Datasets:
license: mit
task_categories:
- image-classification
- feature-extraction
- zero-shot-classification
language:
- en
tags:
- biodiversity
- biology
- computer-vision
- multimodal
- self-supervised-learning
- florida
- plants
pretty_name: DeepEarth Central Florida Native Plants
size_categories:
- 10K<n<100K
configs:
- config_name: default
data_files:
- split: train
path: observations.parquet
- split: test
path: observations.parquet
DeepEarth Central Florida Native Plants Dataset v0.2.0
πΏ Dataset Summary
A comprehensive multimodal dataset featuring 33,665 observations of 232 native plant species from Central Florida. This dataset combines citizen science observations with state-of-the-art vision and language embeddings for advancing multimodal self-supervised ecological intelligence research.
Key Features
- π Spatiotemporal Coverage: Complete GPS coordinates and timestamps for all observations
- πΌοΈ Multimodal: 31,136 observations with images, 7,113 with vision embeddings
- 𧬠Language Embeddings: DeepSeek-V3 embeddings for all 232 species
- ποΈ Vision Embeddings: V-JEPA-2 self-supervised features (6.5M dimensions)
- π Rigorous Splits: Spatiotemporal train/test splits for robust evaluation
π¦ Dataset Structure
observations.parquet # Main dataset (500MB)
vision_index.parquet # Vision embeddings index
vision_embeddings/ # Vision features (50GB total)
βββ embeddings_000000.parquet
βββ embeddings_000001.parquet
βββ ... (159 files)
π Quick Start
from datasets import load_dataset
import pandas as pd
# Load main dataset
dataset = load_dataset("deepearth/central-florida-plants")
# Access data
train_data = dataset['train']
print(f"Training samples: {len(train_data)}")
print(f"Features: {train_data.features}")
# Load vision embeddings (download required due to size)
vision_index = pd.read_parquet("vision_index.parquet")
vision_data = pd.read_parquet("vision_embeddings/embeddings_000000.parquet")
π Data Fields
Each observation contains:
Field | Type | Description |
---|---|---|
gbif_id |
int64 | Unique GBIF occurrence ID |
taxon_id |
string | GBIF taxon ID |
taxon_name |
string | Scientific species name |
latitude |
float | GPS latitude |
longitude |
float | GPS longitude |
year |
int | Observation year |
month |
int | Observation month |
day |
int | Observation day |
hour |
int | Observation hour (nullable) |
minute |
int | Observation minute (nullable) |
second |
int | Observation second (nullable) |
image_urls |
List[string] | URLs to observation images |
num_images |
int | Relative image number in GBIF occurrence |
has_vision |
bool | Vision embeddings available |
vision_file_indices |
List[int] | Indices to vision files |
language_embedding |
List[float] | 7,168-dim DeepSeek-V3 embedding |
split |
string | train/spatial_test/temporal_test |
π Data Splits
The dataset uses rigorous spatiotemporal splits:
{ "train": 30935, "temporal_test": 2730 }
- Temporal Test: All 2025 observations (future generalization)
- Spatial Test: 5 non-overlapping geographic regions
- Train: Remaining observations
π€ Embeddings
Language Embeddings (DeepSeek-V3)
- Dimensions: 7,168
- Source: Scientific species descriptions
- Coverage: All 232 species
Vision Embeddings (V-JEPA-2)
- Dimensions: 6,488,064 values per embedding
- Structure: 8 temporal frames Γ 24Γ24 spatial patches Γ 1408 features
- Model: Vision Transformer Giant with self-supervised pretraining
- Coverage: 7,113 images
- Storage: Flattened arrays in parquet files (use provided utilities to reshape)
π‘ Usage Examples
Working with V-JEPA 2 Embeddings
import numpy as np
import ast
# Load vision embedding
vision_df = pd.read_parquet("vision_embeddings/embeddings_000000.parquet")
row = vision_df.iloc[0]
# Reshape from flattened to 4D structure
embedding = row['embedding']
original_shape = ast.literal_eval(row['original_shape']) # [4608, 1408]
# First to 2D: (4608 patches, 1408 features)
embedding_2d = embedding.reshape(original_shape)
# Then to 4D: (8 temporal, 24 height, 24 width, 1408 features)
embedding_4d = embedding_2d.reshape(8, 24, 24, 1408)
# Get specific temporal frame (0-7)
frame_0 = embedding_4d[0] # Shape: (24, 24, 1408)
# Get mean embedding for image-level tasks
image_embedding = embedding_4d.mean(axis=(0, 1, 2)) # Shape: (1408,)
Species Distribution Modeling
# Filter observations for a specific species
species_data = dataset.filter(lambda x: x['taxon_name'] == 'Quercus virginiana')
# Use spatiotemporal data for distribution modeling
coords = [(d['latitude'], d['longitude']) for d in species_data]
Multimodal Learning
# Combine vision and language embeddings
for sample in dataset:
if sample['has_vision']:
lang_emb = sample['language_embedding']
vision_idx = sample['vision_file_indices'][0]
# Load corresponding vision embedding
vision_emb = load_vision_embedding(vision_idx)
Zero-shot Species Classification
# Use language embeddings for zero-shot classification
species_embeddings = {
species['taxon_name']: species['language_embedding']
for species in dataset.unique('taxon_name')
}
π License
This dataset is released under the MIT License.
π Citation
If you use this dataset, please cite:
@dataset{deepearth_cf_plants_2024,
title={DeepEarth Central Florida Native Plants: A Multimodal Biodiversity Dataset},
author={DeepEarth Team},
year={2024},
version={0.2.0},
publisher={Hugging Face},
url={https://huggingface.co/datasets/deepearth/central-florida-plants}
}
π Acknowledgments
We thank all citizen scientists who contributed observations through iNaturalist and GBIF. This dataset was created as part of the DeepEarth initiative for multimodal self-supervised ecological intelligence research.
π Related Resources
π Dataset Statistics
- Total Size: ~51 GB
- Main Dataset: 500 MB
- Vision Embeddings: 50 GB
- Image URLs: 31,136 total images referenced
- Temporal Range: 2019-2025
- Geographic Scope: Central Florida, USA
Dataset prepared by the DeepEarth team for advancing multimodal self-supervised ecological intelligence research.