-
- biology
|
9 |
-
- ecology
|
10 |
-
- plants
|
11 |
-
- embeddings
|
12 |
-
- florida
|
13 |
-
- biodiversity
|
14 |
-
pretty_name: Central Florida Native Plants Language Embeddings
|
15 |
-
size_categories:
|
16 |
-
- n<1K
|
17 |
-
---
|
18 |
|
19 |
-
|
20 |
-
|
21 |
-
This dataset contains language embeddings for 232 native plant species from Central Florida, extracted using the DeepSeek-V3 language model.
|
22 |
-
|
23 |
-
## Dataset Description
|
24 |
-
|
25 |
-
- **Curated by:** DeepEarth Project
|
26 |
-
- **Language(s):** English
|
27 |
-
- **License:** CC-BY-4.0
|
28 |
-
|
29 |
-
### Dataset Summary
|
30 |
-
|
31 |
-
This dataset provides pre-computed language embeddings for Central Florida plant species. Each species has been encoded using the prompt "Ecophysiology of {species_name}:" to capture semantic information about the plant's ecological characteristics.
|
32 |
-
|
33 |
-
## Dataset Structure
|
34 |
-
|
35 |
-
### Data Instances
|
36 |
-
|
37 |
-
Each species is represented by:
|
38 |
-
- A PyTorch file (`.pt`) containing a dictionary with embeddings and metadata
|
39 |
-
- A CSV file containing the token mappings
|
40 |
-
|
41 |
-
### Embedding File Structure
|
42 |
-
|
43 |
-
Each `.pt` file contains a dictionary with:
|
44 |
-
- `mean_embedding`: Tensor of shape `[7168]` - mean-pooled embedding across all tokens
|
45 |
-
- `token_embeddings`: Tensor of shape `[num_tokens, 7168]` - individual token embeddings
|
46 |
-
- `species_name`: String - the species name
|
47 |
-
- `taxon_id`: String - GBIF taxon ID
|
48 |
-
- `num_tokens`: Integer - number of tokens (typically 18-20)
|
49 |
-
- `embedding_stats`: Dictionary with embedding statistics
|
50 |
-
- `timestamp`: String - when the embedding was created
|
51 |
-
|
52 |
-
### Token Mapping Structure
|
53 |
-
|
54 |
-
Token mapping CSV files contain:
|
55 |
-
- `position`: Token position in sequence
|
56 |
-
- `token_id`: Token ID in model vocabulary
|
57 |
-
- `token`: Token string representation
|
58 |
-
|
59 |
-
### Data Splits
|
60 |
-
|
61 |
-
This dataset contains a single split with embeddings for all 232 species.
|
62 |
-
|
63 |
-
## Dataset Creation
|
64 |
-
|
65 |
-
### Model Information
|
66 |
-
|
67 |
-
- **Model**: DeepSeek-V3-0324-UD-Q4_K_XL
|
68 |
-
- **Parameters**: 671B (4.5-bit quantized GGUF format)
|
69 |
-
- **Embedding Dimension**: 7168
|
70 |
-
- **Context**: 2048 tokens
|
71 |
-
- **Prompt Template**: "Ecophysiology of {species_name}:"
|
72 |
-
|
73 |
-
### Source Data
|
74 |
-
|
75 |
-
Species names are based on GBIF (Global Biodiversity Information Facility) taxonomy for plants native to Central Florida.
|
76 |
-
|
77 |
-
## Usage
|
78 |
-
|
79 |
-
### Loading Embeddings
|
80 |
-
|
81 |
-
```python
|
82 |
import torch
|
83 |
import pandas as pd
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
)
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
token_path =
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
)
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
}
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
-
|
155 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python3
|
2 |
+
"""
|
3 |
+
Dataset viewer for Central Florida Native Plants embeddings
|
4 |
+
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
5 |
|
6 |
+
import os
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
7 |
import torch
|
8 |
import pandas as pd
|
9 |
+
import numpy as np
|
10 |
+
from pathlib import Path
|
11 |
+
|
12 |
+
def load_species_list():
|
13 |
+
"""Load list of species from embeddings directory"""
|
14 |
+
embeddings_dir = Path(__file__).parent / "embeddings"
|
15 |
+
if not embeddings_dir.exists():
|
16 |
+
print("Error: embeddings directory not found. Please run download_dataset.sh first.")
|
17 |
+
return []
|
18 |
+
|
19 |
+
species_ids = []
|
20 |
+
for file in sorted(embeddings_dir.glob("*.pt")):
|
21 |
+
species_id = file.stem
|
22 |
+
species_ids.append(species_id)
|
23 |
+
|
24 |
+
return species_ids
|
25 |
+
|
26 |
+
def load_embedding(species_id):
|
27 |
+
"""Load embedding for a specific species"""
|
28 |
+
embedding_path = Path(__file__).parent / "embeddings" / f"{species_id}.pt"
|
29 |
+
if not embedding_path.exists():
|
30 |
+
return None
|
31 |
+
return torch.load(embedding_path)
|
32 |
+
|
33 |
+
def load_tokens(species_id):
|
34 |
+
"""Load token mapping for a specific species"""
|
35 |
+
token_path = Path(__file__).parent / "tokens" / f"{species_id}.csv"
|
36 |
+
if not token_path.exists():
|
37 |
+
return None
|
38 |
+
return pd.read_csv(token_path)
|
39 |
+
|
40 |
+
def analyze_dataset():
|
41 |
+
"""Analyze the dataset and print summary statistics"""
|
42 |
+
species_ids = load_species_list()
|
43 |
+
|
44 |
+
print(f"Total species: {len(species_ids)}")
|
45 |
+
print("\nFirst 10 species IDs:")
|
46 |
+
for i, species_id in enumerate(species_ids[:10]):
|
47 |
+
print(f" {i+1}. {species_id}")
|
48 |
+
|
49 |
+
if species_ids:
|
50 |
+
# Analyze first species as example
|
51 |
+
example_id = species_ids[0]
|
52 |
+
data = load_embedding(example_id)
|
53 |
+
tokens = load_tokens(example_id)
|
54 |
+
|
55 |
+
print(f"\nExample species: {example_id}")
|
56 |
+
print(f"Species name: {data['species_name']}")
|
57 |
+
print(f"Taxon ID: {data['taxon_id']}")
|
58 |
+
print(f"Number of tokens: {data['num_tokens']}")
|
59 |
+
|
60 |
+
# Mean embedding info
|
61 |
+
mean_emb = data['mean_embedding']
|
62 |
+
print(f"\nMean embedding:")
|
63 |
+
print(f" Shape: {mean_emb.shape}")
|
64 |
+
print(f" Dtype: {mean_emb.dtype}")
|
65 |
+
print(f" Min/Max: {mean_emb.min():.4f} / {mean_emb.max():.4f}")
|
66 |
+
print(f" Mean/Std: {mean_emb.mean():.4f} / {mean_emb.std():.4f}")
|
67 |
+
|
68 |
+
# Show first 10 and last 10 values of mean embedding
|
69 |
+
print(f"\n First 10 values: {mean_emb[:10].numpy()}")
|
70 |
+
print(f" Last 10 values: {mean_emb[-10:].numpy()}")
|
71 |
+
|
72 |
+
# Token embeddings info
|
73 |
+
token_embs = data['token_embeddings']
|
74 |
+
print(f"\nToken embeddings:")
|
75 |
+
print(f" Shape: {token_embs.shape}")
|
76 |
+
print(f" Per-token dimension: {token_embs.shape[1]}")
|
77 |
+
|
78 |
+
# Show embedding values for first token
|
79 |
+
print(f"\n First token embedding (first 10 dims): {token_embs[0, :10].numpy()}")
|
80 |
+
print(f" First token embedding (last 10 dims): {token_embs[0, -10:].numpy()}")
|
81 |
+
|
82 |
+
# Show embedding statistics
|
83 |
+
print(f"\n Token embeddings statistics:")
|
84 |
+
print(f" Min/Max across all: {token_embs.min():.4f} / {token_embs.max():.4f}")
|
85 |
+
print(f" Mean/Std across all: {token_embs.mean():.4f} / {token_embs.std():.4f}")
|
86 |
+
|
87 |
+
if tokens is not None:
|
88 |
+
print(f"\nToken information:")
|
89 |
+
print(f"Number of tokens in CSV: {len(tokens)}")
|
90 |
+
print("\nFirst 5 tokens:")
|
91 |
+
print(tokens.head())
|
92 |
+
|
93 |
+
# Reconstruct text
|
94 |
+
text = ''.join(tokens['token'].tolist())
|
95 |
+
print(f"\nReconstructed text: {text}")
|
96 |
+
|
97 |
+
def compute_similarity_matrix(n_samples=10):
|
98 |
+
"""Compute pairwise cosine similarities between species using mean embeddings"""
|
99 |
+
species_ids = load_species_list()[:n_samples]
|
100 |
+
|
101 |
+
embeddings = []
|
102 |
+
species_names = []
|
103 |
+
for species_id in species_ids:
|
104 |
+
data = load_embedding(species_id)
|
105 |
+
if data is not None:
|
106 |
+
embeddings.append(data['mean_embedding'].numpy())
|
107 |
+
species_names.append(data['species_name'])
|
108 |
+
|
109 |
+
if len(embeddings) < 2:
|
110 |
+
print("Not enough embeddings to compute similarities")
|
111 |
+
return
|
112 |
+
|
113 |
+
# Stack embeddings
|
114 |
+
embeddings = np.stack(embeddings)
|
115 |
+
|
116 |
+
# Normalize embeddings
|
117 |
+
norms = np.linalg.norm(embeddings, axis=1, keepdims=True)
|
118 |
+
normalized = embeddings / norms
|
119 |
+
|
120 |
+
# Compute cosine similarity matrix
|
121 |
+
similarity_matrix = normalized @ normalized.T
|
122 |
+
|
123 |
+
print(f"\nCosine similarity matrix ({n_samples}x{n_samples}):")
|
124 |
+
print("Species:", species_names)
|
125 |
+
print("\nSimilarity matrix (first 5x5):")
|
126 |
+
print(similarity_matrix[:5, :5])
|
127 |
+
|
128 |
+
# Find most similar pairs
|
129 |
+
mask = np.triu(np.ones_like(similarity_matrix), k=1).astype(bool)
|
130 |
+
similarities = similarity_matrix[mask]
|
131 |
+
indices = np.argwhere(mask)
|
132 |
+
|
133 |
+
sorted_idx = np.argsort(similarities)[::-1]
|
134 |
+
print(f"\nMost similar pairs:")
|
135 |
+
for i in range(min(5, len(sorted_idx))):
|
136 |
+
idx = sorted_idx[i]
|
137 |
+
i1, i2 = indices[idx]
|
138 |
+
sim = similarities[idx]
|
139 |
+
print(f" {species_names[i1]} - {species_names[i2]}: {sim:.4f}")
|
140 |
+
|
141 |
+
def explore_species(species_id=None):
|
142 |
+
"""Explore a specific species' embeddings in detail"""
|
143 |
+
species_ids = load_species_list()
|
144 |
+
|
145 |
+
if species_id is None:
|
146 |
+
# Pick a random species
|
147 |
+
import random
|
148 |
+
species_id = random.choice(species_ids)
|
149 |
+
|
150 |
+
if species_id not in species_ids:
|
151 |
+
print(f"Species ID {species_id} not found in dataset")
|
152 |
+
return
|
153 |
+
|
154 |
+
data = load_embedding(species_id)
|
155 |
+
tokens = load_tokens(species_id)
|
156 |
+
|
157 |
+
print(f"\nDetailed exploration of species: {species_id}")
|
158 |
+
print("=" * 60)
|
159 |
+
print(f"Species name: {data['species_name']}")
|
160 |
+
print(f"Taxon ID: {data['taxon_id']}")
|
161 |
+
print(f"Timestamp: {data.get('timestamp', 'N/A')}")
|
162 |
+
|
163 |
+
# Mean embedding analysis
|
164 |
+
mean_emb = data['mean_embedding']
|
165 |
+
print(f"\nMean Embedding Analysis:")
|
166 |
+
print(f" Dimension: {mean_emb.shape[0]}")
|
167 |
+
print(f" Norm (L2): {torch.norm(mean_emb).item():.4f}")
|
168 |
+
print(f" Top 5 positive values: {torch.topk(mean_emb, 5).values.numpy()}")
|
169 |
+
print(f" Top 5 negative values: {torch.topk(-mean_emb, 5).values.numpy() * -1}")
|
170 |
+
|
171 |
+
# Embedding statistics from stored data
|
172 |
+
if 'embedding_stats' in data:
|
173 |
+
stats = data['embedding_stats']
|
174 |
+
print(f"\nStored embedding statistics:")
|
175 |
+
for key, value in stats.items():
|
176 |
+
if isinstance(value, (int, float)):
|
177 |
+
print(f" {key}: {value:.4f}" if isinstance(value, float) else f" {key}: {value}")
|
178 |
+
|
179 |
+
# Token-level analysis
|
180 |
+
token_embs = data['token_embeddings']
|
181 |
+
print(f"\nToken-level Analysis:")
|
182 |
+
print(f" Number of tokens: {token_embs.shape[0]}")
|
183 |
+
print(f" Embedding dimension per token: {token_embs.shape[1]}")
|
184 |
+
|
185 |
+
if tokens is not None and len(tokens) > 0:
|
186 |
+
print(f"\nToken Details:")
|
187 |
+
for idx, row in tokens.iterrows():
|
188 |
+
if idx < 5: # Show first 5 tokens
|
189 |
+
token_emb = token_embs[idx]
|
190 |
+
print(f" Token {idx}: '{row['token']}' (ID: {row['token_id']})")
|
191 |
+
print(f" Norm: {torch.norm(token_emb).item():.4f}")
|
192 |
+
print(f" Mean: {token_emb.mean().item():.4f}, Std: {token_emb.std().item():.4f}")
|
193 |
+
print(f" First 5 dims: {token_emb[:5].numpy()}")
|
194 |
+
|
195 |
+
# Variance analysis across dimensions
|
196 |
+
print(f"\nDimensional Variance Analysis:")
|
197 |
+
dim_vars = mean_emb.var()
|
198 |
+
print(f" Overall variance: {dim_vars:.6f}")
|
199 |
+
|
200 |
+
# Find most variable dimensions
|
201 |
+
token_vars = token_embs.var(dim=0) # Variance across tokens for each dimension
|
202 |
+
top_var_dims = torch.topk(token_vars, 10).indices
|
203 |
+
print(f" Top 10 most variable dimensions across tokens: {top_var_dims.numpy()}")
|
204 |
+
|
205 |
+
return data, tokens
|
206 |
+
|
207 |
+
if __name__ == "__main__":
|
208 |
+
print("Central Florida Native Plants Dataset Viewer")
|
209 |
+
print("=" * 50)
|
210 |
+
|
211 |
+
analyze_dataset()
|
212 |
+
print("\n" + "=" * 50)
|
213 |
+
compute_similarity_matrix(n_samples=10)
|
214 |
+
print("\n" + "=" * 50)
|
215 |
+
explore_species() # Explore a random species in detail
|