Datasets:
File size: 6,743 Bytes
48848ab 65bd8a2 48848ab 65bd8a2 48848ab 65bd8a2 48848ab 65bd8a2 48848ab 65bd8a2 48848ab 65bd8a2 48848ab 65bd8a2 48848ab 65bd8a2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 |
---
license: mit
task_categories:
- image-classification
- feature-extraction
- zero-shot-classification
language:
- en
tags:
- biodiversity
- biology
- computer-vision
- multimodal
- self-supervised-learning
- florida
- plants
pretty_name: DeepEarth Central Florida Native Plants
size_categories:
- 10K<n<100K
configs:
- config_name: default
data_files:
- split: train
path: observations.parquet
- split: test
path: observations.parquet
---
# DeepEarth Central Florida Native Plants Dataset v0.2.0
## πΏ Dataset Summary
A comprehensive multimodal dataset featuring **33,665 observations** of **232 native plant species** from Central Florida. This dataset combines citizen science observations with state-of-the-art vision and language embeddings for advancing multimodal self-supervised ecological intelligence research.
### Key Features
- π **Spatiotemporal Coverage**: Complete GPS coordinates and timestamps for all observations
- πΌοΈ **Multimodal**: 31,136 observations with images, 7,113 with vision embeddings
- 𧬠**Language Embeddings**: DeepSeek-V3 embeddings for all 232 species
- ποΈ **Vision Embeddings**: V-JEPA-2 self-supervised features (6.5M dimensions)
- π **Rigorous Splits**: Spatiotemporal train/test splits for robust evaluation
## π¦ Dataset Structure
```
observations.parquet # Main dataset (500MB)
vision_index.parquet # Vision embeddings index
vision_embeddings/ # Vision features (50GB total)
βββ embeddings_000000.parquet
βββ embeddings_000001.parquet
βββ ... (159 files)
```
## π Quick Start
```python
from datasets import load_dataset
import pandas as pd
# Load main dataset
dataset = load_dataset("deepearth/central-florida-plants")
# Access data
train_data = dataset['train']
print(f"Training samples: {len(train_data)}")
print(f"Features: {train_data.features}")
# Load vision embeddings (download required due to size)
vision_index = pd.read_parquet("vision_index.parquet")
vision_data = pd.read_parquet("vision_embeddings/embeddings_000000.parquet")
```
## π Data Fields
Each observation contains:
| Field | Type | Description |
|-------|------|-------------|
| `gbif_id` | int64 | Unique GBIF occurrence ID |
| `taxon_id` | string | GBIF taxon ID |
| `taxon_name` | string | Scientific species name |
| `latitude` | float | GPS latitude |
| `longitude` | float | GPS longitude |
| `year` | int | Observation year |
| `month` | int | Observation month |
| `day` | int | Observation day |
| `hour` | int | Observation hour (nullable) |
| `minute` | int | Observation minute (nullable) |
| `second` | int | Observation second (nullable) |
| `image_urls` | List[string] | URLs to observation images |
| `num_images` | int | Relative image number in GBIF occurrence |
| `has_vision` | bool | Vision embeddings available |
| `vision_file_indices` | List[int] | Indices to vision files |
| `language_embedding` | List[float] | 7,168-dim DeepSeek-V3 embedding |
| `split` | string | train/spatial_test/temporal_test |
## π Data Splits
The dataset uses rigorous spatiotemporal splits:
{
"train": 30935,
"temporal_test": 2730
}
- **Temporal Test**: All 2025 observations (future generalization)
- **Spatial Test**: 5 non-overlapping geographic regions
- **Train**: Remaining observations
## π€ Embeddings
### Language Embeddings (DeepSeek-V3)
- **Dimensions**: 7,168
- **Source**: Scientific species descriptions
- **Coverage**: All 232 species
### Vision Embeddings (V-JEPA-2)
- **Dimensions**: 6,488,064 values per embedding
- **Structure**: 8 temporal frames Γ 24Γ24 spatial patches Γ 1408 features
- **Model**: Vision Transformer Giant with self-supervised pretraining
- **Coverage**: 7,113 images
- **Storage**: Flattened arrays in parquet files (use provided utilities to reshape)
## π‘ Usage Examples
### Working with V-JEPA 2 Embeddings
```python
import numpy as np
import ast
# Load vision embedding
vision_df = pd.read_parquet("vision_embeddings/embeddings_000000.parquet")
row = vision_df.iloc[0]
# Reshape from flattened to 4D structure
embedding = row['embedding']
original_shape = ast.literal_eval(row['original_shape']) # [4608, 1408]
# First to 2D: (4608 patches, 1408 features)
embedding_2d = embedding.reshape(original_shape)
# Then to 4D: (8 temporal, 24 height, 24 width, 1408 features)
embedding_4d = embedding_2d.reshape(8, 24, 24, 1408)
# Get specific temporal frame (0-7)
frame_0 = embedding_4d[0] # Shape: (24, 24, 1408)
# Get mean embedding for image-level tasks
image_embedding = embedding_4d.mean(axis=(0, 1, 2)) # Shape: (1408,)
```
### Species Distribution Modeling
```python
# Filter observations for a specific species
species_data = dataset.filter(lambda x: x['taxon_name'] == 'Quercus virginiana')
# Use spatiotemporal data for distribution modeling
coords = [(d['latitude'], d['longitude']) for d in species_data]
```
### Multimodal Learning
```python
# Combine vision and language embeddings
for sample in dataset:
if sample['has_vision']:
lang_emb = sample['language_embedding']
vision_idx = sample['vision_file_indices'][0]
# Load corresponding vision embedding
vision_emb = load_vision_embedding(vision_idx)
```
### Zero-shot Species Classification
```python
# Use language embeddings for zero-shot classification
species_embeddings = {
species['taxon_name']: species['language_embedding']
for species in dataset.unique('taxon_name')
}
```
## π License
This dataset is released under the **MIT License**.
## π Citation
If you use this dataset, please cite:
```bibtex
@dataset{deepearth_cf_plants_2024,
title={DeepEarth Central Florida Native Plants: A Multimodal Biodiversity Dataset},
author={DeepEarth Team},
year={2024},
version={0.2.0},
publisher={Hugging Face},
url={https://huggingface.co/datasets/deepearth/central-florida-plants}
}
```
## π Acknowledgments
We thank all citizen scientists who contributed observations through iNaturalist and GBIF. This dataset was created as part of the DeepEarth initiative for multimodal self-supervised ecological intelligence research.
## π Related Resources
- [DeepEarth Project](https://github.com/deepearth)
- [V-JEPA Model](https://ai.meta.com/vjepa/)
- [DeepSeek-V3](https://github.com/deepseek-ai/DeepSeek-V3)
- [GBIF Portal](https://www.gbif.org)
## π Dataset Statistics
- **Total Size**: ~51 GB
- **Main Dataset**: 500 MB
- **Vision Embeddings**: 50 GB
- **Image URLs**: 31,136 total images referenced
- **Temporal Range**: 2019-2025
- **Geographic Scope**: Central Florida, USA
---
*Dataset prepared by the DeepEarth team for advancing multimodal self-supervised ecological intelligence research.*
|