image
image | page_id
string | expressions
sequence |
---|---|---|
0001213_page17 | {
"latex": [
"$(p-2)$",
"$au>>1$",
"$u$",
"$u_0$",
"$p$",
"$\\delta N_{p-2}$",
"$(p-2)$",
"$\\delta N_p$",
"$p$",
"$\\delta N_p$",
"$p$",
"$\\delta N_{p-2}$",
"$(p-2)$",
"\\begin {equation} S_{p-2}=-\\frac {V_{p-2}}{(2\\pi )^{p-2}\\tilde {g}}\\int d\\tau \\left (\\frac {u}{R}\\right )^{7-p}\\left [ \\sqrt {\\frac {1+(au)^{7-p}}{(au)^{7-p}}}\\sqrt {\\tilde {f}}-1 +\\frac {u_0^{7-p}}{2u^{7-p}}\\right ]. \\end {equation}",
"\\begin {equation} S_{p-2}= -\\frac {V_{p-2}}{(2\\pi )^{p-2}\\tilde {g}}\\int d\\tau \\left (\\frac {u}{R}\\right )^{7-p}\\left [ \\sqrt { \\tilde {f}}-1 +\\frac {u_0^{7-p}}{2u^{7-p}}\\right ]. \\end {equation}",
"\\begin {equation} F_{p-2}= -\\frac {V_{p-2}}{(2\\pi )^{p-2}\\tilde {g}} \\left (\\frac {u}{R}\\right )^{7-p}\\left [ \\sqrt { \\tilde {f}}-1 +\\frac {u_0^{7-p}}{2u^{7-p}}\\right ]. \\end {equation}",
"\\begin {eqnarray} F_{p-2}|_{u=u_0} &=&-\\frac {V_{p-2}}{2(2\\pi )^{p-2}\\tilde {g}} \\left (\\frac {u_0}{R} \\right )^{7-p} \\\\ &=& -\\frac {V_{p-2}}{2(2\\pi )^{p-2}\\tilde {g}} \\left (\\frac {4\\pi RT}{7-p}\\right )^{\\frac {2(7-p)}{5-p}}. \\end {eqnarray}",
"\\begin {equation} \\label {3e18} \\frac {\\delta N_{p-2}}{\\delta N_p}= \\frac {\\tilde {V}_2}{(2\\pi )^2 \\tilde {b}}, \\end {equation}",
"\\begin {equation} F_{p-2}|_{u=u_0}=\\frac {dF}{dN_{p-2}}\\delta N_{p-2}, \\end {equation}"
],
"latex_norm": [
"$ ( p - 2 ) $",
"$ a u > > 1 $",
"$ u $",
"$ u _ { 0 } $",
"$ p $",
"$ \\delta N _ { p - 2 } $",
"$ ( p - 2 ) $",
"$ \\delta N _ { p } $",
"$ p $",
"$ \\delta N _ { p } $",
"$ p $",
"$ \\delta N _ { p - 2 } $",
"$ ( p - 2 ) $",
"\\begin{equation*} S _ { p - 2 } = - \\frac { V _ { p - 2 } } { ( 2 \\pi ) ^ { p - 2 } \\widetilde { g } } \\int d \\tau { ( \\frac { u } { R } ) } ^ { 7 - p } [ \\sqrt { \\frac { 1 + ( a u ) ^ { 7 - p } } { ( a u ) ^ { 7 - p } } } \\sqrt { \\widetilde { f } } - 1 + \\frac { u _ { 0 } ^ { 7 - p } } { 2 u ^ { 7 - p } } ] . \\end{equation*}",
"\\begin{equation*} S _ { p - 2 } = - \\frac { V _ { p - 2 } } { ( 2 \\pi ) ^ { p - 2 } \\widetilde { g } } \\int d \\tau { ( \\frac { u } { R } ) } ^ { 7 - p } [ \\sqrt { \\widetilde { f } } - 1 + \\frac { u _ { 0 } ^ { 7 - p } } { 2 u ^ { 7 - p } } ] . \\end{equation*}",
"\\begin{equation*} F _ { p - 2 } = - \\frac { V _ { p - 2 } } { ( 2 \\pi ) ^ { p - 2 } \\widetilde { g } } { ( \\frac { u } { R } ) } ^ { 7 - p } [ \\sqrt { \\widetilde { f } } - 1 + \\frac { u _ { 0 } ^ { 7 - p } } { 2 u ^ { 7 - p } } ] . \\end{equation*}",
"\\begin{align*} F _ { p - 2 } \\vert _ { u = u _ { 0 } } & = & - \\frac { V _ { p - 2 } } { 2 ( 2 \\pi ) ^ { p - 2 } \\widetilde { g } } { ( \\frac { u _ { 0 } } { R } ) } ^ { 7 - p } \\\\ & = & - \\frac { V _ { p - 2 } } { 2 ( 2 \\pi ) ^ { p - 2 } \\widetilde { g } } { ( \\frac { 4 \\pi R T } { 7 - p } ) } ^ { \\frac { 2 ( 7 - p ) } { 5 - p } } . \\end{align*}",
"\\begin{equation*} \\frac { \\delta N _ { p - 2 } } { \\delta N _ { p } } = \\frac { \\widetilde { V } _ { 2 } } { ( 2 \\pi ) ^ { 2 } \\widetilde { b } } , \\end{equation*}",
"\\begin{equation*} F _ { p - 2 } \\vert _ { u = u _ { 0 } } = \\frac { d F } { d N _ { p - 2 } } \\delta N _ { p - 2 } , \\end{equation*}"
],
"latex_expand": [
"$ ( \\mitp - 2 ) $",
"$ \\mita \\mitu > > 1 $",
"$ \\mitu $",
"$ \\mitu _ { 0 } $",
"$ \\mitp $",
"$ \\mitdelta \\mitN _ { \\mitp - 2 } $",
"$ ( \\mitp - 2 ) $",
"$ \\mitdelta \\mitN _ { \\mitp } $",
"$ \\mitp $",
"$ \\mitdelta \\mitN _ { \\mitp } $",
"$ \\mitp $",
"$ \\mitdelta \\mitN _ { \\mitp - 2 } $",
"$ ( \\mitp - 2 ) $",
"\\begin{equation*} \\mitS _ { \\mitp - 2 } = - \\frac { \\mitV _ { \\mitp - 2 } } { ( 2 \\mitpi ) ^ { \\mitp - 2 } \\tilde { \\mitg } } \\int \\mitd \\mittau { \\left( \\frac { \\mitu } { \\mitR } \\right) } ^ { 7 - \\mitp } \\left[ \\sqrt { \\frac { 1 + ( \\mita \\mitu ) ^ { 7 - \\mitp } } { ( \\mita \\mitu ) ^ { 7 - \\mitp } } } \\sqrt { \\tilde { \\mitf } } - 1 + \\frac { \\mitu _ { 0 } ^ { 7 - \\mitp } } { 2 \\mitu ^ { 7 - \\mitp } } \\right] . \\end{equation*}",
"\\begin{equation*} \\mitS _ { \\mitp - 2 } = - \\frac { \\mitV _ { \\mitp - 2 } } { ( 2 \\mitpi ) ^ { \\mitp - 2 } \\tilde { \\mitg } } \\int \\mitd \\mittau { \\left( \\frac { \\mitu } { \\mitR } \\right) } ^ { 7 - \\mitp } \\left[ \\sqrt { \\tilde { \\mitf } } - 1 + \\frac { \\mitu _ { 0 } ^ { 7 - \\mitp } } { 2 \\mitu ^ { 7 - \\mitp } } \\right] . \\end{equation*}",
"\\begin{equation*} \\mitF _ { \\mitp - 2 } = - \\frac { \\mitV _ { \\mitp - 2 } } { ( 2 \\mitpi ) ^ { \\mitp - 2 } \\tilde { \\mitg } } { \\left( \\frac { \\mitu } { \\mitR } \\right) } ^ { 7 - \\mitp } \\left[ \\sqrt { \\tilde { \\mitf } } - 1 + \\frac { \\mitu _ { 0 } ^ { 7 - \\mitp } } { 2 \\mitu ^ { 7 - \\mitp } } \\right] . \\end{equation*}",
"\\begin{align*} \\mitF _ { \\mitp - 2 } \\vert _ { \\mitu = \\mitu _ { 0 } } & = & - \\frac { \\mitV _ { \\mitp - 2 } } { 2 ( 2 \\mitpi ) ^ { \\mitp - 2 } \\tilde { \\mitg } } { \\left( \\frac { \\mitu _ { 0 } } { \\mitR } \\right) } ^ { 7 - \\mitp } \\\\ & = & - \\frac { \\mitV _ { \\mitp - 2 } } { 2 ( 2 \\mitpi ) ^ { \\mitp - 2 } \\tilde { \\mitg } } { \\left( \\frac { 4 \\mitpi \\mitR \\mitT } { 7 - \\mitp } \\right) } ^ { \\frac { 2 ( 7 - \\mitp ) } { 5 - \\mitp } } . \\end{align*}",
"\\begin{equation*} \\frac { \\mitdelta \\mitN _ { \\mitp - 2 } } { \\mitdelta \\mitN _ { \\mitp } } = \\frac { \\tilde { \\mitV } _ { 2 } } { ( 2 \\mitpi ) ^ { 2 } \\tilde { \\mitb } } , \\end{equation*}",
"\\begin{equation*} \\mitF _ { \\mitp - 2 } \\vert _ { \\mitu = \\mitu _ { 0 } } = \\frac { \\mitd \\mitF } { \\mitd \\mitN _ { \\mitp - 2 } } \\mitdelta \\mitN _ { \\mitp - 2 } , \\end{equation*}"
],
"x_min": [
0.4361000061035156,
0.1949000060558319,
0.6344000101089478,
0.25290000438690186,
0.8188999891281128,
0.28610000014305115,
0.36070001125335693,
0.6987000107765198,
0.13609999418258667,
0.2896000146865845,
0.4934000074863434,
0.14650000631809235,
0.2224999964237213,
0.19349999725818634,
0.2791999876499176,
0.30059999227523804,
0.3151000142097473,
0.4277999997138977,
0.390500009059906
],
"y_min": [
0.2061000019311905,
0.3140000104904175,
0.3905999958515167,
0.46480000019073486,
0.5824999809265137,
0.6269999742507935,
0.6259999871253967,
0.6269999742507935,
0.6547999978065491,
0.7827000021934509,
0.7860999703407288,
0.8065999746322632,
0.8057000041007996,
0.2290000021457672,
0.3345000147819519,
0.40869998931884766,
0.4794999957084656,
0.6615999937057495,
0.8417999744415283
],
"x_max": [
0.49619999527931213,
0.26820001006126404,
0.6460999846458435,
0.2728999853134155,
0.8292999863624573,
0.3379000127315521,
0.4242999851703644,
0.7325999736785889,
0.14650000631809235,
0.32350000739097595,
0.5037999749183655,
0.19830000400543213,
0.28610000014305115,
0.7635999917984009,
0.7276999950408936,
0.7056000232696533,
0.6897000074386597,
0.5756999850273132,
0.6129999756813049
],
"y_max": [
0.2206999957561493,
0.3237999975681305,
0.39739999175071716,
0.47360000014305115,
0.5922999978065491,
0.6416000127792358,
0.6410999894142151,
0.6412000060081482,
0.6640999913215637,
0.7968999743461609,
0.7958999872207642,
0.8212000131607056,
0.8208000063896179,
0.27730000019073486,
0.375,
0.44920000433921814,
0.5713000297546387,
0.7026000022888184,
0.8788999915122986
],
"expr_type": [
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"isolated",
"isolated",
"isolated",
"isolated",
"isolated",
"isolated"
]
} |
|
0001213_page18 | {
"latex": [
"$\\delta N_{p-2}=1$",
"$N_{p-2}>>1$",
"$(p-2)$",
"$(p-2)$",
"$p$",
"$N_{p-2}$",
"$(p-2)$",
"$B$",
"$p$",
"$N_p$",
"$p$",
"$B$",
"$(p-2)$",
"$p$",
"$p$",
"$\\tau =t$",
"$x_i$",
"$\\tau $",
"$p$",
"$\\tau $",
"$m_p=V_{p-2}\\tilde {V}_2/[(2\\pi )^p\\tilde {g}\\tilde {b}]$",
"\\begin {equation} F_{p-2}|_{u=u_0}\\approx F(N_{p-2}+1)-F(N_{p-2}). \\end {equation}",
"\\begin {equation} \\label {4e1} S_p=-\\frac {T_pV_p}{g\\cos \\theta } \\int d\\tau H^{-1}[\\sqrt {f-H(f^{-1}\\dot {r}^2 + r^2 \\dot {\\Omega }_{8-p}^2)}-1 + H_0 - H], \\end {equation}",
"\\begin {eqnarray} S_p =-m_p\\int d\\tau \\left (\\frac {u}{R}\\right )^{7-p}\\left [ \\sqrt {\\tilde {f} -\\left (\\frac {R}{u}\\right )^{7-p}\\left (\\tilde {f}^{-1} \\dot {u}^2 +u^2 \\dot {\\Omega }^2_{8-p}\\right )}-1 +\\frac {u_0^{7-p}}{2u^{7-p}}\\right ], \\end {eqnarray}",
"\\begin {equation} \\tilde {f}^{-1} du^2 +u^2 d\\Omega _{8-p}^2 = u^2 {\\rho }^{-2} (d{\\rho }^2 +{\\rho }^2 d\\Omega ^2_{8-p}), \\end {equation}"
],
"latex_norm": [
"$ \\delta N _ { p - 2 } = 1 $",
"$ N _ { p - 2 } > > 1 $",
"$ ( p - 2 ) $",
"$ ( p - 2 ) $",
"$ p $",
"$ N _ { p - 2 } $",
"$ ( p - 2 ) $",
"$ B $",
"$ p $",
"$ N _ { p } $",
"$ p $",
"$ B $",
"$ ( p - 2 ) $",
"$ p $",
"$ p $",
"$ \\tau = t $",
"$ x _ { i } $",
"$ \\tau $",
"$ p $",
"$ \\tau $",
"$ m _ { p } = V _ { p - 2 } \\widetilde { V } _ { 2 } \\slash [ ( 2 \\pi ) ^ { p } \\widetilde { g } \\widetilde { b } ] $",
"\\begin{equation*} F _ { p - 2 } \\vert _ { u = u _ { 0 } } \\approx F ( N _ { p - 2 } + 1 ) - F ( N _ { p - 2 } ) . \\end{equation*}",
"\\begin{equation*} S _ { p } = - \\frac { T _ { p } V _ { p } } { g \\operatorname { c o s } \\theta } \\int d \\tau H ^ { - 1 } [ \\sqrt { f - H ( f ^ { - 1 } \\dot { r } ^ { 2 } + r ^ { 2 } \\dot { \\Omega } _ { 8 - p } ^ { 2 } ) } - 1 + H _ { 0 } - H ] , \\end{equation*}",
"\\begin{equation*} S _ { p } = - m _ { p } \\int d \\tau { ( \\frac { u } { R } ) } ^ { 7 - p } [ \\sqrt { \\widetilde { f } - { ( \\frac { R } { u } ) } ^ { 7 - p } ( \\widetilde { f } ^ { - 1 } \\dot { u } ^ { 2 } + u ^ { 2 } \\dot { \\Omega } _ { 8 - p } ^ { 2 } ) } - 1 + \\frac { u _ { 0 } ^ { 7 - p } } { 2 u ^ { 7 - p } } ] , \\end{equation*}",
"\\begin{equation*} \\widetilde { f } ^ { - 1 } d u ^ { 2 } + u ^ { 2 } d \\Omega _ { 8 - p } ^ { 2 } = u ^ { 2 } \\rho ^ { - 2 } ( d \\rho ^ { 2 } + \\rho ^ { 2 } d \\Omega _ { 8 - p } ^ { 2 } ) , \\end{equation*}"
],
"latex_expand": [
"$ \\mitdelta \\mitN _ { \\mitp - 2 } = 1 $",
"$ \\mitN _ { \\mitp - 2 } > > 1 $",
"$ ( \\mitp - 2 ) $",
"$ ( \\mitp - 2 ) $",
"$ \\mitp $",
"$ \\mitN _ { \\mitp - 2 } $",
"$ ( \\mitp - 2 ) $",
"$ \\mitB $",
"$ \\mitp $",
"$ \\mitN _ { \\mitp } $",
"$ \\mitp $",
"$ \\mitB $",
"$ ( \\mitp - 2 ) $",
"$ \\mitp $",
"$ \\mitp $",
"$ \\mittau = \\mitt $",
"$ \\mitx _ { \\miti } $",
"$ \\mittau $",
"$ \\mitp $",
"$ \\mittau $",
"$ \\mitm _ { \\mitp } = \\mitV _ { \\mitp - 2 } \\tilde { \\mitV } _ { 2 } \\slash [ ( 2 \\mitpi ) ^ { \\mitp } \\tilde { \\mitg } \\tilde { \\mitb } ] $",
"\\begin{equation*} \\mitF _ { \\mitp - 2 } \\vert _ { \\mitu = \\mitu _ { 0 } } \\approx \\mitF ( \\mitN _ { \\mitp - 2 } + 1 ) - \\mitF ( \\mitN _ { \\mitp - 2 } ) . \\end{equation*}",
"\\begin{equation*} \\mitS _ { \\mitp } = - \\frac { \\mitT _ { \\mitp } \\mitV _ { \\mitp } } { \\mitg \\operatorname { c o s } \\mittheta } \\int \\mitd \\mittau \\mitH ^ { - 1 } [ \\sqrt { \\mitf - \\mitH ( \\mitf ^ { - 1 } \\dot { \\mitr } ^ { 2 } + \\mitr ^ { 2 } \\dot { \\mupOmega } _ { 8 - \\mitp } ^ { 2 } ) } - 1 + \\mitH _ { 0 } - \\mitH ] , \\end{equation*}",
"\\begin{equation*} \\mitS _ { \\mitp } = - \\mitm _ { \\mitp } \\int \\mitd \\mittau { \\left( \\frac { \\mitu } { \\mitR } \\right) } ^ { 7 - \\mitp } \\left[ \\sqrt { \\tilde { \\mitf } - { \\left( \\frac { \\mitR } { \\mitu } \\right) } ^ { 7 - \\mitp } \\left( \\tilde { \\mitf } ^ { - 1 } \\dot { \\mitu } ^ { 2 } + \\mitu ^ { 2 } \\dot { \\mupOmega } _ { 8 - \\mitp } ^ { 2 } \\right) } - 1 + \\frac { \\mitu _ { 0 } ^ { 7 - \\mitp } } { 2 \\mitu ^ { 7 - \\mitp } } \\right] , \\end{equation*}",
"\\begin{equation*} \\tilde { \\mitf } ^ { - 1 } \\mitd \\mitu ^ { 2 } + \\mitu ^ { 2 } \\mitd \\mupOmega _ { 8 - \\mitp } ^ { 2 } = \\mitu ^ { 2 } \\mitrho ^ { - 2 } ( \\mitd \\mitrho ^ { 2 } + \\mitrho ^ { 2 } \\mitd \\mupOmega _ { 8 - \\mitp } ^ { 2 } ) , \\end{equation*}"
],
"x_min": [
0.16590000689029694,
0.3248000144958496,
0.5583999752998352,
0.20319999754428864,
0.2840000092983246,
0.4546999931335449,
0.6101999878883362,
0.3441999852657318,
0.7200999855995178,
0.20180000364780426,
0.3407000005245209,
0.5708000063896179,
0.6945000290870667,
0.7822999954223633,
0.4643999934196472,
0.8285999894142151,
0.120899997651577,
0.1492999941110611,
0.7623000144958496,
0.6151000261306763,
0.1762000024318695,
0.3441999852657318,
0.22110000252723694,
0.16859999299049377,
0.3151000142097473
],
"y_min": [
0.1348000019788742,
0.1348000019788742,
0.21040000021457672,
0.23440000414848328,
0.23880000412464142,
0.2354000061750412,
0.23440000414848328,
0.25929999351501465,
0.2632000148296356,
0.2831999957561493,
0.2870999872684479,
0.2831999957561493,
0.3061999976634979,
0.3109999895095825,
0.5034000277519226,
0.5351999998092651,
0.5619999766349792,
0.5859000086784363,
0.5859000086784363,
0.6865000128746033,
0.7900000214576721,
0.1688999980688095,
0.6317999958992004,
0.7265999913215637,
0.8345000147819519
],
"x_max": [
0.25369998812675476,
0.4187999963760376,
0.6205999851226807,
0.25850000977516174,
0.29440000653266907,
0.4968999922275543,
0.6661999821662903,
0.36010000109672546,
0.7311999797821045,
0.22599999606609344,
0.35109999775886536,
0.5874000191688538,
0.755299985408783,
0.7926999926567078,
0.47679999470710754,
0.8784000277519226,
0.13819999992847443,
0.16040000319480896,
0.7734000086784363,
0.6262000203132629,
0.36970001459121704,
0.6635000109672546,
0.7822999954223633,
0.802299976348877,
0.6890000104904175
],
"y_max": [
0.149399995803833,
0.149399995803833,
0.22499999403953552,
0.24950000643730164,
0.24860000610351562,
0.24959999322891235,
0.24899999797344208,
0.2696000039577484,
0.27250000834465027,
0.2978000044822693,
0.2964000105857849,
0.2939000129699707,
0.3212999999523163,
0.32030001282691956,
0.5145999789237976,
0.5444999933242798,
0.5708000063896179,
0.5927000045776367,
0.5952000021934509,
0.692799985408783,
0.8076000213623047,
0.1875,
0.6674000024795532,
0.777899980545044,
0.8569999933242798
],
"expr_type": [
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"isolated",
"isolated",
"isolated",
"isolated"
]
} |
|
0001213_page19 | {
"latex": [
"${\\cal V}$",
"$\\theta =0$",
"$p$",
"$B$",
"$p$",
"$B$",
"$p$",
"$p$",
"$v^4$",
"$p$",
"$p$",
"${\\cal V}(\\rho ,v)= \\lambda (v)\\rho ^{-(7-p)}$",
"$B$",
"$p$",
"$\\phi $",
"\\begin {equation} u^{7-p}=\\rho ^{7-p}\\left ( 1+\\frac {u_0^{7-p}}{4\\rho ^{7-p}} \\right )^2, \\end {equation}",
"\\begin {equation} \\tilde {f}^{-1}\\dot {u}^2 + u^2 \\dot {\\Omega }_{8-p}^2 \\equiv u^2{\\rho }^{-2}v^2. \\end {equation}",
"\\begin {equation} S_p =\\int d\\tau [\\frac {1}{2}m_p v^2 -{\\cal V}(\\rho ,v) +{\\cal O}(1/\\rho ^{2(7-p)})], \\end {equation}",
"\\begin {equation} \\label {4e7} {\\cal V}(\\rho , v)=-m_p\\frac {u_0^{7-p}}{\\rho ^{7-p}} \\left \\{ \\frac {9-p}{4(7-p)} v^2 +\\frac {1}{8}\\left [\\left (\\frac {u_0}{R}\\right )^{7-p} + \\left (\\frac {R}{u_0}\\right )^{7-p}v^4 \\right ] \\right \\} \\end {equation}",
"\\begin {equation} \\delta (\\rho ,v) =-\\int ^{\\infty }_0 d\\tau {\\cal V}[\\rho (\\tau ),v], \\ \\ \\ \\ \\rho ^2(\\tau ) =\\rho ^2 +v^2 \\tau ^2, \\end {equation}",
"\\begin {equation} \\delta (\\rho ,v) = -\\frac {B\\left (\\frac {1}{2}, \\frac {6-p}{2}\\right )} {2v \\rho ^{6-p}} \\lambda (v), \\end {equation}",
"\\begin {equation} L=\\frac {m_p u^2 \\dot {\\phi }}{ \\sqrt {\\tilde {f} -\\left (\\frac {R}{u}\\right )^{7-p} \\left (\\tilde {f}^{-1}\\dot {u}^2 +u^2\\dot {\\phi }^2\\right )} }. \\end {equation}"
],
"latex_norm": [
"$ V $",
"$ \\theta = 0 $",
"$ p $",
"$ B $",
"$ p $",
"$ B $",
"$ p $",
"$ p $",
"$ v ^ { 4 } $",
"$ p $",
"$ p $",
"$ V ( \\rho , v ) = \\lambda ( v ) \\rho ^ { - ( 7 - p ) } $",
"$ B $",
"$ p $",
"$ \\phi $",
"\\begin{equation*} u ^ { 7 - p } = \\rho ^ { 7 - p } { ( 1 + \\frac { u _ { 0 } ^ { 7 - p } } { 4 \\rho ^ { 7 - p } } ) } ^ { 2 } , \\end{equation*}",
"\\begin{equation*} \\widetilde { f } ^ { - 1 } \\dot { u } ^ { 2 } + u ^ { 2 } \\dot { \\Omega } _ { 8 - p } ^ { 2 } \\equiv u ^ { 2 } \\rho ^ { - 2 } v ^ { 2 } . \\end{equation*}",
"\\begin{equation*} S _ { p } = \\int d \\tau [ \\frac { 1 } { 2 } m _ { p } v ^ { 2 } - V ( \\rho , v ) + O ( 1 \\slash \\rho ^ { 2 ( 7 - p ) } ) ] , \\end{equation*}",
"\\begin{equation*} V ( \\rho , v ) = - m _ { p } \\frac { u _ { 0 } ^ { 7 - p } } { \\rho ^ { 7 - p } } \\{ \\frac { 9 - p } { 4 ( 7 - p ) } v ^ { 2 } + \\frac { 1 } { 8 } [ { ( \\frac { u _ { 0 } } { R } ) } ^ { 7 - p } + { ( \\frac { R } { u _ { 0 } } ) } ^ { 7 - p } v ^ { 4 } ] \\} \\end{equation*}",
"\\begin{equation*} \\delta ( \\rho , v ) = - \\int _ { 0 } ^ { \\infty } d \\tau V [ \\rho ( \\tau ) , v ] , ~ ~ ~ ~ \\rho ^ { 2 } ( \\tau ) = \\rho ^ { 2 } + v ^ { 2 } \\tau ^ { 2 } , \\end{equation*}",
"\\begin{equation*} \\delta ( \\rho , v ) = - \\frac { B ( \\frac { 1 } { 2 } , \\frac { 6 - p } { 2 } ) } { 2 v \\rho ^ { 6 - p } } \\lambda ( v ) , \\end{equation*}",
"\\begin{equation*} L = \\frac { m _ { p } u ^ { 2 } \\dot { \\phi } } { \\sqrt { \\widetilde { f } - { ( \\frac { R } { u } ) } ^ { 7 - p } ( \\widetilde { f } ^ { - 1 } \\dot { u } ^ { 2 } + u ^ { 2 } \\dot { \\phi } ^ { 2 } ) } } . \\end{equation*}"
],
"latex_expand": [
"$ \\mitV $",
"$ \\mittheta = 0 $",
"$ \\mitp $",
"$ \\mitB $",
"$ \\mitp $",
"$ \\mitB $",
"$ \\mitp $",
"$ \\mitp $",
"$ \\mitv ^ { 4 } $",
"$ \\mitp $",
"$ \\mitp $",
"$ \\mitV ( \\mitrho , \\mitv ) = \\mitlambda ( \\mitv ) \\mitrho ^ { - ( 7 - \\mitp ) } $",
"$ \\mitB $",
"$ \\mitp $",
"$ \\mitphi $",
"\\begin{equation*} \\mitu ^ { 7 - \\mitp } = \\mitrho ^ { 7 - \\mitp } { \\left( 1 + \\frac { \\mitu _ { 0 } ^ { 7 - \\mitp } } { 4 \\mitrho ^ { 7 - \\mitp } } \\right) } ^ { 2 } , \\end{equation*}",
"\\begin{equation*} \\tilde { \\mitf } ^ { - 1 } \\dot { \\mitu } ^ { 2 } + \\mitu ^ { 2 } \\dot { \\mupOmega } _ { 8 - \\mitp } ^ { 2 } \\equiv \\mitu ^ { 2 } \\mitrho ^ { - 2 } \\mitv ^ { 2 } . \\end{equation*}",
"\\begin{equation*} \\mitS _ { \\mitp } = \\int \\mitd \\mittau [ \\frac { 1 } { 2 } \\mitm _ { \\mitp } \\mitv ^ { 2 } - \\mitV ( \\mitrho , \\mitv ) + \\mitO ( 1 \\slash \\mitrho ^ { 2 ( 7 - \\mitp ) } ) ] , \\end{equation*}",
"\\begin{equation*} \\mitV ( \\mitrho , \\mitv ) = - \\mitm _ { \\mitp } \\frac { \\mitu _ { 0 } ^ { 7 - \\mitp } } { \\mitrho ^ { 7 - \\mitp } } \\left\\{ \\frac { 9 - \\mitp } { 4 ( 7 - \\mitp ) } \\mitv ^ { 2 } + \\frac { 1 } { 8 } \\left[ { \\left( \\frac { \\mitu _ { 0 } } { \\mitR } \\right) } ^ { 7 - \\mitp } + { \\left( \\frac { \\mitR } { \\mitu _ { 0 } } \\right) } ^ { 7 - \\mitp } \\mitv ^ { 4 } \\right] \\right\\} \\end{equation*}",
"\\begin{equation*} \\mitdelta ( \\mitrho , \\mitv ) = - \\int _ { 0 } ^ { \\infty } \\mitd \\mittau \\mitV [ \\mitrho ( \\mittau ) , \\mitv ] , ~ ~ ~ ~ \\mitrho ^ { 2 } ( \\mittau ) = \\mitrho ^ { 2 } + \\mitv ^ { 2 } \\mittau ^ { 2 } , \\end{equation*}",
"\\begin{equation*} \\mitdelta ( \\mitrho , \\mitv ) = - \\frac { \\mitB \\left( \\frac { 1 } { 2 } , \\frac { 6 - \\mitp } { 2 } \\right) } { 2 \\mitv \\mitrho ^ { 6 - \\mitp } } \\mitlambda ( \\mitv ) , \\end{equation*}",
"\\begin{equation*} \\mitL = \\frac { \\mitm _ { \\mitp } \\mitu ^ { 2 } \\dot { \\mitphi } } { \\sqrt { \\tilde { \\mitf } - { \\left( \\frac { \\mitR } { \\mitu } \\right) } ^ { 7 - \\mitp } \\left( \\tilde { \\mitf } ^ { - 1 } \\dot { \\mitu } ^ { 2 } + \\mitu ^ { 2 } \\dot { \\mitphi } ^ { 2 } \\right) } } . \\end{equation*}"
],
"x_min": [
0.39320001006126404,
0.1768999993801117,
0.6039999723434448,
0.7443000078201294,
0.3912000060081482,
0.5383999943733215,
0.38769999146461487,
0.5999000072479248,
0.120899997651577,
0.6600000262260437,
0.8188999891281128,
0.5349000096321106,
0.17759999632835388,
0.6869000196456909,
0.7760999798774719,
0.3849000036716461,
0.3856000006198883,
0.31310001015663147,
0.2281000018119812,
0.2874999940395355,
0.3849000036716461,
0.35179999470710754
],
"y_min": [
0.3359000086784363,
0.4115999937057495,
0.4154999852180481,
0.4115999937057495,
0.43950000405311584,
0.43549999594688416,
0.4634000062942505,
0.4634000062942505,
0.48240000009536743,
0.48730000853538513,
0.48730000853538513,
0.625,
0.7060999870300293,
0.7339000105857849,
0.7782999873161316,
0.14259999990463257,
0.22169999778270721,
0.28760001063346863,
0.3578999936580658,
0.5810999870300293,
0.6503999829292297,
0.8252000212669373
],
"x_max": [
0.4077000021934509,
0.2231999933719635,
0.6144000291824341,
0.7609000205993652,
0.40230000019073486,
0.5550000071525574,
0.39879998564720154,
0.6110000014305115,
0.1395999938249588,
0.6704000234603882,
0.8292999863624573,
0.7160000205039978,
0.19419999420642853,
0.6973000168800354,
0.7885000109672546,
0.6191999912261963,
0.6212999820709229,
0.6904000043869019,
0.7753999829292297,
0.71670001745224,
0.6184999942779541,
0.6552000045776367
],
"y_max": [
0.34619998931884766,
0.4219000041484833,
0.42480000853538513,
0.4219000041484833,
0.4487999975681305,
0.44620001316070557,
0.47269999980926514,
0.47269999980926514,
0.49410000443458557,
0.49709999561309814,
0.49709999561309814,
0.6410999894142151,
0.7164000272750854,
0.7432000041007996,
0.7914999723434448,
0.18559999763965607,
0.24420000612735748,
0.32030001282691956,
0.3984000086784363,
0.6122999787330627,
0.6934000253677368,
0.8788999915122986
],
"expr_type": [
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"isolated",
"isolated",
"isolated",
"isolated",
"isolated",
"isolated",
"isolated"
]
} |
|
0001213_page20 | {
"latex": [
"$\\dot {u}=0$",
"$(p-2)$",
"$p$",
"$\\tilde {f}=1$",
"$u_*/u >>1$",
"\\begin {equation} E = \\frac {m_p\\left (\\frac {u}{R}\\right )^{7-p}\\tilde {f}}{ \\sqrt {\\tilde {f} -\\left (\\frac {R}{u}\\right )^{7-p} \\left (\\tilde {f}^{-1}\\dot {u}^2 +u^2\\dot {\\phi }^2\\right )}} -m_p\\left (\\frac {u}{R}\\right )^{7-p}\\left (1 -\\frac {u_0^{7-p}}{2u^{7-p}} \\right ). \\end {equation}",
"\\begin {equation} E= \\frac {1}{2}m_p \\dot {u}^2 + V(u), \\end {equation}",
"\\begin {equation} \\label {4e14} V(u)=E\\left [1 -\\frac {m_p \\tilde {f}^2}{2E}\\left (\\frac {u}{R}\\right )^{7-p} \\left (1-\\frac {\\tilde {f}}{{\\cal A}^2}\\right )\\right ] +\\frac {L^2 \\tilde {f}^3}{2m_p u^2 {\\cal A}^2}. \\end {equation}",
"\\begin {equation} {\\cal A}= 1-\\frac {u_0^{7-p}}{2u^{7-p}}+\\frac {E}{m_p} \\left (\\frac {R}{u}\\right )^{7-p}. \\end {equation}",
"\\begin {equation} V(u)=E\\left \\{1-\\frac {1}{2}\\left (\\frac {u}{u_*}\\right )^{7-p} \\left [1-\\frac {1}{\\left (1+(u_*/u)^{7-p}\\right )^2}\\right ] \\right \\} +\\frac {Eu_{**}^2}{2u^2 \\left (1+(u_*/u)^{7-p}\\right )^2}, \\end {equation}",
"\\begin {equation} u_*=R\\left (\\frac {E}{m_p}\\right )^{1/(7-p)}, \\ \\ \\^^Mu_{**} = L\\left (\\frac {1}{m_pE}\\right )^{1/2}. \\end {equation}",
"\\begin {equation} 2 +\\left (\\frac {u_*}{u_c}\\right )^{7-p} =\\left (\\frac {u_{**}}{u_c}\\right )^2. \\end {equation}",
"\\begin {equation} u_c= \\left (\\frac {u_*^{7-p}}{u_{**}^2}\\right )^{1/(5-p)}. \\end {equation}"
],
"latex_norm": [
"$ \\dot { u } = 0 $",
"$ ( p - 2 ) $",
"$ p $",
"$ \\widetilde { f } = 1 $",
"$ u _ { \\ast } \\slash u > > 1 $",
"\\begin{equation*} E = \\frac { m _ { p } { ( \\frac { u } { R } ) } ^ { 7 - p } \\widetilde { f } } { \\sqrt { \\widetilde { f } - { ( \\frac { R } { u } ) } ^ { 7 - p } ( \\widetilde { f } ^ { - 1 } \\dot { u } ^ { 2 } + u ^ { 2 } \\dot { \\phi } ^ { 2 } ) } } - m _ { p } { ( \\frac { u } { R } ) } ^ { 7 - p } ( 1 - \\frac { u _ { 0 } ^ { 7 - p } } { 2 u ^ { 7 - p } } ) . \\end{equation*}",
"\\begin{equation*} E = \\frac { 1 } { 2 } m _ { p } \\dot { u } ^ { 2 } + V ( u ) , \\end{equation*}",
"\\begin{equation*} V ( u ) = E [ 1 - \\frac { m _ { p } \\widetilde { f } ^ { 2 } } { 2 E } { ( \\frac { u } { R } ) } ^ { 7 - p } ( 1 - \\frac { \\widetilde { f } } { A ^ { 2 } } ) ] + \\frac { L ^ { 2 } \\widetilde { f } ^ { 3 } } { 2 m _ { p } u ^ { 2 } A ^ { 2 } } . \\end{equation*}",
"\\begin{equation*} A = 1 - \\frac { u _ { 0 } ^ { 7 - p } } { 2 u ^ { 7 - p } } + \\frac { E } { m _ { p } } { ( \\frac { R } { u } ) } ^ { 7 - p } . \\end{equation*}",
"\\begin{equation*} V ( u ) = E \\{ 1 - \\frac { 1 } { 2 } { ( \\frac { u } { u _ { \\ast } } ) } ^ { 7 - p } [ 1 - \\frac { 1 } { { ( 1 + ( u _ { \\ast } \\slash u ) ^ { 7 - p } ) } ^ { 2 } } ] \\} + \\frac { E u _ { \\ast \\ast } ^ { 2 } } { 2 u ^ { 2 } { ( 1 + ( u _ { \\ast } \\slash u ) ^ { 7 - p } ) } ^ { 2 } } , \\end{equation*}",
"\\begin{equation*} u _ { \\ast } = R { ( \\frac { E } { m _ { p } } ) } ^ { 1 \\slash ( 7 - p ) } , ~ ~ ~ u _ { \\ast \\ast } = L { ( \\frac { 1 } { m _ { p } E } ) } ^ { 1 \\slash 2 } . \\end{equation*}",
"\\begin{equation*} 2 + { ( \\frac { u _ { \\ast } } { u _ { c } } ) } ^ { 7 - p } = { ( \\frac { u _ { \\ast \\ast } } { u _ { c } } ) } ^ { 2 } . \\end{equation*}",
"\\begin{equation*} u _ { c } = { ( \\frac { u _ { \\ast } ^ { 7 - p } } { u _ { \\ast \\ast } ^ { 2 } } ) } ^ { 1 \\slash ( 5 - p ) } . \\end{equation*}"
],
"latex_expand": [
"$ \\dot { \\mitu } = 0 $",
"$ ( \\mitp - 2 ) $",
"$ \\mitp $",
"$ \\tilde { \\mitf } = 1 $",
"$ \\mitu _ { \\ast } \\slash \\mitu > > 1 $",
"\\begin{equation*} \\mitE = \\frac { \\mitm _ { \\mitp } { \\left( \\frac { \\mitu } { \\mitR } \\right) } ^ { 7 - \\mitp } \\tilde { \\mitf } } { \\sqrt { \\tilde { \\mitf } - { \\left( \\frac { \\mitR } { \\mitu } \\right) } ^ { 7 - \\mitp } \\left( \\tilde { \\mitf } ^ { - 1 } \\dot { \\mitu } ^ { 2 } + \\mitu ^ { 2 } \\dot { \\mitphi } ^ { 2 } \\right) } } - \\mitm _ { \\mitp } { \\left( \\frac { \\mitu } { \\mitR } \\right) } ^ { 7 - \\mitp } \\left( 1 - \\frac { \\mitu _ { 0 } ^ { 7 - \\mitp } } { 2 \\mitu ^ { 7 - \\mitp } } \\right) . \\end{equation*}",
"\\begin{equation*} \\mitE = \\frac { 1 } { 2 } \\mitm _ { \\mitp } \\dot { \\mitu } ^ { 2 } + \\mitV ( \\mitu ) , \\end{equation*}",
"\\begin{equation*} \\mitV ( \\mitu ) = \\mitE \\left[ 1 - \\frac { \\mitm _ { \\mitp } \\tilde { \\mitf } ^ { 2 } } { 2 \\mitE } { \\left( \\frac { \\mitu } { \\mitR } \\right) } ^ { 7 - \\mitp } \\left( 1 - \\frac { \\tilde { \\mitf } } { \\mitA ^ { 2 } } \\right) \\right] + \\frac { \\mitL ^ { 2 } \\tilde { \\mitf } ^ { 3 } } { 2 \\mitm _ { \\mitp } \\mitu ^ { 2 } \\mitA ^ { 2 } } . \\end{equation*}",
"\\begin{equation*} \\mitA = 1 - \\frac { \\mitu _ { 0 } ^ { 7 - \\mitp } } { 2 \\mitu ^ { 7 - \\mitp } } + \\frac { \\mitE } { \\mitm _ { \\mitp } } { \\left( \\frac { \\mitR } { \\mitu } \\right) } ^ { 7 - \\mitp } . \\end{equation*}",
"\\begin{equation*} \\mitV ( \\mitu ) = \\mitE \\left\\{ 1 - \\frac { 1 } { 2 } { \\left( \\frac { \\mitu } { \\mitu _ { \\ast } } \\right) } ^ { 7 - \\mitp } \\left[ 1 - \\frac { 1 } { { \\left( 1 + ( \\mitu _ { \\ast } \\slash \\mitu ) ^ { 7 - \\mitp } \\right) } ^ { 2 } } \\right] \\right\\} + \\frac { \\mitE \\mitu _ { \\ast \\ast } ^ { 2 } } { 2 \\mitu ^ { 2 } { \\left( 1 + ( \\mitu _ { \\ast } \\slash \\mitu ) ^ { 7 - \\mitp } \\right) } ^ { 2 } } , \\end{equation*}",
"\\begin{equation*} \\mitu _ { \\ast } = \\mitR { \\left( \\frac { \\mitE } { \\mitm _ { \\mitp } } \\right) } ^ { 1 \\slash ( 7 - \\mitp ) } , ~ ~ ~ \\mitu _ { \\ast \\ast } = \\mitL { \\left( \\frac { 1 } { \\mitm _ { \\mitp } \\mitE } \\right) } ^ { 1 \\slash 2 } . \\end{equation*}",
"\\begin{equation*} 2 + { \\left( \\frac { \\mitu _ { \\ast } } { \\mitu _ { \\mitc } } \\right) } ^ { 7 - \\mitp } = { \\left( \\frac { \\mitu _ { \\ast \\ast } } { \\mitu _ { \\mitc } } \\right) } ^ { 2 } . \\end{equation*}",
"\\begin{equation*} \\mitu _ { \\mitc } = { \\left( \\frac { \\mitu _ { \\ast } ^ { 7 - \\mitp } } { \\mitu _ { \\ast \\ast } ^ { 2 } } \\right) } ^ { 1 \\slash ( 5 - \\mitp ) } . \\end{equation*}"
],
"x_min": [
0.3359000086784363,
0.37529999017715454,
0.46650001406669617,
0.5839999914169312,
0.14030000567436218,
0.23010000586509705,
0.414000004529953,
0.26809999346733093,
0.37040001153945923,
0.15199999511241913,
0.31439998745918274,
0.39879998564720154,
0.41530001163482666
],
"y_min": [
0.45019999146461487,
0.49709999561309814,
0.5015000104904175,
0.49459999799728394,
0.8080999851226807,
0.15970000624656677,
0.24609999358654022,
0.31450000405311584,
0.37790000438690186,
0.5952000021934509,
0.6747999787330627,
0.7567999958992004,
0.8339999914169312
],
"x_max": [
0.38359999656677246,
0.4381999969482422,
0.47690001130104065,
0.6385999917984009,
0.2328999936580658,
0.7767000198364258,
0.5895000100135803,
0.7394000291824341,
0.6371999979019165,
0.8008999824523926,
0.6923999786376953,
0.6082000136375427,
0.5914999842643738
],
"y_max": [
0.46050000190734863,
0.5116999745368958,
0.5113000273704529,
0.5112000107765198,
0.822700023651123,
0.21930000185966492,
0.2782999873161316,
0.3555000126361847,
0.4178999960422516,
0.635200023651123,
0.7178000211715698,
0.792900025844574,
0.8769999742507935
],
"expr_type": [
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"isolated",
"isolated",
"isolated",
"isolated",
"isolated",
"isolated",
"isolated",
"isolated"
]
} |
|
0001213_page21 | {
"latex": [
"$\\dot {u}=0$",
"$\\tilde {f}=0$",
"$F(u)=-dV(u)/du$",
"$(p-2)$",
"$(p-2)$",
"$(p-2)$",
"$p$",
"$(t, x_1, \\cdots , x_{p-2})$",
"$m_{p-2}= V_{p-2}/[(2\\pi )^{p-2}\\tilde {g}]$",
"$au >>1$",
"$(p-2)$",
"$(p-2)$",
"${\\cal O}(v^4)$",
"\\begin {eqnarray} S_{p-2} &=& - \\frac {T_{p-2}V_{p-2}}{g}\\int d\\tau H^{-1}\\left [(Hh^{-1})^{1/2} \\sqrt {f -h(\\dot {x}_{p-1}^2 +\\dot {x}_p^2) -H(f^{-1}\\dot {r}^2 + r^2 \\dot {\\Omega }_{8-p}^2)} \\right . \\\\ && \\hspace {4cm} - \\left . (1-H_0)\\sin \\theta -H\\right ], \\end {eqnarray}",
"\\begin {eqnarray} S_{p-2} &=& - \\; m_{p-2} \\int d\\tau \\left (\\frac {u}{R}\\right )^{7-p} \\left [\\sqrt {\\frac {1}{(au)^{7-p}\\tilde {h} }} \\sqrt {\\tilde {f} -\\tilde {h}\\left (\\dot {\\tilde x}_{p-1}^2 +\\dot {\\tilde x}_p^2 \\right ) -\\left (\\frac {R}{u}\\right )^{7-p} \\left (\\tilde {f}^{-1} \\dot {u}^2 +u^2\\dot {\\Omega }_{8-p}^2 \\right )} \\right . \\\\ && \\hspace {4cm} - \\left . 1 +\\frac {u_0^{7-p}}{2u^{7-p}}\\right ]. \\end {eqnarray}",
"\\begin {eqnarray} S_{p-2} &=& - m_{p-2} \\int d\\tau \\left (\\frac {u}{R}\\right )^{7-p} \\left [ \\sqrt {\\tilde {f} -\\frac {1}{(au)^{7-p}}\\left (\\dot {\\tilde x}_{p-1}^2 +\\dot {\\tilde x}_p^2 \\right ) -\\left (\\frac {R}{u}\\right )^{7-p} \\left (\\tilde {f}^{-1} \\dot {u}^2 +u^2\\dot {\\Omega }_{8-p}^2 \\right )} \\right . \\\\ && \\hspace {4cm} - \\left . 1 +\\frac {u_0^{7-p}}{2u^{7-p}}\\right ]. \\end {eqnarray}"
],
"latex_norm": [
"$ \\dot { u } = 0 $",
"$ \\widetilde { f } = 0 $",
"$ F ( u ) = - d V ( u ) \\slash d u $",
"$ ( p - 2 ) $",
"$ ( p - 2 ) $",
"$ ( p - 2 ) $",
"$ p $",
"$ ( t , x _ { 1 } , \\cdots , x _ { p - 2 } ) $",
"$ m _ { p - 2 } = V _ { p - 2 } \\slash [ ( 2 \\pi ) ^ { p - 2 } \\widetilde { g } ] $",
"$ a u > > 1 $",
"$ ( p - 2 ) $",
"$ ( p - 2 ) $",
"$ O ( v ^ { 4 } ) $",
"\\begin{align*} S _ { p - 2 } & = & - \\frac { T _ { p - 2 } V _ { p - 2 } } { g } \\int d \\tau H ^ { - 1 } [ ( H h ^ { - 1 } ) ^ { 1 \\slash 2 } \\sqrt { f - h ( \\dot { x } _ { p - 1 } ^ { 2 } + \\dot { x } _ { p } ^ { 2 } ) - H ( f ^ { - 1 } \\dot { r } ^ { 2 } + r ^ { 2 } \\dot { \\Omega } _ { 8 - p } ^ { 2 } ) } \\\\ & & \\hspace{113.81pt} - ( 1 - H _ { 0 } ) \\operatorname { s i n } \\theta - H ] , \\end{align*}",
"\\begin{align*} S _ { p - 2 } & = & - \\; m _ { p - 2 } \\int d \\tau { ( \\frac { u } { R } ) } ^ { 7 - p } [ \\sqrt { \\frac { 1 } { ( a u ) ^ { 7 - p } \\widetilde { h } } } \\sqrt { \\widetilde { f } - \\widetilde { h } ( \\dot { \\widetilde { x } } _ { p - 1 } ^ { 2 } + \\dot { \\widetilde { x } } _ { p } ^ { 2 } ) - { ( \\frac { R } { u } ) } ^ { 7 - p } ( \\widetilde { f } ^ { - 1 } \\dot { u } ^ { 2 } + u ^ { 2 } \\dot { \\Omega } _ { 8 - p } ^ { 2 } ) } \\\\ & & \\hspace{113.81pt} - 1 + \\frac { u _ { 0 } ^ { 7 - p } } { 2 u ^ { 7 - p } } ] . \\end{align*}",
"\\begin{align*} S _ { p - 2 } & = & - m _ { p - 2 } \\int d \\tau { ( \\frac { u } { R } ) } ^ { 7 - p } [ \\sqrt { \\widetilde { f } - \\frac { 1 } { ( a u ) ^ { 7 - p } } ( \\dot { \\widetilde { x } } _ { p - 1 } ^ { 2 } + \\dot { \\widetilde { x } } _ { p } ^ { 2 } ) - { ( \\frac { R } { u } ) } ^ { 7 - p } ( \\widetilde { f } ^ { - 1 } \\dot { u } ^ { 2 } + u ^ { 2 } \\dot { \\Omega } _ { 8 - p } ^ { 2 } ) } \\\\ & & \\hspace{113.81pt} - 1 + \\frac { u _ { 0 } ^ { 7 - p } } { 2 u ^ { 7 - p } } ] . \\end{align*}"
],
"latex_expand": [
"$ \\dot { \\mitu } = 0 $",
"$ \\tilde { \\mitf } = 0 $",
"$ \\mitF ( \\mitu ) = - \\mitd \\mitV ( \\mitu ) \\slash \\mitd \\mitu $",
"$ ( \\mitp - 2 ) $",
"$ ( \\mitp - 2 ) $",
"$ ( \\mitp - 2 ) $",
"$ \\mitp $",
"$ ( \\mitt , \\mitx _ { 1 } , \\cdots , \\mitx _ { \\mitp - 2 } ) $",
"$ \\mitm _ { \\mitp - 2 } = \\mitV _ { \\mitp - 2 } \\slash [ ( 2 \\mitpi ) ^ { \\mitp - 2 } \\tilde { \\mitg } ] $",
"$ \\mita \\mitu > > 1 $",
"$ ( \\mitp - 2 ) $",
"$ ( \\mitp - 2 ) $",
"$ \\mitO ( \\mitv ^ { 4 } ) $",
"\\begin{align*} \\mitS _ { \\mitp - 2 } & = & - \\frac { \\mitT _ { \\mitp - 2 } \\mitV _ { \\mitp - 2 } } { \\mitg } \\int \\mitd \\mittau \\mitH ^ { - 1 } \\left[ ( \\mitH \\Planckconst ^ { - 1 } ) ^ { 1 \\slash 2 } \\sqrt { \\mitf - \\Planckconst ( \\dot { \\mitx } _ { \\mitp - 1 } ^ { 2 } + \\dot { \\mitx } _ { \\mitp } ^ { 2 } ) - \\mitH ( \\mitf ^ { - 1 } \\dot { \\mitr } ^ { 2 } + \\mitr ^ { 2 } \\dot { \\mupOmega } _ { 8 - \\mitp } ^ { 2 } ) } \\right. \\\\ & & \\hspace{113.81pt} - \\left. ( 1 - \\mitH _ { 0 } ) \\operatorname { s i n } \\mittheta - \\mitH \\right] , \\end{align*}",
"\\begin{align*} \\mitS _ { \\mitp - 2 } & = & - \\; \\mitm _ { \\mitp - 2 } \\int \\mitd \\mittau { \\left( \\frac { \\mitu } { \\mitR } \\right) } ^ { 7 - \\mitp } \\left[ \\sqrt { \\frac { 1 } { ( \\mita \\mitu ) ^ { 7 - \\mitp } \\tilde { \\Planckconst } } } \\sqrt { \\tilde { \\mitf } - \\tilde { \\Planckconst } \\left( \\dot { \\tilde { \\mitx } } _ { \\mitp - 1 } ^ { 2 } + \\dot { \\tilde { \\mitx } } _ { \\mitp } ^ { 2 } \\right) - { \\left( \\frac { \\mitR } { \\mitu } \\right) } ^ { 7 - \\mitp } \\left( \\tilde { \\mitf } ^ { - 1 } \\dot { \\mitu } ^ { 2 } + \\mitu ^ { 2 } \\dot { \\mupOmega } _ { 8 - \\mitp } ^ { 2 } \\right) } \\right. \\\\ & & \\hspace{113.81pt} - \\left. 1 + \\frac { \\mitu _ { 0 } ^ { 7 - \\mitp } } { 2 \\mitu ^ { 7 - \\mitp } } \\right] . \\end{align*}",
"\\begin{align*} \\mitS _ { \\mitp - 2 } & = & - \\mitm _ { \\mitp - 2 } \\int \\mitd \\mittau { \\left( \\frac { \\mitu } { \\mitR } \\right) } ^ { 7 - \\mitp } \\left[ \\sqrt { \\tilde { \\mitf } - \\frac { 1 } { ( \\mita \\mitu ) ^ { 7 - \\mitp } } \\left( \\dot { \\tilde { \\mitx } } _ { \\mitp - 1 } ^ { 2 } + \\dot { \\tilde { \\mitx } } _ { \\mitp } ^ { 2 } \\right) - { \\left( \\frac { \\mitR } { \\mitu } \\right) } ^ { 7 - \\mitp } \\left( \\tilde { \\mitf } ^ { - 1 } \\dot { \\mitu } ^ { 2 } + \\mitu ^ { 2 } \\dot { \\mupOmega } _ { 8 - \\mitp } ^ { 2 } \\right) } \\right. \\\\ & & \\hspace{113.81pt} - \\left. 1 + \\frac { \\mitu _ { 0 } ^ { 7 - \\mitp } } { 2 \\mitu ^ { 7 - \\mitp } } \\right] . \\end{align*}"
],
"x_min": [
0.257099986076355,
0.120899997651577,
0.703499972820282,
0.25850000977516174,
0.574999988079071,
0.1437000036239624,
0.23499999940395355,
0.120899997651577,
0.17000000178813934,
0.6924999952316284,
0.4361000061035156,
0.23360000550746918,
0.6904000043869019,
0.1444000005722046,
0.120899997651577,
0.12160000205039978
],
"y_min": [
0.15919999778270721,
0.17970000207424164,
0.2061000019311905,
0.37299999594688416,
0.40869998931884766,
0.4325999915599823,
0.43700000643730164,
0.45649999380111694,
0.6807000041007996,
0.6830999851226807,
0.8363999724388123,
0.8604000210762024,
0.8598999977111816,
0.4779999852180481,
0.5806000232696533,
0.7304999828338623
],
"x_max": [
0.30480000376701355,
0.17069999873638153,
0.8783000111579895,
0.3310999870300293,
0.6371999979019165,
0.20589999854564667,
0.24539999663829803,
0.25360000133514404,
0.3808000087738037,
0.7746999859809875,
0.4968999922275543,
0.29580000042915344,
0.7408000230789185,
0.8568999767303467,
0.9239000082015991,
0.8797000050544739
],
"y_max": [
0.16949999332427979,
0.19580000638961792,
0.2206999957561493,
0.3910999894142151,
0.42329999804496765,
0.44769999384880066,
0.44679999351501465,
0.4715999960899353,
0.6967999935150146,
0.6929000020027161,
0.8510000109672546,
0.8755000233650208,
0.8755000233650208,
0.5404999852180481,
0.6733999848365784,
0.8300999999046326
],
"expr_type": [
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"isolated",
"isolated",
"isolated"
]
} |
|
0001213_page22 | {
"latex": [
"$(p-2)$",
"$N_p$",
"$p$",
"$(p-2)$",
"$(p-2)$",
"$B$",
"$au>>1$",
"$\\dot {\\tilde x}_{p-1} =\\dot {\\tilde {x}}_p=0$",
"$p$",
"$\\delta N_p m_p=\\delta N_{p-2} m_{p-2}$",
"$\\delta N_p$",
"$p$",
"$\\delta N_{p-2}$",
"$(p-2)$",
"$B$",
"$p$",
"$(p-2)$",
"$au$",
"${\\cal C}$",
"$(p-2)$",
"$p$",
"$(p-2)$",
"$(p-2)$",
"\\begin {equation} ds^2_m= du^2 +u^2 d\\Omega _{8-p}^2 + \\frac {1}{\\tilde {b}^2}\\left (d\\tilde {x}_{p-1}^2+ d\\tilde {x}_p^2\\right ). \\end {equation}",
"\\begin {equation} \\label {dp2pot} V(u)= E\\left \\{ 1-\\frac {m_{p-2}\\tilde {f}^2}{2E} \\left (\\frac {u}{R}\\right )^{7-p}\\left [1-\\frac {{\\cal C} \\tilde {f}} {{\\cal B}^2}\\right ] \\right \\} +\\frac {L^2 \\tilde {f}^3}{2m_{p-2}u^2 {\\cal B}^2}, \\end {equation}",
"\\begin {equation} {\\cal C}=\\frac {1+(au)^{7-p}}{(au)^{7-p}}, \\ \\ \\^^M{\\cal B}=1-\\frac {u_0^{7-p}}{2u^{7-p}} +\\frac {E}{m_{p-2}}\\left (\\frac {R}{u}\\right )^{7-p}. \\end {equation}"
],
"latex_norm": [
"$ ( p - 2 ) $",
"$ N _ { p } $",
"$ p $",
"$ ( p - 2 ) $",
"$ ( p - 2 ) $",
"$ B $",
"$ a u > > 1 $",
"$ \\dot { \\widetilde { x } } _ { p - 1 } = \\dot { \\widetilde { x } } _ { p } = 0 $",
"$ p $",
"$ \\delta N _ { p } m _ { p } = \\delta N _ { p - 2 } m _ { p - 2 } $",
"$ \\delta N _ { p } $",
"$ p $",
"$ \\delta N _ { p - 2 } $",
"$ ( p - 2 ) $",
"$ B $",
"$ p $",
"$ ( p - 2 ) $",
"$ a u $",
"$ C $",
"$ ( p - 2 ) $",
"$ p $",
"$ ( p - 2 ) $",
"$ ( p - 2 ) $",
"\\begin{equation*} d s _ { m } ^ { 2 } = d u ^ { 2 } + u ^ { 2 } d \\Omega _ { 8 - p } ^ { 2 } + \\frac { 1 } { \\widetilde { b } ^ { 2 } } ( d \\widetilde { x } _ { p - 1 } ^ { 2 } + d \\widetilde { x } _ { p } ^ { 2 } ) . \\end{equation*}",
"\\begin{equation*} V ( u ) = E \\{ 1 - \\frac { m _ { p - 2 } \\widetilde { f } ^ { 2 } } { 2 E } { ( \\frac { u } { R } ) } ^ { 7 - p } [ 1 - \\frac { C \\widetilde { f } } { B ^ { 2 } } ] \\} + \\frac { L ^ { 2 } \\widetilde { f } ^ { 3 } } { 2 m _ { p - 2 } u ^ { 2 } B ^ { 2 } } , \\end{equation*}",
"\\begin{equation*} C = \\frac { 1 + ( a u ) ^ { 7 - p } } { ( a u ) ^ { 7 - p } } , ~ ~ ~ B = 1 - \\frac { u _ { 0 } ^ { 7 - p } } { 2 u ^ { 7 - p } } + \\frac { E } { m _ { p - 2 } } { ( \\frac { R } { u } ) } ^ { 7 - p } . \\end{equation*}"
],
"latex_expand": [
"$ ( \\mitp - 2 ) $",
"$ \\mitN _ { \\mitp } $",
"$ \\mitp $",
"$ ( \\mitp - 2 ) $",
"$ ( \\mitp - 2 ) $",
"$ \\mitB $",
"$ \\mita \\mitu > > 1 $",
"$ \\dot { \\tilde { \\mitx } } _ { \\mitp - 1 } = \\dot { \\tilde { \\mitx } } _ { \\mitp } = 0 $",
"$ \\mitp $",
"$ \\mitdelta \\mitN _ { \\mitp } \\mitm _ { \\mitp } = \\mitdelta \\mitN _ { \\mitp - 2 } \\mitm _ { \\mitp - 2 } $",
"$ \\mitdelta \\mitN _ { \\mitp } $",
"$ \\mitp $",
"$ \\mitdelta \\mitN _ { \\mitp - 2 } $",
"$ ( \\mitp - 2 ) $",
"$ \\mitB $",
"$ \\mitp $",
"$ ( \\mitp - 2 ) $",
"$ \\mita \\mitu $",
"$ \\mitC $",
"$ ( \\mitp - 2 ) $",
"$ \\mitp $",
"$ ( \\mitp - 2 ) $",
"$ ( \\mitp - 2 ) $",
"\\begin{equation*} \\mitd \\mits _ { \\mitm } ^ { 2 } = \\mitd \\mitu ^ { 2 } + \\mitu ^ { 2 } \\mitd \\mupOmega _ { 8 - \\mitp } ^ { 2 } + \\frac { 1 } { \\tilde { \\mitb } ^ { 2 } } \\left( \\mitd \\tilde { \\mitx } _ { \\mitp - 1 } ^ { 2 } + \\mitd \\tilde { \\mitx } _ { \\mitp } ^ { 2 } \\right) . \\end{equation*}",
"\\begin{equation*} \\mitV ( \\mitu ) = \\mitE \\left\\{ 1 - \\frac { \\mitm _ { \\mitp - 2 } \\tilde { \\mitf } ^ { 2 } } { 2 \\mitE } { \\left( \\frac { \\mitu } { \\mitR } \\right) } ^ { 7 - \\mitp } \\left[ 1 - \\frac { \\mitC \\tilde { \\mitf } } { \\mitB ^ { 2 } } \\right] \\right\\} + \\frac { \\mitL ^ { 2 } \\tilde { \\mitf } ^ { 3 } } { 2 \\mitm _ { \\mitp - 2 } \\mitu ^ { 2 } \\mitB ^ { 2 } } , \\end{equation*}",
"\\begin{equation*} \\mitC = \\frac { 1 + ( \\mita \\mitu ) ^ { 7 - \\mitp } } { ( \\mita \\mitu ) ^ { 7 - \\mitp } } , ~ ~ ~ \\mitB = 1 - \\frac { \\mitu _ { 0 } ^ { 7 - \\mitp } } { 2 \\mitu ^ { 7 - \\mitp } } + \\frac { \\mitE } { \\mitm _ { \\mitp - 2 } } { \\left( \\frac { \\mitR } { \\mitu } \\right) } ^ { 7 - \\mitp } . \\end{equation*}"
],
"x_min": [
0.47679999470710754,
0.7235999703407288,
0.866599977016449,
0.4796000123023987,
0.4036000072956085,
0.8672999739646912,
0.2612000107765198,
0.5460000038146973,
0.7580999732017517,
0.5162000060081482,
0.3808000087738037,
0.5819000005722046,
0.695900022983551,
0.767799973487854,
0.4499000012874603,
0.17069999873638153,
0.7684999704360962,
0.4223000109195709,
0.3490000069141388,
0.6047000288963318,
0.2840000092983246,
0.7124999761581421,
0.4133000075817108,
0.321399986743927,
0.24879999458789825,
0.2777999937534332
],
"y_min": [
0.21040000021457672,
0.2354000061750412,
0.23880000412464142,
0.2583000063896179,
0.2827000021934509,
0.2831999957561493,
0.3319999873638153,
0.35249999165534973,
0.3833000063896179,
0.475600004196167,
0.5234000086784363,
0.5273000001907349,
0.5234000086784363,
0.5224999785423279,
0.5479000210762024,
0.5990999937057495,
0.5946999788284302,
0.6830999851226807,
0.7598000168800354,
0.7588000297546387,
0.7871000170707703,
0.8065999746322632,
0.8306000232696533,
0.16060000658035278,
0.6298999786376953,
0.7035999894142151
],
"x_max": [
0.5404000282287598,
0.7477999925613403,
0.8776999711990356,
0.5389999747276306,
0.4643999934196472,
0.8831999897956848,
0.3393000066280365,
0.6656000018119812,
0.7684999704360962,
0.6973000168800354,
0.4147000014781952,
0.5922999978065491,
0.7476999759674072,
0.8216999769210815,
0.4657999873161316,
0.181099995970726,
0.8292999863624573,
0.44440001249313354,
0.3614000082015991,
0.6654999852180481,
0.29440000653266907,
0.7739999890327454,
0.4740999937057495,
0.6855999827384949,
0.7547000050544739,
0.7283999919891357
],
"y_max": [
0.22499999403953552,
0.24959999322891235,
0.24860000610351562,
0.2734000086784363,
0.2973000109195709,
0.2939000129699707,
0.3422999978065491,
0.36959999799728394,
0.39259999990463257,
0.48980000615119934,
0.5379999876022339,
0.5365999937057495,
0.5379999876022339,
0.5375999808311462,
0.5582000017166138,
0.6089000105857849,
0.6093000173568726,
0.6894000172615051,
0.7700999975204468,
0.7734000086784363,
0.7968999743461609,
0.8212000131607056,
0.8457000255584717,
0.19480000436306,
0.6708999872207642,
0.7436000108718872
],
"expr_type": [
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"isolated",
"isolated",
"isolated"
]
} |
|
0001213_page23 | {
"latex": [
"$(p-2)$",
"$p$",
"$(p-2)$",
"$p$",
"$B$",
"$p$",
"$(p-2)$",
"$p$",
"$2 \\le p \\le 6$",
"$p$",
"$B$",
"$(p-2)$",
"$p$",
"$p$",
"$B$",
"$U(N_p)$",
"$p+1$",
"$p$",
"$N_p$",
"$(p-2)$",
"$p$",
"$(p-2)$",
"$B$",
"$au >>1$",
"$(p-2)$",
"$U(N_{p-2})$",
"$p+1)$",
"$p+1)$",
"$(p-2)$",
"$N_{p-2}$",
"$(p-2)$",
"$p$",
"$N_p$",
"$p$",
"$B$",
"$N_{p-2}$",
"$(p-2)$",
"$B$",
"$N_p$",
"$N_{p-2}$",
"$\\tilde {V}_2$",
"$\\tilde {b}$",
"$U(\\infty )$",
"$(p-1)$",
"$p-1)$"
],
"latex_norm": [
"$ ( p - 2 ) $",
"$ p $",
"$ ( p - 2 ) $",
"$ p $",
"$ B $",
"$ p $",
"$ ( p - 2 ) $",
"$ p $",
"$ 2 \\leq p \\leq 6 $",
"$ p $",
"$ B $",
"$ ( p - 2 ) $",
"$ p $",
"$ p $",
"$ B $",
"$ U ( N _ { p } ) $",
"$ p + 1 $",
"$ p $",
"$ N _ { p } $",
"$ ( p - 2 ) $",
"$ p $",
"$ ( p - 2 ) $",
"$ B $",
"$ a u > > 1 $",
"$ ( p - 2 ) $",
"$ U ( N _ { p - 2 } ) $",
"$ p + 1 ) $",
"$ p + 1 ) $",
"$ ( p - 2 ) $",
"$ N _ { p - 2 } $",
"$ ( p - 2 ) $",
"$ p $",
"$ N _ { p } $",
"$ p $",
"$ B $",
"$ N _ { p - 2 } $",
"$ ( p - 2 ) $",
"$ B $",
"$ N _ { p } $",
"$ N _ { p - 2 } $",
"$ \\widetilde { V } _ { 2 } $",
"$ \\widetilde { b } $",
"$ U ( \\infty ) $",
"$ ( p - 1 ) $",
"$ p - 1 ) $"
],
"latex_expand": [
"$ ( \\mitp - 2 ) $",
"$ \\mitp $",
"$ ( \\mitp - 2 ) $",
"$ \\mitp $",
"$ \\mitB $",
"$ \\mitp $",
"$ ( \\mitp - 2 ) $",
"$ \\mitp $",
"$ 2 \\leq \\mitp \\leq 6 $",
"$ \\mitp $",
"$ \\mitB $",
"$ ( \\mitp - 2 ) $",
"$ \\mitp $",
"$ \\mitp $",
"$ \\mitB $",
"$ \\mitU ( \\mitN _ { \\mitp } ) $",
"$ \\mitp + 1 $",
"$ \\mitp $",
"$ \\mitN _ { \\mitp } $",
"$ ( \\mitp - 2 ) $",
"$ \\mitp $",
"$ ( \\mitp - 2 ) $",
"$ \\mitB $",
"$ \\mita \\mitu > > 1 $",
"$ ( \\mitp - 2 ) $",
"$ \\mitU ( \\mitN _ { \\mitp - 2 } ) $",
"$ \\mitp + 1 ) $",
"$ \\mitp + 1 ) $",
"$ ( \\mitp - 2 ) $",
"$ \\mitN _ { \\mitp - 2 } $",
"$ ( \\mitp - 2 ) $",
"$ \\mitp $",
"$ \\mitN _ { \\mitp } $",
"$ \\mitp $",
"$ \\mitB $",
"$ \\mitN _ { \\mitp - 2 } $",
"$ ( \\mitp - 2 ) $",
"$ \\mitB $",
"$ \\mitN _ { \\mitp } $",
"$ \\mitN _ { \\mitp - 2 } $",
"$ \\tilde { \\mitV } _ { 2 } $",
"$ \\tilde { \\mitb } $",
"$ \\mitU ( \\infty ) $",
"$ ( \\mitp - 1 ) $",
"$ \\mitp - 1 ) $"
],
"x_min": [
0.4505999982357025,
0.536300003528595,
0.7001000046730042,
0.6538000106811523,
0.5030999779701233,
0.13609999418258667,
0.7885000109672546,
0.8658999800682068,
0.24529999494552612,
0.5293999910354614,
0.1534000039100647,
0.1437000036239624,
0.23010000586509705,
0.4271000027656555,
0.7014999985694885,
0.7394999861717224,
0.8313999772071838,
0.22939999401569366,
0.32899999618530273,
0.7172999978065491,
0.8044000267982483,
0.4499000012874603,
0.1624000072479248,
0.5522000193595886,
0.13609999418258667,
0.7505000233650208,
0.8568999767303467,
0.120899997651577,
0.5224999785423279,
0.6614000201225281,
0.7443000078201294,
0.8313999772071838,
0.2612000107765198,
0.39809998869895935,
0.5508000254631042,
0.7483999729156494,
0.13609999418258667,
0.5846999883651733,
0.8216999769210815,
0.120899997651577,
0.48579999804496765,
0.15889999270439148,
0.1768999993801117,
0.257099986076355,
0.19210000336170197
],
"y_min": [
0.13379999995231628,
0.1386999934911728,
0.13379999995231628,
0.2583000063896179,
0.27880001068115234,
0.30660000443458557,
0.3257000148296356,
0.33059999346733093,
0.3515999913215637,
0.3544999957084656,
0.375,
0.4219000041484833,
0.426800012588501,
0.4507000148296356,
0.44679999351501465,
0.4702000021934509,
0.4717000126838684,
0.5224999785423279,
0.5189999938011169,
0.5181000232696533,
0.5224999785423279,
0.5419999957084656,
0.5669000148773193,
0.5673999786376953,
0.614300012588501,
0.614300012588501,
0.614300012588501,
0.6381999850273132,
0.6381999850273132,
0.63919997215271,
0.6621000170707703,
0.6664999723434448,
0.6869999766349792,
0.6909000277519226,
0.6869999766349792,
0.6869999766349792,
0.7103999853134155,
0.7113999724388123,
0.7113999724388123,
0.7354000210762024,
0.7318999767303467,
0.7559000253677368,
0.8065999746322632,
0.8062000274658203,
0.8306000232696533
],
"x_max": [
0.5099999904632568,
0.5467000007629395,
0.7595000267028809,
0.6642000079154968,
0.5196999907493591,
0.14650000631809235,
0.8403000235557556,
0.8755999803543091,
0.3310000002384186,
0.5397999882698059,
0.16930000483989716,
0.2037999927997589,
0.24050000309944153,
0.4375,
0.7181000113487244,
0.7940999865531921,
0.8755999803543091,
0.24050000309944153,
0.3531999886035919,
0.777400016784668,
0.8148000240325928,
0.5120999813079834,
0.17900000512599945,
0.626800000667572,
0.18860000371932983,
0.8238000273704529,
0.8914999961853027,
0.1388999968767166,
0.5763999819755554,
0.7035999894142151,
0.8044000267982483,
0.8417999744415283,
0.28540000319480896,
0.40849998593330383,
0.5673999786376953,
0.7911999821662903,
0.19280000030994415,
0.6013000011444092,
0.8458999991416931,
0.163100004196167,
0.5058000087738037,
0.1671999990940094,
0.2280000001192093,
0.31790000200271606,
0.24459999799728394
],
"y_max": [
0.14890000224113464,
0.14800000190734863,
0.14890000224113464,
0.26809999346733093,
0.2890999913215637,
0.3158999979496002,
0.3407999873161316,
0.3398999869823456,
0.364300012588501,
0.364300012588501,
0.38530001044273376,
0.43700000643730164,
0.4361000061035156,
0.46000000834465027,
0.45750001072883606,
0.4853000044822693,
0.4839000105857849,
0.5322999954223633,
0.5332000255584717,
0.5327000021934509,
0.5322999954223633,
0.5570999979972839,
0.5771999955177307,
0.5777000188827515,
0.6288999915122986,
0.6294000148773193,
0.6288999915122986,
0.6528000235557556,
0.6528000235557556,
0.6534000039100647,
0.6772000193595886,
0.6762999892234802,
0.7016000151634216,
0.7002000212669373,
0.697700023651123,
0.7016000151634216,
0.7250000238418579,
0.7217000126838684,
0.725600004196167,
0.7495999932289124,
0.7475000023841858,
0.769599974155426,
0.8212000131607056,
0.8213000297546387,
0.8452000021934509
],
"expr_type": [
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded"
]
} |
|
0001213_page24 | {
"latex": [
"$(p-2)$",
"$p$",
"$p$",
"$(p-2)$",
"$p$",
"$(p-2)$",
"$p$",
"$p$",
"$B$",
"$p$",
"$p$",
"$B$",
"$N$",
"$p$",
"$U(N_p)$",
"$p+1)$",
"$U(N_{p-2})$",
"$p-1$",
"$\\tilde {V}_2 \\rightarrow \\infty $",
"$N_p$",
"$N_{p-2}$"
],
"latex_norm": [
"$ ( p - 2 ) $",
"$ p $",
"$ p $",
"$ ( p - 2 ) $",
"$ p $",
"$ ( p - 2 ) $",
"$ p $",
"$ p $",
"$ B $",
"$ p $",
"$ p $",
"$ B $",
"$ N $",
"$ p $",
"$ U ( N _ { p } ) $",
"$ p + 1 ) $",
"$ U ( N _ { p - 2 } ) $",
"$ p - 1 $",
"$ \\widetilde { V } _ { 2 } \\rightarrow \\infty $",
"$ N _ { p } $",
"$ N _ { p - 2 } $"
],
"latex_expand": [
"$ ( \\mitp - 2 ) $",
"$ \\mitp $",
"$ \\mitp $",
"$ ( \\mitp - 2 ) $",
"$ \\mitp $",
"$ ( \\mitp - 2 ) $",
"$ \\mitp $",
"$ \\mitp $",
"$ \\mitB $",
"$ \\mitp $",
"$ \\mitp $",
"$ \\mitB $",
"$ \\mitN $",
"$ \\mitp $",
"$ \\mitU ( \\mitN _ { \\mitp } ) $",
"$ \\mitp + 1 ) $",
"$ \\mitU ( \\mitN _ { \\mitp - 2 } ) $",
"$ \\mitp - 1 $",
"$ \\tilde { \\mitV } _ { 2 } \\rightarrow \\infty $",
"$ \\mitN _ { \\mitp } $",
"$ \\mitN _ { \\mitp - 2 } $"
],
"x_min": [
0.5307999849319458,
0.609499990940094,
0.2093999981880188,
0.2888999879360199,
0.7566999793052673,
0.25920000672340393,
0.13609999418258667,
0.33379998803138733,
0.7221999764442444,
0.24330000579357147,
0.4429999887943268,
0.6937999725341797,
0.2605000138282776,
0.13609999418258667,
0.28200000524520874,
0.3765999972820282,
0.5259000062942505,
0.6392999887466431,
0.27160000801086426,
0.6427000164985657,
0.7117999792098999
],
"y_min": [
0.13379999995231628,
0.1386999934911728,
0.16259999573230743,
0.15770000219345093,
0.16259999573230743,
0.18209999799728394,
0.3544999957084656,
0.35499998927116394,
0.35109999775886536,
0.3788999915122986,
0.3788999915122986,
0.375,
0.42289999127388,
0.4745999872684479,
0.5181000232696533,
0.5181000232696533,
0.5425000190734863,
0.5439000129699707,
0.5640000104904175,
0.5673999786376953,
0.5673999786376953
],
"x_max": [
0.5846999883651733,
0.6198999881744385,
0.21979999542236328,
0.35109999775886536,
0.7670999765396118,
0.31380000710487366,
0.14650000631809235,
0.3441999852657318,
0.738099992275238,
0.25369998812675476,
0.45339998602867126,
0.7103999853134155,
0.2791999876499176,
0.14650000631809235,
0.33660000562667847,
0.43050000071525574,
0.5992000102996826,
0.6855999827384949,
0.3449000120162964,
0.6668999791145325,
0.7545999884605408
],
"y_max": [
0.14890000224113464,
0.14800000190734863,
0.17190000414848328,
0.1728000044822693,
0.17190000414848328,
0.19670000672340393,
0.364300012588501,
0.364300012588501,
0.3614000082015991,
0.3882000148296356,
0.3882000148296356,
0.38530001044273376,
0.4336000084877014,
0.4844000041484833,
0.5336999893188477,
0.5332000255584717,
0.5576000213623047,
0.5561000108718872,
0.5795999765396118,
0.58160001039505,
0.58160001039505
],
"expr_type": [
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded"
]
} |
|
0001213_page25 | {
"latex": [
"$N$",
"$(p+1)$",
"$(p-2)$"
],
"latex_norm": [
"$ N $",
"$ ( p + 1 ) $",
"$ ( p - 2 ) $"
],
"latex_expand": [
"$ \\mitN $",
"$ ( \\mitp + 1 ) $",
"$ ( \\mitp - 2 ) $"
],
"x_min": [
0.6682999730110168,
0.33719998598098755,
0.8181999921798706
],
"y_min": [
0.40529999136924744,
0.638700008392334,
0.638700008392334
],
"x_max": [
0.6869999766349792,
0.3953000009059906,
0.8762999773025513
],
"y_max": [
0.4156000018119812,
0.6538000106811523,
0.6538000106811523
],
"expr_type": [
"embedded",
"embedded",
"embedded"
]
} |
|
0002003_page01 | {
"latex": [
"${\\mathbf {C}}P^1$",
"${\\mathbf {C}}P^1$",
"${\\mathbf {C}}P^1$",
"$(1+2)$",
"${\\mathbf {C}}P^1$",
"$(1+2)$"
],
"latex_norm": [
"$ C P ^ { 1 } $",
"$ C P ^ { 1 } $",
"$ C P ^ { 1 } $",
"$ ( 1 + 2 ) $",
"$ C P ^ { 1 } $",
"$ ( 1 + 2 ) $"
],
"latex_expand": [
"$ \\mbfC \\mitP ^ { 1 } $",
"$ \\mbfC \\mitP ^ { 1 } $",
"$ \\mbfC \\mitP ^ { 1 } $",
"$ ( 1 + 2 ) $",
"$ \\mbfC \\mitP ^ { 1 } $",
"$ ( 1 + 2 ) $"
],
"x_min": [
0.4837999939918518,
0.5874000191688538,
0.1728000044822693,
0.30059999227523804,
0.4043000042438507,
0.5321000218391418
],
"y_min": [
0.2354000061750412,
0.3783999979496002,
0.6753000020980835,
0.6758000254631042,
0.7095000147819519,
0.7099999785423279
],
"x_max": [
0.5515000224113464,
0.6254000067710876,
0.21289999783039093,
0.36000001430511475,
0.44440001249313354,
0.592199981212616
],
"y_max": [
0.25589999556541443,
0.38960000872612,
0.6869999766349792,
0.6909000277519226,
0.7217000126838684,
0.7250999808311462
],
"expr_type": [
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded"
]
} |
|
0002003_page02 | {
"latex": [
"${\\mathbf {C}}P^1$",
"$p$",
"$p=2,3,\\cdots $",
"${\\mathbf {C}}P^1$",
"$p$",
"$p$",
"$p$",
"$p$",
"$g(x)$",
"$z$",
"$g_r \\equiv \\partial _x^r g(x)$",
"$n$",
"$$ \\partial ^{\\mu }\\partial _{\\mu }u=0 \\quad \\mbox {and} \\quad \\partial ^{\\mu }u\\partial _{\\mu }u=0, $$",
"$$ \\hspace {5cm} \\mbox {for} \\quad u:M^{1+n} \\longrightarrow {\\mathbf {C}} $$",
"$$ \\square _2 u=0 \\quad \\mbox {and} \\quad \\square _2 (u^2)=0, $$",
"$$ \\square _p (u^k) \\equiv \\left ( \\frac {\\partial ^p}{\\partial x_0^p} -\\sum _{j=1}^n \\frac {\\partial ^p}{\\partial x_j^p} \\right ) (u^k)=0 \\quad \\mbox {for} \\quad 1 \\le k \\le p . \\label {eqn:p-sub} $$",
"\\begin {equation} F_n(zg) = F_n(zg_1, \\cdots ,zg_n) \\equiv \\mbox {e}^{-zg(x)} \\partial _x^n \\mbox {e}^{zg(x)}. \\end {equation}",
"\\begin {equation} \\exp \\left \\{ z\\sum _{j=1}^{\\infty }\\frac {g_j}{j!}t^j \\right \\} = \\sum _{n=0}^{\\infty }\\frac {F_n(zg)}{n!}t^n. \\label {eqn:gen} \\end {equation}"
],
"latex_norm": [
"$ C P ^ { 1 } $",
"$ p $",
"$ p = 2 , 3 , \\cdots $",
"$ C P ^ { 1 } $",
"$ p $",
"$ p $",
"$ p $",
"$ p $",
"$ g ( x ) $",
"$ z $",
"$ g _ { r } \\equiv \\partial _ { x } ^ { r } g ( x ) $",
"$ n $",
"\\begin{equation*} \\partial ^ { \\mu } \\partial _ { \\mu } u = 0 \\quad a n d \\quad \\partial ^ { \\mu } u \\partial _ { \\mu } u = 0 , \\end{equation*}",
"\\begin{equation*} \\hspace{142.26pt} f o r \\quad u : M ^ { 1 + n } \\longrightarrow C \\end{equation*}",
"\\begin{equation*} \\square _ { 2 } u = 0 \\quad a n d \\quad \\square _ { 2 } ( u ^ { 2 } ) = 0 , \\end{equation*}",
"\\begin{equation*} \\square _ { p } ( u ^ { k } ) \\equiv ( \\frac { \\partial ^ { p } } { \\partial x _ { 0 } ^ { p } } - \\sum _ { j = 1 } ^ { n } \\frac { \\partial ^ { p } } { \\partial x _ { j } ^ { p } } ) ( u ^ { k } ) = 0 \\quad f o r \\quad 1 \\leq k \\leq p . \\end{equation*}",
"\\begin{equation*} F _ { n } ( z g ) = F _ { n } ( z g _ { 1 } , \\cdots , z g _ { n } ) \\equiv e ^ { - z g ( x ) } \\partial _ { x } ^ { n } e ^ { z g ( x ) } . \\end{equation*}",
"\\begin{equation*} \\operatorname { e x p } \\{ z \\sum _ { j = 1 } ^ { \\infty } \\frac { g _ { j } } { j ! } t ^ { j } \\} = \\sum _ { n = 0 } ^ { \\infty } \\frac { F _ { n } ( z g ) } { n ! } t ^ { n } . \\end{equation*}"
],
"latex_expand": [
"$ \\mbfC \\mitP ^ { 1 } $",
"$ \\mitp $",
"$ \\mitp = 2 , 3 , \\cdots $",
"$ \\mbfC \\mitP ^ { 1 } $",
"$ \\mitp $",
"$ \\mitp $",
"$ \\mitp $",
"$ \\mitp $",
"$ \\mitg ( \\mitx ) $",
"$ \\mitz $",
"$ \\mitg _ { \\mitr } \\equiv \\mitpartial _ { \\mitx } ^ { \\mitr } \\mitg ( \\mitx ) $",
"$ \\mitn $",
"\\begin{equation*} \\mitpartial ^ { \\mitmu } \\mitpartial _ { \\mitmu } \\mitu = 0 \\quad \\mathrm { a n d } \\quad \\mitpartial ^ { \\mitmu } \\mitu \\mitpartial _ { \\mitmu } \\mitu = 0 , \\end{equation*}",
"\\begin{equation*} \\hspace{142.26pt} \\mathrm { f o r } \\quad \\mitu : \\mitM ^ { 1 + \\mitn } \\longrightarrow \\mbfC \\end{equation*}",
"\\begin{equation*} \\square _ { 2 } \\mitu = 0 \\quad \\mathrm { a n d } \\quad \\square _ { 2 } ( \\mitu ^ { 2 } ) = 0 , \\end{equation*}",
"\\begin{equation*} \\square _ { \\mitp } ( \\mitu ^ { \\mitk } ) \\equiv \\left( \\frac { \\mitpartial ^ { \\mitp } } { \\mitpartial \\mitx _ { 0 } ^ { \\mitp } } - \\sum _ { \\mitj = 1 } ^ { \\mitn } \\frac { \\mitpartial ^ { \\mitp } } { \\mitpartial \\mitx _ { \\mitj } ^ { \\mitp } } \\right) ( \\mitu ^ { \\mitk } ) = 0 \\quad \\mathrm { f o r } \\quad 1 \\leq \\mitk \\leq \\mitp . \\end{equation*}",
"\\begin{equation*} \\mitF _ { \\mitn } ( \\mitz \\mitg ) = \\mitF _ { \\mitn } ( \\mitz \\mitg _ { 1 } , \\cdots , \\mitz \\mitg _ { \\mitn } ) \\equiv \\mathrm { e } ^ { - \\mitz \\mitg ( \\mitx ) } \\mitpartial _ { \\mitx } ^ { \\mitn } \\mathrm { e } ^ { \\mitz \\mitg ( \\mitx ) } . \\end{equation*}",
"\\begin{equation*} \\operatorname { e x p } \\left\\{ \\mitz \\sum _ { \\mitj = 1 } ^ { \\infty } \\frac { \\mitg _ { \\mitj } } { \\mitj ! } \\mitt ^ { \\mitj } \\right\\} = \\sum _ { \\mitn = 0 } ^ { \\infty } \\frac { \\mitF _ { \\mitn } ( \\mitz \\mitg ) } { \\mitn ! } \\mitt ^ { \\mitn } . \\end{equation*}"
],
"x_min": [
0.3441999852657318,
0.3711000084877014,
0.4706000089645386,
0.49549999833106995,
0.5293999910354614,
0.43470001220703125,
0.673799991607666,
0.7276999950408936,
0.35659998655319214,
0.6247000098228455,
0.210099995136261,
0.6800000071525574,
0.36559998989105225,
0.5286999940872192,
0.3765999972820282,
0.2639999985694885,
0.3109999895095825,
0.3531000018119812
],
"y_min": [
0.17430000007152557,
0.3091000020503998,
0.30570000410079956,
0.3208000063896179,
0.4311999976634979,
0.448199987411499,
0.5,
0.5170999765396118,
0.6714000105857849,
0.6758000254631042,
0.6884999871253967,
0.6934000253677368,
0.2061000019311905,
0.2354000061750412,
0.27730000019073486,
0.3666999936103821,
0.7143999934196472,
0.7768999934196472
],
"x_max": [
0.38429999351501465,
0.3815000057220459,
0.5715000033378601,
0.5356000065803528,
0.5397999882698059,
0.44510000944137573,
0.6841999888420105,
0.7387999892234802,
0.39320001006126404,
0.6358000040054321,
0.31029999256134033,
0.6923999786376953,
0.630299985408783,
0.7084000110626221,
0.6191999912261963,
0.7353000044822693,
0.6904000043869019,
0.6453999876976013
],
"y_max": [
0.1860000044107437,
0.31839999556541443,
0.31839999556541443,
0.3330000042915344,
0.4404999911785126,
0.45750001072883606,
0.5092999935150146,
0.5264000296592712,
0.6859999895095825,
0.6826000213623047,
0.7035999894142151,
0.7002000212669373,
0.22120000422000885,
0.24860000610351562,
0.29440000653266907,
0.41260001063346863,
0.7348999977111816,
0.8252000212669373
],
"expr_type": [
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"isolated",
"isolated",
"isolated",
"isolated",
"isolated",
"isolated"
]
} |
|
0002003_page03 | {
"latex": [
"${\\mathbf {C}}P^1$",
"$p=2,3,\\cdots $",
"$i=0,1,\\cdots ,[(p-1)/2]$",
"\\begin {equation} F_n(zg_1, \\cdots ,zg_n) = \\hspace {-5mm} \\sum _{{\\scriptstyle k_1+2k_2+ \\cdots +nk_n=n}\\atop {\\scriptstyle k_1 \\geq 0,\\cdots ,k_n \\geq 0}} \\frac {n!}{k_1! \\cdots k_n!} \\left ( \\frac {zg_1}{1!} \\right )^{k_1} \\left ( \\frac {zg_2}{2!} \\right )^{k_2} \\cdots \\left ( \\frac {zg_n}{n!} \\right )^{k_n}. \\end {equation}",
"$$ F_0=1, \\qquad F_1=zg_1, \\qquad F_2=zg_2 + z^2 g_1^2. $$",
"\\begin {equation} F_{n+1}(zg)= \\left \\{ \\sum _{r=1}^n g_{r+1} \\frac {\\partial }{\\partial g_r}+zg_1 \\right \\} F_n(zg). \\label {eqn:shift} \\end {equation}",
"$$B_{nj}=B_{nj}[g]=B_{nj}(g_1,\\cdots ,g_{n-j+1})$$",
"\\begin {equation} F_n(zg_1,\\cdots ,zg_n)=\\sum _{j \\geq 0} z^j B_{nj}(g_1,\\cdots ,g_{n-j+1}). \\end {equation}",
"\\begin {equation} B_{n0}=\\delta _{n0}, \\ B_{nj}=0 \\ (n < j). \\end {equation}",
"\\begin {equation} B_{jk}[f(g(x))]=\\sum _{n=k}^j B_{jn}[g]B_{nk}[f] \\label {eqn:Bmat} \\end {equation}",
"\\begin {equation} \\sum _{\\mu }{}'A_{\\mu } \\equiv A_0-\\sum _{j=1}^n A_j. \\end {equation}"
],
"latex_norm": [
"$ C P ^ { 1 } $",
"$ p = 2 , 3 , \\cdots $",
"$ i = 0 , 1 , \\cdots , [ ( p - 1 ) \\slash 2 ] $",
"\\begin{equation*} F _ { n } ( z g _ { 1 } , \\cdots , z g _ { n } ) = \\hspace{-14.23pt} \\sum _ { { k _ { 1 } + 2 k _ { 2 } + \\cdots + n k _ { n } = n \\atop k _ { 1 } \\geq 0 , \\cdots , k _ { n } \\geq 0 } } \\frac { n ! } { k _ { 1 } ! \\cdots k _ { n } ! } { ( \\frac { z g _ { 1 } } { 1 ! } ) } ^ { k _ { 1 } } { ( \\frac { z g _ { 2 } } { 2 ! } ) } ^ { k _ { 2 } } \\cdots { ( \\frac { z g _ { n } } { n ! } ) } ^ { k _ { n } } . \\end{equation*}",
"\\begin{equation*} F _ { 0 } = 1 , \\qquad F _ { 1 } = z g _ { 1 } , \\qquad F _ { 2 } = z g _ { 2 } + z ^ { 2 } g _ { 1 } ^ { 2 } . \\end{equation*}",
"\\begin{equation*} F _ { n + 1 } ( z g ) = \\{ \\sum _ { r = 1 } ^ { n } g _ { r + 1 } \\frac { \\partial } { \\partial g _ { r } } + z g _ { 1 } \\} F _ { n } ( z g ) . \\end{equation*}",
"\\begin{equation*} B _ { n j } = B _ { n j } [ g ] = B _ { n j } ( g _ { 1 } , \\cdots , g _ { n - j + 1 } ) \\end{equation*}",
"\\begin{equation*} F _ { n } ( z g _ { 1 } , \\cdots , z g _ { n } ) = \\sum _ { j \\geq 0 } z ^ { j } B _ { n j } ( g _ { 1 } , \\cdots , g _ { n - j + 1 } ) . \\end{equation*}",
"\\begin{equation*} B _ { n 0 } = \\delta _ { n 0 } , ~ B _ { n j } = 0 ~ ( n < j ) . \\end{equation*}",
"\\begin{equation*} B _ { j k } [ f ( g ( x ) ) ] = \\sum _ { n = k } ^ { j } B _ { j n } [ g ] B _ { n k } [ f ] \\end{equation*}",
"\\begin{equation*} \\sum _ { \\mu } { } ^ { \\prime } A _ { \\mu } \\equiv A _ { 0 } - \\sum _ { j = 1 } ^ { n } A _ { j } . \\end{equation*}"
],
"latex_expand": [
"$ \\mbfC \\mitP ^ { 1 } $",
"$ \\mitp = 2 , 3 , \\cdots $",
"$ \\miti = 0 , 1 , \\cdots , [ ( \\mitp - 1 ) \\slash 2 ] $",
"\\begin{equation*} \\mitF _ { \\mitn } ( \\mitz \\mitg _ { 1 } , \\cdots , \\mitz \\mitg _ { \\mitn } ) = \\hspace{-14.23pt} \\sum _ { { { \\scriptstyle \\mitk _ { 1 } + 2 \\mitk _ { 2 } + \\cdots + \\mitn \\mitk _ { \\mitn } = \\mitn } \\atop { \\scriptstyle \\mitk _ { 1 } \\geq 0 , \\cdots , \\mitk _ { \\mitn } \\geq 0 } } } \\frac { \\mitn ! } { \\mitk _ { 1 } ! \\cdots \\mitk _ { \\mitn } ! } { \\left( \\frac { \\mitz \\mitg _ { 1 } } { 1 ! } \\right) } ^ { \\mitk _ { 1 } } { \\left( \\frac { \\mitz \\mitg _ { 2 } } { 2 ! } \\right) } ^ { \\mitk _ { 2 } } \\cdots { \\left( \\frac { \\mitz \\mitg _ { \\mitn } } { \\mitn ! } \\right) } ^ { \\mitk _ { \\mitn } } . \\end{equation*}",
"\\begin{equation*} \\mitF _ { 0 } = 1 , \\qquad \\mitF _ { 1 } = \\mitz \\mitg _ { 1 } , \\qquad \\mitF _ { 2 } = \\mitz \\mitg _ { 2 } + \\mitz ^ { 2 } \\mitg _ { 1 } ^ { 2 } . \\end{equation*}",
"\\begin{equation*} \\mitF _ { \\mitn + 1 } ( \\mitz \\mitg ) = \\left\\{ \\sum _ { \\mitr = 1 } ^ { \\mitn } \\mitg _ { \\mitr + 1 } \\frac { \\mitpartial } { \\mitpartial \\mitg _ { \\mitr } } + \\mitz \\mitg _ { 1 } \\right\\} \\mitF _ { \\mitn } ( \\mitz \\mitg ) . \\end{equation*}",
"\\begin{equation*} \\mitB _ { \\mitn \\mitj } = \\mitB _ { \\mitn \\mitj } [ \\mitg ] = \\mitB _ { \\mitn \\mitj } ( \\mitg _ { 1 } , \\cdots , \\mitg _ { \\mitn - \\mitj + 1 } ) \\end{equation*}",
"\\begin{equation*} \\mitF _ { \\mitn } ( \\mitz \\mitg _ { 1 } , \\cdots , \\mitz \\mitg _ { \\mitn } ) = \\sum _ { \\mitj \\geq 0 } \\mitz ^ { \\mitj } \\mitB _ { \\mitn \\mitj } ( \\mitg _ { 1 } , \\cdots , \\mitg _ { \\mitn - \\mitj + 1 } ) . \\end{equation*}",
"\\begin{equation*} \\mitB _ { \\mitn 0 } = \\mitdelta _ { \\mitn 0 } , ~ \\mitB _ { \\mitn \\mitj } = 0 ~ ( \\mitn < \\mitj ) . \\end{equation*}",
"\\begin{equation*} \\mitB _ { \\mitj \\mitk } [ \\mitf ( \\mitg ( \\mitx ) ) ] = \\sum _ { \\mitn = \\mitk } ^ { \\mitj } \\mitB _ { \\mitj \\mitn } [ \\mitg ] \\mitB _ { \\mitn \\mitk } [ \\mitf ] \\end{equation*}",
"\\begin{equation*} \\sum _ { \\mitmu } { } ^ { \\prime } \\mitA _ { \\mitmu } \\equiv \\mitA _ { 0 } - \\sum _ { \\mitj = 1 } ^ { \\mitn } \\mitA _ { \\mitj } . \\end{equation*}"
],
"x_min": [
0.6980000138282776,
0.3034000098705292,
0.44780001044273376,
0.18870000541210175,
0.3151000142097473,
0.32269999384880066,
0.3483000099658966,
0.30480000376701355,
0.37869998812675476,
0.3634999990463257,
0.4000999927520752
],
"y_min": [
0.7310000061988831,
0.8281000256538391,
0.82669997215271,
0.17720000445842743,
0.27000001072883606,
0.35690000653266907,
0.448199987411499,
0.49320000410079956,
0.5532000064849854,
0.6273999810218811,
0.774399995803833
],
"x_max": [
0.738099992275238,
0.4043000042438507,
0.6467999815940857,
0.8126999735832214,
0.6833999752998352,
0.678600013256073,
0.6510000228881836,
0.6966000199317932,
0.6226999759674072,
0.6371999979019165,
0.5983999967575073
],
"y_max": [
0.7426999807357788,
0.8407999873161316,
0.8417999744415283,
0.22990000247955322,
0.2870999872684479,
0.4032999873161316,
0.46480000019073486,
0.5317999720573425,
0.5717999935150146,
0.6757000088691711,
0.8213000297546387
],
"expr_type": [
"embedded",
"embedded",
"embedded",
"isolated",
"isolated",
"isolated",
"isolated",
"isolated",
"isolated",
"isolated",
"isolated"
]
} |
|
0002003_page04 | {
"latex": [
"$k=1,\\cdots , p-i$",
"$l=0,\\cdots ,i$",
"$(p,i)$",
"$(p,i)=(2,0);$",
"${\\mathbf {C}}P^1$",
"$(p,i)=(3,0);$",
"$(p,i)=(3,1);$",
"$g(x)$",
"$\\bar {g}(x)$",
"$z$",
"$\\bar {z}$",
"$\\cal {P}_{\\mbox {B}}$",
"$\\mathbf {C}$",
"$F_n(zg)\\bar {F}_m(\\bar {z}\\bar {g})$",
"$\\bar {F}_m(\\bar {z}\\bar {g})$",
"$F_m(\\bar {z}\\bar {g})$",
"$\\Phi $",
"$\\cal {P}_{\\mbox {B}}$",
"$\\mathbf {C}[\\xi , \\bar {\\xi }]$",
"\\begin {equation} \\sum _{\\mu }{}'\\partial _{\\mu }^{p-i}(u^k) \\partial _{\\mu }^i(\\bar {u}^l)=0 \\label {eqn:4-4} \\end {equation}",
"\\begin {equation} \\sum _{\\mu }{}'\\partial _{\\mu }^2 u=0, \\quad \\sum _{\\mu }{}'\\partial _{\\mu }^2 (u^2)=0. \\label {eqn:2-0sub} \\end {equation}",
"\\begin {equation} \\sum _{\\mu }{}'\\partial _{\\mu }^3 u=0, \\quad \\sum _{\\mu }{}'\\partial _{\\mu }^3 (u^2)=0, \\quad \\sum _{\\mu }{}'\\partial _{\\mu }^3 (u^3)=0, \\label {eqn:3-0sub} \\end {equation}",
"\\begin {equation} \\sum _{\\mu }{}'\\partial _{\\mu }^2 u \\partial _{\\mu } \\bar {u}=0, \\quad \\sum _{\\mu }{}'\\partial _{\\mu }^2 (u^2) \\partial _{\\mu } \\bar {u}=0. \\label {eqn:3-1sub} \\end {equation}",
"\\begin {equation} \\Phi : \\cal {P}_{\\mbox {B}} \\rightarrow \\mathbf {C}[\\xi , \\bar {\\xi }], \\end {equation}",
"\\begin {equation} \\Phi (F_n(zg)\\bar {F}_m(\\bar {z}\\bar {g}))=\\xi ^n \\bar {\\xi }^m. \\end {equation}",
"$$ F_n(zg)=\\mbox {e}^{-zg(x)} \\partial _x^n \\mbox {e}^{zg(x)} \\longmapsto \\mbox {e}^{-zg(x)} {\\xi }^n \\mbox {e}^{zg(x)}=\\xi ^n . $$",
"\\begin {equation} \\partial \\equiv \\sum _{r=1}^{\\infty } \\left ( g_{r+1} \\frac {\\partial }{\\partial g_r} + \\bar {g}_{r+1} \\frac {\\partial }{\\partial \\bar {g}_r} \\right ) +zg_1+\\bar {z}\\bar {g}_1 \\end {equation}"
],
"latex_norm": [
"$ k = 1 , \\cdots , p - i $",
"$ l = 0 , \\cdots , i $",
"$ ( p , i ) $",
"$ ( p , i ) = ( 2 , 0 ) ; $",
"$ C P ^ { 1 } $",
"$ ( p , i ) = ( 3 , 0 ) ; $",
"$ ( p , i ) = ( 3 , 1 ) ; $",
"$ g ( x ) $",
"$ \\bar { g } ( x ) $",
"$ z $",
"$ \\bar { z } $",
"$ P _ { B } $",
"$ C $",
"$ F _ { n } ( z g ) \\bar { F } _ { m } ( \\bar { z } \\bar { g } ) $",
"$ \\bar { F } _ { m } ( \\bar { z } \\bar { g } ) $",
"$ F _ { m } ( \\bar { z } \\bar { g } ) $",
"$ \\Phi $",
"$ P _ { B } $",
"$ C [ \\xi , \\bar { \\xi } ] $",
"\\begin{equation*} \\sum _ { \\mu } { } ^ { \\prime } \\partial _ { \\mu } ^ { p - i } ( u ^ { k } ) \\partial _ { \\mu } ^ { i } ( \\bar { u } ^ { l } ) = 0 \\end{equation*}",
"\\begin{equation*} \\sum _ { \\mu } { } ^ { \\prime } \\partial _ { \\mu } ^ { 2 } u = 0 , \\quad \\sum _ { \\mu } { } ^ { \\prime } \\partial _ { \\mu } ^ { 2 } ( u ^ { 2 } ) = 0 . \\end{equation*}",
"\\begin{equation*} \\sum _ { \\mu } { } ^ { \\prime } \\partial _ { \\mu } ^ { 3 } u = 0 , \\quad \\sum _ { \\mu } { } ^ { \\prime } \\partial _ { \\mu } ^ { 3 } ( u ^ { 2 } ) = 0 , \\quad \\sum _ { \\mu } { } ^ { \\prime } \\partial _ { \\mu } ^ { 3 } ( u ^ { 3 } ) = 0 , \\end{equation*}",
"\\begin{equation*} \\sum _ { \\mu } { } ^ { \\prime } \\partial _ { \\mu } ^ { 2 } u \\partial _ { \\mu } \\bar { u } = 0 , \\quad \\sum _ { \\mu } { } ^ { \\prime } \\partial _ { \\mu } ^ { 2 } ( u ^ { 2 } ) \\partial _ { \\mu } \\bar { u } = 0 . \\end{equation*}",
"\\begin{equation*} \\Phi : P _ { B } \\rightarrow C [ \\xi , \\bar { \\xi } ] , \\end{equation*}",
"\\begin{equation*} \\Phi ( F _ { n } ( z g ) \\bar { F } _ { m } ( \\bar { z } \\bar { g } ) ) = \\xi ^ { n } \\bar { \\xi } ^ { m } . \\end{equation*}",
"\\begin{equation*} F _ { n } ( z g ) = e ^ { - z g ( x ) } \\partial _ { x } ^ { n } e ^ { z g ( x ) } \\longmapsto e ^ { - z g ( x ) } \\xi ^ { n } e ^ { z g ( x ) } = \\xi ^ { n } . \\end{equation*}",
"\\begin{equation*} \\partial \\equiv \\sum _ { r = 1 } ^ { \\infty } ( g _ { r + 1 } \\frac { \\partial } { \\partial g _ { r } } + \\bar { g } _ { r + 1 } \\frac { \\partial } { \\partial \\bar { g } _ { r } } ) + z g _ { 1 } + \\bar { z } \\bar { g } _ { 1 } \\end{equation*}"
],
"latex_expand": [
"$ \\mitk = 1 , \\cdots , \\mitp - \\miti $",
"$ \\mitl = 0 , \\cdots , \\miti $",
"$ ( \\mitp , \\miti ) $",
"$ ( \\mitp , \\miti ) = ( 2 , 0 ) ; $",
"$ \\mbfC \\mitP ^ { 1 } $",
"$ ( \\mitp , \\miti ) = ( 3 , 0 ) ; $",
"$ ( \\mitp , \\miti ) = ( 3 , 1 ) ; $",
"$ \\mitg ( \\mitx ) $",
"$ \\bar { \\mitg } ( \\mitx ) $",
"$ \\mitz $",
"$ \\bar { \\mitz } $",
"$ \\mitP _ { \\mathrm { B } } $",
"$ \\mbfC $",
"$ \\mitF _ { \\mitn } ( \\mitz \\mitg ) \\bar { \\mitF } _ { \\mitm } ( \\bar { \\mitz } \\bar { \\mitg } ) $",
"$ \\bar { \\mitF } _ { \\mitm } ( \\bar { \\mitz } \\bar { \\mitg } ) $",
"$ \\mitF _ { \\mitm } ( \\bar { \\mitz } \\bar { \\mitg } ) $",
"$ \\mupPhi $",
"$ \\mitP _ { \\mathrm { B } } $",
"$ \\mbfC [ \\mitxi , \\bar { \\mitxi } ] $",
"\\begin{equation*} \\sum _ { \\mitmu } { } ^ { \\prime } \\mitpartial _ { \\mitmu } ^ { \\mitp - \\miti } ( \\mitu ^ { \\mitk } ) \\mitpartial _ { \\mitmu } ^ { \\miti } ( \\bar { \\mitu } ^ { \\mitl } ) = 0 \\end{equation*}",
"\\begin{equation*} \\sum _ { \\mitmu } { } ^ { \\prime } \\mitpartial _ { \\mitmu } ^ { 2 } \\mitu = 0 , \\quad \\sum _ { \\mitmu } { } ^ { \\prime } \\mitpartial _ { \\mitmu } ^ { 2 } ( \\mitu ^ { 2 } ) = 0 . \\end{equation*}",
"\\begin{equation*} \\sum _ { \\mitmu } { } ^ { \\prime } \\mitpartial _ { \\mitmu } ^ { 3 } \\mitu = 0 , \\quad \\sum _ { \\mitmu } { } ^ { \\prime } \\mitpartial _ { \\mitmu } ^ { 3 } ( \\mitu ^ { 2 } ) = 0 , \\quad \\sum _ { \\mitmu } { } ^ { \\prime } \\mitpartial _ { \\mitmu } ^ { 3 } ( \\mitu ^ { 3 } ) = 0 , \\end{equation*}",
"\\begin{equation*} \\sum _ { \\mitmu } { } ^ { \\prime } \\mitpartial _ { \\mitmu } ^ { 2 } \\mitu \\mitpartial _ { \\mitmu } \\bar { \\mitu } = 0 , \\quad \\sum _ { \\mitmu } { } ^ { \\prime } \\mitpartial _ { \\mitmu } ^ { 2 } ( \\mitu ^ { 2 } ) \\mitpartial _ { \\mitmu } \\bar { \\mitu } = 0 . \\end{equation*}",
"\\begin{equation*} \\mupPhi : \\mitP _ { \\mathrm { B } } \\rightarrow \\mbfC [ \\mitxi , \\bar { \\mitxi } ] , \\end{equation*}",
"\\begin{equation*} \\mupPhi ( \\mitF _ { \\mitn } ( \\mitz \\mitg ) \\bar { \\mitF } _ { \\mitm } ( \\bar { \\mitz } \\bar { \\mitg } ) ) = \\mitxi ^ { \\mitn } \\bar { \\mitxi } ^ { \\mitm } . \\end{equation*}",
"\\begin{equation*} \\mitF _ { \\mitn } ( \\mitz \\mitg ) = \\mathrm { e } ^ { - \\mitz \\mitg ( \\mitx ) } \\mitpartial _ { \\mitx } ^ { \\mitn } \\mathrm { e } ^ { \\mitz \\mitg ( \\mitx ) } \\longmapsto \\mathrm { e } ^ { - \\mitz \\mitg ( \\mitx ) } \\mitxi ^ { \\mitn } \\mathrm { e } ^ { \\mitz \\mitg ( \\mitx ) } = \\mitxi ^ { \\mitn } . \\end{equation*}",
"\\begin{equation*} \\mitpartial \\equiv \\sum _ { \\mitr = 1 } ^ { \\infty } \\left( \\mitg _ { \\mitr + 1 } \\frac { \\mitpartial } { \\mitpartial \\mitg _ { \\mitr } } + \\bar { \\mitg } _ { \\mitr + 1 } \\frac { \\mitpartial } { \\mitpartial \\bar { \\mitg } _ { \\mitr } } \\right) + \\mitz \\mitg _ { 1 } + \\bar { \\mitz } \\bar { \\mitg } _ { 1 } \\end{equation*}"
],
"x_min": [
0.20389999449253082,
0.3531000018119812,
0.4505999982357025,
0.3199999928474426,
0.5113999843597412,
0.1728000044822693,
0.1728000044822693,
0.2328999936580658,
0.2840000092983246,
0.5562999844551086,
0.5805000066757202,
0.1728000044822693,
0.3939000070095062,
0.1728000044822693,
0.49900001287460327,
0.6668999791145325,
0.38769999146461487,
0.3310000002384186,
0.579800009727478,
0.4000999927520752,
0.36489999294281006,
0.2847000062465668,
0.33379998803138733,
0.42160001397132874,
0.38769999146461487,
0.2922999858856201,
0.3172000050544739
],
"y_min": [
0.21389999985694885,
0.21389999985694885,
0.23000000417232513,
0.2587999999523163,
0.33739998936653137,
0.35499998927116394,
0.4336000084877014,
0.5839999914169312,
0.5839999914169312,
0.5884000062942505,
0.586899995803833,
0.6000999808311462,
0.6021000146865845,
0.6171000003814697,
0.6172000169754028,
0.6182000041007996,
0.7271000146865845,
0.7900000214576721,
0.7875999808311462,
0.16699999570846558,
0.2847000062465668,
0.38089999556541443,
0.4458000063896179,
0.6621000170707703,
0.6929000020027161,
0.7567999958992004,
0.8173999786376953
],
"x_max": [
0.3407000005245209,
0.4505000114440918,
0.4921000003814697,
0.4368000030517578,
0.5515000224113464,
0.2896000146865845,
0.2896000146865845,
0.2694999873638153,
0.3206000030040741,
0.5666999816894531,
0.5916000008583069,
0.20239999890327454,
0.4104999899864197,
0.2924000024795532,
0.5612000226974487,
0.7290999889373779,
0.40290001034736633,
0.36000001430511475,
0.6358000040054321,
0.5983999967575073,
0.6337000131607056,
0.7096999883651733,
0.6647999882698059,
0.5763999819755554,
0.6136999726295471,
0.7070000171661377,
0.6841999888420105
],
"y_max": [
0.22709999978542328,
0.22709999978542328,
0.24459999799728394,
0.2734000086784363,
0.3490999937057495,
0.36959999799728394,
0.4487000107765198,
0.5990999937057495,
0.5990999937057495,
0.5952000021934509,
0.5952000021934509,
0.6152999997138977,
0.6123999953269958,
0.6323000192642212,
0.6333000063896179,
0.6333000063896179,
0.7373999953269958,
0.8046000003814697,
0.8036999702453613,
0.20559999346733093,
0.32280001044273376,
0.4194999933242798,
0.4844000041484833,
0.6826000213623047,
0.7124000191688538,
0.7749000191688538,
0.8622999787330627
],
"expr_type": [
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"isolated",
"isolated",
"isolated",
"isolated",
"isolated",
"isolated",
"isolated",
"isolated"
]
} |
|
0002003_page05 | {
"latex": [
"$\\cal {P}_{\\mbox {B}}$",
"$F_n$",
"$n$",
"$\\Phi $",
"$\\mu \\in \\{ 0,\\cdots ,n \\}$",
"$x=x_{\\mu }$",
"$g(x_{\\mu })=u(x_0,\\cdots ,x_{\\mu },\\cdots ,x_n)$",
"$g_r=\\partial _{\\mu }^r u$",
"$F_{n,\\, \\mu }$",
"$\\bar {F}_{n,\\, \\mu }$",
"$F_{n,\\, \\mu }$",
"$: \\ :$",
"$f=f(u,\\bar {u})$",
"$C^{n+m+1}$",
"\\begin {equation} \\partial (F_n(zg)\\bar {F}_m(\\bar {z}\\bar {g})) = F_{n+1}(zg)\\bar {F}_m(\\bar {z}\\bar {g}) +F_n(zg)\\bar {F}_{m+1}(\\bar {z}\\bar {g}). \\label {eqn:der} \\end {equation}",
"\\begin {eqnarray} && \\hspace {-5mm} \\partial (F_n(zg)\\bar {F}_m(\\bar {z}\\bar {g})) \\\\ &=& \\left \\{ \\sum _{r=1}^{n} g_{r+1} \\frac {\\partial }{\\partial g_r} +\\sum _{r=1}^{m} \\bar {g}_{r+1} \\frac {\\partial }{\\partial \\bar {g}_r} +zg_1+\\bar {z}\\bar {g}_1 \\right \\} F_n(zg)\\bar {F}_m(\\bar {z}\\bar {g}) \\\\ &=& \\sum _{r=1}^{n} g_{r+1} \\frac {\\partial F_n(zg)}{\\partial g_r}\\bar {F}_m(\\bar {z}\\bar {g}) +zg_1 F_n(zg)\\bar {F}_m(\\bar {z}\\bar {g}) \\\\ && \\quad +F_n(zg) \\sum _{r=1}^{m} \\bar {g}_{r+1} \\frac {\\partial \\bar {F}_m(\\bar {z}\\bar {g})}{\\partial \\bar {g}_r} +\\bar {z}\\bar {g}_1 F_n(zg)\\bar {F}_m(\\bar {z}\\bar {g}) \\\\ &=& F_{n+1}(zg)\\bar {F}_m(\\bar {z}\\bar {g}) +F_n(zg)\\bar {F}_{m+1}(\\bar {z}\\bar {g}). \\end {eqnarray}",
"\\begin {equation} \\Phi \\circ \\partial \\circ \\Phi ^{-1} = (\\xi + \\bar {\\xi } ), \\label {eqn:opes} \\end {equation}",
"\\begin {equation} F_n \\bar {F}_m \\quad \\mbox {with} \\quad \\xi ^n \\bar {\\xi }^m \\quad \\mbox {and} \\quad \\partial \\quad \\mbox {with} \\quad (\\xi +\\bar {\\xi }) \\ . \\label {eqn:iden} \\end {equation}",
"\\begin {eqnarray} F_{n,\\, \\mu } &\\equiv & :F_n(zg_1, \\cdots ,zg_n)|_{z=\\frac {\\partial }{\\partial u}}:\\\\ &=& :F_n(\\partial _{\\mu }u \\frac {\\partial }{\\partial u}, \\partial _{\\mu }^2 u \\frac {\\partial }{\\partial u}, \\cdots , \\partial _{\\mu }^n u \\frac {\\partial }{\\partial u}):\\\\ &=& \\hspace {-10mm} \\sum _{{\\scriptstyle k_1+2k_2+ \\cdots +nk_n=n}\\atop {\\scriptstyle k_1 \\geq 0,\\cdots ,k_n \\geq 0}} \\hspace {-1mm} \\frac {n!}{k_1! \\cdots k_n!} \\left ( \\frac {\\partial _{\\mu }u}{1!} \\right )^{k_1} \\hspace {-2mm} \\left ( \\frac {\\partial _{\\mu }^2 u}{2!} \\right )^{k_2} \\hspace {-3mm} \\cdots \\left ( \\frac {\\partial _{\\mu }^n u}{n!} \\right )^{k_n} \\hspace {-2mm} \\left ( \\frac {\\partial }{\\partial u} \\right )^{k_1+k_2+ \\cdots +k_n} \\\\ && \\end {eqnarray}",
"\\begin {equation} \\partial _{\\mu } :F_{n,\\, \\mu }\\bar {F}_{m,\\, \\mu }:f(u,\\bar {u}) \\ =\\^^M:\\partial (F_n(zg)\\bar {F}_m(\\bar {z}\\bar {g})) |_{z=\\frac {\\partial }{\\partial u}}:f(u,\\bar {u}). \\end {equation}"
],
"latex_norm": [
"$ P _ { B } $",
"$ F _ { n } $",
"$ n $",
"$ \\Phi $",
"$ \\mu \\in \\{ 0 , \\cdots , n \\} $",
"$ x = x _ { \\mu } $",
"$ g ( x _ { \\mu } ) = u ( x _ { 0 } , \\cdots , x _ { \\mu } , \\cdots , x _ { n } ) $",
"$ g _ { r } = \\partial _ { \\mu } ^ { r } u $",
"$ F _ { n , \\, \\mu } $",
"$ \\bar { F } _ { n , \\, \\mu } $",
"$ F _ { n , \\, \\mu } $",
"$ : ~ : $",
"$ f = f ( u , \\bar { u } ) $",
"$ C ^ { n + m + 1 } $",
"\\begin{equation*} \\partial ( F _ { n } ( z g ) \\bar { F } _ { m } ( \\bar { z } \\bar { g } ) ) = F _ { n + 1 } ( z g ) \\bar { F } _ { m } ( \\bar { z } \\bar { g } ) + F _ { n } ( z g ) \\bar { F } _ { m + 1 } ( \\bar { z } \\bar { g } ) . \\end{equation*}",
"\\begin{align*} & & \\hspace{-14.23pt} \\partial ( F _ { n } ( z g ) \\bar { F } _ { m } ( \\bar { z } \\bar { g } ) ) \\\\ & = & \\{ \\sum _ { r = 1 } ^ { n } g _ { r + 1 } \\frac { \\partial } { \\partial g _ { r } } + \\sum _ { r = 1 } ^ { m } \\bar { g } _ { r + 1 } \\frac { \\partial } { \\partial \\bar { g } _ { r } } + z g _ { 1 } + \\bar { z } \\bar { g } _ { 1 } \\} F _ { n } ( z g ) \\bar { F } _ { m } ( \\bar { z } \\bar { g } ) \\\\ & = & \\sum _ { r = 1 } ^ { n } g _ { r + 1 } \\frac { \\partial F _ { n } ( z g ) } { \\partial g _ { r } } \\bar { F } _ { m } ( \\bar { z } \\bar { g } ) + z g _ { 1 } F _ { n } ( z g ) \\bar { F } _ { m } ( \\bar { z } \\bar { g } ) \\\\ & & \\quad + F _ { n } ( z g ) \\sum _ { r = 1 } ^ { m } \\bar { g } _ { r + 1 } \\frac { \\partial \\bar { F } _ { m } ( \\bar { z } \\bar { g } ) } { \\partial \\bar { g } _ { r } } + \\bar { z } \\bar { g } _ { 1 } F _ { n } ( z g ) \\bar { F } _ { m } ( \\bar { z } \\bar { g } ) \\\\ & = & F _ { n + 1 } ( z g ) \\bar { F } _ { m } ( \\bar { z } \\bar { g } ) + F _ { n } ( z g ) \\bar { F } _ { m + 1 } ( \\bar { z } \\bar { g } ) . \\end{align*}",
"\\begin{equation*} \\Phi \\circ \\partial \\circ \\Phi ^ { - 1 } = ( \\xi + \\bar { \\xi } ) , \\end{equation*}",
"\\begin{equation*} F _ { n } \\bar { F } _ { m } \\quad w i t h \\quad \\xi ^ { n } \\bar { \\xi } ^ { m } \\quad a n d \\quad \\partial \\quad w i t h \\quad ( \\xi + \\bar { \\xi } ) ~ . \\end{equation*}",
"\\begin{align*} F _ { n , \\, \\mu } & \\equiv & : F _ { n } ( z g _ { 1 } , \\cdots , z g _ { n } ) \\vert _ { z = \\frac { \\partial } { \\partial u } } : \\\\ & = & : F _ { n } ( \\partial _ { \\mu } u \\frac { \\partial } { \\partial u } , \\partial _ { \\mu } ^ { 2 } u \\frac { \\partial } { \\partial u } , \\cdots , \\partial _ { \\mu } ^ { n } u \\frac { \\partial } { \\partial u } ) : \\\\ & = & \\hspace{-28.45pt} \\sum _ { { k _ { 1 } + 2 k _ { 2 } + \\cdots + n k _ { n } = n \\atop k _ { 1 } \\geq 0 , \\cdots , k _ { n } \\geq 0 } } \\hspace{-2.85pt} \\frac { n ! } { k _ { 1 } ! \\cdots k _ { n } ! } { ( \\frac { \\partial _ { \\mu } u } { 1 ! } ) } ^ { k _ { 1 } } \\hspace{-5.69pt} { ( \\frac { \\partial _ { \\mu } ^ { 2 } u } { 2 ! } ) } ^ { k _ { 2 } } \\hspace{-8.54pt} \\cdots { ( \\frac { \\partial _ { \\mu } ^ { n } u } { n ! } ) } ^ { k _ { n } } \\hspace{-5.69pt} { ( \\frac { \\partial } { \\partial u } ) } ^ { k _ { 1 } + k _ { 2 } + \\cdots + k _ { n } } \\end{align*}",
"\\begin{equation*} \\partial _ { \\mu } : F _ { n , \\, \\mu } \\bar { F } _ { m , \\, \\mu } : f ( u , \\bar { u } ) ~ = ~ : \\partial ( F _ { n } ( z g ) \\bar { F } _ { m } ( \\bar { z } \\bar { g } ) ) \\vert _ { z = \\frac { \\partial } { \\partial u } } : f ( u , \\bar { u } ) . \\end{equation*}"
],
"latex_expand": [
"$ \\mitP _ { \\mathrm { B } } $",
"$ \\mitF _ { \\mitn } $",
"$ \\mitn $",
"$ \\mupPhi $",
"$ \\mitmu \\in \\{ 0 , \\cdots , \\mitn \\} $",
"$ \\mitx = \\mitx _ { \\mitmu } $",
"$ \\mitg ( \\mitx _ { \\mitmu } ) = \\mitu ( \\mitx _ { 0 } , \\cdots , \\mitx _ { \\mitmu } , \\cdots , \\mitx _ { \\mitn } ) $",
"$ \\mitg _ { \\mitr } = \\mitpartial _ { \\mitmu } ^ { \\mitr } \\mitu $",
"$ \\mitF _ { \\mitn , \\, \\mitmu } $",
"$ \\bar { \\mitF } _ { \\mitn , \\, \\mitmu } $",
"$ \\mitF _ { \\mitn , \\, \\mitmu } $",
"$ : ~ : $",
"$ \\mitf = \\mitf ( \\mitu , \\bar { \\mitu } ) $",
"$ \\mitC ^ { \\mitn + \\mitm + 1 } $",
"\\begin{equation*} \\mitpartial ( \\mitF _ { \\mitn } ( \\mitz \\mitg ) \\bar { \\mitF } _ { \\mitm } ( \\bar { \\mitz } \\bar { \\mitg } ) ) = \\mitF _ { \\mitn + 1 } ( \\mitz \\mitg ) \\bar { \\mitF } _ { \\mitm } ( \\bar { \\mitz } \\bar { \\mitg } ) + \\mitF _ { \\mitn } ( \\mitz \\mitg ) \\bar { \\mitF } _ { \\mitm + 1 } ( \\bar { \\mitz } \\bar { \\mitg } ) . \\end{equation*}",
"\\begin{align*} & & \\hspace{-14.23pt} \\mitpartial ( \\mitF _ { \\mitn } ( \\mitz \\mitg ) \\bar { \\mitF } _ { \\mitm } ( \\bar { \\mitz } \\bar { \\mitg } ) ) \\\\ & = & \\left\\{ \\sum _ { \\mitr = 1 } ^ { \\mitn } \\mitg _ { \\mitr + 1 } \\frac { \\mitpartial } { \\mitpartial \\mitg _ { \\mitr } } + \\sum _ { \\mitr = 1 } ^ { \\mitm } \\bar { \\mitg } _ { \\mitr + 1 } \\frac { \\mitpartial } { \\mitpartial \\bar { \\mitg } _ { \\mitr } } + \\mitz \\mitg _ { 1 } + \\bar { \\mitz } \\bar { \\mitg } _ { 1 } \\right\\} \\mitF _ { \\mitn } ( \\mitz \\mitg ) \\bar { \\mitF } _ { \\mitm } ( \\bar { \\mitz } \\bar { \\mitg } ) \\\\ & = & \\sum _ { \\mitr = 1 } ^ { \\mitn } \\mitg _ { \\mitr + 1 } \\frac { \\mitpartial \\mitF _ { \\mitn } ( \\mitz \\mitg ) } { \\mitpartial \\mitg _ { \\mitr } } \\bar { \\mitF } _ { \\mitm } ( \\bar { \\mitz } \\bar { \\mitg } ) + \\mitz \\mitg _ { 1 } \\mitF _ { \\mitn } ( \\mitz \\mitg ) \\bar { \\mitF } _ { \\mitm } ( \\bar { \\mitz } \\bar { \\mitg } ) \\\\ & & \\quad + \\mitF _ { \\mitn } ( \\mitz \\mitg ) \\sum _ { \\mitr = 1 } ^ { \\mitm } \\bar { \\mitg } _ { \\mitr + 1 } \\frac { \\mitpartial \\bar { \\mitF } _ { \\mitm } ( \\bar { \\mitz } \\bar { \\mitg } ) } { \\mitpartial \\bar { \\mitg } _ { \\mitr } } + \\bar { \\mitz } \\bar { \\mitg } _ { 1 } \\mitF _ { \\mitn } ( \\mitz \\mitg ) \\bar { \\mitF } _ { \\mitm } ( \\bar { \\mitz } \\bar { \\mitg } ) \\\\ & = & \\mitF _ { \\mitn + 1 } ( \\mitz \\mitg ) \\bar { \\mitF } _ { \\mitm } ( \\bar { \\mitz } \\bar { \\mitg } ) + \\mitF _ { \\mitn } ( \\mitz \\mitg ) \\bar { \\mitF } _ { \\mitm + 1 } ( \\bar { \\mitz } \\bar { \\mitg } ) . \\end{align*}",
"\\begin{equation*} \\mupPhi \\vysmwhtcircle \\mitpartial \\vysmwhtcircle \\mupPhi ^ { - 1 } = ( \\mitxi + \\bar { \\mitxi } ) , \\end{equation*}",
"\\begin{equation*} \\mitF _ { \\mitn } \\bar { \\mitF } _ { \\mitm } \\quad \\mathrm { w i t h } \\quad \\mitxi ^ { \\mitn } \\bar { \\mitxi } ^ { \\mitm } \\quad \\mathrm { a n d } \\quad \\mitpartial \\quad \\mathrm { w i t h } \\quad ( \\mitxi + \\bar { \\mitxi } ) ~ . \\end{equation*}",
"\\begin{align*} \\mitF _ { \\mitn , \\, \\mitmu } & \\equiv & : \\mitF _ { \\mitn } ( \\mitz \\mitg _ { 1 } , \\cdots , \\mitz \\mitg _ { \\mitn } ) \\vert _ { \\mitz = \\frac { \\mitpartial } { \\mitpartial \\mitu } } : \\\\ & = & : \\mitF _ { \\mitn } ( \\mitpartial _ { \\mitmu } \\mitu \\frac { \\mitpartial } { \\mitpartial \\mitu } , \\mitpartial _ { \\mitmu } ^ { 2 } \\mitu \\frac { \\mitpartial } { \\mitpartial \\mitu } , \\cdots , \\mitpartial _ { \\mitmu } ^ { \\mitn } \\mitu \\frac { \\mitpartial } { \\mitpartial \\mitu } ) : \\\\ & = & \\hspace{-28.45pt} \\sum _ { { { \\scriptstyle \\mitk _ { 1 } + 2 \\mitk _ { 2 } + \\cdots + \\mitn \\mitk _ { \\mitn } = \\mitn } \\atop { \\scriptstyle \\mitk _ { 1 } \\geq 0 , \\cdots , \\mitk _ { \\mitn } \\geq 0 } } } \\hspace{-2.85pt} \\frac { \\mitn ! } { \\mitk _ { 1 } ! \\cdots \\mitk _ { \\mitn } ! } { \\left( \\frac { \\mitpartial _ { \\mitmu } \\mitu } { 1 ! } \\right) } ^ { \\mitk _ { 1 } } \\hspace{-5.69pt} { \\left( \\frac { \\mitpartial _ { \\mitmu } ^ { 2 } \\mitu } { 2 ! } \\right) } ^ { \\mitk _ { 2 } } \\hspace{-8.54pt} \\cdots { \\left( \\frac { \\mitpartial _ { \\mitmu } ^ { \\mitn } \\mitu } { \\mitn ! } \\right) } ^ { \\mitk _ { \\mitn } } \\hspace{-5.69pt} { \\left( \\frac { \\mitpartial } { \\mitpartial \\mitu } \\right) } ^ { \\mitk _ { 1 } + \\mitk _ { 2 } + \\cdots + \\mitk _ { \\mitn } } \\end{align*}",
"\\begin{equation*} \\mitpartial _ { \\mitmu } : \\mitF _ { \\mitn , \\, \\mitmu } \\bar { \\mitF } _ { \\mitm , \\, \\mitmu } : \\mitf ( \\mitu , \\bar { \\mitu } ) ~ = ~ : \\mitpartial ( \\mitF _ { \\mitn } ( \\mitz \\mitg ) \\bar { \\mitF } _ { \\mitm } ( \\bar { \\mitz } \\bar { \\mitg } ) ) \\vert _ { \\mitz = \\frac { \\mitpartial } { \\mitpartial \\mitu } } : \\mitf ( \\mitu , \\bar { \\mitu } ) . \\end{equation*}"
],
"x_min": [
0.4512999951839447,
0.31439998745918274,
0.3628000020980835,
0.4277999997138977,
0.38839998841285706,
0.5950000286102295,
0.1728000044822693,
0.5728999972343445,
0.7263000011444092,
0.210099995136261,
0.4650999903678894,
0.5695000290870667,
0.2281000018119812,
0.4921000003814697,
0.2605000138282776,
0.24529999494552612,
0.4036000072956085,
0.29989999532699585,
0.1728000044822693,
0.22110000252723694
],
"y_min": [
0.15870000422000885,
0.21629999577999115,
0.22020000219345093,
0.5083000063896179,
0.5654000043869019,
0.5698000192642212,
0.5824999809265137,
0.5830000042915344,
0.5835000276565552,
0.7554000020027161,
0.7567999958992004,
0.760699987411499,
0.8438000082969666,
0.8432999849319458,
0.18209999799728394,
0.23729999363422394,
0.45649999380111694,
0.5317000150680542,
0.6068000197410583,
0.8076000213623047
],
"x_max": [
0.48100000619888306,
0.33719998598098755,
0.3752000033855438,
0.4422999918460846,
0.5149000287055969,
0.6536999940872192,
0.4277999997138977,
0.6481999754905701,
0.7635999917984009,
0.24740000069141388,
0.5023999810218811,
0.5860999822616577,
0.3255000114440918,
0.5590999722480774,
0.7408000230789185,
0.7698000073432922,
0.5942999720573425,
0.7013999819755554,
0.8273000121116638,
0.7297000288963318
],
"y_max": [
0.1738000065088272,
0.2290000021457672,
0.226500004529953,
0.5185999870300293,
0.5799999833106995,
0.5805000066757202,
0.597599983215332,
0.5990999937057495,
0.5976999998092651,
0.7714999914169312,
0.771399974822998,
0.7674999833106995,
0.8589000105857849,
0.8550000190734863,
0.20110000669956207,
0.4242999851703644,
0.47600001096725464,
0.5507000088691711,
0.7207000255584717,
0.8309999704360962
],
"expr_type": [
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"isolated",
"isolated",
"isolated",
"isolated",
"isolated",
"isolated"
]
} |
|
0002003_page06 | {
"latex": [
"$\\partial _{\\mu }$",
"$g_r=\\partial _{\\mu }^r u$",
"$z=\\frac {\\partial }{\\partial u}$",
"$(p,i)$",
"$F_{n,\\, \\mu }$",
"$(p,i)$",
"$(p,i)$",
"\\begin {equation} h(u, \\partial _{\\mu } u, \\cdots , \\partial _{\\mu }^n u;\\^^M\\bar {u}, \\partial _{\\mu } \\bar {u}, \\cdots , \\partial _{\\mu }^m \\bar {u}), \\end {equation}",
"\\begin {equation} \\partial _{\\mu } = \\sum _{r=1}^n \\partial _{\\mu }^{r+1}u \\frac {\\partial }{\\partial (\\partial _{\\mu }^r u)} +\\sum _{r=1}^m \\partial _{\\mu }^{r+1}\\bar {u} \\frac {\\partial }{\\partial (\\partial _{\\mu }^r \\bar {u})} +\\partial _{\\mu }u \\frac {\\partial }{\\partial u} +\\partial _{\\mu }\\bar {u} \\frac {\\partial }{\\partial \\bar {u}}. \\end {equation}",
"\\begin {equation} \\sum _{\\mu }{}':F_{p-i,\\, \\mu }\\bar {F}_{i,\\, \\mu }:=0. \\end {equation}",
"\\begin {eqnarray*} && \\sum _{\\mu }{}'\\ \\partial _{\\mu }^{p-i}(u^k)\\partial _{\\mu }^i(\\bar {u}^l) \\\\ &=& \\sum _{\\mu }{}'\\ \\sum _{j_1=1}^{{}p-i} B_{p-i,j_1}(g_1,\\cdots ,g_{p-i-j_1+1}) \\left ( \\frac {\\partial }{\\partial u} \\right )^{j_1} (u^k) \\\\ && \\qquad \\times \\sum _{j_2=0}^{i} B_{i,j_2}(\\bar {g}_1,\\cdots ,\\bar {g}_{i-j_2+1}) \\left ( \\frac {\\partial }{\\partial \\bar {u}} \\right )^{j_2} (\\bar {u}^l) \\\\ &=& \\sum _{j_1=1}^{{}p-i} \\sum _{j_2=0}^{i} j_1! j_2! \\left ( \\begin {array}{cc} k \\\\ j_1 \\end {array} \\right ) \\left ( \\begin {array}{cc} l \\\\ j_2 \\end {array} \\right ) \\\\ && \\qquad \\times \\sum _{\\mu }{}'\\ B_{p-i,j_1}(g_1,\\cdots ,g_{p-i-j_1+1}) B_{i,j_2}(\\bar {g}_1,\\cdots ,\\bar {g}_{i-j_2+1}) u^{k-j_1} \\bar {u}^{l-j_2} \\\\ && \\quad \\mbox {for} \\quad k=1,\\cdots , p-i, \\ l=0,\\cdots ,i. \\end {eqnarray*}",
"\\begin {eqnarray*} && \\sum _{\\mu }{}'\\ B_{p-i,j_1}(g_1,\\cdots ,g_{p-i-j_1+1}) B_{i,j_2}(\\bar {g}_1,\\cdots ,\\bar {g}_{i-j_2+1})=0 \\\\ && \\quad \\mbox {for} \\quad j_1=1,\\cdots , p-i, \\ j_2=0,\\cdots ,i, \\end {eqnarray*}",
"$$ \\hspace {45mm} \\sum _{\\mu }{}':F_{p-i,\\, \\mu }\\bar {F}_{i,\\, \\mu }:=0. \\hspace {45mm} \\qed $$"
],
"latex_norm": [
"$ \\partial _ { \\mu } $",
"$ g _ { r } = \\partial _ { \\mu } ^ { r } u $",
"$ z = \\frac { \\partial } { \\partial u } $",
"$ ( p , i ) $",
"$ F _ { n , \\, \\mu } $",
"$ ( p , i ) $",
"$ ( p , i ) $",
"\\begin{equation*} h ( u , \\partial _ { \\mu } u , \\cdots , \\partial _ { \\mu } ^ { n } u ; ~ \\bar { u } , \\partial _ { \\mu } \\bar { u } , \\cdots , \\partial _ { \\mu } ^ { m } \\bar { u } ) , \\end{equation*}",
"\\begin{equation*} \\partial _ { \\mu } = \\sum _ { r = 1 } ^ { n } \\partial _ { \\mu } ^ { r + 1 } u \\frac { \\partial } { \\partial ( \\partial _ { \\mu } ^ { r } u ) } + \\sum _ { r = 1 } ^ { m } \\partial _ { \\mu } ^ { r + 1 } \\bar { u } \\frac { \\partial } { \\partial ( \\partial _ { \\mu } ^ { r } \\bar { u } ) } + \\partial _ { \\mu } u \\frac { \\partial } { \\partial u } + \\partial _ { \\mu } \\bar { u } \\frac { \\partial } { \\partial \\bar { u } } . \\end{equation*}",
"\\begin{equation*} \\sum _ { \\mu } { } ^ { \\prime } : F _ { p - i , \\, \\mu } \\bar { F } _ { i , \\, \\mu } : = 0 . \\end{equation*}",
"\\begin{align*} & & \\sum _ { \\mu } { } ^ { \\prime } ~ \\partial _ { \\mu } ^ { p - i } ( u ^ { k } ) \\partial _ { \\mu } ^ { i } ( \\bar { u } ^ { l } ) \\\\ & = & \\sum _ { \\mu } { } ^ { \\prime } ~ \\sum _ { j _ { 1 } = 1 } ^ { p - i } B _ { p - i , j _ { 1 } } ( g _ { 1 } , \\cdots , g _ { p - i - j _ { 1 } + 1 } ) { ( \\frac { \\partial } { \\partial u } ) } ^ { j _ { 1 } } ( u ^ { k } ) \\\\ & & \\qquad \\times \\sum _ { j _ { 2 } = 0 } ^ { i } B _ { i , j _ { 2 } } ( \\bar { g } _ { 1 } , \\cdots , \\bar { g } _ { i - j _ { 2 } + 1 } ) { ( \\frac { \\partial } { \\partial \\bar { u } } ) } ^ { j _ { 2 } } ( \\bar { u } ^ { l } ) \\\\ & = \\\\ \\\\ \\\\ \\\\ & & \\qquad \\times \\sum _ { \\mu } { } ^ { \\prime } ~ B _ { p - i , j _ { 1 } } ( g _ { 1 } , \\cdots , g _ { p - i - j _ { 1 } + 1 } ) B _ { i , j _ { 2 } } ( \\bar { g } _ { 1 } , \\cdots , \\bar { g } _ { i - j _ { 2 } + 1 } ) u ^ { k - j _ { 1 } } \\bar { u } ^ { l - j _ { 2 } } \\\\ & & \\quad f o r \\quad k = 1 , \\cdots , p - i , ~ l = 0 , \\cdots , i . \\end{align*}",
"\\begin{align*} & & \\sum _ { \\mu } { } ^ { \\prime } ~ B _ { p - i , j _ { 1 } } ( g _ { 1 } , \\cdots , g _ { p - i - j _ { 1 } + 1 } ) B _ { i , j _ { 2 } } ( \\bar { g } _ { 1 } , \\cdots , \\bar { g } _ { i - j _ { 2 } + 1 } ) = 0 \\\\ & & \\quad f o r \\quad j _ { 1 } = 1 , \\cdots , p - i , ~ j _ { 2 } = 0 , \\cdots , i , \\end{align*}",
"\\begin{equation*} \\hspace{128.04pt} \\sum _ { \\mu } { } ^ { \\prime } : F _ { p - i , \\, \\mu } \\bar { F } _ { i , \\, \\mu } : = 0 . \\hspace{128.04pt} \\quad \\square \\end{equation*}"
],
"latex_expand": [
"$ \\mitpartial _ { \\mitmu } $",
"$ \\mitg _ { \\mitr } = \\mitpartial _ { \\mitmu } ^ { \\mitr } \\mitu $",
"$ \\mitz = \\frac { \\mitpartial } { \\mitpartial \\mitu } $",
"$ ( \\mitp , \\miti ) $",
"$ \\mitF _ { \\mitn , \\, \\mitmu } $",
"$ ( \\mitp , \\miti ) $",
"$ ( \\mitp , \\miti ) $",
"\\begin{equation*} \\Planckconst ( \\mitu , \\mitpartial _ { \\mitmu } \\mitu , \\cdots , \\mitpartial _ { \\mitmu } ^ { \\mitn } \\mitu ; ~ \\bar { \\mitu } , \\mitpartial _ { \\mitmu } \\bar { \\mitu } , \\cdots , \\mitpartial _ { \\mitmu } ^ { \\mitm } \\bar { \\mitu } ) , \\end{equation*}",
"\\begin{equation*} \\mitpartial _ { \\mitmu } = \\sum _ { \\mitr = 1 } ^ { \\mitn } \\mitpartial _ { \\mitmu } ^ { \\mitr + 1 } \\mitu \\frac { \\mitpartial } { \\mitpartial ( \\mitpartial _ { \\mitmu } ^ { \\mitr } \\mitu ) } + \\sum _ { \\mitr = 1 } ^ { \\mitm } \\mitpartial _ { \\mitmu } ^ { \\mitr + 1 } \\bar { \\mitu } \\frac { \\mitpartial } { \\mitpartial ( \\mitpartial _ { \\mitmu } ^ { \\mitr } \\bar { \\mitu } ) } + \\mitpartial _ { \\mitmu } \\mitu \\frac { \\mitpartial } { \\mitpartial \\mitu } + \\mitpartial _ { \\mitmu } \\bar { \\mitu } \\frac { \\mitpartial } { \\mitpartial \\bar { \\mitu } } . \\end{equation*}",
"\\begin{equation*} \\sum _ { \\mitmu } { } ^ { \\prime } : \\mitF _ { \\mitp - \\miti , \\, \\mitmu } \\bar { \\mitF } _ { \\miti , \\, \\mitmu } : = 0 . \\end{equation*}",
"\\begin{align*} & & \\sum _ { \\mitmu } { } ^ { \\prime } ~ \\mitpartial _ { \\mitmu } ^ { \\mitp - \\miti } ( \\mitu ^ { \\mitk } ) \\mitpartial _ { \\mitmu } ^ { \\miti } ( \\bar { \\mitu } ^ { \\mitl } ) \\\\ & = & \\sum _ { \\mitmu } { } ^ { \\prime } ~ \\sum _ { \\mitj _ { 1 } = 1 } ^ { \\mitp - \\miti } \\mitB _ { \\mitp - \\miti , \\mitj _ { 1 } } ( \\mitg _ { 1 } , \\cdots , \\mitg _ { \\mitp - \\miti - \\mitj _ { 1 } + 1 } ) { \\left( \\frac { \\mitpartial } { \\mitpartial \\mitu } \\right) } ^ { \\mitj _ { 1 } } ( \\mitu ^ { \\mitk } ) \\\\ & & \\qquad \\times \\sum _ { \\mitj _ { 2 } = 0 } ^ { \\miti } \\mitB _ { \\miti , \\mitj _ { 2 } } ( \\bar { \\mitg } _ { 1 } , \\cdots , \\bar { \\mitg } _ { \\miti - \\mitj _ { 2 } + 1 } ) { \\left( \\frac { \\mitpartial } { \\mitpartial \\bar { \\mitu } } \\right) } ^ { \\mitj _ { 2 } } ( \\bar { \\mitu } ^ { \\mitl } ) \\\\ & = \\\\ \\\\ \\\\ \\\\ & & \\qquad \\times \\sum _ { \\mitmu } { } ^ { \\prime } ~ \\mitB _ { \\mitp - \\miti , \\mitj _ { 1 } } ( \\mitg _ { 1 } , \\cdots , \\mitg _ { \\mitp - \\miti - \\mitj _ { 1 } + 1 } ) \\mitB _ { \\miti , \\mitj _ { 2 } } ( \\bar { \\mitg } _ { 1 } , \\cdots , \\bar { \\mitg } _ { \\miti - \\mitj _ { 2 } + 1 } ) \\mitu ^ { \\mitk - \\mitj _ { 1 } } \\bar { \\mitu } ^ { \\mitl - \\mitj _ { 2 } } \\\\ & & \\quad \\mathrm { f o r } \\quad \\mitk = 1 , \\cdots , \\mitp - \\miti , ~ \\mitl = 0 , \\cdots , \\miti . \\end{align*}",
"\\begin{align*} & & \\sum _ { \\mitmu } { } ^ { \\prime } ~ \\mitB _ { \\mitp - \\miti , \\mitj _ { 1 } } ( \\mitg _ { 1 } , \\cdots , \\mitg _ { \\mitp - \\miti - \\mitj _ { 1 } + 1 } ) \\mitB _ { \\miti , \\mitj _ { 2 } } ( \\bar { \\mitg } _ { 1 } , \\cdots , \\bar { \\mitg } _ { \\miti - \\mitj _ { 2 } + 1 } ) = 0 \\\\ & & \\quad \\mathrm { f o r } \\quad \\mitj _ { 1 } = 1 , \\cdots , \\mitp - \\miti , ~ \\mitj _ { 2 } = 0 , \\cdots , \\miti , \\end{align*}",
"\\begin{equation*} \\hspace{128.04pt} \\sum _ { \\mitmu } { } ^ { \\prime } : \\mitF _ { \\mitp - \\miti , \\, \\mitmu } \\bar { \\mitF } _ { \\miti , \\, \\mitmu } : = 0 . \\hspace{128.04pt} \\quad \\square \\end{equation*}"
],
"x_min": [
0.2896000146865845,
0.5860000252723694,
0.6800000071525574,
0.32829999923706055,
0.6503000259399414,
0.32899999618530273,
0.3483000099658966,
0.3407000005245209,
0.21150000393390656,
0.4043000042438507,
0.1996999979019165,
0.28130000829696655,
0.3869999945163727
],
"y_min": [
0.1581999957561493,
0.2930000126361847,
0.2904999852180481,
0.32670000195503235,
0.32760000228881836,
0.3529999852180481,
0.7080000042915344,
0.1826000064611435,
0.23389999568462372,
0.37599998712539673,
0.4487000107765198,
0.7324000000953674,
0.826200008392334
],
"x_max": [
0.30959999561309814,
0.6661999821662903,
0.742900013923645,
0.36910000443458557,
0.6876000165939331,
0.37049999833106995,
0.38909998536109924,
0.6571999788284302,
0.7394999861717224,
0.5936999917030334,
0.815500020980835,
0.7512000203132629,
0.8264999985694885
],
"y_max": [
0.1728000044822693,
0.3086000084877014,
0.30809998512268066,
0.34130001068115234,
0.3418000042438507,
0.3675999939441681,
0.722599983215332,
0.20260000228881836,
0.27880001068115234,
0.4146000146865845,
0.6956999897956848,
0.7939000129699707,
0.8622999787330627
],
"expr_type": [
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"isolated",
"isolated",
"isolated",
"isolated",
"isolated",
"isolated"
]
} |
|
0002003_page07 | {
"latex": [
"$(p,i)$",
"$\\xi ^{p-i}\\bar {\\xi }^i$",
"$\\xi ^i\\bar {\\xi }^{p-i}$",
"$\\mathbf {C}[\\xi , \\bar {\\xi }]$",
"$(p,i)$",
"$p(\\xi ,\\bar {\\xi })$",
"$p=2,3,\\cdots $",
"$i=0,1,\\cdots ,[(p-1)/2]$",
"$(p,i)$",
"$f=f(u,\\bar {u})$",
"$C^p$",
"$p$",
"\\begin {equation} (\\xi +\\bar {\\xi })p(\\xi ,\\bar {\\xi })= \\alpha \\xi ^i\\bar {\\xi }^{p-i}+\\beta \\xi ^{p-i}\\bar {\\xi }^i \\qquad \\mbox {for some} \\ \\alpha , \\beta \\in {\\mathbf {C}} . \\end {equation}",
"\\begin {equation} p(\\xi ,\\bar {\\xi })=\\sum _{k=0}^{p-1-2i}(-1)^k \\xi ^{p-1-i-k}\\bar {\\xi }^{i+k}. \\end {equation}",
"\\begin {equation} V_{(p,i),\\, \\mu } \\equiv \\sum _{k=0}^{p-1-2i}(-1)^k :F_{p-1-i-k,\\, \\mu }\\bar {F}_{{i+k},\\, \\mu }:, \\end {equation}",
"\\begin {equation} V_{(p,i),\\, \\mu }(f) \\label {eqn:5-1} \\end {equation}",
"\\begin {eqnarray} V_{(2,0),\\, \\mu }(f) &=& F_{1,\\, \\mu }(f)-\\bar {F}_{1,\\, \\mu }(f) \\\\ &=& \\partial _{\\mu }u \\frac {\\partial f}{\\partial u} -\\partial _{\\mu }\\bar {u} \\frac {\\partial f}{\\partial \\bar {u}}, \\hspace {75mm} \\end {eqnarray}",
"\\begin {eqnarray} V_{(3,0),\\, \\mu }(f) &=& F_{2,\\, \\mu }(f) -:F_{1,\\, \\mu }\\bar {F}_{1,\\, \\mu }:(f) +\\bar {F}_{2,\\, \\mu }(f) \\\\ &=& \\partial _{\\mu }^2 u \\frac {\\partial f}{\\partial u} +(\\partial _{\\mu }u)^2 \\frac {\\partial ^2 f}{\\partial u^2} -\\partial _{\\mu }u \\partial _{\\mu }\\bar {u} \\frac {\\partial ^2 f}{\\partial u \\partial \\bar {u}} +\\partial _{\\mu }^2 \\bar {u} \\frac {\\partial f}{\\partial \\bar {u}} +(\\partial _{\\mu }\\bar {u})^2 \\frac {\\partial ^2 f}{\\partial \\bar {u}^2}, \\\\ && \\end {eqnarray}",
"\\begin {eqnarray} V_{(3,1),\\, \\mu }(f) &=& :F_{1,\\, \\mu }\\bar {F}_{1,\\, \\mu }:(f) \\\\ &=& \\partial _{\\mu }u \\partial _{\\mu }\\bar {u} \\frac {\\partial ^2 f}{\\partial u \\partial \\bar {u}}. \\hspace {83mm} \\end {eqnarray}"
],
"latex_norm": [
"$ ( p , i ) $",
"$ \\xi ^ { p - i } \\bar { \\xi } ^ { i } $",
"$ \\xi ^ { i } \\bar { \\xi } ^ { p - i } $",
"$ C [ \\xi , \\bar { \\xi } ] $",
"$ ( p , i ) $",
"$ p ( \\xi , \\bar { \\xi } ) $",
"$ p = 2 , 3 , \\cdots $",
"$ i = 0 , 1 , \\cdots , [ ( p - 1 ) \\slash 2 ] $",
"$ ( p , i ) $",
"$ f = f ( u , \\bar { u } ) $",
"$ C ^ { p } $",
"$ p $",
"\\begin{equation*} ( \\xi + \\bar { \\xi } ) p ( \\xi , \\bar { \\xi } ) = \\alpha \\xi ^ { i } \\bar { \\xi } ^ { p - i } + \\beta \\xi ^ { p - i } \\bar { \\xi } ^ { i } \\qquad f o r ~ s o m e ~ \\alpha , \\beta \\in C . \\end{equation*}",
"\\begin{equation*} p ( \\xi , \\bar { \\xi } ) = \\sum _ { k = 0 } ^ { p - 1 - 2 i } ( - 1 ) ^ { k } \\xi ^ { p - 1 - i - k } \\bar { \\xi } ^ { i + k } . \\end{equation*}",
"\\begin{equation*} V _ { ( p , i ) , \\, \\mu } \\equiv \\sum _ { k = 0 } ^ { p - 1 - 2 i } ( - 1 ) ^ { k } : F _ { p - 1 - i - k , \\, \\mu } \\bar { F } _ { i + k , \\, \\mu } : , \\end{equation*}",
"\\begin{equation*} V _ { ( p , i ) , \\, \\mu } ( f ) \\end{equation*}",
"\\begin{align*} V _ { ( 2 , 0 ) , \\, \\mu } ( f ) & = & F _ { 1 , \\, \\mu } ( f ) - \\bar { F } _ { 1 , \\, \\mu } ( f ) \\\\ & = & \\partial _ { \\mu } u \\frac { \\partial f } { \\partial u } - \\partial _ { \\mu } \\bar { u } \\frac { \\partial f } { \\partial \\bar { u } } , \\hspace{213.4pt} \\end{align*}",
"\\begin{align*} V _ { ( 3 , 0 ) , \\, \\mu } ( f ) & = & F _ { 2 , \\, \\mu } ( f ) - : F _ { 1 , \\, \\mu } \\bar { F } _ { 1 , \\, \\mu } : ( f ) + \\bar { F } _ { 2 , \\, \\mu } ( f ) \\\\ & = & \\partial _ { \\mu } ^ { 2 } u \\frac { \\partial f } { \\partial u } + ( \\partial _ { \\mu } u ) ^ { 2 } \\frac { \\partial ^ { 2 } f } { \\partial u ^ { 2 } } - \\partial _ { \\mu } u \\partial _ { \\mu } \\bar { u } \\frac { \\partial ^ { 2 } f } { \\partial u \\partial \\bar { u } } + \\partial _ { \\mu } ^ { 2 } \\bar { u } \\frac { \\partial f } { \\partial \\bar { u } } + ( \\partial _ { \\mu } \\bar { u } ) ^ { 2 } \\frac { \\partial ^ { 2 } f } { \\partial \\bar { u } ^ { 2 } } , \\end{align*}",
"\\begin{align*} V _ { ( 3 , 1 ) , \\, \\mu } ( f ) & = & : F _ { 1 , \\, \\mu } \\bar { F } _ { 1 , \\, \\mu } : ( f ) \\\\ & = & \\partial _ { \\mu } u \\partial _ { \\mu } \\bar { u } \\frac { \\partial ^ { 2 } f } { \\partial u \\partial \\bar { u } } . \\hspace{236.16pt} \\end{align*}"
],
"latex_expand": [
"$ ( \\mitp , \\miti ) $",
"$ \\mitxi ^ { \\mitp - \\miti } \\bar { \\mitxi } ^ { \\miti } $",
"$ \\mitxi ^ { \\miti } \\bar { \\mitxi } ^ { \\mitp - \\miti } $",
"$ \\mbfC [ \\mitxi , \\bar { \\mitxi } ] $",
"$ ( \\mitp , \\miti ) $",
"$ \\mitp ( \\mitxi , \\bar { \\mitxi } ) $",
"$ \\mitp = 2 , 3 , \\cdots $",
"$ \\miti = 0 , 1 , \\cdots , [ ( \\mitp - 1 ) \\slash 2 ] $",
"$ ( \\mitp , \\miti ) $",
"$ \\mitf = \\mitf ( \\mitu , \\bar { \\mitu } ) $",
"$ \\mitC ^ { \\mitp } $",
"$ \\mitp $",
"\\begin{equation*} ( \\mitxi + \\bar { \\mitxi } ) \\mitp ( \\mitxi , \\bar { \\mitxi } ) = \\mitalpha \\mitxi ^ { \\miti } \\bar { \\mitxi } ^ { \\mitp - \\miti } + \\mitbeta \\mitxi ^ { \\mitp - \\miti } \\bar { \\mitxi } ^ { \\miti } \\qquad \\mathrm { f o r } ~ \\mathrm { s o m e } ~ \\mitalpha , \\mitbeta \\in \\mbfC . \\end{equation*}",
"\\begin{equation*} \\mitp ( \\mitxi , \\bar { \\mitxi } ) = \\sum _ { \\mitk = 0 } ^ { \\mitp - 1 - 2 \\miti } ( - 1 ) ^ { \\mitk } \\mitxi ^ { \\mitp - 1 - \\miti - \\mitk } \\bar { \\mitxi } ^ { \\miti + \\mitk } . \\end{equation*}",
"\\begin{equation*} \\mitV _ { ( \\mitp , \\miti ) , \\, \\mitmu } \\equiv \\sum _ { \\mitk = 0 } ^ { \\mitp - 1 - 2 \\miti } ( - 1 ) ^ { \\mitk } : \\mitF _ { \\mitp - 1 - \\miti - \\mitk , \\, \\mitmu } \\bar { \\mitF } _ { \\miti + \\mitk , \\, \\mitmu } : , \\end{equation*}",
"\\begin{equation*} \\mitV _ { ( \\mitp , \\miti ) , \\, \\mitmu } ( \\mitf ) \\end{equation*}",
"\\begin{align*} \\mitV _ { ( 2 , 0 ) , \\, \\mitmu } ( \\mitf ) & = & \\mitF _ { 1 , \\, \\mitmu } ( \\mitf ) - \\bar { \\mitF } _ { 1 , \\, \\mitmu } ( \\mitf ) \\\\ & = & \\mitpartial _ { \\mitmu } \\mitu \\frac { \\mitpartial \\mitf } { \\mitpartial \\mitu } - \\mitpartial _ { \\mitmu } \\bar { \\mitu } \\frac { \\mitpartial \\mitf } { \\mitpartial \\bar { \\mitu } } , \\hspace{213.4pt} \\end{align*}",
"\\begin{align*} \\mitV _ { ( 3 , 0 ) , \\, \\mitmu } ( \\mitf ) & = & \\mitF _ { 2 , \\, \\mitmu } ( \\mitf ) - : \\mitF _ { 1 , \\, \\mitmu } \\bar { \\mitF } _ { 1 , \\, \\mitmu } : ( \\mitf ) + \\bar { \\mitF } _ { 2 , \\, \\mitmu } ( \\mitf ) \\\\ & = & \\mitpartial _ { \\mitmu } ^ { 2 } \\mitu \\frac { \\mitpartial \\mitf } { \\mitpartial \\mitu } + ( \\mitpartial _ { \\mitmu } \\mitu ) ^ { 2 } \\frac { \\mitpartial ^ { 2 } \\mitf } { \\mitpartial \\mitu ^ { 2 } } - \\mitpartial _ { \\mitmu } \\mitu \\mitpartial _ { \\mitmu } \\bar { \\mitu } \\frac { \\mitpartial ^ { 2 } \\mitf } { \\mitpartial \\mitu \\mitpartial \\bar { \\mitu } } + \\mitpartial _ { \\mitmu } ^ { 2 } \\bar { \\mitu } \\frac { \\mitpartial \\mitf } { \\mitpartial \\bar { \\mitu } } + ( \\mitpartial _ { \\mitmu } \\bar { \\mitu } ) ^ { 2 } \\frac { \\mitpartial ^ { 2 } \\mitf } { \\mitpartial \\bar { \\mitu } ^ { 2 } } , \\end{align*}",
"\\begin{align*} \\mitV _ { ( 3 , 1 ) , \\, \\mitmu } ( \\mitf ) & = & : \\mitF _ { 1 , \\, \\mitmu } \\bar { \\mitF } _ { 1 , \\, \\mitmu } : ( \\mitf ) \\\\ & = & \\mitpartial _ { \\mitmu } \\mitu \\mitpartial _ { \\mitmu } \\bar { \\mitu } \\frac { \\mitpartial ^ { 2 } \\mitf } { \\mitpartial \\mitu \\mitpartial \\bar { \\mitu } } . \\hspace{236.16pt} \\end{align*}"
],
"x_min": [
0.2556999921798706,
0.414000004529953,
0.5078999996185303,
0.5860000252723694,
0.1728000044822693,
0.5059000253677368,
0.3490000069141388,
0.5085999965667725,
0.4311999976634979,
0.6226999759674072,
0.23770000040531158,
0.6730999946594238,
0.2321999967098236,
0.35589998960494995,
0.321399986743927,
0.45890000462532043,
0.1768999993801117,
0.17350000143051147,
0.17419999837875366
],
"y_min": [
0.19189999997615814,
0.19089999794960022,
0.19089999794960022,
0.19089999794960022,
0.20900000631809235,
0.20800000429153442,
0.46970000863075256,
0.4683000147342682,
0.5282999873161316,
0.5282999873161316,
0.5464000105857849,
0.8485999703407288,
0.23440000414848328,
0.29440000653266907,
0.37940001487731934,
0.4950999915599823,
0.5990999937057495,
0.6791999936103821,
0.774399995803833
],
"x_max": [
0.29649999737739563,
0.46309998631477356,
0.5569999814033508,
0.6420000195503235,
0.2143000066280365,
0.5590999722480774,
0.44920000433921814,
0.708299994468689,
0.47200000286102295,
0.7195000052452087,
0.26190000772476196,
0.6834999918937683,
0.7186999917030334,
0.6462000012397766,
0.677299976348877,
0.5432000160217285,
0.46239998936653137,
0.8216999769210815,
0.43849998712539673
],
"y_max": [
0.20649999380111694,
0.20600000023841858,
0.20600000023841858,
0.20649999380111694,
0.2240999937057495,
0.2240999937057495,
0.48240000009536743,
0.4828999936580658,
0.54339998960495,
0.54339998960495,
0.5566999912261963,
0.8579000234603882,
0.2538999915122986,
0.3422999978065491,
0.42730000615119934,
0.5141000151634216,
0.6571000218391418,
0.7339000105857849,
0.833899974822998
],
"expr_type": [
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"isolated",
"isolated",
"isolated",
"isolated",
"isolated",
"isolated",
"isolated"
]
} |
|
0002003_page08 | {
"latex": [
"$(p,i)$",
"$f_i \\ (i=0,1,\\cdots )$",
"$u$",
"$(p,i)$",
"$f$",
"$v=f(u)$",
"$(p,i)$",
"$u$",
"$(p,i)$",
"$(p,i)$",
"$a_{\\mu } \\ (\\mu =0,1,\\cdots ,n)$",
"$\\sum _{\\mu }{}'a_{\\mu }^{p-i}\\bar {a}_{\\mu }^i=0$",
"$f$",
"$(p,i)$",
"\\begin {equation} v=f(u)=\\sum _{i=0}^{\\infty }f_i u^i \\qquad f:{\\mathbf {C}} \\longrightarrow {\\mathbf {C}} :\\mbox {\\ holomorphic} \\end {equation}",
"\\begin {equation} \\sum _{\\mu }{}':F_{p-i,\\, \\mu }\\bar {F}_{i,\\, \\mu }:=0, \\end {equation}",
"\\begin {equation} \\sum _{\\mu }{}' B_{p-i,j}[u]B_{ik}[\\bar {u}]=0 \\quad \\mbox {for} \\quad j=1,\\cdots , p-i, \\ k=0,\\cdots ,i. \\end {equation}",
"\\begin {eqnarray*} \\sum _{\\mu }{}' B_{p-i,j}[f(u)]B_{ik}[\\overline {f(u)}] &=& \\sum _{\\mu }{}' \\sum _{n=j}^{{}p-i} \\sum _{m=k}^{i} B_{p-i,n}[u]B_{nj}[f] B_{im}[\\bar {u}]B_{mk}[\\bar {f}] \\\\ &=& 0. \\hspace {7cm} \\qed \\end {eqnarray*}",
"\\begin {equation} u=a_0 x_0+\\sum _{i=1}^n a_i x_i \\end {equation}",
"\\begin {equation} f(a_0 x_0+\\sum _{i=1}^n a_i x_i) \\end {equation}",
"\\begin {equation} \\sum _{\\mu }{}'a_{\\mu }^{p-i}\\bar {a}_{\\mu }^i=0 \\end {equation}"
],
"latex_norm": [
"$ ( p , i ) $",
"$ f _ { i } ~ ( i = 0 , 1 , \\cdots ) $",
"$ u $",
"$ ( p , i ) $",
"$ f $",
"$ v = f ( u ) $",
"$ ( p , i ) $",
"$ u $",
"$ ( p , i ) $",
"$ ( p , i ) $",
"$ a _ { \\mu } ~ ( \\mu = 0 , 1 , \\cdots , n ) $",
"$ \\sum _ { \\mu } { } ^ { \\prime } a _ { \\mu } ^ { p - i } \\bar { a } _ { \\mu } ^ { i } = 0 $",
"$ f $",
"$ ( p , i ) $",
"\\begin{equation*} v = f ( u ) = \\sum _ { i = 0 } ^ { \\infty } f _ { i } u ^ { i } \\qquad f : C \\longrightarrow C : ~ h o l o m o r p h i c \\end{equation*}",
"\\begin{equation*} \\sum _ { \\mu } { } ^ { \\prime } : F _ { p - i , \\, \\mu } \\bar { F } _ { i , \\, \\mu } : = 0 , \\end{equation*}",
"\\begin{equation*} \\sum _ { \\mu } { } ^ { \\prime } B _ { p - i , j } [ u ] B _ { i k } [ \\bar { u } ] = 0 \\quad f o r \\quad j = 1 , \\cdots , p - i , ~ k = 0 , \\cdots , i . \\end{equation*}",
"\\begin{align*} \\sum _ { \\mu } { } ^ { \\prime } B _ { p - i , j } [ f ( u ) ] B _ { i k } [ \\overline { f ( u ) } ] & = & \\sum _ { \\mu } { } ^ { \\prime } \\sum _ { n = j } ^ { p - i } \\sum _ { m = k } ^ { i } B _ { p - i , n } [ u ] B _ { n j } [ f ] B _ { i m } [ \\bar { u } ] B _ { m k } [ \\bar { f } ] \\\\ & = & 0 . \\hspace{199.17pt} \\quad \\square \\end{align*}",
"\\begin{equation*} u = a _ { 0 } x _ { 0 } + \\sum _ { i = 1 } ^ { n } a _ { i } x _ { i } \\end{equation*}",
"\\begin{equation*} f ( a _ { 0 } x _ { 0 } + \\sum _ { i = 1 } ^ { n } a _ { i } x _ { i } ) \\end{equation*}",
"\\begin{equation*} \\sum _ { \\mu } { } ^ { \\prime } a _ { \\mu } ^ { p - i } \\bar { a } _ { \\mu } ^ { i } = 0 \\end{equation*}"
],
"latex_expand": [
"$ ( \\mitp , \\miti ) $",
"$ \\mitf _ { \\miti } ~ ( \\miti = 0 , 1 , \\cdots ) $",
"$ \\mitu $",
"$ ( \\mitp , \\miti ) $",
"$ \\mitf $",
"$ \\mitv = \\mitf ( \\mitu ) $",
"$ ( \\mitp , \\miti ) $",
"$ \\mitu $",
"$ ( \\mitp , \\miti ) $",
"$ ( \\mitp , \\miti ) $",
"$ \\mita _ { \\mitmu } ~ ( \\mitmu = 0 , 1 , \\cdots , \\mitn ) $",
"$ \\sum _ { \\mitmu } { } ^ { \\prime } \\mita _ { \\mitmu } ^ { \\mitp - \\miti } \\bar { \\mita } _ { \\mitmu } ^ { \\miti } = 0 $",
"$ \\mitf $",
"$ ( \\mitp , \\miti ) $",
"\\begin{equation*} \\mitv = \\mitf ( \\mitu ) = \\sum _ { \\miti = 0 } ^ { \\infty } \\mitf _ { \\miti } \\mitu ^ { \\miti } \\qquad \\mitf : \\mbfC \\longrightarrow \\mbfC : ~ \\mathrm { h o l o m o r p h i c } \\end{equation*}",
"\\begin{equation*} \\sum _ { \\mitmu } { } ^ { \\prime } : \\mitF _ { \\mitp - \\miti , \\, \\mitmu } \\bar { \\mitF } _ { \\miti , \\, \\mitmu } : = 0 , \\end{equation*}",
"\\begin{equation*} \\sum _ { \\mitmu } { } ^ { \\prime } \\mitB _ { \\mitp - \\miti , \\mitj } [ \\mitu ] \\mitB _ { \\miti \\mitk } [ \\bar { \\mitu } ] = 0 \\quad \\mathrm { f o r } \\quad \\mitj = 1 , \\cdots , \\mitp - \\miti , ~ \\mitk = 0 , \\cdots , \\miti . \\end{equation*}",
"\\begin{align*} \\sum _ { \\mitmu } { } ^ { \\prime } \\mitB _ { \\mitp - \\miti , \\mitj } [ \\mitf ( \\mitu ) ] \\mitB _ { \\miti \\mitk } [ \\overline { \\mitf ( \\mitu ) } ] & = & \\sum _ { \\mitmu } { } ^ { \\prime } \\sum _ { \\mitn = \\mitj } ^ { \\mitp - \\miti } \\sum _ { \\mitm = \\mitk } ^ { \\miti } \\mitB _ { \\mitp - \\miti , \\mitn } [ \\mitu ] \\mitB _ { \\mitn \\mitj } [ \\mitf ] \\mitB _ { \\miti \\mitm } [ \\bar { \\mitu } ] \\mitB _ { \\mitm \\mitk } [ \\bar { \\mitf } ] \\\\ & = & 0 . \\hspace{199.17pt} \\quad \\square \\end{align*}",
"\\begin{equation*} \\mitu = \\mita _ { 0 } \\mitx _ { 0 } + \\sum _ { \\miti = 1 } ^ { \\mitn } \\mita _ { \\miti } \\mitx _ { \\miti } \\end{equation*}",
"\\begin{equation*} \\mitf ( \\mita _ { 0 } \\mitx _ { 0 } + \\sum _ { \\miti = 1 } ^ { \\mitn } \\mita _ { \\miti } \\mitx _ { \\miti } ) \\end{equation*}",
"\\begin{equation*} \\sum _ { \\mitmu } { } ^ { \\prime } \\mita _ { \\mitmu } ^ { \\mitp - \\miti } \\bar { \\mita } _ { \\mitmu } ^ { \\miti } = 0 \\end{equation*}"
],
"x_min": [
0.6406000256538391,
0.5196999907493591,
0.3345000147819519,
0.5245000123977661,
0.32690000534057617,
0.35179999470710754,
0.6420000195503235,
0.396699994802475,
0.5895000100135803,
0.24400000274181366,
0.36419999599456787,
0.5839999914169312,
0.35109999775886536,
0.3441999852657318,
0.2791999876499176,
0.40290001034736633,
0.21979999542236328,
0.1728000044822693,
0.41670000553131104,
0.4223000109195709,
0.4339999854564667
],
"y_min": [
0.1889999955892563,
0.2777999937534332,
0.3237000107765198,
0.31929999589920044,
0.33739998936653137,
0.33640000224113464,
0.33640000224113464,
0.36570000648498535,
0.36079999804496765,
0.3783999979496002,
0.6137999892234802,
0.6128000020980835,
0.7167999744415283,
0.8438000082969666,
0.22310000658035278,
0.399399995803833,
0.46630001068115234,
0.5365999937057495,
0.6371999979019165,
0.736299991607666,
0.7997999787330627
],
"x_max": [
0.6820999979972839,
0.6633999943733215,
0.34619998931884766,
0.5652999877929688,
0.3393000066280365,
0.4271000027656555,
0.6834999918937683,
0.4083999991416931,
0.6309999823570251,
0.2854999899864197,
0.532800018787384,
0.7131999731063843,
0.3634999990463257,
0.385699987411499,
0.7214999794960022,
0.5916000008583069,
0.738099992275238,
0.8278999924659729,
0.5845999717712402,
0.579200029373169,
0.5638999938964844
],
"y_max": [
0.20360000431537628,
0.2928999960422516,
0.3305000066757202,
0.33390000462532043,
0.350600004196167,
0.351500004529953,
0.351500004529953,
0.3720000088214874,
0.375900000333786,
0.3930000066757202,
0.6288999915122986,
0.6309000253677368,
0.7300000190734863,
0.8589000105857849,
0.2685000002384186,
0.4375,
0.5048999786376953,
0.6050000190734863,
0.6820999979972839,
0.7811999917030334,
0.8378999829292297
],
"expr_type": [
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"isolated",
"isolated",
"isolated",
"isolated",
"isolated",
"isolated",
"isolated"
]
} |
|
0002003_page09 | {
"latex": [
"$(1+2)$",
"$(1+2)$"
],
"latex_norm": [
"$ ( 1 + 2 ) $",
"$ ( 1 + 2 ) $"
],
"latex_expand": [
"$ ( 1 + 2 ) $",
"$ ( 1 + 2 ) $"
],
"x_min": [
0.6607000231742859,
0.3034000098705292
],
"y_min": [
0.6958000063896179,
0.7764000296592712
],
"x_max": [
0.7188000082969666,
0.3628000020980835
],
"y_max": [
0.7103999853134155,
0.7910000085830688
],
"expr_type": [
"embedded",
"embedded"
]
} |
|
0002018_page03 | {
"latex": [
"$C_{abc}$",
"$SU(n)$",
"$k_{1},\\varepsilon (k_{1}),a_{1}; k_{2}, \\varepsilon (k_{2}),a_{2}$",
"$p_{1}, b_{1};p_{2},b_{2}$",
"$\\varepsilon (k)\\rightarrow \\varepsilon (k)+\\lambda k$",
"\\begin {equation} {\\cal L}_{FP} = - i \\partial ^{\\mu } \\overline {C}^{a} (D_{\\mu }C)^a\\\\ \\end {equation}",
"\\begin {equation} D_{\\mu } = \\partial _{\\mu } - i g A_{\\mu }\\\\ \\end {equation}",
"\\begin {equation}- \\frac {i}{2}g^{2} \\left [p_{1} \\cdot \\varepsilon (k_{1}) p_{2} \\cdot \\varepsilon (k_{2}) C_{a_{1}b_{1}f} C_{a_{2}b_{2}f} + p_{1} \\cdot \\varepsilon (k_{2}) p_{2} \\cdot \\varepsilon (k_{1}) C_{a_{2}b_{1}f} C_{a_{1}b_{2}f} \\right ]\\\\ \\end {equation}",
"\\begin {equation}\\frac {ig^{2}}{2k_{1}\\cdot k_{2}} \\left [\\varepsilon (k_{1}) \\cdot \\varepsilon (k_{2}) (k_{1}-k_{2}) \\cdot p_{1} - 2 p_{1} \\cdot \\varepsilon (k_{1}) k_{1} \\cdot \\varepsilon (k_{2}) + 2 p_{1} \\cdot \\varepsilon (k_{2}) k_{2} \\cdot \\varepsilon (k_{1}) \\right ] C_{a_{1}a_{2}f} C_{b_{1}b_{2}f}\\\\ \\end {equation}",
"\\begin {equation} \\Psi =\\overline {c}_{b_{1}}^{+}(p_{1})c_{b_{2}}^{+}(p_{2})\\mid 0 \\rangle \\\\ \\end {equation}"
],
"latex_norm": [
"$ C _ { a b c } $",
"$ S U ( n ) $",
"$ k _ { 1 } , \\varepsilon ( k _ { 1 } ) , a _ { 1 } ; k _ { 2 } , \\varepsilon ( k _ { 2 } ) , a _ { 2 } $",
"$ p _ { 1 } , b _ { 1 } ; p _ { 2 } , b _ { 2 } $",
"$ \\varepsilon ( k ) \\rightarrow \\varepsilon ( k ) + \\lambda k $",
"\\begin{equation*} L _ { F P } = - i \\partial ^ { \\mu } \\overline { C } ^ { a } ( D _ { \\mu } C ) ^ { a } \\end{equation*}",
"\\begin{equation*} D _ { \\mu } = \\partial _ { \\mu } - i g A _ { \\mu } \\end{equation*}",
"\\begin{equation*} - \\frac { i } { 2 } g ^ { 2 } [ p _ { 1 } \\cdot \\varepsilon ( k _ { 1 } ) p _ { 2 } \\cdot \\varepsilon ( k _ { 2 } ) C _ { a _ { 1 } b _ { 1 } f } C _ { a _ { 2 } b _ { 2 } f } + p _ { 1 } \\cdot \\varepsilon ( k _ { 2 } ) p _ { 2 } \\cdot \\varepsilon ( k _ { 1 } ) C _ { a _ { 2 } b _ { 1 } f } C _ { a _ { 1 } b _ { 2 } f } ] \\end{equation*}",
"\\begin{equation*} \\frac { i g ^ { 2 } } { 2 k _ { 1 } \\cdot k _ { 2 } } [ \\varepsilon ( k _ { 1 } ) \\cdot \\varepsilon ( k _ { 2 } ) ( k _ { 1 } - k _ { 2 } ) \\cdot p _ { 1 } - 2 p _ { 1 } \\cdot \\varepsilon ( k _ { 1 } ) k _ { 1 } \\cdot \\varepsilon ( k _ { 2 } ) + 2 p _ { 1 } \\cdot \\varepsilon ( k _ { 2 } ) k _ { 2 } \\cdot \\varepsilon ( k _ { 1 } ) ] C _ { a _ { 1 } a _ { 2 } f } C _ { b _ { 1 } b _ { 2 } f } \\end{equation*}",
"\\begin{equation*} \\Psi = \\overline { c } _ { b _ { 1 } } ^ { + } ( p _ { 1 } ) c _ { b _ { 2 } } ^ { + } ( p _ { 2 } ) \\mid 0 \\rangle \\end{equation*}"
],
"latex_expand": [
"$ \\mitC _ { \\mita \\mitb \\mitc } $",
"$ \\mitS \\mitU ( \\mitn ) $",
"$ \\mitk _ { 1 } , \\mitvarepsilon ( \\mitk _ { 1 } ) , \\mita _ { 1 } ; \\mitk _ { 2 } , \\mitvarepsilon ( \\mitk _ { 2 } ) , \\mita _ { 2 } $",
"$ \\mitp _ { 1 } , \\mitb _ { 1 } ; \\mitp _ { 2 } , \\mitb _ { 2 } $",
"$ \\mitvarepsilon ( \\mitk ) \\rightarrow \\mitvarepsilon ( \\mitk ) + \\mitlambda \\mitk $",
"\\begin{equation*} \\mitL _ { \\mitF \\mitP } = - \\miti \\mitpartial ^ { \\mitmu } \\overline { \\mitC } ^ { \\mita } ( \\mitD _ { \\mitmu } \\mitC ) ^ { \\mita } \\end{equation*}",
"\\begin{equation*} \\mitD _ { \\mitmu } = \\mitpartial _ { \\mitmu } - \\miti \\mitg \\mitA _ { \\mitmu } \\end{equation*}",
"\\begin{equation*} - \\frac { \\miti } { 2 } \\mitg ^ { 2 } \\left[ \\mitp _ { 1 } \\cdot \\mitvarepsilon ( \\mitk _ { 1 } ) \\mitp _ { 2 } \\cdot \\mitvarepsilon ( \\mitk _ { 2 } ) \\mitC _ { \\mita _ { 1 } \\mitb _ { 1 } \\mitf } \\mitC _ { \\mita _ { 2 } \\mitb _ { 2 } \\mitf } + \\mitp _ { 1 } \\cdot \\mitvarepsilon ( \\mitk _ { 2 } ) \\mitp _ { 2 } \\cdot \\mitvarepsilon ( \\mitk _ { 1 } ) \\mitC _ { \\mita _ { 2 } \\mitb _ { 1 } \\mitf } \\mitC _ { \\mita _ { 1 } \\mitb _ { 2 } \\mitf } \\right] \\end{equation*}",
"\\begin{equation*} \\frac { \\miti \\mitg ^ { 2 } } { 2 \\mitk _ { 1 } \\cdot \\mitk _ { 2 } } \\left[ \\mitvarepsilon ( \\mitk _ { 1 } ) \\cdot \\mitvarepsilon ( \\mitk _ { 2 } ) ( \\mitk _ { 1 } - \\mitk _ { 2 } ) \\cdot \\mitp _ { 1 } - 2 \\mitp _ { 1 } \\cdot \\mitvarepsilon ( \\mitk _ { 1 } ) \\mitk _ { 1 } \\cdot \\mitvarepsilon ( \\mitk _ { 2 } ) + 2 \\mitp _ { 1 } \\cdot \\mitvarepsilon ( \\mitk _ { 2 } ) \\mitk _ { 2 } \\cdot \\mitvarepsilon ( \\mitk _ { 1 } ) \\right] \\mitC _ { \\mita _ { 1 } \\mita _ { 2 } \\mitf } \\mitC _ { \\mitb _ { 1 } \\mitb _ { 2 } \\mitf } \\end{equation*}",
"\\begin{equation*} \\mupPsi = \\overline { \\mitc } _ { \\mitb _ { 1 } } ^ { + } ( \\mitp _ { 1 } ) \\mitc _ { \\mitb _ { 2 } } ^ { + } ( \\mitp _ { 2 } ) \\mid 0 \\rangle \\end{equation*}"
],
"x_min": [
0.2053000032901764,
0.5825999975204468,
0.120899997651577,
0.7843999862670898,
0.6827999949455261,
0.41670000553131104,
0.44510000944137573,
0.2134999930858612,
0.13339999318122864,
0.420199990272522
],
"y_min": [
0.4717000126838684,
0.4706999957561493,
0.5396000146865845,
0.5400000214576721,
0.6079000234603882,
0.09910000115633011,
0.1436000019311905,
0.29350000619888306,
0.388700008392334,
0.7753999829292297
],
"x_max": [
0.24050000309944153,
0.6385999917984009,
0.32339999079704285,
0.8791000247001648,
0.8348000049591064,
0.6144000291824341,
0.5860999822616577,
0.8091999888420105,
0.8977000117301941,
0.6108999848365784
],
"y_max": [
0.4844000041484833,
0.48579999804496765,
0.5541999936103821,
0.5536999702453613,
0.6230000257492065,
0.11909999698400497,
0.16120000183582306,
0.326200008392334,
0.4253000020980835,
0.7958999872207642
],
"expr_type": [
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"isolated",
"isolated",
"isolated",
"isolated",
"isolated"
]
} |
|
0002018_page06 | {
"latex": [
"$x^{o}_{1} , x^{o}_{2} \\rightarrow +\\infty $",
"$x^{o}_{3}, x^{o}_{4} \\rightarrow - \\infty $",
"$\\rightarrow $",
"\\begin {displaymath} \\langle o \\mid T \\left ( \\delta \\overline {C}^{a_{1}}(x_{1}) \\, A^{\\mu _{2},a_{2}}(x_{2}) \\, \\partial _{\\mu _{3}}A^{\\mu _{3},a_{3}}(x_{3}) \\, \\partial _{\\mu _{4}}A^{\\mu _{4},a_{4}}(x_{4}) \\right ) \\mid o \\rangle \\end {displaymath}",
"\\begin {equation} =\\langle o \\mid T \\left (\\overline {C}^{a_{1}}(x_{1}) \\, \\delta A^{\\mu _{2},a_{2}}(x_{2}) \\, \\partial _{\\mu _{3}}A^{\\mu _{3},a_{3}}(x_{3}) \\, \\partial _{\\mu _{4}}A^{\\mu _{4},a_{4}}(x_{4})\\right ) \\mid o \\rangle \\end {equation}",
"\\begin {displaymath} \\delta \\overline {C}^{a} = - {i} \\, \\partial ^{\\mu } \\, A^{a}_{\\mu } \\end {displaymath}",
"\\begin {equation} \\delta A^{a}_{\\mu } = \\left (D_{\\mu } \\, C \\right )^{a} \\end {equation}"
],
"latex_norm": [
"$ x _ { 1 } ^ { o } , x _ { 2 } ^ { o } \\rightarrow + \\infty $",
"$ x _ { 3 } ^ { o } , x _ { 4 } ^ { o } \\rightarrow - \\infty $",
"$ \\rightarrow $",
"\\begin{equation*} \\langle o \\mid T ( \\delta \\overline { C } ^ { a _ { 1 } } ( x _ { 1 } ) \\, A ^ { \\mu _ { 2 } , a _ { 2 } } ( x _ { 2 } ) \\, \\partial _ { \\mu _ { 3 } } A ^ { \\mu _ { 3 } , a _ { 3 } } ( x _ { 3 } ) \\, \\partial _ { \\mu _ { 4 } } A ^ { \\mu _ { 4 } , a _ { 4 } } ( x _ { 4 } ) ) \\mid o \\rangle \\end{equation*}",
"\\begin{equation*} = \\langle o \\mid T ( \\overline { C } ^ { a _ { 1 } } ( x _ { 1 } ) \\, \\delta A ^ { \\mu _ { 2 } , a _ { 2 } } ( x _ { 2 } ) \\, \\partial _ { \\mu _ { 3 } } A ^ { \\mu _ { 3 } , a _ { 3 } } ( x _ { 3 } ) \\, \\partial _ { \\mu _ { 4 } } A ^ { \\mu _ { 4 } , a _ { 4 } } ( x _ { 4 } ) ) \\mid o \\rangle \\end{equation*}",
"\\begin{equation*} \\delta \\overline { C } ^ { a } = - i \\, \\partial ^ { \\mu } \\, A _ { \\mu } ^ { a } \\end{equation*}",
"\\begin{equation*} \\delta A _ { \\mu } ^ { a } = { ( D _ { \\mu } \\, C ) } ^ { a } \\end{equation*}"
],
"latex_expand": [
"$ \\mitx _ { 1 } ^ { \\mito } , \\mitx _ { 2 } ^ { \\mito } \\rightarrow + \\infty $",
"$ \\mitx _ { 3 } ^ { \\mito } , \\mitx _ { 4 } ^ { \\mito } \\rightarrow - \\infty $",
"$ \\rightarrow $",
"\\begin{equation*} \\langle \\mito \\mid \\mitT \\left( \\mitdelta \\overline { \\mitC } ^ { \\mita _ { 1 } } ( \\mitx _ { 1 } ) \\, \\mitA ^ { \\mitmu _ { 2 } , \\mita _ { 2 } } ( \\mitx _ { 2 } ) \\, \\mitpartial _ { \\mitmu _ { 3 } } \\mitA ^ { \\mitmu _ { 3 } , \\mita _ { 3 } } ( \\mitx _ { 3 } ) \\, \\mitpartial _ { \\mitmu _ { 4 } } \\mitA ^ { \\mitmu _ { 4 } , \\mita _ { 4 } } ( \\mitx _ { 4 } ) \\right) \\mid \\mito \\rangle \\end{equation*}",
"\\begin{equation*} = \\langle \\mito \\mid \\mitT \\left( \\overline { \\mitC } ^ { \\mita _ { 1 } } ( \\mitx _ { 1 } ) \\, \\mitdelta \\mitA ^ { \\mitmu _ { 2 } , \\mita _ { 2 } } ( \\mitx _ { 2 } ) \\, \\mitpartial _ { \\mitmu _ { 3 } } \\mitA ^ { \\mitmu _ { 3 } , \\mita _ { 3 } } ( \\mitx _ { 3 } ) \\, \\mitpartial _ { \\mitmu _ { 4 } } \\mitA ^ { \\mitmu _ { 4 } , \\mita _ { 4 } } ( \\mitx _ { 4 } ) \\right) \\mid \\mito \\rangle \\end{equation*}",
"\\begin{equation*} \\mitdelta \\overline { \\mitC } ^ { \\mita } = - \\miti \\, \\mitpartial ^ { \\mitmu } \\, \\mitA _ { \\mitmu } ^ { \\mita } \\end{equation*}",
"\\begin{equation*} \\mitdelta \\mitA _ { \\mitmu } ^ { \\mita } = { \\left( \\mitD _ { \\mitmu } \\, \\mitC \\right) } ^ { \\mita } \\end{equation*}"
],
"x_min": [
0.510699987411499,
0.6793000102043152,
0.6025999784469604,
0.2660999894142151,
0.25290000438690186,
0.4471000134944916,
0.44780001044273376
],
"y_min": [
0.3628000020980835,
0.3628000020980835,
0.43549999594688416,
0.14790000021457672,
0.19429999589920044,
0.274399995803833,
0.3158999979496002
],
"x_max": [
0.631600022315979,
0.7994999885559082,
0.6233000159263611,
0.7630000114440918,
0.772599995136261,
0.5812000036239624,
0.579800009727478
],
"y_max": [
0.37599998712539673,
0.37599998712539673,
0.4413999915122986,
0.17080000042915344,
0.219200000166893,
0.2939000129699707,
0.3359000086784363
],
"expr_type": [
"embedded",
"embedded",
"embedded",
"isolated",
"isolated",
"isolated",
"isolated"
]
} |
|
0002084_page01 | {
"latex": [
"$^*$",
"$^\\dagger $",
"$^*$",
"$^\\dagger $",
"$\\alpha ' \\mapsto 0$",
"$B$"
],
"latex_norm": [
"$ { } ^ { \\ast } $",
"$ { } ^ { \\dagger } $",
"$ { } ^ { \\ast } $",
"$ { } ^ { \\dagger } $",
"$ \\alpha ^ { \\prime } \\mapsto 0 $",
"$ B $"
],
"latex_expand": [
"$ { } ^ { \\ast } $",
"$ { } ^ { \\dagger } $",
"$ { } ^ { \\ast } $",
"$ { } ^ { \\dagger } $",
"$ \\mitalpha ^ { \\prime } \\mapsto 0 $",
"$ \\mitB $"
],
"x_min": [
0.4602999985218048,
0.6164000034332275,
0.23569999635219574,
0.29440000653266907,
0.6800000071525574,
0.487199991941452
],
"y_min": [
0.4120999872684479,
0.41019999980926514,
0.45750001072883606,
0.4867999851703644,
0.7432000041007996,
0.7602999806404114
],
"x_max": [
0.46860000491142273,
0.6247000098228455,
0.24469999969005585,
0.3019999861717224,
0.7346000075340271,
0.5030999779701233
],
"y_max": [
0.42239999771118164,
0.42239999771118164,
0.46779999136924744,
0.49900001287460327,
0.7534999847412109,
0.769599974155426
],
"expr_type": [
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded"
]
} |
|
0002084_page02 | {
"latex": [
"$\\frac {1}{c}$",
"$\\hbar $",
"$\\hbar $",
"$\\hbar $"
],
"latex_norm": [
"$ \\frac { 1 } { c } $",
"$ \\hbar $",
"$ \\hbar $",
"$ \\hbar $"
],
"latex_expand": [
"$ \\frac { 1 } { \\mitc } $",
"$ \\hslash $",
"$ \\hslash $",
"$ \\hslash $"
],
"x_min": [
0.7160000205039978,
0.19419999420642853,
0.26809999346733093,
0.6966000199317932
],
"y_min": [
0.2563000023365021,
0.41260001063346863,
0.4984999895095825,
0.4984999895095825
],
"x_max": [
0.7276999950408936,
0.20589999854564667,
0.2797999978065491,
0.708299994468689
],
"y_max": [
0.2734000086784363,
0.42329999804496765,
0.5088000297546387,
0.5088000297546387
],
"expr_type": [
"embedded",
"embedded",
"embedded",
"embedded"
]
} |
|
0002084_page03 | {
"latex": [
"$B$",
"$N=2$",
"$N=1$",
"$B$",
"$\\R ^4$",
"$N$"
],
"latex_norm": [
"$ B $",
"$ N = 2 $",
"$ N = 1 $",
"$ B $",
"$ R ^ { 4 } $",
"$ N $"
],
"latex_expand": [
"$ \\mitB $",
"$ \\mitN = 2 $",
"$ \\mitN = 1 $",
"$ \\mitB $",
"$ \\mitR ^ { 4 } $",
"$ \\mitN $"
],
"x_min": [
0.4657999873161316,
0.4602999985218048,
0.1728000044822693,
0.600600004196167,
0.1728000044822693,
0.6158000230789185
],
"y_min": [
0.24410000443458557,
0.364300012588501,
0.38179999589920044,
0.43309998512268066,
0.44780001044273376,
0.8446999788284302
],
"x_max": [
0.48240000009536743,
0.5156000256538391,
0.227400004863739,
0.6172000169754028,
0.19769999384880066,
0.6345000267028809
],
"y_max": [
0.2547999918460846,
0.37459999322891235,
0.3921000063419342,
0.44339999556541443,
0.46050000190734863,
0.8550000190734863
],
"expr_type": [
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded"
]
} |
|
0002084_page04 | {
"latex": [
"$N$",
"$N$",
"$2N$",
"$N$",
"$\\alpha '\\mapsto 0$",
"$\\R $",
"$\\C $",
"$\\Z _2$",
"$V=V_0\\oplus V_1$",
"$p=0,1$",
"$V$",
"$\\cdot :V\\otimes V\\mapsto V$",
"$V$",
"$V$",
"$[\\;,\\;]:V\\otimes V \\mapsto V$",
"$\\R ^p$",
"$\\mathcal {S}^{p,q}=C^\\infty (\\R ^p)\\otimes \\Lambda (\\R ^q)$",
"$\\Lambda (\\R ^q)=\\sum _{i=0}^q\\Lambda ^i(\\R ^q)$",
"$q$",
"$\\theta ^1,\\theta ^2,\\dots \\theta ^q$",
"$\\theta ^i$",
"$a_{i_1i_2\\dots i_j}$",
"$p_a$",
"$p_b$",
"$m=0,1$",
"$\\partial ^L:V\\mapsto V$",
"$$ p(a\\cdot b)=p(a)+p(b). $$",
"\\begin {equation} [X,Y]=-(-1)^{p_Xp_Y}[Y,X],\\label {sp} \\end {equation}",
"\\begin {equation} [X,[Y,Z]]+(-1)^{p_Z(p_X+p_Y)}[Z,[X,Y]]+(-1)^{p_X(p_Y+p_Z)}[Y,[Z,X]]. \\label {ji} \\end {equation}",
"$$ a(x,\\theta )=a_0(x)+a_i(x)\\theta ^i+a_{i_1i_2}\\theta ^{i_1}\\wedge \\theta ^{i_2} +\\cdots + a_{i_1i_2\\dots i_q}\\theta ^{i_1}\\wedge \\theta ^{i_2}\\cdots \\wedge \\theta ^{i_q}, $$",
"$$ a\\cdot b=(-1)^{p_ap_b}b\\cdot a $$",
"$$ \\partial ^L(a\\cdot b)=\\partial ^L(a)\\cdot b +(-1)^{mp_a}a\\cdot \\partial ^L(b). $$"
],
"latex_norm": [
"$ N $",
"$ N $",
"$ 2 N $",
"$ N $",
"$ \\alpha ^ { \\prime } \\mapsto 0 $",
"$ R $",
"$ C $",
"$ Z _ { 2 } $",
"$ V = V _ { 0 } \\oplus V _ { 1 } $",
"$ p = 0 , 1 $",
"$ V $",
"$ \\cdot : V \\otimes V \\mapsto V $",
"$ V $",
"$ V $",
"$ [ \\; , \\; ] : V \\otimes V \\mapsto V $",
"$ R ^ { p } $",
"$ S ^ { p , q } = C ^ { \\infty } ( R ^ { p } ) \\otimes \\Lambda ( R ^ { q } ) $",
"$ \\Lambda ( R ^ { q } ) = \\sum _ { i = 0 } ^ { q } \\Lambda ^ { i } ( R ^ { q } ) $",
"$ q $",
"$ \\theta ^ { 1 } , \\theta ^ { 2 } , \\ldots \\theta ^ { q } $",
"$ \\theta ^ { i } $",
"$ a _ { i _ { 1 } i _ { 2 } \\ldots i _ { j } } $",
"$ p _ { a } $",
"$ p _ { b } $",
"$ m = 0 , 1 $",
"$ \\partial ^ { L } : V \\mapsto V $",
"\\begin{equation*} p ( a \\cdot b ) = p ( a ) + p ( b ) . \\end{equation*}",
"\\begin{equation*} [ X , Y ] = - ( - 1 ) ^ { p _ { X } p _ { Y } } [ Y , X ] , \\end{equation*}",
"\\begin{equation*} [ X , [ Y , Z ] ] + ( - 1 ) ^ { p _ { Z } ( p _ { X } + p _ { Y } ) } [ Z , [ X , Y ] ] + ( - 1 ) ^ { p _ { X } ( p _ { Y } + p _ { Z } ) } [ Y , [ Z , X ] ] . \\end{equation*}",
"\\begin{equation*} a ( x , \\theta ) = a _ { 0 } ( x ) + a _ { i } ( x ) \\theta ^ { i } + a _ { i _ { 1 } i _ { 2 } } \\theta ^ { i _ { 1 } } \\wedge \\theta ^ { i _ { 2 } } + \\cdots + a _ { i _ { 1 } i _ { 2 } \\ldots i _ { q } } \\theta ^ { i _ { 1 } } \\wedge \\theta ^ { i _ { 2 } } \\cdots \\wedge \\theta ^ { i _ { q } } , \\end{equation*}",
"\\begin{equation*} a \\cdot b = ( - 1 ) ^ { p _ { a } p _ { b } } b \\cdot a \\end{equation*}",
"\\begin{equation*} \\partial ^ { L } ( a \\cdot b ) = \\partial ^ { L } ( a ) \\cdot b + ( - 1 ) ^ { m p _ { a } } a \\cdot \\partial ^ { L } ( b ) . \\end{equation*}"
],
"latex_expand": [
"$ \\mitN $",
"$ \\mitN $",
"$ 2 \\mitN $",
"$ \\mitN $",
"$ \\mitalpha ^ { \\prime } \\mapsto 0 $",
"$ \\mitR $",
"$ \\mitC $",
"$ \\mitZ _ { 2 } $",
"$ \\mitV = \\mitV _ { 0 } \\oplus \\mitV _ { 1 } $",
"$ \\mitp = 0 , 1 $",
"$ \\mitV $",
"$ \\cdot : \\mitV \\otimes \\mitV \\mapsto \\mitV $",
"$ \\mitV $",
"$ \\mitV $",
"$ [ \\; , \\; ] : \\mitV \\otimes \\mitV \\mapsto \\mitV $",
"$ \\mitR ^ { \\mitp } $",
"$ \\mscrS ^ { \\mitp , \\mitq } = \\mitC ^ { \\infty } ( \\mitR ^ { \\mitp } ) \\otimes \\mupLambda ( \\mitR ^ { \\mitq } ) $",
"$ \\mupLambda ( \\mitR ^ { \\mitq } ) = \\sum _ { \\miti = 0 } ^ { \\mitq } \\mupLambda ^ { \\miti } ( \\mitR ^ { \\mitq } ) $",
"$ \\mitq $",
"$ \\mittheta ^ { 1 } , \\mittheta ^ { 2 } , \\ldots \\mittheta ^ { \\mitq } $",
"$ \\mittheta ^ { \\miti } $",
"$ \\mita _ { \\miti _ { 1 } \\miti _ { 2 } \\ldots \\miti _ { \\mitj } } $",
"$ \\mitp _ { \\mita } $",
"$ \\mitp _ { \\mitb } $",
"$ \\mitm = 0 , 1 $",
"$ \\mitpartial ^ { \\mitL } : \\mitV \\mapsto \\mitV $",
"\\begin{equation*} \\mitp ( \\mita \\cdot \\mitb ) = \\mitp ( \\mita ) + \\mitp ( \\mitb ) . \\end{equation*}",
"\\begin{equation*} [ \\mitX , \\mitY ] = - ( - 1 ) ^ { \\mitp _ { \\mitX } \\mitp _ { \\mitY } } [ \\mitY , \\mitX ] , \\end{equation*}",
"\\begin{equation*} [ \\mitX , [ \\mitY , \\mitZ ] ] + ( - 1 ) ^ { \\mitp _ { \\mitZ } ( \\mitp _ { \\mitX } + \\mitp _ { \\mitY } ) } [ \\mitZ , [ \\mitX , \\mitY ] ] + ( - 1 ) ^ { \\mitp _ { \\mitX } ( \\mitp _ { \\mitY } + \\mitp _ { \\mitZ } ) } [ \\mitY , [ \\mitZ , \\mitX ] ] . \\end{equation*}",
"\\begin{equation*} \\mita ( \\mitx , \\mittheta ) = \\mita _ { 0 } ( \\mitx ) + \\mita _ { \\miti } ( \\mitx ) \\mittheta ^ { \\miti } + \\mita _ { \\miti _ { 1 } \\miti _ { 2 } } \\mittheta ^ { \\miti _ { 1 } } \\wedge \\mittheta ^ { \\miti _ { 2 } } + \\cdots + \\mita _ { \\miti _ { 1 } \\miti _ { 2 } \\ldots \\miti _ { \\mitq } } \\mittheta ^ { \\miti _ { 1 } } \\wedge \\mittheta ^ { \\miti _ { 2 } } \\cdots \\wedge \\mittheta ^ { \\miti _ { \\mitq } } , \\end{equation*}",
"\\begin{equation*} \\mita \\cdot \\mitb = ( - 1 ) ^ { \\mitp _ { \\mita } \\mitp _ { \\mitb } } \\mitb \\cdot \\mita \\end{equation*}",
"\\begin{equation*} \\mitpartial ^ { \\mitL } ( \\mita \\cdot \\mitb ) = \\mitpartial ^ { \\mitL } ( \\mita ) \\cdot \\mitb + ( - 1 ) ^ { \\mitm \\mitp _ { \\mita } } \\mita \\cdot \\mitpartial ^ { \\mitL } ( \\mitb ) . \\end{equation*}"
],
"x_min": [
0.5853000283241272,
0.7221999764442444,
0.1728000044822693,
0.5645999908447266,
0.3765999972820282,
0.390500009059906,
0.4339999854564667,
0.487199991941452,
0.6855999827384949,
0.24459999799728394,
0.36070001125335693,
0.6952000260353088,
0.22529999911785126,
0.8100000023841858,
0.3034000098705292,
0.677299976348877,
0.31310001015663147,
0.32409998774528503,
0.7408000230789185,
0.1728000044822693,
0.5985000133514404,
0.23010000586509705,
0.49480000138282776,
0.5583999752998352,
0.4408999979496002,
0.1728000044822693,
0.40700000524520874,
0.38359999656677246,
0.2281000018119812,
0.19280000030994415,
0.4180999994277954,
0.3310000002384186
],
"y_min": [
0.15870000422000885,
0.15870000422000885,
0.19290000200271606,
0.19290000200271606,
0.2094999998807907,
0.35350000858306885,
0.35350000858306885,
0.35350000858306885,
0.35350000858306885,
0.3711000084877014,
0.37059998512268066,
0.37059998512268066,
0.4507000148296356,
0.45019999146461487,
0.4668000042438507,
0.5551999807357788,
0.5713000297546387,
0.5878999829292297,
0.5932999849319458,
0.6050000190734863,
0.6050000190734863,
0.7074999809265137,
0.7666000127792358,
0.7666000127792358,
0.7803000211715698,
0.7954000234603882,
0.41749998927116394,
0.49459999799728394,
0.5238999724388123,
0.6689000129699707,
0.736299991607666,
0.8252000212669373
],
"x_max": [
0.6032999753952026,
0.7401999831199646,
0.20110000669956207,
0.5825999975204468,
0.4366999864578247,
0.40779998898506165,
0.4512999951839447,
0.5092999935150146,
0.7836999893188477,
0.311599999666214,
0.3765999972820282,
0.8264999985694885,
0.2418999969959259,
0.8266000151634216,
0.4546999931335449,
0.7028999924659729,
0.5253000259399414,
0.5141000151634216,
0.7505000233650208,
0.2702000141143799,
0.6144000291824341,
0.2881999909877777,
0.5134999752044678,
0.574999988079071,
0.5189999938011169,
0.2750999927520752,
0.5914999842643738,
0.6151000261306763,
0.7734000086784363,
0.802299976348877,
0.5812000036239624,
0.6682000160217285
],
"y_max": [
0.16899999976158142,
0.16899999976158142,
0.20319999754428864,
0.20319999754428864,
0.22020000219345093,
0.3637999892234802,
0.3637999892234802,
0.36570000648498535,
0.36570000648498535,
0.3837999999523163,
0.38089999556541443,
0.3822999894618988,
0.460999995470047,
0.4609000086784363,
0.4814000129699707,
0.565500020980835,
0.5863999724388123,
0.6039999723434448,
0.6025999784469604,
0.6195999979972839,
0.6172000169754028,
0.7186999917030334,
0.7759000062942505,
0.7759000062942505,
0.7929999828338623,
0.8076000213623047,
0.43309998512268066,
0.5131999850273132,
0.5443999767303467,
0.6875,
0.7519000172615051,
0.8422999978065491
],
"expr_type": [
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"isolated",
"isolated",
"isolated",
"isolated",
"isolated",
"isolated"
]
} |
|
0002084_page05 | {
"latex": [
"$\\Z _2$",
"$L$",
"$L=L_0+L_1$",
"$L_0$",
"$L_1$",
"$\\{\\;,\\;\\}$",
"$a$",
"$\\{a,\\,\\cdot \\,\\}$",
"$\\mathcal {S}^{p,2}$",
"$\\partial _i$",
"$\\partial _\\alpha ^L$",
"$\\partial ^R_\\alpha =\\partial ^L_\\alpha $",
"$\\partial ^R_\\alpha =-\\partial ^L_\\alpha $",
"$[\\partial _\\alpha ^R,\\partial _\\beta ^L]_-=0$",
"$$ \\partial ^R(a\\cdot b)=(-1)^{mp_b}\\partial ^R(a)\\cdot b +a\\cdot \\partial ^R(b). $$",
"$$ \\{a,b\\cdot c\\}=\\{a,b\\}\\cdot c+(-1)^{p_ap_b}a\\cdot \\{b,c\\}, $$",
"$$ \\{b\\cdot c,a\\}=b\\cdot \\{c,a\\}+(-1)^{p_ap_c}\\{b,a\\}\\cdot c. $$",
"$$ \\Phi (x,\\theta )=\\Phi _0(x)+\\Phi _{\\alpha }(x)\\theta _\\alpha + \\Phi _{\\alpha \\beta }(x)\\theta _\\alpha \\wedge \\theta _\\beta . $$",
"$$ \\partial _i\\Phi (x,\\theta )=\\partial _i\\Phi _0(x)+\\partial _i\\Phi _{\\alpha }(x) \\theta _\\alpha + \\partial _i\\Phi _{\\alpha \\beta }(x)\\theta _\\alpha \\wedge \\theta _\\beta $$",
"$$ \\partial ^L_\\alpha \\Phi (x,\\theta )=\\Phi _{\\alpha }(x)+ 2\\Phi _{\\alpha \\beta }(x)\\theta _\\beta $$",
"$$ \\partial ^R_\\alpha \\Phi (x,\\theta )=\\Phi _{\\alpha }(x)+ 2\\Phi _{\\beta \\alpha }(x)\\theta _\\beta $$"
],
"latex_norm": [
"$ Z _ { 2 } $",
"$ L $",
"$ L = L _ { 0 } + L _ { 1 } $",
"$ L _ { 0 } $",
"$ L _ { 1 } $",
"$ \\{ \\; , \\; \\} $",
"$ a $",
"$ \\{ a , \\, \\cdot \\, \\} $",
"$ S ^ { p , 2 } $",
"$ \\partial _ { i } $",
"$ \\partial _ { \\alpha } ^ { L } $",
"$ \\partial _ { \\alpha } ^ { R } = \\partial _ { \\alpha } ^ { L } $",
"$ \\partial _ { \\alpha } ^ { R } = - \\partial _ { \\alpha } ^ { L } $",
"$ [ \\partial _ { \\alpha } ^ { R } , \\partial _ { \\beta } ^ { L } ] _ { - } = 0 $",
"\\begin{equation*} \\partial ^ { R } ( a \\cdot b ) = ( - 1 ) ^ { m p _ { b } } \\partial ^ { R } ( a ) \\cdot b + a \\cdot \\partial ^ { R } ( b ) . \\end{equation*}",
"\\begin{equation*} \\{ a , b \\cdot c \\} = \\{ a , b \\} \\cdot c + ( - 1 ) ^ { p _ { a } p _ { b } } a \\cdot \\{ b , c \\} , \\end{equation*}",
"\\begin{equation*} \\{ b \\cdot c , a \\} = b \\cdot \\{ c , a \\} + ( - 1 ) ^ { p _ { a } p _ { c } } \\{ b , a \\} \\cdot c . \\end{equation*}",
"\\begin{equation*} \\Phi ( x , \\theta ) = \\Phi _ { 0 } ( x ) + \\Phi _ { \\alpha } ( x ) \\theta _ { \\alpha } + \\Phi _ { \\alpha \\beta } ( x ) \\theta _ { \\alpha } \\wedge \\theta _ { \\beta } . \\end{equation*}",
"\\begin{equation*} \\partial _ { i } \\Phi ( x , \\theta ) = \\partial _ { i } \\Phi _ { 0 } ( x ) + \\partial _ { i } \\Phi _ { \\alpha } ( x ) \\theta _ { \\alpha } + \\partial _ { i } \\Phi _ { \\alpha \\beta } ( x ) \\theta _ { \\alpha } \\wedge \\theta _ { \\beta } \\end{equation*}",
"\\begin{equation*} \\partial _ { \\alpha } ^ { L } \\Phi ( x , \\theta ) = \\Phi _ { \\alpha } ( x ) + 2 \\Phi _ { \\alpha \\beta } ( x ) \\theta _ { \\beta } \\end{equation*}",
"\\begin{equation*} \\partial _ { \\alpha } ^ { R } \\Phi ( x , \\theta ) = \\Phi _ { \\alpha } ( x ) + 2 \\Phi _ { \\beta \\alpha } ( x ) \\theta _ { \\beta } \\end{equation*}"
],
"latex_expand": [
"$ \\mitZ _ { 2 } $",
"$ \\mitL $",
"$ \\mitL = \\mitL _ { 0 } + \\mitL _ { 1 } $",
"$ \\mitL _ { 0 } $",
"$ \\mitL _ { 1 } $",
"$ \\{ \\; , \\; \\} $",
"$ \\mita $",
"$ \\{ \\mita , \\, \\cdot \\, \\} $",
"$ \\mscrS ^ { \\mitp , 2 } $",
"$ \\mitpartial _ { \\miti } $",
"$ \\mitpartial _ { \\mitalpha } ^ { \\mitL } $",
"$ \\mitpartial _ { \\mitalpha } ^ { \\mitR } = \\mitpartial _ { \\mitalpha } ^ { \\mitL } $",
"$ \\mitpartial _ { \\mitalpha } ^ { \\mitR } = - \\mitpartial _ { \\mitalpha } ^ { \\mitL } $",
"$ [ \\mitpartial _ { \\mitalpha } ^ { \\mitR } , \\mitpartial _ { \\mitbeta } ^ { \\mitL } ] _ { - } = 0 $",
"\\begin{equation*} \\mitpartial ^ { \\mitR } ( \\mita \\cdot \\mitb ) = ( - 1 ) ^ { \\mitm \\mitp _ { \\mitb } } \\mitpartial ^ { \\mitR } ( \\mita ) \\cdot \\mitb + \\mita \\cdot \\mitpartial ^ { \\mitR } ( \\mitb ) . \\end{equation*}",
"\\begin{equation*} \\{ \\mita , \\mitb \\cdot \\mitc \\} = \\{ \\mita , \\mitb \\} \\cdot \\mitc + ( - 1 ) ^ { \\mitp _ { \\mita } \\mitp _ { \\mitb } } \\mita \\cdot \\{ \\mitb , \\mitc \\} , \\end{equation*}",
"\\begin{equation*} \\{ \\mitb \\cdot \\mitc , \\mita \\} = \\mitb \\cdot \\{ \\mitc , \\mita \\} + ( - 1 ) ^ { \\mitp _ { \\mita } \\mitp _ { \\mitc } } \\{ \\mitb , \\mita \\} \\cdot \\mitc . \\end{equation*}",
"\\begin{equation*} \\mupPhi ( \\mitx , \\mittheta ) = \\mupPhi _ { 0 } ( \\mitx ) + \\mupPhi _ { \\mitalpha } ( \\mitx ) \\mittheta _ { \\mitalpha } + \\mupPhi _ { \\mitalpha \\mitbeta } ( \\mitx ) \\mittheta _ { \\mitalpha } \\wedge \\mittheta _ { \\mitbeta } . \\end{equation*}",
"\\begin{equation*} \\mitpartial _ { \\miti } \\mupPhi ( \\mitx , \\mittheta ) = \\mitpartial _ { \\miti } \\mupPhi _ { 0 } ( \\mitx ) + \\mitpartial _ { \\miti } \\mupPhi _ { \\mitalpha } ( \\mitx ) \\mittheta _ { \\mitalpha } + \\mitpartial _ { \\miti } \\mupPhi _ { \\mitalpha \\mitbeta } ( \\mitx ) \\mittheta _ { \\mitalpha } \\wedge \\mittheta _ { \\mitbeta } \\end{equation*}",
"\\begin{equation*} \\mitpartial _ { \\mitalpha } ^ { \\mitL } \\mupPhi ( \\mitx , \\mittheta ) = \\mupPhi _ { \\mitalpha } ( \\mitx ) + 2 \\mupPhi _ { \\mitalpha \\mitbeta } ( \\mitx ) \\mittheta _ { \\mitbeta } \\end{equation*}",
"\\begin{equation*} \\mitpartial _ { \\mitalpha } ^ { \\mitR } \\mupPhi ( \\mitx , \\mittheta ) = \\mupPhi _ { \\mitalpha } ( \\mitx ) + 2 \\mupPhi _ { \\mitbeta \\mitalpha } ( \\mitx ) \\mittheta _ { \\mitbeta } \\end{equation*}"
],
"x_min": [
0.4332999885082245,
0.7774999737739563,
0.4050000011920929,
0.5756999850273132,
0.6399000287055969,
0.4643999934196472,
0.3352000117301941,
0.42160001397132874,
0.515500009059906,
0.31310001015663147,
0.532800018787384,
0.27570000290870667,
0.5356000065803528,
0.28200000524520874,
0.3296000063419342,
0.32899999618530273,
0.3303000032901764,
0.31029999256134033,
0.28130000829696655,
0.36419999599456787,
0.3634999990463257
],
"y_min": [
0.15870000422000885,
0.15870000422000885,
0.17579999566078186,
0.17579999566078186,
0.17579999566078186,
0.35740000009536743,
0.5220000147819519,
0.5175999999046326,
0.5708000063896179,
0.6352999806404114,
0.6958000063896179,
0.8213000297546387,
0.8213000297546387,
0.8384000062942505,
0.2720000147819519,
0.42239999771118164,
0.48489999771118164,
0.6021000146865845,
0.6646000146865845,
0.725600004196167,
0.7886000275611877
],
"x_max": [
0.4560999870300293,
0.7912999987602234,
0.5087000131607056,
0.597100019454956,
0.6620000004768372,
0.5134999752044678,
0.34630000591278076,
0.4733999967575073,
0.5486999750137329,
0.3296999931335449,
0.5555999875068665,
0.3476000130176544,
0.6233999729156494,
0.3959999978542328,
0.6689000129699707,
0.6668999791145325,
0.6689000129699707,
0.6883000135421753,
0.7181000113487244,
0.6351000070571899,
0.6358000040054321
],
"y_max": [
0.17090000212192535,
0.16899999976158142,
0.18799999356269836,
0.18799999356269836,
0.18799999356269836,
0.3725000023841858,
0.5288000106811523,
0.5321999788284302,
0.5830000042915344,
0.6474999785423279,
0.711899995803833,
0.836899995803833,
0.836899995803833,
0.8565000295639038,
0.2896000146865845,
0.43799999356269836,
0.5009999871253967,
0.6182000041007996,
0.6807000041007996,
0.7437000274658203,
0.8062000274658203
],
"expr_type": [
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"isolated",
"isolated",
"isolated",
"isolated",
"isolated",
"isolated",
"isolated"
]
} |
|
0002084_page06 | {
"latex": [
"$P$",
"$C^\\infty (\\R ^n)$",
"$\\mathcal {S}^{p,q}$",
"$C^\\infty (\\R ^p)$",
"$h$",
"$C^\\infty (\\R ^n)$",
"$C^\\infty (\\R ^n)[[h]]=\\R [[h]]\\otimes C^\\infty (\\R ^n)$",
"$h$",
"$P(f\\otimes g)=\\{f,g\\}$",
"$\\mathcal {S}^{p,q}$",
"$P^{AB}$",
"$q=0$",
"\\begin {equation} \\{\\Phi ,\\Psi \\}=P^{ab}\\partial _a\\Phi \\partial _b\\Psi + P^{\\alpha \\beta }\\partial ^R_\\alpha \\Phi \\partial ^L_\\beta \\Psi = P^{AB}\\partial ^R_A\\Phi \\partial ^L_B\\Psi . \\label {spb} \\end {equation}",
"$$ P^{ab}=-P^{ba},\\quad P^{\\alpha \\beta }=P^{\\beta \\alpha }. $$",
"\\begin {eqnarray} \\star :\\mathcal {S}^{p,q}[[h]]\\otimes \\mathcal {S}^{p,q}[[h]]&\\longrightarrow &\\mathcal {S}^{p,q}[[h]]\\\\ f\\otimes g&\\mapsto & e^{hP}(f\\otimes g)\\end {eqnarray}",
"$$ e^{hP}=\\sum _{n=0}^\\infty \\frac {h^n}{n!}P^n $$",
"$$ P^n(f\\otimes g)=P^{A_1B_1}P^{A_2B_2}\\cdots P^{A_nB_n}(\\partial ^R_{A_1}\\partial ^R_{A_2}\\dots \\partial ^R_{A_n})f\\cdot (\\partial ^L_{B_1}\\partial ^L_{B_2} \\dots \\partial ^L_{B_n}g). $$"
],
"latex_norm": [
"$ P $",
"$ C ^ { \\infty } ( R ^ { n } ) $",
"$ S ^ { p , q } $",
"$ C ^ { \\infty } ( R ^ { p } ) $",
"$ h $",
"$ C ^ { \\infty } ( R ^ { n } ) $",
"$ C ^ { \\infty } ( R ^ { n } ) [ [ h ] ] = R [ [ h ] ] \\otimes C ^ { \\infty } ( R ^ { n } ) $",
"$ h $",
"$ P ( f \\otimes g ) = \\{ f , g \\} $",
"$ S ^ { p , q } $",
"$ P ^ { A B } $",
"$ q = 0 $",
"\\begin{equation*} \\{ \\Phi , \\Psi \\} = P ^ { a b } \\partial _ { a } \\Phi \\partial _ { b } \\Psi + P ^ { \\alpha \\beta } \\partial _ { \\alpha } ^ { R } \\Phi \\partial _ { \\beta } ^ { L } \\Psi = P ^ { A B } \\partial _ { A } ^ { R } \\Phi \\partial _ { B } ^ { L } \\Psi . \\end{equation*}",
"\\begin{equation*} P ^ { a b } = - P ^ { b a } , \\quad P ^ { \\alpha \\beta } = P ^ { \\beta \\alpha } . \\end{equation*}",
"\\begin{align*} \\star : S ^ { p , q } [ [ h ] ] \\otimes S ^ { p , q } [ [ h ] ] & \\longrightarrow & S ^ { p , q } [ [ h ] ] \\\\ f \\otimes g & \\mapsto & e ^ { h P } ( f \\otimes g ) \\end{align*}",
"\\begin{equation*} e ^ { h P } = \\sum _ { n = 0 } ^ { \\infty } \\frac { h ^ { n } } { n ! } P ^ { n } \\end{equation*}",
"\\begin{equation*} P ^ { n } ( f \\otimes g ) = P ^ { A _ { 1 } B _ { 1 } } P ^ { A _ { 2 } B _ { 2 } } \\cdots P ^ { A _ { n } B _ { n } } ( \\partial _ { A _ { 1 } } ^ { R } \\partial _ { A _ { 2 } } ^ { R } \\ldots \\partial _ { A _ { n } } ^ { R } ) f \\cdot ( \\partial _ { B _ { 1 } } ^ { L } \\partial _ { B _ { 2 } } ^ { L } \\ldots \\partial _ { B _ { n } } ^ { L } g ) . \\end{equation*}"
],
"latex_expand": [
"$ \\mitP $",
"$ \\mitC ^ { \\infty } ( \\mitR ^ { \\mitn } ) $",
"$ \\mscrS ^ { \\mitp , \\mitq } $",
"$ \\mitC ^ { \\infty } ( \\mitR ^ { \\mitp } ) $",
"$ \\Planckconst $",
"$ \\mitC ^ { \\infty } ( \\mitR ^ { \\mitn } ) $",
"$ \\mitC ^ { \\infty } ( \\mitR ^ { \\mitn } ) [ [ \\Planckconst ] ] = \\mitR [ [ \\Planckconst ] ] \\otimes \\mitC ^ { \\infty } ( \\mitR ^ { \\mitn } ) $",
"$ \\Planckconst $",
"$ \\mitP ( \\mitf \\otimes \\mitg ) = \\{ \\mitf , \\mitg \\} $",
"$ \\mscrS ^ { \\mitp , \\mitq } $",
"$ \\mitP ^ { \\mitA \\mitB } $",
"$ \\mitq = 0 $",
"\\begin{equation*} \\{ \\mupPhi , \\mupPsi \\} = \\mitP ^ { \\mita \\mitb } \\mitpartial _ { \\mita } \\mupPhi \\mitpartial _ { \\mitb } \\mupPsi + \\mitP ^ { \\mitalpha \\mitbeta } \\mitpartial _ { \\mitalpha } ^ { \\mitR } \\mupPhi \\mitpartial _ { \\mitbeta } ^ { \\mitL } \\mupPsi = \\mitP ^ { \\mitA \\mitB } \\mitpartial _ { \\mitA } ^ { \\mitR } \\mupPhi \\mitpartial _ { \\mitB } ^ { \\mitL } \\mupPsi . \\end{equation*}",
"\\begin{equation*} \\mitP ^ { \\mita \\mitb } = - \\mitP ^ { \\mitb \\mita } , \\quad \\mitP ^ { \\mitalpha \\mitbeta } = \\mitP ^ { \\mitbeta \\mitalpha } . \\end{equation*}",
"\\begin{align*} \\star : \\mscrS ^ { \\mitp , \\mitq } [ [ \\Planckconst ] ] \\otimes \\mscrS ^ { \\mitp , \\mitq } [ [ \\Planckconst ] ] & \\longrightarrow & \\mscrS ^ { \\mitp , \\mitq } [ [ \\Planckconst ] ] \\\\ \\mitf \\otimes \\mitg & \\mapsto & \\mite ^ { \\Planckconst \\mitP } ( \\mitf \\otimes \\mitg ) \\end{align*}",
"\\begin{equation*} \\mite ^ { \\Planckconst \\mitP } = \\sum _ { \\mitn = 0 } ^ { \\infty } \\frac { \\Planckconst ^ { \\mitn } } { \\mitn ! } \\mitP ^ { \\mitn } \\end{equation*}",
"\\begin{equation*} \\mitP ^ { \\mitn } ( \\mitf \\otimes \\mitg ) = \\mitP ^ { \\mitA _ { 1 } \\mitB _ { 1 } } \\mitP ^ { \\mitA _ { 2 } \\mitB _ { 2 } } \\cdots \\mitP ^ { \\mitA _ { \\mitn } \\mitB _ { \\mitn } } ( \\mitpartial _ { \\mitA _ { 1 } } ^ { \\mitR } \\mitpartial _ { \\mitA _ { 2 } } ^ { \\mitR } \\ldots \\mitpartial _ { \\mitA _ { \\mitn } } ^ { \\mitR } ) \\mitf \\cdot ( \\mitpartial _ { \\mitB _ { 1 } } ^ { \\mitL } \\mitpartial _ { \\mitB _ { 2 } } ^ { \\mitL } \\ldots \\mitpartial _ { \\mitB _ { \\mitn } } ^ { \\mitL } \\mitg ) . \\end{equation*}"
],
"x_min": [
0.22939999401569366,
0.6344000101089478,
0.7346000075340271,
0.7332000136375427,
0.7684999704360962,
0.29649999737739563,
0.4456999897956848,
0.31029999256134033,
0.321399986743927,
0.1728000044822693,
0.3765999972820282,
0.6717000007629395,
0.2694999873638153,
0.38420000672340393,
0.3296000063419342,
0.43050000071525574,
0.19419999420642853
],
"y_min": [
0.26420000195503235,
0.388700008392334,
0.38960000872612,
0.4916999936103821,
0.5098000168800354,
0.5264000296592712,
0.5264000296592712,
0.5443999767303467,
0.5605000257492065,
0.5957000255584717,
0.7914999723434448,
0.7939000129699707,
0.2290000021457672,
0.28999999165534973,
0.6172000169754028,
0.6851000189781189,
0.760699987411499
],
"x_max": [
0.24529999494552612,
0.7070000171661377,
0.767799973487854,
0.8044000267982483,
0.7809000015258789,
0.36980000138282776,
0.7283999919891357,
0.32199999690055847,
0.46790000796318054,
0.2053000032901764,
0.41530001163482666,
0.7263000011444092,
0.7318000197410583,
0.6150000095367432,
0.6689000129699707,
0.5687000155448914,
0.8051000237464905
],
"y_max": [
0.2745000123977661,
0.40380001068115234,
0.400299996137619,
0.5067999958992004,
0.5205000042915344,
0.5410000085830688,
0.5410000085830688,
0.5547000169754028,
0.5751000046730042,
0.6060000061988831,
0.8036999702453613,
0.8065999746322632,
0.25099998712539673,
0.30660000443458557,
0.6660000085830688,
0.7275999784469604,
0.7792999744415283
],
"expr_type": [
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"isolated",
"isolated",
"isolated",
"isolated",
"isolated"
]
} |
|
0002084_page07 | {
"latex": [
"$\\R [[h]]$",
"$\\mathcal {A}^{p,q}$",
"$X^1,\\dots , X^p$",
"$\\Theta ^1,\\dots \\Theta ^q$",
"$h$",
"$X$",
"$\\Theta $",
"$\\mathcal {A}^{p,q}\\approx U^p_h\\otimes \\Lambda ^q_h$",
"$U_h^p$",
"$\\R [[h]]$",
"$X$",
"$\\Lambda ^q_h$",
"$\\R [[h]]$",
"$\\Theta $",
"$\\mathcal {A}^{p,q}$",
"$(\\mbox {Pol}(\\R ^p)\\otimes \\Lambda (\\R ^q)[[h]],\\;\\star \\;)$",
"$\\star $",
"$\\mbox {Pol}(\\R ^p)[[h]]$",
"$\\R [[h]]$",
"$\\mbox {Sym}:\\mbox {Pol}(\\R ^p)[[h]]\\mapsto U_h^p$",
"$\\mbox {Pol}(\\R ^p)[[h]]$",
"$\\star $",
"$C^\\infty $",
"$\\Lambda (\\R ^q)[[h]]$",
"$\\Lambda (\\R ^q)$",
"$2^q$",
"$\\mbox {Sym}:\\Lambda (\\R ^q)[[h]]\\mapsto \\Lambda ^q_h$",
"$\\Lambda (\\R ^q)[[h]]$",
"$\\star $",
"\\begin {eqnarray} &&[X^a,X^b]_{-}=hP^{ab}, \\\\ &&[\\Theta ^\\alpha ,\\Theta ^\\beta ]_+=hP^{\\alpha \\beta }. \\end {eqnarray}",
"\\begin {equation} x^{i_1}\\cdot x^{i_2}\\cdots x^{i_n},\\qquad i_1\\leq i_2\\leq \\cdots \\leq i_n. \\label {b} \\end {equation}",
"\\begin {eqnarray*} &&\\mbox {Sym}(x^{i_1} x^{i_2}\\cdots x^{i_n})=\\frac {1}{n}\\sum \\limits _{\\sigma \\in S_n} X^{\\sigma (i_1)}\\cdot X^{\\sigma (i_2)}\\cdots X^{\\sigma (i_n)}=\\\\ &&\\mbox {exp}({X^i\\partial _i})(x^{i_1} x^{i_2}\\cdots x^{i_n})|_{x^{i_k}=0}, \\end {eqnarray*}",
"\\begin {equation} \\mbox {Sym}^{-1}(\\mbox {Sym}(f)\\cdot \\mbox {Sym}(g)) \\label {iso} \\end {equation}",
"\\begin {equation} \\theta _{i_1}\\wedge \\theta _{i_2}\\wedge \\cdots \\wedge \\theta _{i_n}, \\qquad i_1\\leq i_2\\leq \\cdots \\leq i_n. \\label {sb} \\end {equation}",
"$$ \\mbox {Sym}(\\theta _{i_1}\\wedge \\theta _{i_2}\\wedge \\cdots \\wedge \\theta _{i_n})= \\Theta _{i_1}\\Theta _{i_2}\\cdots \\Theta _{i_n} $$"
],
"latex_norm": [
"$ R [ [ h ] ] $",
"$ A ^ { p , q } $",
"$ X ^ { 1 } , \\ldots , X ^ { p } $",
"$ \\Theta ^ { 1 } , \\ldots \\Theta ^ { q } $",
"$ h $",
"$ X $",
"$ \\Theta $",
"$ A ^ { p , q } \\approx U _ { h } ^ { p } \\otimes \\Lambda _ { h } ^ { q } $",
"$ U _ { h } ^ { p } $",
"$ R [ [ h ] ] $",
"$ X $",
"$ \\Lambda _ { h } ^ { q } $",
"$ R [ [ h ] ] $",
"$ \\Theta $",
"$ A ^ { p , q } $",
"$ ( P o l ( R ^ { p } ) \\otimes \\Lambda ( R ^ { q } ) [ [ h ] ] , \\; \\star \\; ) $",
"$ \\star $",
"$ P o l ( R ^ { p } ) [ [ h ] ] $",
"$ R [ [ h ] ] $",
"$ S y m : P o l ( R ^ { p } ) [ [ h ] ] \\mapsto U _ { h } ^ { p } $",
"$ P o l ( R ^ { p } ) [ [ h ] ] $",
"$ \\star $",
"$ C ^ { \\infty } $",
"$ \\Lambda ( R ^ { q } ) [ [ h ] ] $",
"$ \\Lambda ( R ^ { q } ) $",
"$ 2 ^ { q } $",
"$ S y m : \\Lambda ( R ^ { q } ) [ [ h ] ] \\mapsto \\Lambda _ { h } ^ { q } $",
"$ \\Lambda ( R ^ { q } ) [ [ h ] ] $",
"$ \\star $",
"\\begin{align*} & & [ X ^ { a } , X ^ { b } ] _ { - } = h P ^ { a b } , \\\\ & & [ \\Theta ^ { \\alpha } , \\Theta ^ { \\beta } ] _ { + } = h P ^ { \\alpha \\beta } . \\end{align*}",
"\\begin{equation*} x ^ { i _ { 1 } } \\cdot x ^ { i _ { 2 } } \\cdots x ^ { i _ { n } } , \\qquad i _ { 1 } \\leq i _ { 2 } \\leq \\cdots \\leq i _ { n } . \\end{equation*}",
"\\begin{align*} & & S y m ( x ^ { i _ { 1 } } x ^ { i _ { 2 } } \\cdots x ^ { i _ { n } } ) = \\frac { 1 } { n } \\sum _ { \\sigma \\in S _ { n } } X ^ { \\sigma ( i _ { 1 } ) } \\cdot X ^ { \\sigma ( i _ { 2 } ) } \\cdots X ^ { \\sigma ( i _ { n } ) } = \\\\ & & e x p ( X ^ { i } \\partial _ { i } ) ( x ^ { i _ { 1 } } x ^ { i _ { 2 } } \\cdots x ^ { i _ { n } } ) \\vert _ { x ^ { i _ { k } } = 0 } , \\end{align*}",
"\\begin{equation*} S y m ^ { - 1 } ( S y m ( f ) \\cdot S y m ( g ) ) \\end{equation*}",
"\\begin{equation*} \\theta _ { i _ { 1 } } \\wedge \\theta _ { i _ { 2 } } \\wedge \\cdots \\wedge \\theta _ { i _ { n } } , \\qquad i _ { 1 } \\leq i _ { 2 } \\leq \\cdots \\leq i _ { n } . \\end{equation*}",
"\\begin{equation*} S y m ( \\theta _ { i _ { 1 } } \\wedge \\theta _ { i _ { 2 } } \\wedge \\cdots \\wedge \\theta _ { i _ { n } } ) = \\Theta _ { i _ { 1 } } \\Theta _ { i _ { 2 } } \\cdots \\Theta _ { i _ { n } } \\end{equation*}"
],
"latex_expand": [
"$ \\mitR [ [ \\Planckconst ] ] $",
"$ \\mscrA ^ { \\mitp , \\mitq } $",
"$ \\mitX ^ { 1 } , \\ldots , \\mitX ^ { \\mitp } $",
"$ \\mupTheta ^ { 1 } , \\ldots \\mupTheta ^ { \\mitq } $",
"$ \\Planckconst $",
"$ \\mitX $",
"$ \\mupTheta $",
"$ \\mscrA ^ { \\mitp , \\mitq } \\approx \\mitU _ { \\Planckconst } ^ { \\mitp } \\otimes \\mupLambda _ { \\Planckconst } ^ { \\mitq } $",
"$ \\mitU _ { \\Planckconst } ^ { \\mitp } $",
"$ \\mitR [ [ \\Planckconst ] ] $",
"$ \\mitX $",
"$ \\mupLambda _ { \\Planckconst } ^ { \\mitq } $",
"$ \\mitR [ [ \\Planckconst ] ] $",
"$ \\mupTheta $",
"$ \\mscrA ^ { \\mitp , \\mitq } $",
"$ ( \\mathrm { P o l } ( \\mitR ^ { \\mitp } ) \\otimes \\mupLambda ( \\mitR ^ { \\mitq } ) [ [ \\Planckconst ] ] , \\; \\star \\; ) $",
"$ \\star $",
"$ \\mathrm { P o l } ( \\mitR ^ { \\mitp } ) [ [ \\Planckconst ] ] $",
"$ \\mitR [ [ \\Planckconst ] ] $",
"$ \\mathrm { S y m } : \\mathrm { P o l } ( \\mitR ^ { \\mitp } ) [ [ \\Planckconst ] ] \\mapsto \\mitU _ { \\Planckconst } ^ { \\mitp } $",
"$ \\mathrm { P o l } ( \\mitR ^ { \\mitp } ) [ [ \\Planckconst ] ] $",
"$ \\star $",
"$ \\mitC ^ { \\infty } $",
"$ \\mupLambda ( \\mitR ^ { \\mitq } ) [ [ \\Planckconst ] ] $",
"$ \\mupLambda ( \\mitR ^ { \\mitq } ) $",
"$ 2 ^ { \\mitq } $",
"$ \\mathrm { S y m } : \\mupLambda ( \\mitR ^ { \\mitq } ) [ [ \\Planckconst ] ] \\mapsto \\mupLambda _ { \\Planckconst } ^ { \\mitq } $",
"$ \\mupLambda ( \\mitR ^ { \\mitq } ) [ [ \\Planckconst ] ] $",
"$ \\star $",
"\\begin{align*} & & [ \\mitX ^ { \\mita } , \\mitX ^ { \\mitb } ] _ { - } = \\Planckconst \\mitP ^ { \\mita \\mitb } , \\\\ & & [ \\mupTheta ^ { \\mitalpha } , \\mupTheta ^ { \\mitbeta } ] _ { + } = \\Planckconst \\mitP ^ { \\mitalpha \\mitbeta } . \\end{align*}",
"\\begin{equation*} \\mitx ^ { \\miti _ { 1 } } \\cdot \\mitx ^ { \\miti _ { 2 } } \\cdots \\mitx ^ { \\miti _ { \\mitn } } , \\qquad \\miti _ { 1 } \\leq \\miti _ { 2 } \\leq \\cdots \\leq \\miti _ { \\mitn } . \\end{equation*}",
"\\begin{align*} & & \\mathrm { S y m } ( \\mitx ^ { \\miti _ { 1 } } \\mitx ^ { \\miti _ { 2 } } \\cdots \\mitx ^ { \\miti _ { \\mitn } } ) = \\frac { 1 } { \\mitn } \\sum \\limits _ { \\mitsigma \\in \\mitS _ { \\mitn } } \\mitX ^ { \\mitsigma ( \\miti _ { 1 } ) } \\cdot \\mitX ^ { \\mitsigma ( \\miti _ { 2 } ) } \\cdots \\mitX ^ { \\mitsigma ( \\miti _ { \\mitn } ) } = \\\\ & & \\mathrm { e x p } ( \\mitX ^ { \\miti } \\mitpartial _ { \\miti } ) ( \\mitx ^ { \\miti _ { 1 } } \\mitx ^ { \\miti _ { 2 } } \\cdots \\mitx ^ { \\miti _ { \\mitn } } ) \\vert _ { \\mitx ^ { \\miti _ { \\mitk } } = 0 } , \\end{align*}",
"\\begin{equation*} \\mathrm { S y m } ^ { - 1 } ( \\mathrm { S y m } ( \\mitf ) \\cdot \\mathrm { S y m } ( \\mitg ) ) \\end{equation*}",
"\\begin{equation*} \\mittheta _ { \\miti _ { 1 } } \\wedge \\mittheta _ { \\miti _ { 2 } } \\wedge \\cdots \\wedge \\mittheta _ { \\miti _ { \\mitn } } , \\qquad \\miti _ { 1 } \\leq \\miti _ { 2 } \\leq \\cdots \\leq \\miti _ { \\mitn } . \\end{equation*}",
"\\begin{equation*} \\mathrm { S y m } ( \\mittheta _ { \\miti _ { 1 } } \\wedge \\mittheta _ { \\miti _ { 2 } } \\wedge \\cdots \\wedge \\mittheta _ { \\miti _ { \\mitn } } ) = \\mupTheta _ { \\miti _ { 1 } } \\mupTheta _ { \\miti _ { 2 } } \\cdots \\mupTheta _ { \\miti _ { \\mitn } } \\end{equation*}"
],
"x_min": [
0.5252000093460083,
0.5874000191688538,
0.21699999272823334,
0.32899999618530273,
0.22939999401569366,
0.5002999901771545,
0.5770999789237976,
0.1728000044822693,
0.38359999656677246,
0.6848999857902527,
0.31029999256134033,
0.5383999943733215,
0.1728000044822693,
0.4546999931335449,
0.6474999785423279,
0.1728000044822693,
0.7139000296592712,
0.45750001072883606,
0.26330000162124634,
0.5023999810218811,
0.7243000268936157,
0.2687999904155731,
0.6047000288963318,
0.3898000121116638,
0.22050000727176666,
0.2971999943256378,
0.5763999819755554,
0.24529999494552612,
0.6557999849319458,
0.4361000061035156,
0.3386000096797943,
0.2840000092983246,
0.3917999863624573,
0.31929999589920044,
0.32269999384880066
],
"y_min": [
0.18410000205039978,
0.1851000040769577,
0.20069999992847443,
0.20069999992847443,
0.31929999589920044,
0.3197999894618988,
0.3197999894618988,
0.3359000086784363,
0.3359000086784363,
0.3359000086784363,
0.3540000021457672,
0.3529999852180481,
0.3700999915599823,
0.3711000084877014,
0.3711000084877014,
0.38769999146461487,
0.39160001277923584,
0.4047999978065491,
0.4672999978065491,
0.4672999978065491,
0.5893999934196472,
0.6528000235557556,
0.6669999957084656,
0.6830999851226807,
0.7455999851226807,
0.7470999956130981,
0.7455999851226807,
0.8428000211715698,
0.8471999764442444,
0.259799987077713,
0.4311999976634979,
0.5102999806404114,
0.6190999746322632,
0.711899995803833,
0.7764000296592712
],
"x_max": [
0.5756000280380249,
0.6205000281333923,
0.31380000710487366,
0.41119998693466187,
0.241799995303154,
0.5189999938011169,
0.5922999978065491,
0.3124000132083893,
0.40779998898506165,
0.7353000044822693,
0.32899999618530273,
0.5619000196456909,
0.2231999933719635,
0.4706000089645386,
0.6805999875068665,
0.4009000062942505,
0.7243000268936157,
0.5598000288009644,
0.31369999051094055,
0.7131999731063843,
0.8266000151634216,
0.2791999876499176,
0.6358000040054321,
0.47690001130104065,
0.274399995803833,
0.31520000100135803,
0.7720000147819519,
0.33239999413490295,
0.6661999821662903,
0.5957000255584717,
0.6626999974250793,
0.742900013923645,
0.609499990940094,
0.6827999949455261,
0.6758000254631042
],
"y_max": [
0.19869999587535858,
0.19539999961853027,
0.21529999375343323,
0.21529999375343323,
0.33000001311302185,
0.33009999990463257,
0.33009999990463257,
0.35100001096725464,
0.35100001096725464,
0.3504999876022339,
0.364300012588501,
0.36809998750686646,
0.38519999384880066,
0.38179999589920044,
0.3813999891281128,
0.40230000019073486,
0.39890000224113464,
0.41940000653266907,
0.48190000653266907,
0.48240000009536743,
0.6044999957084656,
0.660099983215332,
0.677299976348877,
0.697700023651123,
0.760699987411499,
0.7573999762535095,
0.7612000107765198,
0.8579000234603882,
0.8539999723434448,
0.3086000084877014,
0.45019999146461487,
0.5771999955177307,
0.6385999917984009,
0.7289999723434448,
0.7919999957084656
],
"expr_type": [
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"isolated",
"isolated",
"isolated",
"isolated",
"isolated",
"isolated"
]
} |
|
0002084_page08 | {
"latex": [
"$X,\\Theta $",
"$\\star $",
"$\\R [[h]]$",
"$\\mbox {Pol}(\\R ^p)[[h]]$",
"$U_h^p$",
"$h$",
"$\\R $",
"$P\\mapsto A^TPA$",
"$P^{ab}$",
"$P^{\\alpha \\beta }$",
"$\\eta _\\alpha =\\pm 1$",
"$\\alpha =1,\\dots q'$",
"$\\eta _\\alpha =0$",
"$\\alpha =q'+1,\\dots q$",
"$q'=m+n$",
"$\\eta _\\alpha =-1$",
"$\\alpha =1,\\dots m$",
"$\\eta _\\alpha =+1$",
"$\\alpha =m+1,\\dots m+n$",
"$\\Lambda ^q_h$",
"$h$",
"$\\mathcal {C}(m,n)$",
"$q-q'$",
"$\\gamma _\\alpha =\\sqrt {2h}\\Theta _\\alpha $",
"$m=n$",
"$P^{\\alpha \\beta }$",
"$n$",
"$\\mathcal {S}^{p,q}$",
"\\begin {equation} P^{ab}=\\begin {pmatrix} 0 & I & 0 \\\\ -I & 0 & 0\\\\ 0 & 0 & 0\\end {pmatrix},\\qquad P^{\\alpha \\beta }=\\begin {pmatrix}\\eta _1 & 0 & \\dots & 0\\\\ 0 &\\eta _2 & \\dots & 0\\\\ \\hdotsfor {4}\\\\ 0 & 0 &\\dots & \\eta _q \\end {pmatrix} \\end {equation}",
"$$ P^{\\alpha \\beta }=\\begin {pmatrix}0 & 1 & 0 & 0 & \\dots & 0\\\\ 1 & 0 & 0 & 0 & \\dots & 0\\\\ 0 & 0 & 0 & 1 & \\dots & 0\\\\ 0 & 0 & 1 & 0 & \\dots & 0\\\\ \\hdotsfor {6}\\\\ 0 & 0 & 0 & 0 & \\dots & 0 \\end {pmatrix}. $$"
],
"latex_norm": [
"$ X , \\Theta $",
"$ \\star $",
"$ R [ [ h ] ] $",
"$ P o l ( R ^ { p } ) [ [ h ] ] $",
"$ U _ { h } ^ { p } $",
"$ h $",
"$ R $",
"$ P \\mapsto A ^ { T } P A $",
"$ P ^ { a b } $",
"$ P ^ { \\alpha \\beta } $",
"$ \\eta _ { \\alpha } = \\pm 1 $",
"$ \\alpha = 1 , \\ldots q ^ { \\prime } $",
"$ \\eta _ { \\alpha } = 0 $",
"$ \\alpha = q ^ { \\prime } + 1 , \\ldots q $",
"$ q ^ { \\prime } = m + n $",
"$ \\eta _ { \\alpha } = - 1 $",
"$ \\alpha = 1 , \\ldots m $",
"$ \\eta _ { \\alpha } = + 1 $",
"$ \\alpha = m + 1 , \\ldots m + n $",
"$ \\Lambda _ { h } ^ { q } $",
"$ h $",
"$ C ( m , n ) $",
"$ q - q ^ { \\prime } $",
"$ \\gamma _ { \\alpha } = \\sqrt { 2 h } \\Theta _ { \\alpha } $",
"$ m = n $",
"$ P ^ { \\alpha \\beta } $",
"$ n $",
"$ S ^ { p , q } $",
"\\begin{align*} . P ^ { a b } = ( \\begin{array}{ccc} 0 & I & 0 \\\\ - I & 0 & 0 \\\\ 0 & 0 & 0 \\end{array} ) , \\qquad P ^ { \\alpha \\beta } = ( \\begin{array}{cccc} \\eta _ { 1 } & 0 & \\dots & 0 \\\\ 0 & \\eta _ { 2 } & \\dots & 0 \\\\ \\dots & \\dots & \\dots & \\dots \\\\ 0 & 0 & \\dots & \\eta _ { q } \\end{array} ) \\end{align*}",
"\\begin{align*} . P ^ { \\alpha \\beta } = ( \\begin{array}{cccccc} 0 & 1 & 0 & 0 & \\dots & 0 \\\\ 1 & 0 & 0 & 0 & \\dots & 0 \\\\ 0 & 0 & 0 & 1 & \\dots & 0 \\\\ 0 & 0 & 1 & 0 & \\dots & 0 \\\\ \\dots & \\dots & \\dots & \\dots & \\dots & \\dots \\\\ 0 & 0 & 0 & 0 & \\dots & 0 \\end{array} ) . \\end{align*}"
],
"latex_expand": [
"$ \\mitX , \\mupTheta $",
"$ \\star $",
"$ \\mitR [ [ \\Planckconst ] ] $",
"$ \\mathrm { P o l } ( \\mitR ^ { \\mitp } ) [ [ \\Planckconst ] ] $",
"$ \\mitU _ { \\Planckconst } ^ { \\mitp } $",
"$ \\Planckconst $",
"$ \\mitR $",
"$ \\mitP \\mapsto \\mitA ^ { \\mitT } \\mitP \\mitA $",
"$ \\mitP ^ { \\mita \\mitb } $",
"$ \\mitP ^ { \\mitalpha \\mitbeta } $",
"$ \\miteta _ { \\mitalpha } = \\pm 1 $",
"$ \\mitalpha = 1 , \\ldots \\mitq ^ { \\prime } $",
"$ \\miteta _ { \\mitalpha } = 0 $",
"$ \\mitalpha = \\mitq ^ { \\prime } + 1 , \\ldots \\mitq $",
"$ \\mitq ^ { \\prime } = \\mitm + \\mitn $",
"$ \\miteta _ { \\mitalpha } = - 1 $",
"$ \\mitalpha = 1 , \\ldots \\mitm $",
"$ \\miteta _ { \\mitalpha } = + 1 $",
"$ \\mitalpha = \\mitm + 1 , \\ldots \\mitm + \\mitn $",
"$ \\mupLambda _ { \\Planckconst } ^ { \\mitq } $",
"$ \\Planckconst $",
"$ \\mscrC ( \\mitm , \\mitn ) $",
"$ \\mitq - \\mitq ^ { \\prime } $",
"$ \\mitgamma _ { \\mitalpha } = \\sqrt { 2 \\Planckconst } \\mupTheta _ { \\mitalpha } $",
"$ \\mitm = \\mitn $",
"$ \\mitP ^ { \\mitalpha \\mitbeta } $",
"$ \\mitn $",
"$ \\mscrS ^ { \\mitp , \\mitq } $",
"\\begin{align*} . \\mitP ^ { \\mita \\mitb } = \\left( \\begin{array}{ccc} 0 & \\mitI & 0 \\\\ - \\mitI & 0 & 0 \\\\ 0 & 0 & 0 \\end{array} \\right) , \\qquad \\mitP ^ { \\mitalpha \\mitbeta } = \\left( \\begin{array}{cccc} \\miteta _ { 1 } & 0 & \\dots & 0 \\\\ 0 & \\miteta _ { 2 } & \\dots & 0 \\\\ \\hdotsfor {4} \\\\ 0 & 0 & \\dots & \\miteta _ { \\mitq } \\end{array} \\right) \\end{align*}",
"\\begin{align*} . \\mitP ^ { \\mitalpha \\mitbeta } = \\left( \\begin{array}{cccccc} 0 & 1 & 0 & 0 & \\dots & 0 \\\\ 1 & 0 & 0 & 0 & \\dots & 0 \\\\ 0 & 0 & 0 & 1 & \\dots & 0 \\\\ 0 & 0 & 1 & 0 & \\dots & 0 \\\\ \\hdotsfor {6} \\\\ 0 & 0 & 0 & 0 & \\dots & 0 \\end{array} \\right) . \\end{align*}"
],
"x_min": [
0.785099983215332,
0.5708000063896179,
0.1728000044822693,
0.47679999470710754,
0.6226999759674072,
0.5472999811172485,
0.32199999690055847,
0.49970000982284546,
0.2515999972820282,
0.326200008392334,
0.22939999401569366,
0.3379000127315521,
0.48100000619888306,
0.5735999941825867,
0.27160000801086426,
0.44510000944137573,
0.5625,
0.7172999978065491,
0.1728000044822693,
0.5162000060081482,
0.794700026512146,
0.4733999967575073,
0.3898000121116638,
0.38769999146461487,
0.22110000252723694,
0.7919999957084656,
0.2937000095844269,
0.6129999756813049,
0.2736999988555908,
0.3677000105381012
],
"y_min": [
0.15870000422000885,
0.17870000004768372,
0.19189999997615814,
0.19189999997615814,
0.19189999997615814,
0.24410000443458557,
0.27880001068115234,
0.2939000129699707,
0.3109999895095825,
0.3109999895095825,
0.426800012588501,
0.42579999566078186,
0.426800012588501,
0.42579999566078186,
0.44290000200271606,
0.4438000023365021,
0.4438000023365021,
0.4438000023365021,
0.4609000086784363,
0.4595000147819519,
0.4603999853134155,
0.4771000146865845,
0.49410000443458557,
0.5088000297546387,
0.5497999787330627,
0.5443999767303467,
0.6898999810218811,
0.8428000211715698,
0.3384000062942505,
0.5737000107765198
],
"x_max": [
0.8259000182151794,
0.5812000036239624,
0.2231999933719635,
0.5784000158309937,
0.6468999981880188,
0.5590000152587891,
0.3393000066280365,
0.6047000288963318,
0.28200000524520874,
0.36079999804496765,
0.3012999892234802,
0.4366999864578247,
0.5376999974250793,
0.7063000202178955,
0.373199999332428,
0.5231999754905701,
0.6696000099182129,
0.794700026512146,
0.3490000069141388,
0.5396999716758728,
0.8070999979972839,
0.5390999913215637,
0.4325999915599823,
0.49900001287460327,
0.27709999680519104,
0.8259000182151794,
0.3061000108718872,
0.6462000012397766,
0.7243000268936157,
0.6316999793052673
],
"y_max": [
0.17190000414848328,
0.1860000044107437,
0.2070000022649765,
0.2070000022649765,
0.2070000022649765,
0.2547999918460846,
0.2890999913215637,
0.3061000108718872,
0.323199987411499,
0.323199987411499,
0.43950000405311584,
0.43950000405311584,
0.43950000405311584,
0.43950000405311584,
0.45660001039505005,
0.45649999380111694,
0.45649999380111694,
0.45649999380111694,
0.47360000014305115,
0.4745999872684479,
0.4706999957561493,
0.4916999936103821,
0.5077999830245972,
0.5253999829292297,
0.5565999746322632,
0.5565999746322632,
0.6966999769210815,
0.8531000018119812,
0.4106999933719635,
0.6782000064849854
],
"expr_type": [
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"isolated",
"isolated"
]
} |
|
0002084_page09 | {
"latex": [
"$\\R ^p$",
"$\\Lambda (\\epsilon _1,\\dots ,\\epsilon _n)$",
"$\\Gamma ^q(\\R ^p)$",
"$\\Phi ^{p,q}_n=\\Gamma ^n(\\R ^p)\\otimes \\Lambda ^n $",
"$\\Phi ^{p,q}_n$",
"$\\Gamma ^n(\\R ^p)$",
"$n$",
"$n=\\mbox {dim}\\Lambda ^q=2^q$",
"$\\Phi ^{p,q}_n$",
"$\\Phi _{i_1i_2\\dots i_k}$",
"$\\Gamma ^q(\\R ^p)$",
"${i_1i_2\\dots i_k}$",
"$\\Phi ^{p,q}_n\\otimes \\R [[h]]$",
"$(\\Phi ^{p,q}_n[[h]],\\star )$",
"$\\{x^\\mu ,\\theta ^{\\alpha i}, \\bar \\theta ^{\\dot \\alpha }_i\\}$",
"$\\{x^\\mu \\}$",
"$\\mathcal {M}$",
"$\\{\\theta ^{\\alpha i}, \\bar \\theta ^{\\dot \\alpha }_i\\}$",
"$\\epsilon ^{\\alpha i},\\bar \\epsilon ^{\\dot \\alpha }_i$",
"$\\wedge $",
"$\\otimes $",
"$g(\\epsilon )$",
"$g$",
"$(g^{-1}\\Phi )(x,\\theta ,\\bar \\theta )=\\Phi (x',\\theta ',\\bar \\theta ')$",
"$$ (a\\otimes \\Psi _1)(b\\otimes \\Psi _2)=(-1)^{p_1p_b}ab\\otimes \\Psi _1\\Psi _2\\qquad a,b\\in \\Gamma ^n(\\R ^p), \\quad f,g\\in \\Lambda ^n, $$",
"$$ b(a\\otimes \\Psi )=(ba\\otimes \\Psi ),\\qquad (a\\otimes \\Psi )b=(-1)^{p_bp_\\Psi }(ab\\otimes \\Psi ). $$",
"$$ \\Phi (x,\\theta )=\\Phi _0(x) +\\theta _i\\otimes \\Phi _i(x) +\\theta _j\\wedge \\theta _j\\otimes \\Phi _{ij}+\\cdots $$",
"\\begin {eqnarray} x^\\mu &\\mapsto & {x'}^\\mu =x^\\mu +i(\\theta ^{\\alpha i}(\\sigma ^\\mu )_{\\alpha \\dot \\alpha } \\bar \\epsilon ^{\\dot \\alpha }_i-\\epsilon ^{\\alpha i}(\\sigma ^\\mu )_{\\alpha \\dot \\alpha } \\bar \\theta ^{\\dot \\alpha }_i)\\\\ \\theta ^{\\alpha i}&\\mapsto & {\\theta '}^{\\alpha i}=\\theta ^{\\alpha i}+\\epsilon ^{\\alpha i} \\\\ \\bar \\theta ^{\\dot \\alpha }_i&\\mapsto &{\\bar {\\theta '}}^{\\dot \\alpha }_i=\\bar \\theta ^{\\dot \\alpha }_i+\\bar \\epsilon ^{\\dot \\alpha }_i. \\end {eqnarray}",
"$$ \\Phi (x^\\mu ,\\theta ^{\\alpha i},\\bar \\theta ^{\\dot \\alpha }_i)=\\Phi _0(x)+ \\theta ^{\\alpha i}\\Psi _{\\alpha }^i + \\bar \\theta ^{\\dot \\alpha }_i \\bar \\Sigma _{\\dot \\alpha i}+\\theta ^{\\alpha i}\\theta ^{\\beta j} \\Psi _{\\alpha \\beta }^{ij} +\\cdots , $$"
],
"latex_norm": [
"$ R ^ { p } $",
"$ \\Lambda ( \\epsilon _ { 1 } , \\ldots , \\epsilon _ { n } ) $",
"$ \\Gamma ^ { q } ( R ^ { p } ) $",
"$ \\Phi _ { n } ^ { p , q } = \\Gamma ^ { n } ( R ^ { p } ) \\otimes \\Lambda ^ { n } $",
"$ \\Phi _ { n } ^ { p , q } $",
"$ \\Gamma ^ { n } ( R ^ { p } ) $",
"$ n $",
"$ n = d i m \\Lambda ^ { q } = 2 ^ { q } $",
"$ \\Phi _ { n } ^ { p , q } $",
"$ \\Phi _ { i _ { 1 } i _ { 2 } \\ldots i _ { k } } $",
"$ \\Gamma ^ { q } ( R ^ { p } ) $",
"$ i _ { 1 } i _ { 2 } \\ldots i _ { k } $",
"$ \\Phi _ { n } ^ { p , q } \\otimes R [ [ h ] ] $",
"$ ( \\Phi _ { n } ^ { p , q } [ [ h ] ] , \\star ) $",
"$ \\{ x ^ { \\mu } , \\theta ^ { \\alpha i } , \\bar { \\theta } _ { i } ^ { \\dot { \\alpha } } \\} $",
"$ \\{ x ^ { \\mu } \\} $",
"$ M $",
"$ \\{ \\theta ^ { \\alpha i } , \\bar { \\theta } _ { i } ^ { \\dot { \\alpha } } \\} $",
"$ \\epsilon ^ { \\alpha i } , \\bar { \\epsilon } _ { i } ^ { \\dot { \\alpha } } $",
"$ \\wedge $",
"$ \\otimes $",
"$ g ( \\epsilon ) $",
"$ g $",
"$ ( g ^ { - 1 } \\Phi ) ( x , \\theta , \\bar { \\theta } ) = \\Phi ( x ^ { \\prime } , \\theta ^ { \\prime } , \\bar { \\theta } ^ { \\prime } ) $",
"\\begin{equation*} ( a \\otimes \\Psi _ { 1 } ) ( b \\otimes \\Psi _ { 2 } ) = ( - 1 ) ^ { p _ { 1 } p _ { b } } a b \\otimes \\Psi _ { 1 } \\Psi _ { 2 } \\qquad a , b \\in \\Gamma ^ { n } ( R ^ { p } ) , \\quad f , g \\in \\Lambda ^ { n } , \\end{equation*}",
"\\begin{equation*} b ( a \\otimes \\Psi ) = ( b a \\otimes \\Psi ) , \\qquad ( a \\otimes \\Psi ) b = ( - 1 ) ^ { p _ { b } p _ { \\Psi } } ( a b \\otimes \\Psi ) . \\end{equation*}",
"\\begin{equation*} \\Phi ( x , \\theta ) = \\Phi _ { 0 } ( x ) + \\theta _ { i } \\otimes \\Phi _ { i } ( x ) + \\theta _ { j } \\wedge \\theta _ { j } \\otimes \\Phi _ { i j } + \\cdots \\end{equation*}",
"\\begin{align*} x ^ { \\mu } & \\mapsto & { x ^ { \\prime } } ^ { \\mu } = x ^ { \\mu } + i ( \\theta ^ { \\alpha i } ( \\sigma ^ { \\mu } ) _ { \\alpha \\dot { \\alpha } } \\bar { \\epsilon } _ { i } ^ { \\dot { \\alpha } } - \\epsilon ^ { \\alpha i } ( \\sigma ^ { \\mu } ) _ { \\alpha \\dot { \\alpha } } \\bar { \\theta } _ { i } ^ { \\dot { \\alpha } } ) \\\\ \\theta ^ { \\alpha i } & \\mapsto & { \\theta ^ { \\prime } } ^ { \\alpha i } = \\theta ^ { \\alpha i } + \\epsilon ^ { \\alpha i } \\\\ \\bar { \\theta } _ { i } ^ { \\dot { \\alpha } } & \\mapsto & \\bar { \\theta ^ { \\prime } } _ { i } ^ { \\dot { \\alpha } } = \\bar { \\theta } _ { i } ^ { \\dot { \\alpha } } + \\bar { \\epsilon } _ { i } ^ { \\dot { \\alpha } } . \\end{align*}",
"\\begin{equation*} \\Phi ( x ^ { \\mu } , \\theta ^ { \\alpha i } , \\bar { \\theta } _ { i } ^ { \\dot { \\alpha } } ) = \\Phi _ { 0 } ( x ) + \\theta ^ { \\alpha i } \\Psi _ { \\alpha } ^ { i } + \\bar { \\theta } _ { i } ^ { \\dot { \\alpha } } \\bar { \\Sigma } _ { \\dot { \\alpha } i } + \\theta ^ { \\alpha i } \\theta ^ { \\beta j } \\Psi _ { \\alpha \\beta } ^ { i j } + \\cdots , \\end{equation*}"
],
"latex_expand": [
"$ \\mitR ^ { \\mitp } $",
"$ \\mupLambda ( \\mitepsilon _ { 1 } , \\ldots , \\mitepsilon _ { \\mitn } ) $",
"$ \\mupGamma ^ { \\mitq } ( \\mitR ^ { \\mitp } ) $",
"$ \\mupPhi _ { \\mitn } ^ { \\mitp , \\mitq } = \\mupGamma ^ { \\mitn } ( \\mitR ^ { \\mitp } ) \\otimes \\mupLambda ^ { \\mitn } $",
"$ \\mupPhi _ { \\mitn } ^ { \\mitp , \\mitq } $",
"$ \\mupGamma ^ { \\mitn } ( \\mitR ^ { \\mitp } ) $",
"$ \\mitn $",
"$ \\mitn = \\mathrm { d i m } \\mupLambda ^ { \\mitq } = 2 ^ { \\mitq } $",
"$ \\mupPhi _ { \\mitn } ^ { \\mitp , \\mitq } $",
"$ \\mupPhi _ { \\miti _ { 1 } \\miti _ { 2 } \\ldots \\miti _ { \\mitk } } $",
"$ \\mupGamma ^ { \\mitq } ( \\mitR ^ { \\mitp } ) $",
"$ \\miti _ { 1 } \\miti _ { 2 } \\ldots \\miti _ { \\mitk } $",
"$ \\mupPhi _ { \\mitn } ^ { \\mitp , \\mitq } \\otimes \\mitR [ [ \\Planckconst ] ] $",
"$ ( \\mupPhi _ { \\mitn } ^ { \\mitp , \\mitq } [ [ \\Planckconst ] ] , \\star ) $",
"$ \\{ \\mitx ^ { \\mitmu } , \\mittheta ^ { \\mitalpha \\miti } , \\bar { \\mittheta } _ { \\miti } ^ { \\dot { \\mitalpha } } \\} $",
"$ \\{ \\mitx ^ { \\mitmu } \\} $",
"$ \\mscrM $",
"$ \\{ \\mittheta ^ { \\mitalpha \\miti } , \\bar { \\mittheta } _ { \\miti } ^ { \\dot { \\mitalpha } } \\} $",
"$ \\mitepsilon ^ { \\mitalpha \\miti } , \\bar { \\mitepsilon } _ { \\miti } ^ { \\dot { \\mitalpha } } $",
"$ \\wedge $",
"$ \\otimes $",
"$ \\mitg ( \\mitepsilon ) $",
"$ \\mitg $",
"$ ( \\mitg ^ { - 1 } \\mupPhi ) ( \\mitx , \\mittheta , \\bar { \\mittheta } ) = \\mupPhi ( \\mitx ^ { \\prime } , \\mittheta ^ { \\prime } , \\bar { \\mittheta } ^ { \\prime } ) $",
"\\begin{equation*} ( \\mita \\otimes \\mupPsi _ { 1 } ) ( \\mitb \\otimes \\mupPsi _ { 2 } ) = ( - 1 ) ^ { \\mitp _ { 1 } \\mitp _ { \\mitb } } \\mita \\mitb \\otimes \\mupPsi _ { 1 } \\mupPsi _ { 2 } \\qquad \\mita , \\mitb \\in \\mupGamma ^ { \\mitn } ( \\mitR ^ { \\mitp } ) , \\quad \\mitf , \\mitg \\in \\mupLambda ^ { \\mitn } , \\end{equation*}",
"\\begin{equation*} \\mitb ( \\mita \\otimes \\mupPsi ) = ( \\mitb \\mita \\otimes \\mupPsi ) , \\qquad ( \\mita \\otimes \\mupPsi ) \\mitb = ( - 1 ) ^ { \\mitp _ { \\mitb } \\mitp _ { \\mupPsi } } ( \\mita \\mitb \\otimes \\mupPsi ) . \\end{equation*}",
"\\begin{equation*} \\mupPhi ( \\mitx , \\mittheta ) = \\mupPhi _ { 0 } ( \\mitx ) + \\mittheta _ { \\miti } \\otimes \\mupPhi _ { \\miti } ( \\mitx ) + \\mittheta _ { \\mitj } \\wedge \\mittheta _ { \\mitj } \\otimes \\mupPhi _ { \\miti \\mitj } + \\cdots \\end{equation*}",
"\\begin{align*} \\mitx ^ { \\mitmu } & \\mapsto & { \\mitx ^ { \\prime } } ^ { \\mitmu } = \\mitx ^ { \\mitmu } + \\miti ( \\mittheta ^ { \\mitalpha \\miti } ( \\mitsigma ^ { \\mitmu } ) _ { \\mitalpha \\dot { \\mitalpha } } \\bar { \\mitepsilon } _ { \\miti } ^ { \\dot { \\mitalpha } } - \\mitepsilon ^ { \\mitalpha \\miti } ( \\mitsigma ^ { \\mitmu } ) _ { \\mitalpha \\dot { \\mitalpha } } \\bar { \\mittheta } _ { \\miti } ^ { \\dot { \\mitalpha } } ) \\\\ \\mittheta ^ { \\mitalpha \\miti } & \\mapsto & { \\mittheta ^ { \\prime } } ^ { \\mitalpha \\miti } = \\mittheta ^ { \\mitalpha \\miti } + \\mitepsilon ^ { \\mitalpha \\miti } \\\\ \\bar { \\mittheta } _ { \\miti } ^ { \\dot { \\mitalpha } } & \\mapsto & \\bar { \\mittheta ^ { \\prime } } _ { \\miti } ^ { \\dot { \\mitalpha } } = \\bar { \\mittheta } _ { \\miti } ^ { \\dot { \\mitalpha } } + \\bar { \\mitepsilon } _ { \\miti } ^ { \\dot { \\mitalpha } } . \\end{align*}",
"\\begin{equation*} \\mupPhi ( \\mitx ^ { \\mitmu } , \\mittheta ^ { \\mitalpha \\miti } , \\bar { \\mittheta } _ { \\miti } ^ { \\dot { \\mitalpha } } ) = \\mupPhi _ { 0 } ( \\mitx ) + \\mittheta ^ { \\mitalpha \\miti } \\mupPsi _ { \\mitalpha } ^ { \\miti } + \\bar { \\mittheta } _ { \\miti } ^ { \\dot { \\mitalpha } } \\bar { \\mupSigma } _ { \\dot { \\mitalpha } \\miti } + \\mittheta ^ { \\mitalpha \\miti } \\mittheta ^ { \\mitbeta \\mitj } \\mupPsi _ { \\mitalpha \\mitbeta } ^ { \\miti \\mitj } + \\cdots , \\end{equation*}"
],
"x_min": [
0.28130000829696655,
0.7139000296592712,
0.5853000283241272,
0.20659999549388885,
0.20250000059604645,
0.36489999294281006,
0.2694999873638153,
0.6136999726295471,
0.5612000226974487,
0.23080000281333923,
0.605400025844574,
0.27160000801086426,
0.4740999937057495,
0.1728000044822693,
0.6668999791145325,
0.1728000044822693,
0.7961000204086304,
0.21150000393390656,
0.7387999892234802,
0.4934000074863434,
0.5695000290870667,
0.6434000134468079,
0.44510000944137573,
0.6827999949455261,
0.1996999979019165,
0.26190000772476196,
0.28610000014305115,
0.29030001163482666,
0.2467000037431717
],
"y_min": [
0.15870000422000885,
0.15770000219345093,
0.17479999363422394,
0.19189999997615814,
0.20999999344348907,
0.2720000147819519,
0.33889999985694885,
0.3353999853134155,
0.35249999165534973,
0.4325999915599823,
0.43160000443458557,
0.45019999146461487,
0.4657999873161316,
0.4828999936580658,
0.5644999742507935,
0.5830000042915344,
0.5839999914169312,
0.5990999937057495,
0.6338000297546387,
0.8223000168800354,
0.8223000168800354,
0.8198000192642212,
0.8413000106811523,
0.8359000086784363,
0.23929999768733978,
0.30219998955726624,
0.399399995803833,
0.6758000254631042,
0.7851999998092651
],
"x_max": [
0.3068999946117401,
0.8209999799728394,
0.6460999846458435,
0.375900000333786,
0.23569999635219574,
0.4277999997138977,
0.28189998865127563,
0.7623000144958496,
0.5950999855995178,
0.29440000653266907,
0.6661999821662903,
0.34619998931884766,
0.5825999975204468,
0.27300000190734863,
0.7699000239372253,
0.21359999477863312,
0.8209999799728394,
0.28540000319480896,
0.7886000275611877,
0.5072000026702881,
0.5853999853134155,
0.677299976348877,
0.4555000066757202,
0.8264999985694885,
0.7954000234603882,
0.7366999983787537,
0.7089999914169312,
0.7084000110626221,
0.7491000294685364
],
"y_max": [
0.16899999976158142,
0.17229999601840973,
0.18940000236034393,
0.2070000022649765,
0.22370000183582306,
0.2865999937057495,
0.3456999957561493,
0.3456999957561493,
0.3662000000476837,
0.44679999351501465,
0.44620001316070557,
0.461899995803833,
0.48089998960494995,
0.49799999594688416,
0.5806000232696533,
0.597599983215332,
0.5946999788284302,
0.6147000193595886,
0.649399995803833,
0.8310999870300293,
0.832099974155426,
0.8343999981880188,
0.850600004196167,
0.8519999980926514,
0.25540000200271606,
0.31779998540878296,
0.4154999852180481,
0.7465999722480774,
0.8051999807357788
],
"expr_type": [
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"isolated",
"isolated",
"isolated",
"isolated",
"isolated"
]
} |
|
0002084_page10 | {
"latex": [
"$(g^{-1}\\Phi )(x,\\theta ,\\bar \\theta )=\\Phi (x',\\theta ',\\bar \\theta ')$",
"${ {\\bar D}^{R,Li} }_{\\dot \\alpha }$",
"$[{D^{R}}_{\\alpha i},{D^{L}}_{\\beta j}]_-=0$",
"$D^{R,L}_{\\alpha i}P^{AB}=0$",
"$A=\\mu ,\\{\\alpha \\,i\\}$",
"$N-k$",
"$D$",
"$k$",
"$\\bar D$",
"$k=1,\\dots N$",
"${ {\\bar D}^{R,Li}}_{\\dot \\alpha }\\Phi =0$",
"$\\Phi (x,\\theta )$",
"$P^{\\alpha i\\beta j}=0$",
"$N$",
"$N>1$",
"$N$",
"$^{N-1}$",
"$4N$",
"$(\\mathcal {L}\\otimes \\mbox {SU}(N))\\otimes _s\\mathcal {ST}/\\mathcal {L}\\otimes \\mbox {U(1)}^{N-1}$",
"$(\\mathcal {L}\\otimes \\mbox {SU}(N))\\otimes _s\\mathcal {ST}/\\mathcal {L}\\otimes \\mbox {U(1)}^{N-1}$",
"$\\mathcal {L}$",
"$\\mathcal {ST}$",
"$$ g(\\Phi _1\\star \\Phi _2)=(g\\Phi _1)\\star (g\\Phi _2). $$",
"\\begin {eqnarray*} {D^{R,L}}_{\\alpha i}&=&{\\partial ^{R,L}}_{\\alpha i} + (i\\sigma ^\\mu _{\\alpha \\dot \\alpha }\\bar \\theta ^{\\dot \\alpha }_i)\\partial _\\mu )^{R,L}, \\\\ { {\\bar D}^{R,Li} }_{\\dot \\alpha }&=&-{ {\\bar \\partial }^{R,Li} }_{\\dot \\alpha }- (i\\theta ^{\\alpha i}\\sigma ^\\mu _{\\alpha \\dot \\alpha }\\partial _\\mu )^{R,L}. \\end {eqnarray*}",
"$$ {D^{R,L}}_{\\alpha i}(g\\Phi )=g({D^{R,L}}_{\\alpha i}\\Phi ). $$",
"\\begin {equation} \\{\\Phi ,\\Psi \\}=P^{\\mu \\nu }\\partial _\\mu \\Phi \\partial _\\nu \\Psi +P^{\\alpha i\\beta j} {D^{R}}_{\\alpha i}\\Phi {D^{L}}_{\\beta j}\\Psi . \\label {spb2} \\end {equation}",
"\\begin {equation} C^\\infty (\\mathcal {M}\\times \\hbox {SU}(N)/U(1)^{N-1})\\otimes \\Lambda ^{4N}. \\label {hs} \\end {equation}"
],
"latex_norm": [
"$ ( g ^ { - 1 } \\Phi ) ( x , \\theta , \\bar { \\theta } ) = \\Phi ( x ^ { \\prime } , \\theta ^ { \\prime } , \\bar { \\theta } ^ { \\prime } ) $",
"$ \\bar { D } _ { \\dot { \\alpha } } ^ { R , L i } $",
"$ [ { D ^ { R } } _ { \\alpha i } , { D ^ { L } } _ { \\beta j } ] _ { - } = 0 $",
"$ D _ { \\alpha i } ^ { R , L } P ^ { A B } = 0 $",
"$ A = \\mu , \\{ \\alpha \\, i \\} $",
"$ N - k $",
"$ D $",
"$ k $",
"$ \\bar { D } $",
"$ k = 1 , \\ldots N $",
"$ \\bar { D } _ { \\dot { \\alpha } } ^ { R , L i } \\Phi = 0 $",
"$ \\Phi ( x , \\theta ) $",
"$ P ^ { \\alpha i \\beta j } = 0 $",
"$ N $",
"$ N > 1 $",
"$ N $",
"$ { } ^ { N - 1 } $",
"$ 4 N $",
"$ ( L \\otimes S U ( N ) ) \\otimes _ { s } S T \\slash L \\otimes U ( 1 ) ^ { N - 1 } $",
"$ ( L \\otimes S U ( N ) ) \\otimes _ { s } S T \\slash L \\otimes U ( 1 ) ^ { N - 1 } $",
"$ L $",
"$ S T $",
"\\begin{equation*} g ( \\Phi _ { 1 } \\star \\Phi _ { 2 } ) = ( g \\Phi _ { 1 } ) \\star ( g \\Phi _ { 2 } ) . \\end{equation*}",
"\\begin{align*} { D ^ { R , L } } _ { \\alpha i } & = & { \\partial ^ { R , L } } _ { \\alpha i } + ( i \\sigma _ { \\alpha \\dot { \\alpha } } ^ { \\mu } \\bar { \\theta } _ { i } ^ { \\dot { \\alpha } } ) \\partial _ { \\mu } ) ^ { R , L } , \\\\ \\bar { D } _ { \\dot { \\alpha } } ^ { R , L i } & = & - \\bar { \\partial } _ { \\dot { \\alpha } } ^ { R , L i } - ( i \\theta ^ { \\alpha i } \\sigma _ { \\alpha \\dot { \\alpha } } ^ { \\mu } \\partial _ { \\mu } ) ^ { R , L } . \\end{align*}",
"\\begin{equation*} { D ^ { R , L } } _ { \\alpha i } ( g \\Phi ) = g ( { D ^ { R , L } } _ { \\alpha i } \\Phi ) . \\end{equation*}",
"\\begin{equation*} \\{ \\Phi , \\Psi \\} = P ^ { \\mu \\nu } \\partial _ { \\mu } \\Phi \\partial _ { \\nu } \\Psi + P ^ { \\alpha i \\beta j } { D ^ { R } } _ { \\alpha i } \\Phi { D ^ { L } } _ { \\beta j } \\Psi . \\end{equation*}",
"\\begin{equation*} C ^ { \\infty } ( M \\times S U ( N ) \\slash U ( 1 ) ^ { N - 1 } ) \\otimes \\Lambda ^ { 4 N } . \\end{equation*}"
],
"latex_expand": [
"$ ( \\mitg ^ { - 1 } \\mupPhi ) ( \\mitx , \\mittheta , \\bar { \\mittheta } ) = \\mupPhi ( \\mitx ^ { \\prime } , \\mittheta ^ { \\prime } , \\bar { \\mittheta } ^ { \\prime } ) $",
"$ \\bar { \\mitD } _ { \\dot { \\mitalpha } } ^ { \\mitR , \\mitL \\miti } $",
"$ [ { \\mitD ^ { \\mitR } } _ { \\mitalpha \\miti } , { \\mitD ^ { \\mitL } } _ { \\mitbeta \\mitj } ] _ { - } = 0 $",
"$ \\mitD _ { \\mitalpha \\miti } ^ { \\mitR , \\mitL } \\mitP ^ { \\mitA \\mitB } = 0 $",
"$ \\mitA = \\mitmu , \\{ \\mitalpha \\, \\miti \\} $",
"$ \\mitN - \\mitk $",
"$ \\mitD $",
"$ \\mitk $",
"$ \\bar { \\mitD } $",
"$ \\mitk = 1 , \\ldots \\mitN $",
"$ \\bar { \\mitD } _ { \\dot { \\mitalpha } } ^ { \\mitR , \\mitL \\miti } \\mupPhi = 0 $",
"$ \\mupPhi ( \\mitx , \\mittheta ) $",
"$ \\mitP ^ { \\mitalpha \\miti \\mitbeta \\mitj } = 0 $",
"$ \\mitN $",
"$ \\mitN > 1 $",
"$ \\mitN $",
"$ { } ^ { \\mitN - 1 } $",
"$ 4 \\mitN $",
"$ ( \\mscrL \\otimes \\mathrm { S U } ( \\mitN ) ) \\otimes _ { \\mits } \\mscrS \\mscrT \\slash \\mscrL \\otimes \\mathrm { U } ( 1 ) ^ { \\mitN - 1 } $",
"$ ( \\mscrL \\otimes \\mathrm { S U } ( \\mitN ) ) \\otimes _ { \\mits } \\mscrS \\mscrT \\slash \\mscrL \\otimes \\mathrm { U } ( 1 ) ^ { \\mitN - 1 } $",
"$ \\mscrL $",
"$ \\mscrS \\mscrT $",
"\\begin{equation*} \\mitg ( \\mupPhi _ { 1 } \\star \\mupPhi _ { 2 } ) = ( \\mitg \\mupPhi _ { 1 } ) \\star ( \\mitg \\mupPhi _ { 2 } ) . \\end{equation*}",
"\\begin{align*} { \\mitD ^ { \\mitR , \\mitL } } _ { \\mitalpha \\miti } & = & { \\mitpartial ^ { \\mitR , \\mitL } } _ { \\mitalpha \\miti } + ( \\miti \\mitsigma _ { \\mitalpha \\dot { \\mitalpha } } ^ { \\mitmu } \\bar { \\mittheta } _ { \\miti } ^ { \\dot { \\mitalpha } } ) \\mitpartial _ { \\mitmu } ) ^ { \\mitR , \\mitL } , \\\\ \\bar { \\mitD } _ { \\dot { \\mitalpha } } ^ { \\mitR , \\mitL \\miti } & = & - \\bar { \\mitpartial } _ { \\dot { \\mitalpha } } ^ { \\mitR , \\mitL \\miti } - ( \\miti \\mittheta ^ { \\mitalpha \\miti } \\mitsigma _ { \\mitalpha \\dot { \\mitalpha } } ^ { \\mitmu } \\mitpartial _ { \\mitmu } ) ^ { \\mitR , \\mitL } . \\end{align*}",
"\\begin{equation*} { \\mitD ^ { \\mitR , \\mitL } } _ { \\mitalpha \\miti } ( \\mitg \\mupPhi ) = \\mitg ( { \\mitD ^ { \\mitR , \\mitL } } _ { \\mitalpha \\miti } \\mupPhi ) . \\end{equation*}",
"\\begin{equation*} \\{ \\mupPhi , \\mupPsi \\} = \\mitP ^ { \\mitmu \\mitnu } \\mitpartial _ { \\mitmu } \\mupPhi \\mitpartial _ { \\mitnu } \\mupPsi + \\mitP ^ { \\mitalpha \\miti \\mitbeta \\mitj } { \\mitD ^ { \\mitR } } _ { \\mitalpha \\miti } \\mupPhi { \\mitD ^ { \\mitL } } _ { \\mitbeta \\mitj } \\mupPsi . \\end{equation*}",
"\\begin{equation*} \\mitC ^ { \\infty } ( \\mscrM \\times \\mathrm { S U } ( \\mitN ) \\slash \\mitU ( 1 ) ^ { \\mitN - 1 } ) \\otimes \\mupLambda ^ { 4 \\mitN } . \\end{equation*}"
],
"x_min": [
0.1728000044822693,
0.32409998774528503,
0.4519999921321869,
0.704200029373169,
0.18039999902248383,
0.44510000944137573,
0.5016999840736389,
0.5756999850273132,
0.5922999978065491,
0.6288999915122986,
0.5687999725341797,
0.6980000138282776,
0.6455000042915344,
0.536300003528595,
0.7616000175476074,
0.20589999854564667,
0.28130000829696655,
0.1728000044822693,
0.6205999851226807,
0.1728000044822693,
0.31029999256134033,
0.541100025177002,
0.3822000026702881,
0.33660000562667847,
0.3869999945163727,
0.31029999256134033,
0.3490000069141388
],
"y_min": [
0.156700000166893,
0.384799987077713,
0.4458000063896179,
0.44429999589920044,
0.46389999985694885,
0.49900001287460327,
0.49900001287460327,
0.49900001287460327,
0.4975999891757965,
0.49900001287460327,
0.5473999977111816,
0.5669000148773193,
0.6000999808311462,
0.649399995803833,
0.6664999723434448,
0.7006999850273132,
0.6987000107765198,
0.7178000211715698,
0.7143999934196472,
0.7314000129699707,
0.7348999977111816,
0.7348999977111816,
0.20309999585151672,
0.26899999380111694,
0.3555000126361847,
0.4115999937057495,
0.7925000190734863
],
"x_max": [
0.2653999924659729,
0.3718000054359436,
0.6122999787330627,
0.8264999985694885,
0.2930000126361847,
0.4968999922275543,
0.5189999938011169,
0.5874000191688538,
0.6103000044822693,
0.7297999858856201,
0.6725000143051147,
0.7573999762535095,
0.7276999950408936,
0.5550000071525574,
0.8209999799728394,
0.22460000216960907,
0.31310001015663147,
0.20110000669956207,
0.8431000113487244,
0.24469999969005585,
0.3248000144958496,
0.5715000033378601,
0.6172000169754028,
0.6621000170707703,
0.6122999787330627,
0.691100001335144,
0.652400016784668
],
"y_max": [
0.1712999939918518,
0.4023999869823456,
0.461899995803833,
0.461899995803833,
0.47850000858306885,
0.510699987411499,
0.5092999935150146,
0.5092999935150146,
0.5092999935150146,
0.5121999979019165,
0.5644999742507935,
0.5814999938011169,
0.6128000020980835,
0.6596999764442444,
0.6772000193595886,
0.7113999724388123,
0.7113999724388123,
0.7285000085830688,
0.7319999933242798,
0.7490000128746033,
0.7455999851226807,
0.7455999851226807,
0.21870000660419464,
0.3197999894618988,
0.37310001254081726,
0.43160000443458557,
0.8125
],
"expr_type": [
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"isolated",
"isolated",
"isolated",
"isolated",
"isolated"
]
} |
|
0002084_page11 | {
"latex": [
"$\\{x^\\mu , u,\\theta ^{\\alpha i}, \\bar \\theta ^{\\dot \\alpha }_i\\}$",
"$u$",
"$N$",
"$^{N-1}$",
"$\\Phi (x,u,\\theta , \\bar \\theta )$",
"$k$",
"$\\theta $",
"$N-k$",
"$\\bar \\theta $",
"$k=0,N$",
"$\\mathcal {M}$",
"$P^{\\mu \\nu }$",
"$\\Phi _i(x,u,\\theta )$",
"$$ \\mathcal {D}_{\\alpha I }=u_I^iD_{\\alpha i}, \\qquad \\bar {\\mathcal {D}}_{\\dot \\alpha }^I=u_I^i\\bar {D}_{\\dot \\alpha }^i. $$",
"$$ \\mathcal {D}_{\\alpha 1}\\Phi =\\cdots =\\mathcal {D}_{\\alpha k}\\Phi =0= \\bar {\\mathcal {D}}_{\\dot \\alpha }^{k+1}\\Phi =\\dots =\\bar {\\mathcal {D}}_{\\alpha }^N\\Phi . $$",
"$$iP=iP^{\\mu \\nu }\\frac {\\partial }{ \\partial x^\\mu }\\otimes \\frac {\\partial }{ \\partial x^\\nu } $$",
"$$ \\{\\Phi _1,\\Phi _2\\}=iP^{\\mu \\nu }\\frac {\\partial \\Phi _1}{\\partial x^\\mu } \\frac {\\partial \\Phi _2}{\\partial x^\\nu } $$",
"\\begin {equation} \\Phi _1\\star \\Phi _2= \\exp (iP)(\\Phi _1\\otimes \\Phi _2). \\label {gas}\\end {equation}",
"$$ \\int d^4xd^\\theta d^2\\bar \\theta \\; \\Phi \\bar \\Phi +\\int d^4x\\;(\\int d^2\\theta \\; (\\frac {m}{ 2}\\Phi ^2 + \\frac {g}{ 3}\\Phi ^3) +\\mbox {c. c.}), $$"
],
"latex_norm": [
"$ \\{ x ^ { \\mu } , u , \\theta ^ { \\alpha i } , \\bar { \\theta } _ { i } ^ { \\dot { \\alpha } } \\} $",
"$ u $",
"$ N $",
"$ { } ^ { N - 1 } $",
"$ \\Phi ( x , u , \\theta , \\bar { \\theta } ) $",
"$ k $",
"$ \\theta $",
"$ N - k $",
"$ \\bar { \\theta } $",
"$ k = 0 , N $",
"$ M $",
"$ P ^ { \\mu \\nu } $",
"$ \\Phi _ { i } ( x , u , \\theta ) $",
"\\begin{equation*} D _ { \\alpha I } = u _ { I } ^ { i } D _ { \\alpha i } , \\qquad \\bar { D } _ { \\dot { \\alpha } } ^ { I } = u _ { I } ^ { i } \\bar { D } _ { \\dot { \\alpha } } ^ { i } . \\end{equation*}",
"\\begin{equation*} D _ { \\alpha 1 } \\Phi = \\cdots = D _ { \\alpha k } \\Phi = 0 = \\bar { D } _ { \\dot { \\alpha } } ^ { k + 1 } \\Phi = \\cdots = \\bar { D } _ { \\alpha } ^ { N } \\Phi . \\end{equation*}",
"\\begin{equation*} i P = i P ^ { \\mu \\nu } \\frac { \\partial } { \\partial x ^ { \\mu } } \\otimes \\frac { \\partial } { \\partial x ^ { \\nu } } \\end{equation*}",
"\\begin{equation*} \\{ \\Phi _ { 1 } , \\Phi _ { 2 } \\} = i P ^ { \\mu \\nu } \\frac { \\partial \\Phi _ { 1 } } { \\partial x ^ { \\mu } } \\frac { \\partial \\Phi _ { 2 } } { \\partial x ^ { \\nu } } \\end{equation*}",
"\\begin{equation*} \\Phi _ { 1 } \\star \\Phi _ { 2 } = \\operatorname { e x p } ( i P ) ( \\Phi _ { 1 } \\otimes \\Phi _ { 2 } ) . \\end{equation*}",
"\\begin{equation*} \\int d ^ { 4 } x d ^ { \\theta } d ^ { 2 } \\bar { \\theta } \\; \\Phi \\bar { \\Phi } + \\int d ^ { 4 } x \\; ( \\int d ^ { 2 } \\theta \\; ( \\frac { m } { 2 } \\Phi ^ { 2 } + \\frac { g } { 3 } \\Phi ^ { 3 } ) + c . ~ c . ) , \\end{equation*}"
],
"latex_expand": [
"$ \\{ \\mitx ^ { \\mitmu } , \\mitu , \\mittheta ^ { \\mitalpha \\miti } , \\bar { \\mittheta } _ { \\miti } ^ { \\dot { \\mitalpha } } \\} $",
"$ \\mitu $",
"$ \\mitN $",
"$ { } ^ { \\mitN - 1 } $",
"$ \\mupPhi ( \\mitx , \\mitu , \\mittheta , \\bar { \\mittheta } ) $",
"$ \\mitk $",
"$ \\mittheta $",
"$ \\mitN - \\mitk $",
"$ \\bar { \\mittheta } $",
"$ \\mitk = 0 , \\mitN $",
"$ \\mscrM $",
"$ \\mitP ^ { \\mitmu \\mitnu } $",
"$ \\mupPhi _ { \\miti } ( \\mitx , \\mitu , \\mittheta ) $",
"\\begin{equation*} \\mscrD _ { \\mitalpha \\mitI } = \\mitu _ { \\mitI } ^ { \\miti } \\mitD _ { \\mitalpha \\miti } , \\qquad \\bar { \\mscrD } _ { \\dot { \\mitalpha } } ^ { \\mitI } = \\mitu _ { \\mitI } ^ { \\miti } \\bar { \\mitD } _ { \\dot { \\mitalpha } } ^ { \\miti } . \\end{equation*}",
"\\begin{equation*} \\mscrD _ { \\mitalpha 1 } \\mupPhi = \\cdots = \\mscrD _ { \\mitalpha \\mitk } \\mupPhi = 0 = \\bar { \\mscrD } _ { \\dot { \\mitalpha } } ^ { \\mitk + 1 } \\mupPhi = \\cdots = \\bar { \\mscrD } _ { \\mitalpha } ^ { \\mitN } \\mupPhi . \\end{equation*}",
"\\begin{equation*} \\miti \\mitP = \\miti \\mitP ^ { \\mitmu \\mitnu } \\frac { \\mitpartial } { \\mitpartial \\mitx ^ { \\mitmu } } \\otimes \\frac { \\mitpartial } { \\mitpartial \\mitx ^ { \\mitnu } } \\end{equation*}",
"\\begin{equation*} \\{ \\mupPhi _ { 1 } , \\mupPhi _ { 2 } \\} = \\miti \\mitP ^ { \\mitmu \\mitnu } \\frac { \\mitpartial \\mupPhi _ { 1 } } { \\mitpartial \\mitx ^ { \\mitmu } } \\frac { \\mitpartial \\mupPhi _ { 2 } } { \\mitpartial \\mitx ^ { \\mitnu } } \\end{equation*}",
"\\begin{equation*} \\mupPhi _ { 1 } \\star \\mupPhi _ { 2 } = \\operatorname { e x p } ( \\miti \\mitP ) ( \\mupPhi _ { 1 } \\otimes \\mupPhi _ { 2 } ) . \\end{equation*}",
"\\begin{equation*} \\int \\mitd ^ { 4 } \\mitx \\mitd ^ { \\mittheta } \\mitd ^ { 2 } \\bar { \\mittheta } \\; \\mupPhi \\bar { \\mupPhi } + \\int \\mitd ^ { 4 } \\mitx \\; ( \\int \\mitd ^ { 2 } \\mittheta \\; ( \\frac { \\mitm } { 2 } \\mupPhi ^ { 2 } + \\frac { \\mitg } { 3 } \\mupPhi ^ { 3 } ) + \\mathrm { c } . ~ \\mathrm { c } . ) , \\end{equation*}"
],
"x_min": [
0.6108999848365784,
0.7954000234603882,
0.5770999789237976,
0.652400016784668,
0.3310000002384186,
0.1996999979019165,
0.21629999577999115,
0.2833000123500824,
0.3407000005245209,
0.3772999942302704,
0.7346000075340271,
0.22939999401569366,
0.7103999853134155,
0.36899998784065247,
0.29089999198913574,
0.40700000524520874,
0.3917999863624573,
0.37599998712539673,
0.25920000672340393
],
"y_min": [
0.15620000660419464,
0.16210000216960907,
0.17579999566078186,
0.1738000065088272,
0.2768999934196472,
0.364300012588501,
0.364300012588501,
0.364300012588501,
0.36230000853538513,
0.364300012588501,
0.48489999771118164,
0.6098999977111816,
0.6089000105857849,
0.21480000019073486,
0.30079999566078186,
0.5059000253677368,
0.5687999725341797,
0.6654999852180481,
0.8291000127792358
],
"x_max": [
0.7339000105857849,
0.8070999979972839,
0.59579998254776,
0.6848999857902527,
0.42910000681877136,
0.21080000698566437,
0.22669999301433563,
0.335099995136261,
0.35109999775886536,
0.45190000534057617,
0.7595000267028809,
0.26260000467300415,
0.7954000234603882,
0.6302000284194946,
0.7075999975204468,
0.5914999842643738,
0.6067000031471252,
0.6255000233650208,
0.7366999983787537
],
"y_max": [
0.17229999601840973,
0.1688999980688095,
0.18610000610351562,
0.1860000044107437,
0.29249998927116394,
0.375,
0.375,
0.37599998712539673,
0.375,
0.3774999976158142,
0.4952000081539154,
0.620199978351593,
0.6234999895095825,
0.23240000009536743,
0.31839999556541443,
0.5367000102996826,
0.5996000170707703,
0.6840999722480774,
0.8622999787330627
],
"expr_type": [
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"isolated",
"isolated",
"isolated",
"isolated",
"isolated",
"isolated"
]
} |
|
0002084_page12 | {
"latex": [
"$\\Phi $",
"$y=x+i\\theta \\sigma \\bar \\theta $",
"$\\Phi ^{\\star n}=\\Phi \\star \\Phi \\cdots (n)\\cdots \\star \\Phi $",
"$\\sigma $",
"$(1,\\dots , n)$",
"$F$",
"$\\phi ^4$",
"$$ \\Phi =A(y)+\\sqrt {2}\\theta \\psi (y) +\\theta \\theta F(y), $$",
"\\begin {equation} \\int d^4xd^2\\theta d^2\\bar \\theta \\; \\Phi \\bar \\Phi +\\int d^4x\\;(\\int d^2\\theta \\;(\\frac {m}{2}\\Phi ^2 + \\frac {g}{3}\\Phi ^{\\star 3}) +\\mbox {c. c.}). \\label {incw} \\end {equation}",
"\\begin {equation} \\int d^4x\\;A\\star B=\\int d^4x\\;A B=\\int d^4x\\;B\\star A \\label {ip1} \\end {equation}",
"\\begin {equation} \\int d^4x\\;A_1\\star \\cdots \\star A_n=\\int d^4x\\;A_{\\sigma (1)}\\star \\cdots \\star A_{\\sigma (n)} \\label {ip2} \\end {equation}",
"$$ \\overline {A\\star B} =\\bar B\\star \\bar A. $$",
"$$ F=-m\\bar A-g\\bar A\\star \\bar A $$",
"\\begin {eqnarray} && i\\partial _\\mu \\bar \\psi \\bar \\sigma ^\\mu \\psi +\\bar A\\partial _\\mu \\partial ^\\mu A-\\frac {1}{ 2}m(\\psi \\psi +\\bar \\psi \\bar \\psi ) -m^2\\bar A A -g(A(\\psi \\star \\psi ) +\\\\&&\\bar A(\\bar \\psi \\star \\bar \\psi )) -mg(A(\\bar A\\star \\bar A )+ \\bar A(A\\star A)) -g^2(A\\star A)(\\bar A\\star \\bar A). \\end {eqnarray}"
],
"latex_norm": [
"$ \\Phi $",
"$ y = x + i \\theta \\sigma \\bar { \\theta } $",
"$ \\Phi ^ { \\star n } = \\Phi \\star \\Phi \\cdots ( n ) \\cdots \\star \\Phi $",
"$ \\sigma $",
"$ ( 1 , \\ldots , n ) $",
"$ F $",
"$ \\phi ^ { 4 } $",
"\\begin{equation*} \\Phi = A ( y ) + \\sqrt { 2 } \\theta \\psi ( y ) + \\theta \\theta F ( y ) , \\end{equation*}",
"\\begin{equation*} \\int d ^ { 4 } x d ^ { 2 } \\theta d ^ { 2 } \\bar { \\theta } \\; \\Phi \\bar { \\Phi } + \\int d ^ { 4 } x \\; ( \\int d ^ { 2 } \\theta \\; ( \\frac { m } { 2 } \\Phi ^ { 2 } + \\frac { g } { 3 } \\Phi ^ { \\star 3 } ) + c . ~ c . ) . \\end{equation*}",
"\\begin{equation*} \\int d ^ { 4 } x \\; A \\star B = \\int d ^ { 4 } x \\; A B = \\int d ^ { 4 } x \\; B \\star A \\end{equation*}",
"\\begin{equation*} \\int d ^ { 4 } x \\; A _ { 1 } \\star \\cdots \\star A _ { n } = \\int d ^ { 4 } x \\; A _ { \\sigma ( 1 ) } \\star \\cdots \\star A _ { \\sigma ( n ) } \\end{equation*}",
"\\begin{equation*} \\overline { A \\star B } = \\bar { B } \\star \\bar { A } . \\end{equation*}",
"\\begin{equation*} F = - m \\bar { A } - g \\bar { A } \\star \\bar { A } \\end{equation*}",
"\\begin{align*} & & i \\partial _ { \\mu } \\bar { \\psi } \\bar { \\sigma } ^ { \\mu } \\psi + \\bar { A } \\partial _ { \\mu } \\partial ^ { \\mu } A - \\frac { 1 } { 2 } m ( \\psi \\psi + \\bar { \\psi } \\bar { \\psi } ) - m ^ { 2 } \\bar { A } A - g ( A ( \\psi \\star \\psi ) + \\\\ & & \\bar { A } ( \\bar { \\psi } \\star \\bar { \\psi } ) ) - m g ( A ( \\bar { A } \\star \\bar { A } ) + \\bar { A } ( A \\star A ) ) - g ^ { 2 } ( A \\star A ) ( \\bar { A } \\star \\bar { A } ) . \\end{align*}"
],
"latex_expand": [
"$ \\mupPhi $",
"$ \\mity = \\mitx + \\miti \\mittheta \\mitsigma \\bar { \\mittheta } $",
"$ \\mupPhi ^ { \\star \\mitn } = \\mupPhi \\star \\mupPhi \\cdots ( \\mitn ) \\cdots \\star \\mupPhi $",
"$ \\mitsigma $",
"$ ( 1 , \\ldots , \\mitn ) $",
"$ \\mitF $",
"$ \\mitphi ^ { 4 } $",
"\\begin{equation*} \\mupPhi = \\mitA ( \\mity ) + \\sqrt { 2 } \\mittheta \\mitpsi ( \\mity ) + \\mittheta \\mittheta \\mitF ( \\mity ) , \\end{equation*}",
"\\begin{equation*} \\int \\mitd ^ { 4 } \\mitx \\mitd ^ { 2 } \\mittheta \\mitd ^ { 2 } \\bar { \\mittheta } \\; \\mupPhi \\bar { \\mupPhi } + \\int \\mitd ^ { 4 } \\mitx \\; ( \\int \\mitd ^ { 2 } \\mittheta \\; ( \\frac { \\mitm } { 2 } \\mupPhi ^ { 2 } + \\frac { \\mitg } { 3 } \\mupPhi ^ { \\star 3 } ) + \\mathrm { c } . ~ \\mathrm { c } . ) . \\end{equation*}",
"\\begin{equation*} \\int \\mitd ^ { 4 } \\mitx \\; \\mitA \\star \\mitB = \\int \\mitd ^ { 4 } \\mitx \\; \\mitA \\mitB = \\int \\mitd ^ { 4 } \\mitx \\; \\mitB \\star \\mitA \\end{equation*}",
"\\begin{equation*} \\int \\mitd ^ { 4 } \\mitx \\; \\mitA _ { 1 } \\star \\cdots \\star \\mitA _ { \\mitn } = \\int \\mitd ^ { 4 } \\mitx \\; \\mitA _ { \\mitsigma ( 1 ) } \\star \\cdots \\star \\mitA _ { \\mitsigma ( \\mitn ) } \\end{equation*}",
"\\begin{equation*} \\overline { \\mitA \\star \\mitB } = \\bar { \\mitB } \\star \\bar { \\mitA } . \\end{equation*}",
"\\begin{equation*} \\mitF = - \\mitm \\bar { \\mitA } - \\mitg \\bar { \\mitA } \\star \\bar { \\mitA } \\end{equation*}",
"\\begin{align*} & & \\miti \\mitpartial _ { \\mitmu } \\bar { \\mitpsi } \\bar { \\mitsigma } ^ { \\mitmu } \\mitpsi + \\bar { \\mitA } \\mitpartial _ { \\mitmu } \\mitpartial ^ { \\mitmu } \\mitA - \\frac { 1 } { 2 } \\mitm ( \\mitpsi \\mitpsi + \\bar { \\mitpsi } \\bar { \\mitpsi } ) - \\mitm ^ { 2 } \\bar { \\mitA } \\mitA - \\mitg ( \\mitA ( \\mitpsi \\star \\mitpsi ) + \\\\ & & \\bar { \\mitA } ( \\bar { \\mitpsi } \\star \\bar { \\mitpsi } ) ) - \\mitm \\mitg ( \\mitA ( \\bar { \\mitA } \\star \\bar { \\mitA } ) + \\bar { \\mitA } ( \\mitA \\star \\mitA ) ) - \\mitg ^ { 2 } ( \\mitA \\star \\mitA ) ( \\bar { \\mitA } \\star \\bar { \\mitA } ) . \\end{align*}"
],
"x_min": [
0.399399995803833,
0.2281000018119812,
0.22869999706745148,
0.23149999976158142,
0.4885999858379364,
0.6890000104904175,
0.1728000044822693,
0.3621000051498413,
0.25220000743865967,
0.31859999895095825,
0.2985000014305115,
0.4339999854564667,
0.4133000075817108,
0.22939999401569366
],
"y_min": [
0.15870000422000885,
0.2168000042438507,
0.3086000084877014,
0.45019999146461487,
0.4458000063896179,
0.5054000020027161,
0.7401999831199646,
0.18410000205039978,
0.259799987077713,
0.3515999913215637,
0.4027999937534332,
0.47749999165534973,
0.5365999937057495,
0.5863999724388123
],
"x_max": [
0.4138999879360199,
0.33379998803138733,
0.44780001044273376,
0.24390000104904175,
0.5701000094413757,
0.7049000263214111,
0.19280000030994415,
0.6337000131607056,
0.7455999851226807,
0.6793000102043152,
0.6992999911308289,
0.5652999877929688,
0.5860999822616577,
0.7822999954223633
],
"y_max": [
0.16899999976158142,
0.23190000653266907,
0.3237000107765198,
0.4569999873638153,
0.4603999853134155,
0.5156999826431274,
0.754800021648407,
0.20270000398159027,
0.2953999936580658,
0.3871999979019165,
0.43799999356269836,
0.4912000000476837,
0.5526999831199646,
0.6439999938011169
],
"expr_type": [
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"isolated",
"isolated",
"isolated",
"isolated",
"isolated",
"isolated",
"isolated"
]
} |
|
0002084_page13 | {
"latex": [
"$m=0$",
"$A$",
"$\\bar A\\star \\bar A\\star A\\star A$",
"$F$",
"$\\bar A\\star \\ A\\star \\bar A\\star A$",
"$D$",
"$N$",
"$N=2,4$",
"$U$",
"$\\bar D_{\\dot \\alpha }U=0$",
"$U^{\\star -1}$",
"\\begin {equation} (\\bar A\\star A)^2, \\label {asq} \\end {equation}",
"$$ U_1\\star U_2=U_3, $$",
"$$ U\\star U^{\\star -1}=U^{\\star -1}\\star U=1. $$"
],
"latex_norm": [
"$ m = 0 $",
"$ A $",
"$ \\bar { A } \\star \\bar { A } \\star A \\star A $",
"$ F $",
"$ \\bar { A } \\star ~ A \\star \\bar { A } \\star A $",
"$ D $",
"$ N $",
"$ N = 2 , 4 $",
"$ U $",
"$ \\bar { D } _ { \\dot { \\alpha } } U = 0 $",
"$ U ^ { \\star - 1 } $",
"\\begin{equation*} ( \\bar { A } \\star A ) ^ { 2 } , \\end{equation*}",
"\\begin{equation*} U _ { 1 } \\star U _ { 2 } = U _ { 3 } , \\end{equation*}",
"\\begin{equation*} U \\star U ^ { \\star - 1 } = U ^ { \\star - 1 } \\star U = 1 . \\end{equation*}"
],
"latex_expand": [
"$ \\mitm = 0 $",
"$ \\mitA $",
"$ \\bar { \\mitA } \\star \\bar { \\mitA } \\star \\mitA \\star \\mitA $",
"$ \\mitF $",
"$ \\bar { \\mitA } \\star ~ \\mitA \\star \\bar { \\mitA } \\star \\mitA $",
"$ \\mitD $",
"$ \\mitN $",
"$ \\mitN = 2 , 4 $",
"$ \\mitU $",
"$ \\bar { \\mitD } _ { \\dot { \\mitalpha } } \\mitU = 0 $",
"$ \\mitU ^ { \\star - 1 } $",
"\\begin{equation*} ( \\bar { \\mitA } \\star \\mitA ) ^ { 2 } , \\end{equation*}",
"\\begin{equation*} \\mitU _ { 1 } \\star \\mitU _ { 2 } = \\mitU _ { 3 } , \\end{equation*}",
"\\begin{equation*} \\mitU \\star \\mitU ^ { \\star - 1 } = \\mitU ^ { \\star - 1 } \\star \\mitU = 1 . \\end{equation*}"
],
"x_min": [
0.6378999948501587,
0.27639999985694885,
0.6455000042915344,
0.22050000727176666,
0.4706000089645386,
0.7049000263214111,
0.22599999606609344,
0.35179999470710754,
0.6108999848365784,
0.6855999827384949,
0.5680999755859375,
0.45890000462532043,
0.44020000100135803,
0.38909998536109924
],
"y_min": [
0.19339999556541443,
0.35839998722076416,
0.4424000084400177,
0.46140000224113464,
0.4595000147819519,
0.46140000224113464,
0.5127000212669373,
0.5303000211715698,
0.6859999895095825,
0.6845999956130981,
0.7645999789237976,
0.25290000438690186,
0.7339000105857849,
0.7973999977111816
],
"x_max": [
0.6924999952316284,
0.29159998893737793,
0.7450000047683716,
0.23639999330043793,
0.5805000066757202,
0.7221999764442444,
0.24469999969005585,
0.42989999055862427,
0.626800000667572,
0.767799973487854,
0.6103000044822693,
0.5390999913215637,
0.5555999875068665,
0.6096000075340271
],
"y_max": [
0.20319999754428864,
0.3686999976634979,
0.4546000063419342,
0.4717000126838684,
0.4717000126838684,
0.4717000126838684,
0.5234000086784363,
0.5435000061988831,
0.6966999769210815,
0.6988000273704529,
0.7763000130653381,
0.27239999175071716,
0.7480999827384949,
0.8111000061035156
],
"expr_type": [
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"isolated",
"isolated",
"isolated"
]
} |
|
0002084_page14 | {
"latex": [
"$\\theta =\\bar \\theta =0$",
"$U$",
"$V$",
"$\\lambda $",
"$D$",
"$D=0$",
"$V^{\\star n}$",
"$V$",
"$V^{\\star 3}=0$",
"$P$",
"$P$",
"$F=dA +iA\\star A$",
"$$ U=e^{\\star i\\Lambda }=\\sum _{n=0}^\\infty \\frac {1}{n!}(i\\Lambda )^{\\star n}, $$",
"$$ U^{\\star -1}=e^{\\star - i\\Lambda },\\qquad U^\\dagger =e^{\\star - i\\bar \\Lambda },\\qquad {U^\\dagger }^{\\star -1}=e^{\\star i\\bar \\Lambda }. $$",
"\\begin {eqnarray*} &&e^{\\star V}\\mapsto U^\\dagger \\star e^{\\star V}\\star U\\\\ &&e^{\\star -V}\\mapsto U^{\\star -1}\\star e^{\\star - V}\\star {U^\\dagger }^{\\star -1}. \\end {eqnarray*}",
"$$ W_\\alpha ={\\bar D}^2(e^{\\star -V}\\star D_\\alpha e^{\\star V}),\\qquad \\bar D_{\\dot \\alpha }W_\\alpha =0, $$",
"$$ W_\\alpha \\mapsto U^{\\star -1}\\star W_\\alpha \\star U. $$",
"\\begin {equation} \\mathcal {S}_{NCYM}=\\int d^4x\\;(\\int d^2\\theta \\; W_\\alpha \\star W^\\alpha + \\mbox {c.c.}) \\label {ncym} \\end {equation}",
"$$ \\delta V=i(\\Lambda -\\bar \\Lambda )-\\frac {1}{2}i[(\\Lambda +\\bar \\Lambda )\\star V-V\\star (\\Lambda +\\bar \\Lambda )]. $$",
"$$ W_\\alpha =D_\\alpha V -\\frac {1}{2}(V\\star D_\\alpha V-D_\\alpha V\\star V). $$"
],
"latex_norm": [
"$ \\theta = \\bar { \\theta } = 0 $",
"$ U $",
"$ V $",
"$ \\lambda $",
"$ D $",
"$ D = 0 $",
"$ V ^ { \\star n } $",
"$ V $",
"$ V ^ { \\star 3 } = 0 $",
"$ P $",
"$ P $",
"$ F = d A + i A \\star A $",
"\\begin{equation*} U = e ^ { \\star i \\Lambda } = \\sum _ { n = 0 } ^ { \\infty } \\frac { 1 } { n ! } ( i \\Lambda ) ^ { \\star n } , \\end{equation*}",
"\\begin{equation*} U ^ { \\star - 1 } = e ^ { \\star - i \\Lambda } , \\qquad U ^ { \\dagger } = e ^ { \\star - i \\bar { \\Lambda } } , \\qquad { U ^ { \\dagger } } ^ { \\star - 1 } = e ^ { \\star i \\bar { \\Lambda } } . \\end{equation*}",
"\\begin{align*} & & e ^ { \\star V } \\mapsto U ^ { \\dagger } \\star e ^ { \\star V } \\star U \\\\ & & e ^ { \\star - V } \\mapsto U ^ { \\star - 1 } \\star e ^ { \\star - V } \\star { U ^ { \\dagger } } ^ { \\star - 1 } . \\end{align*}",
"\\begin{equation*} W _ { \\alpha } = \\bar { D } ^ { 2 } ( e ^ { \\star - V } \\star D _ { \\alpha } e ^ { \\star V } ) , \\qquad \\bar { D } _ { \\dot { \\alpha } } W _ { \\alpha } = 0 , \\end{equation*}",
"\\begin{equation*} W _ { \\alpha } \\mapsto U ^ { \\star - 1 } \\star W _ { \\alpha } \\star U . \\end{equation*}",
"\\begin{equation*} S _ { N C Y M } = \\int d ^ { 4 } x \\; ( \\int d ^ { 2 } \\theta \\; W _ { \\alpha } \\star W ^ { \\alpha } + c . c . ) \\end{equation*}",
"\\begin{equation*} \\delta V = i ( \\Lambda - \\bar { \\Lambda } ) - \\frac { 1 } { 2 } i [ ( \\Lambda + \\bar { \\Lambda } ) \\star V - V \\star ( \\Lambda + \\bar { \\Lambda } ) ] . \\end{equation*}",
"\\begin{equation*} W _ { \\alpha } = D _ { \\alpha } V - \\frac { 1 } { 2 } ( V \\star D _ { \\alpha } V - D _ { \\alpha } V \\star V ) . \\end{equation*}"
],
"latex_expand": [
"$ \\mittheta = \\bar { \\mittheta } = 0 $",
"$ \\mitU $",
"$ \\mitV $",
"$ \\mitlambda $",
"$ \\mitD $",
"$ \\mitD = 0 $",
"$ \\mitV ^ { \\star \\mitn } $",
"$ \\mitV $",
"$ \\mitV ^ { \\star 3 } = 0 $",
"$ \\mitP $",
"$ \\mitP $",
"$ \\mitF = \\mitd \\mitA + \\miti \\mitA \\star \\mitA $",
"\\begin{equation*} \\mitU = \\mite ^ { \\star \\miti \\mupLambda } = \\sum _ { \\mitn = 0 } ^ { \\infty } \\frac { 1 } { \\mitn ! } ( \\miti \\mupLambda ) ^ { \\star \\mitn } , \\end{equation*}",
"\\begin{equation*} \\mitU ^ { \\star - 1 } = \\mite ^ { \\star - \\miti \\mupLambda } , \\qquad \\mitU ^ { \\dagger } = \\mite ^ { \\star - \\miti \\bar { \\mupLambda } } , \\qquad { \\mitU ^ { \\dagger } } ^ { \\star - 1 } = \\mite ^ { \\star \\miti \\bar { \\mupLambda } } . \\end{equation*}",
"\\begin{align*} & & \\mite ^ { \\star \\mitV } \\mapsto \\mitU ^ { \\dagger } \\star \\mite ^ { \\star \\mitV } \\star \\mitU \\\\ & & \\mite ^ { \\star - \\mitV } \\mapsto \\mitU ^ { \\star - 1 } \\star \\mite ^ { \\star - \\mitV } \\star { \\mitU ^ { \\dagger } } ^ { \\star - 1 } . \\end{align*}",
"\\begin{equation*} \\mitW _ { \\mitalpha } = \\bar { \\mitD } ^ { 2 } ( \\mite ^ { \\star - \\mitV } \\star \\mitD _ { \\mitalpha } \\mite ^ { \\star \\mitV } ) , \\qquad \\bar { \\mitD } _ { \\dot { \\mitalpha } } \\mitW _ { \\mitalpha } = 0 , \\end{equation*}",
"\\begin{equation*} \\mitW _ { \\mitalpha } \\mapsto \\mitU ^ { \\star - 1 } \\star \\mitW _ { \\mitalpha } \\star \\mitU . \\end{equation*}",
"\\begin{equation*} \\mscrS _ { \\mitN \\mitC \\mitY \\mitM } = \\int \\mitd ^ { 4 } \\mitx \\; ( \\int \\mitd ^ { 2 } \\mittheta \\; \\mitW _ { \\mitalpha } \\star \\mitW ^ { \\mitalpha } + \\mathrm { c } . \\mathrm { c } . ) \\end{equation*}",
"\\begin{equation*} \\mitdelta \\mitV = \\miti ( \\mupLambda - \\bar { \\mupLambda } ) - \\frac { 1 } { 2 } \\miti [ ( \\mupLambda + \\bar { \\mupLambda } ) \\star \\mitV - \\mitV \\star ( \\mupLambda + \\bar { \\mupLambda } ) ] . \\end{equation*}",
"\\begin{equation*} \\mitW _ { \\mitalpha } = \\mitD _ { \\mitalpha } \\mitV - \\frac { 1 } { 2 } ( \\mitV \\star \\mitD _ { \\mitalpha } \\mitV - \\mitD _ { \\mitalpha } \\mitV \\star \\mitV ) . \\end{equation*}"
],
"x_min": [
0.30550000071525574,
0.7802000045776367,
0.5134999752044678,
0.5659999847412109,
0.7843999862670898,
0.7670999765396118,
0.5493999719619751,
0.7401999831199646,
0.742900013923645,
0.7713000178337097,
0.2736999988555908,
0.2930000126361847,
0.3917999863624573,
0.2937000095844269,
0.3939000070095062,
0.3206999897956848,
0.40639999508857727,
0.32339999079704285,
0.29159998893737793,
0.33169999718666077
],
"y_min": [
0.15620000660419464,
0.17579999566078186,
0.29980000853538513,
0.5669000148773193,
0.5669000148773193,
0.6015999913215637,
0.635699987411499,
0.635699987411499,
0.7045999765396118,
0.7935000061988831,
0.8276000022888184,
0.8446999788284302,
0.2020999938249588,
0.2694999873638153,
0.34130001068115234,
0.423799991607666,
0.4717000126838684,
0.5062999725341797,
0.6610999703407288,
0.7494999766349792
],
"x_max": [
0.38839998841285706,
0.7961000204086304,
0.5293999910354614,
0.5777000188827515,
0.8016999959945679,
0.8209999799728394,
0.5825999975204468,
0.7567999958992004,
0.8188999891281128,
0.7871999740600586,
0.2896000146865845,
0.43950000405311584,
0.6039999723434448,
0.7056000232696533,
0.6384999752044678,
0.6744999885559082,
0.5929999947547913,
0.6779000163078308,
0.7069000005722046,
0.6668999791145325
],
"y_max": [
0.1688999980688095,
0.18610000610351562,
0.3100999891757965,
0.5771999955177307,
0.5771999955177307,
0.6118999719619751,
0.6460000276565552,
0.6460000276565552,
0.7167999744415283,
0.8037999868392944,
0.8378999829292297,
0.8564000129699707,
0.24459999799728394,
0.28850001096725464,
0.3817000091075897,
0.4413999915122986,
0.48730000853538513,
0.5418999791145325,
0.6913999915122986,
0.7797999978065491
],
"expr_type": [
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"isolated",
"isolated",
"isolated",
"isolated",
"isolated",
"isolated",
"isolated",
"isolated"
]
} |
|
0002084_page15 | {
"latex": [
"$D$",
"$\\nabla \\lambda =d\\lambda + i(A\\star \\lambda -\\lambda \\star A)$",
"$\\nabla \\lambda =d\\lambda + i(A\\star \\lambda -\\lambda \\star A)$",
"$\\eta _\\alpha $",
"$S_i$",
"$S\\mapsto U^{\\star -1}\\star S\\star U$",
"$S\\mapsto S\\star U$",
"$N=2$",
"$N=2$",
"$N=2$",
"$S_i,\\; i=1,\\dots 3$",
"$N=4$",
"$N$",
"$N$",
"$$ \\delta W_\\alpha =\\eta _\\alpha $$",
"\\begin {equation} \\int d^4x\\int d^2\\theta d^2\\bar \\theta \\; S\\star e^{\\star -V}\\star \\bar S\\star e^{\\star V}. \\label {ci} \\end {equation}",
"$$ \\int d^2\\theta \\;\\epsilon ^{ijk}S_i\\star S_j\\star S_k +\\mbox {c. c. }, $$"
],
"latex_norm": [
"$ D $",
"$ \\nabla \\lambda = d \\lambda + i ( A \\star \\lambda - \\lambda \\star A ) $",
"$ \\nabla \\lambda = d \\lambda + i ( A \\star \\lambda - \\lambda \\star A ) $",
"$ \\eta _ { \\alpha } $",
"$ S _ { i } $",
"$ S \\mapsto U ^ { \\star - 1 } \\star S \\star U $",
"$ S \\mapsto S \\star U $",
"$ N = 2 $",
"$ N = 2 $",
"$ N = 2 $",
"$ S _ { i } , \\; i = 1 , \\ldots 3 $",
"$ N = 4 $",
"$ N $",
"$ N $",
"\\begin{equation*} \\delta W _ { \\alpha } = \\eta _ { \\alpha } \\end{equation*}",
"\\begin{equation*} \\int d ^ { 4 } x \\int d ^ { 2 } \\theta d ^ { 2 } \\bar { \\theta } \\; S \\star e ^ { \\star - V } \\star \\bar { S } \\star e ^ { \\star V } . \\end{equation*}",
"\\begin{equation*} \\int d ^ { 2 } \\theta \\; \\epsilon ^ { i j k } S _ { i } \\star S _ { j } \\star S _ { k } + c . ~ c . ~ , \\end{equation*}"
],
"latex_expand": [
"$ \\mitD $",
"$ \\nabla \\mitlambda = \\mitd \\mitlambda + \\miti ( \\mitA \\star \\mitlambda - \\mitlambda \\star \\mitA ) $",
"$ \\nabla \\mitlambda = \\mitd \\mitlambda + \\miti ( \\mitA \\star \\mitlambda - \\mitlambda \\star \\mitA ) $",
"$ \\miteta _ { \\mitalpha } $",
"$ \\mitS _ { \\miti } $",
"$ \\mitS \\mapsto \\mitU ^ { \\star - 1 } \\star \\mitS \\star \\mitU $",
"$ \\mitS \\mapsto \\mitS \\star \\mitU $",
"$ \\mitN = 2 $",
"$ \\mitN = 2 $",
"$ \\mitN = 2 $",
"$ \\mitS _ { \\miti } , \\; \\miti = 1 , \\ldots 3 $",
"$ \\mitN = 4 $",
"$ \\mitN $",
"$ \\mitN $",
"\\begin{equation*} \\mitdelta \\mitW _ { \\mitalpha } = \\miteta _ { \\mitalpha } \\end{equation*}",
"\\begin{equation*} \\int \\mitd ^ { 4 } \\mitx \\int \\mitd ^ { 2 } \\mittheta \\mitd ^ { 2 } \\bar { \\mittheta } \\; \\mitS \\star \\mite ^ { \\star - \\mitV } \\star \\bar { \\mitS } \\star \\mite ^ { \\star \\mitV } . \\end{equation*}",
"\\begin{equation*} \\int \\mitd ^ { 2 } \\mittheta \\; \\mitepsilon ^ { \\miti \\mitj \\mitk } \\mitS _ { \\miti } \\star \\mitS _ { \\mitj } \\star \\mitS _ { \\mitk } + \\mathrm { c } . ~ \\mathrm { c } . ~ , \\end{equation*}"
],
"x_min": [
0.33309999108314514,
0.7753999829292297,
0.1728000044822693,
0.22939999401569366,
0.6966000199317932,
0.1728000044822693,
0.23839999735355377,
0.22110000252723694,
0.7692000269889832,
0.5396999716758728,
0.6171000003814697,
0.7663999795913696,
0.20250000059604645,
0.1728000044822693,
0.45750001072883606,
0.3490000069141388,
0.3677000105381012
],
"y_min": [
0.15870000422000885,
0.15770000219345093,
0.17479999363422394,
0.274399995803833,
0.322299987077713,
0.35499998927116394,
0.3734999895095825,
0.513700008392334,
0.5307999849319458,
0.5654000043869019,
0.5824999809265137,
0.67330002784729,
0.7592999935150146,
0.7764000296592712,
0.23929999768733978,
0.4009000062942505,
0.6255000233650208
],
"x_max": [
0.35040000081062317,
0.8306999802589417,
0.35589998960494995,
0.2500999867916107,
0.7146000266075134,
0.33239999413490295,
0.33649998903274536,
0.2791999876499176,
0.8266000151634216,
0.5942999720573425,
0.7498000264167786,
0.8209999799728394,
0.22120000422000885,
0.1907999962568283,
0.5418000221252441,
0.6488999724388123,
0.6274999976158142
],
"y_max": [
0.16899999976158142,
0.17229999601840973,
0.18940000236034393,
0.28369998931884766,
0.3345000147819519,
0.3666999936103821,
0.3837999999523163,
0.524399995803833,
0.5414999723434448,
0.5756999850273132,
0.5957000255584717,
0.6836000084877014,
0.769599974155426,
0.7867000102996826,
0.2535000145435333,
0.43650001287460327,
0.6586999893188477
],
"expr_type": [
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"isolated",
"isolated",
"isolated"
]
} |
|
0002084_page16 | {
"latex": [
"$2N$",
"$A$",
"$\\hat A (A)$",
"$\\lambda $",
"$\\hat \\lambda (\\lambda , A)$",
"$P$",
"$\\hat V$",
"$\\hat \\Lambda $",
"$V$",
"$\\Lambda $",
"$a,b,c,d$",
"$\\hat \\Lambda =\\Lambda $",
"$D_\\alpha \\Lambda =0$",
"$\\hat V=V$",
"$V$",
"$$ \\int d^4x \\int d^2\\theta d^2\\bar \\theta \\; S\\star e^{\\star -V}\\star \\bar S. $$",
"$$ \\hat A(A) +\\hat \\delta _{\\hat \\lambda }\\hat A(A)=\\hat A(A+\\delta _\\lambda A). $$",
"\\begin {eqnarray} &&\\hat A_\\mu (A)=A_\\mu -\\frac {1}{2}P^{\\rho \\sigma }A_\\rho (\\partial _\\sigma A_\\mu +F_{\\sigma \\mu })\\\\ &&\\hat \\lambda (\\lambda , A)=\\lambda +\\frac {1}{4}P^{\\mu \\nu }\\partial _\\mu \\lambda A_\\nu . \\end {eqnarray}",
"\\begin {eqnarray} &&\\hat V(V)=V +aP^{\\mu \\nu }\\partial _\\mu V\\nabla _\\nu V + (b P^{\\alpha \\beta }D_\\alpha VW_\\beta + \\mbox {c. c.}) +\\\\ &&(c P^{\\alpha \\beta }VD_\\alpha W_\\beta + \\mbox {c. c.}),\\\\ && \\hat \\Lambda (\\Lambda , V)= \\Lambda +d{\\bar D}^2(P^{\\alpha \\beta }D_\\alpha \\Lambda D_\\beta V), \\end {eqnarray}",
"\\begin {eqnarray*} P^{\\alpha \\beta }&=&(\\sigma _{\\mu \\nu })^{\\alpha \\beta }P^{\\mu \\nu }, \\qquad (\\mbox {symmetric in }(\\alpha ,\\beta )),\\\\ W_\\alpha &=&{\\bar D}^2D_\\alpha V,\\\\ \\nabla _\\nu &=&(\\sigma _\\nu )^{\\alpha \\dot \\alpha }[D_\\alpha ,D_{\\dot \\alpha }]. \\end {eqnarray*}"
],
"latex_norm": [
"$ 2 N $",
"$ A $",
"$ \\hat { A } ( A ) $",
"$ \\lambda $",
"$ \\hat { \\lambda } ( \\lambda , A ) $",
"$ P $",
"$ \\hat { V } $",
"$ \\hat { \\Lambda } $",
"$ V $",
"$ \\Lambda $",
"$ a , b , c , d $",
"$ \\hat { \\Lambda } = \\Lambda $",
"$ D _ { \\alpha } \\Lambda = 0 $",
"$ \\hat { V } = V $",
"$ V $",
"\\begin{equation*} \\int d ^ { 4 } x \\int d ^ { 2 } \\theta d ^ { 2 } \\bar { \\theta } \\; S \\star e ^ { \\star - V } \\star \\bar { S } . \\end{equation*}",
"\\begin{equation*} \\hat { A } ( A ) + \\hat { \\delta } _ { \\hat { \\lambda } } \\hat { A } ( A ) = \\hat { A } ( A + \\delta _ { \\lambda } A ) . \\end{equation*}",
"\\begin{align*} & & \\hat { A } _ { \\mu } ( A ) = A _ { \\mu } - \\frac { 1 } { 2 } P ^ { \\rho \\sigma } A _ { \\rho } ( \\partial _ { \\sigma } A _ { \\mu } + F _ { \\sigma \\mu } ) \\\\ & & \\hat { \\lambda } ( \\lambda , A ) = \\lambda + \\frac { 1 } { 4 } P ^ { \\mu \\nu } \\partial _ { \\mu } \\lambda A _ { \\nu } . \\end{align*}",
"\\begin{align*} & & \\hat { V } ( V ) = V + a P ^ { \\mu \\nu } \\partial _ { \\mu } V \\nabla _ { \\nu } V + ( b P ^ { \\alpha \\beta } D _ { \\alpha } V W _ { \\beta } + c . ~ c . ) + \\\\ & & ( c P ^ { \\alpha \\beta } V D _ { \\alpha } W _ { \\beta } + c . ~ c . ) , \\\\ & & \\hat { \\Lambda } ( \\Lambda , V ) = \\Lambda + d \\bar { D } ^ { 2 } ( P ^ { \\alpha \\beta } D _ { \\alpha } \\Lambda D _ { \\beta } V ) , \\end{align*}",
"\\begin{align*} P ^ { \\alpha \\beta } & = & ( \\sigma _ { \\mu \\nu } ) ^ { \\alpha \\beta } P ^ { \\mu \\nu } , \\qquad ( s y m m e t r i c ~ i n ~ ( \\alpha , \\beta ) ) , \\\\ W _ { \\alpha } & = & \\bar { D } ^ { 2 } D _ { \\alpha } V , \\\\ \\nabla _ { \\nu } & = & ( \\sigma _ { \\nu } ) ^ { \\alpha \\dot { \\alpha } } [ D _ { \\alpha } , D _ { \\dot { \\alpha } } ] . \\end{align*}"
],
"latex_expand": [
"$ 2 \\mitN $",
"$ \\mitA $",
"$ \\hat { \\mitA } ( \\mitA ) $",
"$ \\mitlambda $",
"$ \\hat { \\mitlambda } ( \\mitlambda , \\mitA ) $",
"$ \\mitP $",
"$ \\hat { \\mitV } $",
"$ \\hat { \\mupLambda } $",
"$ \\mitV $",
"$ \\mupLambda $",
"$ \\mita , \\mitb , \\mitc , \\mitd $",
"$ \\hat { \\mupLambda } = \\mupLambda $",
"$ \\mitD _ { \\mitalpha } \\mupLambda = 0 $",
"$ \\hat { \\mitV } = \\mitV $",
"$ \\mitV $",
"\\begin{equation*} \\int \\mitd ^ { 4 } \\mitx \\int \\mitd ^ { 2 } \\mittheta \\mitd ^ { 2 } \\bar { \\mittheta } \\; \\mitS \\star \\mite ^ { \\star - \\mitV } \\star \\bar { \\mitS } . \\end{equation*}",
"\\begin{equation*} \\hat { \\mitA } ( \\mitA ) + \\hat { \\mitdelta } _ { \\hat { \\mitlambda } } \\hat { \\mitA } ( \\mitA ) = \\hat { \\mitA } ( \\mitA + \\mitdelta _ { \\mitlambda } \\mitA ) . \\end{equation*}",
"\\begin{align*} & & \\hat { \\mitA } _ { \\mitmu } ( \\mitA ) = \\mitA _ { \\mitmu } - \\frac { 1 } { 2 } \\mitP ^ { \\mitrho \\mitsigma } \\mitA _ { \\mitrho } ( \\mitpartial _ { \\mitsigma } \\mitA _ { \\mitmu } + \\mitF _ { \\mitsigma \\mitmu } ) \\\\ & & \\hat { \\mitlambda } ( \\mitlambda , \\mitA ) = \\mitlambda + \\frac { 1 } { 4 } \\mitP ^ { \\mitmu \\mitnu } \\mitpartial _ { \\mitmu } \\mitlambda \\mitA _ { \\mitnu } . \\end{align*}",
"\\begin{align*} & & \\hat { \\mitV } ( \\mitV ) = \\mitV + \\mita \\mitP ^ { \\mitmu \\mitnu } \\mitpartial _ { \\mitmu } \\mitV \\nabla _ { \\mitnu } \\mitV + ( \\mitb \\mitP ^ { \\mitalpha \\mitbeta } \\mitD _ { \\mitalpha } \\mitV \\mitW _ { \\mitbeta } + \\mathrm { c } . ~ \\mathrm { c } . ) + \\\\ & & ( \\mitc \\mitP ^ { \\mitalpha \\mitbeta } \\mitV \\mitD _ { \\mitalpha } \\mitW _ { \\mitbeta } + \\mathrm { c } . ~ \\mathrm { c } . ) , \\\\ & & \\hat { \\mupLambda } ( \\mupLambda , \\mitV ) = \\mupLambda + \\mitd \\bar { \\mitD } ^ { 2 } ( \\mitP ^ { \\mitalpha \\mitbeta } \\mitD _ { \\mitalpha } \\mupLambda \\mitD _ { \\mitbeta } \\mitV ) , \\end{align*}",
"\\begin{align*} \\mitP ^ { \\mitalpha \\mitbeta } & = & ( \\mitsigma _ { \\mitmu \\mitnu } ) ^ { \\mitalpha \\mitbeta } \\mitP ^ { \\mitmu \\mitnu } , \\qquad ( \\mathrm { s y m m e t r i c } ~ \\mathrm { i n } ~ ( \\mitalpha , \\mitbeta ) ) , \\\\ \\mitW _ { \\mitalpha } & = & \\bar { \\mitD } ^ { 2 } \\mitD _ { \\mitalpha } \\mitV , \\\\ \\nabla _ { \\mitnu } & = & ( \\mitsigma _ { \\mitnu } ) ^ { \\mitalpha \\dot { \\mitalpha } } [ \\mitD _ { \\mitalpha } , \\mitD _ { \\dot { \\mitalpha } } ] . \\end{align*}"
],
"x_min": [
0.48510000109672546,
0.41119998693466187,
0.7283999919891357,
0.1728000044822693,
0.699400007724762,
0.4602999985218048,
0.27639999985694885,
0.3393000066280365,
0.669700026512146,
0.7325999736785889,
0.1728000044822693,
0.5002999901771545,
0.5909000039100647,
0.42500001192092896,
0.5992000102996826,
0.3725000023841858,
0.367000013589859,
0.3594000041484833,
0.28060001134872437,
0.29030001163482666
],
"y_min": [
0.17579999566078186,
0.33739998936653137,
0.3334999978542328,
0.3716000020503998,
0.36820000410079956,
0.43700000643730164,
0.5756999850273132,
0.5756999850273132,
0.5791000127792358,
0.5791000127792358,
0.7764000296592712,
0.7896000146865845,
0.7935000061988831,
0.8065999746322632,
0.8105000257492065,
0.23729999363422394,
0.4081999957561493,
0.47360000014305115,
0.6118000149726868,
0.7026000022888184
],
"x_max": [
0.5134000182151794,
0.42640000581741333,
0.7732999920845032,
0.18449999392032623,
0.7623000144958496,
0.47620001435279846,
0.2930000126361847,
0.3537999987602234,
0.6862999796867371,
0.7470999956130981,
0.2371000051498413,
0.5541999936103821,
0.6675999760627747,
0.4837000072002411,
0.6151000261306763,
0.626800000667572,
0.6323999762535095,
0.6725000143051147,
0.7477999925613403,
0.7056000232696533
],
"y_max": [
0.18610000610351562,
0.34769999980926514,
0.3515999913215637,
0.3822999894618988,
0.38580000400543213,
0.447299987077713,
0.589900016784668,
0.589900016784668,
0.5898000001907349,
0.5898000001907349,
0.7896000146865845,
0.8037999868392944,
0.8057000041007996,
0.8208000063896179,
0.8208000063896179,
0.27000001072883606,
0.42719998955726624,
0.539900004863739,
0.6836000084877014,
0.7724000215530396
],
"expr_type": [
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"isolated",
"isolated",
"isolated",
"isolated",
"isolated"
]
} |
|
0002084_page17 | {
"latex": [
"$\\alpha '\\mapsto 0$",
"$\\alpha '\\mapsto 0 $",
"$B$",
"$\\alpha '=\\mathcal {O}(\\epsilon ^\\frac {1}{2})\\mapsto 0$",
"$B^{\\mu \\nu }$",
"$B^{\\mu \\nu }={P^{-1}}^{\\mu \\nu }$",
"$\\epsilon $",
"$F$",
"$W_\\alpha $",
"$(\\bar D_{\\dot \\alpha }W_\\alpha =0)$",
"$T$",
"\\begin {equation} \\mathcal {L}_{BI}=\\sqrt {\\det (\\epsilon ^\\frac {1}{2}+F)} =\\sqrt {\\epsilon ^2 +\\frac {\\epsilon }{2}F^2 + \\frac {1}{16}(F\\tilde F)^2}.\\label {obi} \\end {equation}",
"$$ \\frac {1}{4}|F\\tilde F| +\\epsilon \\frac {F^2 }{|F\\tilde F|}. $$",
"$$ \\sqrt {X^2-Y}=X+ Y\\frac {\\sqrt {X^2-Y}-X}{Y}=X-\\frac {Y}{\\sqrt {X^2-Y}+X}, $$",
"$$ X=\\epsilon +\\frac {1}{4}F^2,\\qquad Y=\\frac {1}{16}\\big ((F^2)^2-(F\\tilde F)^2\\bigr ). $$",
"$$ F_\\pm =\\frac {1}{2}(F\\pm \\tilde F) $$",
"$$ F_\\pm ^2=\\frac {1}{2}(F^2\\pm F\\tilde F),\\qquad F_+^2F_-^2=\\frac {1}{4}\\bigl ( (F^2)^2-(F\\tilde F)^2\\bigr ). $$",
"$$ T=\\bar D\\bar D{\\bar W}^2=-\\frac {1}{2} F_-^2 +\\cdots $$"
],
"latex_norm": [
"$ \\alpha ^ { \\prime } \\mapsto 0 $",
"$ \\alpha ^ { \\prime } \\mapsto 0 $",
"$ B $",
"$ \\alpha ^ { \\prime } = O ( \\epsilon ^ { \\frac { 1 } { 2 } } ) \\mapsto 0 $",
"$ B ^ { \\mu \\nu } $",
"$ B ^ { \\mu \\nu } = { P ^ { - 1 } } ^ { \\mu \\nu } $",
"$ \\epsilon $",
"$ F $",
"$ W _ { \\alpha } $",
"$ ( \\bar { D } _ { \\dot { \\alpha } } W _ { \\alpha } = 0 ) $",
"$ T $",
"\\begin{equation*} L _ { B I } = \\sqrt { \\operatorname { d e t } ( \\epsilon ^ { \\frac { 1 } { 2 } } + F ) } = \\sqrt { \\epsilon ^ { 2 } + \\frac { \\epsilon } { 2 } F ^ { 2 } + \\frac { 1 } { 1 6 } ( F \\widetilde { F } ) ^ { 2 } } . \\end{equation*}",
"\\begin{equation*} \\frac { 1 } { 4 } \\vert F \\widetilde { F } \\vert + \\epsilon \\frac { F ^ { 2 } } { \\vert F \\widetilde { F } \\vert } . \\end{equation*}",
"\\begin{equation*} \\sqrt { X ^ { 2 } - Y } = X + Y \\frac { \\sqrt { X ^ { 2 } - Y } - X } { Y } = X - \\frac { Y } { \\sqrt { X ^ { 2 } - Y } + X } , \\end{equation*}",
"\\begin{equation*} X = \\epsilon + \\frac { 1 } { 4 } F ^ { 2 } , \\qquad Y = \\frac { 1 } { 1 6 } ( ( F ^ { 2 } ) ^ { 2 } - ( F \\widetilde { F } ) ^ { 2 } ) . \\end{equation*}",
"\\begin{equation*} F _ { \\pm } = \\frac { 1 } { 2 } ( F \\pm \\widetilde { F } ) \\end{equation*}",
"\\begin{equation*} F _ { \\pm } ^ { 2 } = \\frac { 1 } { 2 } ( F ^ { 2 } \\pm F \\widetilde { F } ) , \\qquad F _ { + } ^ { 2 } F _ { - } ^ { 2 } = \\frac { 1 } { 4 } ( ( F ^ { 2 } ) ^ { 2 } - ( F \\widetilde { F } ) ^ { 2 } ) . \\end{equation*}",
"\\begin{equation*} T = \\bar { D } \\bar { D } \\bar { W } ^ { 2 } = - \\frac { 1 } { 2 } F _ { - } ^ { 2 } + \\cdots \\end{equation*}"
],
"latex_expand": [
"$ \\mitalpha ^ { \\prime } \\mapsto 0 $",
"$ \\mitalpha ^ { \\prime } \\mapsto 0 $",
"$ \\mitB $",
"$ \\mitalpha ^ { \\prime } = \\mscrO ( \\mitepsilon ^ { \\frac { 1 } { 2 } } ) \\mapsto 0 $",
"$ \\mitB ^ { \\mitmu \\mitnu } $",
"$ \\mitB ^ { \\mitmu \\mitnu } = { \\mitP ^ { - 1 } } ^ { \\mitmu \\mitnu } $",
"$ \\mitepsilon $",
"$ \\mitF $",
"$ \\mitW _ { \\mitalpha } $",
"$ ( \\bar { \\mitD } _ { \\dot { \\mitalpha } } \\mitW _ { \\mitalpha } = 0 ) $",
"$ \\mitT $",
"\\begin{equation*} \\mscrL _ { \\mitB \\mitI } = \\sqrt { \\operatorname { d e t } ( \\mitepsilon ^ { \\frac { 1 } { 2 } } + \\mitF ) } = \\sqrt { \\mitepsilon ^ { 2 } + \\frac { \\mitepsilon } { 2 } \\mitF ^ { 2 } + \\frac { 1 } { 1 6 } ( \\mitF \\tilde { \\mitF } ) ^ { 2 } } . \\end{equation*}",
"\\begin{equation*} \\frac { 1 } { 4 } \\vert \\mitF \\tilde { \\mitF } \\vert + \\mitepsilon \\frac { \\mitF ^ { 2 } } { \\vert \\mitF \\tilde { \\mitF } \\vert } . \\end{equation*}",
"\\begin{equation*} \\sqrt { \\mitX ^ { 2 } - \\mitY } = \\mitX + \\mitY \\frac { \\sqrt { \\mitX ^ { 2 } - \\mitY } - \\mitX } { \\mitY } = \\mitX - \\frac { \\mitY } { \\sqrt { \\mitX ^ { 2 } - \\mitY } + \\mitX } , \\end{equation*}",
"\\begin{equation*} \\mitX = \\mitepsilon + \\frac { 1 } { 4 } \\mitF ^ { 2 } , \\qquad \\mitY = \\frac { 1 } { 1 6 } \\big ( ( \\mitF ^ { 2 } ) ^ { 2 } - ( \\mitF \\tilde { \\mitF } ) ^ { 2 } \\big ) . \\end{equation*}",
"\\begin{equation*} \\mitF _ { \\pm } = \\frac { 1 } { 2 } ( \\mitF \\pm \\tilde { \\mitF } ) \\end{equation*}",
"\\begin{equation*} \\mitF _ { \\pm } ^ { 2 } = \\frac { 1 } { 2 } ( \\mitF ^ { 2 } \\pm \\mitF \\tilde { \\mitF } ) , \\qquad \\mitF _ { + } ^ { 2 } \\mitF _ { - } ^ { 2 } = \\frac { 1 } { 4 } \\big ( ( \\mitF ^ { 2 } ) ^ { 2 } - ( \\mitF \\tilde { \\mitF } ) ^ { 2 } \\big ) . \\end{equation*}",
"\\begin{equation*} \\mitT = \\bar { \\mitD } \\bar { \\mitD } \\bar { \\mitW } ^ { 2 } = - \\frac { 1 } { 2 } \\mitF _ { - } ^ { 2 } + \\cdots \\end{equation*}"
],
"x_min": [
0.2888999879360199,
0.7214999794960022,
0.4505999982357025,
0.25360000133514404,
0.21559999883174896,
0.5722000002861023,
0.25290000438690186,
0.5770999789237976,
0.49900001287460327,
0.5335000157356262,
0.26190000772476196,
0.2930000126361847,
0.4291999936103821,
0.24740000069141388,
0.31029999256134033,
0.4311999976634979,
0.27639999985694885,
0.3815000057220459
],
"y_min": [
0.1543000042438507,
0.24220000207424164,
0.259799987077713,
0.2915000021457672,
0.3125,
0.3109999895095825,
0.4287000000476837,
0.701200008392334,
0.7890999913215637,
0.7871000170707703,
0.8062000274658203,
0.3716000020503998,
0.45210000872612,
0.5493000149726868,
0.611299991607666,
0.6625999808311462,
0.7422000169754028,
0.8187999725341797
],
"x_max": [
0.37599998712539673,
0.7809000015258789,
0.46720001101493835,
0.3896999955177307,
0.24879999458789825,
0.6841999888420105,
0.2612000107765198,
0.5929999947547913,
0.527999997138977,
0.6406000256538391,
0.27639999985694885,
0.708299994468689,
0.5695000290870667,
0.7483999729156494,
0.6883000135421753,
0.567300021648407,
0.7228000164031982,
0.6144000291824341
],
"y_max": [
0.16990000009536743,
0.2533999979496002,
0.2705000042915344,
0.30959999561309814,
0.323199987411499,
0.323199987411499,
0.43549999594688416,
0.7114999890327454,
0.8012999892234802,
0.8026999831199646,
0.8165000081062317,
0.41019999980926514,
0.48919999599456787,
0.5863999724388123,
0.6416000127792358,
0.6923999786376953,
0.7724999785423279,
0.8490999937057495
],
"expr_type": [
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"isolated",
"isolated",
"isolated",
"isolated",
"isolated",
"isolated",
"isolated"
]
} |
|
0002084_page18 | {
"latex": [
"$X$",
"$Y$",
"$\\epsilon $",
"$\\epsilon =0$",
"$\\mathcal {L}_{SBI}$",
"$\\epsilon $",
"$W$",
"$\\bar W$",
"$D$",
"$\\bar D$",
"$\\mathcal {O}(\\epsilon )$",
"$\\mathcal {L}_{SBI}$",
"$\\epsilon $",
"$$ X=\\epsilon -\\frac {1}{2}(T+\\bar T),\\quad Y=T\\bar T. $$",
"\\begin {eqnarray} \\mathcal {L}_{SBI}&=&-\\frac {1}{2}\\int d^2\\theta \\; W^2-\\frac {1}{2}\\int d^2\\bar \\theta \\;{\\bar W}^2- \\int d^2\\theta d^2\\bar \\theta \\;\\frac {{\\bar W}^2W^2}{\\sqrt {X^2-Y} +X}. \\end {eqnarray}",
"$$ \\sqrt {X^2-Y}=\\sqrt {\\epsilon ^2-\\epsilon (T+\\bar T) +\\frac {1}{4}(T-\\bar T)^2}. $$",
"\\begin {equation} \\sqrt {\\frac {1}{4}(T-\\bar T)^2}=\\pm \\frac {1}{2}(T-\\bar T) \\label {pms} \\end {equation}",
"$$ \\frac {1}{2}(T-\\bar T)|_{\\theta =0}=\\frac {1}{4}F\\tilde F $$",
"$$ \\mp \\frac {1}{2}(\\int d^2\\theta W^2-\\int d^2\\bar \\theta {\\bar W}^2)=\\frac {1}{4}|F\\tilde F|+\\cdots $$",
"$$ 2\\epsilon \\int d^2\\theta d^2\\bar \\theta \\; \\frac {W^2{\\bar W}^2}{D^2W^2 (D^2W^2-{\\bar D}^2{\\bar W}^2)}. $$",
"\\begin {eqnarray} &&\\pm \\epsilon \\int d^2\\theta d^2\\bar \\theta \\; W^2{\\bar W}^2(\\frac {1}{D^2W}+ \\frac {1}{{\\bar D}^2{\\bar W}^2})\\frac {1}{(D^2W^2-{\\bar D}^2{\\bar W}^2)}-\\\\&& \\epsilon \\int d^2\\theta d^2\\bar \\theta \\; \\frac {W^2{\\bar W}^2}{(D^2W^2{\\bar D}^2{\\bar W}^2)} = \\epsilon (\\frac {F^2}{|F\\tilde F|}-1) +\\cdots . \\end {eqnarray}",
"$$ \\mathcal {L}=\\sqrt {\\det (\\epsilon ^\\frac {1}{2}+F)} -\\epsilon . $$"
],
"latex_norm": [
"$ X $",
"$ Y $",
"$ \\epsilon $",
"$ \\epsilon = 0 $",
"$ L _ { S B I } $",
"$ \\epsilon $",
"$ W $",
"$ \\bar { W } $",
"$ D $",
"$ \\bar { D } $",
"$ O ( \\epsilon ) $",
"$ L _ { S B I } $",
"$ \\epsilon $",
"\\begin{equation*} X = \\epsilon - \\frac { 1 } { 2 } ( T + \\bar { T } ) , \\quad Y = T \\bar { T } . \\end{equation*}",
"\\begin{align*} L _ { S B I } & = & - \\frac { 1 } { 2 } \\int d ^ { 2 } \\theta \\; W ^ { 2 } - \\frac { 1 } { 2 } \\int d ^ { 2 } \\bar { \\theta } \\; \\bar { W } ^ { 2 } - \\int d ^ { 2 } \\theta d ^ { 2 } \\bar { \\theta } \\; \\frac { \\bar { W } ^ { 2 } W ^ { 2 } } { \\sqrt { X ^ { 2 } - Y } + X } . \\end{align*}",
"\\begin{equation*} \\sqrt { X ^ { 2 } - Y } = \\sqrt { \\epsilon ^ { 2 } - \\epsilon ( T + \\bar { T } ) + \\frac { 1 } { 4 } ( T - \\bar { T } ) ^ { 2 } } . \\end{equation*}",
"\\begin{equation*} \\sqrt { \\frac { 1 } { 4 } ( T - \\bar { T } ) ^ { 2 } } = \\pm \\frac { 1 } { 2 } ( T - \\bar { T } ) \\end{equation*}",
"\\begin{equation*} \\frac { 1 } { 2 } ( T - \\bar { T } ) \\vert _ { \\theta = 0 } = \\frac { 1 } { 4 } F \\widetilde { F } \\end{equation*}",
"\\begin{equation*} \\mp \\frac { 1 } { 2 } ( \\int d ^ { 2 } \\theta W ^ { 2 } - \\int d ^ { 2 } \\bar { \\theta } \\bar { W } ^ { 2 } ) = \\frac { 1 } { 4 } \\vert F \\widetilde { F } \\vert + \\cdots \\end{equation*}",
"\\begin{equation*} 2 \\epsilon \\int d ^ { 2 } \\theta d ^ { 2 } \\bar { \\theta } \\; \\frac { W ^ { 2 } \\bar { W } ^ { 2 } } { D ^ { 2 } W ^ { 2 } ( D ^ { 2 } W ^ { 2 } - \\bar { D } ^ { 2 } \\bar { W } ^ { 2 } ) } . \\end{equation*}",
"\\begin{align*} & & \\pm \\epsilon \\int d ^ { 2 } \\theta d ^ { 2 } \\bar { \\theta } \\; W ^ { 2 } \\bar { W } ^ { 2 } ( \\frac { 1 } { D ^ { 2 } W } + \\frac { 1 } { \\bar { D } ^ { 2 } \\bar { W } ^ { 2 } } ) \\frac { 1 } { ( D ^ { 2 } W ^ { 2 } - \\bar { D } ^ { 2 } \\bar { W } ^ { 2 } ) } - \\\\ & & \\epsilon \\int d ^ { 2 } \\theta d ^ { 2 } \\bar { \\theta } \\; \\frac { W ^ { 2 } \\bar { W } ^ { 2 } } { ( D ^ { 2 } W ^ { 2 } \\bar { D } ^ { 2 } \\bar { W } ^ { 2 } ) } = \\epsilon ( \\frac { F ^ { 2 } } { \\vert F \\widetilde { F } \\vert } - 1 ) + \\cdots . \\end{align*}",
"\\begin{equation*} L = \\sqrt { \\operatorname { d e t } ( \\epsilon ^ { \\frac { 1 } { 2 } } + F ) } - \\epsilon . \\end{equation*}"
],
"latex_expand": [
"$ \\mitX $",
"$ \\mitY $",
"$ \\mitepsilon $",
"$ \\mitepsilon = 0 $",
"$ \\mscrL _ { \\mitS \\mitB \\mitI } $",
"$ \\mitepsilon $",
"$ \\mitW $",
"$ \\bar { \\mitW } $",
"$ \\mitD $",
"$ \\bar { \\mitD } $",
"$ \\mscrO ( \\mitepsilon ) $",
"$ \\mscrL _ { \\mitS \\mitB \\mitI } $",
"$ \\mitepsilon $",
"\\begin{equation*} \\mitX = \\mitepsilon - \\frac { 1 } { 2 } ( \\mitT + \\bar { \\mitT } ) , \\quad \\mitY = \\mitT \\bar { \\mitT } . \\end{equation*}",
"\\begin{align*} \\mscrL _ { \\mitS \\mitB \\mitI } & = & - \\frac { 1 } { 2 } \\int \\mitd ^ { 2 } \\mittheta \\; \\mitW ^ { 2 } - \\frac { 1 } { 2 } \\int \\mitd ^ { 2 } \\bar { \\mittheta } \\; \\bar { \\mitW } ^ { 2 } - \\int \\mitd ^ { 2 } \\mittheta \\mitd ^ { 2 } \\bar { \\mittheta } \\; \\frac { \\bar { \\mitW } ^ { 2 } \\mitW ^ { 2 } } { \\sqrt { \\mitX ^ { 2 } - \\mitY } + \\mitX } . \\end{align*}",
"\\begin{equation*} \\sqrt { \\mitX ^ { 2 } - \\mitY } = \\sqrt { \\mitepsilon ^ { 2 } - \\mitepsilon ( \\mitT + \\bar { \\mitT } ) + \\frac { 1 } { 4 } ( \\mitT - \\bar { \\mitT } ) ^ { 2 } } . \\end{equation*}",
"\\begin{equation*} \\sqrt { \\frac { 1 } { 4 } ( \\mitT - \\bar { \\mitT } ) ^ { 2 } } = \\pm \\frac { 1 } { 2 } ( \\mitT - \\bar { \\mitT } ) \\end{equation*}",
"\\begin{equation*} \\frac { 1 } { 2 } ( \\mitT - \\bar { \\mitT } ) \\vert _ { \\mittheta = 0 } = \\frac { 1 } { 4 } \\mitF \\tilde { \\mitF } \\end{equation*}",
"\\begin{equation*} \\mp \\frac { 1 } { 2 } ( \\int \\mitd ^ { 2 } \\mittheta \\mitW ^ { 2 } - \\int \\mitd ^ { 2 } \\bar { \\mittheta } \\bar { \\mitW } ^ { 2 } ) = \\frac { 1 } { 4 } \\vert \\mitF \\tilde { \\mitF } \\vert + \\cdots \\end{equation*}",
"\\begin{equation*} 2 \\mitepsilon \\int \\mitd ^ { 2 } \\mittheta \\mitd ^ { 2 } \\bar { \\mittheta } \\; \\frac { \\mitW ^ { 2 } \\bar { \\mitW } ^ { 2 } } { \\mitD ^ { 2 } \\mitW ^ { 2 } ( \\mitD ^ { 2 } \\mitW ^ { 2 } - \\bar { \\mitD } ^ { 2 } \\bar { \\mitW } ^ { 2 } ) } . \\end{equation*}",
"\\begin{align*} & & \\pm \\mitepsilon \\int \\mitd ^ { 2 } \\mittheta \\mitd ^ { 2 } \\bar { \\mittheta } \\; \\mitW ^ { 2 } \\bar { \\mitW } ^ { 2 } ( \\frac { 1 } { \\mitD ^ { 2 } \\mitW } + \\frac { 1 } { \\bar { \\mitD } ^ { 2 } \\bar { \\mitW } ^ { 2 } } ) \\frac { 1 } { ( \\mitD ^ { 2 } \\mitW ^ { 2 } - \\bar { \\mitD } ^ { 2 } \\bar { \\mitW } ^ { 2 } ) } - \\\\ & & \\mitepsilon \\int \\mitd ^ { 2 } \\mittheta \\mitd ^ { 2 } \\bar { \\mittheta } \\; \\frac { \\mitW ^ { 2 } \\bar { \\mitW } ^ { 2 } } { ( \\mitD ^ { 2 } \\mitW ^ { 2 } \\bar { \\mitD } ^ { 2 } \\bar { \\mitW } ^ { 2 } ) } = \\mitepsilon ( \\frac { \\mitF ^ { 2 } } { \\vert \\mitF \\tilde { \\mitF } \\vert } - 1 ) + \\cdots . \\end{align*}",
"\\begin{equation*} \\mscrL = \\sqrt { \\operatorname { d e t } ( \\mitepsilon ^ { \\frac { 1 } { 2 } } + \\mitF ) } - \\mitepsilon . \\end{equation*}"
],
"x_min": [
0.2840000092983246,
0.34689998626708984,
0.30410000681877136,
0.46720001101493835,
0.5874000191688538,
0.2930000126361847,
0.5149000287055969,
0.5701000094413757,
0.6365000009536743,
0.6869000196456909,
0.3946000039577484,
0.4643999934196472,
0.6848999857902527,
0.3677000105381012,
0.20659999549388885,
0.3165000081062317,
0.3822000026702881,
0.40639999508857727,
0.31310001015663147,
0.3407000005245209,
0.2703999876976013,
0.399399995803833
],
"y_min": [
0.15870000422000885,
0.15870000422000885,
0.37549999356269836,
0.5112000107765198,
0.5102999806404114,
0.5859000086784363,
0.6592000126838684,
0.6571999788284302,
0.6592000126838684,
0.6571999788284302,
0.6753000020980835,
0.6762999892234802,
0.7943999767303467,
0.18359999358654022,
0.25049999356269836,
0.322299987077713,
0.40869998931884766,
0.47269999980926514,
0.5351999998092651,
0.6079000234603882,
0.6991999745368958,
0.8339999914169312
],
"x_max": [
0.302700012922287,
0.3628000020980835,
0.3124000132083893,
0.5120999813079834,
0.6302000284194946,
0.3012999892234802,
0.5370000004768372,
0.592199981212616,
0.6538000106811523,
0.704200029373169,
0.43540000915527344,
0.5072000026702881,
0.6938999891281128,
0.6316999793052673,
0.7925999760627747,
0.6827999949455261,
0.6198999881744385,
0.5922999978065491,
0.6827999949455261,
0.6585999727249146,
0.7635999917984009,
0.5990999937057495
],
"y_max": [
0.16899999976158142,
0.16899999976158142,
0.38179999589920044,
0.5210000276565552,
0.5230000019073486,
0.592199981212616,
0.6694999933242798,
0.6693999767303467,
0.6694999933242798,
0.6693999767303467,
0.6898999810218811,
0.6884999871253967,
0.8011999726295471,
0.2134000062942505,
0.28850001096725464,
0.3589000105857849,
0.447299987077713,
0.503000020980835,
0.5684000253677368,
0.6445000171661377,
0.7767000198364258,
0.861299991607666
],
"expr_type": [
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"isolated",
"isolated",
"isolated",
"isolated",
"isolated",
"isolated",
"isolated",
"isolated",
"isolated"
]
} |
|
0002084_page19 | {
"latex": [
"$B$",
"$F\\mapsto F+B$",
"$W_\\alpha =\\bar D\\bar DD_\\alpha V$",
"$V$",
"$W_\\alpha -L_\\alpha $",
"$L_\\alpha $",
"$B$",
"$\\theta $",
"$W_\\alpha -L_\\alpha $",
"$U$",
"$\\epsilon \\mapsto 0$",
"$B$",
"$\\phi =\\chi _\\alpha =0$",
"$W_\\alpha $",
"$W_\\alpha -\\theta _\\beta \\sigma ^{\\mu \\nu }_{\\alpha \\beta }B_{\\mu \\nu }$",
"$\\mathcal {O}(\\epsilon )$",
"$N=2$",
"$W$",
"$N=2$",
"$\\alpha '\\mapsto 0$",
"$N=2$",
"$N=4$",
"$N=4$",
"$W^{ij}=-W^{ji}$",
"$$ L_\\alpha =\\theta ^\\beta (\\sigma ^{\\mu \\nu }_{\\alpha \\beta }B_{\\mu \\nu } +\\epsilon _{\\alpha \\beta }\\phi ) + \\theta ^2\\chi _\\alpha , $$",
"\\begin {eqnarray*} V&\\mapsto & V+U\\\\ L_\\alpha &\\mapsto &L_\\alpha +{\\bar D}^2D_\\alpha U. \\end {eqnarray*}",
"$$ \\frac {F^2}{|F\\tilde F|} $$",
"$$ \\mathcal {L}_{SBI}(N=2)=\\int d^4\\theta d^4\\bar \\theta \\;\\frac {W^2{\\bar W}^2}{D^4W^2-{\\bar D}^4{\\bar W}^2}( \\frac {1}{D^4W^2}+\\frac {1}{{\\bar D}^4{\\bar W}^2}) $$",
"$$ \\mathcal {L}_{SBI}(N=4)=\\int d^8\\theta d^8\\bar \\theta \\; \\frac {W^{4(0,4,0)}W^{4(0,4,0)}|_{\\mbox {singlet}}} {F_+^2-F_-^2}(\\frac {1}{F_+^4F_-^2} +\\frac {1}{F_-^4F_+^2}), $$",
"\\begin {eqnarray*} &&W^{ij}=\\frac {1}{2}\\epsilon ^{ijkl}{\\bar W}^{kl}\\\\ &&{\\bar D}_{i\\dot \\alpha }W^{jk}=\\frac {1}{3}(\\delta _i^jW^{lk}-\\delta _i^k{\\bar D}_{l\\dot \\alpha }W^{lj}),\\\\ &&D_\\alpha ^iW^{jk} +D_\\alpha ^jW^{ik}=0, \\end {eqnarray*}"
],
"latex_norm": [
"$ B $",
"$ F \\mapsto F + B $",
"$ W _ { \\alpha } = \\bar { D } \\bar { D } D _ { \\alpha } V $",
"$ V $",
"$ W _ { \\alpha } - L _ { \\alpha } $",
"$ L _ { \\alpha } $",
"$ B $",
"$ \\theta $",
"$ W _ { \\alpha } - L _ { \\alpha } $",
"$ U $",
"$ \\epsilon \\mapsto 0 $",
"$ B $",
"$ \\phi = \\chi _ { \\alpha } = 0 $",
"$ W _ { \\alpha } $",
"$ W _ { \\alpha } - \\theta _ { \\beta } \\sigma _ { \\alpha \\beta } ^ { \\mu \\nu } B _ { \\mu \\nu } $",
"$ O ( \\epsilon ) $",
"$ N = 2 $",
"$ W $",
"$ N = 2 $",
"$ \\alpha ^ { \\prime } \\mapsto 0 $",
"$ N = 2 $",
"$ N = 4 $",
"$ N = 4 $",
"$ W ^ { i j } = - W ^ { j i } $",
"\\begin{equation*} L _ { \\alpha } = \\theta ^ { \\beta } ( \\sigma _ { \\alpha \\beta } ^ { \\mu \\nu } B _ { \\mu \\nu } + \\epsilon _ { \\alpha \\beta } \\phi ) + \\theta ^ { 2 } \\chi _ { \\alpha } , \\end{equation*}",
"\\begin{align*} V & \\mapsto & V + U \\\\ L _ { \\alpha } & \\mapsto & L _ { \\alpha } + \\bar { D } ^ { 2 } D _ { \\alpha } U . \\end{align*}",
"\\begin{equation*} \\frac { F ^ { 2 } } { \\vert F \\widetilde { F } \\vert } \\end{equation*}",
"\\begin{equation*} L _ { S B I } ( N = 2 ) = \\int d ^ { 4 } \\theta d ^ { 4 } \\bar { \\theta } \\; \\frac { W ^ { 2 } \\bar { W } ^ { 2 } } { D ^ { 4 } W ^ { 2 } - \\bar { D } ^ { 4 } \\bar { W } ^ { 2 } } ( \\frac { 1 } { D ^ { 4 } W ^ { 2 } } + \\frac { 1 } { \\bar { D } ^ { 4 } \\bar { W } ^ { 2 } } ) \\end{equation*}",
"\\begin{equation*} L _ { S B I } ( N = 4 ) = \\int d ^ { 8 } \\theta d ^ { 8 } \\bar { \\theta } \\; \\frac { W ^ { 4 ( 0 , 4 , 0 ) } W ^ { 4 ( 0 , 4 , 0 ) } \\vert _ { s i n g l e t } } { F _ { + } ^ { 2 } - F _ { - } ^ { 2 } } ( \\frac { 1 } { F _ { + } ^ { 4 } F _ { - } ^ { 2 } } + \\frac { 1 } { F _ { - } ^ { 4 } F _ { + } ^ { 2 } } ) , \\end{equation*}",
"\\begin{align*} & & W ^ { i j } = \\frac { 1 } { 2 } \\epsilon ^ { i j k l } \\bar { W } ^ { k l } \\\\ & & \\bar { D } _ { i \\dot { \\alpha } } W ^ { j k } = \\frac { 1 } { 3 } ( \\delta _ { i } ^ { j } W ^ { l k } - \\delta _ { i } ^ { k } \\bar { D } _ { l \\dot { \\alpha } } W ^ { l j } ) , \\\\ & & D _ { \\alpha } ^ { i } W ^ { j k } + D _ { \\alpha } ^ { j } W ^ { i k } = 0 , \\end{align*}"
],
"latex_expand": [
"$ \\mitB $",
"$ \\mitF \\mapsto \\mitF + \\mitB $",
"$ \\mitW _ { \\mitalpha } = \\bar { \\mitD } \\bar { \\mitD } \\mitD _ { \\mitalpha } \\mitV $",
"$ \\mitV $",
"$ \\mitW _ { \\mitalpha } - \\mitL _ { \\mitalpha } $",
"$ \\mitL _ { \\mitalpha } $",
"$ \\mitB $",
"$ \\mittheta $",
"$ \\mitW _ { \\mitalpha } - \\mitL _ { \\mitalpha } $",
"$ \\mitU $",
"$ \\mitepsilon \\mapsto 0 $",
"$ \\mitB $",
"$ \\mitphi = \\mitchi _ { \\mitalpha } = 0 $",
"$ \\mitW _ { \\mitalpha } $",
"$ \\mitW _ { \\mitalpha } - \\mittheta _ { \\mitbeta } \\mitsigma _ { \\mitalpha \\mitbeta } ^ { \\mitmu \\mitnu } \\mitB _ { \\mitmu \\mitnu } $",
"$ \\mscrO ( \\mitepsilon ) $",
"$ \\mitN = 2 $",
"$ \\mitW $",
"$ \\mitN = 2 $",
"$ \\mitalpha ^ { \\prime } \\mapsto 0 $",
"$ \\mitN = 2 $",
"$ \\mitN = 4 $",
"$ \\mitN = 4 $",
"$ \\mitW ^ { \\miti \\mitj } = - \\mitW ^ { \\mitj \\miti } $",
"\\begin{equation*} \\mitL _ { \\mitalpha } = \\mittheta ^ { \\mitbeta } ( \\mitsigma _ { \\mitalpha \\mitbeta } ^ { \\mitmu \\mitnu } \\mitB _ { \\mitmu \\mitnu } + \\mitepsilon _ { \\mitalpha \\mitbeta } \\mitphi ) + \\mittheta ^ { 2 } \\mitchi _ { \\mitalpha } , \\end{equation*}",
"\\begin{align*} \\mitV & \\mapsto & \\mitV + \\mitU \\\\ \\mitL _ { \\mitalpha } & \\mapsto & \\mitL _ { \\mitalpha } + \\bar { \\mitD } ^ { 2 } \\mitD _ { \\mitalpha } \\mitU . \\end{align*}",
"\\begin{equation*} \\frac { \\mitF ^ { 2 } } { \\vert \\mitF \\tilde { \\mitF } \\vert } \\end{equation*}",
"\\begin{equation*} \\mscrL _ { \\mitS \\mitB \\mitI } ( \\mitN = 2 ) = \\int \\mitd ^ { 4 } \\mittheta \\mitd ^ { 4 } \\bar { \\mittheta } \\; \\frac { \\mitW ^ { 2 } \\bar { \\mitW } ^ { 2 } } { \\mitD ^ { 4 } \\mitW ^ { 2 } - \\bar { \\mitD } ^ { 4 } \\bar { \\mitW } ^ { 2 } } ( \\frac { 1 } { \\mitD ^ { 4 } \\mitW ^ { 2 } } + \\frac { 1 } { \\bar { \\mitD } ^ { 4 } \\bar { \\mitW } ^ { 2 } } ) \\end{equation*}",
"\\begin{equation*} \\mscrL _ { \\mitS \\mitB \\mitI } ( \\mitN = 4 ) = \\int \\mitd ^ { 8 } \\mittheta \\mitd ^ { 8 } \\bar { \\mittheta } \\; \\frac { \\mitW ^ { 4 ( 0 , 4 , 0 ) } \\mitW ^ { 4 ( 0 , 4 , 0 ) } \\vert _ { \\mathrm { s i n g l e t } } } { \\mitF _ { + } ^ { 2 } - \\mitF _ { - } ^ { 2 } } ( \\frac { 1 } { \\mitF _ { + } ^ { 4 } \\mitF _ { - } ^ { 2 } } + \\frac { 1 } { \\mitF _ { - } ^ { 4 } \\mitF _ { + } ^ { 2 } } ) , \\end{equation*}",
"\\begin{align*} & & \\mitW ^ { \\miti \\mitj } = \\frac { 1 } { 2 } \\mitepsilon ^ { \\miti \\mitj \\mitk \\mitl } \\bar { \\mitW } ^ { \\mitk \\mitl } \\\\ & & \\bar { \\mitD } _ { \\miti \\dot { \\mitalpha } } \\mitW ^ { \\mitj \\mitk } = \\frac { 1 } { 3 } ( \\mitdelta _ { \\miti } ^ { \\mitj } \\mitW ^ { \\mitl \\mitk } - \\mitdelta _ { \\miti } ^ { \\mitk } \\bar { \\mitD } _ { \\mitl \\dot { \\mitalpha } } \\mitW ^ { \\mitl \\mitj } ) , \\\\ & & \\mitD _ { \\mitalpha } ^ { \\miti } \\mitW ^ { \\mitj \\mitk } + \\mitD _ { \\mitalpha } ^ { \\mitj } \\mitW ^ { \\miti \\mitk } = 0 , \\end{align*}"
],
"x_min": [
0.29510000348091125,
0.48240000009536743,
0.3386000096797943,
0.4830999970436096,
0.1728000044822693,
0.3537999987602234,
0.7670999765396118,
0.2231999933719635,
0.5612000226974487,
0.23080000281333923,
0.5680999755859375,
0.8100000023841858,
0.446399986743927,
0.6274999976158142,
0.691100001335144,
0.2418999969959259,
0.47620001435279846,
0.23010000586509705,
0.3124000132083893,
0.7663999795913696,
0.27639999985694885,
0.23770000040531158,
0.26809999346733093,
0.5113999843597412,
0.3580000102519989,
0.40220001339912415,
0.47620001435279846,
0.24120000004768372,
0.20730000734329224,
0.3711000084877014
],
"y_min": [
0.15870000422000885,
0.15870000422000885,
0.1738000065088272,
0.17579999566078186,
0.19290000200271606,
0.19290000200271606,
0.19290000200271606,
0.20999999344348907,
0.2621999979019165,
0.3521000146865845,
0.36959999799728394,
0.36910000443458557,
0.3862000107765198,
0.3862000107765198,
0.38530001044273376,
0.41990000009536743,
0.5073000192642212,
0.5741999745368958,
0.5741999745368958,
0.573199987411499,
0.5913000106811523,
0.6083999872207642,
0.6826000213623047,
0.6812000274658203,
0.23240000009536743,
0.29829999804496765,
0.44290000200271606,
0.5288000106811523,
0.6309000253677368,
0.7188000082969666
],
"x_max": [
0.3116999864578247,
0.5888000130653381,
0.4699000120162964,
0.49970000982284546,
0.24879999458789825,
0.3772999942302704,
0.7836999893188477,
0.23360000550746918,
0.6358000040054321,
0.2467000037431717,
0.617900013923645,
0.8266000151634216,
0.5479999780654907,
0.656499981880188,
0.8266000151634216,
0.28200000524520874,
0.5307999849319458,
0.2515000104904175,
0.3677000105381012,
0.8258000016212463,
0.3310000002384186,
0.2922999858856201,
0.3310000002384186,
0.6295999884605408,
0.6371999979019165,
0.597100019454956,
0.5224999785423279,
0.7573999762535095,
0.7885000109672546,
0.6578999757766724
],
"y_max": [
0.16899999976158142,
0.16990000009536743,
0.18799999356269836,
0.18610000610351562,
0.20559999346733093,
0.20559999346733093,
0.20319999754428864,
0.22030000388622284,
0.274399995803833,
0.36239999532699585,
0.37940001487731934,
0.37940001487731934,
0.399399995803833,
0.39890000224113464,
0.4023999869823456,
0.4345000088214874,
0.5175999999046326,
0.5845000147819519,
0.5845000147819519,
0.5843999981880188,
0.6015999913215637,
0.6187000274658203,
0.6929000020027161,
0.6944000124931335,
0.25189998745918274,
0.3407000005245209,
0.4805000126361847,
0.5640000104904175,
0.6718999743461609,
0.8061000108718872
],
"expr_type": [
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"isolated",
"isolated",
"isolated",
"isolated",
"isolated",
"isolated"
]
} |
|
0002084_page20 | {
"latex": [
"$(a,b,c)$",
"$$ F_+^2=D^4_{0,2,0}W^{2(0,2,0)}|_{\\mbox {singlet}},\\qquad F_-^2={\\bar D}^4_{0,2,0}W^{2(0,2,0)}|_{\\mbox {singlet}}. $$"
],
"latex_norm": [
"$ ( a , b , c ) $",
"\\begin{equation*} F _ { + } ^ { 2 } = D _ { 0 , 2 , 0 } ^ { 4 } W ^ { 2 ( 0 , 2 , 0 ) } \\vert _ { s i n g l e t } , \\qquad F _ { - } ^ { 2 } = \\bar { D } _ { 0 , 2 , 0 } ^ { 4 } W ^ { 2 ( 0 , 2 , 0 ) } \\vert _ { s i n g l e t } . \\end{equation*}"
],
"latex_expand": [
"$ ( \\mita , \\mitb , \\mitc ) $",
"\\begin{equation*} \\mitF _ { + } ^ { 2 } = \\mitD _ { 0 , 2 , 0 } ^ { 4 } \\mitW ^ { 2 ( 0 , 2 , 0 ) } \\vert _ { \\mathrm { s i n g l e t } } , \\qquad \\mitF _ { - } ^ { 2 } = \\bar { \\mitD } _ { 0 , 2 , 0 } ^ { 4 } \\mitW ^ { 2 ( 0 , 2 , 0 ) } \\vert _ { \\mathrm { s i n g l e t } } . \\end{equation*}"
],
"x_min": [
0.2777999937534332,
0.24330000579357147
],
"y_min": [
0.22269999980926514,
0.18549999594688416
],
"x_max": [
0.3379000127315521,
0.7560999989509583
],
"y_max": [
0.2378000020980835,
0.20800000429153442
],
"expr_type": [
"embedded",
"isolated"
]
} |
|
0002106_page01 | {
"latex": [
"\\( ^{1} \\)",
"\\( ^{2} \\)",
"\\( ^{1} \\)",
"\\( ^{2} \\)",
"\\( D_{\\textrm {cr}}=4 \\)"
],
"latex_norm": [
"$ { } ^ { 1 } $",
"$ { } ^ { 2 } $",
"$ { } ^ { 1 } $",
"$ { } ^ { 2 } $",
"$ D _ { c r } = 4 $"
],
"latex_expand": [
"$ { } ^ { 1 } $",
"$ { } ^ { 2 } $",
"$ { } ^ { 1 } $",
"$ { } ^ { 2 } $",
"$ \\mitD _ { \\mathrm { c r } } = 4 $"
],
"x_min": [
0.48100000619888306,
0.6633999943733215,
0.20250000059604645,
0.19699999690055847,
0.18520000576972961
],
"y_min": [
0.27149999141693115,
0.27149999141693115,
0.33739998936653137,
0.39750000834465027,
0.61080002784729
],
"x_max": [
0.49070000648498535,
0.6730999946594238,
0.21080000698566437,
0.2053000032901764,
0.250900000333786
],
"y_max": [
0.2856999933719635,
0.28610000014305115,
0.3495999872684479,
0.4092000126838684,
0.6230000257492065
],
"expr_type": [
"embedded",
"embedded",
"embedded",
"embedded",
"embedded"
]
} |
|
0002106_page02 | {
"latex": [
"\\( a^{2}(\\phi ) \\)",
"\\( a^{2}(\\phi _{H})=0 \\)",
"\\( a^{2}(\\phi _{I})=\\infty \\)",
"\\( a^{2}(\\phi ) \\)",
"\\( D_{\\textrm {cr}}=4 \\)",
"\\( \\mathcal {N}=4 \\)",
"\\( a^{2}(\\phi ) \\)",
"\\( a^{2}(\\phi )\\varpropto e^{\\alpha \\phi } \\)",
"\\( \\mathcal {N}=4 \\)",
"\\( \\sigma \\)",
"\\begin {equation} \\label {1.1} ds^{2}=d\\phi ^{2}+a^{2}(\\phi )\\, d\\vec {x}\\, ^{2}\\; . \\end {equation}"
],
"latex_norm": [
"$ a ^ { 2 } ( \\phi ) $",
"$ a ^ { 2 } ( \\phi _ { H } ) = 0 $",
"$ a ^ { 2 } ( \\phi _ { I } ) = \\infty $",
"$ a ^ { 2 } ( \\phi ) $",
"$ D _ { c r } = 4 $",
"$ N = 4 $",
"$ a ^ { 2 } ( \\phi ) $",
"$ a ^ { 2 } ( \\phi ) \\propto e ^ { \\alpha \\phi } $",
"$ N = 4 $",
"$ \\sigma $",
"\\begin{equation*} d s ^ { 2 } = d \\phi ^ { 2 } + a ^ { 2 } ( \\phi ) \\, d \\vec { x } \\, { } ^ { 2 } \\; . \\end{equation*}"
],
"latex_expand": [
"$ \\mita ^ { 2 } ( \\mitphi ) $",
"$ \\mita ^ { 2 } ( \\mitphi _ { \\mitH } ) = 0 $",
"$ \\mita ^ { 2 } ( \\mitphi _ { \\mitI } ) = \\infty $",
"$ \\mita ^ { 2 } ( \\mitphi ) $",
"$ \\mitD _ { \\mathrm { c r } } = 4 $",
"$ \\mscrN = 4 $",
"$ \\mita ^ { 2 } ( \\mitphi ) $",
"$ \\mita ^ { 2 } ( \\mitphi ) \\propto \\mite ^ { \\mitalpha \\mitphi } $",
"$ \\mscrN = 4 $",
"$ \\mitsigma $",
"\\begin{equation*} \\mitd \\mits ^ { 2 } = \\mitd \\mitphi ^ { 2 } + \\mita ^ { 2 } ( \\mitphi ) \\, \\mitd \\vec { \\mitx } \\, { } ^ { 2 } \\; . \\end{equation*}"
],
"x_min": [
0.23010000586509705,
0.10920000076293945,
0.4104999899864197,
0.703499972820282,
0.5092999935150146,
0.8734999895095825,
0.5224999785423279,
0.3898000121116638,
0.26330000162124634,
0.6897000074386597,
0.414000004529953
],
"y_min": [
0.288100004196167,
0.33739998936653137,
0.33739998936653137,
0.33739998936653137,
0.44290000200271606,
0.5400000214576721,
0.5644999742507935,
0.6060000061988831,
0.6211000084877014,
0.8276000022888184,
0.25290000438690186
],
"x_max": [
0.27570000290870667,
0.20600000023841858,
0.5120999813079834,
0.7491000294685364,
0.5652999877929688,
0.9190999865531921,
0.621999979019165,
0.39259999990463257,
0.326200008392334,
0.7020999789237976,
0.6172000169754028
],
"y_max": [
0.3037000000476837,
0.35350000858306885,
0.35350000858306885,
0.35350000858306885,
0.4535999894142151,
0.5561000108718872,
0.5806000232696533,
0.6069999933242798,
0.6317999958992004,
0.8343999981880188,
0.27239999175071716
],
"expr_type": [
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"isolated"
]
} |
|
0002106_page03 | {
"latex": [
"\\( \\, \\)",
"\\( F_{\\mu \\nu } \\)",
"\\( W[C] \\)",
"\\begin {equation} \\label {2.1} W[C]=\\frac {1}{N}\\left \\langle \\textrm {Tr}P\\exp \\oint _{C}A_{\\mu }dx^{\\mu }\\right \\rangle \\; . \\end {equation}",
"\\[ S=\\frac {1}{4g_{YM}^{2}}\\int \\textrm {Tr}F_{\\mu \\nu }^{2}\\, (dx)\\]",
"\\begin {eqnarray} \\frac {\\delta ^{2}W}{\\delta x_{\\mu }(s)\\delta x_{\\mu }(s')}=\\left \\langle \\textrm {Tr}\\, P\\left ( \\nabla _{\\mu }F_{\\mu \\nu }(x(s))e^{\\oint A_{\\mu }dx_{\\mu }}\\right ) \\right \\rangle \\dot {x}_{\\nu }(s)\\delta (s-s')+ & & \\\\ \\left \\langle \\textrm {Tr}\\, P\\left ( F_{\\mu \\lambda }(x(s))F_{\\mu \\sigma }(x(s'))e^{\\oint A_{\\mu }dx_{\\mu }}\\right ) \\right \\rangle \\dot {x}_{\\lambda }(s)\\dot {x}_{\\sigma }(s') & & \\end {eqnarray}"
],
"latex_norm": [
"$ \\, $",
"$ F _ { \\mu \\nu } $",
"$ W [ C ] $",
"\\begin{equation*} W [ C ] = \\frac { 1 } { N } \\langle T r P \\operatorname { e x p } \\oint _ { C } A _ { \\mu } d x ^ { \\mu } \\rangle \\; . \\end{equation*}",
"\\begin{equation*} S = \\frac { 1 } { 4 g _ { Y M } ^ { 2 } } \\int T r F _ { \\mu \\nu } ^ { 2 } \\, ( d x ) \\end{equation*}",
"\\begin{align*} \\frac { \\delta ^ { 2 } W } { \\delta x _ { \\mu } ( s ) \\delta x _ { \\mu } ( s ^ { \\prime } ) } = \\langle T r \\, P ( \\nabla _ { \\mu } F _ { \\mu \\nu } ( x ( s ) ) e ^ { \\oint A _ { \\mu } d x _ { \\mu } } ) \\rangle \\dot { x } _ { \\nu } ( s ) \\delta ( s - s ^ { \\prime } ) + \\\\ \\langle T r \\, P ( F _ { \\mu \\lambda } ( x ( s ) ) F _ { \\mu \\sigma } ( x ( s ^ { \\prime } ) ) e ^ { \\oint A _ { \\mu } d x _ { \\mu } } ) \\rangle \\dot { x } _ { \\lambda } ( s ) \\dot { x } _ { \\sigma } ( s ^ { \\prime } ) \\end{align*}"
],
"latex_expand": [
"$ \\, $",
"$ \\mitF _ { \\mitmu \\mitnu } $",
"$ \\mitW [ \\mitC ] $",
"\\begin{equation*} \\mitW [ \\mitC ] = \\frac { 1 } { \\mitN } \\left\\langle \\mathrm { T r } \\mitP \\operatorname { e x p } \\oint _ { \\mitC } \\mitA _ { \\mitmu } \\mitd \\mitx ^ { \\mitmu } \\right\\rangle \\; . \\end{equation*}",
"\\begin{equation*} \\mitS = \\frac { 1 } { 4 \\mitg _ { \\mitY \\mitM } ^ { 2 } } \\int \\mathrm { T r } \\mitF _ { \\mitmu \\mitnu } ^ { 2 } \\, ( \\mitd \\mitx ) \\end{equation*}",
"\\begin{align*} \\frac { \\mitdelta ^ { 2 } \\mitW } { \\mitdelta \\mitx _ { \\mitmu } ( \\mits ) \\mitdelta \\mitx _ { \\mitmu } ( \\mits ^ { \\prime } ) } = \\left\\langle \\mathrm { T r } \\, \\mitP \\left( \\nabla _ { \\mitmu } \\mitF _ { \\mitmu \\mitnu } ( \\mitx ( \\mits ) ) \\mite ^ { \\oint \\mitA _ { \\mitmu } \\mitd \\mitx _ { \\mitmu } } \\right) \\right\\rangle \\dot { \\mitx } _ { \\mitnu } ( \\mits ) \\mitdelta ( \\mits - \\mits ^ { \\prime } ) + \\\\ \\left\\langle \\mathrm { T r } \\, \\mitP \\left( \\mitF _ { \\mitmu \\mitlambda } ( \\mitx ( \\mits ) ) \\mitF _ { \\mitmu \\mitsigma } ( \\mitx ( \\mits ^ { \\prime } ) ) \\mite ^ { \\oint \\mitA _ { \\mitmu } \\mitd \\mitx _ { \\mitmu } } \\right) \\right\\rangle \\dot { \\mitx } _ { \\mitlambda } ( \\mits ) \\dot { \\mitx } _ { \\mitsigma } ( \\mits ^ { \\prime } ) \\end{align*}"
],
"x_min": [
0.26739999651908875,
0.11680000275373459,
0.8715000152587891,
0.3605000078678131,
0.4104999899864197,
0.22599999606609344
],
"y_min": [
0.427700012922287,
0.7265999913215637,
0.7749000191688538,
0.6241000294685364,
0.6840999722480774,
0.7921000123023987
],
"x_max": [
0.33309999108314514,
0.14720000326633453,
0.9192000031471252,
0.6678000092506409,
0.6177999973297119,
0.7764000296592712
],
"y_max": [
0.44040000438690186,
0.7408000230789185,
0.7894999980926514,
0.6588000059127808,
0.7188000082969666,
0.8658000230789185
],
"expr_type": [
"embedded",
"embedded",
"embedded",
"isolated",
"isolated",
"isolated"
]
} |
|
0002106_page04 | {
"latex": [
"\\( P \\)",
"\\( W[C] \\)",
"\\( s=s' \\)",
"\\( \\Lambda \\)",
"\\( |s-s'|\\ll 1/\\Lambda \\)",
"\\( \\delta \\)",
"\\( s\\to s' \\)",
"\\( \\left \\{ \\mathcal {O}_{n}(x)\\right \\} \\)",
"\\( C \\)",
"\\( s=\\frac {s_{1}+s_{2}}{2} \\)",
"\\( \\Delta _{n} \\)",
"\\( \\log \\left | x(s_{1})-x(s_{2})\\right | \\)",
"\\( C \\)",
"\\( G_{n_{1}\\ldots n_{N}}(s_{1},\\ldots s_{N}) \\)",
"\\( \\delta (s-s') \\)",
"\\( x \\)",
"\\( s \\)",
"\\[ G_{n_{1}\\ldots n_{N}}(s_{1},\\ldots s_{N})=\\left \\langle \\textrm {Tr}P\\left ( \\mathcal {O}_{n_{1}}(x(s_{1}))\\mathcal {O}_{n_{2}}(x(s_{2}))\\ldots e^{\\oint _{C}A_{\\mu }dx_{\\mu }}\\right ) \\right \\rangle \\; .\\]",
"\\begin {equation} \\label {2.4} \\mathcal {O}_{n_{1}}(x(s_{1}))\\mathcal {O}_{n_{2}}(x(s_{2}))=\\sum \\frac {C^{m}_{n_{1}n_{2}}(x(s))}{\\left | x(s_{1})-x(s_{2})\\right | ^{\\Delta _{n_{1}}+\\Delta _{n_{2}}-\\Delta _{m}}}\\mathcal {O}_{m}(x(s)) \\end {equation}",
"\\[ \\delta (x(s)-x(s'))=\\lim _{\\Delta \\to 4}(4-\\Delta )\\frac {1}{|x(s)-x(s')|^{\\Delta }}\\; .\\]"
],
"latex_norm": [
"$ P $",
"$ W [ C ] $",
"$ s = s ^ { \\prime } $",
"$ \\Lambda $",
"$ \\vert s - s ^ { \\prime } \\vert \\ll 1 \\slash \\Lambda $",
"$ \\delta $",
"$ s \\rightarrow s ^ { \\prime } $",
"$ \\{ O _ { n } ( x ) \\} $",
"$ C $",
"$ s = \\frac { s _ { 1 } + s _ { 2 } } { 2 } $",
"$ \\Delta _ { n } $",
"$ l o g \\vert x ( s _ { 1 } ) - x ( s _ { 2 } ) \\vert $",
"$ C $",
"$ G _ { n _ { 1 } \\ldots n _ { N } } ( s _ { 1 } , \\ldots s _ { N } ) $",
"$ \\delta ( s - s ^ { \\prime } ) $",
"$ x $",
"$ s $",
"\\begin{equation*} G _ { n _ { 1 } \\ldots n _ { N } } ( s _ { 1 } , \\ldots s _ { N } ) = \\langle T r P ( O _ { n _ { 1 } } ( x ( s _ { 1 } ) ) O _ { n _ { 2 } } ( x ( s _ { 2 } ) ) \\ldots e ^ { \\oint _ { C } A _ { \\mu } d x _ { \\mu } } ) \\rangle \\; . \\end{equation*}",
"\\begin{equation*} O _ { n _ { 1 } } ( x ( s _ { 1 } ) ) O _ { n _ { 2 } } ( x ( s _ { 2 } ) ) = \\sum \\frac { C _ { n _ { 1 } n _ { 2 } } ^ { m } ( x ( s ) ) } { { \\vert x ( s _ { 1 } ) - x ( s _ { 2 } ) \\vert } ^ { \\Delta _ { n _ { 1 } } + \\Delta _ { n _ { 2 } } - \\Delta _ { m } } } O _ { m } ( x ( s ) ) \\end{equation*}",
"\\begin{equation*} \\delta ( x ( s ) - x ( s ^ { \\prime } ) ) = \\underset { \\Delta \\rightarrow 4 } { \\operatorname { l i m } } ( 4 - \\Delta ) \\frac { 1 } { \\vert x ( s ) - x ( s ^ { \\prime } ) \\vert ^ { \\Delta } } \\; . \\end{equation*}"
],
"latex_expand": [
"$ \\mitP $",
"$ \\mitW [ \\mitC ] $",
"$ \\mits = \\mits ^ { \\prime } $",
"$ \\mupLambda $",
"$ \\vert \\mits - \\mits ^ { \\prime } \\vert \\ll 1 \\slash \\mupLambda $",
"$ \\mitdelta $",
"$ \\mits \\rightarrow \\mits ^ { \\prime } $",
"$ \\left\\{ \\mscrO _ { \\mitn } ( \\mitx ) \\right\\} $",
"$ \\mitC $",
"$ \\mits = \\frac { \\mits _ { 1 } + \\mits _ { 2 } } { 2 } $",
"$ \\mupDelta _ { \\mitn } $",
"$ \\mathrm { l o g } \\left\\vert \\mitx ( \\mits _ { 1 } ) - \\mitx ( \\mits _ { 2 } ) \\right\\vert $",
"$ \\mitC $",
"$ \\mitG _ { \\mitn _ { 1 } \\ldots \\mitn _ { \\mitN } } ( \\mits _ { 1 } , \\ldots \\mits _ { \\mitN } ) $",
"$ \\mitdelta ( \\mits - \\mits ^ { \\prime } ) $",
"$ \\mitx $",
"$ \\mits $",
"\\begin{equation*} \\mitG _ { \\mitn _ { 1 } \\ldots \\mitn _ { \\mitN } } ( \\mits _ { 1 } , \\ldots \\mits _ { \\mitN } ) = \\left\\langle \\mathrm { T r } \\mitP \\left( \\mscrO _ { \\mitn _ { 1 } } ( \\mitx ( \\mits _ { 1 } ) ) \\mscrO _ { \\mitn _ { 2 } } ( \\mitx ( \\mits _ { 2 } ) ) \\ldots \\mite ^ { \\oint _ { \\mitC } \\mitA _ { \\mitmu } \\mitd \\mitx _ { \\mitmu } } \\right) \\right\\rangle \\; . \\end{equation*}",
"\\begin{equation*} \\mscrO _ { \\mitn _ { 1 } } ( \\mitx ( \\mits _ { 1 } ) ) \\mscrO _ { \\mitn _ { 2 } } ( \\mitx ( \\mits _ { 2 } ) ) = \\sum \\frac { \\mitC _ { \\mitn _ { 1 } \\mitn _ { 2 } } ^ { \\mitm } ( \\mitx ( \\mits ) ) } { { \\left\\vert \\mitx ( \\mits _ { 1 } ) - \\mitx ( \\mits _ { 2 } ) \\right\\vert } ^ { \\mupDelta _ { \\mitn _ { 1 } } + \\mupDelta _ { \\mitn _ { 2 } } - \\mupDelta _ { \\mitm } } } \\mscrO _ { \\mitm } ( \\mitx ( \\mits ) ) \\end{equation*}",
"\\begin{equation*} \\mitdelta ( \\mitx ( \\mits ) - \\mitx ( \\mits ^ { \\prime } ) ) = \\underset { \\mupDelta \\rightarrow 4 } { \\operatorname { l i m } } ( 4 - \\mupDelta ) \\frac { 1 } { \\vert \\mitx ( \\mits ) - \\mitx ( \\mits ^ { \\prime } ) \\vert ^ { \\mupDelta } } \\; . \\end{equation*}"
],
"x_min": [
0.17350000143051147,
0.4043000042438507,
0.17970000207424164,
0.9053000211715698,
0.2605000138282776,
0.21770000457763672,
0.22460000216960907,
0.37040001153945923,
0.3912000060081482,
0.1720999926328659,
0.2930000126361847,
0.6917999982833862,
0.10920000076293945,
0.40220001339912415,
0.6517000198364258,
0.6011999845504761,
0.14309999346733093,
0.23010000586509705,
0.23839999735355377,
0.31859999895095825
],
"y_min": [
0.09130000323057175,
0.1445000022649765,
0.19429999589920044,
0.22509999573230743,
0.2485000044107437,
0.27390000224113464,
0.3725999891757965,
0.4018999934196472,
0.49799999594688416,
0.5946999788284302,
0.5961999893188477,
0.6201000213623047,
0.7002000212669373,
0.6991999745368958,
0.7240999937057495,
0.7534000277519226,
0.7778000235557556,
0.45509999990463257,
0.5435000061988831,
0.7997999787330627
],
"x_max": [
0.18940000236034393,
0.4526999890804291,
0.23010000586509705,
0.9190999865531921,
0.3896999955177307,
0.227400004863739,
0.2791999876499176,
0.4429999887943268,
0.40709999203681946,
0.250900000333786,
0.31929999589920044,
0.8445000052452087,
0.1251000016927719,
0.5569999814033508,
0.7228999733924866,
0.6129000186920166,
0.15279999375343323,
0.7982000112533569,
0.7919999957084656,
0.7098000049591064
],
"y_max": [
0.10159999877214432,
0.15960000455379486,
0.20550000667572021,
0.2354000061750412,
0.2635999917984009,
0.28459998965263367,
0.3833000063896179,
0.4169999957084656,
0.5083000063896179,
0.6118000149726868,
0.6089000105857849,
0.6347000002861023,
0.7105000019073486,
0.7142999768257141,
0.7386999726295471,
0.760200023651123,
0.784600019454956,
0.48240000009536743,
0.5835000276565552,
0.8330000042915344
],
"expr_type": [
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"isolated",
"isolated",
"isolated"
]
} |
|
0002106_page05 | {
"latex": [
"\\( s=s' \\)",
"\\( C_{n}(s,\\{x(s)\\})\\varpropto \\left \\langle \\textrm {Tr}P\\left ( \\mathcal {O}_{n}(x(s))e^{\\oint A\\, dx}\\right ) \\right \\rangle \\)",
"\\( |x(s)-x(s')|\\approx \\sqrt {\\dot {x}^{2}(s)}|s-s'| \\)",
"\\( s\\to s' \\)",
"\\( s=s' \\)",
"\\( \\widehat {{L}}(s)W \\)",
"\\( \\delta \\)",
"\\( p \\)",
"\\( \\delta \\)",
"\\( W[C] \\)",
"\\( \\Delta _{n} \\)",
"\\( p^{k}(\\log p+\\textrm {const}) \\)",
"\\( \\nabla _{\\alpha }F_{\\beta \\gamma } \\)",
"\\( F_{\\mu \\nu } \\)",
"\\( \\dot {x}_{\\lambda }(s)\\dot {x}_{\\sigma }(s') \\)",
"\\[ \\int \\delta (x(s)-x(s'))\\, f(s')\\, ds'\\, =\\lim _{\\Delta \\to 4}(4-\\Delta )\\int \\frac {f(s')\\, ds'}{|x(s)-x(s')|^{\\Delta }}=0\\; ,\\]",
"\\begin {equation} \\label {2.6} \\frac {\\delta ^{2}W}{\\delta x_{\\mu }(s)\\delta x_{\\mu }(s')}=(\\widehat {{L}}(s)W)\\delta (s-s')+\\sum _{n}\\frac {C_{n}(s,\\{x(s)\\})}{|x(s)-x(s')|^{4-\\Delta _{n}}}\\; , \\end {equation}",
"\\begin {equation} \\label {2.65} \\widehat {L}(s)W=0\\; . \\end {equation}",
"\\begin {equation} \\label {2.7} \\lim _{p\\to \\infty }\\frac {\\delta ^{2}W}{\\delta x_{\\mu }\\left ( \\frac {q}{2}+p\\right ) \\delta x_{\\mu }\\left ( \\frac {q}{2}-p\\right ) }=(\\widehat {{L}}_{q}W)p^{0}+\\sum _{n}C_{n}(q)|p|^{\\lambda _{n}}\\; . \\end {equation}",
"\\[ F_{\\mu \\lambda }(x(s))F_{\\mu \\sigma }(x(s'))\\sim \\frac {(x(s)-x(s'))_{\\mu }\\nabla _{\\mu }F_{\\lambda \\sigma }}{\\left | x(s)-x(s')\\right | ^{2}}\\; .\\]"
],
"latex_norm": [
"$ s = s ^ { \\prime } $",
"$ C _ { n } ( s , \\{ x ( s ) \\} ) \\propto \\langle T r P ( O _ { n } ( x ( s ) ) e ^ { \\oint A \\, d x } ) \\rangle $",
"$ \\vert x ( s ) - x ( s ^ { \\prime } ) \\vert \\approx \\sqrt { \\dot { x } ^ { 2 } ( s ) } \\vert s - s ^ { \\prime } \\vert $",
"$ s \\rightarrow s ^ { \\prime } $",
"$ s = s ^ { \\prime } $",
"$ \\hat { L } ( s ) W $",
"$ \\delta $",
"$ p $",
"$ \\delta $",
"$ W [ C ] $",
"$ \\Delta _ { n } $",
"$ p ^ { k } ( l o g p + c o n s t ) $",
"$ \\nabla _ { \\alpha } F _ { \\beta \\gamma } $",
"$ F _ { \\mu \\nu } $",
"$ \\dot { x } _ { \\lambda } ( s ) \\dot { x } _ { \\sigma } ( s ^ { \\prime } ) $",
"\\begin{equation*} \\int \\delta ( x ( s ) - x ( s ^ { \\prime } ) ) \\, f ( s ^ { \\prime } ) \\, d s ^ { \\prime } \\, = \\underset { \\Delta \\rightarrow 4 } { \\operatorname { l i m } } ( 4 - \\Delta ) \\int \\frac { f ( s ^ { \\prime } ) \\, d s ^ { \\prime } } { \\vert x ( s ) - x ( s ^ { \\prime } ) \\vert ^ { \\Delta } } = 0 \\; , \\end{equation*}",
"\\begin{equation*} \\frac { \\delta ^ { 2 } W } { \\delta x _ { \\mu } ( s ) \\delta x _ { \\mu } ( s ^ { \\prime } ) } = ( \\hat { L } ( s ) W ) \\delta ( s - s ^ { \\prime } ) + \\sum _ { n } \\frac { C _ { n } ( s , \\{ x ( s ) \\} ) } { \\vert x ( s ) - x ( s ^ { \\prime } ) \\vert ^ { 4 - \\Delta _ { n } } } \\; , \\end{equation*}",
"\\begin{equation*} \\hat { L } ( s ) W = 0 \\; . \\end{equation*}",
"\\begin{equation*} \\underset { p \\rightarrow \\infty } { \\operatorname { l i m } } \\frac { \\delta ^ { 2 } W } { \\delta x _ { \\mu } ( \\frac { q } { 2 } + p ) \\delta x _ { \\mu } ( \\frac { q } { 2 } - p ) } = ( \\hat { L } _ { q } W ) p ^ { 0 } + \\sum _ { n } C _ { n } ( q ) \\vert p \\vert ^ { \\lambda _ { n } } \\; . \\end{equation*}",
"\\begin{equation*} F _ { \\mu \\lambda } ( x ( s ) ) F _ { \\mu \\sigma } ( x ( s ^ { \\prime } ) ) \\sim \\frac { ( x ( s ) - x ( s ^ { \\prime } ) ) _ { \\mu } \\nabla _ { \\mu } F _ { \\lambda \\sigma } } { { \\vert x ( s ) - x ( s ^ { \\prime } ) \\vert } ^ { 2 } } \\; . \\end{equation*}"
],
"latex_expand": [
"$ \\mits = \\mits ^ { \\prime } $",
"$ \\mitC _ { \\mitn } ( \\mits , \\{ \\mitx ( \\mits ) \\} ) \\propto \\left\\langle \\mathrm { T r } \\mitP \\left( \\mscrO _ { \\mitn } ( \\mitx ( \\mits ) ) \\mite ^ { \\oint \\nolimits \\mitA \\, \\mitd \\mitx } \\right) \\right\\rangle $",
"$ \\vert \\mitx ( \\mits ) - \\mitx ( \\mits ^ { \\prime } ) \\vert \\approx \\sqrt { \\dot { \\mitx } ^ { 2 } ( \\mits ) } \\vert \\mits - \\mits ^ { \\prime } \\vert $",
"$ \\mits \\rightarrow \\mits ^ { \\prime } $",
"$ \\mits = \\mits ^ { \\prime } $",
"$ \\widehat { \\mitL } ( \\mits ) \\mitW $",
"$ \\mitdelta $",
"$ \\mitp $",
"$ \\mitdelta $",
"$ \\mitW [ \\mitC ] $",
"$ \\mupDelta _ { \\mitn } $",
"$ \\mitp ^ { \\mitk } ( \\mathrm { l o g } \\mitp + \\mathrm { c o n s t } ) $",
"$ \\nabla _ { \\mitalpha } \\mitF _ { \\mitbeta \\mitgamma } $",
"$ \\mitF _ { \\mitmu \\mitnu } $",
"$ \\dot { \\mitx } _ { \\mitlambda } ( \\mits ) \\dot { \\mitx } _ { \\mitsigma } ( \\mits ^ { \\prime } ) $",
"\\begin{equation*} \\int \\mitdelta ( \\mitx ( \\mits ) - \\mitx ( \\mits ^ { \\prime } ) ) \\, \\mitf ( \\mits ^ { \\prime } ) \\, \\mitd \\mits ^ { \\prime } \\, = \\underset { \\mupDelta \\rightarrow 4 } { \\operatorname { l i m } } ( 4 - \\mupDelta ) \\int \\frac { \\mitf ( \\mits ^ { \\prime } ) \\, \\mitd \\mits ^ { \\prime } } { \\vert \\mitx ( \\mits ) - \\mitx ( \\mits ^ { \\prime } ) \\vert ^ { \\mupDelta } } = 0 \\; , \\end{equation*}",
"\\begin{equation*} \\frac { \\mitdelta ^ { 2 } \\mitW } { \\mitdelta \\mitx _ { \\mitmu } ( \\mits ) \\mitdelta \\mitx _ { \\mitmu } ( \\mits ^ { \\prime } ) } = ( \\widehat { \\mitL } ( \\mits ) \\mitW ) \\mitdelta ( \\mits - \\mits ^ { \\prime } ) + \\sum _ { \\mitn } \\frac { \\mitC _ { \\mitn } ( \\mits , \\{ \\mitx ( \\mits ) \\} ) } { \\vert \\mitx ( \\mits ) - \\mitx ( \\mits ^ { \\prime } ) \\vert ^ { 4 - \\mupDelta _ { \\mitn } } } \\; , \\end{equation*}",
"\\begin{equation*} \\widehat { \\mitL } ( \\mits ) \\mitW = 0 \\; . \\end{equation*}",
"\\begin{equation*} \\underset { \\mitp \\rightarrow \\infty } { \\operatorname { l i m } } \\frac { \\mitdelta ^ { 2 } \\mitW } { \\mitdelta \\mitx _ { \\mitmu } \\left( \\frac { \\mitq } { 2 } + \\mitp \\right) \\mitdelta \\mitx _ { \\mitmu } \\left( \\frac { \\mitq } { 2 } - \\mitp \\right) } = ( \\widehat { \\mitL } _ { \\mitq } \\mitW ) \\mitp ^ { 0 } + \\sum _ { \\mitn } \\mitC _ { \\mitn } ( \\mitq ) \\vert \\mitp \\vert ^ { \\mitlambda _ { \\mitn } } \\; . \\end{equation*}",
"\\begin{equation*} \\mitF _ { \\mitmu \\mitlambda } ( \\mitx ( \\mits ) ) \\mitF _ { \\mitmu \\mitsigma } ( \\mitx ( \\mits ^ { \\prime } ) ) \\sim \\frac { ( \\mitx ( \\mits ) - \\mitx ( \\mits ^ { \\prime } ) ) _ { \\mitmu } \\nabla _ { \\mitmu } \\mitF _ { \\mitlambda \\mitsigma } } { { \\left\\vert \\mitx ( \\mits ) - \\mitx ( \\mits ^ { \\prime } ) \\right\\vert } ^ { 2 } } \\; . \\end{equation*}"
],
"x_min": [
0.2134999930858612,
0.16859999299049377,
0.597100019454956,
0.5708000063896179,
0.10920000076293945,
0.8355000019073486,
0.2134999930858612,
0.9031999707221985,
0.4546999931335449,
0.10920000076293945,
0.7049000263214111,
0.16519999504089355,
0.32690000534057617,
0.484499990940094,
0.4277999997138977,
0.23430000245571136,
0.2549999952316284,
0.460999995470047,
0.26330000162124634,
0.31790000200271606
],
"y_min": [
0.18549999594688416,
0.3163999915122986,
0.3158999979496002,
0.3433000147342682,
0.36820000410079956,
0.36469998955726624,
0.39309999346733093,
0.5727999806404114,
0.5932999849319458,
0.6172000169754028,
0.6478999853134155,
0.6708999872207642,
0.7221999764442444,
0.7949000000953674,
0.8438000082969666,
0.11469999700784683,
0.26170000433921814,
0.4214000105857849,
0.490200012922287,
0.7461000084877014
],
"x_max": [
0.26330000162124634,
0.5210999846458435,
0.8762999773025513,
0.631600022315979,
0.163100004196167,
0.8956000208854675,
0.2231999933719635,
0.9136000275611877,
0.4650999903678894,
0.15690000355243683,
0.7311999797821045,
0.30550000071525574,
0.38429999351501465,
0.5149000287055969,
0.5231999754905701,
0.7878999710083008,
0.772599995136261,
0.5702000260353088,
0.7635999917984009,
0.7103999853134155
],
"y_max": [
0.19670000672340393,
0.3345000147819519,
0.33399999141693115,
0.3544999957084656,
0.3788999915122986,
0.38280001282691956,
0.40380001068115234,
0.582099974155426,
0.6039999723434448,
0.6323000192642212,
0.6606000065803528,
0.6865000128746033,
0.7368000149726868,
0.809499979019165,
0.8583999872207642,
0.14990000426769257,
0.30469998717308044,
0.44290000200271606,
0.5327000021934509,
0.7827000021934509
],
"expr_type": [
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"isolated",
"isolated",
"isolated",
"isolated",
"isolated"
]
} |
|
0002106_page06 | {
"latex": [
"\\( s\\Rightarrow \\alpha (s) \\)",
"\\( s\\Rightarrow \\alpha (s) \\)",
"\\( \\alpha '(s) \\)",
"\\( \\dot {x}^{2} \\)",
"\\( \\varpropto p^{n} \\)",
"\\( n \\)",
"\\( \\sigma \\protect \\)",
"\\( \\sigma \\)",
"\\begin {equation} \\label {2.8} W[C]=\\sum _{n}\\int _{s_{1}<s_{2}\\ldots <s_{n}}\\Gamma ^{(n)}_{\\mu _{1}\\ldots \\mu _{n}}(x(s_{1}),\\ldots x(s_{n}))\\, \\dot {x}_{\\mu _{1}}(s_{1})\\ldots \\dot {x}_{\\mu _{n}}(s_{n})\\, ds_{1}\\ldots ds_{n} \\end {equation}",
"\\[ I_{\\alpha \\beta }=\\int ds\\left ( \\frac {\\ddot {x}_{\\alpha }\\dot {x}_{\\beta }-\\ddot {x}_{\\beta }\\dot {x}_{\\alpha }}{\\dot {x}^{2}}\\right ) \\, .\\]",
"\\begin {eqnarray} S & = & \\frac {1}{2}\\int d^{2}\\xi \\sqrt {{g}}g^{ab}(\\xi )G_{MN}(z(\\xi ))\\partial _{a}z^{M}\\partial _{b}z^{N}+\\Phi (z(\\xi ))\\, ^{(2)}\\! R(g)\\sqrt {{g}}\\\\ && \\quad +\\, \\epsilon ^{ab}B_{MN}(z(\\xi ))\\partial _{a}z^{M}\\partial _{b}z^{N}+\\textrm {other background fields}+\\textrm {fermions}.\\end {eqnarray}"
],
"latex_norm": [
"$ s \\Rightarrow \\alpha ( s ) $",
"$ s \\Rightarrow \\alpha ( s ) $",
"$ \\alpha ^ { \\prime } ( s ) $",
"$ \\dot { x } ^ { 2 } $",
"$ \\propto p ^ { n } $",
"$ n $",
"$ \\sigma $",
"$ \\sigma $",
"\\begin{equation*} W [ C ] = \\sum _ { n } \\int _ { s _ { 1 } < s _ { 2 } \\ldots < s _ { n } } \\Gamma _ { \\mu _ { 1 } \\ldots \\mu _ { n } } ^ { ( n ) } ( x ( s _ { 1 } ) , \\ldots x ( s _ { n } ) ) \\, \\dot { x } _ { \\mu _ { 1 } } ( s _ { 1 } ) \\ldots \\dot { x } _ { \\mu _ { n } } ( s _ { n } ) \\, d s _ { 1 } \\ldots d s _ { n } \\end{equation*}",
"\\begin{equation*} I _ { \\alpha \\beta } = \\int d s ( \\frac { \\ddot { x } _ { \\alpha } \\dot { x } _ { \\beta } - \\ddot { x } _ { \\beta } \\dot { x } _ { \\alpha } } { \\dot { x } ^ { 2 } } ) \\, . \\end{equation*}",
"\\begin{align*} S & = & \\frac { 1 } { 2 } \\int d ^ { 2 } \\xi \\sqrt { g } g ^ { a b } ( \\xi ) G _ { M N } ( z ( \\xi ) ) \\partial _ { a } z ^ { M } \\partial _ { b } z ^ { N } + \\Phi ( z ( \\xi ) ) \\, { } ^ { ( 2 ) } \\! R ( g ) \\sqrt { g } \\\\ & & \\quad + \\, \\epsilon ^ { a b } B _ { M N } ( z ( \\xi ) ) \\partial _ { a } z ^ { M } \\partial _ { b } z ^ { N } + o t h e r ~ b a c k g r o u n d ~ f i e l d s + f e r m i o n s . \\end{align*}"
],
"latex_expand": [
"$ \\mits \\Rightarrow \\mitalpha ( \\mits ) $",
"$ \\mits \\Rightarrow \\mitalpha ( \\mits ) $",
"$ \\mitalpha ^ { \\prime } ( \\mits ) $",
"$ \\dot { \\mitx } ^ { 2 } $",
"$ \\propto \\mitp ^ { \\mitn } $",
"$ \\mitn $",
"$ \\mitsigma $",
"$ \\mitsigma $",
"\\begin{equation*} \\mitW [ \\mitC ] = \\sum _ { \\mitn } \\int _ { \\mits _ { 1 } < \\mits _ { 2 } \\ldots < \\mits _ { \\mitn } } \\mupGamma _ { \\mitmu _ { 1 } \\ldots \\mitmu _ { \\mitn } } ^ { ( \\mitn ) } ( \\mitx ( \\mits _ { 1 } ) , \\ldots \\mitx ( \\mits _ { \\mitn } ) ) \\, \\dot { \\mitx } _ { \\mitmu _ { 1 } } ( \\mits _ { 1 } ) \\ldots \\dot { \\mitx } _ { \\mitmu _ { \\mitn } } ( \\mits _ { \\mitn } ) \\, \\mitd \\mits _ { 1 } \\ldots \\mitd \\mits _ { \\mitn } \\end{equation*}",
"\\begin{equation*} \\mitI _ { \\mitalpha \\mitbeta } = \\int \\mitd \\mits \\left( \\frac { \\ddot { \\mitx } _ { \\mitalpha } \\dot { \\mitx } _ { \\mitbeta } - \\ddot { \\mitx } _ { \\mitbeta } \\dot { \\mitx } _ { \\mitalpha } } { \\dot { \\mitx } ^ { 2 } } \\right) \\, . \\end{equation*}",
"\\begin{align*} \\mitS & = & \\frac { 1 } { 2 } \\int \\mitd ^ { 2 } \\mitxi \\sqrt { \\mitg } \\mitg ^ { \\mita \\mitb } ( \\mitxi ) \\mitG _ { \\mitM \\mitN } ( \\mitz ( \\mitxi ) ) \\mitpartial _ { \\mita } \\mitz ^ { \\mitM } \\mitpartial _ { \\mitb } \\mitz ^ { \\mitN } + \\mupPhi ( \\mitz ( \\mitxi ) ) \\, { } ^ { ( 2 ) } \\! \\mitR ( \\mitg ) \\sqrt { \\mitg } \\\\ & & \\quad + \\, \\mitepsilon ^ { \\mita \\mitb } \\mitB _ { \\mitM \\mitN } ( \\mitz ( \\mitxi ) ) \\mitpartial _ { \\mita } \\mitz ^ { \\mitM } \\mitpartial _ { \\mitb } \\mitz ^ { \\mitN } + \\mathrm { o t h e r ~ b a c k g r o u n d ~ f i e l d s + f e r m i o n s } . \\end{align*}"
],
"x_min": [
0.8831999897956848,
0.10920000076293945,
0.3869999945163727,
0.557699978351593,
0.2833000123500824,
0.3772999942302704,
0.7926999926567078,
0.8486999869346619,
0.19349999725818634,
0.3869999945163727,
0.19419999420642853
],
"y_min": [
0.25200000405311584,
0.2768999934196472,
0.2768999934196472,
0.42820000648498535,
0.5034000277519226,
0.5073000192642212,
0.6182000041007996,
0.7143999934196472,
0.11720000207424164,
0.3544999957084656,
0.7577999830245972
],
"x_max": [
0.9240000247955322,
0.14650000631809235,
0.42980000376701355,
0.5777000188827515,
0.3255000114440918,
0.3896999955177307,
0.810699999332428,
0.8611000180244446,
0.8375999927520752,
0.6413000226020813,
0.8341000080108643
],
"y_max": [
0.2671000063419342,
0.2915000021457672,
0.2915000021457672,
0.4399000108242035,
0.5170999765396118,
0.5141000151634216,
0.6274999976158142,
0.7207000255584717,
0.1581999957561493,
0.3896999955177307,
0.8217999935150146
],
"expr_type": [
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"isolated",
"isolated",
"isolated"
]
} |
|
0002106_page07 | {
"latex": [
"\\( z^{M}=(x^{\\mu },y) \\)",
"\\( G_{MN} \\)",
"\\( \\beta \\)",
"\\( g^{ab} \\)",
"\\( \\rho (y) \\)",
"\\( V \\)",
"\\( \\textrm {Tr}F_{\\mu \\nu }^{2} \\)",
"\\( S \\)",
"\\begin {equation} \\label {3.2} ds^{2}=\\rho (y)(dy^{2}+d\\vec {x}\\, ^{2})\\; . \\end {equation}",
"\\[ V_{\\mu \\nu }=\\int d^{2}\\xi \\left ( \\vphantom {\\sum }\\psi _{\\vec {p}}(y(\\xi ))\\partial _{a}x^{\\mu }\\partial _{a}x^{\\nu }\\right ) e^{i\\vec {p}\\, \\vec {x}(\\xi )}\\]",
"\\begin {equation} \\label {3.4} \\begin {array}{c} \\textrm {Closed string}\\\\ \\textrm {states} \\end {array}\\Longleftrightarrow \\begin {array}{c} \\textrm {Gauge invariant}\\\\ \\textrm {operators}. \\end {array} \\end {equation}",
"\\[ \\textrm {Tr}P\\exp \\oint \\limits _{C}A\\, dx\\mathop {\\approx }_{C\\to 0}I+C_{\\mu \\nu \\lambda \\sigma }\\textrm {Tr}(F_{\\mu \\nu }F_{\\lambda \\sigma })+\\ldots \\]"
],
"latex_norm": [
"$ z ^ { M } = ( x ^ { \\mu } , y ) $",
"$ G _ { M N } $",
"$ \\beta $",
"$ g ^ { a b } $",
"$ \\rho ( y ) $",
"$ V $",
"$ T r F _ { \\mu \\nu } ^ { 2 } $",
"$ S $",
"\\begin{equation*} d s ^ { 2 } = \\rho ( y ) ( d y ^ { 2 } + d \\vec { x } \\, { } ^ { 2 } ) \\; . \\end{equation*}",
"\\begin{equation*} V _ { \\mu \\nu } = \\int d ^ { 2 } \\xi ( \\psi _ { \\vec { p } } ( y ( \\xi ) ) \\partial _ { a } x ^ { \\mu } \\partial _ { a } x ^ { \\nu } ) e ^ { i \\vec { p } \\, \\vec { x } ( \\xi ) } \\end{equation*}",
"\\begin{align*} \\begin{array}{c} C l o s e d ~ s t r i n g \\\\ s t a t e s \\end{array} \\Longleftrightarrow \\begin{array}{c} G a u g e ~ i n v a r i a n t \\\\ o p e r a t o r s . \\end{array} \\end{align*}",
"\\begin{equation*} T r P \\operatorname { e x p } \\oint _ { C } A \\, d x \\underset { C \\rightarrow 0 } { \\approx } I + C _ { \\mu \\nu \\lambda \\sigma } T r ( F _ { \\mu \\nu } F _ { \\lambda \\sigma } ) + \\ldots \\end{equation*}"
],
"latex_expand": [
"$ \\mitz ^ { \\mitM } = ( \\mitx ^ { \\mitmu } , \\mity ) $",
"$ \\mitG _ { \\mitM \\mitN } $",
"$ \\mitbeta $",
"$ \\mitg ^ { \\mita \\mitb } $",
"$ \\mitrho ( \\mity ) $",
"$ \\mitV $",
"$ \\mathrm { T r } \\mitF _ { \\mitmu \\mitnu } ^ { 2 } $",
"$ \\mitS $",
"\\begin{equation*} \\mitd \\mits ^ { 2 } = \\mitrho ( \\mity ) ( \\mitd \\mity ^ { 2 } + \\mitd \\vec { \\mitx } \\, { } ^ { 2 } ) \\; . \\end{equation*}",
"\\begin{equation*} \\mitV _ { \\mitmu \\mitnu } = \\int \\mitd ^ { 2 } \\mitxi \\left( \\mitpsi _ { \\vec { \\mitp } } ( \\mity ( \\mitxi ) ) \\mitpartial _ { \\mita } \\mitx ^ { \\mitmu } \\mitpartial _ { \\mita } \\mitx ^ { \\mitnu } \\right) \\mite ^ { \\miti \\vec { \\mitp } \\, \\vec { \\mitx } ( \\mitxi ) } \\end{equation*}",
"\\begin{align*} \\begin{array}{c} \\mathrm { C l o s e d ~ s t r i n g } \\\\ \\mathrm { s t a t e s } \\end{array} \\Longleftrightarrow \\begin{array}{c} \\mathrm { G a u g e ~ i n v a r i a n t } \\\\ \\mathrm { o p e r a t o r s } . \\end{array} \\end{align*}",
"\\begin{equation*} \\mathrm { T r } \\mitP \\operatorname { e x p } \\oint \\limits _ { \\mitC } \\mitA \\, \\mitd \\mitx \\underset { \\mitC \\rightarrow 0 } { \\approx } \\mitI + \\mitC _ { \\mitmu \\mitnu \\mitlambda \\mitsigma } \\mathrm { T r } ( \\mitF _ { \\mitmu \\mitnu } \\mitF _ { \\mitlambda \\mitsigma } ) + \\ldots \\end{equation*}"
],
"x_min": [
0.3801000118255615,
0.274399995803833,
0.6087999939918518,
0.14309999346733093,
0.5404000282287598,
0.7353000044822693,
0.8016999959945679,
0.10920000076293945,
0.4133000075817108,
0.34549999237060547,
0.353300005197525,
0.3116999864578247
],
"y_min": [
0.08789999783039093,
0.11429999768733978,
0.19189999997615814,
0.21480000019073486,
0.45210000872612,
0.4530999958515167,
0.5952000021934509,
0.7821999788284302,
0.14890000224113464,
0.40529999136924744,
0.5347999930381775,
0.6762999892234802
],
"x_max": [
0.49000000953674316,
0.31859999895095825,
0.6219000220298767,
0.1679999977350235,
0.5770000219345093,
0.7512000203132629,
0.8521000146865845,
0.12300000339746475,
0.617900013923645,
0.682699978351593,
0.6777999997138977,
0.7131999731063843
],
"y_max": [
0.10400000214576721,
0.1274999976158142,
0.20559999346733093,
0.2303999960422516,
0.4677000045776367,
0.46380001306533813,
0.6128000020980835,
0.792900025844574,
0.16840000450611115,
0.43849998712539673,
0.578000009059906,
0.7192999720573425
],
"expr_type": [
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"isolated",
"isolated",
"isolated",
"isolated"
]
} |
|
0002106_page08 | {
"latex": [
"\\( N \\)",
"\\( SU(N) \\)",
"\\( \\sigma \\)",
"\\( N \\)",
"\\( \\vec {x} \\)",
"\\( \\vec {x}|_{\\partial D}=\\vec {x}(s) \\)",
"\\( y|_{\\partial D} \\)",
"\\( \\rho (y) \\)",
"\\( y|_{\\partial D} \\)",
"\\( \\sqrt {g} \\)",
"\\( \\rho (y) \\)",
"\\( y|_{\\partial D} \\)",
"\\[ W[\\vec {x}(s)]=\\int \\limits _{\\left \\{ \\begin {array}{c} \\vec {x}|_{\\partial D}=\\vec {x}(s)\\\\ y|_{\\partial D}=? \\end {array}\\right . }\\mathcal {D}y(\\xi )\\mathcal {D}\\vec {x}(\\xi )e^{-S[\\vec {x}(\\xi ),y(\\xi )]}\\; .\\]",
"\\[ \\rho (y_{H})=0\\quad \\textrm {and}\\quad \\rho (y_{I})=\\infty \\; .\\]"
],
"latex_norm": [
"$ N $",
"$ S U ( N ) $",
"$ \\sigma $",
"$ N $",
"$ \\vec { x } $",
"$ \\vec { x } \\vert _ { \\partial D } = \\vec { x } ( s ) $",
"$ y \\vert _ { \\partial D } $",
"$ \\rho ( y ) $",
"$ y \\vert _ { \\partial D } $",
"$ \\sqrt { g } $",
"$ \\rho ( y ) $",
"$ y \\vert _ { \\partial D } $",
"\\begin{align*} W [ \\vec { x } ( s ) ] = \\int _ { \\{ \\begin{array}{c} \\vec { x } \\vert _ { \\partial D } = \\vec { x } ( s ) \\\\ y \\vert _ { \\partial D } = ? \\end{array} } D y ( \\xi ) D \\vec { x } ( \\xi ) e ^ { - S [ \\vec { x } ( \\xi ) , y ( \\xi ) ] } \\; . \\end{align*}",
"\\begin{equation*} \\rho ( y _ { H } ) = 0 \\quad a n d \\quad \\rho ( y _ { I } ) = \\infty \\; . \\end{equation*}"
],
"latex_expand": [
"$ \\mitN $",
"$ \\mitS \\mitU ( \\mitN ) $",
"$ \\mitsigma $",
"$ \\mitN $",
"$ \\vec { \\mitx } $",
"$ \\vec { \\mitx } \\vert _ { \\mitpartial \\mitD } = \\vec { \\mitx } ( \\mits ) $",
"$ \\mity \\vert _ { \\mitpartial \\mitD } $",
"$ \\mitrho ( \\mity ) $",
"$ \\mity \\vert _ { \\mitpartial \\mitD } $",
"$ \\sqrt { \\mitg } $",
"$ \\mitrho ( \\mity ) $",
"$ \\mity \\vert _ { \\mitpartial \\mitD } $",
"\\begin{align*} \\mitW [ \\vec { \\mitx } ( \\mits ) ] = \\int \\limits _ { \\left\\{ \\begin{array}{c} \\vec { \\mitx } \\vert _ { \\mitpartial \\mitD } = \\vec { \\mitx } ( \\mits ) \\\\ \\mity \\vert _ { \\mitpartial \\mitD } = ? \\end{array} \\right. } \\mscrD \\mity ( \\mitxi ) \\mscrD \\vec { \\mitx } ( \\mitxi ) \\mite ^ { - \\mitS [ \\vec { \\mitx } ( \\mitxi ) , \\mity ( \\mitxi ) ] } \\; . \\end{align*}",
"\\begin{equation*} \\mitrho ( \\mity _ { \\mitH } ) = 0 \\quad \\mathrm { a n d } \\quad \\mitrho ( \\mity _ { \\mitI } ) = \\infty \\; . \\end{equation*}"
],
"x_min": [
0.789900004863739,
0.6710000038146973,
0.7767999768257141,
0.7353000044822693,
0.2827000021934509,
0.4499000012874603,
0.8086000084877014,
0.2467000037431717,
0.10920000076293945,
0.4284999966621399,
0.3248000144958496,
0.8817999958992004,
0.29510000348091125,
0.3856000006198883
],
"y_min": [
0.11569999903440475,
0.1395999938249588,
0.32710000872612,
0.5034000277519226,
0.5278000235557556,
0.5273000001907349,
0.5273000001907349,
0.57669997215271,
0.6791999936103821,
0.7045999765396118,
0.7778000235557556,
0.7778000235557556,
0.40139999985694885,
0.6147000193595886
],
"x_max": [
0.8079000115394592,
0.7332000136375427,
0.7892000079154968,
0.7540000081062317,
0.29440000653266907,
0.5515000224113464,
0.8465999960899353,
0.2825999855995178,
0.14650000631809235,
0.4560999870300293,
0.3614000082015991,
0.9190999865531921,
0.7332000136375427,
0.6427000164985657
],
"y_max": [
0.12600000202655792,
0.1542000025510788,
0.33390000462532043,
0.513700008392334,
0.5385000109672546,
0.5418999791145325,
0.5418999791145325,
0.5917999744415283,
0.6942999958992004,
0.7202000021934509,
0.792900025844574,
0.792900025844574,
0.4878000020980835,
0.630299985408783
],
"expr_type": [
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"isolated",
"isolated"
]
} |
|
0002106_page09 | {
"latex": [
"\\( \\mathcal {N}=4 \\)",
"\\( y\\to 0 \\)",
"\\( y=\\infty \\)",
"\\( C \\)",
"\\( B_{\\mu \\nu } \\)",
"\\( B_{\\mu \\nu }=B_{\\mu \\nu }(x,\\{C\\}) \\)",
"\\( y=0 \\)",
"\\begin {equation} \\label {3.7} \\rho (y)=\\sqrt {{g_{YM}^{2}N}}\\cdot \\frac {1}{y^{2}}\\; . \\end {equation}"
],
"latex_norm": [
"$ N = 4 $",
"$ y \\rightarrow 0 $",
"$ y = \\infty $",
"$ C $",
"$ B _ { \\mu \\nu } $",
"$ B _ { \\mu \\nu } = B _ { \\mu \\nu } ( x , \\{ C \\} ) $",
"$ y = 0 $",
"\\begin{equation*} \\rho ( y ) = \\sqrt { g _ { Y M } ^ { 2 } N } \\cdot \\frac { 1 } { y ^ { 2 } } \\; . \\end{equation*}"
],
"latex_expand": [
"$ \\mscrN = 4 $",
"$ \\mity \\rightarrow 0 $",
"$ \\mity = \\infty $",
"$ \\mitC $",
"$ \\mitB _ { \\mitmu \\mitnu } $",
"$ \\mitB _ { \\mitmu \\mitnu } = \\mitB _ { \\mitmu \\mitnu } ( \\mitx , \\{ \\mitC \\} ) $",
"$ \\mity = 0 $",
"\\begin{equation*} \\mitrho ( \\mity ) = \\sqrt { \\mitg _ { \\mitY \\mitM } ^ { 2 } \\mitN } \\cdot \\frac { 1 } { \\mity ^ { 2 } } \\; . \\end{equation*}"
],
"x_min": [
0.29789999127388,
0.802299976348877,
0.8568999767303467,
0.8755999803543091,
0.2750999927520752,
0.4036000072956085,
0.367000013589859,
0.42160001397132874
],
"y_min": [
0.19869999587535858,
0.30570000410079956,
0.4180000126361847,
0.538100004196167,
0.5874000191688538,
0.5863999724388123,
0.6371999979019165,
0.23729999363422394
],
"x_max": [
0.35600000619888306,
0.8540999889373779,
0.9136000275611877,
0.8914999961853027,
0.3082999885082245,
0.5695000290870667,
0.414000004529953,
0.6096000075340271
],
"y_max": [
0.2093999981880188,
0.3188999891281128,
0.4277999997138977,
0.548799991607666,
0.6019999980926514,
0.6019999980926514,
0.6503999829292297,
0.27250000834465027
],
"expr_type": [
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"isolated"
]
} |
|
0002106_page10 | {
"latex": [
"\\( g_{YM}^{2}N\\gg 1 \\)",
"\\( O(1) \\)",
"\\( C \\)",
"\\( \\xi ^{1}=\\sigma \\)",
"\\( \\xi ^{2}=\\tau \\)",
"\\( \\tau \\)",
"\\begin {equation} \\label {3.8} S[\\vec {x}(\\xi ),y(\\xi )]=\\frac {1}{2}\\sqrt {g_{YM}^{2}N}\\int \\frac {d^{2}\\xi }{y^{2}(\\xi )}\\left ( (\\partial _{a}\\vec {x})^{2}+(\\partial _{a}y)^{2}\\right ) +O(1)\\; , \\end {equation}",
"\\begin {equation} \\label {3.75} W[C]\\varpropto e^{-\\sqrt {g_{YM}^{2}N}\\cdot A_{\\min }[C]}\\; . \\end {equation}",
"\\begin {equation} \\label {3.9} A_{\\min }[C]=\\min \\frac {1}{2}\\int \\frac {d^{2}\\xi }{y^{2}}\\left ( (\\partial _{a}\\vec {x})^{2}+(\\partial _{a}y)^{2}\\right ) \\end {equation}",
"\\begin {equation} \\label {4.1} \\left \\{ \\begin {array}{l} \\dis \\partial _{a}\\left ( \\frac {1}{y^{2}}\\partial _{a}\\vec {x}\\right ) =0\\; ,\\\\ \\dis \\partial ^{2}y=\\frac {1}{y}\\left ( (\\partial _{a}y)^{2}-\\left ( \\partial _{a}\\vec {x}\\right ) ^{2}\\right ) \\; . \\end {array}\\right . \\end {equation}",
"\\begin {equation} \\label {4.2} \\left \\{ \\begin {array}{l} \\dis \\left ( \\partial _{1}\\vec {x}\\right ) ^{2}+\\left ( \\partial _{1}y\\right ) ^{2}=\\left ( \\partial _{2}\\vec {x}\\right ) ^{2}+\\left ( \\partial _{2}y\\right ) ^{2}\\; ,\\\\ \\dis \\partial _{1}\\vec {x}\\, \\partial _{2}\\vec {x}+\\partial _{1}y\\, \\partial _{2}y=0\\; . \\end {array}\\right . \\end {equation}",
"\\[ \\left \\{ \\begin {array}{l} \\vec {x}(\\sigma ,0)=\\vec {c}(\\sigma )\\; ,\\\\ y(\\sigma ,0)=0\\; . \\end {array}\\right . \\]",
"\\begin {equation} \\label {4.4} \\left \\{ \\begin {array}{l} \\dis \\vec {x}=\\vec {c}(\\sigma )+\\frac {1}{2}\\vec {f}(\\sigma )\\tau ^{2}+\\frac {1}{3}\\vec {g}(\\sigma )\\tau ^{3}+\\ldots \\\\ \\dis y=a(\\sigma )\\tau +\\frac {1}{3}b(\\sigma )\\tau ^{3}+\\ldots \\end {array}\\right . \\end {equation}"
],
"latex_norm": [
"$ g _ { Y M } ^ { 2 } N \\gg 1 $",
"$ O ( 1 ) $",
"$ C $",
"$ \\xi ^ { 1 } = \\sigma $",
"$ \\xi ^ { 2 } = \\tau $",
"$ \\tau $",
"\\begin{equation*} S [ \\vec { x } ( \\xi ) , y ( \\xi ) ] = \\frac { 1 } { 2 } \\sqrt { g _ { Y M } ^ { 2 } N } \\int \\frac { d ^ { 2 } \\xi } { y ^ { 2 } ( \\xi ) } ( ( \\partial _ { a } \\vec { x } ) ^ { 2 } + ( \\partial _ { a } y ) ^ { 2 } ) + O ( 1 ) \\; , \\end{equation*}",
"\\begin{equation*} W [ C ] \\propto e ^ { - \\sqrt { g _ { Y M } ^ { 2 } N } \\cdot A _ { \\operatorname { m i n } } [ C ] } \\; . \\end{equation*}",
"\\begin{equation*} A _ { \\operatorname { m i n } } [ C ] = \\operatorname { m i n } \\frac { 1 } { 2 } \\int \\frac { d ^ { 2 } \\xi } { y ^ { 2 } } ( ( \\partial _ { a } \\vec { x } ) ^ { 2 } + ( \\partial _ { a } y ) ^ { 2 } ) \\end{equation*}",
"\\begin{equation*} \\{ \\begin{array}{l} \\partial _ { a } ( \\frac { 1 } { y ^ { 2 } } \\partial _ { a } \\vec { x } ) = 0 \\; , \\\\ \\partial ^ { 2 } y = \\frac { 1 } { y } ( ( \\partial _ { a } y ) ^ { 2 } - { ( \\partial _ { a } \\vec { x } ) } ^ { 2 } ) \\; . \\end{array} \\end{equation*}",
"\\begin{align*} \\{ \\begin{array}{l} { ( \\partial _ { 1 } \\vec { x } ) } ^ { 2 } + { ( \\partial _ { 1 } y ) } ^ { 2 } = { ( \\partial _ { 2 } \\vec { x } ) } ^ { 2 } + { ( \\partial _ { 2 } y ) } ^ { 2 } \\; , \\\\ \\partial _ { 1 } \\vec { x } \\, \\partial _ { 2 } \\vec { x } + \\partial _ { 1 } y \\, \\partial _ { 2 } y = 0 \\; . \\end{array} \\end{align*}",
"\\begin{equation*} \\{ \\begin{array}{l} \\vec { x } ( \\sigma , 0 ) = \\vec { c } ( \\sigma ) \\; , \\\\ y ( \\sigma , 0 ) = 0 \\; . \\end{array} \\end{equation*}",
"\\begin{align*} \\{ \\begin{array}{l} \\vec { x } = \\vec { c } ( \\sigma ) + \\frac { 1 } { 2 } \\vec { f } ( \\sigma ) \\tau ^ { 2 } + \\frac { 1 } { 3 } \\vec { g } ( \\sigma ) \\tau ^ { 3 } + \\ldots \\\\ y = a ( \\sigma ) \\tau + \\frac { 1 } { 3 } b ( \\sigma ) \\tau ^ { 3 } + \\ldots \\end{array} \\end{align*}"
],
"latex_expand": [
"$ \\mitg _ { \\mitY \\mitM } ^ { 2 } \\mitN \\gg 1 $",
"$ \\mitO ( 1 ) $",
"$ \\mitC $",
"$ \\mitxi ^ { 1 } = \\mitsigma $",
"$ \\mitxi ^ { 2 } = \\mittau $",
"$ \\mittau $",
"\\begin{equation*} \\mitS [ \\vec { \\mitx } ( \\mitxi ) , \\mity ( \\mitxi ) ] = \\frac { 1 } { 2 } \\sqrt { \\mitg _ { \\mitY \\mitM } ^ { 2 } \\mitN } \\int \\frac { \\mitd ^ { 2 } \\mitxi } { \\mity ^ { 2 } ( \\mitxi ) } \\left( ( \\mitpartial _ { \\mita } \\vec { \\mitx } ) ^ { 2 } + ( \\mitpartial _ { \\mita } \\mity ) ^ { 2 } \\right) + \\mitO ( 1 ) \\; , \\end{equation*}",
"\\begin{equation*} \\mitW [ \\mitC ] \\propto \\mite ^ { - \\sqrt { \\mitg _ { \\mitY \\mitM } ^ { 2 } \\mitN } \\cdot \\mitA _ { \\operatorname { m i n } } [ \\mitC ] } \\; . \\end{equation*}",
"\\begin{equation*} \\mitA _ { \\operatorname { m i n } } [ \\mitC ] = \\operatorname { m i n } \\frac { 1 } { 2 } \\int \\frac { \\mitd ^ { 2 } \\mitxi } { \\mity ^ { 2 } } \\left( ( \\mitpartial _ { \\mita } \\vec { \\mitx } ) ^ { 2 } + ( \\mitpartial _ { \\mita } \\mity ) ^ { 2 } \\right) \\end{equation*}",
"\\begin{equation*} \\left\\{ \\begin{array}{l} \\displaystyle \\mitpartial _ { \\mita } \\left( \\frac { 1 } { \\mity ^ { 2 } } \\mitpartial _ { \\mita } \\vec { \\mitx } \\right) = 0 \\; , \\\\ \\displaystyle \\mitpartial ^ { 2 } \\mity = \\frac { 1 } { \\mity } \\left( ( \\mitpartial _ { \\mita } \\mity ) ^ { 2 } - { \\left( \\mitpartial _ { \\mita } \\vec { \\mitx } \\right) } ^ { 2 } \\right) \\; . \\end{array} \\right. \\end{equation*}",
"\\begin{align*} \\left\\{ \\begin{array}{l} \\displaystyle { \\left( \\mitpartial _ { 1 } \\vec { \\mitx } \\right) } ^ { 2 } + { \\left( \\mitpartial _ { 1 } \\mity \\right) } ^ { 2 } = { \\left( \\mitpartial _ { 2 } \\vec { \\mitx } \\right) } ^ { 2 } + { \\left( \\mitpartial _ { 2 } \\mity \\right) } ^ { 2 } \\; , \\\\ \\displaystyle \\mitpartial _ { 1 } \\vec { \\mitx } \\, \\mitpartial _ { 2 } \\vec { \\mitx } + \\mitpartial _ { 1 } \\mity \\, \\mitpartial _ { 2 } \\mity = 0 \\; . \\end{array} \\right. \\end{align*}",
"\\begin{equation*} \\left\\{ \\begin{array}{l} \\vec { \\mitx } ( \\mitsigma , 0 ) = \\vec { \\mitc } ( \\mitsigma ) \\; , \\\\ \\mity ( \\mitsigma , 0 ) = 0 \\; . \\end{array} \\right. \\end{equation*}",
"\\begin{align*} \\left\\{ \\begin{array}{l} \\displaystyle \\vec { \\mitx } = \\vec { \\mitc } ( \\mitsigma ) + \\frac { 1 } { 2 } \\vec { \\mitf } ( \\mitsigma ) \\mittau ^ { 2 } + \\frac { 1 } { 3 } \\vec { \\mitg } ( \\mitsigma ) \\mittau ^ { 3 } + \\ldots \\\\ \\displaystyle \\mity = \\mita ( \\mitsigma ) \\mittau + \\frac { 1 } { 3 } \\mitb ( \\mitsigma ) \\mittau ^ { 3 } + \\ldots \\end{array} \\right. \\end{align*}"
],
"x_min": [
0.3869999945163727,
0.2563999891281128,
0.5964000225067139,
0.35519999265670776,
0.42500001192092896,
0.8382999897003174,
0.2515999972820282,
0.4036000072956085,
0.3359000086784363,
0.3788999915122986,
0.34779998660087585,
0.4327999949455261,
0.3416000008583069
],
"y_min": [
0.08980000019073486,
0.15970000624656677,
0.3100999891757965,
0.7645999789237976,
0.7645999789237976,
0.7699999809265137,
0.11129999905824661,
0.20999999344348907,
0.26460000872612,
0.5127000212669373,
0.6128000020980835,
0.701200008392334,
0.79830002784729
],
"x_max": [
0.4830999970436096,
0.2971999943256378,
0.6122999787330627,
0.41260001063346863,
0.48100000619888306,
0.849399983882904,
0.7753999829292297,
0.6274999976158142,
0.691100001335144,
0.6452999711036682,
0.6764000058174133,
0.588699996471405,
0.6819999814033508
],
"y_max": [
0.10490000247955322,
0.17430000007152557,
0.3203999996185303,
0.77920001745224,
0.77920001745224,
0.7763000130653381,
0.149399995803833,
0.23389999568462372,
0.30219998955726624,
0.5820000171661377,
0.6679999828338623,
0.7538999915122986,
0.8618000149726868
],
"expr_type": [
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"isolated",
"isolated",
"isolated",
"isolated",
"isolated",
"isolated",
"isolated"
]
} |
|
0002106_page11 | {
"latex": [
"\\( y_{\\min }=a(\\sigma )\\tau _{\\min }=\\epsilon \\)",
"\\( L[C] \\)",
"\\( C \\)",
"\\( \\mathcal {A}[\\vec {c}(\\sigma )] \\)",
"\\( \\mathcal {A}[C] \\)",
"\\( \\theta _{\\bot \\Vert }=\\theta _{\\bot \\bot }=0 \\)",
"\\( \\mathcal {A} \\)",
"\\( \\vec {g} \\)",
"\\( b \\)",
"\\( \\vec {c} \\)",
"\\( b \\)",
"\\( \\mathcal {A} \\)",
"\\( \\vec {g}(\\sigma ) \\)",
"\\( b(\\sigma ) \\)",
"\\( \\tau \\)",
"\\begin {equation} \\label {4.5} \\left \\{ \\begin {array}{l} \\dis a^{2}(\\sigma )=\\left ( \\frac {d\\vec {c}}{d\\sigma }\\right ) ^{2}\\; ,\\\\ \\dis \\vec {f}(\\sigma )=\\left ( \\frac {d\\vec {c}}{d\\sigma }\\right ) ^{2}\\frac {d}{d\\sigma }\\left ( \\frac {\\partial _{\\sigma }\\vec {c}}{\\left ( \\partial _{\\sigma }\\vec {c}\\, \\right ) ^{2}}\\right ) \\; . \\end {array}\\right . \\end {equation}",
"\\[ \\theta _{\\bot \\parallel }=\\frac {1}{y^{2}}\\left ( \\partial _{\\tau }\\vec {x}\\, \\partial _{\\sigma }\\vec {x}+\\partial _{\\tau }y\\, \\partial _{\\sigma }y\\right ) =\\frac {1}{a^{2}\\tau }\\left [ \\vec {f}{\\vec {c}\\, }'+aa'\\right ] +\\frac {1}{a^{2}}\\left ( \\vec {g}{\\vec {c}\\, }'\\right ) +\\ldots \\]",
"\\[ \\theta _{\\bot \\parallel }=\\frac {1}{a^{2}}\\left ( \\vec {g}{\\vec {c}\\, }'\\right ) \\; .\\]",
"\\begin {eqnarray} &\\theta _{\\bot \\bot } & =\\dis \\frac {1}{2y^{2}}\\left [ \\left ( \\partial _{\\tau }\\vec {x}\\right ) ^{2}+\\left ( \\partial _{\\tau }y\\right ) ^{2}-\\left ( \\partial _{\\sigma }\\vec {x}\\right ) ^{2}-\\left ( \\partial _{\\sigma }y\\right ) ^{2}\\right ] \\\\ && =\\dis \\frac {1}{a^{2}}\\left [ {\\vec {f}\\, }^{2}+2ab-{\\vec {c}\\, }'\\vec {f}\\, '-{a'}^{2}\\right ] \\; .\\end {eqnarray}",
"\\begin {equation} \\label {4.9} A_{\\min }[C]=\\frac {L[C]}{\\epsilon }+\\mathcal {A}[\\vec {c}(\\sigma )]\\; , \\end {equation}",
"\\[ \\frac {\\delta \\mathcal {A}}{\\delta \\vec {c}(\\sigma )}=\\frac {\\vec {g}(\\sigma )}{a^{2}(\\sigma )}\\]"
],
"latex_norm": [
"$ y _ { m i n } = a ( \\sigma ) \\tau _ { \\operatorname { m i n } } = \\epsilon $",
"$ L [ C ] $",
"$ C $",
"$ A [ \\vec { c } ( \\sigma ) ] $",
"$ A [ C ] $",
"$ \\theta _ { \\bot \\Vert } = \\theta _ { \\bot \\bot } = 0 $",
"$ A $",
"$ \\vec { g } $",
"$ b $",
"$ \\vec { c } $",
"$ b $",
"$ A $",
"$ \\vec { g } ( \\sigma ) $",
"$ b ( \\sigma ) $",
"$ \\tau $",
"\\begin{align*} \\{ \\begin{array}{l} a ^ { 2 } ( \\sigma ) = { ( \\frac { d \\vec { c } } { d \\sigma } ) } ^ { 2 } \\; , \\\\ \\vec { f } ( \\sigma ) = { ( \\frac { d \\vec { c } } { d \\sigma } ) } ^ { 2 } \\frac { d } { d \\sigma } ( \\frac { \\partial _ { \\sigma } \\vec { c } } { { ( \\partial _ { \\sigma } \\vec { c } \\, ) } ^ { 2 } } ) \\; . \\end{array} \\end{align*}",
"\\begin{equation*} \\theta _ { \\bot \\parallel } = \\frac { 1 } { y ^ { 2 } } ( \\partial _ { \\tau } \\vec { x } \\, \\partial _ { \\sigma } \\vec { x } + \\partial _ { \\tau } y \\, \\partial _ { \\sigma } y ) = \\frac { 1 } { a ^ { 2 } \\tau } [ \\vec { f } { \\vec { c } \\, } ^ { \\prime } + a a ^ { \\prime } ] + \\frac { 1 } { a ^ { 2 } } ( \\vec { g } { \\vec { c } \\, } ^ { \\prime } ) + \\ldots \\end{equation*}",
"\\begin{equation*} \\theta _ { \\bot \\parallel } = \\frac { 1 } { a ^ { 2 } } ( \\vec { g } { \\vec { c } \\, } ^ { \\prime } ) \\; . \\end{equation*}",
"\\begin{align*} & \\theta _ { \\bot \\bot } & = \\frac { 1 } { 2 y ^ { 2 } } [ { ( \\partial _ { \\tau } \\vec { x } ) } ^ { 2 } + { ( \\partial _ { \\tau } y ) } ^ { 2 } - { ( \\partial _ { \\sigma } \\vec { x } ) } ^ { 2 } - { ( \\partial _ { \\sigma } y ) } ^ { 2 } ] \\\\ & & = \\frac { 1 } { a ^ { 2 } } [ { \\vec { f } \\, } ^ { 2 } + 2 a b - { \\vec { c } \\, } ^ { \\prime } \\vec { f } \\, { } ^ { \\prime } - { a ^ { \\prime } } ^ { 2 } ] \\; . \\end{align*}",
"\\begin{equation*} A _ { \\operatorname { m i n } } [ C ] = \\frac { L [ C ] } { \\epsilon } + A [ \\vec { c } ( \\sigma ) ] \\; , \\end{equation*}",
"\\begin{equation*} \\frac { \\delta A } { \\delta \\vec { c } ( \\sigma ) } = \\frac { \\vec { g } ( \\sigma ) } { a ^ { 2 } ( \\sigma ) } \\end{equation*}"
],
"latex_expand": [
"$ \\mity _ { \\mathrm { m i n } } = \\mita ( \\mitsigma ) \\mittau _ { \\operatorname { m i n } } = \\mitepsilon $",
"$ \\mitL [ \\mitC ] $",
"$ \\mitC $",
"$ \\mscrA [ \\vec { \\mitc } ( \\mitsigma ) ] $",
"$ \\mscrA [ \\mitC ] $",
"$ \\mittheta _ { \\bot \\Vert } = \\mittheta _ { \\bot \\bot } = 0 $",
"$ \\mscrA $",
"$ \\vec { \\mitg } $",
"$ \\mitb $",
"$ \\vec { \\mitc } $",
"$ \\mitb $",
"$ \\mscrA $",
"$ \\vec { \\mitg } ( \\mitsigma ) $",
"$ \\mitb ( \\mitsigma ) $",
"$ \\mittau $",
"\\begin{align*} \\left\\{ \\begin{array}{l} \\displaystyle \\mita ^ { 2 } ( \\mitsigma ) = { \\left( \\frac { \\mitd \\vec { \\mitc } } { \\mitd \\mitsigma } \\right) } ^ { 2 } \\; , \\\\ \\displaystyle \\vec { \\mitf } ( \\mitsigma ) = { \\left( \\frac { \\mitd \\vec { \\mitc } } { \\mitd \\mitsigma } \\right) } ^ { 2 } \\frac { \\mitd } { \\mitd \\mitsigma } \\left( \\frac { \\mitpartial _ { \\mitsigma } \\vec { \\mitc } } { { \\left( \\mitpartial _ { \\mitsigma } \\vec { \\mitc } \\, \\right) } ^ { 2 } } \\right) \\; . \\end{array} \\right. \\end{align*}",
"\\begin{equation*} \\mittheta _ { \\bot \\parallel } = \\frac { 1 } { \\mity ^ { 2 } } \\left( \\mitpartial _ { \\mittau } \\vec { \\mitx } \\, \\mitpartial _ { \\mitsigma } \\vec { \\mitx } + \\mitpartial _ { \\mittau } \\mity \\, \\mitpartial _ { \\mitsigma } \\mity \\right) = \\frac { 1 } { \\mita ^ { 2 } \\mittau } \\left[ \\vec { \\mitf } { \\vec { \\mitc } \\, } ^ { \\prime } + \\mita \\mita ^ { \\prime } \\right] + \\frac { 1 } { \\mita ^ { 2 } } \\left( \\vec { \\mitg } { \\vec { \\mitc } \\, } ^ { \\prime } \\right) + \\ldots \\end{equation*}",
"\\begin{equation*} \\mittheta _ { \\bot \\parallel } = \\frac { 1 } { \\mita ^ { 2 } } \\left( \\vec { \\mitg } { \\vec { \\mitc } \\, } ^ { \\prime } \\right) \\; . \\end{equation*}",
"\\begin{align*} & \\mittheta _ { \\bot \\bot } & = \\displaystyle \\frac { 1 } { 2 \\mity ^ { 2 } } \\left[ { \\left( \\mitpartial _ { \\mittau } \\vec { \\mitx } \\right) } ^ { 2 } + { \\left( \\mitpartial _ { \\mittau } \\mity \\right) } ^ { 2 } - { \\left( \\mitpartial _ { \\mitsigma } \\vec { \\mitx } \\right) } ^ { 2 } - { \\left( \\mitpartial _ { \\mitsigma } \\mity \\right) } ^ { 2 } \\right] \\\\ & & = \\displaystyle \\frac { 1 } { \\mita ^ { 2 } } \\left[ { \\vec { \\mitf } \\, } ^ { 2 } + 2 \\mita \\mitb - { \\vec { \\mitc } \\, } ^ { \\prime } \\vec { \\mitf } \\, { } ^ { \\prime } - { \\mita ^ { \\prime } } ^ { 2 } \\right] \\; . \\end{align*}",
"\\begin{equation*} \\mitA _ { \\operatorname { m i n } } [ \\mitC ] = \\frac { \\mitL [ \\mitC ] } { \\mitepsilon } + \\mscrA [ \\vec { \\mitc } ( \\mitsigma ) ] \\; , \\end{equation*}",
"\\begin{equation*} \\frac { \\mitdelta \\mscrA } { \\mitdelta \\vec { \\mitc } ( \\mitsigma ) } = \\frac { \\vec { \\mitg } ( \\mitsigma ) } { \\mita ^ { 2 } ( \\mitsigma ) } \\end{equation*}"
],
"x_min": [
0.3898000121116638,
0.7077000141143799,
0.18039999902248383,
0.24050000309944153,
0.6309999823570251,
0.6633999943733215,
0.2777999937534332,
0.39250001311302185,
0.44780001044273376,
0.5625,
0.16519999504089355,
0.4375,
0.10920000076293945,
0.1906999945640564,
0.5853000283241272,
0.366100013256073,
0.23770000040531158,
0.44369998574256897,
0.3158000111579895,
0.3953000009059906,
0.4512999951839447
],
"y_min": [
0.5830000042915344,
0.5830000042915344,
0.6083999872207642,
0.6074000000953674,
0.6371999979019165,
0.6625999808311462,
0.6875,
0.711899995803833,
0.7124000191688538,
0.711899995803833,
0.7900000214576721,
0.7900000214576721,
0.8438000082969666,
0.8438000082969666,
0.8481000065803528,
0.11620000004768372,
0.24120000004768372,
0.3188000023365021,
0.39259999990463257,
0.5311999917030334,
0.7397000193595886
],
"x_max": [
0.557699978351593,
0.7477999925613403,
0.19629999995231628,
0.30410000681877136,
0.673799991607666,
0.7954000234603882,
0.29440000653266907,
0.4036000072956085,
0.4560999870300293,
0.5715000033378601,
0.17419999837875366,
0.45410001277923584,
0.14650000631809235,
0.22660000622272491,
0.5964000225067139,
0.6571999788284302,
0.7900999784469604,
0.5839999914169312,
0.725600004196167,
0.6323000192642212,
0.5770999789237976
],
"y_max": [
0.597599983215332,
0.597599983215332,
0.6187000274658203,
0.621999979019165,
0.6523000001907349,
0.6776999831199646,
0.6977999806404114,
0.725600004196167,
0.7226999998092651,
0.722599983215332,
0.8003000020980835,
0.8003000020980835,
0.8583999872207642,
0.8583999872207642,
0.8549000024795532,
0.19679999351501465,
0.27390000224113464,
0.3490999937057495,
0.4657000005245209,
0.5648999810218811,
0.7749000191688538
],
"expr_type": [
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"isolated",
"isolated",
"isolated",
"isolated",
"isolated",
"isolated"
]
} |
|
0002106_page12 | {
"latex": [
"\\( \\tau \\)",
"\\( \\mathcal {A}[C] \\)",
"\\( \\mathcal {A}[C] \\)",
"\\( \\phi ^{i}(s) \\)",
"\\( \\mathcal {A}[\\vec {\\phi }(s)] \\)",
"\\( y(s)=y\\to 0. \\)",
"\\( \\frac {\\delta A}{\\delta y} \\)",
"\\( A(y) \\)",
"\\[ x^{1}(s)=s,\\quad x^{i}(s)=\\phi ^{i}(s),\\quad i=2,\\ldots D\\; ,\\]",
"\\[ G^{MN}(z)\\frac {\\delta A}{\\delta z^{M}(s)}\\frac {\\delta A}{\\delta z^{N}(s)}=G_{MN}\\frac {dz^{M}}{ds}\\frac {dz^{N}}{ds}\\; .\\]",
"\\begin {equation} \\label {5.3} \\left ( \\frac {\\delta A}{\\delta y(s)}\\right ) ^{2}+\\left ( \\frac {\\delta A}{\\delta \\vec {x}(s)}\\right ) ^{2}=\\frac {1}{y^{4}(s)}\\left \\{ \\left ( \\frac {dy}{ds}\\right ) ^{2}+\\left ( \\frac {d\\vec {x}}{ds}\\right ) ^{2}\\right \\} \\; . \\end {equation}",
"\\begin {equation} \\label {5.4} \\frac {\\partial A}{\\partial y}=\\int ds\\frac {\\delta A}{\\delta y(s)}\\Bigl |_{y(s)=y}\\; . \\end {equation}",
"\\begin {equation} \\label {5.5} \\frac {\\partial A}{\\partial y}=-\\frac {1}{y^{2}}\\int ds\\sqrt {{\\left ( \\frac {d\\vec {x}}{ds}\\right ) ^{2}-y^{4}\\left ( \\frac {\\delta A}{\\delta \\vec {x}(s)}\\right ) ^{2}}}\\; . \\end {equation}",
"\\[ A(y)\\mathop {\\approx }_{y\\to 0}\\frac {L[C]}{y}+O(1)\\; .\\]"
],
"latex_norm": [
"$ \\tau $",
"$ A [ C ] $",
"$ A [ C ] $",
"$ \\phi ^ { i } ( s ) $",
"$ A [ \\vec { \\phi } ( s ) ] $",
"$ y ( s ) = y \\rightarrow 0 . $",
"$ \\frac { \\delta A } { \\delta y } $",
"$ A ( y ) $",
"\\begin{equation*} x ^ { 1 } ( s ) = s , \\quad x ^ { i } ( s ) = \\phi ^ { i } ( s ) , \\quad i = 2 , \\ldots D \\; , \\end{equation*}",
"\\begin{equation*} G ^ { M N } ( z ) \\frac { \\delta A } { \\delta z ^ { M } ( s ) } \\frac { \\delta A } { \\delta z ^ { N } ( s ) } = G _ { M N } \\frac { d z ^ { M } } { d s } \\frac { d z ^ { N } } { d s } \\; . \\end{equation*}",
"\\begin{equation*} { ( \\frac { \\delta A } { \\delta y ( s ) } ) } ^ { 2 } + { ( \\frac { \\delta A } { \\delta \\vec { x } ( s ) } ) } ^ { 2 } = \\frac { 1 } { y ^ { 4 } ( s ) } \\{ { ( \\frac { d y } { d s } ) } ^ { 2 } + { ( \\frac { d \\vec { x } } { d s } ) } ^ { 2 } \\} \\; . \\end{equation*}",
"\\begin{equation*} \\frac { \\partial A } { \\partial y } = \\int d s \\frac { \\delta A } { \\delta y ( s ) } \\vert _ { y ( s ) = y } \\; . \\end{equation*}",
"\\begin{equation*} \\frac { \\partial A } { \\partial y } = - \\frac { 1 } { y ^ { 2 } } \\int d s \\sqrt { { ( \\frac { d \\vec { x } } { d s } ) } ^ { 2 } - y ^ { 4 } { ( \\frac { \\delta A } { \\delta \\vec { x } ( s ) } ) } ^ { 2 } } \\; . \\end{equation*}",
"\\begin{equation*} A ( y ) \\underset { y \\rightarrow 0 } { \\approx } \\frac { L [ C ] } { y } + O ( 1 ) \\; . \\end{equation*}"
],
"latex_expand": [
"$ \\mittau $",
"$ \\mscrA [ \\mitC ] $",
"$ \\mscrA [ \\mitC ] $",
"$ \\mitphi ^ { \\miti } ( \\mits ) $",
"$ \\mscrA [ \\vec { \\mitphi } ( \\mits ) ] $",
"$ \\mity ( \\mits ) = \\mity \\rightarrow 0 . $",
"$ \\frac { \\mitdelta \\mitA } { \\mitdelta \\mity } $",
"$ \\mitA ( \\mity ) $",
"\\begin{equation*} \\mitx ^ { 1 } ( \\mits ) = \\mits , \\quad \\mitx ^ { \\miti } ( \\mits ) = \\mitphi ^ { \\miti } ( \\mits ) , \\quad \\miti = 2 , \\ldots \\mitD \\; , \\end{equation*}",
"\\begin{equation*} \\mitG ^ { \\mitM \\mitN } ( \\mitz ) \\frac { \\mitdelta \\mitA } { \\mitdelta \\mitz ^ { \\mitM } ( \\mits ) } \\frac { \\mitdelta \\mitA } { \\mitdelta \\mitz ^ { \\mitN } ( \\mits ) } = \\mitG _ { \\mitM \\mitN } \\frac { \\mitd \\mitz ^ { \\mitM } } { \\mitd \\mits } \\frac { \\mitd \\mitz ^ { \\mitN } } { \\mitd \\mits } \\; . \\end{equation*}",
"\\begin{equation*} { \\left( \\frac { \\mitdelta \\mitA } { \\mitdelta \\mity ( \\mits ) } \\right) } ^ { 2 } + { \\left( \\frac { \\mitdelta \\mitA } { \\mitdelta \\vec { \\mitx } ( \\mits ) } \\right) } ^ { 2 } = \\frac { 1 } { \\mity ^ { 4 } ( \\mits ) } \\left\\{ { \\left( \\frac { \\mitd \\mity } { \\mitd \\mits } \\right) } ^ { 2 } + { \\left( \\frac { \\mitd \\vec { \\mitx } } { \\mitd \\mits } \\right) } ^ { 2 } \\right\\} \\; . \\end{equation*}",
"\\begin{equation*} \\frac { \\mitpartial \\mitA } { \\mitpartial \\mity } = \\int \\mitd \\mits \\frac { \\mitdelta \\mitA } { \\mitdelta \\mity ( \\mits ) } \\Big| _ { \\mity ( \\mits ) = \\mity } \\; . \\end{equation*}",
"\\begin{equation*} \\frac { \\mitpartial \\mitA } { \\mitpartial \\mity } = - \\frac { 1 } { \\mity ^ { 2 } } \\int \\mitd \\mits \\sqrt { { \\left( \\frac { \\mitd \\vec { \\mitx } } { \\mitd \\mits } \\right) } ^ { 2 } - \\mity ^ { 4 } { \\left( \\frac { \\mitdelta \\mitA } { \\mitdelta \\vec { \\mitx } ( \\mits ) } \\right) } ^ { 2 } } \\; . \\end{equation*}",
"\\begin{equation*} \\mitA ( \\mity ) \\underset { \\mity \\rightarrow 0 } { \\approx } \\frac { \\mitL [ \\mitC ] } { \\mity } + \\mitO ( 1 ) \\; . \\end{equation*}"
],
"x_min": [
0.7989000082015991,
0.17350000143051147,
0.4796000123023987,
0.2874999940395355,
0.7649999856948853,
0.3628000020980835,
0.8970000147819519,
0.3822000026702881,
0.3359000086784363,
0.33660000562667847,
0.27709999680519104,
0.4083999991416931,
0.3296000063419342,
0.41600000858306885
],
"y_min": [
0.09470000118017197,
0.1395999938249588,
0.16410000622272491,
0.37400001287460327,
0.3716000020503998,
0.6147000193595886,
0.6133000254631042,
0.7846999764442444,
0.3334999978542328,
0.47609999775886536,
0.5522000193595886,
0.6523000001907349,
0.7231000065803528,
0.8134999871253967
],
"x_max": [
0.8100000023841858,
0.21699999272823334,
0.5224000215530396,
0.3296999931335449,
0.8285999894142151,
0.48100000619888306,
0.9190999865531921,
0.4230000078678131,
0.6890000104904175,
0.6917999982833862,
0.7498000264167786,
0.6219000220298767,
0.7006999850273132,
0.6122999787330627
],
"y_max": [
0.1014999970793724,
0.1542000025510788,
0.17919999361038208,
0.38960000872612,
0.3896999955177307,
0.629800021648407,
0.6327999830245972,
0.7997999787330627,
0.350600004196167,
0.5121999979019165,
0.5985999703407288,
0.6888999938964844,
0.7699999809265137,
0.8476999998092651
],
"expr_type": [
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"isolated",
"isolated",
"isolated",
"isolated",
"isolated",
"isolated"
]
} |
|
0002106_page13 | {
"latex": [
"\\( A \\)",
"\\( \\Gamma \\)",
"\\( \\vec {\\pi }=\\delta A/\\delta \\vec {\\phi } \\)",
"\\( s \\)",
"\\( B_{4} \\)",
"\\( \\omega _{i}=\\Gamma _{2}(p_{i}) \\)",
"\\[ A=\\sum _{n}\\frac {1}{n!}\\int ds_{1}\\ldots ds_{n}\\Gamma _{i_{1}\\ldots i_{n}}(s_{1},\\ldots s_{n}|y)\\bigl (\\phi _{i_{1}}(s_{1})\\ldots \\phi _{i_{n}}(s_{n})\\bigl )\\; .\\]",
"\\begin {equation} \\label {5.75} \\frac {dx_{\\mu }}{ds}\\frac {\\delta A}{\\delta x_{\\mu }(s)}=\\frac {\\delta A}{\\delta x_{1}(s)}\\Bigl |_{x_{1}=s}+\\frac {d\\vec {\\phi }}{ds}\\frac {\\delta A}{\\delta \\vec {\\phi }}=0 \\end {equation}",
"\\begin {eqnarray} &\\dis \\frac {\\partial A}{\\partial y} & =-\\frac {L_{0}}{y^{2}}+\\frac {1}{2}\\int \\left ( y^{2}\\vec {\\pi }^{2}-\\frac {1}{y^{2}}{\\vec {\\phi }\\, '}^{2}\\right ) ds\\\\ && \\qquad \\qquad +\\frac {1}{8}\\int \\left ( \\frac {1}{y^{2}}\\left ( y^{4}\\vec {\\pi }^{2}-{\\vec {\\phi }\\, '}^{2}\\right ) ^{2}+4y^{2}\\left ( \\vec {\\phi }\\, '\\vec {\\pi }\\right ) ^{2}\\right ) ds+\\ldots \\end {eqnarray}",
"\\begin {equation} \\label {5.9} \\left \\{ \\begin {array}{l} \\dis \\frac {d\\Gamma _{2}}{dy}=y^{2}\\Gamma ^{2}_{2}-\\frac {p^{2}}{y^{2}}\\; ,\\\\ \\dis \\frac {d\\Gamma _{4}}{dy}=y^{2}\\left ( \\sum _{1}^{4}\\Gamma _{2}(p_{i})\\right ) \\Gamma _{4}(p_{1},\\ldots p_{4})-B_{4}(p_{1},\\ldots p_{4})\\; . \\end {array}\\right . \\end {equation}",
"\\begin {eqnarray} &A & =\\frac {L_{0}}{y}+\\frac {1}{2}\\int \\Gamma _{2}(p)\\left ( \\vec {\\phi }_{p}\\vec {\\phi }_{-p}\\right ) \\, dp-\\\\ && \\qquad -\\frac {1}{8}\\int \\Gamma _{4}(p_{1},\\ldots p_{4})\\left ( \\vec {\\phi }_{p_{1}}\\vec {\\phi }_{p_{2}}\\right ) \\left ( \\vec {\\phi }_{p_{3}}\\vec {\\phi }_{p_{4}}\\right ) \\delta \\left ( \\sum p_{i}\\right ) dp_{1}\\ldots dp_{4}+\\ldots \\end {eqnarray}",
"\\begin {eqnarray} (2\\pi )B_{4}(p_{1},\\ldots p_{4}) & = & C_{4}(p_{1},\\ldots p_{4})+D(p_{1},p_{2})+D(p_{3},p_{4})-\\\\ && \\qquad -D(p_{1},p_{3})-D(p_{1},p_{4})-D(p_{2},p_{3})-D(p_{2},p_{3})\\; .\\end {eqnarray}",
"\\begin {eqnarray} C_{4} & = & \\left ( p_{1}p_{2}p_{3}p_{4}\\right ) \\frac {1}{y^{2}}+y^{6}\\left ( \\omega _{1}\\omega _{2}\\omega _{3}\\omega _{4}\\right ) \\; ,\\\\ D(p_{1},p_{2}) & = & (p_{1}p_{2}\\omega _{3}\\omega _{4})y^{2}\\; ,\\end {eqnarray}"
],
"latex_norm": [
"$ A $",
"$ \\Gamma $",
"$ \\vec { \\pi } = \\delta A \\slash \\delta \\vec { \\phi } $",
"$ s $",
"$ B _ { 4 } $",
"$ \\omega _ { i } = \\Gamma _ { 2 } ( p _ { i } ) $",
"\\begin{equation*} A = \\sum _ { n } \\frac { 1 } { n ! } \\int d s _ { 1 } \\ldots d s _ { n } \\Gamma _ { i _ { 1 } \\ldots i _ { n } } ( s _ { 1 } , \\ldots s _ { n } \\vert y ) ( \\phi _ { i _ { 1 } } ( s _ { 1 } ) \\ldots \\phi _ { i _ { n } } ( s _ { n } ) ) \\; . \\end{equation*}",
"\\begin{equation*} \\frac { d x _ { \\mu } } { d s } \\frac { \\delta A } { \\delta x _ { \\mu } ( s ) } = \\frac { \\delta A } { \\delta x _ { 1 } ( s ) } \\vert _ { x _ { 1 } = s } + \\frac { d \\vec { \\phi } } { d s } \\frac { \\delta A } { \\delta \\vec { \\phi } } = 0 \\end{equation*}",
"\\begin{align*} & \\frac { \\partial A } { \\partial y } & = - \\frac { L _ { 0 } } { y ^ { 2 } } + \\frac { 1 } { 2 } \\int ( y ^ { 2 } \\vec { \\pi } ^ { 2 } - \\frac { 1 } { y ^ { 2 } } { \\vec { \\phi } \\, { } ^ { \\prime } } ^ { 2 } ) d s \\\\ & & \\qquad \\qquad + \\frac { 1 } { 8 } \\int ( \\frac { 1 } { y ^ { 2 } } { ( y ^ { 4 } \\vec { \\pi } ^ { 2 } - { \\vec { \\phi } \\, { } ^ { \\prime } } ^ { 2 } ) } ^ { 2 } + 4 y ^ { 2 } { ( \\vec { \\phi } \\, { } ^ { \\prime } \\vec { \\pi } ) } ^ { 2 } ) d s + \\ldots \\end{align*}",
"\\begin{align*} \\{ \\begin{array}{l} \\frac { d \\Gamma _ { 2 } } { d y } = y ^ { 2 } \\Gamma _ { 2 } ^ { 2 } - \\frac { p ^ { 2 } } { y ^ { 2 } } \\; , \\\\ \\frac { d \\Gamma _ { 4 } } { d y } = y ^ { 2 } ( \\sum _ { 1 } ^ { 4 } \\Gamma _ { 2 } ( p _ { i } ) ) \\Gamma _ { 4 } ( p _ { 1 } , \\ldots p _ { 4 } ) - B _ { 4 } ( p _ { 1 } , \\ldots p _ { 4 } ) \\; . \\end{array} \\end{align*}",
"\\begin{align*} & A & = \\frac { L _ { 0 } } { y } + \\frac { 1 } { 2 } \\int \\Gamma _ { 2 } ( p ) ( \\vec { \\phi } _ { p } \\vec { \\phi } _ { - p } ) \\, d p - \\\\ & & \\qquad - \\frac { 1 } { 8 } \\int \\Gamma _ { 4 } ( p _ { 1 } , \\ldots p _ { 4 } ) ( \\vec { \\phi } _ { p _ { 1 } } \\vec { \\phi } _ { p _ { 2 } } ) ( \\vec { \\phi } _ { p _ { 3 } } \\vec { \\phi } _ { p _ { 4 } } ) \\delta ( \\sum p _ { i } ) d p _ { 1 } \\ldots d p _ { 4 } + \\ldots \\end{align*}",
"\\begin{align*} ( 2 \\pi ) B _ { 4 } ( p _ { 1 } , \\ldots p _ { 4 } ) & = & C _ { 4 } ( p _ { 1 } , \\ldots p _ { 4 } ) + D ( p _ { 1 } , p _ { 2 } ) + D ( p _ { 3 } , p _ { 4 } ) - \\\\ & & \\qquad - D ( p _ { 1 } , p _ { 3 } ) - D ( p _ { 1 } , p _ { 4 } ) - D ( p _ { 2 } , p _ { 3 } ) - D ( p _ { 2 } , p _ { 3 } ) \\; . \\end{align*}",
"\\begin{align*} C _ { 4 } & = & ( p _ { 1 } p _ { 2 } p _ { 3 } p _ { 4 } ) \\frac { 1 } { y ^ { 2 } } + y ^ { 6 } ( \\omega _ { 1 } \\omega _ { 2 } \\omega _ { 3 } \\omega _ { 4 } ) \\; , \\\\ D ( p _ { 1 } , p _ { 2 } ) & = & ( p _ { 1 } p _ { 2 } \\omega _ { 3 } \\omega _ { 4 } ) y ^ { 2 } \\; , \\end{align*}"
],
"latex_expand": [
"$ \\mitA $",
"$ \\mupGamma $",
"$ \\vec { \\mitpi } = \\mitdelta \\mitA \\slash \\mitdelta \\vec { \\mitphi } $",
"$ \\mits $",
"$ \\mitB _ { 4 } $",
"$ \\mitomega _ { \\miti } = \\mupGamma _ { 2 } ( \\mitp _ { \\miti } ) $",
"\\begin{equation*} \\mitA = \\sum _ { \\mitn } \\frac { 1 } { \\mitn ! } \\int \\mitd \\mits _ { 1 } \\ldots \\mitd \\mits _ { \\mitn } \\mupGamma _ { \\miti _ { 1 } \\ldots \\miti _ { \\mitn } } ( \\mits _ { 1 } , \\ldots \\mits _ { \\mitn } \\vert \\mity ) \\big ( \\mitphi _ { \\miti _ { 1 } } ( \\mits _ { 1 } ) \\ldots \\mitphi _ { \\miti _ { \\mitn } } ( \\mits _ { \\mitn } ) \\big ) \\; . \\end{equation*}",
"\\begin{equation*} \\frac { \\mitd \\mitx _ { \\mitmu } } { \\mitd \\mits } \\frac { \\mitdelta \\mitA } { \\mitdelta \\mitx _ { \\mitmu } ( \\mits ) } = \\frac { \\mitdelta \\mitA } { \\mitdelta \\mitx _ { 1 } ( \\mits ) } \\Big| _ { \\mitx _ { 1 } = \\mits } + \\frac { \\mitd \\vec { \\mitphi } } { \\mitd \\mits } \\frac { \\mitdelta \\mitA } { \\mitdelta \\vec { \\mitphi } } = 0 \\end{equation*}",
"\\begin{align*} & \\displaystyle \\frac { \\mitpartial \\mitA } { \\mitpartial \\mity } & = - \\frac { \\mitL _ { 0 } } { \\mity ^ { 2 } } + \\frac { 1 } { 2 } \\int \\left( \\mity ^ { 2 } \\vec { \\mitpi } ^ { 2 } - \\frac { 1 } { \\mity ^ { 2 } } { \\vec { \\mitphi } \\, { } ^ { \\prime } } ^ { 2 } \\right) \\mitd \\mits \\\\ & & \\qquad \\qquad + \\frac { 1 } { 8 } \\int \\left( \\frac { 1 } { \\mity ^ { 2 } } { \\left( \\mity ^ { 4 } \\vec { \\mitpi } ^ { 2 } - { \\vec { \\mitphi } \\, { } ^ { \\prime } } ^ { 2 } \\right) } ^ { 2 } + 4 \\mity ^ { 2 } { \\left( \\vec { \\mitphi } \\, { } ^ { \\prime } \\vec { \\mitpi } \\right) } ^ { 2 } \\right) \\mitd \\mits + \\ldots \\end{align*}",
"\\begin{align*} \\left\\{ \\begin{array}{l} \\displaystyle \\frac { \\mitd \\mupGamma _ { 2 } } { \\mitd \\mity } = \\mity ^ { 2 } \\mupGamma _ { 2 } ^ { 2 } - \\frac { \\mitp ^ { 2 } } { \\mity ^ { 2 } } \\; , \\\\ \\displaystyle \\frac { \\mitd \\mupGamma _ { 4 } } { \\mitd \\mity } = \\mity ^ { 2 } \\left( \\sum _ { 1 } ^ { 4 } \\mupGamma _ { 2 } ( \\mitp _ { \\miti } ) \\right) \\mupGamma _ { 4 } ( \\mitp _ { 1 } , \\ldots \\mitp _ { 4 } ) - \\mitB _ { 4 } ( \\mitp _ { 1 } , \\ldots \\mitp _ { 4 } ) \\; . \\end{array} \\right. \\end{align*}",
"\\begin{align*} & \\mitA & = \\frac { \\mitL _ { 0 } } { \\mity } + \\frac { 1 } { 2 } \\int \\mupGamma _ { 2 } ( \\mitp ) \\left( \\vec { \\mitphi } _ { \\mitp } \\vec { \\mitphi } _ { - \\mitp } \\right) \\, \\mitd \\mitp - \\\\ & & \\qquad - \\frac { 1 } { 8 } \\int \\mupGamma _ { 4 } ( \\mitp _ { 1 } , \\ldots \\mitp _ { 4 } ) \\left( \\vec { \\mitphi } _ { \\mitp _ { 1 } } \\vec { \\mitphi } _ { \\mitp _ { 2 } } \\right) \\left( \\vec { \\mitphi } _ { \\mitp _ { 3 } } \\vec { \\mitphi } _ { \\mitp _ { 4 } } \\right) \\mitdelta \\left( \\sum \\mitp _ { \\miti } \\right) \\mitd \\mitp _ { 1 } \\ldots \\mitd \\mitp _ { 4 } + \\ldots \\end{align*}",
"\\begin{align*} ( 2 \\mitpi ) \\mitB _ { 4 } ( \\mitp _ { 1 } , \\ldots \\mitp _ { 4 } ) & = & \\mitC _ { 4 } ( \\mitp _ { 1 } , \\ldots \\mitp _ { 4 } ) + \\mitD ( \\mitp _ { 1 } , \\mitp _ { 2 } ) + \\mitD ( \\mitp _ { 3 } , \\mitp _ { 4 } ) - \\\\ & & \\qquad - \\mitD ( \\mitp _ { 1 } , \\mitp _ { 3 } ) - \\mitD ( \\mitp _ { 1 } , \\mitp _ { 4 } ) - \\mitD ( \\mitp _ { 2 } , \\mitp _ { 3 } ) - \\mitD ( \\mitp _ { 2 } , \\mitp _ { 3 } ) \\; . \\end{align*}",
"\\begin{align*} \\mitC _ { 4 } & = & \\left( \\mitp _ { 1 } \\mitp _ { 2 } \\mitp _ { 3 } \\mitp _ { 4 } \\right) \\frac { 1 } { \\mity ^ { 2 } } + \\mity ^ { 6 } \\left( \\mitomega _ { 1 } \\mitomega _ { 2 } \\mitomega _ { 3 } \\mitomega _ { 4 } \\right) \\; , \\\\ \\mitD ( \\mitp _ { 1 } , \\mitp _ { 2 } ) & = & ( \\mitp _ { 1 } \\mitp _ { 2 } \\mitomega _ { 3 } \\mitomega _ { 4 } ) \\mity ^ { 2 } \\; , \\end{align*}"
],
"x_min": [
0.7394999861717224,
0.3634999990463257,
0.16590000689029694,
0.609499990940094,
0.6101999878883362,
0.4056999981403351,
0.24529999494552612,
0.35249999165534973,
0.2418999969959259,
0.2711000144481659,
0.21160000562667847,
0.18870000541210175,
0.3151000142097473
],
"y_min": [
0.09130000323057175,
0.25679999589920044,
0.37299999594688416,
0.38089999556541443,
0.6327999830245972,
0.8438000082969666,
0.11909999698400497,
0.19869999587535858,
0.2793000042438507,
0.42329999804496765,
0.5419999957084656,
0.6642000079154968,
0.7631999850273132
],
"x_max": [
0.753600001335144,
0.3765999972820282,
0.2599000036716461,
0.6198999881744385,
0.6337000131607056,
0.501800000667572,
0.7822999954223633,
0.6786999702453613,
0.8030999898910522,
0.7512000203132629,
0.8373000025749207,
0.8396999835968018,
0.7096999883651733
],
"y_max": [
0.10159999877214432,
0.2671000063419342,
0.3910999894142151,
0.3871999979019165,
0.6455000042915344,
0.8583999872207642,
0.1581999957561493,
0.24120000004768372,
0.3598000109195709,
0.5038999915122986,
0.6180999875068665,
0.7161999940872192,
0.823199987411499
],
"expr_type": [
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"isolated",
"isolated",
"isolated",
"isolated",
"isolated",
"isolated",
"isolated"
]
} |
|
0002106_page14 | {
"latex": [
"\\( y\\to \\infty \\)",
"\\( \\Gamma _{4} \\)",
"\\( y\\to 0 \\)",
"\\( \\Delta =\\sum |p_{i}| \\)",
"\\( \\epsilon _{i}=\\textrm {sgn }p_{i} \\)",
"\\( \\Gamma _{4}(p_{1},\\ldots p_{4}) \\)",
"\\( x_{1}=\\sigma ,\\, y=\\tau ,\\, \\phi _{i}=\\phi _{i}(\\sigma ,\\tau ), \\)",
"\\( \\vec {\\phi } \\)",
"\\begin {equation} \\label {5.13} \\Gamma _{2}(p,y)\\equiv \\omega (p,y)=\\frac {p^{2}}{y(1+|p|y)} \\end {equation}",
"\\begin {eqnarray} \\Gamma _{4} & = & \\int _{y}^{\\infty }dy\\, e^{-\\int _{0}^{y}dy_{1}y_{1}^{2}\\left ( \\sum \\omega _{i}\\right ) }B_{4}(p_{1},\\ldots p_{4}|y)=\\\\ &= & \\int _{y}^{\\infty }dy\\, \\prod _{i}(1+|p_{i}|y)e^{-\\sum |p_{i}|y}B_{4}(p_{1},\\ldots p_{4}|y).\\end {eqnarray}",
"\\begin {equation} \\label {5.15} (2\\pi )\\Gamma _{4}=F(p_{1},\\ldots p_{4})+\\Phi _{12}+\\Phi _{34}-\\Phi _{13}-\\Phi _{14}-\\Phi _{23}-\\Phi _{24}. \\end {equation}",
"\\begin {eqnarray} F & = & \\left ( 2\\frac {\\epsilon _{1}\\epsilon _{2}\\epsilon _{3}\\epsilon _{4}+1}{\\Delta ^{3}}+\\frac {\\epsilon _{1}\\epsilon _{2}\\epsilon _{3}\\epsilon _{4}}{\\Delta ^{2}}\\left ( \\sum \\frac {1}{|p_{i}|}\\right ) +\\frac {\\sum _{i<j}|p_{i}|\\cdot |p_{j}|}{\\Delta \\, p_{1}p_{2}p_{3}p_{4}}-\\frac {\\Delta }{p_{1}p_{2}p_{3}p_{4}}\\right ) p_{1}^{2}p_{2}^{2}p_{3}^{2}p_{4}^{2},\\\\ \\Phi _{12}\\! \\! \\! \\! & = & \\left ( \\frac {2\\epsilon _{1}\\epsilon _{2}}{\\Delta ^{3}}+\\frac {\\epsilon _{1}\\epsilon _{2}}{\\Delta ^{2}}\\left ( \\frac {1}{|p_{1}|}+\\frac {1}{|p_{2}|}\\right ) +\\frac {1}{\\Delta \\, p_{1}p_{2}}\\right ) p_{1}^{2}p_{2}^{2}p_{3}^{2}p_{4}^{2}.\\end {eqnarray}",
"\\begin {equation} \\label {5.18} A=\\int \\frac {d\\tau }{\\tau ^{2}}\\sqrt {{1+\\vec {\\phi }_{\\tau }^{\\, 2}+\\vec {\\phi }_{\\sigma }^{\\, 2}+\\vec {\\phi }_{\\tau }^{\\, 2}\\vec {\\phi }_{\\sigma }^{\\, 2}-\\left ( \\vec {\\phi }_{\\tau }\\vec {\\phi }_{\\sigma }\\right ) ^{2}}}. \\end {equation}",
"\\[ \\partial _{\\tau }\\left ( \\frac {1}{\\tau ^{2}}\\partial _{\\tau }\\vec {\\phi }\\right ) +\\frac {1}{\\tau ^{2}}\\partial _{\\sigma }^{2}\\vec {\\phi }=0\\]",
"\\[ \\vec {\\phi }_{\\textrm {cl}}(p,\\tau )=(|p|\\tau )^{3/2}K_{3/2}(|p|\\tau )\\vec {\\phi }(p)=(1+|p|\\tau )e^{-|p|\\tau }\\vec {\\phi }(p).\\]"
],
"latex_norm": [
"$ y \\rightarrow \\infty $",
"$ \\Gamma _ { 4 } $",
"$ y \\rightarrow 0 $",
"$ \\Delta = \\sum \\vert p _ { i } \\vert $",
"$ \\epsilon _ { i } = s g n ~ p _ { i } $",
"$ \\Gamma _ { 4 } ( p _ { 1 } , \\ldots p _ { 4 } ) $",
"$ x _ { 1 } = \\sigma , \\, y = \\tau , \\, \\phi _ { i } = \\phi _ { i } ( \\sigma , \\tau ) , $",
"$ \\vec { \\phi } $",
"\\begin{equation*} \\Gamma _ { 2 } ( p , y ) \\equiv \\omega ( p , y ) = \\frac { p ^ { 2 } } { y ( 1 + \\vert p \\vert y ) } \\end{equation*}",
"\\begin{align*} \\Gamma _ { 4 } & = & \\int _ { y } ^ { \\infty } d y \\, e ^ { - \\int _ { 0 } ^ { y } d y _ { 1 } y _ { 1 } ^ { 2 } ( \\sum \\omega _ { i } ) } B _ { 4 } ( p _ { 1 } , \\ldots p _ { 4 } \\vert y ) = \\\\ & = & \\int _ { y } ^ { \\infty } d y \\, \\prod _ { i } ( 1 + \\vert p _ { i } \\vert y ) e ^ { - \\sum \\vert p _ { i } \\vert y } B _ { 4 } ( p _ { 1 } , \\ldots p _ { 4 } \\vert y ) . \\end{align*}",
"\\begin{equation*} ( 2 \\pi ) \\Gamma _ { 4 } = F ( p _ { 1 } , \\ldots p _ { 4 } ) + \\Phi _ { 1 2 } + \\Phi _ { 3 4 } - \\Phi _ { 1 3 } - \\Phi _ { 1 4 } - \\Phi _ { 2 3 } - \\Phi _ { 2 4 } . \\end{equation*}",
"\\begin{align*} F & = & ( 2 \\frac { \\epsilon _ { 1 } \\epsilon _ { 2 } \\epsilon _ { 3 } \\epsilon _ { 4 } + 1 } { \\Delta ^ { 3 } } + \\frac { \\epsilon _ { 1 } \\epsilon _ { 2 } \\epsilon _ { 3 } \\epsilon _ { 4 } } { \\Delta ^ { 2 } } ( \\sum \\frac { 1 } { \\vert p _ { i } \\vert } ) + \\frac { \\sum _ { i < j } \\vert p _ { i } \\vert \\cdot \\vert p _ { j } \\vert } { \\Delta \\, p _ { 1 } p _ { 2 } p _ { 3 } p _ { 4 } } - \\frac { \\Delta } { p _ { 1 } p _ { 2 } p _ { 3 } p _ { 4 } } ) p _ { 1 } ^ { 2 } p _ { 2 } ^ { 2 } p _ { 3 } ^ { 2 } p _ { 4 } ^ { 2 } , \\\\ \\Phi _ { 1 2 } \\! \\! \\! \\! & = & ( \\frac { 2 \\epsilon _ { 1 } \\epsilon _ { 2 } } { \\Delta ^ { 3 } } + \\frac { \\epsilon _ { 1 } \\epsilon _ { 2 } } { \\Delta ^ { 2 } } ( \\frac { 1 } { \\vert p _ { 1 } \\vert } + \\frac { 1 } { \\vert p _ { 2 } \\vert } ) + \\frac { 1 } { \\Delta \\, p _ { 1 } p _ { 2 } } ) p _ { 1 } ^ { 2 } p _ { 2 } ^ { 2 } p _ { 3 } ^ { 2 } p _ { 4 } ^ { 2 } . \\end{align*}",
"\\begin{equation*} A = \\int \\frac { d \\tau } { \\tau ^ { 2 } } \\sqrt { 1 + \\vec { \\phi } _ { \\tau } ^ { \\, 2 } + \\vec { \\phi } _ { \\sigma } ^ { \\, 2 } + \\vec { \\phi } _ { \\tau } ^ { \\, 2 } \\vec { \\phi } _ { \\sigma } ^ { \\, 2 } - { ( \\vec { \\phi } _ { \\tau } \\vec { \\phi } _ { \\sigma } ) } ^ { 2 } } . \\end{equation*}",
"\\begin{equation*} \\partial _ { \\tau } ( \\frac { 1 } { \\tau ^ { 2 } } \\partial _ { \\tau } \\vec { \\phi } ) + \\frac { 1 } { \\tau ^ { 2 } } \\partial _ { \\sigma } ^ { 2 } \\vec { \\phi } = 0 \\end{equation*}",
"\\begin{equation*} \\vec { \\phi } _ { c l } ( p , \\tau ) = ( \\vert p \\vert \\tau ) ^ { 3 \\slash 2 } K _ { 3 \\slash 2 } ( \\vert p \\vert \\tau ) \\vec { \\phi } ( p ) = ( 1 + \\vert p \\vert \\tau ) e ^ { - \\vert p \\vert \\tau } \\vec { \\phi } ( p ) . \\end{equation*}"
],
"latex_expand": [
"$ \\mity \\rightarrow \\infty $",
"$ \\mupGamma _ { 4 } $",
"$ \\mity \\rightarrow 0 $",
"$ \\mupDelta = \\sum \\vert \\mitp _ { \\miti } \\vert $",
"$ \\mitepsilon _ { \\miti } = \\mathrm { s g n } ~ \\mitp _ { \\miti } $",
"$ \\mupGamma _ { 4 } ( \\mitp _ { 1 } , \\ldots \\mitp _ { 4 } ) $",
"$ \\mitx _ { 1 } = \\mitsigma , \\, \\mity = \\mittau , \\, \\mitphi _ { \\miti } = \\mitphi _ { \\miti } ( \\mitsigma , \\mittau ) , $",
"$ \\vec { \\mitphi } $",
"\\begin{equation*} \\mupGamma _ { 2 } ( \\mitp , \\mity ) \\equiv \\mitomega ( \\mitp , \\mity ) = \\frac { \\mitp ^ { 2 } } { \\mity ( 1 + \\vert \\mitp \\vert \\mity ) } \\end{equation*}",
"\\begin{align*} \\mupGamma _ { 4 } & = & \\int _ { \\mity } ^ { \\infty } \\mitd \\mity \\, \\mite ^ { - \\int _ { 0 } ^ { \\mity } \\mitd \\mity _ { 1 } \\mity _ { 1 } ^ { 2 } \\left( \\sum \\mitomega _ { \\miti } \\right) } \\mitB _ { 4 } ( \\mitp _ { 1 } , \\ldots \\mitp _ { 4 } \\vert \\mity ) = \\\\ & = & \\int _ { \\mity } ^ { \\infty } \\mitd \\mity \\, \\prod _ { \\miti } ( 1 + \\vert \\mitp _ { \\miti } \\vert \\mity ) \\mite ^ { - \\sum \\vert \\mitp _ { \\miti } \\vert \\mity } \\mitB _ { 4 } ( \\mitp _ { 1 } , \\ldots \\mitp _ { 4 } \\vert \\mity ) . \\end{align*}",
"\\begin{equation*} ( 2 \\mitpi ) \\mupGamma _ { 4 } = \\mitF ( \\mitp _ { 1 } , \\ldots \\mitp _ { 4 } ) + \\mupPhi _ { 1 2 } + \\mupPhi _ { 3 4 } - \\mupPhi _ { 1 3 } - \\mupPhi _ { 1 4 } - \\mupPhi _ { 2 3 } - \\mupPhi _ { 2 4 } . \\end{equation*}",
"\\begin{align*} \\mitF & = & \\left( 2 \\frac { \\mitepsilon _ { 1 } \\mitepsilon _ { 2 } \\mitepsilon _ { 3 } \\mitepsilon _ { 4 } + 1 } { \\mupDelta ^ { 3 } } + \\frac { \\mitepsilon _ { 1 } \\mitepsilon _ { 2 } \\mitepsilon _ { 3 } \\mitepsilon _ { 4 } } { \\mupDelta ^ { 2 } } \\left( \\sum \\frac { 1 } { \\vert \\mitp _ { \\miti } \\vert } \\right) + \\frac { \\sum _ { \\miti < \\mitj } \\vert \\mitp _ { \\miti } \\vert \\cdot \\vert \\mitp _ { \\mitj } \\vert } { \\mupDelta \\, \\mitp _ { 1 } \\mitp _ { 2 } \\mitp _ { 3 } \\mitp _ { 4 } } - \\frac { \\mupDelta } { \\mitp _ { 1 } \\mitp _ { 2 } \\mitp _ { 3 } \\mitp _ { 4 } } \\right) \\mitp _ { 1 } ^ { 2 } \\mitp _ { 2 } ^ { 2 } \\mitp _ { 3 } ^ { 2 } \\mitp _ { 4 } ^ { 2 } , \\\\ \\mupPhi _ { 1 2 } \\! \\! \\! \\! & = & \\left( \\frac { 2 \\mitepsilon _ { 1 } \\mitepsilon _ { 2 } } { \\mupDelta ^ { 3 } } + \\frac { \\mitepsilon _ { 1 } \\mitepsilon _ { 2 } } { \\mupDelta ^ { 2 } } \\left( \\frac { 1 } { \\vert \\mitp _ { 1 } \\vert } + \\frac { 1 } { \\vert \\mitp _ { 2 } \\vert } \\right) + \\frac { 1 } { \\mupDelta \\, \\mitp _ { 1 } \\mitp _ { 2 } } \\right) \\mitp _ { 1 } ^ { 2 } \\mitp _ { 2 } ^ { 2 } \\mitp _ { 3 } ^ { 2 } \\mitp _ { 4 } ^ { 2 } . \\end{align*}",
"\\begin{equation*} \\mitA = \\int \\frac { \\mitd \\mittau } { \\mittau ^ { 2 } } \\sqrt { 1 + \\vec { \\mitphi } _ { \\mittau } ^ { \\, 2 } + \\vec { \\mitphi } _ { \\mitsigma } ^ { \\, 2 } + \\vec { \\mitphi } _ { \\mittau } ^ { \\, 2 } \\vec { \\mitphi } _ { \\mitsigma } ^ { \\, 2 } - { \\left( \\vec { \\mitphi } _ { \\mittau } \\vec { \\mitphi } _ { \\mitsigma } \\right) } ^ { 2 } } . \\end{equation*}",
"\\begin{equation*} \\mitpartial _ { \\mittau } \\left( \\frac { 1 } { \\mittau ^ { 2 } } \\mitpartial _ { \\mittau } \\vec { \\mitphi } \\right) + \\frac { 1 } { \\mittau ^ { 2 } } \\mitpartial _ { \\mitsigma } ^ { 2 } \\vec { \\mitphi } = 0 \\end{equation*}",
"\\begin{equation*} \\vec { \\mitphi } _ { \\mathrm { c l } } ( \\mitp , \\mittau ) = ( \\vert \\mitp \\vert \\mittau ) ^ { 3 \\slash 2 } \\mitK _ { 3 \\slash 2 } ( \\vert \\mitp \\vert \\mittau ) \\vec { \\mitphi } ( \\mitp ) = ( 1 + \\vert \\mitp \\vert \\mittau ) \\mite ^ { - \\vert \\mitp \\vert \\mittau } \\vec { \\mitphi } ( \\mitp ) . \\end{equation*}"
],
"x_min": [
0.6462000012397766,
0.21699999272823334,
0.626800000667572,
0.11680000275373459,
0.2224999964237213,
0.626800000667572,
0.4284999966621399,
0.31439998745918274,
0.37869998812675476,
0.2881999909877777,
0.257099986076355,
0.15070000290870667,
0.32199999690055847,
0.4036000072956085,
0.2736999988555908
],
"y_min": [
0.17090000212192535,
0.2896000146865845,
0.3677000105381012,
0.48489999771118164,
0.48969998955726624,
0.48489999771118164,
0.5396000146865845,
0.6205999851226807,
0.11569999903440475,
0.19140000641345978,
0.3257000148296356,
0.39259999990463257,
0.5673999786376953,
0.638700008392334,
0.7167999744415283
],
"x_max": [
0.7084000110626221,
0.23770000040531158,
0.678600013256073,
0.21150000393390656,
0.31369999051094055,
0.7339000105857849,
0.6682999730110168,
0.32679998874664307,
0.6517000198364258,
0.7401999831199646,
0.7732999920845032,
0.8743000030517578,
0.708299994468689,
0.6247000098228455,
0.7547000050544739
],
"y_max": [
0.18119999766349792,
0.30230000615119934,
0.38040000200271606,
0.5005000233650208,
0.49950000643730164,
0.5005000233650208,
0.5547000169754028,
0.6381999850273132,
0.15379999577999115,
0.2743000090122223,
0.34380000829696655,
0.4731000065803528,
0.6069999933242798,
0.6743000149726868,
0.7368000149726868
],
"expr_type": [
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"isolated",
"isolated",
"isolated",
"isolated",
"isolated",
"isolated",
"isolated"
]
} |
|
0002106_page15 | {
"latex": [
"\\( s\\to s' \\)",
"\\( \\mathcal {A} \\)",
"\\( \\mathcal {A} \\)",
"\\( \\phi \\)",
"\\( \\Gamma _{2}(p)=-|p|^{3} \\)",
"\\( \\Gamma _{2}(p,y) \\)",
"\\( k=-k' \\)",
"\\( q=0 \\)",
"\\( H \\)",
"\\( \\Phi (k,p) \\)",
"\\( k\\to -k \\)",
"\\( k\\to \\infty . \\)",
"\\( x=k/p \\)",
"\\( p_{1}=-p_{2}=p \\)",
"\\begin {equation} \\label {7.05} W[C]=e^{-\\sqrt {{g^{2}_{YM}N}}\\mathcal {A}[C]}\\: . \\end {equation}",
"\\[ \\frac {\\delta ^{2}W}{\\delta x_{\\mu }(s)\\delta x_{\\mu }(s')}=\\left ( g^{2}_{YM}N\\frac {\\delta \\mathcal {A}}{\\delta x_{\\mu }(s)}\\frac {\\delta \\mathcal {A}}{\\delta x_{\\mu }(s')}-\\sqrt {{g^{2}_{YM}N}}\\frac {\\delta ^{2}\\mathcal {A}}{\\delta x_{\\mu }(s)\\delta x_{\\mu }(s')}\\right ) W\\; .\\]",
"\\begin {equation} \\label {7.1} \\frac {\\delta ^{2}\\mathcal {A}}{\\delta x_{\\mu }(s)\\delta x_{\\mu }(s')}=\\frac {\\delta ^{2}\\mathcal {A}}{\\delta x_{1}(s)\\delta x_{1}(s')}+\\frac {\\delta ^{2}\\mathcal {A}}{\\delta \\vec {\\phi }(s)\\delta \\vec {\\phi }(s')}\\; . \\end {equation}",
"\\[ \\lim _{p\\to \\infty }\\frac {\\delta ^{2}\\mathcal {A}^{(2)}}{\\delta \\vec {\\phi }\\left ( \\frac {q}{2}+p\\right ) \\delta \\vec {\\phi }\\left ( \\frac {q}{2}-p\\right ) }=(D-1)\\delta (q)\\Gamma _{2}(p)=(1-D)\\delta (q)|p|^{3}\\; ,\\]",
"\\begin {eqnarray} && (2\\pi )\\frac {\\delta ^{2}\\mathcal {A}^{(4)}}{\\delta \\vec {\\phi }(k)\\delta \\vec {\\phi }(k')}=-\\frac {1}{2}\\int H(k,k',p_{1},p_{2})\\left ( \\vec {\\phi }_{p_{1}}\\vec {\\phi }_{p_{2}}\\right ) \\, \\delta (k+k'+p_{1}+p_{2})\\, dp_{1}dp_{2}\\; ,\\\\ && H=(D+1)F(k,k',p_{1},p_{2})+(D-3)\\bigl [\\Phi (k,k')+\\Phi (p_{1},p_{2})\\bigr ]\\\\ && \\qquad \\qquad \\qquad \\qquad \\qquad -(D-1)\\bigr [\\Phi (k,p_{1})+\\Phi (k,p_{2})+\\Phi (k',p_{1})+\\Phi (k',p_{2})\\bigl ]\\; .\\end {eqnarray}"
],
"latex_norm": [
"$ s \\rightarrow s ^ { \\prime } $",
"$ A $",
"$ A $",
"$ \\phi $",
"$ \\Gamma _ { 2 } ( p ) = - \\vert p \\vert ^ { 3 } $",
"$ \\Gamma _ { 2 } ( p , y ) $",
"$ k = - k ^ { \\prime } $",
"$ q = 0 $",
"$ H $",
"$ \\Phi ( k , p ) $",
"$ k \\rightarrow - k $",
"$ k \\rightarrow \\infty . $",
"$ x = k \\slash p $",
"$ p _ { 1 } = - p _ { 2 } = p $",
"\\begin{equation*} W [ C ] = e ^ { - \\sqrt { g _ { Y M } ^ { 2 } N } A [ C ] } \\> . \\end{equation*}",
"\\begin{equation*} \\frac { \\delta ^ { 2 } W } { \\delta x _ { \\mu } ( s ) \\delta x _ { \\mu } ( s ^ { \\prime } ) } = ( g _ { Y M } ^ { 2 } N \\frac { \\delta A } { \\delta x _ { \\mu } ( s ) } \\frac { \\delta A } { \\delta x _ { \\mu } ( s ^ { \\prime } ) } - \\sqrt { g _ { Y M } ^ { 2 } N } \\frac { \\delta ^ { 2 } A } { \\delta x _ { \\mu } ( s ) \\delta x _ { \\mu } ( s ^ { \\prime } ) } ) W \\; . \\end{equation*}",
"\\begin{equation*} \\frac { \\delta ^ { 2 } A } { \\delta x _ { \\mu } ( s ) \\delta x _ { \\mu } ( s ^ { \\prime } ) } = \\frac { \\delta ^ { 2 } A } { \\delta x _ { 1 } ( s ) \\delta x _ { 1 } ( s ^ { \\prime } ) } + \\frac { \\delta ^ { 2 } A } { \\delta \\vec { \\phi } ( s ) \\delta \\vec { \\phi } ( s ^ { \\prime } ) } \\; . \\end{equation*}",
"\\begin{equation*} \\underset { p \\rightarrow \\infty } { \\operatorname { l i m } } \\frac { \\delta ^ { 2 } A ^ { ( 2 ) } } { \\delta \\vec { \\phi } ( \\frac { q } { 2 } + p ) \\delta \\vec { \\phi } ( \\frac { q } { 2 } - p ) } = ( D - 1 ) \\delta ( q ) \\Gamma _ { 2 } ( p ) = ( 1 - D ) \\delta ( q ) \\vert p \\vert ^ { 3 } \\; , \\end{equation*}",
"\\begin{align*} & & ( 2 \\pi ) \\frac { \\delta ^ { 2 } A ^ { ( 4 ) } } { \\delta \\vec { \\phi } ( k ) \\delta \\vec { \\phi } ( k ^ { \\prime } ) } = - \\frac { 1 } { 2 } \\int H ( k , k ^ { \\prime } , p _ { 1 } , p _ { 2 } ) ( \\vec { \\phi } _ { p _ { 1 } } \\vec { \\phi } _ { p _ { 2 } } ) \\, \\delta ( k + k ^ { \\prime } + p _ { 1 } + p _ { 2 } ) \\, d p _ { 1 } d p _ { 2 } \\; , \\\\ & & H = ( D + 1 ) F ( k , k ^ { \\prime } , p _ { 1 } , p _ { 2 } ) + ( D - 3 ) [ \\Phi ( k , k ^ { \\prime } ) + \\Phi ( p _ { 1 } , p _ { 2 } ) ] \\\\ & & \\qquad \\qquad \\qquad \\qquad \\qquad - ( D - 1 ) [ \\Phi ( k , p _ { 1 } ) + \\Phi ( k , p _ { 2 } ) + \\Phi ( k ^ { \\prime } , p _ { 1 } ) + \\Phi ( k ^ { \\prime } , p _ { 2 } ) ] \\; . \\end{align*}"
],
"latex_expand": [
"$ \\mits \\rightarrow \\mits ^ { \\prime } $",
"$ \\mscrA $",
"$ \\mscrA $",
"$ \\mitphi $",
"$ \\mupGamma _ { 2 } ( \\mitp ) = - \\vert \\mitp \\vert ^ { 3 } $",
"$ \\mupGamma _ { 2 } ( \\mitp , \\mity ) $",
"$ \\mitk = - \\mitk ^ { \\prime } $",
"$ \\mitq = 0 $",
"$ \\mitH $",
"$ \\mupPhi ( \\mitk , \\mitp ) $",
"$ \\mitk \\rightarrow - \\mitk $",
"$ \\mitk \\rightarrow \\infty . $",
"$ \\mitx = \\mitk \\slash \\mitp $",
"$ \\mitp _ { 1 } = - \\mitp _ { 2 } = \\mitp $",
"\\begin{equation*} \\mitW [ \\mitC ] = \\mite ^ { - \\sqrt { \\mitg _ { \\mitY \\mitM } ^ { 2 } \\mitN } \\mscrA [ \\mitC ] } \\> . \\end{equation*}",
"\\begin{equation*} \\frac { \\mitdelta ^ { 2 } \\mitW } { \\mitdelta \\mitx _ { \\mitmu } ( \\mits ) \\mitdelta \\mitx _ { \\mitmu } ( \\mits ^ { \\prime } ) } = \\left( \\mitg _ { \\mitY \\mitM } ^ { 2 } \\mitN \\frac { \\mitdelta \\mscrA } { \\mitdelta \\mitx _ { \\mitmu } ( \\mits ) } \\frac { \\mitdelta \\mscrA } { \\mitdelta \\mitx _ { \\mitmu } ( \\mits ^ { \\prime } ) } - \\sqrt { \\mitg _ { \\mitY \\mitM } ^ { 2 } \\mitN } \\frac { \\mitdelta ^ { 2 } \\mscrA } { \\mitdelta \\mitx _ { \\mitmu } ( \\mits ) \\mitdelta \\mitx _ { \\mitmu } ( \\mits ^ { \\prime } ) } \\right) \\mitW \\; . \\end{equation*}",
"\\begin{equation*} \\frac { \\mitdelta ^ { 2 } \\mscrA } { \\mitdelta \\mitx _ { \\mitmu } ( \\mits ) \\mitdelta \\mitx _ { \\mitmu } ( \\mits ^ { \\prime } ) } = \\frac { \\mitdelta ^ { 2 } \\mscrA } { \\mitdelta \\mitx _ { 1 } ( \\mits ) \\mitdelta \\mitx _ { 1 } ( \\mits ^ { \\prime } ) } + \\frac { \\mitdelta ^ { 2 } \\mscrA } { \\mitdelta \\vec { \\mitphi } ( \\mits ) \\mitdelta \\vec { \\mitphi } ( \\mits ^ { \\prime } ) } \\; . \\end{equation*}",
"\\begin{equation*} \\underset { \\mitp \\rightarrow \\infty } { \\operatorname { l i m } } \\frac { \\mitdelta ^ { 2 } \\mscrA ^ { ( 2 ) } } { \\mitdelta \\vec { \\mitphi } \\left( \\frac { \\mitq } { 2 } + \\mitp \\right) \\mitdelta \\vec { \\mitphi } \\left( \\frac { \\mitq } { 2 } - \\mitp \\right) } = ( \\mitD - 1 ) \\mitdelta ( \\mitq ) \\mupGamma _ { 2 } ( \\mitp ) = ( 1 - \\mitD ) \\mitdelta ( \\mitq ) \\vert \\mitp \\vert ^ { 3 } \\; , \\end{equation*}",
"\\begin{align*} & & ( 2 \\mitpi ) \\frac { \\mitdelta ^ { 2 } \\mscrA ^ { ( 4 ) } } { \\mitdelta \\vec { \\mitphi } ( \\mitk ) \\mitdelta \\vec { \\mitphi } ( \\mitk ^ { \\prime } ) } = - \\frac { 1 } { 2 } \\int \\mitH ( \\mitk , \\mitk ^ { \\prime } , \\mitp _ { 1 } , \\mitp _ { 2 } ) \\left( \\vec { \\mitphi } _ { \\mitp _ { 1 } } \\vec { \\mitphi } _ { \\mitp _ { 2 } } \\right) \\, \\mitdelta ( \\mitk + \\mitk ^ { \\prime } + \\mitp _ { 1 } + \\mitp _ { 2 } ) \\, \\mitd \\mitp _ { 1 } \\mitd \\mitp _ { 2 } \\; , \\\\ & & \\mitH = ( \\mitD + 1 ) \\mitF ( \\mitk , \\mitk ^ { \\prime } , \\mitp _ { 1 } , \\mitp _ { 2 } ) + ( \\mitD - 3 ) \\big [ \\mupPhi ( \\mitk , \\mitk ^ { \\prime } ) + \\mupPhi ( \\mitp _ { 1 } , \\mitp _ { 2 } ) \\big ] \\\\ & & \\qquad \\qquad \\qquad \\qquad \\qquad - ( \\mitD - 1 ) \\big [ \\mupPhi ( \\mitk , \\mitp _ { 1 } ) + \\mupPhi ( \\mitk , \\mitp _ { 2 } ) + \\mupPhi ( \\mitk ^ { \\prime } , \\mitp _ { 1 } ) + \\mupPhi ( \\mitk ^ { \\prime } , \\mitp _ { 2 } ) \\big ] \\; . \\end{align*}"
],
"x_min": [
0.5383999943733215,
0.20319999754428864,
0.48240000009536743,
0.2667999863624573,
0.16590000689029694,
0.45750001072883606,
0.3573000133037567,
0.6883000135421753,
0.4339999854564667,
0.7070000171661377,
0.24809999763965607,
0.7477999925613403,
0.6448000073432922,
0.789900004863739,
0.41600000858306885,
0.21220000088214874,
0.3165000081062317,
0.22939999401569366,
0.19769999384880066
],
"y_min": [
0.2939000129699707,
0.3441999852657318,
0.3984000086784363,
0.5038999915122986,
0.5853999853134155,
0.5859000086784363,
0.7567999958992004,
0.7577999830245972,
0.7821999788284302,
0.7811999917030334,
0.8065999746322632,
0.8065999746322632,
0.8306000232696533,
0.8330000042915344,
0.17479999363422394,
0.24369999766349792,
0.42289999127388,
0.5297999978065491,
0.6401000022888184
],
"x_max": [
0.5978000164031982,
0.218299999833107,
0.49900001287460327,
0.2791999876499176,
0.2827000021934509,
0.5231999754905701,
0.4271000027656555,
0.7353000044822693,
0.4519999921321869,
0.7663999795913696,
0.321399986743927,
0.8197000026702881,
0.7186999917030334,
0.9136000275611877,
0.614300012588501,
0.8162000179290771,
0.7146000266075134,
0.7925999760627747,
0.8639000058174133
],
"y_max": [
0.3050999939441681,
0.3544999957084656,
0.40869998931884766,
0.5170999765396118,
0.6010000109672546,
0.6010000109672546,
0.7689999938011169,
0.7705000042915344,
0.7925000190734863,
0.795799970626831,
0.8183000087738037,
0.8169000148773193,
0.8452000021934509,
0.8446999788284302,
0.19820000231266022,
0.2797999978065491,
0.46389999985694885,
0.5708000063896179,
0.7382000088691711
],
"expr_type": [
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"isolated",
"isolated",
"isolated",
"isolated",
"isolated"
]
} |
|
0002106_page16 | {
"latex": [
"\\( p=1 \\)",
"\\( k\\to \\infty \\)",
"\\( q=0 \\)",
"\\begin {eqnarray} F(k,-k,p,-p) & = & |p|^{5}\\Bigl \\{\\frac {x^{4}}{2(1+x)^{3}}+\\frac {x^{3}}{2(1+x)}+\\frac {x^{2}(1+4x+x^{2})}{2(1+x)}-2x^{2}(1+x)\\Bigr \\}\\\\ &= & |p|^{5}\\Bigl \\{-\\frac {3}{2}x^{3}-x+O\\left ( \\frac {1}{x}\\right ) \\Bigl \\}\\; ,\\\\ \\Phi (k,-k)+\\Phi (p,-p) & = & |p|^{5}\\Bigl \\{-\\frac {x^{2}(1+x^{2})}{2(1+x)}-\\frac {x^{3}}{2(1+x)}-\\frac {x^{4}}{2(1+x)^{3}}\\Bigr \\}\\\\ &= & |p|^{5}\\Bigr \\{-\\frac {1}{2}x^{3}-x+2+O\\left ( \\frac {1}{x}\\right ) \\Bigl \\}\\; .\\end {eqnarray}",
"\\begin {eqnarray} \\frac {\\delta \\mathcal {A}^{(4)}}{\\delta \\vec {\\phi }(k)\\delta \\vec {\\phi }(-k)} & = & \\frac {1}{2\\pi }\\int \\Bigl \\{Dp^{2}|k|^{3}+(D-1)p^{4}|k|\\\\ && \\qquad \\qquad +(3-D)|p|^{5}\\Bigl \\}\\left ( \\vec {\\phi }_{p}\\vec {\\phi }_{-p}\\right ) \\, dp+O\\left ( \\frac {1}{k}\\right ) \\; .\\end {eqnarray}",
"\\begin {eqnarray} && \\frac {\\delta ^{2}\\mathcal {A}^{(4)}}{\\delta \\vec {\\phi }\\left ( \\frac {q}{2}+k\\right ) \\delta \\vec {\\phi }\\left ( \\frac {q}{2}-k\\right ) }=\\frac {1}{2\\pi }\\int \\Bigl \\{-Dp_{1}p_{2}|k|^{3}\\\\ && \\qquad \\qquad +\\left ( \\frac {D-4}{2}p_{1}p_{2}^{3}+\\frac {3D-6}{2}p_{1}^{2}p_{2}^{2}\\right ) |k|+\\left ( (4-D)p_{1}^{2}|p_{2}|^{3}+p_{1}p_{2}|p_{2}|^{3}\\right ) \\Bigl \\}\\\\ && \\qquad \\qquad \\qquad \\qquad \\qquad \\times \\left ( \\vec {\\phi }_{p_{1}}\\vec {\\phi }_{p_{2}}\\right ) \\, \\delta (p_{1}+p_{2}+q)\\, dp_{1}dp_{2}+O\\left ( \\frac {1}{k}\\right ) \\; .\\end {eqnarray}",
"\\[ \\frac {\\delta ^{2}\\mathcal {A}}{\\delta x_{1}(s)\\delta x_{1}(s')}=\\dot {\\phi }_{i}(s)\\dot {\\phi }_{k}(s')\\frac {\\delta ^{2}\\mathcal {A}}{\\delta \\phi _{i}(s)\\delta \\phi _{k}(s')}-\\delta (s-s')\\dvp (s)\\frac {d}{ds}\\left ( \\frac {\\delta A}{\\delta \\vec {\\phi }(s)}\\right ) \\; .\\]",
"\\begin {eqnarray} (2\\pi )\\frac {\\delta ^{2}\\mathcal {A}}{\\delta x_{1}\\left ( k\\right ) \\delta x_{1}\\left ( k'\\right ) }=-\\int dp\\, dp'\\, p\\, p'\\phi _{i}(p)\\phi _{k}(p')\\frac {\\delta ^{2}\\mathcal {A}}{\\delta \\phi _{i}(p+k)\\delta \\phi _{k}(p'+k')} & & \\\\ -\\int dp\\, p(p+k+k')\\vec {\\phi }(p)\\frac {\\delta \\mathcal {A}}{\\delta \\vec {\\phi }(p+k+k')}\\; . & & \\end {eqnarray}"
],
"latex_norm": [
"$ p = 1 $",
"$ k \\rightarrow \\infty $",
"$ q = 0 $",
"\\begin{align*} F ( k , - k , p , - p ) & = & \\vert p \\vert ^ { 5 } \\{ \\frac { x ^ { 4 } } { 2 ( 1 + x ) ^ { 3 } } + \\frac { x ^ { 3 } } { 2 ( 1 + x ) } + \\frac { x ^ { 2 } ( 1 + 4 x + x ^ { 2 } ) } { 2 ( 1 + x ) } - 2 x ^ { 2 } ( 1 + x ) \\} \\\\ & = & \\vert p \\vert ^ { 5 } \\{ - \\frac { 3 } { 2 } x ^ { 3 } - x + O ( \\frac { 1 } { x } ) \\} \\; , \\\\ \\Phi ( k , - k ) + \\Phi ( p , - p ) & = & \\vert p \\vert ^ { 5 } \\{ - \\frac { x ^ { 2 } ( 1 + x ^ { 2 } ) } { 2 ( 1 + x ) } - \\frac { x ^ { 3 } } { 2 ( 1 + x ) } - \\frac { x ^ { 4 } } { 2 ( 1 + x ) ^ { 3 } } \\} \\\\ & = & \\vert p \\vert ^ { 5 } \\{ - \\frac { 1 } { 2 } x ^ { 3 } - x + 2 + O ( \\frac { 1 } { x } ) \\} \\; . \\end{align*}",
"\\begin{align*} \\frac { \\delta A ^ { ( 4 ) } } { \\delta \\vec { \\phi } ( k ) \\delta \\vec { \\phi } ( - k ) } & = & \\frac { 1 } { 2 \\pi } \\int \\{ D p ^ { 2 } \\vert k \\vert ^ { 3 } + ( D - 1 ) p ^ { 4 } \\vert k \\vert \\\\ & & \\qquad \\qquad + ( 3 - D ) \\vert p \\vert ^ { 5 } \\} ( \\vec { \\phi } _ { p } \\vec { \\phi } _ { - p } ) \\, d p + O ( \\frac { 1 } { k } ) \\; . \\end{align*}",
"\\begin{align*} & & \\frac { \\delta ^ { 2 } A ^ { ( 4 ) } } { \\delta \\vec { \\phi } ( \\frac { q } { 2 } + k ) \\delta \\vec { \\phi } ( \\frac { q } { 2 } - k ) } = \\frac { 1 } { 2 \\pi } \\int \\{ - D p _ { 1 } p _ { 2 } \\vert k \\vert ^ { 3 } \\\\ & & \\qquad \\qquad + ( \\frac { D - 4 } { 2 } p _ { 1 } p _ { 2 } ^ { 3 } + \\frac { 3 D - 6 } { 2 } p _ { 1 } ^ { 2 } p _ { 2 } ^ { 2 } ) \\vert k \\vert + ( ( 4 - D ) p _ { 1 } ^ { 2 } \\vert p _ { 2 } \\vert ^ { 3 } + p _ { 1 } p _ { 2 } \\vert p _ { 2 } \\vert ^ { 3 } ) \\} \\\\ & & \\qquad \\qquad \\qquad \\qquad \\qquad \\times ( \\vec { \\phi } _ { p _ { 1 } } \\vec { \\phi } _ { p _ { 2 } } ) \\, \\delta ( p _ { 1 } + p _ { 2 } + q ) \\, d p _ { 1 } d p _ { 2 } + O ( \\frac { 1 } { k } ) \\; . \\end{align*}",
"\\begin{equation*} \\frac { \\delta ^ { 2 } A } { \\delta x _ { 1 } ( s ) \\delta x _ { 1 } ( s ^ { \\prime } ) } = \\dot { \\phi } _ { i } ( s ) \\dot { \\phi } _ { k } ( s ^ { \\prime } ) \\frac { \\delta ^ { 2 } A } { \\delta \\phi _ { i } ( s ) \\delta \\phi _ { k } ( s ^ { \\prime } ) } - \\delta ( s - s ^ { \\prime } ) \\dot { \\vec { \\phi } \\; } \\! ( s ) \\frac { d } { d s } ( \\frac { \\delta A } { \\delta \\vec { \\phi } ( s ) } ) \\; . \\end{equation*}",
"\\begin{align*} ( 2 \\pi ) \\frac { \\delta ^ { 2 } A } { \\delta x _ { 1 } ( k ) \\delta x _ { 1 } ( k ^ { \\prime } ) } = - \\int d p \\, d p ^ { \\prime } \\, p \\, p ^ { \\prime } \\phi _ { i } ( p ) \\phi _ { k } ( p ^ { \\prime } ) \\frac { \\delta ^ { 2 } A } { \\delta \\phi _ { i } ( p + k ) \\delta \\phi _ { k } ( p ^ { \\prime } + k ^ { \\prime } ) } \\\\ - \\int d p \\, p ( p + k + k ^ { \\prime } ) \\vec { \\phi } ( p ) \\frac { \\delta A } { \\delta \\vec { \\phi } ( p + k + k ^ { \\prime } ) } \\; . \\end{align*}"
],
"latex_expand": [
"$ \\mitp = 1 $",
"$ \\mitk \\rightarrow \\infty $",
"$ \\mitq = 0 $",
"\\begin{align*} \\mitF ( \\mitk , - \\mitk , \\mitp , - \\mitp ) & = & \\vert \\mitp \\vert ^ { 5 } \\Big \\{ \\frac { \\mitx ^ { 4 } } { 2 ( 1 + \\mitx ) ^ { 3 } } + \\frac { \\mitx ^ { 3 } } { 2 ( 1 + \\mitx ) } + \\frac { \\mitx ^ { 2 } ( 1 + 4 \\mitx + \\mitx ^ { 2 } ) } { 2 ( 1 + \\mitx ) } - 2 \\mitx ^ { 2 } ( 1 + \\mitx ) \\Big \\} \\\\ & = & \\vert \\mitp \\vert ^ { 5 } \\Big \\{ - \\frac { 3 } { 2 } \\mitx ^ { 3 } - \\mitx + \\mitO \\left( \\frac { 1 } { \\mitx } \\right) \\Big \\} \\; , \\\\ \\mupPhi ( \\mitk , - \\mitk ) + \\mupPhi ( \\mitp , - \\mitp ) & = & \\vert \\mitp \\vert ^ { 5 } \\Big \\{ - \\frac { \\mitx ^ { 2 } ( 1 + \\mitx ^ { 2 } ) } { 2 ( 1 + \\mitx ) } - \\frac { \\mitx ^ { 3 } } { 2 ( 1 + \\mitx ) } - \\frac { \\mitx ^ { 4 } } { 2 ( 1 + \\mitx ) ^ { 3 } } \\Big \\} \\\\ & = & \\vert \\mitp \\vert ^ { 5 } \\Big \\{ - \\frac { 1 } { 2 } \\mitx ^ { 3 } - \\mitx + 2 + \\mitO \\left( \\frac { 1 } { \\mitx } \\right) \\Big \\} \\; . \\end{align*}",
"\\begin{align*} \\frac { \\mitdelta \\mscrA ^ { ( 4 ) } } { \\mitdelta \\vec { \\mitphi } ( \\mitk ) \\mitdelta \\vec { \\mitphi } ( - \\mitk ) } & = & \\frac { 1 } { 2 \\mitpi } \\int \\Big \\{ \\mitD \\mitp ^ { 2 } \\vert \\mitk \\vert ^ { 3 } + ( \\mitD - 1 ) \\mitp ^ { 4 } \\vert \\mitk \\vert \\\\ & & \\qquad \\qquad + ( 3 - \\mitD ) \\vert \\mitp \\vert ^ { 5 } \\Big \\} \\left( \\vec { \\mitphi } _ { \\mitp } \\vec { \\mitphi } _ { - \\mitp } \\right) \\, \\mitd \\mitp + \\mitO \\left( \\frac { 1 } { \\mitk } \\right) \\; . \\end{align*}",
"\\begin{align*} & & \\frac { \\mitdelta ^ { 2 } \\mscrA ^ { ( 4 ) } } { \\mitdelta \\vec { \\mitphi } \\left( \\frac { \\mitq } { 2 } + \\mitk \\right) \\mitdelta \\vec { \\mitphi } \\left( \\frac { \\mitq } { 2 } - \\mitk \\right) } = \\frac { 1 } { 2 \\mitpi } \\int \\Big \\{ - \\mitD \\mitp _ { 1 } \\mitp _ { 2 } \\vert \\mitk \\vert ^ { 3 } \\\\ & & \\qquad \\qquad + \\left( \\frac { \\mitD - 4 } { 2 } \\mitp _ { 1 } \\mitp _ { 2 } ^ { 3 } + \\frac { 3 \\mitD - 6 } { 2 } \\mitp _ { 1 } ^ { 2 } \\mitp _ { 2 } ^ { 2 } \\right) \\vert \\mitk \\vert + \\left( ( 4 - \\mitD ) \\mitp _ { 1 } ^ { 2 } \\vert \\mitp _ { 2 } \\vert ^ { 3 } + \\mitp _ { 1 } \\mitp _ { 2 } \\vert \\mitp _ { 2 } \\vert ^ { 3 } \\right) \\Big \\} \\\\ & & \\qquad \\qquad \\qquad \\qquad \\qquad \\times \\left( \\vec { \\mitphi } _ { \\mitp _ { 1 } } \\vec { \\mitphi } _ { \\mitp _ { 2 } } \\right) \\, \\mitdelta ( \\mitp _ { 1 } + \\mitp _ { 2 } + \\mitq ) \\, \\mitd \\mitp _ { 1 } \\mitd \\mitp _ { 2 } + \\mitO \\left( \\frac { 1 } { \\mitk } \\right) \\; . \\end{align*}",
"\\begin{equation*} \\frac { \\mitdelta ^ { 2 } \\mscrA } { \\mitdelta \\mitx _ { 1 } ( \\mits ) \\mitdelta \\mitx _ { 1 } ( \\mits ^ { \\prime } ) } = \\dot { \\mitphi } _ { \\miti } ( \\mits ) \\dot { \\mitphi } _ { \\mitk } ( \\mits ^ { \\prime } ) \\frac { \\mitdelta ^ { 2 } \\mscrA } { \\mitdelta \\mitphi _ { \\miti } ( \\mits ) \\mitdelta \\mitphi _ { \\mitk } ( \\mits ^ { \\prime } ) } - \\mitdelta ( \\mits - \\mits ^ { \\prime } ) \\dot { \\vec { \\mitphi } \\; } \\! ( \\mits ) \\frac { \\mitd } { \\mitd \\mits } \\left( \\frac { \\mitdelta \\mitA } { \\mitdelta \\vec { \\mitphi } ( \\mits ) } \\right) \\; . \\end{equation*}",
"\\begin{align*} ( 2 \\mitpi ) \\frac { \\mitdelta ^ { 2 } \\mscrA } { \\mitdelta \\mitx _ { 1 } \\left( \\mitk \\right) \\mitdelta \\mitx _ { 1 } \\left( \\mitk ^ { \\prime } \\right) } = - \\int \\mitd \\mitp \\, \\mitd \\mitp ^ { \\prime } \\, \\mitp \\, \\mitp ^ { \\prime } \\mitphi _ { \\miti } ( \\mitp ) \\mitphi _ { \\mitk } ( \\mitp ^ { \\prime } ) \\frac { \\mitdelta ^ { 2 } \\mscrA } { \\mitdelta \\mitphi _ { \\miti } ( \\mitp + \\mitk ) \\mitdelta \\mitphi _ { \\mitk } ( \\mitp ^ { \\prime } + \\mitk ^ { \\prime } ) } \\\\ - \\int \\mitd \\mitp \\, \\mitp ( \\mitp + \\mitk + \\mitk ^ { \\prime } ) \\vec { \\mitphi } ( \\mitp ) \\frac { \\mitdelta \\mscrA } { \\mitdelta \\vec { \\mitphi } ( \\mitp + \\mitk + \\mitk ^ { \\prime } ) } \\; . \\end{align*}"
],
"x_min": [
0.3296000063419342,
0.7753999829292297,
0.46369999647140503,
0.1437000036239624,
0.22460000216960907,
0.2046000063419342,
0.21080000698566437,
0.19900000095367432
],
"y_min": [
0.09179999679327011,
0.2754000127315521,
0.38769999146461487,
0.10890000313520432,
0.2953999936580658,
0.4790000021457672,
0.7099999785423279,
0.7817000150680542
],
"x_max": [
0.375900000333786,
0.8382999897003174,
0.5113999843597412,
0.8845000267028809,
0.8029999732971191,
0.8569999933242798,
0.8169000148773193,
0.8292999863624573
],
"y_max": [
0.10400000214576721,
0.28610000014305115,
0.4004000127315521,
0.2709999978542328,
0.3822999894618988,
0.6060000061988831,
0.7538999915122986,
0.8676000237464905
],
"expr_type": [
"embedded",
"embedded",
"embedded",
"isolated",
"isolated",
"isolated",
"isolated",
"isolated"
]
} |
|
0002106_page17 | {
"latex": [
"\\( \\mathcal {A}^{(2)} \\)",
"\\( \\propto \\delta ''(s-s') \\)",
"\\( \\propto k^{2} \\)",
"\\( D \\)",
"\\( \\widehat {{L}}_{q} \\)",
"\\( k^{0} \\)",
"\\( D=4 \\)",
"\\begin {eqnarray} \\frac {\\delta ^{2}\\mathcal {A}}{\\delta x_{1}\\left ( \\frac {q}{2}+k\\right ) \\delta x_{1}\\left ( \\frac {q}{2}-k\\right ) } & = & \\frac {1}{2\\pi }\\int \\Bigl \\{\\Bigl |\\frac {p_{1}-p_{2}}{2}+k\\Bigr |^{3}-|p_{2}|^{3}\\Bigl \\}\\\\ && \\qquad \\qquad \\times p_{1}p_{2}\\left ( \\vec {\\phi }_{p_{1}}\\vec {\\phi }_{p_{2}}\\right ) \\delta (p_{1}+p_{2}+q)\\, dp_{1}dp_{2}\\\\ &\\mathop {=}_{k\\to \\infty } & \\frac {1}{2\\pi }\\int \\Bigl \\{|k|^{3}+\\frac {3}{4}(p_{1}-p_{2})^{2}|k|-p_{1}p_{2}|p_{2}|^{3}\\Bigl \\}\\times \\ldots \\end {eqnarray}",
"\\begin {eqnarray} && \\frac {\\delta ^{2}\\mathcal {A}^{(4)}}{\\delta x_{\\mu }\\left ( \\frac {q}{2}+k\\right ) \\delta x_{\\mu }\\left ( \\frac {q}{2}-k\\right ) }=(1-D)\\delta (q)|k|^{3}+\\frac {1}{2\\pi }\\int \\Bigl \\{(1-D)p_{1}p_{2}|k|^{3}\\\\ && \\qquad \\qquad +\\left ( \\frac {D-1}{2}p_{1}p_{2}^{3}+\\frac {3D-9}{2}p_{1}^{2}p_{2}^{2}\\right ) |k|+(4-D)p_{1}^{2}|p_{2}|^{3}\\Bigl \\}\\\\ && \\qquad \\qquad \\qquad \\qquad \\times \\left ( \\vec {\\phi }_{p_{1}}\\vec {\\phi }_{p_{2}}\\right ) \\, \\delta (p_{1}+p_{2}+q)\\, dp_{1}dp_{2}+O\\left ( \\frac {1}{k}\\right ) +O(\\phi ^{4})\\; .\\end {eqnarray}",
"\\begin {equation} \\label {8.1} \\widehat {{L}}_{q}\\mathcal {A}=\\frac {4-D}{2\\pi }\\int p_{1}^{2}|p_{2}|^{3}\\left ( \\vec {\\phi }_{p_{1}}\\vec {\\phi }_{p_{2}}\\right ) \\, \\delta (p_{1}+p_{2}+q)\\, dp_{1}dp_{2}\\; . \\end {equation}"
],
"latex_norm": [
"$ A ^ { ( 2 ) } $",
"$ \\propto \\delta ^ { \\dprime } ( s - s ^ { \\prime } ) $",
"$ \\propto k ^ { 2 } $",
"$ D $",
"$ \\hat { L } _ { q } $",
"$ k ^ { 0 } $",
"$ D = 4 $",
"\\begin{align*} \\frac { \\delta ^ { 2 } A } { \\delta x _ { 1 } ( \\frac { q } { 2 } + k ) \\delta x _ { 1 } ( \\frac { q } { 2 } - k ) } & = & \\frac { 1 } { 2 \\pi } \\int \\{ \\vert \\frac { p _ { 1 } - p _ { 2 } } { 2 } + k \\vert ^ { 3 } - \\vert p _ { 2 } \\vert ^ { 3 } \\} \\\\ & & \\qquad \\qquad \\times p _ { 1 } p _ { 2 } ( \\vec { \\phi } _ { p _ { 1 } } \\vec { \\phi } _ { p _ { 2 } } ) \\delta ( p _ { 1 } + p _ { 2 } + q ) \\, d p _ { 1 } d p _ { 2 } \\\\ & \\underset { k \\rightarrow \\infty } { = } & \\frac { 1 } { 2 \\pi } \\int \\{ \\vert k \\vert ^ { 3 } + \\frac { 3 } { 4 } ( p _ { 1 } - p _ { 2 } ) ^ { 2 } \\vert k \\vert - p _ { 1 } p _ { 2 } \\vert p _ { 2 } \\vert ^ { 3 } \\} \\times \\ldots \\end{align*}",
"\\begin{align*} & & \\frac { \\delta ^ { 2 } A ^ { ( 4 ) } } { \\delta x _ { \\mu } ( \\frac { q } { 2 } + k ) \\delta x _ { \\mu } ( \\frac { q } { 2 } - k ) } = ( 1 - D ) \\delta ( q ) \\vert k \\vert ^ { 3 } + \\frac { 1 } { 2 \\pi } \\int \\{ ( 1 - D ) p _ { 1 } p _ { 2 } \\vert k \\vert ^ { 3 } \\\\ & & \\qquad \\qquad + ( \\frac { D - 1 } { 2 } p _ { 1 } p _ { 2 } ^ { 3 } + \\frac { 3 D - 9 } { 2 } p _ { 1 } ^ { 2 } p _ { 2 } ^ { 2 } ) \\vert k \\vert + ( 4 - D ) p _ { 1 } ^ { 2 } \\vert p _ { 2 } \\vert ^ { 3 } \\} \\\\ & & \\qquad \\qquad \\qquad \\qquad \\times ( \\vec { \\phi } _ { p _ { 1 } } \\vec { \\phi } _ { p _ { 2 } } ) \\, \\delta ( p _ { 1 } + p _ { 2 } + q ) \\, d p _ { 1 } d p _ { 2 } + O ( \\frac { 1 } { k } ) + O ( \\phi ^ { 4 } ) \\; . \\end{align*}",
"\\begin{equation*} \\hat { L } _ { q } A = \\frac { 4 - D } { 2 \\pi } \\int p _ { 1 } ^ { 2 } \\vert p _ { 2 } \\vert ^ { 3 } ( \\vec { \\phi } _ { p _ { 1 } } \\vec { \\phi } _ { p _ { 2 } } ) \\, \\delta ( p _ { 1 } + p _ { 2 } + q ) \\, d p _ { 1 } d p _ { 2 } \\; . \\end{equation*}"
],
"latex_expand": [
"$ \\mscrA ^ { ( 2 ) } $",
"$ \\propto \\mitdelta ^ { \\dprime } ( \\mits - \\mits ^ { \\prime } ) $",
"$ \\propto \\mitk ^ { 2 } $",
"$ \\mitD $",
"$ \\widehat { \\mitL } _ { \\mitq } $",
"$ \\mitk ^ { 0 } $",
"$ \\mitD = 4 $",
"\\begin{align*} \\frac { \\mitdelta ^ { 2 } \\mscrA } { \\mitdelta \\mitx _ { 1 } \\left( \\frac { \\mitq } { 2 } + \\mitk \\right) \\mitdelta \\mitx _ { 1 } \\left( \\frac { \\mitq } { 2 } - \\mitk \\right) } & = & \\frac { 1 } { 2 \\mitpi } \\int \\Big \\{ \\Big| \\frac { \\mitp _ { 1 } - \\mitp _ { 2 } } { 2 } + \\mitk \\Big| ^ { 3 } - \\vert \\mitp _ { 2 } \\vert ^ { 3 } \\Big \\} \\\\ & & \\qquad \\qquad \\times \\mitp _ { 1 } \\mitp _ { 2 } \\left( \\vec { \\mitphi } _ { \\mitp _ { 1 } } \\vec { \\mitphi } _ { \\mitp _ { 2 } } \\right) \\mitdelta ( \\mitp _ { 1 } + \\mitp _ { 2 } + \\mitq ) \\, \\mitd \\mitp _ { 1 } \\mitd \\mitp _ { 2 } \\\\ & \\underset { \\mitk \\rightarrow \\infty } { = } & \\frac { 1 } { 2 \\mitpi } \\int \\Big \\{ \\vert \\mitk \\vert ^ { 3 } + \\frac { 3 } { 4 } ( \\mitp _ { 1 } - \\mitp _ { 2 } ) ^ { 2 } \\vert \\mitk \\vert - \\mitp _ { 1 } \\mitp _ { 2 } \\vert \\mitp _ { 2 } \\vert ^ { 3 } \\Big \\} \\times \\ldots \\end{align*}",
"\\begin{align*} & & \\frac { \\mitdelta ^ { 2 } \\mscrA ^ { ( 4 ) } } { \\mitdelta \\mitx _ { \\mitmu } \\left( \\frac { \\mitq } { 2 } + \\mitk \\right) \\mitdelta \\mitx _ { \\mitmu } \\left( \\frac { \\mitq } { 2 } - \\mitk \\right) } = ( 1 - \\mitD ) \\mitdelta ( \\mitq ) \\vert \\mitk \\vert ^ { 3 } + \\frac { 1 } { 2 \\mitpi } \\int \\Big \\{ ( 1 - \\mitD ) \\mitp _ { 1 } \\mitp _ { 2 } \\vert \\mitk \\vert ^ { 3 } \\\\ & & \\qquad \\qquad + \\left( \\frac { \\mitD - 1 } { 2 } \\mitp _ { 1 } \\mitp _ { 2 } ^ { 3 } + \\frac { 3 \\mitD - 9 } { 2 } \\mitp _ { 1 } ^ { 2 } \\mitp _ { 2 } ^ { 2 } \\right) \\vert \\mitk \\vert + ( 4 - \\mitD ) \\mitp _ { 1 } ^ { 2 } \\vert \\mitp _ { 2 } \\vert ^ { 3 } \\Big \\} \\\\ & & \\qquad \\qquad \\qquad \\qquad \\times \\left( \\vec { \\mitphi } _ { \\mitp _ { 1 } } \\vec { \\mitphi } _ { \\mitp _ { 2 } } \\right) \\, \\mitdelta ( \\mitp _ { 1 } + \\mitp _ { 2 } + \\mitq ) \\, \\mitd \\mitp _ { 1 } \\mitd \\mitp _ { 2 } + \\mitO \\left( \\frac { 1 } { \\mitk } \\right) + \\mitO ( \\mitphi ^ { 4 } ) \\; . \\end{align*}",
"\\begin{equation*} \\widehat { \\mitL } _ { \\mitq } \\mscrA = \\frac { 4 - \\mitD } { 2 \\mitpi } \\int \\mitp _ { 1 } ^ { 2 } \\vert \\mitp _ { 2 } \\vert ^ { 3 } \\left( \\vec { \\mitphi } _ { \\mitp _ { 1 } } \\vec { \\mitphi } _ { \\mitp _ { 2 } } \\right) \\, \\mitdelta ( \\mitp _ { 1 } + \\mitp _ { 2 } + \\mitq ) \\, \\mitd \\mitp _ { 1 } \\mitd \\mitp _ { 2 } \\; . \\end{equation*}"
],
"x_min": [
0.5432000160217285,
0.8079000115394592,
0.5680999755859375,
0.746399998664856,
0.6841999888420105,
0.13750000298023224,
0.28130000829696655,
0.16859999299049377,
0.22179999947547913,
0.27570000290870667
],
"y_min": [
0.08839999884366989,
0.5526999831199646,
0.57669997215271,
0.5781000256538391,
0.6532999873161316,
0.6807000041007996,
0.7598000168800354,
0.13920000195503235,
0.28610000014305115,
0.7080000042915344
],
"x_max": [
0.5784000158309937,
0.9192000031471252,
0.6103000044822693,
0.763700008392334,
0.7056000232696533,
0.15690000355243683,
0.33799999952316284,
0.8597000241279602,
0.8396000266075134,
0.755299985408783
],
"y_max": [
0.10159999877214432,
0.567300021648407,
0.5889000296592712,
0.5888000130653381,
0.6718999743461609,
0.6923999786376953,
0.7705000042915344,
0.2535000145435333,
0.41110000014305115,
0.7436000108718872
],
"expr_type": [
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"isolated",
"isolated",
"isolated"
]
} |
|
0002106_page18 | {
"latex": [
"\\( x=\\frac {x_{1}+x_{2}}{2} \\)",
"\\( \\bar {s}=\\frac {s+s'}{2}. \\)",
"\\( \\propto |k|^{3} \\)",
"\\( |k| \\)",
"\\( s \\)",
"\\( C_{1}=D-3 \\)",
"\\( C_{2}=2 \\)",
"\\( C_{1} \\)",
"\\( C_{2} \\)",
"\\( F_{\\mu \\nu } \\)",
"\\begin {eqnarray} F_{\\mu \\lambda }(x_{1})F_{\\mu \\sigma }(x_{2}) & \\sim & C_{1}\\frac {\\delta _{\\lambda \\sigma }}{|x_{1}-x_{2}|^{4}}+C_{2}\\frac {(x_{1}-x_{2})_{\\lambda }(x_{1}-x_{2})_{\\sigma }}{|x_{1}-x_{2}|^{6}}\\\\ && +\\, C_{3}\\frac {(x_{1}-x_{2})_{(\\lambda }(x_{1}-x_{2})_{\\mu }F_{\\mu \\sigma )}(x)}{|x_{1}-x_{2}|^{4}}+C_{4}\\frac {(x_{1}-x_{2})_{\\mu }\\nabla _{\\mu }F_{\\lambda \\sigma }(x)}{\\left | x_{1}-x_{2}\\right | ^{2}}\\; .\\end {eqnarray}",
"\\[ \\frac {\\delta ^{2}W}{\\delta x_{\\mu }(s)\\delta x_{\\mu }(s')}\\mathop {=}_{s\\to s'}\\frac {1}{|s-s'|^{4}}\\frac {C_{1}+C_{2}}{\\dot {x}^{2}}+\\frac {1}{|s-s'|^{2}}\\left ( \\frac {(C_{1}+C_{2})(\\dot {x}\\! \\stackrel {{\\, ...}}{x})}{12\\dot {x}^{4}}+\\frac {C_{1}\\ddot {x}^{2}}{4\\dot {x}^{4}}+\\frac {C_{2}(\\dot {x}\\ddot {x})^{2}}{4\\dot {x}^{4}}\\right ) \\; .\\]",
"\\begin {equation} \\label {8.35} \\frac {\\delta ^{2}W}{\\delta x_{\\mu }(s)\\delta x_{\\mu }(s')}\\mathop {=}_{s\\to s'}\\frac {1}{|s-s'|^{4}}(C_{1}+C_{2})(1-\\dot {\\phi }^{2})+\\frac {1}{|s-s'|^{2}}\\left ( \\frac {(C_{1}+C_{2})}{12}\\dot {\\phi }\\stackrel {{\\, ...}}{\\phi }+\\frac {C_{1}}{4}\\ddot {\\phi }^{2}\\right ) +O(\\phi ^{4})\\; . \\end {equation}",
"\\[ |k|^{3}\\leftrightarrow \\frac {1}{|s-s'|^{4}},\\qquad |k|\\leftrightarrow -\\frac {1}{6|s-s'|^{2}}\\]",
"\\begin {equation} \\label {8.4} \\frac {\\delta ^{2}\\mathcal {A}}{\\delta x_{\\mu }(s)\\delta x_{\\mu }(s')}\\propto \\frac {1}{|s-s'|^{4}}(1-D)(1-\\dot {\\phi }^{2})+\\frac {1}{|s-s'|^{2}}\\left ( \\frac {1-D}{12}\\dot {\\phi }\\stackrel {{\\, ...}}{\\phi }+\\frac {3-D}{4}\\ddot {\\phi }^{2}\\right ) . \\end {equation}"
],
"latex_norm": [
"$ x = \\frac { x _ { 1 } + x _ { 2 } } { 2 } $",
"$ \\bar { s } = \\frac { s + s ^ { \\prime } } { 2 } . $",
"$ \\propto \\vert k \\vert ^ { 3 } $",
"$ \\vert k \\vert $",
"$ s $",
"$ C _ { 1 } = D - 3 $",
"$ C _ { 2 } = 2 $",
"$ C _ { 1 } $",
"$ C _ { 2 } $",
"$ F _ { \\mu \\nu } $",
"\\begin{align*} F _ { \\mu \\lambda } ( x _ { 1 } ) F _ { \\mu \\sigma } ( x _ { 2 } ) & \\sim & C _ { 1 } \\frac { \\delta _ { \\lambda \\sigma } } { \\vert x _ { 1 } - x _ { 2 } \\vert ^ { 4 } } + C _ { 2 } \\frac { ( x _ { 1 } - x _ { 2 } ) _ { \\lambda } ( x _ { 1 } - x _ { 2 } ) _ { \\sigma } } { \\vert x _ { 1 } - x _ { 2 } \\vert ^ { 6 } } \\\\ & & + \\, C _ { 3 } \\frac { ( x _ { 1 } - x _ { 2 } ) _ { ( \\lambda } ( x _ { 1 } - x _ { 2 } ) _ { \\mu } F _ { \\mu \\sigma ) } ( x ) } { \\vert x _ { 1 } - x _ { 2 } \\vert ^ { 4 } } + C _ { 4 } \\frac { ( x _ { 1 } - x _ { 2 } ) _ { \\mu } \\nabla _ { \\mu } F _ { \\lambda \\sigma } ( x ) } { { \\vert x _ { 1 } - x _ { 2 } \\vert } ^ { 2 } } \\; . \\end{align*}",
"\\begin{equation*} \\frac { \\delta ^ { 2 } W } { \\delta x _ { \\mu } ( s ) \\delta x _ { \\mu } ( s ^ { \\prime } ) } \\underset { s \\rightarrow s ^ { \\prime } } { = } \\frac { 1 } { \\vert s - s ^ { \\prime } \\vert ^ { 4 } } \\frac { C _ { 1 } + C _ { 2 } } { \\dot { x } ^ { 2 } } + \\frac { 1 } { \\vert s - s ^ { \\prime } \\vert ^ { 2 } } ( \\frac { ( C _ { 1 } + C _ { 2 } ) ( \\dot { x } \\! \\overset { \\, . . . } { x } ) } { 1 2 \\dot { x } ^ { 4 } } + \\frac { C _ { 1 } \\ddot { x } ^ { 2 } } { 4 \\dot { x } ^ { 4 } } + \\frac { C _ { 2 } ( \\dot { x } \\ddot { x } ) ^ { 2 } } { 4 \\dot { x } ^ { 4 } } ) \\; . \\end{equation*}",
"\\begin{equation*} \\frac { \\delta ^ { 2 } W } { \\delta x _ { \\mu } ( s ) \\delta x _ { \\mu } ( s ^ { \\prime } ) } \\underset { s \\rightarrow s ^ { \\prime } } { = } \\frac { 1 } { \\vert s - s ^ { \\prime } \\vert ^ { 4 } } ( C _ { 1 } + C _ { 2 } ) ( 1 - \\dot { \\phi } ^ { 2 } ) + \\frac { 1 } { \\vert s - s ^ { \\prime } \\vert ^ { 2 } } ( \\frac { ( C _ { 1 } + C _ { 2 } ) } { 1 2 } \\dot { \\phi } \\overset { \\, . . . } { \\phi } + \\frac { C _ { 1 } } { 4 } \\ddot { \\phi } ^ { 2 } ) + O ( \\phi ^ { 4 } ) \\; . \\end{equation*}",
"\\begin{equation*} \\vert k \\vert ^ { 3 } \\leftrightarrow \\frac { 1 } { \\vert s - s ^ { \\prime } \\vert ^ { 4 } } , \\qquad \\vert k \\vert \\leftrightarrow - \\frac { 1 } { 6 \\vert s - s ^ { \\prime } \\vert ^ { 2 } } \\end{equation*}",
"\\begin{equation*} \\frac { \\delta ^ { 2 } A } { \\delta x _ { \\mu } ( s ) \\delta x _ { \\mu } ( s ^ { \\prime } ) } \\propto \\frac { 1 } { \\vert s - s ^ { \\prime } \\vert ^ { 4 } } ( 1 - D ) ( 1 - \\dot { \\phi } ^ { 2 } ) + \\frac { 1 } { \\vert s - s ^ { \\prime } \\vert ^ { 2 } } ( \\frac { 1 - D } { 1 2 } \\dot { \\phi } \\overset { \\, . . . } { \\phi } + \\frac { 3 - D } { 4 } \\ddot { \\phi } ^ { 2 } ) . \\end{equation*}"
],
"latex_expand": [
"$ \\mitx = \\frac { \\mitx _ { 1 } + \\mitx _ { 2 } } { 2 } $",
"$ \\bar { \\mits } = \\frac { \\mits + \\mits ^ { \\prime } } { 2 } . $",
"$ \\propto \\vert \\mitk \\vert ^ { 3 } $",
"$ \\vert \\mitk \\vert $",
"$ \\mits $",
"$ \\mitC _ { 1 } = \\mitD - 3 $",
"$ \\mitC _ { 2 } = 2 $",
"$ \\mitC _ { 1 } $",
"$ \\mitC _ { 2 } $",
"$ \\mitF _ { \\mitmu \\mitnu } $",
"\\begin{align*} \\mitF _ { \\mitmu \\mitlambda } ( \\mitx _ { 1 } ) \\mitF _ { \\mitmu \\mitsigma } ( \\mitx _ { 2 } ) & \\sim & \\mitC _ { 1 } \\frac { \\mitdelta _ { \\mitlambda \\mitsigma } } { \\vert \\mitx _ { 1 } - \\mitx _ { 2 } \\vert ^ { 4 } } + \\mitC _ { 2 } \\frac { ( \\mitx _ { 1 } - \\mitx _ { 2 } ) _ { \\mitlambda } ( \\mitx _ { 1 } - \\mitx _ { 2 } ) _ { \\mitsigma } } { \\vert \\mitx _ { 1 } - \\mitx _ { 2 } \\vert ^ { 6 } } \\\\ & & + \\, \\mitC _ { 3 } \\frac { ( \\mitx _ { 1 } - \\mitx _ { 2 } ) _ { ( \\mitlambda } ( \\mitx _ { 1 } - \\mitx _ { 2 } ) _ { \\mitmu } \\mitF _ { \\mitmu \\mitsigma ) } ( \\mitx ) } { \\vert \\mitx _ { 1 } - \\mitx _ { 2 } \\vert ^ { 4 } } + \\mitC _ { 4 } \\frac { ( \\mitx _ { 1 } - \\mitx _ { 2 } ) _ { \\mitmu } \\nabla _ { \\mitmu } \\mitF _ { \\mitlambda \\mitsigma } ( \\mitx ) } { { \\left\\vert \\mitx _ { 1 } - \\mitx _ { 2 } \\right\\vert } ^ { 2 } } \\; . \\end{align*}",
"\\begin{equation*} \\frac { \\mitdelta ^ { 2 } \\mitW } { \\mitdelta \\mitx _ { \\mitmu } ( \\mits ) \\mitdelta \\mitx _ { \\mitmu } ( \\mits ^ { \\prime } ) } \\underset { \\mits \\rightarrow \\mits ^ { \\prime } } { = } \\frac { 1 } { \\vert \\mits - \\mits ^ { \\prime } \\vert ^ { 4 } } \\frac { \\mitC _ { 1 } + \\mitC _ { 2 } } { \\dot { \\mitx } ^ { 2 } } + \\frac { 1 } { \\vert \\mits - \\mits ^ { \\prime } \\vert ^ { 2 } } \\left( \\frac { ( \\mitC _ { 1 } + \\mitC _ { 2 } ) ( \\dot { \\mitx } \\! \\overset { \\, . . . } { \\mitx } ) } { 1 2 \\dot { \\mitx } ^ { 4 } } + \\frac { \\mitC _ { 1 } \\ddot { \\mitx } ^ { 2 } } { 4 \\dot { \\mitx } ^ { 4 } } + \\frac { \\mitC _ { 2 } ( \\dot { \\mitx } \\ddot { \\mitx } ) ^ { 2 } } { 4 \\dot { \\mitx } ^ { 4 } } \\right) \\; . \\end{equation*}",
"\\begin{equation*} \\frac { \\mitdelta ^ { 2 } \\mitW } { \\mitdelta \\mitx _ { \\mitmu } ( \\mits ) \\mitdelta \\mitx _ { \\mitmu } ( \\mits ^ { \\prime } ) } \\underset { \\mits \\rightarrow \\mits ^ { \\prime } } { = } \\frac { 1 } { \\vert \\mits - \\mits ^ { \\prime } \\vert ^ { 4 } } ( \\mitC _ { 1 } + \\mitC _ { 2 } ) ( 1 - \\dot { \\mitphi } ^ { 2 } ) + \\frac { 1 } { \\vert \\mits - \\mits ^ { \\prime } \\vert ^ { 2 } } \\left( \\frac { ( \\mitC _ { 1 } + \\mitC _ { 2 } ) } { 1 2 } \\dot { \\mitphi } \\overset { \\, . . . } { \\mitphi } + \\frac { \\mitC _ { 1 } } { 4 } \\ddot { \\mitphi } ^ { 2 } \\right) + \\mitO ( \\mitphi ^ { 4 } ) \\; . \\end{equation*}",
"\\begin{equation*} \\vert \\mitk \\vert ^ { 3 } \\leftrightarrow \\frac { 1 } { \\vert \\mits - \\mits ^ { \\prime } \\vert ^ { 4 } } , \\qquad \\vert \\mitk \\vert \\leftrightarrow - \\frac { 1 } { 6 \\vert \\mits - \\mits ^ { \\prime } \\vert ^ { 2 } } \\end{equation*}",
"\\begin{equation*} \\frac { \\mitdelta ^ { 2 } \\mscrA } { \\mitdelta \\mitx _ { \\mitmu } ( \\mits ) \\mitdelta \\mitx _ { \\mitmu } ( \\mits ^ { \\prime } ) } \\propto \\frac { 1 } { \\vert \\mits - \\mits ^ { \\prime } \\vert ^ { 4 } } ( 1 - \\mitD ) ( 1 - \\dot { \\mitphi } ^ { 2 } ) + \\frac { 1 } { \\vert \\mits - \\mits ^ { \\prime } \\vert ^ { 2 } } \\left( \\frac { 1 - \\mitD } { 1 2 } \\dot { \\mitphi } \\overset { \\, . . . } { \\mitphi } + \\frac { 3 - \\mitD } { 4 } \\ddot { \\mitphi } ^ { 2 } \\right) . \\end{equation*}"
],
"x_min": [
0.11680000275373459,
0.5418000221252441,
0.8009999990463257,
0.8970000147819519,
0.26330000162124634,
0.8119999766349792,
0.10920000076293945,
0.5073000192642212,
0.5763999819755554,
0.6876000165939331,
0.15960000455379486,
0.1444000005722046,
0.11890000104904175,
0.3490000069141388,
0.1582999974489212
],
"y_min": [
0.2313999980688095,
0.3330000042915344,
0.4359999895095825,
0.43650001287460327,
0.5414999723434448,
0.6133000254631042,
0.6377000212669373,
0.6625999808311462,
0.6625999808311462,
0.711899995803833,
0.1371999979019165,
0.2827000021934509,
0.38429999351501465,
0.490200012922287,
0.5609999895095825
],
"x_max": [
0.1996999979019165,
0.6164000034332275,
0.8528000116348267,
0.9190999865531921,
0.27300000190734863,
0.9136000275611877,
0.16930000483989716,
0.5300999879837036,
0.5992000102996826,
0.7179999947547913,
0.8679999709129333,
0.8831999897956848,
0.8719000220298767,
0.6793000102043152,
0.832099974155426
],
"y_max": [
0.24799999594688416,
0.3515999913215637,
0.45159998536109924,
0.45159998536109924,
0.54830002784729,
0.6255000233650208,
0.6503999829292297,
0.6753000020980835,
0.6753000020980835,
0.7261000275611877,
0.22310000658035278,
0.31929999589920044,
0.42239999771118164,
0.5234000086784363,
0.5996000170707703
],
"expr_type": [
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"isolated",
"isolated",
"isolated",
"isolated",
"isolated"
]
} |
|
0002106_page19 | {
"latex": [
"\\( J_{\\nu } \\)",
"\\( \\widehat {L}A_{\\min }=0 \\)",
"\\( D=4 \\)",
"\\( g_{YM}^{2}N\\to \\infty \\)",
"\\[ \\nabla _{\\mu }F_{\\mu \\nu }=J_{\\nu }\\ne 0\\]"
],
"latex_norm": [
"$ J _ { \\nu } $",
"$ \\hat { L } A _ { m i n } = 0 $",
"$ D = 4 $",
"$ g _ { Y M } ^ { 2 } N \\rightarrow \\infty $",
"\\begin{equation*} \\nabla _ { \\mu } F _ { \\mu \\nu } = J _ { \\nu } \\ne 0 \\end{equation*}"
],
"latex_expand": [
"$ \\mitJ _ { \\mitnu } $",
"$ \\widehat { \\mitL } \\mitA _ { \\mathrm { m i n } } = 0 $",
"$ \\mitD = 4 $",
"$ \\mitg _ { \\mitY \\mitM } ^ { 2 } \\mitN \\rightarrow \\infty $",
"\\begin{equation*} \\nabla _ { \\mitmu } \\mitF _ { \\mitmu \\mitnu } = \\mitJ _ { \\mitnu } \\ne 0 \\end{equation*}"
],
"x_min": [
0.17479999363422394,
0.10920000076293945,
0.22869999706745148,
0.7732999920845032,
0.44440001249313354
],
"y_min": [
0.24709999561309814,
0.26759999990463257,
0.27149999141693115,
0.4779999852180481,
0.2134000062942505
],
"x_max": [
0.19480000436306,
0.19830000400543213,
0.28189998865127563,
0.883899986743927,
0.583299994468689
],
"y_max": [
0.25929999351501465,
0.2842000126838684,
0.28220000863075256,
0.4936000108718872,
0.2290000021457672
],
"expr_type": [
"embedded",
"embedded",
"embedded",
"embedded",
"isolated"
]
} |
|
0002106_page20 | {
"latex": [
"\\( \\widehat {L}_{q} \\)",
"\\( f \\)",
"\\( D=4+\\epsilon \\)",
"\\( \\widehat {L}_{q}W\\propto \\epsilon \\)",
"\\( \\beta \\)",
"\\( \\mathcal {A} \\)",
"\\( W \\)",
"\\( f \\)",
"\\( f_{\\mu }(x)=x_{\\mu }/x^{2} \\)",
"\\( D \\)",
"\\( \\epsilon \\)",
"\\( f \\)",
"\\( (D+1) \\)",
"\\( M \\)",
"\\( C \\)",
"\\( F \\)",
"\\( F(M) \\)",
"\\( f(C) \\)",
"\\[ ds^{2}=f(\\log y)\\left ( \\frac {dy^{2}+d\\vec {x}\\, ^{2}}{y^{2}}\\right ) \\]",
"\\begin {equation} \\label {9.5} \\mathcal {A}[C]=\\mathcal {A}[f(C)]\\; \\end {equation}",
"\\begin {equation} \\label {9.2} (x_{\\mu },y)\\stackrel {{F}}{\\rightarrow }\\left ( \\frac {x_{\\mu }}{x^{2}+y^{2}},\\frac {y}{x^{2}+y^{2}}\\right ) \\; . \\end {equation}",
"\\begin {equation} \\label {9.3} \\textrm {Area}[M_{\\epsilon }]=\\textrm {Area}[F(M_{\\epsilon })] \\end {equation}"
],
"latex_norm": [
"$ \\hat { L } _ { q } $",
"$ f $",
"$ D = 4 + \\epsilon $",
"$ \\hat { L } _ { q } W \\propto \\epsilon $",
"$ \\beta $",
"$ A $",
"$ W $",
"$ f $",
"$ f _ { \\mu } ( x ) = x _ { \\mu } \\slash x ^ { 2 } $",
"$ D $",
"$ \\epsilon $",
"$ f $",
"$ ( D + 1 ) $",
"$ M $",
"$ C $",
"$ F $",
"$ F ( M ) $",
"$ f ( C ) $",
"\\begin{equation*} d s ^ { 2 } = f ( \\operatorname { l o g } y ) ( \\frac { d y ^ { 2 } + d \\vec { x } \\, { } ^ { 2 } } { y ^ { 2 } } ) \\end{equation*}",
"\\begin{equation*} A [ C ] = A [ f ( C ) ] \\; \\end{equation*}",
"\\begin{equation*} ( x _ { \\mu } , y ) \\overset { F } { \\rightarrow } ( \\frac { x _ { \\mu } } { x ^ { 2 } + y ^ { 2 } } , \\frac { y } { x ^ { 2 } + y ^ { 2 } } ) \\; . \\end{equation*}",
"\\begin{equation*} A r e a [ M _ { \\epsilon } ] = A r e a [ F ( M _ { \\epsilon } ) ] \\end{equation*}"
],
"latex_expand": [
"$ \\widehat { \\mitL } _ { \\mitq } $",
"$ \\mitf $",
"$ \\mitD = 4 + \\mitepsilon $",
"$ \\widehat { \\mitL } _ { \\mitq } \\mitW \\propto \\mitepsilon $",
"$ \\mitbeta $",
"$ \\mscrA $",
"$ \\mitW $",
"$ \\mitf $",
"$ \\mitf _ { \\mitmu } ( \\mitx ) = \\mitx _ { \\mitmu } \\slash \\mitx ^ { 2 } $",
"$ \\mitD $",
"$ \\mitepsilon $",
"$ \\mitf $",
"$ ( \\mitD + 1 ) $",
"$ \\mitM $",
"$ \\mitC $",
"$ \\mitF $",
"$ \\mitF ( \\mitM ) $",
"$ \\mitf ( \\mitC ) $",
"\\begin{equation*} \\mitd \\mits ^ { 2 } = \\mitf ( \\operatorname { l o g } \\mity ) \\left( \\frac { \\mitd \\mity ^ { 2 } + \\mitd \\vec { \\mitx } \\, { } ^ { 2 } } { \\mity ^ { 2 } } \\right) \\end{equation*}",
"\\begin{equation*} \\mscrA [ \\mitC ] = \\mscrA [ \\mitf ( \\mitC ) ] \\; \\end{equation*}",
"\\begin{equation*} ( \\mitx _ { \\mitmu } , \\mity ) \\overset { \\mitF } { \\rightarrow } \\left( \\frac { \\mitx _ { \\mitmu } } { \\mitx ^ { 2 } + \\mity ^ { 2 } } , \\frac { \\mity } { \\mitx ^ { 2 } + \\mity ^ { 2 } } \\right) \\; . \\end{equation*}",
"\\begin{equation*} \\mathrm { A r e a } [ \\mitM _ { \\mitepsilon } ] = \\mathrm { A r e a } [ \\mitF ( \\mitM _ { \\mitepsilon } ) ] \\end{equation*}"
],
"x_min": [
0.22390000522136688,
0.5929999947547913,
0.10920000076293945,
0.8361999988555908,
0.32829999923706055,
0.4277999997138977,
0.5728999972343445,
0.17350000143051147,
0.49140000343322754,
0.8079000115394592,
0.8894000053405762,
0.46860000491142273,
0.5439000129699707,
0.3718000054359436,
0.510699987411499,
0.5964000225067139,
0.7540000081062317,
0.2888999879360199,
0.3912000060081482,
0.4415999948978424,
0.37869998812675476,
0.4077000021934509
],
"y_min": [
0.0869000032544136,
0.18850000202655792,
0.26269999146461487,
0.2587999999523163,
0.31200000643730164,
0.576200008392334,
0.576200008392334,
0.6439999938011169,
0.6425999999046326,
0.6439999938011169,
0.6967999935150146,
0.7178000211715698,
0.7172999978065491,
0.7860999703407288,
0.7860999703407288,
0.7860999703407288,
0.7851999998092651,
0.8095999956130981,
0.14259999990463257,
0.6060000061988831,
0.7378000020980835,
0.8403000235557556
],
"x_max": [
0.2460000067949295,
0.605400025844574,
0.20250000059604645,
0.9190999865531921,
0.34139999747276306,
0.44440001249313354,
0.5950000286102295,
0.1859000027179718,
0.6136999726295471,
0.8252000212669373,
0.8977000117301941,
0.48100000619888306,
0.6096000075340271,
0.39320001006126404,
0.5266000032424927,
0.6122999787330627,
0.8065000176429749,
0.33239999413490295,
0.6338000297546387,
0.5888000130653381,
0.652400016784668,
0.6226000189781189
],
"y_max": [
0.1054999977350235,
0.20170000195503235,
0.274399995803833,
0.2773999869823456,
0.32519999146461487,
0.5864999890327454,
0.5864999890327454,
0.6571999788284302,
0.6582000255584717,
0.6542999744415283,
0.7035999894142151,
0.7315000295639038,
0.7318999767303467,
0.7964000105857849,
0.7964000105857849,
0.7964000105857849,
0.7997999787330627,
0.8246999979019165,
0.17870000004768372,
0.6241000294685364,
0.7759000062942505,
0.8583999872207642
],
"expr_type": [
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"isolated",
"isolated",
"isolated",
"isolated"
]
} |
|
0002106_page21 | {
"latex": [
"\\( M_{\\epsilon } \\)",
"\\( M \\)",
"\\( \\epsilon \\)",
"\\( \\epsilon \\)",
"\\( L[C]/\\epsilon +\\mathcal {A}[C] \\)",
"\\( \\epsilon \\)",
"\\( F \\)",
"\\( \\epsilon /x^{2} \\)",
"\\( \\epsilon ' \\)",
"\\( F(M) \\)",
"\\( [F(M_{\\epsilon })] \\)",
"\\( [F(M)_{\\epsilon '}] \\)",
"\\( U[C] \\)",
"\\( U_{f}[C]=U[f(C)] \\)",
"\\( U \\)",
"\\( \\rho \\)",
"\\( D=4 \\)",
"\\( \\delta (s-s') \\)",
"\\( N_{[\\lambda \\sigma ]} \\)",
"\\( \\delta ' \\)",
"\\( \\frac {dx_{\\lambda }}{ds}\\frac {\\delta U}{\\delta x_{\\lambda }(s)}=0 \\)",
"\\[ \\frac {L[C]}{\\epsilon }+\\mathcal {A}[C]\\mathop {=}_{\\epsilon ,\\epsilon '\\to 0}\\frac {L[f(C)]}{\\epsilon '}+\\mathcal {A}[f(C)]+\\oint _{C}\\left | \\frac {df(x(s))}{ds}\\right | ds\\int _{\\epsilon /x(s)^{2}}^{\\epsilon '}\\frac {dy}{y^{2}}\\; .\\]",
"\\begin {equation} \\label {9.6} \\widehat {{L}}(s)U_{f}[C]=\\rho \\left ( \\widehat {{L}}(s)U\\right ) [f(C)] \\end {equation}",
"\\[ \\frac {\\delta ^{2}U_{f}[x(s)]}{\\delta x_{\\mu }(s)\\delta x_{\\mu }(s')}=\\partial _{\\mu }f_{\\lambda }(x(s))\\partial _{\\mu }f_{\\sigma }(x(s'))\\frac {\\delta ^{2}U}{\\delta f_{\\lambda }(s)\\delta f_{\\sigma }(s')}+\\partial ^{2}f_{\\lambda }(x(s))\\frac {\\delta U}{\\delta f_{\\lambda }(s)}\\delta (s-s')\\; .\\]",
"\\[ \\partial _{\\mu }f_{\\lambda }\\partial _{\\mu }f_{\\sigma }=\\rho (f)\\delta _{\\lambda \\sigma }\\; .\\]",
"\\begin {eqnarray*} && \\widehat {{L}}(s)U_{f}[C]\\delta (s-s')=\\rho (f)\\left ( \\widehat {{L}}(s)U\\right ) [f(C)]\\delta (s-s')\\\\ && \\qquad \\qquad +\\, \\partial ^{2}f_{\\lambda }\\frac {\\delta U}{\\delta f_{\\lambda }}\\delta (s-s')+\\partial _{\\mu }f_{\\lambda }(x(s))\\partial _{\\mu }f_{\\sigma }(x(s'))N_{[\\lambda \\sigma ]}\\delta '(s-s')\\; ,\\end {eqnarray*}",
"\\[ \\frac {\\delta ^{2}U}{\\delta f_{\\lambda }(s)\\delta f_{\\sigma }(s')}=N_{[\\lambda \\sigma ]}\\Bigl (\\frac {s+s'}{2}\\Bigr )\\delta '(s-s')+\\ldots \\]",
"\\[ \\frac {\\delta U}{\\delta x_{\\lambda }(s)}=N_{[\\lambda \\sigma ]}(s)\\dot {x}_{\\sigma }(s)\\; .\\]"
],
"latex_norm": [
"$ M _ { \\epsilon } $",
"$ M $",
"$ \\epsilon $",
"$ \\epsilon $",
"$ L [ C ] \\slash \\epsilon + A [ C ] $",
"$ \\epsilon $",
"$ F $",
"$ \\epsilon \\slash x ^ { 2 } $",
"$ \\epsilon ^ { \\prime } $",
"$ F ( M ) $",
"$ [ F ( M _ { \\epsilon } ) ] $",
"$ [ F ( M ) _ { \\epsilon ^ { \\prime } } ] $",
"$ U [ C ] $",
"$ U _ { f } [ C ] = U [ f ( C ) ] $",
"$ U $",
"$ \\rho $",
"$ D = 4 $",
"$ \\delta ( s - s ^ { \\prime } ) $",
"$ N _ { [ \\lambda \\sigma ] } $",
"$ \\delta ^ { \\prime } $",
"$ \\frac { d x _ { \\lambda } } { d s } \\frac { \\delta U } { \\delta x _ { \\lambda } ( s ) } = 0 $",
"\\begin{equation*} \\frac { L [ C ] } { \\epsilon } + A [ C ] \\underset { \\epsilon , \\epsilon ^ { \\prime } \\rightarrow 0 } { = } \\frac { L [ f ( C ) ] } { \\epsilon ^ { \\prime } } + A [ f ( C ) ] + \\oint _ { C } \\vert \\frac { d f ( x ( s ) ) } { d s } \\vert d s \\int _ { \\epsilon \\slash x ( s ) ^ { 2 } } ^ { \\epsilon ^ { \\prime } } \\frac { d y } { y ^ { 2 } } \\; . \\end{equation*}",
"\\begin{equation*} \\hat { L } ( s ) U _ { f } [ C ] = \\rho ( \\hat { L } ( s ) U ) [ f ( C ) ] \\end{equation*}",
"\\begin{equation*} \\frac { \\delta ^ { 2 } U _ { f } [ x ( s ) ] } { \\delta x _ { \\mu } ( s ) \\delta x _ { \\mu } ( s ^ { \\prime } ) } = \\partial _ { \\mu } f _ { \\lambda } ( x ( s ) ) \\partial _ { \\mu } f _ { \\sigma } ( x ( s ^ { \\prime } ) ) \\frac { \\delta ^ { 2 } U } { \\delta f _ { \\lambda } ( s ) \\delta f _ { \\sigma } ( s ^ { \\prime } ) } + \\partial ^ { 2 } f _ { \\lambda } ( x ( s ) ) \\frac { \\delta U } { \\delta f _ { \\lambda } ( s ) } \\delta ( s - s ^ { \\prime } ) \\; . \\end{equation*}",
"\\begin{equation*} \\partial _ { \\mu } f _ { \\lambda } \\partial _ { \\mu } f _ { \\sigma } = \\rho ( f ) \\delta _ { \\lambda \\sigma } \\; . \\end{equation*}",
"\\begin{align*} & & \\hat { L } ( s ) U _ { f } [ C ] \\delta ( s - s ^ { \\prime } ) = \\rho ( f ) ( \\hat { L } ( s ) U ) [ f ( C ) ] \\delta ( s - s ^ { \\prime } ) \\\\ & & \\qquad \\qquad + \\, \\partial ^ { 2 } f _ { \\lambda } \\frac { \\delta U } { \\delta f _ { \\lambda } } \\delta ( s - s ^ { \\prime } ) + \\partial _ { \\mu } f _ { \\lambda } ( x ( s ) ) \\partial _ { \\mu } f _ { \\sigma } ( x ( s ^ { \\prime } ) ) N _ { [ \\lambda \\sigma ] } \\delta ^ { \\prime } ( s - s ^ { \\prime } ) \\; , \\end{align*}",
"\\begin{equation*} \\frac { \\delta ^ { 2 } U } { \\delta f _ { \\lambda } ( s ) \\delta f _ { \\sigma } ( s ^ { \\prime } ) } = N _ { [ \\lambda \\sigma ] } ( \\frac { s + s ^ { \\prime } } { 2 } ) \\delta ^ { \\prime } ( s - s ^ { \\prime } ) + \\ldots \\end{equation*}",
"\\begin{equation*} \\frac { \\delta U } { \\delta x _ { \\lambda } ( s ) } = N _ { [ \\lambda \\sigma ] } ( s ) \\dot { x } _ { \\sigma } ( s ) \\; . \\end{equation*}"
],
"latex_expand": [
"$ \\mitM _ { \\mitepsilon } $",
"$ \\mitM $",
"$ \\mitepsilon $",
"$ \\mitepsilon $",
"$ \\mitL [ \\mitC ] \\slash \\mitepsilon + \\mscrA [ \\mitC ] $",
"$ \\mitepsilon $",
"$ \\mitF $",
"$ \\mitepsilon \\slash \\mitx ^ { 2 } $",
"$ \\mitepsilon ^ { \\prime } $",
"$ \\mitF ( \\mitM ) $",
"$ [ \\mitF ( \\mitM _ { \\mitepsilon } ) ] $",
"$ [ \\mitF ( \\mitM ) _ { \\mitepsilon ^ { \\prime } } ] $",
"$ \\mitU [ \\mitC ] $",
"$ \\mitU _ { \\mitf } [ \\mitC ] = \\mitU [ \\mitf ( \\mitC ) ] $",
"$ \\mitU $",
"$ \\mitrho $",
"$ \\mitD = 4 $",
"$ \\mitdelta ( \\mits - \\mits ^ { \\prime } ) $",
"$ \\mitN _ { [ \\mitlambda \\mitsigma ] } $",
"$ \\mitdelta ^ { \\prime } $",
"$ \\frac { \\mitd \\mitx _ { \\mitlambda } } { \\mitd \\mits } \\frac { \\mitdelta \\mitU } { \\mitdelta \\mitx _ { \\mitlambda } ( \\mits ) } = 0 $",
"\\begin{equation*} \\frac { \\mitL [ \\mitC ] } { \\mitepsilon } + \\mscrA [ \\mitC ] \\underset { \\mitepsilon , \\mitepsilon ^ { \\prime } \\rightarrow 0 } { = } \\frac { \\mitL [ \\mitf ( \\mitC ) ] } { \\mitepsilon ^ { \\prime } } + \\mscrA [ \\mitf ( \\mitC ) ] + \\oint _ { \\mitC } \\left\\vert \\frac { \\mitd \\mitf ( \\mitx ( \\mits ) ) } { \\mitd \\mits } \\right\\vert \\mitd \\mits \\int _ { \\mitepsilon \\slash \\mitx ( \\mits ) ^ { 2 } } ^ { \\mitepsilon ^ { \\prime } } \\frac { \\mitd \\mity } { \\mity ^ { 2 } } \\; . \\end{equation*}",
"\\begin{equation*} \\widehat { \\mitL } ( \\mits ) \\mitU _ { \\mitf } [ \\mitC ] = \\mitrho \\left( \\widehat { \\mitL } ( \\mits ) \\mitU \\right) [ \\mitf ( \\mitC ) ] \\end{equation*}",
"\\begin{equation*} \\frac { \\mitdelta ^ { 2 } \\mitU _ { \\mitf } [ \\mitx ( \\mits ) ] } { \\mitdelta \\mitx _ { \\mitmu } ( \\mits ) \\mitdelta \\mitx _ { \\mitmu } ( \\mits ^ { \\prime } ) } = \\mitpartial _ { \\mitmu } \\mitf _ { \\mitlambda } ( \\mitx ( \\mits ) ) \\mitpartial _ { \\mitmu } \\mitf _ { \\mitsigma } ( \\mitx ( \\mits ^ { \\prime } ) ) \\frac { \\mitdelta ^ { 2 } \\mitU } { \\mitdelta \\mitf _ { \\mitlambda } ( \\mits ) \\mitdelta \\mitf _ { \\mitsigma } ( \\mits ^ { \\prime } ) } + \\mitpartial ^ { 2 } \\mitf _ { \\mitlambda } ( \\mitx ( \\mits ) ) \\frac { \\mitdelta \\mitU } { \\mitdelta \\mitf _ { \\mitlambda } ( \\mits ) } \\mitdelta ( \\mits - \\mits ^ { \\prime } ) \\; . \\end{equation*}",
"\\begin{equation*} \\mitpartial _ { \\mitmu } \\mitf _ { \\mitlambda } \\mitpartial _ { \\mitmu } \\mitf _ { \\mitsigma } = \\mitrho ( \\mitf ) \\mitdelta _ { \\mitlambda \\mitsigma } \\; . \\end{equation*}",
"\\begin{align*} & & \\widehat { \\mitL } ( \\mits ) \\mitU _ { \\mitf } [ \\mitC ] \\mitdelta ( \\mits - \\mits ^ { \\prime } ) = \\mitrho ( \\mitf ) \\left( \\widehat { \\mitL } ( \\mits ) \\mitU \\right) [ \\mitf ( \\mitC ) ] \\mitdelta ( \\mits - \\mits ^ { \\prime } ) \\\\ & & \\qquad \\qquad + \\, \\mitpartial ^ { 2 } \\mitf _ { \\mitlambda } \\frac { \\mitdelta \\mitU } { \\mitdelta \\mitf _ { \\mitlambda } } \\mitdelta ( \\mits - \\mits ^ { \\prime } ) + \\mitpartial _ { \\mitmu } \\mitf _ { \\mitlambda } ( \\mitx ( \\mits ) ) \\mitpartial _ { \\mitmu } \\mitf _ { \\mitsigma } ( \\mitx ( \\mits ^ { \\prime } ) ) \\mitN _ { [ \\mitlambda \\mitsigma ] } \\mitdelta ^ { \\prime } ( \\mits - \\mits ^ { \\prime } ) \\; , \\end{align*}",
"\\begin{equation*} \\frac { \\mitdelta ^ { 2 } \\mitU } { \\mitdelta \\mitf _ { \\mitlambda } ( \\mits ) \\mitdelta \\mitf _ { \\mitsigma } ( \\mits ^ { \\prime } ) } = \\mitN _ { [ \\mitlambda \\mitsigma ] } \\Big ( \\frac { \\mits + \\mits ^ { \\prime } } { 2 } \\Big ) \\mitdelta ^ { \\prime } ( \\mits - \\mits ^ { \\prime } ) + \\ldots \\end{equation*}",
"\\begin{equation*} \\frac { \\mitdelta \\mitU } { \\mitdelta \\mitx _ { \\mitlambda } ( \\mits ) } = \\mitN _ { [ \\mitlambda \\mitsigma ] } ( \\mits ) \\dot { \\mitx } _ { \\mitsigma } ( \\mits ) \\; . \\end{equation*}"
],
"x_min": [
0.17139999568462372,
0.3158000111579895,
0.5023999810218811,
0.6144000291824341,
0.7968000173568726,
0.4553999900817871,
0.6281999945640564,
0.8445000052452087,
0.8769999742507935,
0.10920000076293945,
0.28679999709129333,
0.5631999969482422,
0.5888000130653381,
0.7070000171661377,
0.20180000364780426,
0.6122999787330627,
0.3345000147819519,
0.49000000953674316,
0.16590000689029694,
0.48649999499320984,
0.5895000100135803,
0.22179999947547913,
0.3828999996185303,
0.16519999504089355,
0.4242999851703644,
0.23499999940395355,
0.3206999897956848,
0.4104999899864197
],
"y_min": [
0.09130000323057175,
0.09130000323057175,
0.09470000118017197,
0.09470000118017197,
0.09030000120401382,
0.11959999799728394,
0.11569999903440475,
0.11429999768733978,
0.1395999938249588,
0.16410000622272491,
0.16410000622272491,
0.16410000622272491,
0.4018999934196472,
0.4018999934196472,
0.427700012922287,
0.4311999976634979,
0.45260000228881836,
0.6050000190734863,
0.7157999873161316,
0.7153000235557556,
0.7939000129699707,
0.2168000042438507,
0.35499998927116394,
0.47850000858306885,
0.5654000043869019,
0.6312999725341797,
0.7440999746322632,
0.8276000022888184
],
"x_max": [
0.19769999384880066,
0.33719998598098755,
0.510699987411499,
0.6226999759674072,
0.9136000275611877,
0.46369999647140503,
0.64410001039505,
0.8817999958992004,
0.8901000022888184,
0.16099999845027924,
0.3544999957084656,
0.6370999813079834,
0.6309999823570251,
0.8604000210762024,
0.21770000457763672,
0.6226999759674072,
0.38839998841285706,
0.5633000135421753,
0.20739999413490295,
0.5009999871253967,
0.6987000107765198,
0.8065000176429749,
0.647599995136261,
0.8632000088691711,
0.6032999753952026,
0.8266000151634216,
0.7042999863624573,
0.6177999973297119
],
"y_max": [
0.10350000113248825,
0.10159999877214432,
0.1014999970793724,
0.1014999970793724,
0.10490000247955322,
0.125900000333786,
0.12600000202655792,
0.1298999935388565,
0.15080000460147858,
0.17919999361038208,
0.17919999361038208,
0.17919999361038208,
0.4169999957084656,
0.41749998927116394,
0.43799999356269836,
0.4410000145435333,
0.4629000127315521,
0.6195999979972839,
0.73089998960495,
0.7260000109672546,
0.8144000172615051,
0.25679999589920044,
0.38429999351501465,
0.5145999789237976,
0.5820000171661377,
0.7044000029563904,
0.779699981212616,
0.8618000149726868
],
"expr_type": [
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"isolated",
"isolated",
"isolated",
"isolated",
"isolated",
"isolated",
"isolated"
]
} |
|
0002106_page22 | {
"latex": [
"\\( f_{\\mu }=x_{\\mu }/x^{2} \\)",
"\\( \\Omega (f)\\varpropto (D-4) \\)",
"\\( D=4 \\)",
"\\( D=4 \\)",
"\\( x(s) \\)",
"\\( C \\)",
"\\( D\\ne 4 \\)",
"\\begin {eqnarray} \\widehat {{L}}(s)U_{f}[C] & = & \\rho (f)\\left ( \\widehat {{L}}(s)U\\right ) [f(C)]+\\Omega _{[\\lambda \\sigma ]\\mu }(f)\\, N_{[\\lambda \\sigma ]}\\, \\dot {x}_{\\mu }(s)\\; ,\\\\ \\Omega _{[\\lambda \\sigma ]\\mu } & = & \\left ( \\partial ^{2}f_{[\\lambda }\\right ) \\left ( \\partial _{\\mu }f_{\\sigma ]}\\right ) -\\left ( \\partial _{\\alpha }\\partial _{\\mu }f_{[\\lambda }\\right ) \\left ( \\partial _{\\alpha }f_{\\sigma ]}\\right ) \\; .\\end {eqnarray}",
"\\begin {equation} \\label {9.1} \\widehat {L}(s)W[f(C)]=\\rho \\widehat {L}(s)W[C]\\; . \\end {equation}"
],
"latex_norm": [
"$ f _ { \\mu } = x _ { \\mu } \\slash x ^ { 2 } $",
"$ \\Omega ( f ) \\propto ( D - 4 ) $",
"$ D = 4 $",
"$ D = 4 $",
"$ x ( s ) $",
"$ C $",
"$ D \\ne 4 $",
"\\begin{align*} \\hat { L } ( s ) U _ { f } [ C ] & = & \\rho ( f ) ( \\hat { L } ( s ) U ) [ f ( C ) ] + \\Omega _ { [ \\lambda \\sigma ] \\mu } ( f ) \\, N _ { [ \\lambda \\sigma ] } \\, \\dot { x } _ { \\mu } ( s ) \\; , \\\\ \\Omega _ { [ \\lambda \\sigma ] \\mu } & = & ( \\partial ^ { 2 } f _ { [ \\lambda } ) ( \\partial _ { \\mu } f _ { \\sigma ] } ) - ( \\partial _ { \\alpha } \\partial _ { \\mu } f _ { [ \\lambda } ) ( \\partial _ { \\alpha } f _ { \\sigma ] } ) \\; . \\end{align*}",
"\\begin{equation*} \\hat { L } ( s ) W [ f ( C ) ] = \\rho \\hat { L } ( s ) W [ C ] \\; . \\end{equation*}"
],
"latex_expand": [
"$ \\mitf _ { \\mitmu } = \\mitx _ { \\mitmu } \\slash \\mitx ^ { 2 } $",
"$ \\mupOmega ( \\mitf ) \\propto ( \\mitD - 4 ) $",
"$ \\mitD = 4 $",
"$ \\mitD = 4 $",
"$ \\mitx ( \\mits ) $",
"$ \\mitC $",
"$ \\mitD \\ne 4 $",
"\\begin{align*} \\widehat { \\mitL } ( \\mits ) \\mitU _ { \\mitf } [ \\mitC ] & = & \\mitrho ( \\mitf ) \\left( \\widehat { \\mitL } ( \\mits ) \\mitU \\right) [ \\mitf ( \\mitC ) ] + \\mupOmega _ { [ \\mitlambda \\mitsigma ] \\mitmu } ( \\mitf ) \\, \\mitN _ { [ \\mitlambda \\mitsigma ] } \\, \\dot { \\mitx } _ { \\mitmu } ( \\mits ) \\; , \\\\ \\mupOmega _ { [ \\mitlambda \\mitsigma ] \\mitmu } & = & \\left( \\mitpartial ^ { 2 } \\mitf _ { [ \\mitlambda } \\right) \\left( \\mitpartial _ { \\mitmu } \\mitf _ { \\mitsigma ] } \\right) - \\left( \\mitpartial _ { \\mitalpha } \\mitpartial _ { \\mitmu } \\mitf _ { [ \\mitlambda } \\right) \\left( \\mitpartial _ { \\mitalpha } \\mitf _ { \\mitsigma ] } \\right) \\; . \\end{align*}",
"\\begin{equation*} \\widehat { \\mitL } ( \\mits ) \\mitW [ \\mitf ( \\mitC ) ] = \\mitrho \\widehat { \\mitL } ( \\mits ) \\mitW [ \\mitC ] \\; . \\end{equation*}"
],
"x_min": [
0.2231999933719635,
0.4519999921321869,
0.10920000076293945,
0.5349000096321106,
0.5916000008583069,
0.7436000108718872,
0.17419999837875366,
0.2549999952316284,
0.390500009059906
],
"y_min": [
0.19480000436306,
0.19529999792575836,
0.22120000422000885,
0.25099998712539673,
0.3521000146865845,
0.3529999852180481,
0.45649999380111694,
0.12120000272989273,
0.30709999799728394
],
"x_max": [
0.32339999079704285,
0.5936999917030334,
0.1624000072479248,
0.588100016117096,
0.6274999976158142,
0.7595000267028809,
0.23090000450611115,
0.7699000239372253,
0.6399999856948853
],
"y_max": [
0.21089999377727509,
0.21040000021457672,
0.23149999976158142,
0.2612999975681305,
0.3666999936103821,
0.36329999566078186,
0.46970000863075256,
0.17560000717639923,
0.3280999958515167
],
"expr_type": [
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"isolated",
"isolated"
]
} |
|
0002133_page01 | {
"latex": [
"$O(d,d)$",
"$O(d,d)$"
],
"latex_norm": [
"$ O ( d , d ) $",
"$ O ( d , d ) $"
],
"latex_expand": [
"$ \\mitO ( \\mitd , \\mitd ) $",
"$ \\mitO ( \\mitd , \\mitd ) $"
],
"x_min": [
0.5860000252723694,
0.3815000057220459
],
"y_min": [
0.44530001282691956,
0.46239998936653137
],
"x_max": [
0.6460999846458435,
0.4422999918460846
],
"y_max": [
0.45989999175071716,
0.47699999809265137
],
"expr_type": [
"embedded",
"embedded"
]
} |
|
0002133_page02 | {
"latex": [
"$d=9$",
"$O(d,d)$",
"$SO(d,d)$",
"$d=9$",
"$O(d,d,R)$",
"$d$",
"$O(d,d,R)$",
"$SO(d,d)$",
"$O(d,d)$",
"$SO(d,d)$",
"$SO(d,d)$",
"$O(d,d)$",
"$O(d,d)$",
"$SO(d,d)$",
"$O(d,d)$",
"$O(d,d,R)$",
"$C_{p+1}=(1/(p+1)!)\\, C_{\\mu _1...\\mu _{p+1}}\\,dx^{\\mu _1}\\wedge \\cdots \\wedge dx^{\\mu _{p+1}}$",
"$F=e^{-B}\\wedge dD$",
"\\begin {equation} \\label {newd} \\begin {array}{lcl} D_0 \\equiv C_0, & \\quad & D_1 \\equiv C_1, \\\\ D_2 \\equiv C_2+B_2\\wedge C_0, & & D_3 \\equiv C_3+ B_2\\wedge C_1,\\\\ D_4 \\equiv C_4+{1\\over 2} B_2 \\wedge C_2 +{1\\over 2} B_2 \\wedge B_2 \\wedge C_0. & & \\end {array} \\end {equation}",
"\\begin {equation} D \\equiv \\sum _{p=0}^4 D_p,\\quad F \\equiv \\sum _{p=1}^5 F_p. \\end {equation}",
"\\begin {equation} \\begin {array}{lcl} F_1\\,=\\,dD_0, & \\quad & F_2\\,=\\,dD_1, \\\\ F_3\\,=\\,dD_2- B_2\\wedge dD_0, & & F_4\\,=\\,dD_3- B_2\\wedge dD_1,\\\\ F_5\\,=\\,dD_4- B_2\\wedge dD_2 +{1\\over 2} B_2\\wedge B_2\\wedge dD_0. & & ~ \\end {array} \\end {equation}",
"\\begin {equation} \\int d^d x \\sqrt {-g}|F_p|^2= \\int d^d x {\\sqrt {-g}\\over p!} g^{\\mu _1\\nu _1}\\cdots g^{\\mu _p\\nu _p}F_{\\mu _1\\mu _p} F_{\\nu _1\\nu _p}. \\end {equation}"
],
"latex_norm": [
"$ d = 9 $",
"$ O ( d , d ) $",
"$ S O ( d , d ) $",
"$ d = 9 $",
"$ O ( d , d , R ) $",
"$ d $",
"$ O ( d , d , R ) $",
"$ S O ( d , d ) $",
"$ O ( d , d ) $",
"$ S O ( d , d ) $",
"$ S O ( d , d ) $",
"$ O ( d , d ) $",
"$ O ( d , d ) $",
"$ S O ( d , d ) $",
"$ O ( d , d ) $",
"$ O ( d , d , R ) $",
"$ C _ { p + 1 } = ( 1 \\slash ( p + 1 ) ! ) \\, C _ { \\mu _ { 1 } . . . \\mu _ { p + 1 } } \\, d x ^ { \\mu _ { 1 } } \\wedge \\cdots \\wedge d x ^ { \\mu _ { p + 1 } } $",
"$ F = e ^ { - B } \\wedge d D $",
"\\begin{align*} \\begin{array}{lcl} D _ { 0 } \\equiv C _ { 0 } , & \\quad & D _ { 1 } \\equiv C _ { 1 } , \\\\ D _ { 2 } \\equiv C _ { 2 } + B _ { 2 } \\wedge C _ { 0 } , & & D _ { 3 } \\equiv C _ { 3 } + B _ { 2 } \\wedge C _ { 1 } , \\\\ D _ { 4 } \\equiv C _ { 4 } + \\frac { 1 } { 2 } B _ { 2 } \\wedge C _ { 2 } + \\frac { 1 } { 2 } B _ { 2 } \\wedge B _ { 2 } \\wedge C _ { 0 } . & & \\end{array} \\end{align*}",
"\\begin{equation*} D \\equiv \\sum _ { p = 0 } ^ { 4 } D _ { p } , \\quad F \\equiv \\sum _ { p = 1 } ^ { 5 } F _ { p } . \\end{equation*}",
"\\begin{align*} \\begin{array}{lcl} F _ { 1 } \\, = \\, d D _ { 0 } , & \\quad & F _ { 2 } \\, = \\, d D _ { 1 } , \\\\ F _ { 3 } \\, = \\, d D _ { 2 } - B _ { 2 } \\wedge d D _ { 0 } , & & F _ { 4 } \\, = \\, d D _ { 3 } - B _ { 2 } \\wedge d D _ { 1 } , \\\\ F _ { 5 } \\, = \\, d D _ { 4 } - B _ { 2 } \\wedge d D _ { 2 } + \\frac { 1 } { 2 } B _ { 2 } \\wedge B _ { 2 } \\wedge d D _ { 0 } . & & ~ \\end{array} \\end{align*}",
"\\begin{equation*} \\int d ^ { d } x \\sqrt { - g } \\vert F _ { p } \\vert ^ { 2 } = \\int d ^ { d } x \\frac { \\sqrt { - g } } { p ! } g ^ { \\mu _ { 1 } \\nu _ { 1 } } \\cdots g ^ { \\mu _ { p } \\nu _ { p } } F _ { \\mu _ { 1 } \\mu _ { p } } F _ { \\nu _ { 1 } \\nu _ { p } } . \\end{equation*}"
],
"latex_expand": [
"$ \\mitd = 9 $",
"$ \\mitO ( \\mitd , \\mitd ) $",
"$ \\mitS \\mitO ( \\mitd , \\mitd ) $",
"$ \\mitd = 9 $",
"$ \\mitO ( \\mitd , \\mitd , \\mitR ) $",
"$ \\mitd $",
"$ \\mitO ( \\mitd , \\mitd , \\mitR ) $",
"$ \\mitS \\mitO ( \\mitd , \\mitd ) $",
"$ \\mitO ( \\mitd , \\mitd ) $",
"$ \\mitS \\mitO ( \\mitd , \\mitd ) $",
"$ \\mitS \\mitO ( \\mitd , \\mitd ) $",
"$ \\mitO ( \\mitd , \\mitd ) $",
"$ \\mitO ( \\mitd , \\mitd ) $",
"$ \\mitS \\mitO ( \\mitd , \\mitd ) $",
"$ \\mitO ( \\mitd , \\mitd ) $",
"$ \\mitO ( \\mitd , \\mitd , \\mitR ) $",
"$ \\mitC _ { \\mitp + 1 } = ( 1 \\slash ( \\mitp + 1 ) ! ) \\, \\mitC _ { \\mitmu _ { 1 } . . . \\mitmu _ { \\mitp + 1 } } \\, \\mitd \\mitx ^ { \\mitmu _ { 1 } } \\wedge \\cdots \\wedge \\mitd \\mitx ^ { \\mitmu _ { \\mitp + 1 } } $",
"$ \\mitF = \\mite ^ { - \\mitB } \\wedge \\mitd \\mitD $",
"\\begin{align*} \\begin{array}{lcl} \\mitD _ { 0 } \\equiv \\mitC _ { 0 } , & \\quad & \\mitD _ { 1 } \\equiv \\mitC _ { 1 } , \\\\ \\mitD _ { 2 } \\equiv \\mitC _ { 2 } + \\mitB _ { 2 } \\wedge \\mitC _ { 0 } , & & \\mitD _ { 3 } \\equiv \\mitC _ { 3 } + \\mitB _ { 2 } \\wedge \\mitC _ { 1 } , \\\\ \\mitD _ { 4 } \\equiv \\mitC _ { 4 } + \\frac { 1 } { 2 } \\mitB _ { 2 } \\wedge \\mitC _ { 2 } + \\frac { 1 } { 2 } \\mitB _ { 2 } \\wedge \\mitB _ { 2 } \\wedge \\mitC _ { 0 } . & & \\end{array} \\end{align*}",
"\\begin{equation*} \\mitD \\equiv \\sum _ { \\mitp = 0 } ^ { 4 } \\mitD _ { \\mitp } , \\quad \\mitF \\equiv \\sum _ { \\mitp = 1 } ^ { 5 } \\mitF _ { \\mitp } . \\end{equation*}",
"\\begin{align*} \\begin{array}{lcl} \\mitF _ { 1 } \\, = \\, \\mitd \\mitD _ { 0 } , & \\quad & \\mitF _ { 2 } \\, = \\, \\mitd \\mitD _ { 1 } , \\\\ \\mitF _ { 3 } \\, = \\, \\mitd \\mitD _ { 2 } - \\mitB _ { 2 } \\wedge \\mitd \\mitD _ { 0 } , & & \\mitF _ { 4 } \\, = \\, \\mitd \\mitD _ { 3 } - \\mitB _ { 2 } \\wedge \\mitd \\mitD _ { 1 } , \\\\ \\mitF _ { 5 } \\, = \\, \\mitd \\mitD _ { 4 } - \\mitB _ { 2 } \\wedge \\mitd \\mitD _ { 2 } + \\frac { 1 } { 2 } \\mitB _ { 2 } \\wedge \\mitB _ { 2 } \\wedge \\mitd \\mitD _ { 0 } . & & ~ \\end{array} \\end{align*}",
"\\begin{equation*} \\int \\mitd ^ { \\mitd } \\mitx \\sqrt { - \\mitg } \\vert \\mitF _ { \\mitp } \\vert ^ { 2 } = \\int \\mitd ^ { \\mitd } \\mitx \\frac { \\sqrt { - \\mitg } } { \\mitp ! } \\mitg ^ { \\mitmu _ { 1 } \\mitnu _ { 1 } } \\cdots \\mitg ^ { \\mitmu _ { \\mitp } \\mitnu _ { \\mitp } } \\mitF _ { \\mitmu _ { 1 } \\mitmu _ { \\mitp } } \\mitF _ { \\mitnu _ { 1 } \\mitnu _ { \\mitp } } . \\end{equation*}"
],
"x_min": [
0.12300000339746475,
0.3856000006198883,
0.489300012588501,
0.10019999742507935,
0.2134999930858612,
0.23499999940395355,
0.4699000120162964,
0.6434000134468079,
0.3199999928474426,
0.23639999330043793,
0.4706000089645386,
0.12160000205039978,
0.6931999921798706,
0.10019999742507935,
0.46160000562667847,
0.12229999899864197,
0.38909998536109924,
0.33719998598098755,
0.22089999914169312,
0.38420000672340393,
0.19089999794960022,
0.2646999955177307
],
"y_min": [
0.19820000231266022,
0.24899999797344208,
0.2660999894142151,
0.31839999556541443,
0.33500000834465027,
0.35249999165534973,
0.36910000443458557,
0.3862000107765198,
0.4032999873161316,
0.45509999990463257,
0.4722000062465668,
0.489300012588501,
0.489300012588501,
0.5062999725341797,
0.5234000086784363,
0.5746999979019165,
0.5922999978065491,
0.6937999725341797,
0.6298999786376953,
0.7153000235557556,
0.7919999957084656,
0.8726000189781189
],
"x_max": [
0.17069999873638153,
0.4456999897956848,
0.5631999969482422,
0.15199999511241913,
0.2978000044822693,
0.24539999663829803,
0.5541999936103821,
0.7172999978065491,
0.3808000087738037,
0.31029999256134033,
0.5444999933242798,
0.18170000612735748,
0.7533000111579895,
0.17409999668598175,
0.5217000246047974,
0.20659999549388885,
0.8009999990463257,
0.4609000086784363,
0.7803999781608582,
0.6171000003814697,
0.8105000257492065,
0.733299970626831
],
"y_max": [
0.20890000462532043,
0.2635999917984009,
0.28119999170303345,
0.32910001277923584,
0.3495999872684479,
0.36320000886917114,
0.38370001316070557,
0.4007999897003174,
0.41839998960494995,
0.46970000863075256,
0.4867999851703644,
0.5038999915122986,
0.5038999915122986,
0.5209000110626221,
0.5379999876022339,
0.5898000001907349,
0.6083999872207642,
0.7064999938011169,
0.6851000189781189,
0.7641000151634216,
0.8476999998092651,
0.9096999764442444
],
"expr_type": [
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"isolated",
"isolated",
"isolated",
"isolated"
]
} |
|
0002133_page03 | {
"latex": [
"$d=10$",
"$d=9$",
"$H_3=dB_2$",
"$F_2=dC_1=dD_1$",
"$F_4=dC_3+H_3\\wedge C_1=dD_3-B_2\\wedge d D_1$",
"$x$",
"$H^{(1)}_{\\mu \\nu \\rho }=e^a_\\mu e^b_\\nu e^c_\\rho E^M_a E^N_b E^P_c H_{MNP}$",
"\\begin {equation} \\label {iia} \\begin {split} S^{IIA}_{10}=&{1\\over 2\\kappa ^2_{10}}\\int d^{10}x \\sqrt {-G} e^{-2\\Phi }\\left [R(G)+4 G^{MN}\\partial _M \\Phi \\partial _N \\Phi -{1\\over 2} |H_3|^2\\right ]\\\\ &-{1\\over 4\\kappa ^2_{10}}\\int d^{10}x \\sqrt {-G} \\Bigl (|F_2|^2+|F_4|^2\\,\\Bigr )+{1\\over 4\\kappa ^2_{10}}\\int d^{10}x B_2\\wedge dC_3\\wedge dC_3, \\end {split} \\end {equation}",
"\\begin {equation} E^A_M=\\begin {pmatrix} e^a_\\mu & e A^{(1)}_\\mu \\\\ 0 & e \\end {pmatrix}, \\quad E^M_A=\\begin {pmatrix} e_a^\\mu & -e^\\nu _aA^{(1)}_\\nu \\\\ 0 & e^{-1} \\end {pmatrix}. \\end {equation}",
"\\begin {equation} \\begin {split} \\label {9sugr} S_9=&{1\\over 2\\kappa ^2_9}\\int d^9x \\sqrt {-g} e^{-2\\phi }\\biggl [R(g)+4g^{\\mu \\nu }\\partial _\\mu \\phi \\partial _\\nu \\phi -e^{-2}g^{\\mu \\nu }\\partial _\\mu e\\partial _\\nu e\\\\ &-{1\\over 2}e^2|F^{(1)}_2|^2 -{1\\over 2}e^{-2}|F^{(2)}_2|^2 -{1\\over 2}|H_3^{(1)}|^2\\biggr ]\\\\ &-{1\\over 4\\kappa ^2_9}\\int d^9 x \\sqrt {-g} \\Bigl (e|F_2|^2+e^{-1}g^{\\mu \\nu }\\partial _\\mu D_x\\partial _\\nu D_x +e^{-1}|H^{(2)}_3|^2+e|F_4|^2\\Bigr ), \\end {split} \\end {equation}",
"\\begin {gather} e^2=G_{xx},\\qquad g_{\\mu \\nu }=G_{\\mu \\nu }- G_{xx}A^{(1)}_\\mu A^{(1)}_\\nu ,\\\\ A^{(1)}_\\mu ={G_{\\mu x}\\over G_{xx}}, \\qquad A^{(2)}_\\mu =B_{\\mu x}\\\\ A_\\mu =D_\\mu -A^{(1)}_\\mu D_x,\\quad F^{i}_{\\mu \\nu }=\\partial _\\mu A^{(i)}_\\nu -\\partial _\\nu A^{(i)}_\\mu ,\\\\ B^{(1)}_{\\mu \\nu }=B_{\\mu \\nu }+ {1\\over 2}A^{(1)}_\\mu A^{(2)}_\\nu -{1\\over 2}A^{(1)}_\\nu A^{(2)}_\\mu ,\\quad B^{(2)}_{\\mu \\nu }=D_{\\mu \\nu x},\\\\ \\phi =\\Phi -\\ln \\,G_{xx}/4, \\qquad {\\cal D}_{\\mu \\nu \\rho }=D_{\\mu \\nu \\rho },\\\\ H_3^{(1)}=d B_2^{(1)}-{1\\over 2}(A_1^{(1)}\\wedge F_2^{(2)}+A_1^{(2)}\\wedge F_2^{(1)}),\\\\ H_3^{(2)}=d B_2^{(2)}-B_2^{(1)}\\wedge d D_x +{1\\over 2}A_1^{(2)} \\wedge A_1^{(1)}\\wedge d D_x -A_1^{(2)} \\wedge (F_2+ F_2^{(1)} D_x),\\\\ F_4=d {\\cal D}_3-B_2^{(1)}\\wedge d D_1 +{1\\over 2}A_1^{(1)}\\wedge A_1^{(2)} \\wedge d D_1 +H_3^{(2)} \\wedge A_1^{(1)}, \\end {gather}",
"\\begin {equation} {\\mathst E}^A_M=\\begin {pmatrix} e^a_\\mu & e^{-1} A^{(2)}_\\mu \\\\ 0 & e^{-1} \\end {pmatrix}, \\quad {\\mathst E}^M_A=\\begin {pmatrix} e_a^\\mu & -e^\\nu _a A^{(2)}_\\nu \\\\ 0 & e \\end {pmatrix}, \\end {equation}"
],
"latex_norm": [
"$ d = 1 0 $",
"$ d = 9 $",
"$ H _ { 3 } = d B _ { 2 } $",
"$ F _ { 2 } = d C _ { 1 } = d D _ { 1 } $",
"$ F _ { 4 } = d C _ { 3 } + H _ { 3 } \\wedge C _ { 1 } = d D _ { 3 } - B _ { 2 } \\wedge d D _ { 1 } $",
"$ x $",
"$ H _ { \\mu \\nu \\rho } ^ { ( 1 ) } = e _ { \\mu } ^ { a } e _ { \\nu } ^ { b } e _ { \\rho } ^ { c } E _ { a } ^ { M } E _ { b } ^ { N } E _ { c } ^ { P } H _ { M N P } $",
"\\begin{align*} \\begin{array}{rl} S _ { 1 0 } ^ { I I A } = & \\frac { 1 } { 2 \\kappa _ { 1 0 } ^ { 2 } } \\int d ^ { 1 0 } x \\sqrt { - G } e ^ { - 2 \\Phi } [ R ( G ) + 4 G ^ { M N } \\partial _ { M } \\Phi \\partial _ { N } \\Phi - \\frac { 1 } { 2 } \\vert H _ { 3 } \\vert ^ { 2 } ] \\\\ & - \\frac { 1 } { 4 \\kappa _ { 1 0 } ^ { 2 } } \\int d ^ { 1 0 } x \\sqrt { - G } ( \\vert F _ { 2 } \\vert ^ { 2 } + \\vert F _ { 4 } \\vert ^ { 2 } \\, ) + \\frac { 1 } { 4 \\kappa _ { 1 0 } ^ { 2 } } \\int d ^ { 1 0 } x B _ { 2 } \\wedge d C _ { 3 } \\wedge d C _ { 3 } , \\end{array} \\end{align*}",
"\\begin{align*} E _ { M } ^ { A } = ( \\begin{array}{cc} e _ { \\mu } ^ { a } & e A _ { \\mu } ^ { ( 1 ) } \\\\ 0 & e \\end{array} ) , \\quad E _ { A } ^ { M } = ( \\begin{array}{cc} e _ { a } ^ { \\mu } & - e _ { a } ^ { \\nu } A _ { \\nu } ^ { ( 1 ) } \\\\ 0 & e ^ { - 1 } \\end{array} ) . \\end{align*}",
"\\begin{align*} \\begin{array}{rl} S _ { 9 } = & \\frac { 1 } { 2 \\kappa _ { 9 } ^ { 2 } } \\int d ^ { 9 } x \\sqrt { - g } e ^ { - 2 \\phi } [ R ( g ) + 4 g ^ { \\mu \\nu } \\partial _ { \\mu } \\phi \\partial _ { \\nu } \\phi - e ^ { - 2 } g ^ { \\mu \\nu } \\partial _ { \\mu } e \\partial _ { \\nu } e \\\\ & - \\frac { 1 } { 2 } e ^ { 2 } \\vert F _ { 2 } ^ { ( 1 ) } \\vert ^ { 2 } - \\frac { 1 } { 2 } e ^ { - 2 } \\vert F _ { 2 } ^ { ( 2 ) } \\vert ^ { 2 } - \\frac { 1 } { 2 } \\vert H _ { 3 } ^ { ( 1 ) } \\vert ^ { 2 } ] \\\\ & - \\frac { 1 } { 4 \\kappa _ { 9 } ^ { 2 } } \\int d ^ { 9 } x \\sqrt { - g } ( e \\vert F _ { 2 } \\vert ^ { 2 } + e ^ { - 1 } g ^ { \\mu \\nu } \\partial _ { \\mu } D _ { x } \\partial _ { \\nu } D _ { x } + e ^ { - 1 } \\vert H _ { 3 } ^ { ( 2 ) } \\vert ^ { 2 } + e \\vert F _ { 4 } \\vert ^ { 2 } ) , \\end{array} \\end{align*}",
"\\begin{align*} e ^ { 2 } = G _ { x x } , \\qquad g _ { \\mu \\nu } = G _ { \\mu \\nu } - G _ { x x } A _ { \\mu } ^ { ( 1 ) } A _ { \\nu } ^ { ( 1 ) } , \\\\ A _ { \\mu } ^ { ( 1 ) } = \\frac { G _ { \\mu x } } { G _ { x x } } , \\qquad A _ { \\mu } ^ { ( 2 ) } = B _ { \\mu x } \\\\ A _ { \\mu } = D _ { \\mu } - A _ { \\mu } ^ { ( 1 ) } D _ { x } , \\quad F _ { \\mu \\nu } ^ { i } = \\partial _ { \\mu } A _ { \\nu } ^ { ( i ) } - \\partial _ { \\nu } A _ { \\mu } ^ { ( i ) } , \\\\ B _ { \\mu \\nu } ^ { ( 1 ) } = B _ { \\mu \\nu } + \\frac { 1 } { 2 } A _ { \\mu } ^ { ( 1 ) } A _ { \\nu } ^ { ( 2 ) } - \\frac { 1 } { 2 } A _ { \\nu } ^ { ( 1 ) } A _ { \\mu } ^ { ( 2 ) } , \\quad B _ { \\mu \\nu } ^ { ( 2 ) } = D _ { \\mu \\nu x } , \\\\ \\phi = \\Phi - \\operatorname { l n } \\, G _ { x x } \\slash 4 , \\qquad D _ { \\mu \\nu \\rho } = D _ { \\mu \\nu \\rho } , \\\\ H _ { 3 } ^ { ( 1 ) } = d B _ { 2 } ^ { ( 1 ) } - \\frac { 1 } { 2 } ( A _ { 1 } ^ { ( 1 ) } \\wedge F _ { 2 } ^ { ( 2 ) } + A _ { 1 } ^ { ( 2 ) } \\wedge F _ { 2 } ^ { ( 1 ) } ) , \\\\ H _ { 3 } ^ { ( 2 ) } = d B _ { 2 } ^ { ( 2 ) } - B _ { 2 } ^ { ( 1 ) } \\wedge d D _ { x } + \\frac { 1 } { 2 } A _ { 1 } ^ { ( 2 ) } \\wedge A _ { 1 } ^ { ( 1 ) } \\wedge d D _ { x } - A _ { 1 } ^ { ( 2 ) } \\wedge ( F _ { 2 } + F _ { 2 } ^ { ( 1 ) } D _ { x } ) , \\\\ F _ { 4 } = d D _ { 3 } - B _ { 2 } ^ { ( 1 ) } \\wedge d D _ { 1 } + \\frac { 1 } { 2 } A _ { 1 } ^ { ( 1 ) } \\wedge A _ { 1 } ^ { ( 2 ) } \\wedge d D _ { 1 } + H _ { 3 } ^ { ( 2 ) } \\wedge A _ { 1 } ^ { ( 1 ) } , \\end{align*}",
"\\begin{align*} E _ { M } ^ { A } = ( \\begin{array}{cc} e _ { \\mu } ^ { a } & e ^ { - 1 } A _ { \\mu } ^ { ( 2 ) } \\\\ 0 & e ^ { - 1 } \\end{array} ) , \\quad E _ { A } ^ { M } = ( \\begin{array}{cc} e _ { a } ^ { \\mu } & - e _ { a } ^ { \\nu } A _ { \\nu } ^ { ( 2 ) } \\\\ 0 & e \\end{array} ) , \\end{align*}"
],
"latex_expand": [
"$ \\mitd = 1 0 $",
"$ \\mitd = 9 $",
"$ \\mitH _ { 3 } = \\mitd \\mitB _ { 2 } $",
"$ \\mitF _ { 2 } = \\mitd \\mitC _ { 1 } = \\mitd \\mitD _ { 1 } $",
"$ \\mitF _ { 4 } = \\mitd \\mitC _ { 3 } + \\mitH _ { 3 } \\wedge \\mitC _ { 1 } = \\mitd \\mitD _ { 3 } - \\mitB _ { 2 } \\wedge \\mitd \\mitD _ { 1 } $",
"$ \\mitx $",
"$ \\mitH _ { \\mitmu \\mitnu \\mitrho } ^ { ( 1 ) } = \\mite _ { \\mitmu } ^ { \\mita } \\mite _ { \\mitnu } ^ { \\mitb } \\mite _ { \\mitrho } ^ { \\mitc } \\mitE _ { \\mita } ^ { \\mitM } \\mitE _ { \\mitb } ^ { \\mitN } \\mitE _ { \\mitc } ^ { \\mitP } \\mitH _ { \\mitM \\mitN \\mitP } $",
"\\begin{align*} \\begin{array}{rl} \\displaystyle \\mitS _ { 1 0 } ^ { \\mitI \\mitI \\mitA } = & \\displaystyle \\frac { 1 } { 2 \\mitkappa _ { 1 0 } ^ { 2 } } \\int \\mitd ^ { 1 0 } \\mitx \\sqrt { - \\mitG } \\mite ^ { - 2 \\mupPhi } \\left[ \\mitR ( \\mitG ) + 4 \\mitG ^ { \\mitM \\mitN } \\mitpartial _ { \\mitM } \\mupPhi \\mitpartial _ { \\mitN } \\mupPhi - \\frac { 1 } { 2 } \\vert \\mitH _ { 3 } \\vert ^ { 2 } \\right] \\\\ \\displaystyle & \\displaystyle - \\frac { 1 } { 4 \\mitkappa _ { 1 0 } ^ { 2 } } \\int \\mitd ^ { 1 0 } \\mitx \\sqrt { - \\mitG } \\Big ( \\vert \\mitF _ { 2 } \\vert ^ { 2 } + \\vert \\mitF _ { 4 } \\vert ^ { 2 } \\, \\Big ) + \\frac { 1 } { 4 \\mitkappa _ { 1 0 } ^ { 2 } } \\int \\mitd ^ { 1 0 } \\mitx \\mitB _ { 2 } \\wedge \\mitd \\mitC _ { 3 } \\wedge \\mitd \\mitC _ { 3 } , \\end{array} \\end{align*}",
"\\begin{align*} \\mitE _ { \\mitM } ^ { \\mitA } = \\left( \\begin{array}{cc} \\mite _ { \\mitmu } ^ { \\mita } & \\mite \\mitA _ { \\mitmu } ^ { ( 1 ) } \\\\ 0 & \\mite \\end{array} \\right) , \\quad \\mitE _ { \\mitA } ^ { \\mitM } = \\left( \\begin{array}{cc} \\mite _ { \\mita } ^ { \\mitmu } & - \\mite _ { \\mita } ^ { \\mitnu } \\mitA _ { \\mitnu } ^ { ( 1 ) } \\\\ 0 & \\mite ^ { - 1 } \\end{array} \\right) . \\end{align*}",
"\\begin{align*} \\begin{array}{rl} \\displaystyle \\mitS _ { 9 } = & \\displaystyle \\frac { 1 } { 2 \\mitkappa _ { 9 } ^ { 2 } } \\int \\mitd ^ { 9 } \\mitx \\sqrt { - \\mitg } \\mite ^ { - 2 \\mitphi } \\bigg [ \\mitR ( \\mitg ) + 4 \\mitg ^ { \\mitmu \\mitnu } \\mitpartial _ { \\mitmu } \\mitphi \\mitpartial _ { \\mitnu } \\mitphi - \\mite ^ { - 2 } \\mitg ^ { \\mitmu \\mitnu } \\mitpartial _ { \\mitmu } \\mite \\mitpartial _ { \\mitnu } \\mite \\\\ \\displaystyle & \\displaystyle - \\frac { 1 } { 2 } \\mite ^ { 2 } \\vert \\mitF _ { 2 } ^ { ( 1 ) } \\vert ^ { 2 } - \\frac { 1 } { 2 } \\mite ^ { - 2 } \\vert \\mitF _ { 2 } ^ { ( 2 ) } \\vert ^ { 2 } - \\frac { 1 } { 2 } \\vert \\mitH _ { 3 } ^ { ( 1 ) } \\vert ^ { 2 } \\bigg ] \\\\ \\displaystyle & \\displaystyle - \\frac { 1 } { 4 \\mitkappa _ { 9 } ^ { 2 } } \\int \\mitd ^ { 9 } \\mitx \\sqrt { - \\mitg } \\Big ( \\mite \\vert \\mitF _ { 2 } \\vert ^ { 2 } + \\mite ^ { - 1 } \\mitg ^ { \\mitmu \\mitnu } \\mitpartial _ { \\mitmu } \\mitD _ { \\mitx } \\mitpartial _ { \\mitnu } \\mitD _ { \\mitx } + \\mite ^ { - 1 } \\vert \\mitH _ { 3 } ^ { ( 2 ) } \\vert ^ { 2 } + \\mite \\vert \\mitF _ { 4 } \\vert ^ { 2 } \\Big ) , \\end{array} \\end{align*}",
"\\begin{align*} \\mite ^ { 2 } = \\mitG _ { \\mitx \\mitx } , \\qquad \\mitg _ { \\mitmu \\mitnu } = \\mitG _ { \\mitmu \\mitnu } - \\mitG _ { \\mitx \\mitx } \\mitA _ { \\mitmu } ^ { ( 1 ) } \\mitA _ { \\mitnu } ^ { ( 1 ) } , \\\\ \\mitA _ { \\mitmu } ^ { ( 1 ) } = \\frac { \\mitG _ { \\mitmu \\mitx } } { \\mitG _ { \\mitx \\mitx } } , \\qquad \\mitA _ { \\mitmu } ^ { ( 2 ) } = \\mitB _ { \\mitmu \\mitx } \\\\ \\mitA _ { \\mitmu } = \\mitD _ { \\mitmu } - \\mitA _ { \\mitmu } ^ { ( 1 ) } \\mitD _ { \\mitx } , \\quad \\mitF _ { \\mitmu \\mitnu } ^ { \\miti } = \\mitpartial _ { \\mitmu } \\mitA _ { \\mitnu } ^ { ( \\miti ) } - \\mitpartial _ { \\mitnu } \\mitA _ { \\mitmu } ^ { ( \\miti ) } , \\\\ \\mitB _ { \\mitmu \\mitnu } ^ { ( 1 ) } = \\mitB _ { \\mitmu \\mitnu } + \\frac { 1 } { 2 } \\mitA _ { \\mitmu } ^ { ( 1 ) } \\mitA _ { \\mitnu } ^ { ( 2 ) } - \\frac { 1 } { 2 } \\mitA _ { \\mitnu } ^ { ( 1 ) } \\mitA _ { \\mitmu } ^ { ( 2 ) } , \\quad \\mitB _ { \\mitmu \\mitnu } ^ { ( 2 ) } = \\mitD _ { \\mitmu \\mitnu \\mitx } , \\\\ \\mitphi = \\mupPhi - \\operatorname { l n } \\, \\mitG _ { \\mitx \\mitx } \\slash 4 , \\qquad \\mitD _ { \\mitmu \\mitnu \\mitrho } = \\mitD _ { \\mitmu \\mitnu \\mitrho } , \\\\ \\mitH _ { 3 } ^ { ( 1 ) } = \\mitd \\mitB _ { 2 } ^ { ( 1 ) } - \\frac { 1 } { 2 } ( \\mitA _ { 1 } ^ { ( 1 ) } \\wedge \\mitF _ { 2 } ^ { ( 2 ) } + \\mitA _ { 1 } ^ { ( 2 ) } \\wedge \\mitF _ { 2 } ^ { ( 1 ) } ) , \\\\ \\mitH _ { 3 } ^ { ( 2 ) } = \\mitd \\mitB _ { 2 } ^ { ( 2 ) } - \\mitB _ { 2 } ^ { ( 1 ) } \\wedge \\mitd \\mitD _ { \\mitx } + \\frac { 1 } { 2 } \\mitA _ { 1 } ^ { ( 2 ) } \\wedge \\mitA _ { 1 } ^ { ( 1 ) } \\wedge \\mitd \\mitD _ { \\mitx } - \\mitA _ { 1 } ^ { ( 2 ) } \\wedge ( \\mitF _ { 2 } + \\mitF _ { 2 } ^ { ( 1 ) } \\mitD _ { \\mitx } ) , \\\\ \\mitF _ { 4 } = \\mitd \\mitD _ { 3 } - \\mitB _ { 2 } ^ { ( 1 ) } \\wedge \\mitd \\mitD _ { 1 } + \\frac { 1 } { 2 } \\mitA _ { 1 } ^ { ( 1 ) } \\wedge \\mitA _ { 1 } ^ { ( 2 ) } \\wedge \\mitd \\mitD _ { 1 } + \\mitH _ { 3 } ^ { ( 2 ) } \\wedge \\mitA _ { 1 } ^ { ( 1 ) } , \\end{align*}",
"\\begin{align*} \\mscrE _ { \\mitM } ^ { \\mitA } = \\left( \\begin{array}{cc} \\mite _ { \\mitmu } ^ { \\mita } & \\mite ^ { - 1 } \\mitA _ { \\mitmu } ^ { ( 2 ) } \\\\ 0 & \\mite ^ { - 1 } \\end{array} \\right) , \\quad \\mscrE _ { \\mitA } ^ { \\mitM } = \\left( \\begin{array}{cc} \\mite _ { \\mita } ^ { \\mitmu } & - \\mite _ { \\mita } ^ { \\mitnu } \\mitA _ { \\mitnu } ^ { ( 2 ) } \\\\ 0 & \\mite \\end{array} \\right) , \\end{align*}"
],
"x_min": [
0.1485999971628189,
0.7843999862670898,
0.15690000355243683,
0.25290000438690186,
0.4050000011920929,
0.1388999968767166,
0.4187999963760376,
0.18310000002384186,
0.3012999892234802,
0.1859000027179718,
0.18870000541210175,
0.2937000095844269
],
"y_min": [
0.11129999905824661,
0.11129999905824661,
0.2587999999523163,
0.2587999999523163,
0.2587999999523163,
0.798799991607666,
0.8270999789237976,
0.17190000414848328,
0.3174000084400177,
0.39649999141693115,
0.548799991607666,
0.8901000022888184
],
"x_max": [
0.227400004863739,
0.849399983882904,
0.24120000004768372,
0.3939000070095062,
0.7422000169754028,
0.15000000596046448,
0.6890000104904175,
0.816100001335144,
0.7001000046730042,
0.8126999735832214,
0.8065000176429749,
0.704200029373169
],
"y_max": [
0.12639999389648438,
0.12639999389648438,
0.27149999141693115,
0.27149999141693115,
0.27149999141693115,
0.8055999875068665,
0.847100019454956,
0.24709999561309814,
0.3578999936580658,
0.5108000040054321,
0.7821000218391418,
0.9305999875068665
],
"expr_type": [
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"isolated",
"isolated",
"isolated",
"isolated",
"isolated"
]
} |
|
0002133_page04 | {
"latex": [
"$F_5$",
"$O(d,d,R)$",
"$\\Omega $",
"$O(d,d,R)$",
"$2d$",
"$2d$",
"\\begin {gather} e^{-2}={\\mathst G}_{xx},\\qquad g_{\\mu \\nu } ={\\mathst G}_{\\mu \\nu }- {\\mathst G}_{xx}A^{(2)}_\\mu A^{(2)}_\\nu ,\\\\ A^{(1)}_\\mu ={\\mathst B}_{\\mu x}, \\qquad A^{(2)}_\\mu ={{\\mathst G}_{\\mu x}\\over {\\mathst G}_{xx}},\\qquad D=D_x,\\\\ A_\\mu =D_{\\mu x}-{\\mathst B}_{\\mu x} D =D_{\\mu x}-A^{(1)}_\\mu D,\\\\ B^{(1)}_{\\mu \\nu }={\\mathst B}_{\\mu \\nu }- {1\\over 2}A^{(1)}_\\mu A^{(2)}_\\nu +{1\\over 2}A^{(1)}_\\nu A^{(2)}_\\mu ,\\qquad B^{(2)}_{\\mu \\nu }=D_{\\mu \\nu },\\\\ \\phi ={\\hat \\Phi }-\\ln \\,{\\mathst G}_{xx}/4, \\qquad {\\cal D}_{\\mu \\nu \\rho }=D_{\\mu \\nu \\rho x}. \\end {gather}",
"\\begin {equation} \\label {iib} \\begin {split} S^{IIB}_{10}=&{1\\over 2\\kappa ^2_{10}}\\int d^{10}x \\sqrt {-{\\mathst G}} e^{-2\\hat \\Phi }\\left [R({\\mathst G})+ 4 {\\mathst G}^{MN}\\partial _M \\hat \\Phi \\partial _N \\hat \\Phi -{1\\over 2} |{\\mathst H}_3|^2\\right ]\\\\ &-{1\\over 4\\kappa ^2_{10}}\\int d^{10}x \\sqrt {-{\\mathst G}} \\left (|F_1|^2+|F_3|^2+{1\\over 2}|F_5|^2\\,\\right ) +{1\\over 4\\kappa ^2_{10}}\\int d^{10}x {\\mathst B}_2\\wedge dC_4\\wedge dC_2, \\end {split} \\end {equation}",
"\\begin {gather} {\\tilde g}_{xx}={1\\over g_{xx}},\\quad {\\tilde g}_{\\mu x}={B_{\\mu x}\\over g_{xx}},\\quad {\\tilde g}_{\\mu \\nu }=g_{\\mu \\nu }-{g_{\\mu x}g_{\\nu x}-B_{\\mu x}B_{\\nu x} \\over g_{xx}},\\\\ {\\tilde B}_{\\mu x}={g_{\\mu x}\\over g_{xx}},\\quad {\\tilde B}_{\\mu \\nu }=B_{\\mu \\nu }-{B_{\\mu x}g_{\\nu x} -B_{\\nu x}g_{\\mu x} \\over g_{xx}},\\\\ {\\tilde \\phi }=\\phi -{1\\over 2}\\ln g_{xx},\\\\ {\\tilde D}_x=D,\\quad {\\tilde D}_\\mu =D_{\\mu x},\\quad {\\tilde D}_{\\mu \\nu x}=D_{\\mu \\nu },\\quad {\\tilde D}_{\\mu \\nu \\rho }=D_{\\mu \\nu \\rho x}. \\end {gather}",
"\\begin {gather} {\\tilde C}_x=C,\\quad {\\tilde C}_\\mu =C_{\\mu x}+B_{\\mu x}C,\\quad {\\tilde C}_{\\mu \\nu x}=C_{\\mu \\nu }+{g_{\\mu x}C_{\\nu x} -g_{\\nu x}C_{\\mu x}\\over g_{xx}},\\\\ {\\tilde C}_{\\mu \\nu \\rho }=C_{\\mu \\nu \\rho x}-{3\\over 2} B_{[\\mu \\nu }C_{\\rho ] x}-{3\\over 2}B_{x[\\mu }C_{\\nu \\rho ]} -{6g_{x[\\mu }B_{\\nu |x|}C_{\\rho ]x}\\over g_{xx}}. \\end {gather}",
"\\begin {equation} \\label {4dL} \\Omega ^T J \\Omega = J ,\\qquad J =\\begin {pmatrix} 0 & 1\\!\\!1_d\\\\ 1\\!\\!1_d & 0 \\end {pmatrix}. \\end {equation}",
"\\begin {equation} \\label {modulthree} M=\\begin {pmatrix} G^{-1} & -G^{-1}B \\\\ B G^{-1} & G -B G^{-1} B \\end {pmatrix}=\\begin {pmatrix} 1\\!\\!1 &0\\\\ B&1\\!\\!1 \\end {pmatrix} \\begin {pmatrix} G^{-1}&0\\\\ 0&G \\end {pmatrix} \\begin {pmatrix} 1\\!\\!1 &-B\\\\ 0&1\\!\\!1 \\end {pmatrix}, \\end {equation}"
],
"latex_norm": [
"$ F _ { 5 } $",
"$ O ( d , d , R ) $",
"$ \\Omega $",
"$ O ( d , d , R ) $",
"$ 2 d $",
"$ 2 d $",
"\\begin{align*} e ^ { - 2 } = G _ { x x } , \\qquad g _ { \\mu \\nu } = G _ { \\mu \\nu } - G _ { x x } A _ { \\mu } ^ { ( 2 ) } A _ { \\nu } ^ { ( 2 ) } , \\\\ A _ { \\mu } ^ { ( 1 ) } = B _ { \\mu x } , \\qquad A _ { \\mu } ^ { ( 2 ) } = \\frac { G _ { \\mu x } } { G _ { x x } } , \\qquad D = D _ { x } , \\\\ A _ { \\mu } = D _ { \\mu x } - B _ { \\mu x } D = D _ { \\mu x } - A _ { \\mu } ^ { ( 1 ) } D , \\\\ B _ { \\mu \\nu } ^ { ( 1 ) } = B _ { \\mu \\nu } - \\frac { 1 } { 2 } A _ { \\mu } ^ { ( 1 ) } A _ { \\nu } ^ { ( 2 ) } + \\frac { 1 } { 2 } A _ { \\nu } ^ { ( 1 ) } A _ { \\mu } ^ { ( 2 ) } , \\qquad B _ { \\mu \\nu } ^ { ( 2 ) } = D _ { \\mu \\nu } , \\\\ \\phi = \\hat { \\Phi } - \\operatorname { l n } \\, G _ { x x } \\slash 4 , \\qquad D _ { \\mu \\nu \\rho } = D _ { \\mu \\nu \\rho x } . \\end{align*}",
"\\begin{align*} \\begin{array}{rl} S _ { 1 0 } ^ { I I B } = & \\frac { 1 } { 2 \\kappa _ { 1 0 } ^ { 2 } } \\int d ^ { 1 0 } x \\sqrt { - G } e ^ { - 2 \\hat { \\Phi } } [ R ( G ) + 4 G ^ { M N } \\partial _ { M } \\hat { \\Phi } \\partial _ { N } \\hat { \\Phi } - \\frac { 1 } { 2 } \\vert H _ { 3 } \\vert ^ { 2 } ] \\\\ & - \\frac { 1 } { 4 \\kappa _ { 1 0 } ^ { 2 } } \\int d ^ { 1 0 } x \\sqrt { - G } ( \\vert F _ { 1 } \\vert ^ { 2 } + \\vert F _ { 3 } \\vert ^ { 2 } + \\frac { 1 } { 2 } \\vert F _ { 5 } \\vert ^ { 2 } \\, ) + \\frac { 1 } { 4 \\kappa _ { 1 0 } ^ { 2 } } \\int d ^ { 1 0 } x B _ { 2 } \\wedge d C _ { 4 } \\wedge d C _ { 2 } , \\end{array} \\end{align*}",
"\\begin{align*} \\widetilde { g } _ { x x } = \\frac { 1 } { g _ { x x } } , \\quad \\widetilde { g } _ { \\mu x } = \\frac { B _ { \\mu x } } { g _ { x x } } , \\quad \\widetilde { g } _ { \\mu \\nu } = g _ { \\mu \\nu } - \\frac { g _ { \\mu x } g _ { \\nu x } - B _ { \\mu x } B _ { \\nu x } } { g _ { x x } } , \\\\ \\widetilde { B } _ { \\mu x } = \\frac { g _ { \\mu x } } { g _ { x x } } , \\quad \\widetilde { B } _ { \\mu \\nu } = B _ { \\mu \\nu } - \\frac { B _ { \\mu x } g _ { \\nu x } - B _ { \\nu x } g _ { \\mu x } } { g _ { x x } } , \\\\ \\widetilde { \\phi } = \\phi - \\frac { 1 } { 2 } \\operatorname { l n } g _ { x x } , \\\\ \\widetilde { D } _ { x } = D , \\quad \\widetilde { D } _ { \\mu } = D _ { \\mu x } , \\quad \\widetilde { D } _ { \\mu \\nu x } = D _ { \\mu \\nu } , \\quad \\widetilde { D } _ { \\mu \\nu \\rho } = D _ { \\mu \\nu \\rho x } . \\end{align*}",
"\\begin{align*} \\widetilde { C } _ { x } = C , \\quad \\widetilde { C } _ { \\mu } = C _ { \\mu x } + B _ { \\mu x } C , \\quad \\widetilde { C } _ { \\mu \\nu x } = C _ { \\mu \\nu } + \\frac { g _ { \\mu x } C _ { \\nu x } - g _ { \\nu x } C _ { \\mu x } } { g _ { x x } } , \\\\ \\widetilde { C } _ { \\mu \\nu \\rho } = C _ { \\mu \\nu \\rho x } - \\frac { 3 } { 2 } B _ { [ \\mu \\nu } C _ { \\rho ] x } - \\frac { 3 } { 2 } B _ { x [ \\mu } C _ { \\nu \\rho ] } - \\frac { 6 g _ { x [ \\mu } B _ { \\nu \\vert x \\vert } C _ { \\rho ] x } } { g _ { x x } } . \\end{align*}",
"\\begin{align*} \\Omega ^ { T } J \\Omega = J , \\qquad J = ( \\begin{array}{cc} 0 & 1 \\! \\! 1 _ { d } \\\\ 1 \\! \\! 1 _ { d } & 0 \\end{array} ) . \\end{align*}",
"\\begin{align*} M = ( \\begin{array}{cc} G ^ { - 1 } & - G ^ { - 1 } B \\\\ B G ^ { - 1 } & G - B G ^ { - 1 } B \\end{array} ) = ( \\begin{array}{cc} 1 \\! \\! 1 & 0 \\\\ B & 1 \\! \\! 1 \\end{array} ) ( \\begin{array}{cc} G ^ { - 1 } & 0 \\\\ 0 & G \\end{array} ) ( \\begin{array}{cc} 1 \\! \\! 1 & - B \\\\ 0 & 1 \\! \\! 1 \\end{array} ) , \\end{align*}"
],
"latex_expand": [
"$ \\mitF _ { 5 } $",
"$ \\mitO ( \\mitd , \\mitd , \\mitR ) $",
"$ \\mupOmega $",
"$ \\mitO ( \\mitd , \\mitd , \\mitR ) $",
"$ 2 \\mitd $",
"$ 2 \\mitd $",
"\\begin{align*} \\mite ^ { - 2 } = \\mscrG _ { \\mitx \\mitx } , \\qquad \\mitg _ { \\mitmu \\mitnu } = \\mscrG _ { \\mitmu \\mitnu } - \\mscrG _ { \\mitx \\mitx } \\mitA _ { \\mitmu } ^ { ( 2 ) } \\mitA _ { \\mitnu } ^ { ( 2 ) } , \\\\ \\mitA _ { \\mitmu } ^ { ( 1 ) } = \\mscrB _ { \\mitmu \\mitx } , \\qquad \\mitA _ { \\mitmu } ^ { ( 2 ) } = \\frac { \\mscrG _ { \\mitmu \\mitx } } { \\mscrG _ { \\mitx \\mitx } } , \\qquad \\mitD = \\mitD _ { \\mitx } , \\\\ \\mitA _ { \\mitmu } = \\mitD _ { \\mitmu \\mitx } - \\mscrB _ { \\mitmu \\mitx } \\mitD = \\mitD _ { \\mitmu \\mitx } - \\mitA _ { \\mitmu } ^ { ( 1 ) } \\mitD , \\\\ \\mitB _ { \\mitmu \\mitnu } ^ { ( 1 ) } = \\mscrB _ { \\mitmu \\mitnu } - \\frac { 1 } { 2 } \\mitA _ { \\mitmu } ^ { ( 1 ) } \\mitA _ { \\mitnu } ^ { ( 2 ) } + \\frac { 1 } { 2 } \\mitA _ { \\mitnu } ^ { ( 1 ) } \\mitA _ { \\mitmu } ^ { ( 2 ) } , \\qquad \\mitB _ { \\mitmu \\mitnu } ^ { ( 2 ) } = \\mitD _ { \\mitmu \\mitnu } , \\\\ \\mitphi = \\hat { \\mupPhi } - \\operatorname { l n } \\, \\mscrG _ { \\mitx \\mitx } \\slash 4 , \\qquad \\mitD _ { \\mitmu \\mitnu \\mitrho } = \\mitD _ { \\mitmu \\mitnu \\mitrho \\mitx } . \\end{align*}",
"\\begin{align*} \\begin{array}{rl} \\displaystyle \\mitS _ { 1 0 } ^ { \\mitI \\mitI \\mitB } = & \\displaystyle \\frac { 1 } { 2 \\mitkappa _ { 1 0 } ^ { 2 } } \\int \\mitd ^ { 1 0 } \\mitx \\sqrt { - \\mscrG } \\mite ^ { - 2 \\hat { \\mupPhi } } \\left[ \\mitR ( \\mscrG ) + 4 \\mscrG ^ { \\mitM \\mitN } \\mitpartial _ { \\mitM } \\hat { \\mupPhi } \\mitpartial _ { \\mitN } \\hat { \\mupPhi } - \\frac { 1 } { 2 } \\vert \\mscrH _ { 3 } \\vert ^ { 2 } \\right] \\\\ \\displaystyle & \\displaystyle - \\frac { 1 } { 4 \\mitkappa _ { 1 0 } ^ { 2 } } \\int \\mitd ^ { 1 0 } \\mitx \\sqrt { - \\mscrG } \\left( \\vert \\mitF _ { 1 } \\vert ^ { 2 } + \\vert \\mitF _ { 3 } \\vert ^ { 2 } + \\frac { 1 } { 2 } \\vert \\mitF _ { 5 } \\vert ^ { 2 } \\, \\right) + \\frac { 1 } { 4 \\mitkappa _ { 1 0 } ^ { 2 } } \\int \\mitd ^ { 1 0 } \\mitx \\mscrB _ { 2 } \\wedge \\mitd \\mitC _ { 4 } \\wedge \\mitd \\mitC _ { 2 } , \\end{array} \\end{align*}",
"\\begin{align*} \\tilde { \\mitg } _ { \\mitx \\mitx } = \\frac { 1 } { \\mitg _ { \\mitx \\mitx } } , \\quad \\tilde { \\mitg } _ { \\mitmu \\mitx } = \\frac { \\mitB _ { \\mitmu \\mitx } } { \\mitg _ { \\mitx \\mitx } } , \\quad \\tilde { \\mitg } _ { \\mitmu \\mitnu } = \\mitg _ { \\mitmu \\mitnu } - \\frac { \\mitg _ { \\mitmu \\mitx } \\mitg _ { \\mitnu \\mitx } - \\mitB _ { \\mitmu \\mitx } \\mitB _ { \\mitnu \\mitx } } { \\mitg _ { \\mitx \\mitx } } , \\\\ \\tilde { \\mitB } _ { \\mitmu \\mitx } = \\frac { \\mitg _ { \\mitmu \\mitx } } { \\mitg _ { \\mitx \\mitx } } , \\quad \\tilde { \\mitB } _ { \\mitmu \\mitnu } = \\mitB _ { \\mitmu \\mitnu } - \\frac { \\mitB _ { \\mitmu \\mitx } \\mitg _ { \\mitnu \\mitx } - \\mitB _ { \\mitnu \\mitx } \\mitg _ { \\mitmu \\mitx } } { \\mitg _ { \\mitx \\mitx } } , \\\\ \\tilde { \\mitphi } = \\mitphi - \\frac { 1 } { 2 } \\operatorname { l n } \\mitg _ { \\mitx \\mitx } , \\\\ \\tilde { \\mitD } _ { \\mitx } = \\mitD , \\quad \\tilde { \\mitD } _ { \\mitmu } = \\mitD _ { \\mitmu \\mitx } , \\quad \\tilde { \\mitD } _ { \\mitmu \\mitnu \\mitx } = \\mitD _ { \\mitmu \\mitnu } , \\quad \\tilde { \\mitD } _ { \\mitmu \\mitnu \\mitrho } = \\mitD _ { \\mitmu \\mitnu \\mitrho \\mitx } . \\end{align*}",
"\\begin{align*} \\tilde { \\mitC } _ { \\mitx } = \\mitC , \\quad \\tilde { \\mitC } _ { \\mitmu } = \\mitC _ { \\mitmu \\mitx } + \\mitB _ { \\mitmu \\mitx } \\mitC , \\quad \\tilde { \\mitC } _ { \\mitmu \\mitnu \\mitx } = \\mitC _ { \\mitmu \\mitnu } + \\frac { \\mitg _ { \\mitmu \\mitx } \\mitC _ { \\mitnu \\mitx } - \\mitg _ { \\mitnu \\mitx } \\mitC _ { \\mitmu \\mitx } } { \\mitg _ { \\mitx \\mitx } } , \\\\ \\tilde { \\mitC } _ { \\mitmu \\mitnu \\mitrho } = \\mitC _ { \\mitmu \\mitnu \\mitrho \\mitx } - \\frac { 3 } { 2 } \\mitB _ { [ \\mitmu \\mitnu } \\mitC _ { \\mitrho ] \\mitx } - \\frac { 3 } { 2 } \\mitB _ { \\mitx [ \\mitmu } \\mitC _ { \\mitnu \\mitrho ] } - \\frac { 6 \\mitg _ { \\mitx [ \\mitmu } \\mitB _ { \\mitnu \\vert \\mitx \\vert } \\mitC _ { \\mitrho ] \\mitx } } { \\mitg _ { \\mitx \\mitx } } . \\end{align*}",
"\\begin{align*} \\mupOmega ^ { \\mitT } \\mitJ \\mupOmega = \\mitJ , \\qquad \\mitJ = \\left( \\begin{array}{cc} 0 & 1 \\! \\! 1 _ { \\mitd } \\\\ 1 \\! \\! 1 _ { \\mitd } & 0 \\end{array} \\right) . \\end{align*}",
"\\begin{align*} \\mitM = \\left( \\begin{array}{cc} \\mitG ^ { - 1 } & - \\mitG ^ { - 1 } \\mitB \\\\ \\mitB \\mitG ^ { - 1 } & \\mitG - \\mitB \\mitG ^ { - 1 } \\mitB \\end{array} \\right) = \\left( \\begin{array}{cc} 1 \\! \\! 1 & 0 \\\\ \\mitB & 1 \\! \\! 1 \\end{array} \\right) \\left( \\begin{array}{cc} \\mitG ^ { - 1 } & 0 \\\\ 0 & \\mitG \\end{array} \\right) \\left( \\begin{array}{cc} 1 \\! \\! 1 & - \\mitB \\\\ 0 & 1 \\! \\! 1 \\end{array} \\right) , \\end{align*}"
],
"x_min": [
0.4499000012874603,
0.3815000057220459,
0.7809000015258789,
0.819599986076355,
0.39739999175071716,
0.4512999951839447,
0.2687999904155731,
0.12160000205039978,
0.25429999828338623,
0.2231999933719635,
0.3621000051498413,
0.21979999542236328
],
"y_min": [
0.4106000065803528,
0.7265999913215637,
0.7275000214576721,
0.7265999913215637,
0.798799991607666,
0.798799991607666,
0.1421000063419342,
0.3208000063896179,
0.45410001277923584,
0.6416000127792358,
0.7523999810218811,
0.8237000107765198
],
"x_max": [
0.4706000089645386,
0.4657999873161316,
0.7954000234603882,
0.9039000272750854,
0.4180999994277954,
0.47200000286102295,
0.7263000011444092,
0.8424000144004822,
0.7415000200271606,
0.7718999981880188,
0.63919997215271,
0.7781999707221985
],
"y_max": [
0.42329999804496765,
0.7416999936103821,
0.7378000020980835,
0.7416999936103821,
0.809499979019165,
0.809499979019165,
0.27869999408721924,
0.39750000834465027,
0.5809000134468079,
0.7132999897003174,
0.7904999852180481,
0.8618000149726868
],
"expr_type": [
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"isolated",
"isolated",
"isolated",
"isolated",
"isolated",
"isolated"
]
} |
|
0002133_page05 | {
"latex": [
"$G=[G_{ij}]$",
"$B=[B_{ij}]$",
"$d\\times d$",
"$i$",
"$j$",
"$d$",
"$\\Phi $",
"$G_{\\mu m}$",
"$G_{\\mu \\nu }$",
"$G_{mn}$",
"$\\hat B_{\\mu \\nu }$",
"$B_{\\mu m}$",
"$B_{mn}$",
"$O(d,d)$",
"$\\Omega $",
"$O(d,d,R)$",
"${\\mathst A}{\\mathst B}^T+{\\mathst B}{\\mathst A}^T= {\\mathst C}{\\mathst D}^T+{\\mathst D}{\\mathst C}^T=0$",
"${\\mathst A}{\\mathst D}^T+{\\mathst B}{\\mathst C}^T= {\\mathst C}{\\mathst B}^T+{\\mathst D}{\\mathst A}^T=1$",
"${\\mathst A}$",
"${\\mathst B}$",
"${\\mathst C}$",
"${\\mathst D}$",
"$d\\times d$",
"${\\mathst D}={\\mathst C}{\\mathst A}^{-1} {\\mathst B}+({\\mathst A}^{-1})^T$",
"$O(d,d,R)$",
"$C^T=-C$",
"$R\\in GL(d,R)$",
"$i$",
"$j$",
"$k=1$",
"$\\dots $",
"$d$",
"$\\Lambda _C$",
"$C$",
"$\\Lambda _R$",
"$G\\rightarrow RGR^T$",
"$B\\rightarrow RBR^T$",
"$O(d,d,Z)$",
"$\\{\\Gamma _r,\\ \\Gamma _s\\}=2J_{rs}$",
"$r$",
"$s=1$",
"$\\dots $",
"$2d$",
"$\\{a_i$",
"$a_j^\\dag \\}=\\delta _{ij} 1\\!\\!1$",
"$\\{a_i$",
"$a_j\\}=\\{a_i^\\dag $",
"$a_j^\\dag \\}=0$",
"$a_i|0\\rangle =0$",
"$O(d,d)$",
"\\begin {gather} A_{\\mu m}^{(1)}=G_{\\mu m},\\quad A^{(1)m}_\\mu =G^{mn} A_{\\mu n}^{(1)},\\\\ A^{(2)}_{\\mu m} = B_{\\mu m} + B_{m n} A^{(1) n}_{\\mu },\\quad {\\cal A}^i_{\\mu } =\\begin {pmatrix} A^{(1)m}_{\\mu }\\\\ A^{(2)}_{\\mu \\,m} \\end {pmatrix},\\\\ g_{\\mu \\nu }=G_{\\mu \\nu }-G_{mn} A^{(1)m}_\\mu A^{(1)n}_{\\nu },\\\\ \\phi =\\Phi -{1\\over 4}\\ln \\, {\\rm det}(G_{mn}),\\\\ B_{\\mu \\nu } = \\hat B_{\\mu \\nu } + {1 \\over 2} A^{(1) m}_{\\mu } A^{(2)}_{\\nu m} - {1 \\over 2} A^{(1) m}_{\\nu } A^{(2)}_{\\mu m} - A^{(1) m}_{\\mu } B_{m n} A^{(1) n}_\\nu , \\end {gather}",
"\\begin {equation} M \\to \\Omega M \\Omega ^T ,\\ \\ \\ {\\cal A}^i_{\\mu } \\to \\Omega _{ij} {\\cal A}^j_{\\mu }, \\ \\ \\ g_{\\mu \\nu } \\to g_{\\mu \\nu }, \\ \\ \\^^M\\phi \\to \\phi , \\ \\ \\ B_{\\mu \\nu } \\to B_{\\mu \\nu }. \\label {tdual} \\end {equation}",
"\\begin {equation} \\Omega =\\begin {pmatrix} {\\mathst A} & {\\mathst B}\\\\ {\\mathst C} & {\\mathst D} \\end {pmatrix}, \\end {equation}",
"\\begin {equation} \\Lambda _C=\\begin {pmatrix} 1\\!\\!1& 0\\\\ C & 1\\!\\!1 \\end {pmatrix},\\quad \\Lambda _R=\\begin {pmatrix} (R^T)^{-1} & 0\\\\ 0 & R \\end {pmatrix},\\quad \\Lambda _i=\\begin {pmatrix} -1\\!\\!1 + e_i & e_i\\\\ e_i & -1\\!\\!1 +e_i \\end {pmatrix},\\quad (e_i)_{jk}=\\delta _{ij}\\delta _{jk}, \\end {equation}",
"\\begin {equation} \\label {crean} a_i={\\Gamma _{d+i}\\over \\sqrt {2}},\\quad a_i^\\dag ={\\Gamma _i\\over \\sqrt {2}},\\quad i=1,\\ \\dots ,\\ d. \\end {equation}",
"\\begin {equation} \\label {state} |\\alpha \\rangle =(a_1^\\dag )^{i_1}\\cdots (a_d^\\dag )^{i_d} |0\\rangle , \\quad i_1,\\ \\dots ,\\ i_d=0\\ {\\rm or}\\ 1. \\end {equation}",
"\\begin {equation} \\label {spinrep} S(\\Omega )\\Gamma _s S(\\Omega )^{-1}=\\sum _r \\Gamma _r\\Omega ^r\\,_s. \\end {equation}"
],
"latex_norm": [
"$ G = [ G _ { i j } ] $",
"$ B = [ B _ { i j } ] $",
"$ d \\times d $",
"$ i $",
"$ j $",
"$ d $",
"$ \\Phi $",
"$ G _ { \\mu m } $",
"$ G _ { \\mu \\nu } $",
"$ G _ { m n } $",
"$ \\hat { B } _ { \\mu \\nu } $",
"$ B _ { \\mu m } $",
"$ B _ { m n } $",
"$ O ( d , d ) $",
"$ \\Omega $",
"$ O ( d , d , R ) $",
"$ A B ^ { T } + B A ^ { T } = C D ^ { T } + D C ^ { T } = 0 $",
"$ A D ^ { T } + B C ^ { T } = C B ^ { T } + D A ^ { T } = 1 $",
"$ A $",
"$ B $",
"$ C $",
"$ D $",
"$ d \\times d $",
"$ D = C A ^ { - 1 } B + ( A ^ { - 1 } ) ^ { T } $",
"$ O ( d , d , R ) $",
"$ C ^ { T } = - C $",
"$ R \\in G L ( d , R ) $",
"$ i $",
"$ j $",
"$ k = 1 $",
"$ \\dots $",
"$ d $",
"$ \\Lambda _ { C } $",
"$ C $",
"$ \\Lambda _ { R } $",
"$ G \\rightarrow R G R ^ { T } $",
"$ B \\rightarrow R B R ^ { T } $",
"$ O ( d , d , Z ) $",
"$ \\{ \\Gamma _ { r } , ~ \\Gamma _ { s } \\} = 2 J _ { r s } $",
"$ r $",
"$ s = 1 $",
"$ \\ldots $",
"$ 2 d $",
"$ \\{ a _ { i } $",
"$ a _ { j } ^ { \\dagger } \\} = \\delta _ { i j } 1 \\! \\! 1 $",
"$ \\{ a _ { i } $",
"$ a _ { j } \\} = \\{ a _ { i } ^ { \\dagger } $",
"$ a _ { j } ^ { \\dagger } \\} = 0 $",
"$ a _ { i } \\vert 0 \\rangle = 0 $",
"$ O ( d , d ) $",
"\\begin{align*} A _ { \\mu m } ^ { ( 1 ) } = G _ { \\mu m } , \\quad A _ { \\mu } ^ { ( 1 ) m } = G ^ { m n } A _ { \\mu n } ^ { ( 1 ) } , \\\\ \\\\ \\\\ g _ { \\mu \\nu } = G _ { \\mu \\nu } - G _ { m n } A _ { \\mu } ^ { ( 1 ) m } A _ { \\nu } ^ { ( 1 ) n } , \\\\ \\phi = \\Phi - \\frac { 1 } { 4 } \\operatorname { l n } \\, d e t ( G _ { m n } ) , \\\\ B _ { \\mu \\nu } = \\hat { B } _ { \\mu \\nu } + \\frac { 1 } { 2 } A _ { \\mu } ^ { ( 1 ) m } A _ { \\nu m } ^ { ( 2 ) } - \\frac { 1 } { 2 } A _ { \\nu } ^ { ( 1 ) m } A _ { \\mu m } ^ { ( 2 ) } - A _ { \\mu } ^ { ( 1 ) m } B _ { m n } A _ { \\nu } ^ { ( 1 ) n } , \\end{align*}",
"\\begin{equation*} M \\rightarrow \\Omega M \\Omega ^ { T } , ~ ~ ~ A _ { \\mu } ^ { i } \\rightarrow \\Omega _ { i j } A _ { \\mu } ^ { j } , ~ ~ ~ g _ { \\mu \\nu } \\rightarrow g _ { \\mu \\nu } , ~ ~ ~ \\phi \\rightarrow \\phi , ~ ~ ~ B _ { \\mu \\nu } \\rightarrow B _ { \\mu \\nu } . \\end{equation*}",
"\\begin{align*} \\Omega = ( \\begin{array}{cc} A & B \\\\ C & D \\end{array} ) , \\end{align*}",
"\\begin{align*} \\Lambda _ { C } = ( \\begin{array}{cc} 1 \\! \\! 1 & 0 \\\\ C & 1 \\! \\! 1 \\end{array} ) , \\quad \\Lambda _ { R } = ( \\begin{array}{cc} ( R ^ { T } ) ^ { - 1 } & 0 \\\\ 0 & R \\end{array} ) , \\quad \\Lambda _ { i } = ( \\begin{array}{cc} - 1 \\! \\! 1 + e _ { i } & e _ { i } \\\\ e _ { i } & - 1 \\! \\! 1 + e _ { i } \\end{array} ) , \\quad ( e _ { i } ) _ { j k } = \\delta _ { i j } \\delta _ { j k } , \\end{align*}",
"\\begin{equation*} a _ { i } = \\frac { \\Gamma _ { d + i } } { \\sqrt { 2 } } , \\quad a _ { i } ^ { \\dagger } = \\frac { \\Gamma _ { i } } { \\sqrt { 2 } } , \\quad i = 1 , ~ \\ldots , ~ d . \\end{equation*}",
"\\begin{equation*} \\vert \\alpha \\rangle = ( a _ { 1 } ^ { \\dagger } ) ^ { i _ { 1 } } \\cdots ( a _ { d } ^ { \\dagger } ) ^ { i _ { d } } \\vert 0 \\rangle , \\quad i _ { 1 } , ~ \\ldots , ~ i _ { d } = 0 ~ o r ~ 1 . \\end{equation*}",
"\\begin{equation*} S ( \\Omega ) \\Gamma _ { s } S ( \\Omega ) ^ { - 1 } = \\sum _ { r } \\Gamma _ { r } \\Omega ^ { r } \\, { } _ { s } . \\end{equation*}"
],
"latex_expand": [
"$ \\mitG = [ \\mitG _ { \\miti \\mitj } ] $",
"$ \\mitB = [ \\mitB _ { \\miti \\mitj } ] $",
"$ \\mitd \\times \\mitd $",
"$ \\miti $",
"$ \\mitj $",
"$ \\mitd $",
"$ \\mupPhi $",
"$ \\mitG _ { \\mitmu \\mitm } $",
"$ \\mitG _ { \\mitmu \\mitnu } $",
"$ \\mitG _ { \\mitm \\mitn } $",
"$ \\hat { \\mitB } _ { \\mitmu \\mitnu } $",
"$ \\mitB _ { \\mitmu \\mitm } $",
"$ \\mitB _ { \\mitm \\mitn } $",
"$ \\mitO ( \\mitd , \\mitd ) $",
"$ \\mupOmega $",
"$ \\mitO ( \\mitd , \\mitd , \\mitR ) $",
"$ \\mscrA \\mscrB ^ { \\mitT } + \\mscrB \\mscrA ^ { \\mitT } = \\mscrC \\mscrD ^ { \\mitT } + \\mscrD \\mscrC ^ { \\mitT } = 0 $",
"$ \\mscrA \\mscrD ^ { \\mitT } + \\mscrB \\mscrC ^ { \\mitT } = \\mscrC \\mscrB ^ { \\mitT } + \\mscrD \\mscrA ^ { \\mitT } = 1 $",
"$ \\mscrA $",
"$ \\mscrB $",
"$ \\mscrC $",
"$ \\mscrD $",
"$ \\mitd \\times \\mitd $",
"$ \\mscrD = \\mscrC \\mscrA ^ { - 1 } \\mscrB + ( \\mscrA ^ { - 1 } ) ^ { \\mitT } $",
"$ \\mitO ( \\mitd , \\mitd , \\mitR ) $",
"$ \\mitC ^ { \\mitT } = - \\mitC $",
"$ \\mitR \\in \\mitG \\mitL ( \\mitd , \\mitR ) $",
"$ \\miti $",
"$ \\mitj $",
"$ \\mitk = 1 $",
"$ \\dots $",
"$ \\mitd $",
"$ \\mupLambda _ { \\mitC } $",
"$ \\mitC $",
"$ \\mupLambda _ { \\mitR } $",
"$ \\mitG \\rightarrow \\mitR \\mitG \\mitR ^ { \\mitT } $",
"$ \\mitB \\rightarrow \\mitR \\mitB \\mitR ^ { \\mitT } $",
"$ \\mitO ( \\mitd , \\mitd , \\mitZ ) $",
"$ \\{ \\mupGamma _ { \\mitr } , ~ \\mupGamma _ { \\mits } \\} = 2 \\mitJ _ { \\mitr \\mits } $",
"$ \\mitr $",
"$ \\mits = 1 $",
"$ \\ldots $",
"$ 2 \\mitd $",
"$ \\{ \\mita _ { \\miti } $",
"$ \\mita _ { \\mitj } ^ { \\dagger } \\} = \\mitdelta _ { \\miti \\mitj } 1 \\! \\! 1 $",
"$ \\{ \\mita _ { \\miti } $",
"$ \\mita _ { \\mitj } \\} = \\{ \\mita _ { \\miti } ^ { \\dagger } $",
"$ \\mita _ { \\mitj } ^ { \\dagger } \\} = 0 $",
"$ \\mita _ { \\miti } \\vert 0 \\rangle = 0 $",
"$ \\mitO ( \\mitd , \\mitd ) $",
"\\begin{align*} \\mitA _ { \\mitmu \\mitm } ^ { ( 1 ) } = \\mitG _ { \\mitmu \\mitm } , \\quad \\mitA _ { \\mitmu } ^ { ( 1 ) \\mitm } = \\mitG ^ { \\mitm \\mitn } \\mitA _ { \\mitmu \\mitn } ^ { ( 1 ) } , \\\\ \\\\ \\\\ \\mitg _ { \\mitmu \\mitnu } = \\mitG _ { \\mitmu \\mitnu } - \\mitG _ { \\mitm \\mitn } \\mitA _ { \\mitmu } ^ { ( 1 ) \\mitm } \\mitA _ { \\mitnu } ^ { ( 1 ) \\mitn } , \\\\ \\mitphi = \\mupPhi - \\frac { 1 } { 4 } \\operatorname { l n } \\, \\mathrm { d e t } ( \\mitG _ { \\mitm \\mitn } ) , \\\\ \\mitB _ { \\mitmu \\mitnu } = \\hat { \\mitB } _ { \\mitmu \\mitnu } + \\frac { 1 } { 2 } \\mitA _ { \\mitmu } ^ { ( 1 ) \\mitm } \\mitA _ { \\mitnu \\mitm } ^ { ( 2 ) } - \\frac { 1 } { 2 } \\mitA _ { \\mitnu } ^ { ( 1 ) \\mitm } \\mitA _ { \\mitmu \\mitm } ^ { ( 2 ) } - \\mitA _ { \\mitmu } ^ { ( 1 ) \\mitm } \\mitB _ { \\mitm \\mitn } \\mitA _ { \\mitnu } ^ { ( 1 ) \\mitn } , \\end{align*}",
"\\begin{equation*} \\mitM \\rightarrow \\mupOmega \\mitM \\mupOmega ^ { \\mitT } , ~ ~ ~ \\mitA _ { \\mitmu } ^ { \\miti } \\rightarrow \\mupOmega _ { \\miti \\mitj } \\mitA _ { \\mitmu } ^ { \\mitj } , ~ ~ ~ \\mitg _ { \\mitmu \\mitnu } \\rightarrow \\mitg _ { \\mitmu \\mitnu } , ~ ~ ~ \\mitphi \\rightarrow \\mitphi , ~ ~ ~ \\mitB _ { \\mitmu \\mitnu } \\rightarrow \\mitB _ { \\mitmu \\mitnu } . \\end{equation*}",
"\\begin{align*} \\mupOmega = \\left( \\begin{array}{cc} \\mscrA & \\mscrB \\\\ \\mscrC & \\mscrD \\end{array} \\right) , \\end{align*}",
"\\begin{align*} \\mupLambda _ { \\mitC } = \\left( \\begin{array}{cc} 1 \\! \\! 1 & 0 \\\\ \\mitC & 1 \\! \\! 1 \\end{array} \\right) , \\quad \\mupLambda _ { \\mitR } = \\left( \\begin{array}{cc} ( \\mitR ^ { \\mitT } ) ^ { - 1 } & 0 \\\\ 0 & \\mitR \\end{array} \\right) , \\quad \\mupLambda _ { \\miti } = \\left( \\begin{array}{cc} - 1 \\! \\! 1 + \\mite _ { \\miti } & \\mite _ { \\miti } \\\\ \\mite _ { \\miti } & - 1 \\! \\! 1 + \\mite _ { \\miti } \\end{array} \\right) , \\quad ( \\mite _ { \\miti } ) _ { \\mitj \\mitk } = \\mitdelta _ { \\miti \\mitj } \\mitdelta _ { \\mitj \\mitk } , \\end{align*}",
"\\begin{equation*} \\mita _ { \\miti } = \\frac { \\mupGamma _ { \\mitd + \\miti } } { \\sqrt { 2 } } , \\quad \\mita _ { \\miti } ^ { \\dagger } = \\frac { \\mupGamma _ { \\miti } } { \\sqrt { 2 } } , \\quad \\miti = 1 , ~ \\ldots , ~ \\mitd . \\end{equation*}",
"\\begin{equation*} \\vert \\mitalpha \\rangle = ( \\mita _ { 1 } ^ { \\dagger } ) ^ { \\miti _ { 1 } } \\cdots ( \\mita _ { \\mitd } ^ { \\dagger } ) ^ { \\miti _ { \\mitd } } \\vert 0 \\rangle , \\quad \\miti _ { 1 } , ~ \\ldots , ~ \\miti _ { \\mitd } = 0 ~ \\mathrm { o r } ~ 1 . \\end{equation*}",
"\\begin{equation*} \\mitS ( \\mupOmega ) \\mupGamma _ { \\mits } \\mitS ( \\mupOmega ) ^ { - 1 } = \\sum _ { \\mitr } \\mupGamma _ { \\mitr } \\mupOmega ^ { \\mitr } \\, { } _ { \\mits } . \\end{equation*}"
],
"x_min": [
0.15889999270439148,
0.29649999737739563,
0.4277999997138977,
0.5715000033378601,
0.6274999976158142,
0.21150000393390656,
0.15620000660419464,
0.18240000307559967,
0.23149999976158142,
0.27570000290870667,
0.3248000144958496,
0.36899998784065247,
0.4499000012874603,
0.7580999732017517,
0.3801000118255615,
0.4235999882221222,
0.14509999752044678,
0.43880000710487366,
0.7332000136375427,
0.7616000175476074,
0.7919999957084656,
0.8500000238418579,
0.10019999742507935,
0.4422999918460846,
0.6945000290870667,
0.15760000050067902,
0.2549999952316284,
0.4194999933242798,
0.43880000710487366,
0.49900001287460327,
0.5666999816894531,
0.605400025844574,
0.7533000111579895,
0.3075000047683716,
0.5099999904632568,
0.5472999811172485,
0.6621000170707703,
0.10019999742507935,
0.3682999908924103,
0.5562999844551086,
0.6108999848365784,
0.6682999730110168,
0.7070000171661377,
0.22460000216960907,
0.26260000467300415,
0.3621000051498413,
0.4000999927520752,
0.4934000074863434,
0.7885000109672546,
0.3849000036716461,
0.25290000438690186,
0.21150000393390656,
0.4325999915599823,
0.1251000016927719,
0.33379998803138733,
0.3012999892234802,
0.37869998812675476
],
"y_min": [
0.11469999700784683,
0.11469999700784683,
0.11569999903440475,
0.11620000004768372,
0.11620000004768372,
0.13279999792575836,
0.33149999380111694,
0.33149999380111694,
0.33149999380111694,
0.33149999380111694,
0.3280999958515167,
0.33149999380111694,
0.33149999380111694,
0.33059999346733093,
0.4740999937057495,
0.4731000065803528,
0.548799991607666,
0.548799991607666,
0.5512999892234802,
0.5512999892234802,
0.5512999892234802,
0.5512999892234802,
0.5687999725341797,
0.5659000277519226,
0.5679000020027161,
0.6646000146865845,
0.6654999852180481,
0.6669999957084656,
0.6669999957084656,
0.6660000085830688,
0.673799991607666,
0.6660000085830688,
0.6664999723434448,
0.6836000084877014,
0.6836000084877014,
0.6815999746322632,
0.6815999746322632,
0.6996999979019165,
0.7167999744415283,
0.7217000126838684,
0.7182999849319458,
0.7250999808311462,
0.7178000211715698,
0.7935000061988831,
0.7910000085830688,
0.7935000061988831,
0.7904999852180481,
0.7904999852180481,
0.7935000061988831,
0.8695999979972839,
0.15970000624656677,
0.3725999891757965,
0.4975999891757965,
0.6093999743461609,
0.7411999702453613,
0.8339999914169312,
0.8939999938011169
],
"x_max": [
0.24740000069141388,
0.38499999046325684,
0.47620001435279846,
0.5791000127792358,
0.6371999979019165,
0.22259999811649323,
0.17139999568462372,
0.22040000557899475,
0.2646999955177307,
0.31369999051094055,
0.3573000133037567,
0.40630000829696655,
0.487199991941452,
0.8188999891281128,
0.3953000009059906,
0.5078999996185303,
0.4277999997138977,
0.7214999794960022,
0.7498000264167786,
0.7803000211715698,
0.8058000206947327,
0.8658999800682068,
0.14579999446868896,
0.6392999887466431,
0.7788000106811523,
0.24330000579357147,
0.37459999322891235,
0.42640000581741333,
0.44850000739097595,
0.5473999977111816,
0.5936999917030334,
0.6165000200271606,
0.7796000242233276,
0.32339999079704285,
0.5356000065803528,
0.6510000228881836,
0.7670999765396118,
0.18449999392032623,
0.5058000087738037,
0.5666999816894531,
0.6571999788284302,
0.6952999830245972,
0.7276999950408936,
0.2515999972820282,
0.35109999775886536,
0.38909998536109924,
0.4823000133037567,
0.5583999752998352,
0.8644999861717224,
0.4449999928474426,
0.7422000169754028,
0.789900004863739,
0.5652999877929688,
0.8734999895095825,
0.6675999760627747,
0.7001000046730042,
0.6226999759674072
],
"y_max": [
0.1298000067472458,
0.1298000067472458,
0.1273999959230423,
0.12600000202655792,
0.12890000641345978,
0.14309999346733093,
0.34220001101493835,
0.34610000252723694,
0.34610000252723694,
0.3441999852657318,
0.34619998931884766,
0.34610000252723694,
0.3441999852657318,
0.3456999957561493,
0.4844000041484833,
0.4876999855041504,
0.5630000233650208,
0.5630000233650208,
0.5619999766349792,
0.5619999766349792,
0.5619999766349792,
0.5619999766349792,
0.5799999833106995,
0.5824999809265137,
0.5824999809265137,
0.6777999997138977,
0.6801000237464905,
0.676800012588501,
0.6797000169754028,
0.6766999959945679,
0.676800012588501,
0.6766999959945679,
0.6786999702453613,
0.6938999891281128,
0.6958000063896179,
0.6937999725341797,
0.6937999725341797,
0.7148000001907349,
0.7318999767303467,
0.7279999852180481,
0.7281000018119812,
0.7281000018119812,
0.7281000018119812,
0.8080999851226807,
0.8100000023841858,
0.8080999851226807,
0.8086000084877014,
0.8100000023841858,
0.8080999851226807,
0.8841999769210815,
0.31630000472068787,
0.39410001039505005,
0.5357000231742859,
0.6480000019073486,
0.7778000235557556,
0.8554999828338623,
0.9305999875068665
],
"expr_type": [
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"isolated",
"isolated",
"isolated",
"isolated",
"isolated",
"isolated",
"isolated"
]
} |
|
0002133_page06 | {
"latex": [
"$\\Omega $",
"$+$",
"${\\mathbold \\Lambda }_i$",
"$D$",
"$d=1$",
"$|\\alpha \\rangle =(|0\\rangle ,\\ a^\\dag |0\\rangle )$",
"$d=2$",
"$|\\alpha \\rangle =(|0\\rangle ,\\ a_x^\\dag |0\\rangle ,\\^^Ma_y^\\dag |0\\rangle ,\\ a_x^\\dag a_y^\\dag |0\\rangle )$",
"$\\chi $",
"$O(1,1)$",
"$\\Lambda _i$",
"$SO(1,1)$",
"$\\Lambda _i\\Lambda _j$",
"$O(d)\\otimes O(d)$",
"$O(d)$",
"$R$",
"$S$",
"$O(d,d)$",
"$\\Omega $",
"$J$",
"$O(d,d)$",
"$\\eta $",
"\\begin {equation} \\label {operator} {\\mathbold \\Omega }\\Gamma _s = \\sum _r\\Gamma _r\\Omega ^r\\,_s {\\mathbold \\Omega },\\quad {\\mathbold \\Omega }|\\beta \\rangle =\\sum _\\alpha |\\alpha \\rangle S_{\\alpha \\beta }(\\Omega ). \\end {equation}",
"\\begin {gather} {\\mathbold \\Lambda }_C=\\exp \\left ({1\\over 2} C_{ij}a_i a_j\\right ),\\quad {\\mathbold \\Lambda }_i=\\pm (a_i+a_i^\\dag ),\\\\ {\\mathbold \\Lambda }_R=({\\rm det}R)^{-1/2}\\,\\exp \\left (a_i A_i\\,^j a_j^\\dag \\right ),\\quad R=R_i\\,^j=\\exp (A_i\\,^j), \\end {gather}",
"\\begin {gather*} \\chi _\\alpha =(D,\\ D_x),\\quad \\chi _{\\mu \\alpha }=(D_\\mu ,\\ D_{\\mu x}),\\\\ \\chi _{\\mu \\nu \\alpha }=(D_{\\mu \\nu },\\ D_{\\mu \\nu x}),\\quad \\chi _{\\mu \\nu \\rho \\alpha }=(D_{\\mu \\nu \\rho },\\ D_{\\mu \\nu \\rho x}),\\\\ \\cdots , \\end {gather*}",
"\\begin {gather*} \\chi _\\alpha =(D,\\ D_x,\\ D_y,\\ D_{yx}),\\\\ \\chi _{\\mu \\alpha }=(D_\\mu ,\\ D_{\\mu x},\\ D_{\\mu y}, \\ D_{\\mu yx}),\\\\ \\chi _{\\mu \\nu \\alpha }=(D_{\\mu \\nu },\\ D_{\\mu \\nu x}, \\ D_{\\mu \\nu y},\\ D_{\\mu \\nu yx}),\\\\ \\cdots , \\end {gather*}",
"\\begin {equation} \\label {spintrans} |{\\tilde \\chi }_{\\mu _1\\dots \\mu _p\\alpha }\\rangle =\\sum _\\beta S^{-1}(\\Omega ^T)_{\\alpha \\beta } |{\\tilde \\chi }_{\\mu _1\\dots \\mu _p\\beta }\\rangle . \\end {equation}",
"\\begin {equation} \\label {rdualex} S\\left ((\\Lambda ^T)^{-1}\\right )=S(\\Lambda ) =\\Lambda =\\begin {pmatrix} 0 & 1\\\\ 1 & 0 \\end {pmatrix}. \\end {equation}",
"\\begin {equation} \\label {rdualex1} S(\\Lambda ^2)=\\Lambda ^2=\\begin {pmatrix} 1 & 0\\\\ 0 & 1 \\end {pmatrix}. \\end {equation}",
"$$J={\\mathst R}\\eta {\\mathst R},\\quad \\eta =\\begin {pmatrix} -1\\!\\!1 & 0\\\\ 0 & 1\\!\\!1 \\end {pmatrix},\\quad {\\mathst R}={\\sqrt {2}\\over 2} \\begin {pmatrix} -1\\!\\!1 & 1\\!\\!1\\\\ 1\\!\\!1 & 1\\!\\!1 \\end {pmatrix},$$"
],
"latex_norm": [
"$ \\Omega $",
"$ + $",
"$ \\Lambda i $",
"$ D $",
"$ d = 1 $",
"$ \\vert \\alpha \\rangle = ( \\vert 0 \\rangle , ~ a ^ { \\dagger } \\vert 0 \\rangle ) $",
"$ d = 2 $",
"$ \\vert \\alpha \\rangle = ( \\vert 0 \\rangle , ~ a _ { x } ^ { \\dagger } \\vert 0 \\rangle , ~ a _ { y } ^ { \\dagger } \\vert 0 \\rangle , ~ a _ { x } ^ { \\dagger } a _ { y } ^ { \\dagger } \\vert 0 \\rangle ) $",
"$ \\chi $",
"$ O ( 1 , 1 ) $",
"$ \\Lambda _ { i } $",
"$ S O ( 1 , 1 ) $",
"$ \\Lambda _ { i } \\Lambda _ { j } $",
"$ O ( d ) \\otimes O ( d ) $",
"$ O ( d ) $",
"$ R $",
"$ S $",
"$ O ( d , d ) $",
"$ \\Omega $",
"$ J $",
"$ O ( d , d ) $",
"$ \\eta $",
"\\begin{equation*} \\Omega \\Gamma _ { s } = \\sum _ { r } \\Gamma _ { r } \\Omega ^ { r } \\, { } _ { s } \\Omega , \\quad \\Omega \\vert \\beta \\rangle = \\sum _ { \\alpha } \\vert \\alpha \\rangle S _ { \\alpha \\beta } ( \\Omega ) . \\end{equation*}",
"\\begin{align*} \\Lambda _ { C } = \\operatorname { e x p } ( \\frac { 1 } { 2 } C _ { i j } a _ { i } a _ { j } ) , \\quad \\Lambda _ { i } = \\pm ( a _ { i } + a _ { i } ^ { \\dagger } ) , \\\\ \\Lambda _ { R } = ( d e t R ) ^ { - 1 \\slash 2 } \\, \\operatorname { e x p } ( a _ { i } A _ { i } \\, { } ^ { j } a _ { j } ^ { \\dagger } ) , \\quad R = R _ { i } \\, { } ^ { j } = \\operatorname { e x p } ( A _ { i } \\, { } ^ { j } ) , \\end{align*}",
"\\begin{align*} \\chi _ { \\alpha } = ( D , ~ D _ { x } ) , \\quad \\chi _ { \\mu \\alpha } = ( D _ { \\mu } , ~ D _ { \\mu x } ) , \\\\ \\chi _ { \\mu \\nu \\alpha } = ( D _ { \\mu \\nu } , ~ D _ { \\mu \\nu x } ) , \\quad \\chi _ { \\mu \\nu \\rho \\alpha } = ( D _ { \\mu \\nu \\rho } , ~ D _ { \\mu \\nu \\rho x } ) , \\\\ \\cdots , \\end{align*}",
"\\begin{align*} \\chi _ { \\alpha } = ( D , ~ D _ { x } , ~ D _ { y } , ~ D _ { y x } ) , \\\\ \\chi _ { \\mu \\alpha } = ( D _ { \\mu } , ~ D _ { \\mu x } , ~ D _ { \\mu y } , ~ D _ { \\mu y x } ) , \\\\ \\chi _ { \\mu \\nu \\alpha } = ( D _ { \\mu \\nu } , ~ D _ { \\mu \\nu x } , ~ D _ { \\mu \\nu y } , ~ D _ { \\mu \\nu y x } ) , \\\\ \\cdots , \\end{align*}",
"\\begin{equation*} \\vert \\widetilde { \\chi } _ { \\mu _ { 1 } \\ldots \\mu _ { p } \\alpha } \\rangle = \\sum _ { \\beta } S ^ { - 1 } ( \\Omega ^ { T } ) _ { \\alpha \\beta } \\vert \\widetilde { \\chi } _ { \\mu _ { 1 } \\ldots \\mu _ { p } \\beta } \\rangle . \\end{equation*}",
"\\begin{align*} S ( ( \\Lambda ^ { T } ) ^ { - 1 } ) = S ( \\Lambda ) = \\Lambda = ( \\begin{array}{cc} 0 & 1 \\\\ 1 & 0 \\end{array} ) . \\end{align*}",
"\\begin{align*} S ( \\Lambda ^ { 2 } ) = \\Lambda ^ { 2 } = ( \\begin{array}{cc} 1 & 0 \\\\ 0 & 1 \\end{array} ) . \\end{align*}",
"\\begin{align*} J = R \\eta R , \\quad \\eta = ( \\begin{array}{cc} - 1 \\! \\! 1 & 0 \\\\ 0 & 1 \\! \\! 1 \\end{array} ) , \\quad R = \\frac { \\sqrt { 2 } } { 2 } ( \\begin{array}{cc} - 1 \\! \\! 1 & 1 \\! \\! 1 \\\\ 1 \\! \\! 1 & 1 \\! \\! 1 \\end{array} ) , \\end{align*}"
],
"latex_expand": [
"$ \\mupOmega $",
"$ + $",
"$ \\mupLambda \\miti $",
"$ \\mitD $",
"$ \\mitd = 1 $",
"$ \\vert \\mitalpha \\rangle = ( \\vert 0 \\rangle , ~ \\mita ^ { \\dagger } \\vert 0 \\rangle ) $",
"$ \\mitd = 2 $",
"$ \\vert \\mitalpha \\rangle = ( \\vert 0 \\rangle , ~ \\mita _ { \\mitx } ^ { \\dagger } \\vert 0 \\rangle , ~ \\mita _ { \\mity } ^ { \\dagger } \\vert 0 \\rangle , ~ \\mita _ { \\mitx } ^ { \\dagger } \\mita _ { \\mity } ^ { \\dagger } \\vert 0 \\rangle ) $",
"$ \\mitchi $",
"$ \\mitO ( 1 , 1 ) $",
"$ \\mupLambda _ { \\miti } $",
"$ \\mitS \\mitO ( 1 , 1 ) $",
"$ \\mupLambda _ { \\miti } \\mupLambda _ { \\mitj } $",
"$ \\mitO ( \\mitd ) \\otimes \\mitO ( \\mitd ) $",
"$ \\mitO ( \\mitd ) $",
"$ \\mitR $",
"$ \\mitS $",
"$ \\mitO ( \\mitd , \\mitd ) $",
"$ \\mupOmega $",
"$ \\mitJ $",
"$ \\mitO ( \\mitd , \\mitd ) $",
"$ \\miteta $",
"\\begin{equation*} \\mbfOmega \\mupGamma _ { \\mits } = \\sum _ { \\mitr } \\mupGamma _ { \\mitr } \\mupOmega ^ { \\mitr } \\, { } _ { \\mits } \\mbfOmega , \\quad \\mbfOmega \\vert \\mitbeta \\rangle = \\sum _ { \\mitalpha } \\vert \\mitalpha \\rangle \\mitS _ { \\mitalpha \\mitbeta } ( \\mupOmega ) . \\end{equation*}",
"\\begin{align*} \\displaystyle \\mbfLambda _ { \\mitC } = \\operatorname { e x p } \\left( \\frac { 1 } { 2 } \\mitC _ { \\miti \\mitj } \\mita _ { \\miti } \\mita _ { \\mitj } \\right) , \\quad \\mbfLambda _ { \\miti } = \\pm ( \\mita _ { \\miti } + \\mita _ { \\miti } ^ { \\dagger } ) , \\\\ \\displaystyle \\mbfLambda _ { \\mitR } = ( \\mathrm { d e t } \\mitR ) ^ { - 1 \\slash 2 } \\, \\operatorname { e x p } \\left( \\mita _ { \\miti } \\mitA _ { \\miti } \\, { } ^ { \\mitj } \\mita _ { \\mitj } ^ { \\dagger } \\right) , \\quad \\mitR = \\mitR _ { \\miti } \\, { } ^ { \\mitj } = \\operatorname { e x p } ( \\mitA _ { \\miti } \\, { } ^ { \\mitj } ) , \\end{align*}",
"\\begin{align*} \\mitchi _ { \\mitalpha } = ( \\mitD , ~ \\mitD _ { \\mitx } ) , \\quad \\mitchi _ { \\mitmu \\mitalpha } = ( \\mitD _ { \\mitmu } , ~ \\mitD _ { \\mitmu \\mitx } ) , \\\\ \\mitchi _ { \\mitmu \\mitnu \\mitalpha } = ( \\mitD _ { \\mitmu \\mitnu } , ~ \\mitD _ { \\mitmu \\mitnu \\mitx } ) , \\quad \\mitchi _ { \\mitmu \\mitnu \\mitrho \\mitalpha } = ( \\mitD _ { \\mitmu \\mitnu \\mitrho } , ~ \\mitD _ { \\mitmu \\mitnu \\mitrho \\mitx } ) , \\\\ \\cdots , \\end{align*}",
"\\begin{align*} \\mitchi _ { \\mitalpha } = ( \\mitD , ~ \\mitD _ { \\mitx } , ~ \\mitD _ { \\mity } , ~ \\mitD _ { \\mity \\mitx } ) , \\\\ \\mitchi _ { \\mitmu \\mitalpha } = ( \\mitD _ { \\mitmu } , ~ \\mitD _ { \\mitmu \\mitx } , ~ \\mitD _ { \\mitmu \\mity } , ~ \\mitD _ { \\mitmu \\mity \\mitx } ) , \\\\ \\mitchi _ { \\mitmu \\mitnu \\mitalpha } = ( \\mitD _ { \\mitmu \\mitnu } , ~ \\mitD _ { \\mitmu \\mitnu \\mitx } , ~ \\mitD _ { \\mitmu \\mitnu \\mity } , ~ \\mitD _ { \\mitmu \\mitnu \\mity \\mitx } ) , \\\\ \\cdots , \\end{align*}",
"\\begin{equation*} \\vert \\tilde { \\mitchi } _ { \\mitmu _ { 1 } \\ldots \\mitmu _ { \\mitp } \\mitalpha } \\rangle = \\sum _ { \\mitbeta } \\mitS ^ { - 1 } ( \\mupOmega ^ { \\mitT } ) _ { \\mitalpha \\mitbeta } \\vert \\tilde { \\mitchi } _ { \\mitmu _ { 1 } \\ldots \\mitmu _ { \\mitp } \\mitbeta } \\rangle . \\end{equation*}",
"\\begin{align*} \\mitS \\left( ( \\mupLambda ^ { \\mitT } ) ^ { - 1 } \\right) = \\mitS ( \\mupLambda ) = \\mupLambda = \\left( \\begin{array}{cc} 0 & 1 \\\\ 1 & 0 \\end{array} \\right) . \\end{align*}",
"\\begin{align*} \\mitS ( \\mupLambda ^ { 2 } ) = \\mupLambda ^ { 2 } = \\left( \\begin{array}{cc} 1 & 0 \\\\ 0 & 1 \\end{array} \\right) . \\end{align*}",
"\\begin{align*} \\mitJ = \\mscrR \\miteta \\mscrR , \\quad \\miteta = \\left( \\begin{array}{cc} - 1 \\! \\! 1 & 0 \\\\ 0 & 1 \\! \\! 1 \\end{array} \\right) , \\quad \\mscrR = \\frac { \\sqrt { 2 } } { 2 } \\left( \\begin{array}{cc} - 1 \\! \\! 1 & 1 \\! \\! 1 \\\\ 1 \\! \\! 1 & 1 \\! \\! 1 \\end{array} \\right) , \\end{align*}"
],
"x_min": [
0.7091000080108643,
0.5673999786376953,
0.7008000016212463,
0.1582999974489212,
0.48100000619888306,
0.14509999752044678,
0.3345000147819519,
0.14509999752044678,
0.621999979019165,
0.5252000093460083,
0.6212999820709229,
0.7954000234603882,
0.10019999742507935,
0.7339000105857849,
0.37529999017715454,
0.5044999718666077,
0.5666999816894531,
0.6288999915122986,
0.7623000144958496,
0.16099999845027924,
0.20319999754428864,
0.5784000158309937,
0.3068000078201294,
0.25220000743865967,
0.2985000014305115,
0.3490000069141388,
0.34279999136924744,
0.34689998626708984,
0.399399995803833,
0.27570000290870667
],
"y_min": [
0.11569999903440475,
0.2831999957561493,
0.2816999852657318,
0.298799991607666,
0.298799991607666,
0.39160001277923584,
0.39309999346733093,
0.5062999725341797,
0.5121999979019165,
0.5795999765396118,
0.5806000232696533,
0.6664999723434448,
0.6845999956130981,
0.8349999785423279,
0.8521000146865845,
0.8529999852180481,
0.8529999852180481,
0.8521000146865845,
0.8529999852180481,
0.8701000213623047,
0.8690999746322632,
0.8740000128746033,
0.13570000231266022,
0.20020000636577606,
0.3197999894618988,
0.4140999913215637,
0.5311999917030334,
0.6011000275611877,
0.6963000297546387,
0.8931000232696533
],
"x_max": [
0.7235999703407288,
0.583299994468689,
0.7221999764442444,
0.17630000412464142,
0.527999997138977,
0.2922999858856201,
0.3815000057220459,
0.4277999997138977,
0.6351000070571899,
0.5853000283241272,
0.6413000226020813,
0.8687000274658203,
0.14100000262260437,
0.8424000144004822,
0.41679999232292175,
0.5196999907493591,
0.5805000066757202,
0.6897000074386597,
0.7767999768257141,
0.17479999363422394,
0.2639999985694885,
0.5895000100135803,
0.6945000290870667,
0.742900013923645,
0.6973000168800354,
0.6468999981880188,
0.6585999727249146,
0.6543999910354614,
0.6018999814987183,
0.7193999886512756
],
"y_max": [
0.12600000202655792,
0.2930000126361847,
0.29440000653266907,
0.3091000020503998,
0.3091000020503998,
0.40720000863075256,
0.40380001068115234,
0.524399995803833,
0.5214999914169312,
0.5946999788284302,
0.5932999849319458,
0.6811000108718872,
0.6988000273704529,
0.8496000170707703,
0.8666999936103821,
0.8633000254631042,
0.8633000254631042,
0.8666999936103821,
0.8633000254631042,
0.8804000020027161,
0.8841999769210815,
0.8833000063896179,
0.17180000245571136,
0.27250000834465027,
0.38119998574256897,
0.4959999918937683,
0.5698000192642212,
0.6396999955177307,
0.7343999743461609,
0.9307000041007996
],
"expr_type": [
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"isolated",
"isolated",
"isolated",
"isolated",
"isolated",
"isolated",
"isolated",
"isolated"
]
} |
|
0002133_page07 | {
"latex": [
"$\\Omega $",
"$O(2d)$",
"$(\\Omega ^T)^{-1}=\\Omega $",
"$R=-1\\!\\!1 +2 e_i$",
"$S=-1\\!\\!1$",
"$\\Lambda _i$",
"$B$",
"$D$",
"$\\eta $",
"$S$",
"$R$",
"$O(d-1,1)$",
"$S\\eta S^T=\\eta $",
"$R\\eta R^T=\\eta $",
"$t$",
"$x$",
"$B$",
"$$\\Omega ={\\mathst R}^{-1}\\begin {pmatrix} S & 0\\\\ 0 & R \\end {pmatrix}{\\mathst R}={1\\over 2}\\begin {pmatrix} R+S & R-S\\\\ R-S & R+S \\end {pmatrix}.$$",
"$$S=1\\!\\!1,\\qquad R=\\begin {pmatrix} \\cos \\theta & \\sin \\theta \\\\ -\\sin \\theta & \\cos \\theta \\end {pmatrix},$$",
"\\begin {equation} \\label {soluex1b} S(\\Omega )=\\begin {pmatrix} \\cos {\\theta \\over 2} & 0 & 0 &-\\sin {\\theta \\over 2}\\\\ 0 & \\cos {\\theta \\over 2} & \\sin {\\theta \\over 2}& 0 \\\\ 0 & -\\sin {\\theta \\over 2} & \\cos {\\theta \\over 2} & 0 \\\\ \\sin {\\theta \\over 2} & 0 & 0 & \\cos {\\theta \\over 2} \\end {pmatrix}. \\end {equation}",
"\\begin {equation} \\label {gentec2} \\Omega ={1\\over 2}\\begin {pmatrix} \\eta (S+R)\\eta & \\eta (R-S)\\\\ (R-S)\\eta & S+R \\end {pmatrix},\\quad {\\mathst R}={1\\over \\sqrt {2}}\\begin {pmatrix} -\\eta & 1\\!\\!1\\\\ \\eta & 1\\!\\!1 \\end {pmatrix}, \\end {equation}",
"$$ R=S=\\begin {pmatrix} \\cosh \\alpha & \\sinh \\alpha \\\\ \\sinh \\alpha & \\cosh \\alpha \\end {pmatrix}$$",
"\\begin {equation} \\label {soluexbb} S^{-1}(\\Omega ^T_b)=\\begin {pmatrix} 1 & 0 & 0 & 0\\\\ 0 & \\cosh \\alpha & \\sinh \\alpha & 0\\\\ 0 & \\sinh \\alpha &\\cosh \\alpha & 0 \\\\ 0 & 0 & 0 & 1 \\end {pmatrix}. \\end {equation}",
"\\begin {gather} {\\tilde B}_{\\mu t}=B_{\\mu t}\\cosh \\alpha +B_{\\mu x}\\sinh \\alpha ,\\quad {\\tilde B}_{\\mu x}=B_{\\mu t}\\sinh \\alpha +B_{\\mu x}\\cosh \\alpha ,\\\\ {\\tilde C}_{\\mu \\dots \\nu t}=C_{\\mu \\dots \\nu t}\\cosh \\alpha +C_{\\mu \\dots \\nu x}\\sinh \\alpha ,\\quad {\\tilde C}_{\\mu \\dots \\nu x}=C_{\\mu \\dots \\nu t}\\sinh \\alpha +C_{\\mu \\dots \\nu x}\\cosh \\alpha ,\\\\ {\\tilde B}_{tx}=B_{tx},\\quad {\\tilde C}_{\\mu \\dots \\nu tx}=C_{\\mu \\dots \\nu tx},\\quad {\\tilde B}_{\\mu \\nu }=B_{\\mu \\nu },\\quad {\\tilde C}_{\\mu \\dots \\nu }=C_{\\mu \\dots \\nu }. \\end {gather}",
"\\begin {equation} \\label {soluex4} S=\\begin {pmatrix} \\cosh \\alpha & -\\sinh \\alpha \\\\ -\\sinh \\alpha & \\cosh \\alpha \\end {pmatrix}, \\quad R=\\begin {pmatrix} \\cosh \\alpha & \\sinh \\alpha \\\\ \\sinh \\alpha & \\cosh \\alpha \\end {pmatrix}. \\end {equation}",
"\\begin {equation} \\label {soluex4b} S^{-1}(\\Omega ^T_s)=\\begin {pmatrix} \\cosh \\alpha & 0 & 0 &\\sinh \\alpha \\\\ 0 & 1 & 0 & 0\\\\ 0 & 0 & 1 & 0\\\\ \\sinh \\alpha & 0 & 0 &\\cosh \\alpha \\end {pmatrix}. \\end {equation}"
],
"latex_norm": [
"$ \\Omega $",
"$ O ( 2 d ) $",
"$ ( \\Omega ^ { T } ) ^ { - 1 } = \\Omega $",
"$ R = - 1 \\! \\! 1 + 2 e _ { i } $",
"$ S = - 1 \\! \\! 1 $",
"$ \\Lambda _ { i } $",
"$ B $",
"$ D $",
"$ \\eta $",
"$ S $",
"$ R $",
"$ O ( d - 1 , 1 ) $",
"$ S \\eta S ^ { T } = \\eta $",
"$ R \\eta R ^ { T } = \\eta $",
"$ t $",
"$ x $",
"$ B $",
"\\begin{align*} \\Omega = R ^ { - 1 } ( \\begin{array}{cc} S & 0 \\\\ 0 & R \\end{array} ) R = \\frac { 1 } { 2 } ( \\begin{array}{cc} R + S & R - S \\\\ R - S & R + S \\end{array} ) . \\end{align*}",
"\\begin{align*} S = 1 \\! \\! 1 , \\qquad R = ( \\begin{array}{cc} \\operatorname { c o s } \\theta & \\operatorname { s i n } \\theta \\\\ - \\operatorname { s i n } \\theta & \\operatorname { c o s } \\theta \\end{array} ) , \\end{align*}",
"\\begin{align*} S ( \\Omega ) = ( \\begin{array}{cccc} \\operatorname { c o s } \\frac { \\theta } { 2 } & 0 & 0 & - \\operatorname { s i n } \\frac { \\theta } { 2 } \\\\ 0 & \\operatorname { c o s } \\frac { \\theta } { 2 } & \\operatorname { s i n } \\frac { \\theta } { 2 } & 0 \\\\ 0 & - \\operatorname { s i n } \\frac { \\theta } { 2 } & \\operatorname { c o s } \\frac { \\theta } { 2 } & 0 \\\\ \\operatorname { s i n } \\frac { \\theta } { 2 } & 0 & 0 & \\operatorname { c o s } \\frac { \\theta } { 2 } \\end{array} ) . \\end{align*}",
"\\begin{align*} \\Omega = \\frac { 1 } { 2 } ( \\begin{array}{cc} \\eta ( S + R ) \\eta & \\eta ( R - S ) \\\\ ( R - S ) \\eta & S + R \\end{array} ) , \\quad R = \\frac { 1 } { \\sqrt { 2 } } ( \\begin{array}{cc} - \\eta & 1 \\! \\! 1 \\\\ \\eta & 1 \\! \\! 1 \\end{array} ) , \\end{align*}",
"\\begin{align*} R = S = ( \\begin{array}{cc} \\operatorname { c o s h } \\alpha & \\operatorname { s i n h } \\alpha \\\\ \\operatorname { s i n h } \\alpha & \\operatorname { c o s h } \\alpha \\end{array} ) \\end{align*}",
"\\begin{align*} S ^ { - 1 } ( \\Omega _ { b } ^ { T } ) = ( \\begin{array}{cccc} 1 & 0 & 0 & 0 \\\\ 0 & \\operatorname { c o s h } \\alpha & \\operatorname { s i n h } \\alpha & 0 \\\\ 0 & \\operatorname { s i n h } \\alpha & \\operatorname { c o s h } \\alpha & 0 \\\\ 0 & 0 & 0 & 1 \\end{array} ) . \\end{align*}",
"\\begin{align*} \\widetilde { B } _ { \\mu t } = B _ { \\mu t } \\operatorname { c o s h } \\alpha + B _ { \\mu x } \\operatorname { s i n h } \\alpha , \\quad \\widetilde { B } _ { \\mu x } = B _ { \\mu t } \\operatorname { s i n h } \\alpha + B _ { \\mu x } \\operatorname { c o s h } \\alpha , \\\\ \\widetilde { C } _ { \\mu \\ldots \\nu t } = C _ { \\mu \\ldots \\nu t } \\operatorname { c o s h } \\alpha + C _ { \\mu \\ldots \\nu x } \\operatorname { s i n h } \\alpha , \\quad \\widetilde { C } _ { \\mu \\ldots \\nu x } = C _ { \\mu \\ldots \\nu t } \\operatorname { s i n h } \\alpha + C _ { \\mu \\ldots \\nu x } \\operatorname { c o s h } \\alpha , \\\\ \\widetilde { B } _ { t x } = B _ { t x } , \\quad \\widetilde { C } _ { \\mu \\ldots \\nu t x } = C _ { \\mu \\ldots \\nu t x } , \\quad \\widetilde { B } _ { \\mu \\nu } = B _ { \\mu \\nu } , \\quad \\widetilde { C } _ { \\mu \\ldots \\nu } = C _ { \\mu \\ldots \\nu } . \\end{align*}",
"\\begin{align*} S = ( \\begin{array}{cc} \\operatorname { c o s h } \\alpha & - \\operatorname { s i n h } \\alpha \\\\ - \\operatorname { s i n h } \\alpha & \\operatorname { c o s h } \\alpha \\end{array} ) , \\quad R = ( \\begin{array}{cc} \\operatorname { c o s h } \\alpha & \\operatorname { s i n h } \\alpha \\\\ \\operatorname { s i n h } \\alpha & \\operatorname { c o s h } \\alpha \\end{array} ) . \\end{align*}",
"\\begin{align*} S ^ { - 1 } ( \\Omega _ { s } ^ { T } ) = ( \\begin{array}{cccc} \\operatorname { c o s h } \\alpha & 0 & 0 & \\operatorname { s i n h } \\alpha \\\\ 0 & 1 & 0 & 0 \\\\ 0 & 0 & 1 & 0 \\\\ \\operatorname { s i n h } \\alpha & 0 & 0 & \\operatorname { c o s h } \\alpha \\end{array} ) . \\end{align*}"
],
"latex_expand": [
"$ \\mupOmega $",
"$ \\mitO ( 2 \\mitd ) $",
"$ ( \\mupOmega ^ { \\mitT } ) ^ { - 1 } = \\mupOmega $",
"$ \\mitR = - 1 \\! \\! 1 + 2 \\mite _ { \\miti } $",
"$ \\mitS = - 1 \\! \\! 1 $",
"$ \\mupLambda _ { \\miti } $",
"$ \\mitB $",
"$ \\mitD $",
"$ \\miteta $",
"$ \\mitS $",
"$ \\mitR $",
"$ \\mitO ( \\mitd - 1 , 1 ) $",
"$ \\mitS \\miteta \\mitS ^ { \\mitT } = \\miteta $",
"$ \\mitR \\miteta \\mitR ^ { \\mitT } = \\miteta $",
"$ \\mitt $",
"$ \\mitx $",
"$ \\mitB $",
"\\begin{align*} \\mupOmega = \\mscrR ^ { - 1 } \\left( \\begin{array}{cc} \\mitS & 0 \\\\ 0 & \\mitR \\end{array} \\right) \\mscrR = \\frac { 1 } { 2 } \\left( \\begin{array}{cc} \\mitR + \\mitS & \\mitR - \\mitS \\\\ \\mitR - \\mitS & \\mitR + \\mitS \\end{array} \\right) . \\end{align*}",
"\\begin{align*} \\mitS = 1 \\! \\! 1 , \\qquad \\mitR = \\left( \\begin{array}{cc} \\operatorname { c o s } \\mittheta & \\operatorname { s i n } \\mittheta \\\\ - \\operatorname { s i n } \\mittheta & \\operatorname { c o s } \\mittheta \\end{array} \\right) , \\end{align*}",
"\\begin{align*} \\mitS ( \\mupOmega ) = \\left( \\begin{array}{cccc} \\operatorname { c o s } \\frac { \\mittheta } { 2 } & 0 & 0 & - \\operatorname { s i n } \\frac { \\mittheta } { 2 } \\\\ 0 & \\operatorname { c o s } \\frac { \\mittheta } { 2 } & \\operatorname { s i n } \\frac { \\mittheta } { 2 } & 0 \\\\ 0 & - \\operatorname { s i n } \\frac { \\mittheta } { 2 } & \\operatorname { c o s } \\frac { \\mittheta } { 2 } & 0 \\\\ \\operatorname { s i n } \\frac { \\mittheta } { 2 } & 0 & 0 & \\operatorname { c o s } \\frac { \\mittheta } { 2 } \\end{array} \\right) . \\end{align*}",
"\\begin{align*} \\mupOmega = \\frac { 1 } { 2 } \\left( \\begin{array}{cc} \\miteta ( \\mitS + \\mitR ) \\miteta & \\miteta ( \\mitR - \\mitS ) \\\\ ( \\mitR - \\mitS ) \\miteta & \\mitS + \\mitR \\end{array} \\right) , \\quad \\mscrR = \\frac { 1 } { \\sqrt { 2 } } \\left( \\begin{array}{cc} - \\miteta & 1 \\! \\! 1 \\\\ \\miteta & 1 \\! \\! 1 \\end{array} \\right) , \\end{align*}",
"\\begin{align*} \\mitR = \\mitS = \\left( \\begin{array}{cc} \\operatorname { c o s h } \\mitalpha & \\operatorname { s i n h } \\mitalpha \\\\ \\operatorname { s i n h } \\mitalpha & \\operatorname { c o s h } \\mitalpha \\end{array} \\right) \\end{align*}",
"\\begin{align*} \\mitS ^ { - 1 } ( \\mupOmega _ { \\mitb } ^ { \\mitT } ) = \\left( \\begin{array}{cccc} 1 & 0 & 0 & 0 \\\\ 0 & \\operatorname { c o s h } \\mitalpha & \\operatorname { s i n h } \\mitalpha & 0 \\\\ 0 & \\operatorname { s i n h } \\mitalpha & \\operatorname { c o s h } \\mitalpha & 0 \\\\ 0 & 0 & 0 & 1 \\end{array} \\right) . \\end{align*}",
"\\begin{align*} \\tilde { \\mitB } _ { \\mitmu \\mitt } = \\mitB _ { \\mitmu \\mitt } \\operatorname { c o s h } \\mitalpha + \\mitB _ { \\mitmu \\mitx } \\operatorname { s i n h } \\mitalpha , \\quad \\tilde { \\mitB } _ { \\mitmu \\mitx } = \\mitB _ { \\mitmu \\mitt } \\operatorname { s i n h } \\mitalpha + \\mitB _ { \\mitmu \\mitx } \\operatorname { c o s h } \\mitalpha , \\\\ \\tilde { \\mitC } _ { \\mitmu \\ldots \\mitnu \\mitt } = \\mitC _ { \\mitmu \\ldots \\mitnu \\mitt } \\operatorname { c o s h } \\mitalpha + \\mitC _ { \\mitmu \\ldots \\mitnu \\mitx } \\operatorname { s i n h } \\mitalpha , \\quad \\tilde { \\mitC } _ { \\mitmu \\ldots \\mitnu \\mitx } = \\mitC _ { \\mitmu \\ldots \\mitnu \\mitt } \\operatorname { s i n h } \\mitalpha + \\mitC _ { \\mitmu \\ldots \\mitnu \\mitx } \\operatorname { c o s h } \\mitalpha , \\\\ \\tilde { \\mitB } _ { \\mitt \\mitx } = \\mitB _ { \\mitt \\mitx } , \\quad \\tilde { \\mitC } _ { \\mitmu \\ldots \\mitnu \\mitt \\mitx } = \\mitC _ { \\mitmu \\ldots \\mitnu \\mitt \\mitx } , \\quad \\tilde { \\mitB } _ { \\mitmu \\mitnu } = \\mitB _ { \\mitmu \\mitnu } , \\quad \\tilde { \\mitC } _ { \\mitmu \\ldots \\mitnu } = \\mitC _ { \\mitmu \\ldots \\mitnu } . \\end{align*}",
"\\begin{align*} \\mitS = \\left( \\begin{array}{cc} \\operatorname { c o s h } \\mitalpha & - \\operatorname { s i n h } \\mitalpha \\\\ - \\operatorname { s i n h } \\mitalpha & \\operatorname { c o s h } \\mitalpha \\end{array} \\right) , \\quad \\mitR = \\left( \\begin{array}{cc} \\operatorname { c o s h } \\mitalpha & \\operatorname { s i n h } \\mitalpha \\\\ \\operatorname { s i n h } \\mitalpha & \\operatorname { c o s h } \\mitalpha \\end{array} \\right) . \\end{align*}",
"\\begin{align*} \\mitS ^ { - 1 } ( \\mupOmega _ { \\mits } ^ { \\mitT } ) = \\left( \\begin{array}{cccc} \\operatorname { c o s h } \\mitalpha & 0 & 0 & \\operatorname { s i n h } \\mitalpha \\\\ 0 & 1 & 0 & 0 \\\\ 0 & 0 & 1 & 0 \\\\ \\operatorname { s i n h } \\mitalpha & 0 & 0 & \\operatorname { c o s h } \\mitalpha \\end{array} \\right) . \\end{align*}"
],
"x_min": [
0.1899999976158142,
0.39250001311302185,
0.4796000123023987,
0.3359000086784363,
0.4602999985218048,
0.794700026512146,
0.3587000072002411,
0.7795000076293945,
0.1437000036239624,
0.38359999656677246,
0.44369998574256897,
0.5002999901771545,
0.7713000178337097,
0.10019999742507935,
0.4526999890804291,
0.46650001406669617,
0.6420000195503235,
0.30889999866485596,
0.35109999775886536,
0.31929999589920044,
0.259799987077713,
0.3801000118255615,
0.3393000066280365,
0.14509999752044678,
0.2687999904155731,
0.3393000066280365
],
"y_min": [
0.17139999568462372,
0.1703999936580658,
0.16940000653266907,
0.18850000202655792,
0.18850000202655792,
0.18850000202655792,
0.3725999891757965,
0.3725999891757965,
0.48730000853538513,
0.48339998722076416,
0.48339998722076416,
0.48240000009536743,
0.4814000129699707,
0.49900001287460327,
0.5580999851226807,
0.5605000257492065,
0.6664999723434448,
0.12549999356269836,
0.219200000166893,
0.2856000065803528,
0.4302000105381012,
0.513700008392334,
0.5800999999046326,
0.6913999915122986,
0.7958999872207642,
0.8579000234603882
],
"x_max": [
0.2045000046491623,
0.44429999589920044,
0.5805000066757202,
0.4499000012874603,
0.5286999940872192,
0.8147000074386597,
0.37529999017715454,
0.7968000173568726,
0.15479999780654907,
0.39739999175071716,
0.4596000015735626,
0.5957000255584717,
0.8597999811172485,
0.18930000066757202,
0.4602999985218048,
0.4781999886035919,
0.6585999727249146,
0.6897000074386597,
0.6448000073432922,
0.6827999949455261,
0.7379999756813049,
0.6151000261306763,
0.6620000004768372,
0.8044000267982483,
0.7332000136375427,
0.6620000004768372
],
"y_max": [
0.18170000612735748,
0.1850000023841858,
0.1850000023841858,
0.20069999992847443,
0.1996999979019165,
0.20069999992847443,
0.3828999996185303,
0.3828999996185303,
0.4966000020503998,
0.4936999976634979,
0.4936999976634979,
0.4975000023841858,
0.4964999854564667,
0.5135999917984009,
0.5673999786376953,
0.567300021648407,
0.676800012588501,
0.1615999937057495,
0.2547999918460846,
0.3587999939918518,
0.4683000147342682,
0.5493000149726868,
0.652899980545044,
0.7627000212669373,
0.8345000147819519,
0.9307000041007996
],
"expr_type": [
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"isolated",
"isolated",
"isolated",
"isolated",
"isolated",
"isolated",
"isolated",
"isolated",
"isolated"
]
} |
|
0002133_page08 | {
"latex": [
"$B_{\\mu \\nu }=0$",
"$g_{11}=1$",
"$g_{01}=0$",
"\\begin {gather} {\\tilde g}_{00}={g_{00}\\over 1+(1+g_{00})\\sinh ^2\\alpha },\\\\ {\\tilde g}_{11}={1\\over 1+(1+g_{00})\\sinh ^2\\alpha },\\\\ {\\tilde B}_{01}={(1+g_{00})\\sinh 2\\alpha \\over 2[1+(1+g_{00})\\sinh ^2\\alpha ]}, \\end {gather}",
"\\begin {gather} {\\tilde g}_{\\mu 0}={g_{\\mu 0} \\cosh \\alpha \\over 1+(1+g_{00})\\sinh ^2\\alpha },\\\\ {\\tilde g}_{\\mu 1}={g_{\\mu 1} \\cosh \\alpha \\over 1+(1+g_{00})\\sinh ^2\\alpha },\\\\ {\\tilde B}_{\\mu 0}={-g_{00}g_{\\mu 1}\\sinh \\alpha \\over 1+(1+g_{00})\\sinh ^2\\alpha },\\\\ {\\tilde B}_{\\mu 1}={g_{\\mu 0}\\sinh \\alpha \\over 1+(1+g_{00})\\sinh ^2\\alpha }, \\end {gather}",
"\\begin {gather} {\\tilde g}_{\\mu \\nu }=g_{\\mu \\nu }-{(g_{\\mu 0} g_{\\nu 0}+g_{00}g_{\\mu 1}g_{\\nu 1})\\sinh ^2\\alpha \\over 1+(1+g_{00})\\sinh ^2\\alpha },\\\\ {\\tilde B}_{\\mu \\nu }={(g_{\\mu 0}g_{\\nu 1} -g_{\\mu 1}g_{\\nu 0})\\sinh \\alpha \\,\\cosh \\alpha \\over 1+(1+g_{00})\\sinh ^2\\alpha }, \\end {gather}",
"\\begin {gather} {\\tilde C}=C\\cosh \\alpha -C_{01}\\sinh \\alpha ,\\\\ {\\tilde C}_0=C_0,\\quad {\\tilde C}_1=C_1,\\quad {\\tilde C}_\\mu =C_\\mu \\cosh \\alpha -C_{\\mu 01}\\sinh \\alpha ,\\\\ \\begin {split} {\\tilde C}_{01}=& {C_{01}[1+2(1+g_{00})\\sinh ^2\\alpha ]\\cosh \\alpha \\over 1+(1+g_{00})\\sinh ^2\\alpha }\\\\ &-{C[1+(1+g_{00})(\\sinh ^2\\alpha +\\cosh ^2\\alpha )]\\sinh \\alpha \\over 1+(1+g_{00})\\sinh ^2\\alpha }, \\end {split} \\end {gather}",
"\\begin {gather} {\\tilde C}_{\\mu 0}=C_{\\mu 0}+{g_{00}g_{\\mu 1}\\sinh \\alpha (C \\cosh \\alpha -C_{01}\\sinh \\alpha )\\over 1+(1+g_{00})\\sinh ^2\\alpha },\\\\ {\\tilde C}_{\\mu 1}=C_{\\mu 1}-{C g_{\\mu 0} \\sinh \\alpha \\cosh \\alpha \\over 1+(1+g_{00})\\sinh ^2\\alpha } +{C_{01}g_{\\mu 0}\\sinh ^2\\alpha \\over 1+(1+g_{00})\\sinh ^2\\alpha },\\\\ \\begin {split} {\\tilde C}_{\\mu \\nu }=& C_{\\mu \\nu }\\cosh \\alpha -C_{\\mu \\nu 01}\\sinh \\alpha \\\\ &+{(C_{01}\\sinh \\alpha -C\\cosh \\alpha )(g_{\\mu 0}g_{\\nu 1} -g_{\\mu 1}g_{\\nu 0})\\sinh 2\\alpha \\over 2[1+(1+g_{00})\\sinh ^2\\alpha ]}, \\end {split}\\\\ e^{-2{\\tilde \\phi }}=e^{-2\\phi }[1+(1+g_{00})\\sinh ^2\\alpha ]. \\end {gather}"
],
"latex_norm": [
"$ B _ { \\mu \\nu } = 0 $",
"$ g _ { 1 1 } = 1 $",
"$ g _ { 0 1 } = 0 $",
"\\begin{align*} \\widetilde { g } _ { 0 0 } = \\frac { g _ { 0 0 } } { 1 + ( 1 + g _ { 0 0 } ) { \\operatorname { s i n h } } ^ { 2 } \\alpha } , \\\\ \\widetilde { g } _ { 1 1 } = \\frac { 1 } { 1 + ( 1 + g _ { 0 0 } ) { \\operatorname { s i n h } } ^ { 2 } \\alpha } , \\\\ \\widetilde { B } _ { 0 1 } = \\frac { ( 1 + g _ { 0 0 } ) \\operatorname { s i n h } 2 \\alpha } { 2 [ 1 + ( 1 + g _ { 0 0 } ) { \\operatorname { s i n h } } ^ { 2 } \\alpha ] } , \\end{align*}",
"\\begin{align*} \\widetilde { g } _ { \\mu 0 } = \\frac { g _ { \\mu 0 } \\operatorname { c o s h } \\alpha } { 1 + ( 1 + g _ { 0 0 } ) { \\operatorname { s i n h } } ^ { 2 } \\alpha } , \\\\ \\widetilde { g } _ { \\mu 1 } = \\frac { g _ { \\mu 1 } \\operatorname { c o s h } \\alpha } { 1 + ( 1 + g _ { 0 0 } ) { \\operatorname { s i n h } } ^ { 2 } \\alpha } , \\\\ \\widetilde { B } _ { \\mu 0 } = \\frac { - g _ { 0 0 } g _ { \\mu 1 } \\operatorname { s i n h } \\alpha } { 1 + ( 1 + g _ { 0 0 } ) { \\operatorname { s i n h } } ^ { 2 } \\alpha } , \\\\ \\widetilde { B } _ { \\mu 1 } = \\frac { g _ { \\mu 0 } \\operatorname { s i n h } \\alpha } { 1 + ( 1 + g _ { 0 0 } ) { \\operatorname { s i n h } } ^ { 2 } \\alpha } , \\end{align*}",
"\\begin{align*} \\widetilde { g } _ { \\mu \\nu } = g _ { \\mu \\nu } - \\frac { ( g _ { \\mu 0 } g _ { \\nu 0 } + g _ { 0 0 } g _ { \\mu 1 } g _ { \\nu 1 } ) { \\operatorname { s i n h } } ^ { 2 } \\alpha } { 1 + ( 1 + g _ { 0 0 } ) { \\operatorname { s i n h } } ^ { 2 } \\alpha } , \\\\ \\widetilde { B } _ { \\mu \\nu } = \\frac { ( g _ { \\mu 0 } g _ { \\nu 1 } - g _ { \\mu 1 } g _ { \\nu 0 } ) \\operatorname { s i n h } \\alpha \\, \\operatorname { c o s h } \\alpha } { 1 + ( 1 + g _ { 0 0 } ) { \\operatorname { s i n h } } ^ { 2 } \\alpha } , \\end{align*}",
"\\begin{align*} \\widetilde { C } = C \\operatorname { c o s h } \\alpha - C _ { 0 1 } \\operatorname { s i n h } \\alpha , \\\\ \\widetilde { C } _ { 0 } = C _ { 0 } , \\quad \\widetilde { C } _ { 1 } = C _ { 1 } , \\quad \\widetilde { C } _ { \\mu } = C _ { \\mu } \\operatorname { c o s h } \\alpha - C _ { \\mu 0 1 } \\operatorname { s i n h } \\alpha , \\\\ & \\\\ & \\end{align*}",
"\\begin{align*} \\widetilde { C } _ { \\mu 0 } = C _ { \\mu 0 } + \\frac { g _ { 0 0 } g _ { \\mu 1 } \\operatorname { s i n h } \\alpha ( C \\operatorname { c o s h } \\alpha - C _ { 0 1 } \\operatorname { s i n h } \\alpha ) } { 1 + ( 1 + g _ { 0 0 } ) { \\operatorname { s i n h } } ^ { 2 } \\alpha } , \\\\ \\widetilde { C } _ { \\mu 1 } = C _ { \\mu 1 } - \\frac { C g _ { \\mu 0 } \\operatorname { s i n h } \\alpha \\operatorname { c o s h } \\alpha } { 1 + ( 1 + g _ { 0 0 } ) { \\operatorname { s i n h } } ^ { 2 } \\alpha } + \\frac { C _ { 0 1 } g _ { \\mu 0 } { \\operatorname { s i n h } } ^ { 2 } \\alpha } { 1 + ( 1 + g _ { 0 0 } ) { \\operatorname { s i n h } } ^ { 2 } \\alpha } , \\\\ & \\\\ & \\\\ e ^ { - 2 \\widetilde { \\phi } } = e ^ { - 2 \\phi } [ 1 + ( 1 + g _ { 0 0 } ) { \\operatorname { s i n h } } ^ { 2 } \\alpha ] . \\end{align*}"
],
"latex_expand": [
"$ \\mitB _ { \\mitmu \\mitnu } = 0 $",
"$ \\mitg _ { 1 1 } = 1 $",
"$ \\mitg _ { 0 1 } = 0 $",
"\\begin{align*} \\tilde { \\mitg } _ { 0 0 } = \\frac { \\mitg _ { 0 0 } } { 1 + ( 1 + \\mitg _ { 0 0 } ) { \\operatorname { s i n h } } ^ { 2 } \\mitalpha } , \\\\ \\tilde { \\mitg } _ { 1 1 } = \\frac { 1 } { 1 + ( 1 + \\mitg _ { 0 0 } ) { \\operatorname { s i n h } } ^ { 2 } \\mitalpha } , \\\\ \\tilde { \\mitB } _ { 0 1 } = \\frac { ( 1 + \\mitg _ { 0 0 } ) \\operatorname { s i n h } 2 \\mitalpha } { 2 [ 1 + ( 1 + \\mitg _ { 0 0 } ) { \\operatorname { s i n h } } ^ { 2 } \\mitalpha ] } , \\end{align*}",
"\\begin{align*} \\tilde { \\mitg } _ { \\mitmu 0 } = \\frac { \\mitg _ { \\mitmu 0 } \\operatorname { c o s h } \\mitalpha } { 1 + ( 1 + \\mitg _ { 0 0 } ) { \\operatorname { s i n h } } ^ { 2 } \\mitalpha } , \\\\ \\tilde { \\mitg } _ { \\mitmu 1 } = \\frac { \\mitg _ { \\mitmu 1 } \\operatorname { c o s h } \\mitalpha } { 1 + ( 1 + \\mitg _ { 0 0 } ) { \\operatorname { s i n h } } ^ { 2 } \\mitalpha } , \\\\ \\tilde { \\mitB } _ { \\mitmu 0 } = \\frac { - \\mitg _ { 0 0 } \\mitg _ { \\mitmu 1 } \\operatorname { s i n h } \\mitalpha } { 1 + ( 1 + \\mitg _ { 0 0 } ) { \\operatorname { s i n h } } ^ { 2 } \\mitalpha } , \\\\ \\tilde { \\mitB } _ { \\mitmu 1 } = \\frac { \\mitg _ { \\mitmu 0 } \\operatorname { s i n h } \\mitalpha } { 1 + ( 1 + \\mitg _ { 0 0 } ) { \\operatorname { s i n h } } ^ { 2 } \\mitalpha } , \\end{align*}",
"\\begin{align*} \\tilde { \\mitg } _ { \\mitmu \\mitnu } = \\mitg _ { \\mitmu \\mitnu } - \\frac { ( \\mitg _ { \\mitmu 0 } \\mitg _ { \\mitnu 0 } + \\mitg _ { 0 0 } \\mitg _ { \\mitmu 1 } \\mitg _ { \\mitnu 1 } ) { \\operatorname { s i n h } } ^ { 2 } \\mitalpha } { 1 + ( 1 + \\mitg _ { 0 0 } ) { \\operatorname { s i n h } } ^ { 2 } \\mitalpha } , \\\\ \\tilde { \\mitB } _ { \\mitmu \\mitnu } = \\frac { ( \\mitg _ { \\mitmu 0 } \\mitg _ { \\mitnu 1 } - \\mitg _ { \\mitmu 1 } \\mitg _ { \\mitnu 0 } ) \\operatorname { s i n h } \\mitalpha \\, \\operatorname { c o s h } \\mitalpha } { 1 + ( 1 + \\mitg _ { 0 0 } ) { \\operatorname { s i n h } } ^ { 2 } \\mitalpha } , \\end{align*}",
"\\begin{align*} \\tilde { \\mitC } = \\mitC \\operatorname { c o s h } \\mitalpha - \\mitC _ { 0 1 } \\operatorname { s i n h } \\mitalpha , \\\\ \\tilde { \\mitC } _ { 0 } = \\mitC _ { 0 } , \\quad \\tilde { \\mitC } _ { 1 } = \\mitC _ { 1 } , \\quad \\tilde { \\mitC } _ { \\mitmu } = \\mitC _ { \\mitmu } \\operatorname { c o s h } \\mitalpha - \\mitC _ { \\mitmu 0 1 } \\operatorname { s i n h } \\mitalpha , \\\\ & \\\\ & \\end{align*}",
"\\begin{align*} \\tilde { \\mitC } _ { \\mitmu 0 } = \\mitC _ { \\mitmu 0 } + \\frac { \\mitg _ { 0 0 } \\mitg _ { \\mitmu 1 } \\operatorname { s i n h } \\mitalpha ( \\mitC \\operatorname { c o s h } \\mitalpha - \\mitC _ { 0 1 } \\operatorname { s i n h } \\mitalpha ) } { 1 + ( 1 + \\mitg _ { 0 0 } ) { \\operatorname { s i n h } } ^ { 2 } \\mitalpha } , \\\\ \\tilde { \\mitC } _ { \\mitmu 1 } = \\mitC _ { \\mitmu 1 } - \\frac { \\mitC \\mitg _ { \\mitmu 0 } \\operatorname { s i n h } \\mitalpha \\operatorname { c o s h } \\mitalpha } { 1 + ( 1 + \\mitg _ { 0 0 } ) { \\operatorname { s i n h } } ^ { 2 } \\mitalpha } + \\frac { \\mitC _ { 0 1 } \\mitg _ { \\mitmu 0 } { \\operatorname { s i n h } } ^ { 2 } \\mitalpha } { 1 + ( 1 + \\mitg _ { 0 0 } ) { \\operatorname { s i n h } } ^ { 2 } \\mitalpha } , \\\\ & \\\\ & \\\\ \\mite ^ { - 2 \\tilde { \\mitphi } } = \\mite ^ { - 2 \\mitphi } [ 1 + ( 1 + \\mitg _ { 0 0 } ) { \\operatorname { s i n h } } ^ { 2 } \\mitalpha ] . \\end{align*}"
],
"x_min": [
0.30959999561309814,
0.390500009059906,
0.49619999527931213,
0.3682999908924103,
0.3779999911785126,
0.326200008392334,
0.27090001106262207,
0.2515999972820282
],
"y_min": [
0.11569999903440475,
0.11620000004768372,
0.11620000004768372,
0.155799999833107,
0.2939000129699707,
0.47269999980926514,
0.5776000022888184,
0.7279999852180481
],
"x_max": [
0.37869998812675476,
0.4512999951839447,
0.5569999814033508,
0.626800000667572,
0.6177999973297119,
0.669700026512146,
0.7243000268936157,
0.746399998664856
],
"y_max": [
0.13030000030994415,
0.12890000641345978,
0.12890000641345978,
0.2700999975204468,
0.45010000467300415,
0.5551999807357788,
0.7074999809265137,
0.8968999981880188
],
"expr_type": [
"embedded",
"embedded",
"embedded",
"isolated",
"isolated",
"isolated",
"isolated",
"isolated"
]
} |
|
0002133_page09 | {
"latex": [
"$D$",
"$\\Omega \\in O(d,d)$",
"$S(\\Omega )$",
"$D$",
"$D$",
"$Sl(2,Z)$",
"$O(d)\\otimes O(d)$",
"$O(d,d)$"
],
"latex_norm": [
"$ D $",
"$ \\Omega \\in O ( d , d ) $",
"$ S ( \\Omega ) $",
"$ D $",
"$ D $",
"$ S l ( 2 , Z ) $",
"$ O ( d ) \\otimes O ( d ) $",
"$ O ( d , d ) $"
],
"latex_expand": [
"$ \\mitD $",
"$ \\mupOmega \\in \\mitO ( \\mitd , \\mitd ) $",
"$ \\mitS ( \\mupOmega ) $",
"$ \\mitD $",
"$ \\mitD $",
"$ \\mitS \\mitl ( 2 , \\mitZ ) $",
"$ \\mitO ( \\mitd ) \\otimes \\mitO ( \\mitd ) $",
"$ \\mitO ( \\mitd , \\mitd ) $"
],
"x_min": [
0.7871000170707703,
0.1720999926328659,
0.597100019454956,
0.48579999804496765,
0.8817999958992004,
0.8299999833106995,
0.506600022315979,
0.7732999920845032
],
"y_min": [
0.1469999998807907,
0.18019999563694,
0.18070000410079956,
0.2328999936580658,
0.29739999771118164,
0.4609000086784363,
0.6948000192642212,
0.7807999849319458
],
"x_max": [
0.8051000237464905,
0.27160000801086426,
0.6399000287055969,
0.5030999779701233,
0.8991000056266785,
0.8991000056266785,
0.6165000200271606,
0.8334000110626221
],
"y_max": [
0.15729999542236328,
0.19529999792575836,
0.19529999792575836,
0.24320000410079956,
0.30809998512268066,
0.4754999876022339,
0.7099000215530396,
0.7958999872207642
],
"expr_type": [
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded"
]
} |
|
0002142_page01 | {
"latex": [
"$^1$",
"$^{1,2}$",
"$^1$",
"$^2$",
"$d$",
"$d-1$",
"$d$"
],
"latex_norm": [
"$ { } ^ { 1 } $",
"$ { } ^ { 1 , 2 } $",
"$ { } ^ { 1 } $",
"$ { } ^ { 2 } $",
"$ d $",
"$ d - 1 $",
"$ d $"
],
"latex_expand": [
"$ { } ^ { 1 } $",
"$ { } ^ { 1 , 2 } $",
"$ { } ^ { 1 } $",
"$ { } ^ { 2 } $",
"$ \\mitd $",
"$ \\mitd - 1 $",
"$ \\mitd $"
],
"x_min": [
0.5009999871253967,
0.6295999884605408,
0.2502000033855438,
0.22599999606609344,
0.34549999237060547,
0.6406000256538391,
0.15690000355243683
],
"y_min": [
0.19429999589920044,
0.19429999589920044,
0.22750000655651093,
0.260699987411499,
0.7451000213623047,
0.7451000213623047,
0.7773000001907349
],
"x_max": [
0.5092999935150146,
0.6489999890327454,
0.25920000672340393,
0.23499999940395355,
0.35519999265670776,
0.6793000102043152,
0.1673000007867813
],
"y_max": [
0.20649999380111694,
0.20649999380111694,
0.23919999599456787,
0.27239999175071716,
0.7548999786376953,
0.7558000087738037,
0.7865999937057495
],
"expr_type": [
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded"
]
} |
|
0002142_page02 | {
"latex": [
"${\\bf r}\\rightarrow {\\bf r}^{\\prime }=f({\\bf {r}})$",
"$d$",
"$\\Delta _{\\phi }$",
"$\\phi _{i}$",
"$\\Phi =\\phi _{1}$",
"$\\Psi =\\phi _{2}$",
"$d$",
"\\begin {equation} \\Phi ^{\\prime }({\\bf r}^{\\prime }) =\\left |\\frac {\\partial {{\\bf r}^{\\prime }}} {\\partial {\\bf r}}\\right |^{T}\\Phi ({\\bf r}) \\end {equation}",
"\\begin {equation} \\Phi =\\def \\temp {\\multicolumn {1}{c|}{1}} \\begin{pmatrix} \\phi _{1}\\\\ \\phi _{2} \\\\ \\vdots \\\\ \\phi _{n}\\\\ \\end{pmatrix} \\end {equation}",
"\\begin {equation} T = \\begin{pmatrix} -\\frac {\\Delta _{\\phi }}{d}&0&\\ldots &0\\\\ 1&-\\frac {\\Delta _{\\phi }}{d}&\\ldots &\\vdots \\\\ 0&1& \\ldots &0 \\\\ \\vdots &\\ldots &\\ddots &0 \\\\ 0&\\ldots &1&-\\frac {\\Delta _{\\phi }}{d}\\\\ \\end{pmatrix}~. \\end {equation}",
"\\begin {eqnarray} \\Phi ^{\\prime }({\\bf {r^{\\prime }}})&=& \\left |\\frac {\\partial {{\\bf {r^{\\prime }}}}} {\\partial {\\bf {r}}}\\right |^{-\\frac {\\Delta _{\\phi }}{d}}\\Phi ({\\bf {r}})\\\\ \\Psi ^{\\prime }({\\bf {r^{\\prime }}})&=& \\left |\\frac {\\partial {{\\bf {r^{\\prime }}}}}{\\partial {\\bf {r}}} \\right |^{-\\frac {\\Delta _{\\phi }}{d}}\\left (\\Psi ({\\bf {r}}) +\\log |\\frac {\\partial {\\bf {r^{\\prime }}}}{\\partial {\\bf {r}}} |\\Phi (\\bf {r})\\right ). \\end {eqnarray}"
],
"latex_norm": [
"$ r \\rightarrow r ^ { \\prime } = f ( r ) $",
"$ d $",
"$ \\Delta _ { \\phi } $",
"$ \\phi _ { i } $",
"$ \\Phi = \\phi _ { 1 } $",
"$ \\Psi = \\phi _ { 2 } $",
"$ d $",
"\\begin{equation*} \\Phi ^ { \\prime } ( r ^ { \\prime } ) = { \\vert \\frac { \\partial r ^ { \\prime } } { \\partial r } \\vert } ^ { T } \\Phi ( r ) \\end{equation*}",
"\\begin{align*} \\Phi = ( \\begin{array}{c} \\phi _ { 1 } \\\\ \\phi _ { 2 } \\\\ \\vdots \\\\ \\phi _ { n } \\end{array} ) \\end{align*}",
"\\begin{align*} T = ( \\begin{array}{cccc} - \\frac { \\Delta _ { \\phi } } { d } & 0 & \\ldots & 0 \\\\ 1 & - \\frac { \\Delta _ { \\phi } } { d } & \\ldots & \\vdots \\\\ 0 & 1 & \\ldots & 0 \\\\ \\vdots & \\ldots & \\ddots & 0 \\\\ 0 & \\ldots & 1 & - \\frac { \\Delta _ { \\phi } } { d } \\end{array} ) ~ . \\end{align*}",
"\\begin{align*} \\Phi ^ { \\prime } ( r ^ { \\prime } ) & = & { \\vert \\frac { \\partial r ^ { \\prime } } { \\partial r } \\vert } ^ { - \\frac { \\Delta _ { \\phi } } { d } } \\Phi ( r ) \\\\ \\Psi ^ { \\prime } ( r ^ { \\prime } ) & = & { \\vert \\frac { \\partial r ^ { \\prime } } { \\partial r } \\vert } ^ { - \\frac { \\Delta _ { \\phi } } { d } } ( \\Psi ( r ) + \\operatorname { l o g } \\vert \\frac { \\partial r ^ { \\prime } } { \\partial r } \\vert \\Phi ( r ) ) . \\end{align*}"
],
"latex_expand": [
"$ \\mitr \\rightarrow \\mitr ^ { \\prime } = \\mitf ( \\mitr ) $",
"$ \\mitd $",
"$ \\mupDelta _ { \\mitphi } $",
"$ \\mitphi _ { \\miti } $",
"$ \\mupPhi = \\mitphi _ { 1 } $",
"$ \\mupPsi = \\mitphi _ { 2 } $",
"$ \\mitd $",
"\\begin{equation*} \\mupPhi ^ { \\prime } ( \\mitr ^ { \\prime } ) = { \\left\\vert \\frac { \\mitpartial \\mitr ^ { \\prime } } { \\mitpartial \\mitr } \\right\\vert } ^ { \\mitT } \\mupPhi ( \\mitr ) \\end{equation*}",
"\\begin{align*} \\displaystyle \\mupPhi = \\left( \\begin{array}{c} \\mitphi _ { 1 } \\\\ \\mitphi _ { 2 } \\\\ \\vdots \\\\ \\mitphi _ { \\mitn } \\end{array} \\right) \\end{align*}",
"\\begin{align*} \\displaystyle \\mitT = \\left( \\begin{array}{cccc} - \\frac { \\mupDelta _ { \\mitphi } } { \\mitd } & 0 & \\ldots & 0 \\\\ 1 & - \\frac { \\mupDelta _ { \\mitphi } } { \\mitd } & \\ldots & \\vdots \\\\ 0 & 1 & \\ldots & 0 \\\\ \\vdots & \\ldots & \\ddots & 0 \\\\ 0 & \\ldots & 1 & - \\frac { \\mupDelta _ { \\mitphi } } { \\mitd } \\end{array} \\right) ~ . \\end{align*}",
"\\begin{align*} \\mupPhi ^ { \\prime } ( \\mitr ^ { \\prime } ) & = & { \\left\\vert \\frac { \\mitpartial \\mitr ^ { \\prime } } { \\mitpartial \\mitr } \\right\\vert } ^ { - \\frac { \\mupDelta _ { \\mitphi } } { \\mitd } } \\mupPhi ( \\mitr ) \\\\ \\mupPsi ^ { \\prime } ( \\mitr ^ { \\prime } ) & = & { \\left\\vert \\frac { \\mitpartial \\mitr ^ { \\prime } } { \\mitpartial \\mitr } \\right\\vert } ^ { - \\frac { \\mupDelta _ { \\mitphi } } { \\mitd } } \\left( \\mupPsi ( \\mitr ) + \\operatorname { l o g } \\vert \\frac { \\mitpartial \\mitr ^ { \\prime } } { \\mitpartial \\mitr } \\vert \\mupPhi ( \\mitr ) \\right) . \\end{align*}"
],
"x_min": [
0.24120000004768372,
0.2281000018119812,
0.49900001287460327,
0.7436000108718872,
0.5052000284194946,
0.6032999753952026,
0.20589999854564667,
0.41600000858306885,
0.44780001044273376,
0.35659998655319214,
0.3116999864578247
],
"y_min": [
0.28999999165534973,
0.5692999958992004,
0.5692999958992004,
0.5692999958992004,
0.5853999853134155,
0.5853999853134155,
0.7178000211715698,
0.3140000104904175,
0.365200012922287,
0.4629000127315521,
0.6195999979972839
],
"x_max": [
0.35040000081062317,
0.2378000020980835,
0.5238999724388123,
0.7609000205993652,
0.5626000165939331,
0.6614000201225281,
0.21559999883174896,
0.5784000158309937,
0.5446000099182129,
0.6385999917984009,
0.6800000071525574
],
"y_max": [
0.3037000000476837,
0.5785999894142151,
0.5824999809265137,
0.5814999938011169,
0.597100019454956,
0.597100019454956,
0.7271000146865845,
0.35010001063346863,
0.43549999594688416,
0.5562000274658203,
0.7085000276565552
],
"expr_type": [
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"isolated",
"isolated",
"isolated",
"isolated"
]
} |
|
0002142_page03 | {
"latex": [
"$(d-1)$",
"$y=0$",
"$\\left <\\Phi ({\\bf {r}})\\right >=f_{1}(\\bf {r})$",
"$\\left <\\Psi (\\bf {r})\\right >=f_{2}(\\bf {r})$",
"$f_{1}$",
"$f_{2}$",
"$\\epsilon $",
"$f_{1}$",
"$f_{2}$",
"$G_{1}({\\bf {r}}_{1},{\\bf r}_{2}) =\\left <\\Phi ({\\bf r}_{1})\\Phi ({\\bf r}_{2})\\right >$",
"${\\bf r}_{1}$",
"${\\bf r}_{2}$",
"$(x_{1},y_{1})$",
"$(x_{2},y_{2})$",
"$G_{1}$",
"$x_{1}-x_{2}$",
"$y_{1}$",
"$y_{2}$",
"\\begin {equation} \\bf {r^{\\prime }}=\\bf {r}+\\epsilon \\bf {r} \\end {equation}",
"\\begin {eqnarray} f_{1}(y)&=&(1+\\epsilon )^{\\Delta _{\\phi }}f_{1}(y^{\\prime })~,\\\\ f_{2}(y)&=&(1+\\epsilon )^{\\Delta _{\\phi }}\\left (f_{2}(y^{\\prime }) +\\log (1+\\epsilon )^{d}f(y^{\\prime })\\right )~. \\end {eqnarray}",
"\\begin {eqnarray} y\\frac {\\partial {f_{1}}}{\\partial {y}}+\\Delta _{\\phi }f_{1}&=&0\\\\ y\\frac {\\partial {f_{2}}}{\\partial {y}}+\\Delta _{\\phi }f_{2}+d\\:f&=&0 \\end {eqnarray}",
"\\begin {eqnarray} \\left <\\Phi (\\bf {r})\\right >&=&\\frac {C_{1}}{y^{\\Delta _\\phi }} \\\\ \\left <\\Psi (\\bf {r})\\right >&=&\\frac {1}{y^{\\Delta _\\phi }}(C_{2}-d\\:C_{1}\\log {y}) \\end {eqnarray}",
"\\begin {equation} G_{1}(x_{1}-x_{2},y_{1},y_{2})=(1+\\epsilon )^{\\Delta _{\\phi }} (1+\\epsilon )^{\\Delta _{\\phi }}G(x_{1}^{\\prime }-x_{2}^{\\prime } ,y_{1}^{\\prime },y_{2}^{\\prime })~. \\end {equation}",
"\\begin {eqnarray} x^{\\prime }&=&x+\\epsilon (x^{2}-y^{2})\\\\ y^{\\prime }&=&y+2\\epsilon xy, \\end {eqnarray}",
"\\begin {equation} G_{1}(x_{1}-x_{2},y_{1},y_{2})= (1+2\\epsilon x_{1})^{\\Delta _{\\phi }}(1+2\\epsilon x_{2})^{\\Delta _{\\phi }}G(x_{1}^{\\prime }-x_{2}^{\\prime },y_{1}^{\\prime },y_{2}^{\\prime })~. \\end {equation}"
],
"latex_norm": [
"$ ( d - 1 ) $",
"$ y = 0 $",
"$ \\langle \\Phi ( r ) \\rangle = f _ { 1 } ( r ) $",
"$ \\langle \\Psi ( r ) \\rangle = f _ { 2 } ( r ) $",
"$ f _ { 1 } $",
"$ f _ { 2 } $",
"$ \\epsilon $",
"$ f _ { 1 } $",
"$ f _ { 2 } $",
"$ G _ { 1 } ( r _ { 1 } , r _ { 2 } ) = \\langle \\Phi ( r _ { 1 } ) \\Phi ( r _ { 2 } ) \\rangle $",
"$ r _ { 1 } $",
"$ r _ { 2 } $",
"$ ( x _ { 1 } , y _ { 1 } ) $",
"$ ( x _ { 2 } , y _ { 2 } ) $",
"$ G _ { 1 } $",
"$ x _ { 1 } - x _ { 2 } $",
"$ y _ { 1 } $",
"$ y _ { 2 } $",
"\\begin{equation*} r ^ { \\prime } = r + \\epsilon r \\end{equation*}",
"\\begin{align*} f _ { 1 } ( y ) & = & ( 1 + \\epsilon ) ^ { \\Delta _ { \\phi } } f _ { 1 } ( y ^ { \\prime } ) ~ , \\\\ f _ { 2 } ( y ) & = & ( 1 + \\epsilon ) ^ { \\Delta _ { \\phi } } ( f _ { 2 } ( y ^ { \\prime } ) + \\operatorname { l o g } ( 1 + \\epsilon ) ^ { d } f ( y ^ { \\prime } ) ) ~ . \\end{align*}",
"\\begin{align*} y \\frac { \\partial f _ { 1 } } { \\partial y } + \\Delta _ { \\phi } f _ { 1 } & = & 0 \\\\ y \\frac { \\partial f _ { 2 } } { \\partial y } + \\Delta _ { \\phi } f _ { 2 } + d \\> f & = & 0 \\end{align*}",
"\\begin{align*} \\langle \\Phi ( r ) \\rangle & = & \\frac { C _ { 1 } } { y ^ { \\Delta _ { \\phi } } } \\\\ \\langle \\Psi ( r ) \\rangle & = & \\frac { 1 } { y ^ { \\Delta _ { \\phi } } } ( C _ { 2 } - d \\> C _ { 1 } \\operatorname { l o g } y ) \\end{align*}",
"\\begin{equation*} G _ { 1 } ( x _ { 1 } - x _ { 2 } , y _ { 1 } , y _ { 2 } ) = ( 1 + \\epsilon ) ^ { \\Delta _ { \\phi } } ( 1 + \\epsilon ) ^ { \\Delta _ { \\phi } } G ( x _ { 1 } ^ { \\prime } - x _ { 2 } ^ { \\prime } , y _ { 1 } ^ { \\prime } , y _ { 2 } ^ { \\prime } ) ~ . \\end{equation*}",
"\\begin{align*} x ^ { \\prime } & = & x + \\epsilon ( x ^ { 2 } - y ^ { 2 } ) \\\\ y ^ { \\prime } & = & y + 2 \\epsilon x y , \\end{align*}",
"\\begin{equation*} G _ { 1 } ( x _ { 1 } - x _ { 2 } , y _ { 1 } , y _ { 2 } ) = ( 1 + 2 \\epsilon x _ { 1 } ) ^ { \\Delta _ { \\phi } } ( 1 + 2 \\epsilon x _ { 2 } ) ^ { \\Delta _ { \\phi } } G ( x _ { 1 } ^ { \\prime } - x _ { 2 } ^ { \\prime } , y _ { 1 } ^ { \\prime } , y _ { 2 } ^ { \\prime } ) ~ . \\end{equation*}"
],
"latex_expand": [
"$ ( \\mitd - 1 ) $",
"$ \\mity = 0 $",
"$ \\langle \\mupPhi ( \\mbfr ) \\rangle = \\mitf _ { 1 } ( \\mbfr ) $",
"$ \\langle \\mupPsi ( \\mitr ) \\rangle = \\mitf _ { 2 } ( \\mitr ) $",
"$ \\mitf _ { 1 } $",
"$ \\mitf _ { 2 } $",
"$ \\mitepsilon $",
"$ \\mitf _ { 1 } $",
"$ \\mitf _ { 2 } $",
"$ \\mitG _ { 1 } ( \\mitr _ { 1 } , \\mitr _ { 2 } ) = \\left\\langle \\mupPhi ( \\mitr _ { 1 } ) \\mupPhi ( \\mitr _ { 2 } ) \\right\\rangle $",
"$ \\mitr _ { 1 } $",
"$ \\mitr _ { 2 } $",
"$ ( \\mitx _ { 1 } , \\mity _ { 1 } ) $",
"$ ( \\mitx _ { 2 } , \\mity _ { 2 } ) $",
"$ \\mitG _ { 1 } $",
"$ \\mitx _ { 1 } - \\mitx _ { 2 } $",
"$ \\mity _ { 1 } $",
"$ \\mity _ { 2 } $",
"\\begin{equation*} \\mitr ^ { \\prime } = \\mitr + \\mitepsilon \\mitr \\end{equation*}",
"\\begin{align*} \\mitf _ { 1 } ( \\mity ) & = & ( 1 + \\mitepsilon ) ^ { \\mupDelta _ { \\mitphi } } \\mitf _ { 1 } ( \\mity ^ { \\prime } ) ~ , \\\\ \\mitf _ { 2 } ( \\mity ) & = & ( 1 + \\mitepsilon ) ^ { \\mupDelta _ { \\mitphi } } \\left( \\mitf _ { 2 } ( \\mity ^ { \\prime } ) + \\operatorname { l o g } ( 1 + \\mitepsilon ) ^ { \\mitd } \\mitf ( \\mity ^ { \\prime } ) \\right) ~ . \\end{align*}",
"\\begin{align*} \\mity \\frac { \\mitpartial \\mitf _ { 1 } } { \\mitpartial \\mity } + \\mupDelta _ { \\mitphi } \\mitf _ { 1 } & = & 0 \\\\ \\mity \\frac { \\mitpartial \\mitf _ { 2 } } { \\mitpartial \\mity } + \\mupDelta _ { \\mitphi } \\mitf _ { 2 } + \\mitd \\> \\mitf & = & 0 \\end{align*}",
"\\begin{align*} \\left\\langle \\mupPhi ( \\mitr ) \\right\\rangle & = & \\frac { \\mitC _ { 1 } } { \\mity ^ { \\mupDelta _ { \\mitphi } } } \\\\ \\left\\langle \\mupPsi ( \\mitr ) \\right\\rangle & = & \\frac { 1 } { \\mity ^ { \\mupDelta _ { \\mitphi } } } ( \\mitC _ { 2 } - \\mitd \\> \\mitC _ { 1 } \\operatorname { l o g } \\mity ) \\end{align*}",
"\\begin{equation*} \\mitG _ { 1 } ( \\mitx _ { 1 } - \\mitx _ { 2 } , \\mity _ { 1 } , \\mity _ { 2 } ) = ( 1 + \\mitepsilon ) ^ { \\mupDelta _ { \\mitphi } } ( 1 + \\mitepsilon ) ^ { \\mupDelta _ { \\mitphi } } \\mitG ( \\mitx _ { 1 } ^ { \\prime } - \\mitx _ { 2 } ^ { \\prime } , \\mity _ { 1 } ^ { \\prime } , \\mity _ { 2 } ^ { \\prime } ) ~ . \\end{equation*}",
"\\begin{align*} \\mitx ^ { \\prime } & = & \\mitx + \\mitepsilon ( \\mitx ^ { 2 } - \\mity ^ { 2 } ) \\\\ \\mity ^ { \\prime } & = & \\mity + 2 \\mitepsilon \\mitx \\mity , \\end{align*}",
"\\begin{equation*} \\mitG _ { 1 } ( \\mitx _ { 1 } - \\mitx _ { 2 } , \\mity _ { 1 } , \\mity _ { 2 } ) = ( 1 + 2 \\mitepsilon \\mitx _ { 1 } ) ^ { \\mupDelta _ { \\mitphi } } ( 1 + 2 \\mitepsilon \\mitx _ { 2 } ) ^ { \\mupDelta _ { \\mitphi } } \\mitG ( \\mitx _ { 1 } ^ { \\prime } - \\mitx _ { 2 } ^ { \\prime } , \\mity _ { 1 } ^ { \\prime } , \\mity _ { 2 } ^ { \\prime } ) ~ . \\end{equation*}"
],
"x_min": [
0.6779999732971191,
0.7864999771118164,
0.4519999921321869,
0.5839999914169312,
0.6917999982833862,
0.7533000111579895,
0.5625,
0.5805000066757202,
0.6385999917984009,
0.489300012588501,
0.8181999921798706,
0.19349999725818634,
0.4194999933242798,
0.487199991941452,
0.27570000290870667,
0.39809998869895935,
0.4650999903678894,
0.5224999785423279,
0.45339998602867126,
0.29919999837875366,
0.3912000060081482,
0.3614000082015991,
0.26190000772476196,
0.4077000021934509,
0.23430000245571136
],
"y_min": [
0.10790000110864639,
0.15770000219345093,
0.17239999771118164,
0.17239999771118164,
0.1889999955892563,
0.1889999955892563,
0.34860000014305115,
0.3452000021934509,
0.3452000021934509,
0.5985999703407288,
0.6025000214576721,
0.6187000274658203,
0.6309000253677368,
0.6309000253677368,
0.6478999853134155,
0.6488999724388123,
0.6509000062942505,
0.6509000062942505,
0.22949999570846558,
0.2816999852657318,
0.3837999999523163,
0.4867999851703644,
0.6708999872207642,
0.7275000214576721,
0.8065999746322632
],
"x_max": [
0.7347000241279602,
0.8299999833106995,
0.5673999786376953,
0.7001000046730042,
0.7091000080108643,
0.7706000208854675,
0.5708000063896179,
0.5985000133514404,
0.6559000015258789,
0.6987000107765198,
0.8355000019073486,
0.210099995136261,
0.47760000824928284,
0.5453000068664551,
0.2985000014305115,
0.454800009727478,
0.48240000009536743,
0.5397999882698059,
0.5411999821662903,
0.6923999786376953,
0.6013000011444092,
0.6309000253677368,
0.7332000136375427,
0.5845999717712402,
0.7609000205993652
],
"y_max": [
0.12160000205039978,
0.1688999980688095,
0.18610000610351562,
0.18610000610351562,
0.2011999934911728,
0.2011999934911728,
0.3549000024795532,
0.35740000009536743,
0.35740000009536743,
0.6122999787330627,
0.61080002784729,
0.6269999742507935,
0.644599974155426,
0.644599974155426,
0.6590999960899353,
0.6592000126838684,
0.6596999764442444,
0.6596999764442444,
0.2451000064611435,
0.33489999175071716,
0.45559999346733093,
0.5586000084877014,
0.6894999742507935,
0.7734000086784363,
0.8256000280380249
],
"expr_type": [
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"isolated",
"isolated",
"isolated",
"isolated",
"isolated",
"isolated",
"isolated"
]
} |
|
0002142_page04 | {
"latex": [
"$\\epsilon $",
"$u=x_{1}-x_{2}$",
"$G_{1}$",
"$2\\Delta _{\\phi }$",
"$\\alpha ={y_{1}}/{u}$",
"$\\beta ={y_{2}}/{u}$",
"$G_{2}({\\bf r}_{1},{\\bf r}_{2}) =\\left <\\Phi ({\\bf r}_{1})\\Psi ({\\bf r}_{2})\\right >$",
"$G_{3}({\\bf r}_{1},{\\bf r}_{2})=\\left <\\Psi ({\\bf r}_{1}) \\Psi ({\\bf r}_{2})\\right >$",
"$G_{3}({\\bf r}_{1},{\\bf r}_{2})=\\left <\\Psi ({\\bf r}_{1}) \\Psi ({\\bf r}_{2})\\right >$",
"$\\eta =[(x_{1}-x_{2})^{2}+(y_{1}-y_{2})^{2}]/{y_{1}y_{2}}$",
"$r=|{\\bf r}_{1}-{\\bf r}_{2}|$",
"$a, b$",
"\\begin {eqnarray} u \\frac {\\partial {G_{1}}}{\\partial {u}} + y_{1} \\frac {\\partial {G_{1}}}{\\partial {y_{1}}} + y_{2} \\frac {\\partial {G_{1}}}{\\partial {y_{2}}} + 2{\\Delta }_{\\phi }G_{1}&=&0\\\\ ({y_{1}^{2}}-{y_{2}^{2}}) \\frac {\\partial {G_{1}}}{\\partial {u}} + u\\left (y_{1} \\frac {\\partial {G_{1}}}{\\partial {y_{1}}} - {y_{2}} \\frac {\\partial {G_{1}}}{\\partial {y_{2}}}\\right )&=&0 \\end {eqnarray}",
"\\begin {equation} G_{1}=\\frac {1}{(u)^{2\\Delta _{\\phi }}}g_{1}(\\alpha ,\\beta ) \\end {equation}",
"\\begin {equation} \\left [\\alpha + \\frac {\\alpha }{\\alpha ^{2}-\\beta ^{2}}\\right ]\\frac {\\partial {g_{1}}}{\\partial {\\alpha }}+\\left [\\beta + \\frac {\\beta }{\\beta ^{2}-\\alpha ^{2}}\\right ] \\frac {\\partial {g_{1}}}{\\partial {\\beta }}+2\\Delta _{\\phi }g_{1}=0~. \\end {equation}",
"\\begin {equation} g_{1}(\\alpha ,\\beta )=\\frac {1}{(\\alpha \\beta )^{\\Delta _{\\phi }}}h_{1}\\left (\\frac {1+(\\alpha -\\beta )^{2}}{\\alpha \\beta }\\right )~. \\end {equation}",
"\\begin {equation} \\left <{\\Phi }({\\bf r}_{1})\\Phi ({\\bf r}_{2})\\right >=\\frac {1}{(y_{1}y_{2})^{\\Delta _{\\phi }}}h_{1}\\left (\\frac {(x_{1}-x_{2})^{2}+(y_{1}-y_{2})^{2}}{y_{1}y_{2}}\\right )~. \\end {equation}",
"\\begin {eqnarray} G_{2}({\\bf r}_{1},{\\bf r}_{2})&=& \\frac {1}{(y_{1}y_{2})^{\\Delta _{\\phi }}} \\left [h_{2}(\\eta )-d\\:\\log {y_{2}}\\:\\:h_{1}(\\eta )\\right ]\\\\ G_{3}({\\bf r}_{1},{\\bf r}_{2})&=& \\frac {1}{(y_{1}y_{2})^{\\Delta _{\\phi }}}\\left [h_{3}(\\eta )-d\\:\\log {y_{1}y_{2}} \\:\\:h_{2}(\\eta ) +d^{2}\\:\\log {y_{1}}\\log {y_{2}}\\:\\:h_{1}(\\eta )\\right ] \\end {eqnarray}",
"\\begin {eqnarray} \\left <\\Phi ({\\bf r}_{1})\\Phi ({\\bf r}_{2})\\right >&=&0\\\\ \\left <\\Phi ({\\bf r}_{1})\\Psi ({\\bf r}_{2})\\right >&=& \\frac {a}{r^{2\\Delta _{\\phi }}}\\\\ \\left <\\Psi ({\\bf r}_{1})\\Psi ({\\bf r}_{2})\\right >&=& \\frac {1}{r^{2\\Delta _{\\phi }}}(b-d\\:a\\log {r}) \\end {eqnarray}"
],
"latex_norm": [
"$ \\epsilon $",
"$ u = x _ { 1 } - x _ { 2 } $",
"$ G _ { 1 } $",
"$ 2 \\Delta _ { \\phi } $",
"$ \\alpha = y _ { 1 } \\slash u $",
"$ \\beta = y _ { 2 } \\slash u $",
"$ G _ { 2 } ( r _ { 1 } , r _ { 2 } ) = \\langle \\Phi ( r _ { 1 } ) \\Psi ( r _ { 2 } ) \\rangle $",
"$ G _ { 3 } ( r _ { 1 } , r _ { 2 } ) = \\langle \\Psi ( r _ { 1 } ) \\Psi ( r _ { 2 } ) \\rangle $",
"$ G _ { 3 } ( r _ { 1 } , r _ { 2 } ) = \\langle \\Psi ( r _ { 1 } ) \\Psi ( r _ { 2 } ) \\rangle $",
"$ \\eta = [ ( x _ { 1 } - x _ { 2 } ) ^ { 2 } + ( y _ { 1 } - y _ { 2 } ) ^ { 2 } ] \\slash y _ { 1 } y _ { 2 } $",
"$ r = \\vert r _ { 1 } - r _ { 2 } \\vert $",
"$ a , b $",
"\\begin{align*} u \\frac { \\partial G _ { 1 } } { \\partial u } + y _ { 1 } \\frac { \\partial G _ { 1 } } { \\partial y _ { 1 } } + y _ { 2 } \\frac { \\partial G _ { 1 } } { \\partial y _ { 2 } } + 2 \\Delta _ { \\phi } G _ { 1 } & = & 0 \\\\ ( y _ { 1 } ^ { 2 } - y _ { 2 } ^ { 2 } ) \\frac { \\partial G _ { 1 } } { \\partial u } + u ( y _ { 1 } \\frac { \\partial G _ { 1 } } { \\partial y _ { 1 } } - y _ { 2 } \\frac { \\partial G _ { 1 } } { \\partial y _ { 2 } } ) & = & 0 \\end{align*}",
"\\begin{equation*} G _ { 1 } = \\frac { 1 } { ( u ) ^ { 2 \\Delta _ { \\phi } } } g _ { 1 } ( \\alpha , \\beta ) \\end{equation*}",
"\\begin{equation*} [ \\alpha + \\frac { \\alpha } { \\alpha ^ { 2 } - \\beta ^ { 2 } } ] \\frac { \\partial g _ { 1 } } { \\partial \\alpha } + [ \\beta + \\frac { \\beta } { \\beta ^ { 2 } - \\alpha ^ { 2 } } ] \\frac { \\partial g _ { 1 } } { \\partial \\beta } + 2 \\Delta _ { \\phi } g _ { 1 } = 0 ~ . \\end{equation*}",
"\\begin{equation*} g _ { 1 } ( \\alpha , \\beta ) = \\frac { 1 } { ( \\alpha \\beta ) ^ { \\Delta _ { \\phi } } } h _ { 1 } ( \\frac { 1 + ( \\alpha - \\beta ) ^ { 2 } } { \\alpha \\beta } ) ~ . \\end{equation*}",
"\\begin{equation*} \\langle \\Phi ( r _ { 1 } ) \\Phi ( r _ { 2 } ) \\rangle = \\frac { 1 } { ( y _ { 1 } y _ { 2 } ) ^ { \\Delta _ { \\phi } } } h _ { 1 } ( \\frac { ( x _ { 1 } - x _ { 2 } ) ^ { 2 } + ( y _ { 1 } - y _ { 2 } ) ^ { 2 } } { y _ { 1 } y _ { 2 } } ) ~ . \\end{equation*}",
"\\begin{align*} G _ { 2 } ( r _ { 1 } , r _ { 2 } ) & = & \\frac { 1 } { ( y _ { 1 } y _ { 2 } ) ^ { \\Delta _ { \\phi } } } [ h _ { 2 } ( \\eta ) - d \\> \\operatorname { l o g } y _ { 2 } \\> \\> h _ { 1 } ( \\eta ) ] \\\\ G _ { 3 } ( r _ { 1 } , r _ { 2 } ) & = & \\frac { 1 } { ( y _ { 1 } y _ { 2 } ) ^ { \\Delta _ { \\phi } } } [ h _ { 3 } ( \\eta ) - d \\> \\operatorname { l o g } y _ { 1 } y _ { 2 } \\> \\> h _ { 2 } ( \\eta ) + d ^ { 2 } \\> \\operatorname { l o g } y _ { 1 } \\operatorname { l o g } y _ { 2 } \\> \\> h _ { 1 } ( \\eta ) ] \\end{align*}",
"\\begin{align*} \\langle \\Phi ( r _ { 1 } ) \\Phi ( r _ { 2 } ) \\rangle & = & 0 \\\\ \\langle \\Phi ( r _ { 1 } ) \\Psi ( r _ { 2 } ) \\rangle & = & \\frac { a } { r ^ { 2 \\Delta _ { \\phi } } } \\\\ \\langle \\Psi ( r _ { 1 } ) \\Psi ( r _ { 2 } ) \\rangle & = & \\frac { 1 } { r ^ { 2 \\Delta _ { \\phi } } } ( b - d \\> a \\operatorname { l o g } r ) \\end{align*}"
],
"latex_expand": [
"$ \\mitepsilon $",
"$ \\mitu = \\mitx _ { 1 } - \\mitx _ { 2 } $",
"$ \\mitG _ { 1 } $",
"$ 2 \\mupDelta _ { \\mitphi } $",
"$ \\mitalpha = \\mity _ { 1 } \\slash \\mitu $",
"$ \\mitbeta = \\mity _ { 2 } \\slash \\mitu $",
"$ \\mitG _ { 2 } ( \\mitr _ { 1 } , \\mitr _ { 2 } ) = \\left\\langle \\mupPhi ( \\mitr _ { 1 } ) \\mupPsi ( \\mitr _ { 2 } ) \\right\\rangle $",
"$ \\mitG _ { 3 } ( \\mitr _ { 1 } , \\mitr _ { 2 } ) = \\left\\langle \\mupPsi ( \\mitr _ { 1 } ) \\mupPsi ( \\mitr _ { 2 } ) \\right\\rangle $",
"$ \\mitG _ { 3 } ( \\mitr _ { 1 } , \\mitr _ { 2 } ) = \\left\\langle \\mupPsi ( \\mitr _ { 1 } ) \\mupPsi ( \\mitr _ { 2 } ) \\right\\rangle $",
"$ \\miteta = [ ( \\mitx _ { 1 } - \\mitx _ { 2 } ) ^ { 2 } + ( \\mity _ { 1 } - \\mity _ { 2 } ) ^ { 2 } ] \\slash \\mity _ { 1 } \\mity _ { 2 } $",
"$ \\mitr = \\vert \\mitr _ { 1 } - \\mitr _ { 2 } \\vert $",
"$ \\mita , \\mitb $",
"\\begin{align*} \\mitu \\frac { \\mitpartial \\mitG _ { 1 } } { \\mitpartial \\mitu } + \\mity _ { 1 } \\frac { \\mitpartial \\mitG _ { 1 } } { \\mitpartial \\mity _ { 1 } } + \\mity _ { 2 } \\frac { \\mitpartial \\mitG _ { 1 } } { \\mitpartial \\mity _ { 2 } } + 2 \\mupDelta _ { \\mitphi } \\mitG _ { 1 } & = & 0 \\\\ ( \\mity _ { 1 } ^ { 2 } - \\mity _ { 2 } ^ { 2 } ) \\frac { \\mitpartial \\mitG _ { 1 } } { \\mitpartial \\mitu } + \\mitu \\left( \\mity _ { 1 } \\frac { \\mitpartial \\mitG _ { 1 } } { \\mitpartial \\mity _ { 1 } } - \\mity _ { 2 } \\frac { \\mitpartial \\mitG _ { 1 } } { \\mitpartial \\mity _ { 2 } } \\right) & = & 0 \\end{align*}",
"\\begin{equation*} \\mitG _ { 1 } = \\frac { 1 } { ( \\mitu ) ^ { 2 \\mupDelta _ { \\mitphi } } } \\mitg _ { 1 } ( \\mitalpha , \\mitbeta ) \\end{equation*}",
"\\begin{equation*} \\left[ \\mitalpha + \\frac { \\mitalpha } { \\mitalpha ^ { 2 } - \\mitbeta ^ { 2 } } \\right] \\frac { \\mitpartial \\mitg _ { 1 } } { \\mitpartial \\mitalpha } + \\left[ \\mitbeta + \\frac { \\mitbeta } { \\mitbeta ^ { 2 } - \\mitalpha ^ { 2 } } \\right] \\frac { \\mitpartial \\mitg _ { 1 } } { \\mitpartial \\mitbeta } + 2 \\mupDelta _ { \\mitphi } \\mitg _ { 1 } = 0 ~ . \\end{equation*}",
"\\begin{equation*} \\mitg _ { 1 } ( \\mitalpha , \\mitbeta ) = \\frac { 1 } { ( \\mitalpha \\mitbeta ) ^ { \\mupDelta _ { \\mitphi } } } \\Planckconst _ { 1 } \\left( \\frac { 1 + ( \\mitalpha - \\mitbeta ) ^ { 2 } } { \\mitalpha \\mitbeta } \\right) ~ . \\end{equation*}",
"\\begin{equation*} \\left\\langle \\mupPhi ( \\mitr _ { 1 } ) \\mupPhi ( \\mitr _ { 2 } ) \\right\\rangle = \\frac { 1 } { ( \\mity _ { 1 } \\mity _ { 2 } ) ^ { \\mupDelta _ { \\mitphi } } } \\Planckconst _ { 1 } \\left( \\frac { ( \\mitx _ { 1 } - \\mitx _ { 2 } ) ^ { 2 } + ( \\mity _ { 1 } - \\mity _ { 2 } ) ^ { 2 } } { \\mity _ { 1 } \\mity _ { 2 } } \\right) ~ . \\end{equation*}",
"\\begin{align*} \\mitG _ { 2 } ( \\mitr _ { 1 } , \\mitr _ { 2 } ) & = & \\frac { 1 } { ( \\mity _ { 1 } \\mity _ { 2 } ) ^ { \\mupDelta _ { \\mitphi } } } \\left[ \\Planckconst _ { 2 } ( \\miteta ) - \\mitd \\> \\operatorname { l o g } \\mity _ { 2 } \\> \\> \\Planckconst _ { 1 } ( \\miteta ) \\right] \\\\ \\mitG _ { 3 } ( \\mitr _ { 1 } , \\mitr _ { 2 } ) & = & \\frac { 1 } { ( \\mity _ { 1 } \\mity _ { 2 } ) ^ { \\mupDelta _ { \\mitphi } } } \\left[ \\Planckconst _ { 3 } ( \\miteta ) - \\mitd \\> \\operatorname { l o g } \\mity _ { 1 } \\mity _ { 2 } \\> \\> \\Planckconst _ { 2 } ( \\miteta ) + \\mitd ^ { 2 } \\> \\operatorname { l o g } \\mity _ { 1 } \\operatorname { l o g } \\mity _ { 2 } \\> \\> \\Planckconst _ { 1 } ( \\miteta ) \\right] \\end{align*}",
"\\begin{align*} \\left\\langle \\mupPhi ( \\mitr _ { 1 } ) \\mupPhi ( \\mitr _ { 2 } ) \\right\\rangle & = & 0 \\\\ \\left\\langle \\mupPhi ( \\mitr _ { 1 } ) \\mupPsi ( \\mitr _ { 2 } ) \\right\\rangle & = & \\frac { \\mita } { \\mitr ^ { 2 \\mupDelta _ { \\mitphi } } } \\\\ \\left\\langle \\mupPsi ( \\mitr _ { 1 } ) \\mupPsi ( \\mitr _ { 2 } ) \\right\\rangle & = & \\frac { 1 } { \\mitr ^ { 2 \\mupDelta _ { \\mitphi } } } ( \\mitb - \\mitd \\> \\mita \\operatorname { l o g } \\mitr ) \\end{align*}"
],
"x_min": [
0.6212999820709229,
0.23010000586509705,
0.5756999850273132,
0.24400000274181366,
0.21080000698566437,
0.32760000228881836,
0.484499990940094,
0.7360000014305115,
0.15690000355243683,
0.210099995136261,
0.2087000012397766,
0.34209999442100525,
0.3172000050544739,
0.4133000075817108,
0.27300000190734863,
0.3386000096797943,
0.2702000141143799,
0.1949000060558319,
0.3449000120162964
],
"y_min": [
0.11230000108480453,
0.21389999985694885,
0.21240000426769257,
0.22849999368190765,
0.28119999170303345,
0.28119999170303345,
0.5185999870300293,
0.5185999870300293,
0.5346999764442444,
0.6401000022888184,
0.7896000146865845,
0.7900000214576721,
0.13179999589920044,
0.23929999768733978,
0.3212999999523163,
0.39010000228881836,
0.4657999873161316,
0.5580999851226807,
0.6977999806404114
],
"x_max": [
0.6288999915122986,
0.32339999079704285,
0.5985000133514404,
0.27790001034736633,
0.28540000319480896,
0.40149998664855957,
0.6938999891281128,
0.8389999866485596,
0.26190000772476196,
0.48030000925064087,
0.3034000098705292,
0.3684000074863434,
0.6751999855041504,
0.5819000005722046,
0.7186999917030334,
0.656499981880188,
0.7221999764442444,
0.7975000143051147,
0.647599995136261
],
"y_max": [
0.11819999665021896,
0.22419999539852142,
0.2240999937057495,
0.24220000207424164,
0.29490000009536743,
0.29490000009536743,
0.5322999954223633,
0.5322999954223633,
0.5483999848365784,
0.654699981212616,
0.8027999997138977,
0.8022000193595886,
0.20360000431537628,
0.27300000190734863,
0.3544999957084656,
0.42969998717308044,
0.5048999786376953,
0.6309000253677368,
0.7781999707221985
],
"expr_type": [
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"isolated",
"isolated",
"isolated",
"isolated",
"isolated",
"isolated",
"isolated"
]
} |
|
0002142_page05 | {
"latex": [
"$y_{1}$",
"$y_{2}$",
"$y_{1}-y_{2}$",
"$x_{1}-x_{2}$",
"$\\eta $",
"$h_{1}$",
"$h_{2}$",
"$h_{3}$",
"$\\eta \\rightarrow {0}$",
"$C_{1}$",
"$C_{2}$",
"$\\eta $",
"$x_{1}-x_{2}$",
"$y_{1}$",
"$y_{2}$",
"$h(\\eta )$",
"$z\\:\\rightarrow \\:w(z)$",
"$ \\bar {z}\\:\\rightarrow \\:w(\\bar {z})$",
"$\\Phi _{i}$",
"$T(z)=T_{zz}(z)$",
"$\\bar {T}(\\bar {z})=T_{\\bar {z}\\:\\bar {z}}(\\bar {z})$",
"$c$",
"$z_{k}$",
"$k$",
"$j_{k}$",
"$\\Phi _{i_{k}}$",
"$\\alpha (z)$",
"$\\alpha $",
"$\\bar {\\alpha }$",
"$z$",
"$\\bar {z}$",
"\\begin {eqnarray} h_{1}(\\eta )&=&\\frac {1}{\\eta ^{\\Delta _{\\phi }}}\\left (\\frac {4\\frac {a}{d}}{\\log {\\eta }}+\\frac {C_{1}}{(\\log {\\eta })^{2}}+\\ldots \\right )\\\\ h_{2}(\\eta )&=&\\frac {1}{\\eta ^{\\Delta _{\\phi }}}\\left (-a+\\frac {C_{2}}{(\\log {\\eta })}+\\ldots \\right )\\\\ h_{3}(\\eta )&=&\\frac {1}{\\eta ^{\\Delta _{\\phi }}}\\left (b-d\\:C_{2}-\\frac {d^{2}}{4}C_{1}+\\ldots \\right ) \\end {eqnarray}",
"\\begin {equation} \\Phi _{i}(z,\\bar {z})\\rightarrow \\Phi _{i}(z,\\bar {z})+\\left [\\alpha ^{\\prime }(z) \\Delta _{i}^{j}+\\delta _{i}^{j}\\alpha (z)\\frac {\\partial }{\\partial {z}}+ \\overline {\\alpha ^{\\prime }(z)}\\: {\\bar {\\Delta }}_{i}^{j}+\\delta _{i}^{j}\\overline {\\alpha (z)} \\frac {\\partial }{\\partial {\\bar {z}}}\\right ] \\Phi _{j}(z,\\bar {z}) \\end {equation}",
"\\begin {eqnarray} \\frac 1{2\\pi i}\\oint _{c}dz\\:\\alpha (z)\\left <T(z)\\Phi _{i_{1}}(z_{1},\\bar {z_{1}})\\ldots \\right > -\\frac 1{2\\pi i} \\oint _{c}d\\bar {z}\\:\\overline {\\alpha (z)}\\left <\\bar {T} (\\bar {z})\\Phi _{i_{1}}(z_{1},{\\bar {z}}_{1})\\ldots \\right >\\\\ =\\sum _{k}\\sum _{j_{k}}\\left [\\alpha ^{\\prime }(z_{k}) \\Delta ^{j_{k}}_{i_{k}}+\\delta ^{j_{k}}_{i_{k}}\\alpha (z_{k})\\frac {\\partial }{\\partial {z_{k}}}+ \\overline {\\alpha ^{\\prime }(z_{k})}{\\bar {\\Delta }}^{j_{k}}_{i_{k}} +\\delta ^{j_{k}}_{i_{k}}\\overline {\\alpha (z_{k})} \\frac {\\partial }{\\partial {\\bar {z}}_{k}}\\right ] \\left <\\Phi _{j_{1}}(z_{1},{\\bar {z}}_{1})\\ldots \\right > \\end {eqnarray}",
"\\begin {equation} \\frac 1{2\\pi i}\\oint _{c}dz\\:\\alpha (z)\\left <T(z)\\Phi _{i_{1}}(z_{1},{\\bar {z}}_{1}) \\ldots \\right > =\\sum _{k}\\sum _{j_{k}}\\left [\\alpha ^{\\prime }(z_{k})\\Delta ^{j_{k}}_{i_{k}}+ \\delta ^{j_{k}}_{i_{k}}\\alpha (z_{k}) \\frac {\\partial }{\\partial {z_{k}}}\\right ] \\left <\\Phi _{j_{1}}(z_{1},{\\bar {z}}_{1})\\ldots \\right > \\end {equation}"
],
"latex_norm": [
"$ y _ { 1 } $",
"$ y _ { 2 } $",
"$ y _ { 1 } - y _ { 2 } $",
"$ x _ { 1 } - x _ { 2 } $",
"$ \\eta $",
"$ h _ { 1 } $",
"$ h _ { 2 } $",
"$ h _ { 3 } $",
"$ \\eta \\rightarrow 0 $",
"$ C _ { 1 } $",
"$ C _ { 2 } $",
"$ \\eta $",
"$ x _ { 1 } - x _ { 2 } $",
"$ y _ { 1 } $",
"$ y _ { 2 } $",
"$ h ( \\eta ) $",
"$ z \\> \\rightarrow \\> w ( z ) $",
"$ \\bar { z } \\> \\rightarrow \\> w ( \\bar { z } ) $",
"$ \\Phi _ { i } $",
"$ T ( z ) = T _ { z z } ( z ) $",
"$ \\bar { T } ( \\bar { z } ) = T _ { \\bar { z } \\> \\bar { z } } ( \\bar { z } ) $",
"$ c $",
"$ z _ { k } $",
"$ k $",
"$ j _ { k } $",
"$ \\Phi _ { i _ { k } } $",
"$ \\alpha ( z ) $",
"$ \\alpha $",
"$ \\bar { \\alpha } $",
"$ z $",
"$ \\bar { z } $",
"\\begin{align*} h _ { 1 } ( \\eta ) & = & \\frac { 1 } { \\eta ^ { \\Delta _ { \\phi } } } ( \\frac { 4 \\frac { a } { d } } { \\operatorname { l o g } \\eta } + \\frac { C _ { 1 } } { ( \\operatorname { l o g } \\eta ) ^ { 2 } } + \\ldots ) \\\\ h _ { 2 } ( \\eta ) & = & \\frac { 1 } { \\eta ^ { \\Delta _ { \\phi } } } ( - a + \\frac { C _ { 2 } } { ( \\operatorname { l o g } \\eta ) } + \\ldots ) \\\\ h _ { 3 } ( \\eta ) & = & \\frac { 1 } { \\eta ^ { \\Delta _ { \\phi } } } ( b - d \\> C _ { 2 } - \\frac { d ^ { 2 } } { 4 } C _ { 1 } + \\ldots ) \\end{align*}",
"\\begin{equation*} \\Phi _ { i } ( z , \\bar { z } ) \\rightarrow \\Phi _ { i } ( z , \\bar { z } ) + [ \\alpha ^ { \\prime } ( z ) \\Delta _ { i } ^ { j } + \\delta _ { i } ^ { j } \\alpha ( z ) \\frac { \\partial } { \\partial z } + \\overline { \\alpha ^ { \\prime } ( z ) } \\> \\bar { \\Delta } _ { i } ^ { j } + \\delta _ { i } ^ { j } \\overline { \\alpha ( z ) } \\frac { \\partial } { \\partial \\bar { z } } ] \\Phi _ { j } ( z , \\bar { z } ) \\end{equation*}",
"\\begin{align*} \\frac { 1 } { 2 \\pi i } \\oint _ { c } d z \\> \\alpha ( z ) \\langle T ( z ) \\Phi _ { i _ { 1 } } ( z _ { 1 } , \\bar { z _ { 1 } } ) \\ldots \\rangle - \\frac { 1 } { 2 \\pi i } \\oint _ { c } d \\bar { z } \\> \\overline { \\alpha ( z ) } \\langle \\bar { T } ( \\bar { z } ) \\Phi _ { i _ { 1 } } ( z _ { 1 } , \\bar { z } _ { 1 } ) \\ldots \\rangle \\\\ = \\sum _ { k } \\sum _ { j _ { k } } [ \\alpha ^ { \\prime } ( z _ { k } ) \\Delta _ { i _ { k } } ^ { j _ { k } } + \\delta _ { i _ { k } } ^ { j _ { k } } \\alpha ( z _ { k } ) \\frac { \\partial } { \\partial z _ { k } } + \\overline { \\alpha ^ { \\prime } ( z _ { k } ) } \\bar { \\Delta } _ { i _ { k } } ^ { j _ { k } } + \\delta _ { i _ { k } } ^ { j _ { k } } \\overline { \\alpha ( z _ { k } ) } \\frac { \\partial } { \\partial \\bar { z } _ { k } } ] \\langle \\Phi _ { j _ { 1 } } ( z _ { 1 } , \\bar { z } _ { 1 } ) \\ldots \\rangle \\end{align*}",
"\\begin{equation*} \\frac { 1 } { 2 \\pi i } \\oint _ { c } d z \\> \\alpha ( z ) \\langle T ( z ) \\Phi _ { i _ { 1 } } ( z _ { 1 } , \\bar { z } _ { 1 } ) \\ldots \\rangle = \\sum _ { k } \\sum _ { j _ { k } } [ \\alpha ^ { \\prime } ( z _ { k } ) \\Delta _ { i _ { k } } ^ { j _ { k } } + \\delta _ { i _ { k } } ^ { j _ { k } } \\alpha ( z _ { k } ) \\frac { \\partial } { \\partial z _ { k } } ] \\langle \\Phi _ { j _ { 1 } } ( z _ { 1 } , \\bar { z } _ { 1 } ) \\ldots \\rangle \\end{equation*}"
],
"latex_expand": [
"$ \\mity _ { 1 } $",
"$ \\mity _ { 2 } $",
"$ \\mity _ { 1 } - \\mity _ { 2 } $",
"$ \\mitx _ { 1 } - \\mitx _ { 2 } $",
"$ \\miteta $",
"$ \\Planckconst _ { 1 } $",
"$ \\Planckconst _ { 2 } $",
"$ \\Planckconst _ { 3 } $",
"$ \\miteta \\rightarrow 0 $",
"$ \\mitC _ { 1 } $",
"$ \\mitC _ { 2 } $",
"$ \\miteta $",
"$ \\mitx _ { 1 } - \\mitx _ { 2 } $",
"$ \\mity _ { 1 } $",
"$ \\mity _ { 2 } $",
"$ \\Planckconst ( \\miteta ) $",
"$ \\mitz \\> \\rightarrow \\> \\mitw ( \\mitz ) $",
"$ \\bar { \\mitz } \\> \\rightarrow \\> \\mitw ( \\bar { \\mitz } ) $",
"$ \\mupPhi _ { \\miti } $",
"$ \\mitT ( \\mitz ) = \\mitT _ { \\mitz \\mitz } ( \\mitz ) $",
"$ \\bar { \\mitT } ( \\bar { \\mitz } ) = \\mitT _ { \\bar { \\mitz } \\> \\bar { \\mitz } } ( \\bar { \\mitz } ) $",
"$ \\mitc $",
"$ \\mitz _ { \\mitk } $",
"$ \\mitk $",
"$ \\mitj _ { \\mitk } $",
"$ \\mupPhi _ { \\miti _ { \\mitk } } $",
"$ \\mitalpha ( \\mitz ) $",
"$ \\mitalpha $",
"$ \\bar { \\mitalpha } $",
"$ \\mitz $",
"$ \\bar { \\mitz } $",
"\\begin{align*} \\Planckconst _ { 1 } ( \\miteta ) & = & \\frac { 1 } { \\miteta ^ { \\mupDelta _ { \\mitphi } } } \\left( \\frac { 4 \\frac { \\mita } { \\mitd } } { \\operatorname { l o g } \\miteta } + \\frac { \\mitC _ { 1 } } { ( \\operatorname { l o g } \\miteta ) ^ { 2 } } + \\ldots \\right) \\\\ \\Planckconst _ { 2 } ( \\miteta ) & = & \\frac { 1 } { \\miteta ^ { \\mupDelta _ { \\mitphi } } } \\left( - \\mita + \\frac { \\mitC _ { 2 } } { ( \\operatorname { l o g } \\miteta ) } + \\ldots \\right) \\\\ \\Planckconst _ { 3 } ( \\miteta ) & = & \\frac { 1 } { \\miteta ^ { \\mupDelta _ { \\mitphi } } } \\left( \\mitb - \\mitd \\> \\mitC _ { 2 } - \\frac { \\mitd ^ { 2 } } { 4 } \\mitC _ { 1 } + \\ldots \\right) \\end{align*}",
"\\begin{equation*} \\mupPhi _ { \\miti } ( \\mitz , \\bar { \\mitz } ) \\rightarrow \\mupPhi _ { \\miti } ( \\mitz , \\bar { \\mitz } ) + \\left[ \\mitalpha ^ { \\prime } ( \\mitz ) \\mupDelta _ { \\miti } ^ { \\mitj } + \\mitdelta _ { \\miti } ^ { \\mitj } \\mitalpha ( \\mitz ) \\frac { \\mitpartial } { \\mitpartial \\mitz } + \\overline { \\mitalpha ^ { \\prime } ( \\mitz ) } \\> \\bar { \\mupDelta } _ { \\miti } ^ { \\mitj } + \\mitdelta _ { \\miti } ^ { \\mitj } \\overline { \\mitalpha ( \\mitz ) } \\frac { \\mitpartial } { \\mitpartial \\bar { \\mitz } } \\right] \\mupPhi _ { \\mitj } ( \\mitz , \\bar { \\mitz } ) \\end{equation*}",
"\\begin{align*} \\frac { 1 } { 2 \\mitpi \\miti } \\oint _ { \\mitc } \\mitd \\mitz \\> \\mitalpha ( \\mitz ) \\left\\langle \\mitT ( \\mitz ) \\mupPhi _ { \\miti _ { 1 } } ( \\mitz _ { 1 } , \\bar { \\mitz _ { 1 } } ) \\ldots \\right\\rangle - \\frac { 1 } { 2 \\mitpi \\miti } \\oint _ { \\mitc } \\mitd \\bar { \\mitz } \\> \\overline { \\mitalpha ( \\mitz ) } \\left\\langle \\bar { \\mitT } ( \\bar { \\mitz } ) \\mupPhi _ { \\miti _ { 1 } } ( \\mitz _ { 1 } , \\bar { \\mitz } _ { 1 } ) \\ldots \\right\\rangle \\\\ = \\sum _ { \\mitk } \\sum _ { \\mitj _ { \\mitk } } \\left[ \\mitalpha ^ { \\prime } ( \\mitz _ { \\mitk } ) \\mupDelta _ { \\miti _ { \\mitk } } ^ { \\mitj _ { \\mitk } } + \\mitdelta _ { \\miti _ { \\mitk } } ^ { \\mitj _ { \\mitk } } \\mitalpha ( \\mitz _ { \\mitk } ) \\frac { \\mitpartial } { \\mitpartial \\mitz _ { \\mitk } } + \\overline { \\mitalpha ^ { \\prime } ( \\mitz _ { \\mitk } ) } \\bar { \\mupDelta } _ { \\miti _ { \\mitk } } ^ { \\mitj _ { \\mitk } } + \\mitdelta _ { \\miti _ { \\mitk } } ^ { \\mitj _ { \\mitk } } \\overline { \\mitalpha ( \\mitz _ { \\mitk } ) } \\frac { \\mitpartial } { \\mitpartial \\bar { \\mitz } _ { \\mitk } } \\right] \\left\\langle \\mupPhi _ { \\mitj _ { 1 } } ( \\mitz _ { 1 } , \\bar { \\mitz } _ { 1 } ) \\ldots \\right\\rangle \\end{align*}",
"\\begin{equation*} \\frac { 1 } { 2 \\mitpi \\miti } \\oint _ { \\mitc } \\mitd \\mitz \\> \\mitalpha ( \\mitz ) \\left\\langle \\mitT ( \\mitz ) \\mupPhi _ { \\miti _ { 1 } } ( \\mitz _ { 1 } , \\bar { \\mitz } _ { 1 } ) \\ldots \\right\\rangle = \\sum _ { \\mitk } \\sum _ { \\mitj _ { \\mitk } } \\left[ \\mitalpha ^ { \\prime } ( \\mitz _ { \\mitk } ) \\mupDelta _ { \\miti _ { \\mitk } } ^ { \\mitj _ { \\mitk } } + \\mitdelta _ { \\miti _ { \\mitk } } ^ { \\mitj _ { \\mitk } } \\mitalpha ( \\mitz _ { \\mitk } ) \\frac { \\mitpartial } { \\mitpartial \\mitz _ { \\mitk } } \\right] \\left\\langle \\mupPhi _ { \\mitj _ { 1 } } ( \\mitz _ { 1 } , \\bar { \\mitz } _ { 1 } ) \\ldots \\right\\rangle \\end{equation*}"
],
"x_min": [
0.5162000060081482,
0.5722000002861023,
0.7829999923706055,
0.19280000030994415,
0.46860000491142273,
0.7235999703407288,
0.7588000297546387,
0.794700026512146,
0.2328999936580658,
0.20110000669956207,
0.2653999924659729,
0.2874999940395355,
0.6474999785423279,
0.27160000801086426,
0.3296000063419342,
0.8003000020980835,
0.42989999055862427,
0.5231999754905701,
0.1949000060558319,
0.4429999887943268,
0.6047000288963318,
0.2093999981880188,
0.6082000136375427,
0.6654999852180481,
0.3849000036716461,
0.7774999737739563,
0.3808000087738037,
0.7346000075340271,
0.7892000079154968,
0.5425000190734863,
0.5929999947547913,
0.3303000032901764,
0.17900000512599945,
0.1582999974489212,
0.15690000355243683
],
"y_min": [
0.11230000108480453,
0.11230000108480453,
0.1103999987244606,
0.12600000202655792,
0.12839999794960022,
0.125,
0.125,
0.12449999898672104,
0.14159999787807465,
0.27639999985694885,
0.27639999985694885,
0.2953999936580658,
0.30959999561309814,
0.32760000228881836,
0.32760000228881836,
0.35600000619888306,
0.4731000065803528,
0.4731000065803528,
0.48969998955726624,
0.5806000232696533,
0.5795999765396118,
0.6952999830245972,
0.6952999830245972,
0.6919000148773193,
0.7085000276565552,
0.7080000042915344,
0.7231000065803528,
0.7275000214576721,
0.725600004196167,
0.7437000274658203,
0.7416999936103821,
0.15530000627040863,
0.5077999830245972,
0.6133000254631042,
0.7734000086784363
],
"x_max": [
0.5335000157356262,
0.5895000100135803,
0.8355000019073486,
0.25220000743865967,
0.478300005197525,
0.7422999739646912,
0.7781999707221985,
0.8141000270843506,
0.28060001134872437,
0.2224999964237213,
0.2874999940395355,
0.29789999127388,
0.7075999975204468,
0.2888999879360199,
0.3476000130176544,
0.8355000019073486,
0.5087000131607056,
0.6026999950408936,
0.2143000066280365,
0.5598000288009644,
0.7249000072479248,
0.21770000457763672,
0.6255000233650208,
0.6758999824523926,
0.40149998664855957,
0.8044999837875366,
0.41670000553131104,
0.746999979019165,
0.8008999824523926,
0.5522000193595886,
0.6026999950408936,
0.6620000004768372,
0.7836999893188477,
0.8009999990463257,
0.8500999808311462
],
"y_max": [
0.12110000103712082,
0.12110000103712082,
0.12110000103712082,
0.1362999975681305,
0.13670000433921814,
0.13619999587535858,
0.13619999587535858,
0.13619999587535858,
0.15279999375343323,
0.28760001063346863,
0.28760001063346863,
0.3041999936103821,
0.3199000060558319,
0.33640000224113464,
0.33640000224113464,
0.3691999912261963,
0.486299991607666,
0.486299991607666,
0.5013999938964844,
0.5938000082969666,
0.5938000082969666,
0.7016000151634216,
0.7035999894142151,
0.70169997215271,
0.7202000021934509,
0.7211999893188477,
0.7368000149726868,
0.7337999939918518,
0.7339000105857849,
0.75,
0.75,
0.26910001039505005,
0.5404999852180481,
0.6834999918937683,
0.8130000233650208
],
"expr_type": [
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"isolated",
"isolated",
"isolated",
"isolated"
]
} |
|
0002142_page06 | {
"latex": [
"$\\left <\\bar {T}\\Phi \\ldots \\right >$",
"$\\left <T\\Phi \\ldots \\right >$",
"$\\left <\\Phi \\ldots \\right >$",
"$\\alpha $",
"$\\bar {\\alpha }$",
"$\\Phi _{i_{k}}$",
"$Im(z)>0$",
"$\\overline {\\alpha (z)}=\\alpha (\\bar {z})$",
"$z$",
"$\\bar {z}$",
"$T(z)$",
"${\\bar {z}}_{k}=z^{\\prime }_{k}$",
"$\\bar {z}\\rightarrow z$",
"$\\overline {\\alpha (z)}=\\alpha (\\bar {z})$",
"$\\bar {c}$",
"$z_{k}$",
"$z^{\\prime }_{k}$",
"$T=\\bar {T}$",
"$T_{xy}=0$",
"$\\left <\\Phi _{i_{1}}(z_{1},\\bar {z}_{1}) \\ldots \\Phi _{i_{2n}}(z_{2n},\\bar {z}_{2n})\\right >$",
"$(z_{1},\\ldots ,z_{n},\\newline {\\bar {z}}_{1},\\ldots ,{\\bar {z}}_{n})$",
"$(z_{1},\\ldots ,z_{n},\\newline {\\bar {z}}_{1},\\ldots ,{\\bar {z}}_{n})$",
"$\\left <\\Phi _{i_{1}}(z_{1},{\\bar {z}}_{1})\\ldots \\Phi _{i_{2n}}(z_{2n},{\\bar {z}}_{2n})\\right >$",
"$z_{1},\\ldots ,z_{2n}$",
"$\\Phi _{i_{n+1}}$",
"$\\Phi _{i_{2n}}$",
"$\\bar {\\Delta }$",
"$2 \\times 2$",
"$\\Phi $",
"$\\Psi $",
"$\\Psi $",
"${L_{0},L_{\\pm {1}}}$",
"\\begin {equation} \\left <T(z)\\Phi _{i_{1}}(z_{1},{\\bar {z}}_{1})\\ldots \\right >=\\sum _{k}\\sum _{j_{k}} \\left [\\frac {\\Delta ^{j_{k}}_{i_{k}}}{(z-z_{k})^{2}} +\\frac {\\delta ^{j_{k}}_{i_{k}}}{(z-z_{k})}\\frac {\\partial }{\\partial {z_{k}}}\\right ] \\left <\\Phi _{j_{1}}(z_{1},{\\bar {z}}_{1})\\ldots \\right >\\:. \\end {equation}",
"\\begin {equation} T(z):=\\bar {T}(z)\\:\\:\\:\\:\\:\\: Im(z)<0 \\end {equation}",
"\\begin {eqnarray} \\frac 1{2\\pi i}{\\oint }_{c}dz\\:\\alpha (z)\\left <T(z)\\Phi _{i_{1}}(z_{1}, z^{\\prime }_{1})\\ldots \\right >+\\frac 1{2\\pi i}\\oint _{\\:\\bar {c}} dz\\:\\alpha (z)\\left <T(z){\\Phi }_{i_{1}}(z_{1},z^{\\prime }_{1})\\ldots \\right > \\\\ =\\sum _{k}\\sum _{j_{k}}\\left [{\\alpha }^{\\prime }(z_{k})\\Delta ^{j_{k}}_{i_{k}}+ \\delta ^{j_{k}}_{i_{k}}\\alpha (z_{k})\\frac {\\partial }{\\partial {z_{k}}}+ {\\alpha }^{\\prime }(z^{\\prime }_{k}){\\bar {\\Delta }}^{j_{k}}_{i_{k}} +\\alpha (z^{\\prime }_{k})\\frac {\\partial }{\\partial {z^{\\prime }_{k}}}\\right ] \\left <\\Phi _{j_{1}}(z_{1},z^{\\prime }_{1})\\ldots \\right > , \\end {eqnarray}",
"\\begin {eqnarray} \\left <T(z)\\Phi _{i_{1}}(z_{1},{z'}_{1})\\ldots \\right >= \\:\\:\\:\\:\\:\\:\\:\\:\\:\\:\\:\\:\\:\\:\\:\\:\\:\\:\\:\\:\\:\\:\\:\\:\\:\\:\\:\\:\\:\\:\\:\\:\\:\\:\\:\\:\\:\\:\\:\\:\\: \\:\\:\\:\\:\\:\\:\\:\\:\\:\\:\\:\\:\\:\\:\\:\\:\\:\\:\\:\\:\\:\\:\\:\\:\\:\\:\\:\\:\\:\\:\\:\\:\\:\\:\\:\\:\\:\\:\\:\\\\ \\sum _{k}\\sum _{j_{k}}\\left [\\frac {\\Delta ^{i_{k}}_{j_{k}}}{(z-z_{k})^{2}}+ \\frac {\\delta ^{i_{k}}_{j_{k}}}{(z-z_{k})}\\frac {\\partial }{\\partial {z_{k}}} +\\frac {{\\bar {\\Delta }}^{j_{k}}_{i_{k}}}{(z-z^{\\prime }_{k})^{2}} +\\frac {\\delta ^{j_{k}}_{i_{k}}}{(z-z^{\\prime }_{k})} \\frac {\\partial }{\\partial {z^{\\prime }_{k}}}\\right ] \\left <\\Phi _{j_{1}}(z_{1},z^{\\prime }_{1})\\ldots \\right >\\:. \\end {eqnarray}"
],
"latex_norm": [
"$ \\langle \\bar T \\Phi \\ldots \\rangle $",
"$ \\langle T \\Phi \\ldots \\rangle $",
"$ \\langle \\Phi \\ldots \\rangle $",
"$ \\alpha $",
"$ \\bar { \\alpha } $",
"$ \\Phi _ { i _ { k } } $",
"$ I m ( z ) > 0 $",
"$ \\overline { \\alpha ( z ) } = \\alpha ( \\bar { z } ) $",
"$ z $",
"$ \\bar { z } $",
"$ T ( z ) $",
"$ \\bar { z } _ { k } = z _ { k } ^ { \\prime } $",
"$ \\bar { z } \\rightarrow z $",
"$ \\overline { \\alpha ( z ) } = \\alpha ( \\bar { z } ) $",
"$ \\bar { c } $",
"$ z _ { k } $",
"$ z _ { k } ^ { \\prime } $",
"$ T = \\bar { T } $",
"$ T _ { x y } = 0 $",
"$ \\langle \\Phi _ { i _ { 1 } } ( z _ { 1 } , \\bar { z } _ { 1 } ) \\ldots \\Phi _ { { i } _ { 2 n } } ( z _ { 2 n } , \\bar { z } _ { 2 n } ) \\rangle $",
"$ ( z _ { 1 } , \\ldots , z _ { n } , \\\\ \\bar { z } _ { 1 } , \\ldots , \\bar { z } _ { n } ) $",
"$ ( z _ { 1 } , \\ldots , z _ { n } , \\\\ \\bar { z } _ { 1 } , \\ldots , \\bar { z } _ { n } ) $",
"$ \\langle \\Phi _ { i _ { 1 } } ( z _ { 1 } , \\bar { z } _ { 1 } ) \\ldots \\Phi _ { i _ { 2 n } } ( z _ { 2 n } , \\bar { z } _ { 2 n } ) \\rangle $",
"$ z _ { 1 } , \\ldots , z _ { 2 n } $",
"$ \\Phi _ { i _ { n + 1 } } $",
"$ \\Phi _ { i _ { 2 n } } $",
"$ \\bar { \\Delta } $",
"$ 2 \\times 2 $",
"$ \\Phi $",
"$ \\Psi $",
"$ \\Psi $",
"$ L _ { 0 } , L _ { \\pm 1 } $",
"\\begin{equation*} \\langle T ( z ) \\Phi _ { i _ { 1 } } ( z _ { 1 } , \\bar { z } _ { 1 } ) \\ldots \\rangle = \\sum _ { k } \\sum _ { j _ { k } } [ \\frac { \\Delta _ { i _ { k } } ^ { j _ { k } } } { ( z - z _ { k } ) ^ { 2 } } + \\frac { \\delta _ { i _ { k } } ^ { j _ { k } } } { ( z - z _ { k } ) } \\frac { \\partial } { \\partial z _ { k } } ] \\langle \\Phi _ { j _ { 1 } } ( z _ { 1 } , \\bar { z } _ { 1 } ) \\ldots \\rangle \\> . \\end{equation*}",
"\\begin{equation*} T ( z ) : = \\bar { T } ( z ) \\> \\> \\> \\> \\> \\> I m ( z ) < 0 \\end{equation*}",
"\\begin{align*} \\frac { 1 } { 2 \\pi i } { \\oint } _ { c } d z \\> \\alpha ( z ) \\langle T ( z ) \\Phi _ { i _ { 1 } } ( z _ { 1 } , z _ { 1 } ^ { \\prime } ) \\ldots \\rangle + \\frac { 1 } { 2 \\pi i } \\oint _ { \\> \\bar { c } } d z \\> \\alpha ( z ) \\langle T ( z ) \\Phi _ { i _ { 1 } } ( z _ { 1 } , z _ { 1 } ^ { \\prime } ) \\ldots \\rangle \\\\ = \\sum _ { k } \\sum _ { j _ { k } } [ \\alpha ^ { \\prime } ( z _ { k } ) \\Delta _ { i _ { k } } ^ { j _ { k } } + \\delta _ { i _ { k } } ^ { j _ { k } } \\alpha ( z _ { k } ) \\frac { \\partial } { \\partial z _ { k } } + \\alpha ^ { \\prime } ( z _ { k } ^ { \\prime } ) \\bar { \\Delta } _ { i _ { k } } ^ { j _ { k } } + \\alpha ( z _ { k } ^ { \\prime } ) \\frac { \\partial } { \\partial z _ { k } ^ { \\prime } } ] \\langle \\Phi _ { j _ { 1 } } ( z _ { 1 } , z _ { 1 } ^ { \\prime } ) \\ldots \\rangle , \\end{align*}",
"\\begin{align*} \\langle T ( z ) \\Phi _ { i _ { 1 } } ( z _ { 1 } , { z ^ { \\prime } } _ { 1 } ) \\ldots \\rangle = \\> \\> \\> \\> \\> \\> \\> \\> \\> \\> \\> \\> \\> \\> \\> \\> \\> \\> \\> \\> \\> \\> \\> \\> \\> \\> \\> \\> \\> \\> \\> \\> \\> \\> \\> \\> \\> \\> \\> \\> \\> \\> \\> \\> \\> \\> \\> \\> \\> \\> \\> \\> \\> \\> \\> \\> \\> \\> \\> \\> \\> \\> \\> \\> \\> \\> \\> \\> \\> \\> \\> \\> \\> \\> \\> \\> \\> \\> \\> \\> \\\\ \\sum _ { k } \\sum _ { j _ { k } } [ \\frac { \\Delta _ { j _ { k } } ^ { i _ { k } } } { ( z - z _ { k } ) ^ { 2 } } + \\frac { \\delta _ { j _ { k } } ^ { i _ { k } } } { ( z - z _ { k } ) } \\frac { \\partial } { \\partial z _ { k } } + \\frac { \\bar { \\Delta } _ { i _ { k } } ^ { j _ { k } } } { ( z - z _ { k } ^ { \\prime } ) ^ { 2 } } + \\frac { \\delta _ { i _ { k } } ^ { j _ { k } } } { ( z - z _ { k } ^ { \\prime } ) } \\frac { \\partial } { \\partial z _ { k } ^ { \\prime } } ] \\langle \\Phi _ { j _ { 1 } } ( z _ { 1 } , z _ { 1 } ^ { \\prime } ) \\ldots \\rangle \\> . \\end{align*}"
],
"latex_expand": [
"$ \\left< \\bar \\mitT \\mupPhi \\ldots \\right> $",
"$ \\langle \\mitT \\mupPhi \\ldots \\rangle $",
"$ \\langle \\mupPhi \\ldots \\rangle $",
"$ \\mitalpha $",
"$ \\bar { \\mitalpha } $",
"$ \\mupPhi _ { \\miti _ { \\mitk } } $",
"$ \\mitI \\mitm ( \\mitz ) > 0 $",
"$ \\overline { \\mitalpha ( \\mitz ) } = \\mitalpha ( \\bar { \\mitz } ) $",
"$ \\mitz $",
"$ \\bar { \\mitz } $",
"$ \\mitT ( \\mitz ) $",
"$ \\bar { \\mitz } _ { \\mitk } = \\mitz _ { \\mitk } ^ { \\prime } $",
"$ \\bar { \\mitz } \\rightarrow \\mitz $",
"$ \\overline { \\mitalpha ( \\mitz ) } = \\mitalpha ( \\bar { \\mitz } ) $",
"$ \\bar { \\mitc } $",
"$ \\mitz _ { \\mitk } $",
"$ \\mitz _ { \\mitk } ^ { \\prime } $",
"$ \\mitT = \\bar { \\mitT } $",
"$ \\mitT _ { \\mitx \\mity } = 0 $",
"$ \\left\\langle \\mupPhi _ { \\miti _ { 1 } } ( \\mitz _ { 1 } , \\bar { \\mitz } _ { 1 } ) \\ldots \\mupPhi _ { \\miti _ { 2 \\mitn } } ( \\mitz _ { 2 \\mitn } , \\bar { \\mitz } _ { 2 \\mitn } ) \\right\\rangle $",
"$ ( \\mitz _ { 1 } , \\ldots , \\mitz _ { \\mitn } , \\\\ \\bar { \\mitz } _ { 1 } , \\ldots , \\bar { \\mitz } _ { \\mitn } ) $",
"$ ( \\mitz _ { 1 } , \\ldots , \\mitz _ { \\mitn } , \\\\ \\bar { \\mitz } _ { 1 } , \\ldots , \\bar { \\mitz } _ { \\mitn } ) $",
"$ \\left\\langle \\mupPhi { \\miti _ { 1 } } ( \\mitz _ { 1 } , \\bar { \\mitz } _ { 1 } ) \\ldots \\mupPhi _ { \\miti _ { 2 \\mitn } } ( \\mitz _ { 2 \\mitn } , \\bar { \\mitz } _ { 2 \\mitn } ) \\right\\rangle $",
"$ \\mitz _ { 1 } , \\ldots , \\mitz _ { 2 \\mitn } $",
"$ \\mupPhi _ { \\miti _ { \\mitn + 1 } } $",
"$ \\mupPhi _ { \\miti _ { 2 \\mitn } } $",
"$ \\bar { \\mupDelta } $",
"$ 2 \\times 2 $",
"$ \\mupPhi $",
"$ \\mupPsi $",
"$ \\mupPsi $",
"$ \\mitL _ { 0 } , \\mitL _ { \\pm 1 } $",
"\\begin{equation*} \\left\\langle \\mitT ( \\mitz ) \\mupPhi _ { \\miti _ { 1 } } ( \\mitz _ { 1 } , \\bar { \\mitz } _ { 1 } ) \\ldots \\right\\rangle = \\sum _ { \\mitk } \\sum _ { \\mitj _ { \\mitk } } \\left[ \\frac { \\mupDelta _ { \\miti _ { \\mitk } } ^ { \\mitj _ { \\mitk } } } { ( \\mitz - \\mitz _ { \\mitk } ) ^ { 2 } } + \\frac { \\mitdelta _ { \\miti _ { \\mitk } } ^ { \\mitj _ { \\mitk } } } { ( \\mitz - \\mitz _ { \\mitk } ) } \\frac { \\mitpartial } { \\mitpartial \\mitz _ { \\mitk } } \\right] \\left\\langle \\mupPhi _ { \\mitj _ { 1 } } ( \\mitz _ { 1 } , \\bar { \\mitz } _ { 1 } ) \\ldots \\right\\rangle \\> . \\end{equation*}",
"\\begin{equation*} \\mitT ( \\mitz ) : = \\bar { \\mitT } ( \\mitz ) \\> \\> \\> \\> \\> \\> \\mitI \\mitm ( \\mitz ) < 0 \\end{equation*}",
"\\begin{align*} \\frac { 1 } { 2 \\mitpi \\miti } { \\oint } _ { \\mitc } \\mitd \\mitz \\> \\mitalpha ( \\mitz ) \\left\\langle \\mitT ( \\mitz ) \\mupPhi _ { \\miti _ { 1 } } ( \\mitz _ { 1 } , \\mitz _ { 1 } ^ { \\prime } ) \\ldots \\right\\rangle + \\frac { 1 } { 2 \\mitpi \\miti } \\oint _ { \\> \\bar { \\mitc } } \\mitd \\mitz \\> \\mitalpha ( \\mitz ) \\left\\langle \\mitT ( \\mitz ) \\mupPhi _ { \\miti _ { 1 } } ( \\mitz _ { 1 } , \\mitz _ { 1 } ^ { \\prime } ) \\ldots \\right\\rangle \\\\ = \\sum _ { \\mitk } \\sum _ { \\mitj _ { \\mitk } } \\left[ \\mitalpha ^ { \\prime } ( \\mitz _ { \\mitk } ) \\mupDelta _ { \\miti _ { \\mitk } } ^ { \\mitj _ { \\mitk } } + \\mitdelta _ { \\miti _ { \\mitk } } ^ { \\mitj _ { \\mitk } } \\mitalpha ( \\mitz _ { \\mitk } ) \\frac { \\mitpartial } { \\mitpartial \\mitz _ { \\mitk } } + \\mitalpha ^ { \\prime } ( \\mitz _ { \\mitk } ^ { \\prime } ) \\bar { \\mupDelta } _ { \\miti _ { \\mitk } } ^ { \\mitj _ { \\mitk } } + \\mitalpha ( \\mitz _ { \\mitk } ^ { \\prime } ) \\frac { \\mitpartial } { \\mitpartial \\mitz _ { \\mitk } ^ { \\prime } } \\right] \\left\\langle \\mupPhi _ { \\mitj _ { 1 } } ( \\mitz _ { 1 } , \\mitz _ { 1 } ^ { \\prime } ) \\ldots \\right\\rangle , \\end{align*}",
"\\begin{align*} \\left\\langle \\mitT ( \\mitz ) \\mupPhi _ { \\miti _ { 1 } } ( \\mitz _ { 1 } , { \\mitz ^ { \\prime } } _ { 1 } ) \\ldots \\right\\rangle = \\> \\> \\> \\> \\> \\> \\> \\> \\> \\> \\> \\> \\> \\> \\> \\> \\> \\> \\> \\> \\> \\> \\> \\> \\> \\> \\> \\> \\> \\> \\> \\> \\> \\> \\> \\> \\> \\> \\> \\> \\> \\> \\> \\> \\> \\> \\> \\> \\> \\> \\> \\> \\> \\> \\> \\> \\> \\> \\> \\> \\> \\> \\> \\> \\> \\> \\> \\> \\> \\> \\> \\> \\> \\> \\> \\> \\> \\> \\> \\> \\\\ \\sum _ { \\mitk } \\sum _ { \\mitj _ { \\mitk } } \\left[ \\frac { \\mupDelta _ { \\mitj _ { \\mitk } } ^ { \\miti _ { \\mitk } } } { ( \\mitz - \\mitz _ { \\mitk } ) ^ { 2 } } + \\frac { \\mitdelta _ { \\mitj _ { \\mitk } } ^ { \\miti _ { \\mitk } } } { ( \\mitz - \\mitz _ { \\mitk } ) } \\frac { \\mitpartial } { \\mitpartial \\mitz _ { \\mitk } } + \\frac { \\bar { \\mupDelta } _ { \\miti _ { \\mitk } } ^ { \\mitj _ { \\mitk } } } { ( \\mitz - \\mitz _ { \\mitk } ^ { \\prime } ) ^ { 2 } } + \\frac { \\mitdelta _ { \\miti _ { \\mitk } } ^ { \\mitj _ { \\mitk } } } { ( \\mitz - \\mitz _ { \\mitk } ^ { \\prime } ) } \\frac { \\mitpartial } { \\mitpartial \\mitz _ { \\mitk } ^ { \\prime } } \\right] \\left\\langle \\mupPhi _ { \\mitj _ { 1 } } ( \\mitz _ { 1 } , \\mitz _ { 1 } ^ { \\prime } ) \\ldots \\right\\rangle \\> . \\end{align*}"
],
"x_min": [
0.3711000084877014,
0.15690000355243683,
0.7117999792098999,
0.506600022315979,
0.5619000196456909,
0.6018999814987183,
0.2425999939441681,
0.4036000072956085,
0.789900004863739,
0.15690000355243683,
0.7276999950408936,
0.2524999976158142,
0.4747999906539917,
0.24050000309944153,
0.210099995136261,
0.42570000886917114,
0.48510000109672546,
0.5950000286102295,
0.4699000120162964,
0.3165000081062317,
0.7457000017166138,
0.15690000355243683,
0.19280000030994415,
0.5508000254631042,
0.3116999864578247,
0.3828999996185303,
0.4415999948978424,
0.7968000173568726,
0.5149000287055969,
0.5695000290870667,
0.597100019454956,
0.7746999859809875,
0.18379999697208405,
0.390500009059906,
0.16380000114440918,
0.16380000114440918
],
"y_min": [
0.10689999908208847,
0.12399999797344208,
0.12399999797344208,
0.22509999573230743,
0.22360000014305115,
0.2378000020980835,
0.2533999979496002,
0.2671000063419342,
0.2734000086784363,
0.288100004196167,
0.301800012588501,
0.3553999960422516,
0.3578999936580658,
0.37040001153945923,
0.48829999566078186,
0.5220000147819519,
0.5175999999046326,
0.5170999765396118,
0.5351999998092651,
0.6845999956130981,
0.6845999956130981,
0.7002000212669373,
0.7163000106811523,
0.7207000255584717,
0.7333999872207642,
0.7333999872207642,
0.7318999767303467,
0.75,
0.7656000256538391,
0.7656000256538391,
0.7656000256538391,
0.7817000150680542,
0.14790000021457672,
0.3296000063419342,
0.39989998936653137,
0.5884000062942505
],
"x_max": [
0.43880000710487366,
0.22259999811649323,
0.7642999887466431,
0.5189999938011169,
0.5742999911308289,
0.6288999915122986,
0.32690000534057617,
0.49970000982284546,
0.7996000051498413,
0.1673000007867813,
0.7649999856948853,
0.3125999867916107,
0.5224999785423279,
0.33660000562667847,
0.2184000015258789,
0.44369998574256897,
0.5030999779701233,
0.6467999815940857,
0.5314000248908997,
0.5465999841690063,
0.836899995803833,
0.23980000615119934,
0.42289999127388,
0.6330000162124634,
0.35519999265670776,
0.41749998927116394,
0.45680001378059387,
0.8355000019073486,
0.5286999940872192,
0.5839999914169312,
0.6115999817848206,
0.8348000049591064,
0.7753999829292297,
0.6039999723434448,
0.7947999835014343,
0.7947999835014343
],
"y_max": [
0.12200000137090683,
0.13770000636577606,
0.13770000636577606,
0.2313999980688095,
0.2313999980688095,
0.25099998712539673,
0.2671000063419342,
0.2827000021934509,
0.27970001101493835,
0.29589998722076416,
0.3149999976158142,
0.3691999912261963,
0.3677000105381012,
0.3871999979019165,
0.4961000084877014,
0.5303000211715698,
0.5321999788284302,
0.5282999873161316,
0.5483999848365784,
0.6977999806404114,
0.6977999806404114,
0.7139000296592712,
0.7300000190734863,
0.7294999957084656,
0.7470999956130981,
0.7461000084877014,
0.7430999875068665,
0.7602999806404114,
0.7749000191688538,
0.7749000191688538,
0.7749000191688538,
0.7939000129699707,
0.1923000067472458,
0.3472000062465668,
0.47350001335144043,
0.6552000045776367
],
"expr_type": [
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"isolated",
"isolated",
"isolated",
"isolated"
]
} |
|
0002142_page07 | {
"latex": [
"$u={(z_{1}-{\\bar {z}}_{1})(z_{2}-{\\bar {z}}_{2})}/ {(z_{1}-z_{2})({\\bar {z}}_{1}-{\\bar {z}}_{2}) (z_{1}-{\\bar {z}}_{2})({\\bar {z}}_{1}-z_{2})}$",
"$v=(z_{1}-z_{2})({\\bar {z}}_{1}-{\\bar {z}}_{2})/(z_{1}-{\\bar {z}}_{1}) (z_{2}-{\\bar {z}}_{2})\\:$",
"$f_{1},f_{2},f_{3}$",
"$f_{1},f_{2},f_{3}$",
"$\\phi $",
"$\\psi $",
"$w=\\nabla ^{2}\\phi $",
"$J=\\nabla ^{2}\\psi $",
"$\\mu $",
"$\\eta $",
"$\\phi $",
"$\\psi $",
"\\begin {eqnarray} \\left <\\Phi (z,\\bar {z})\\right >&=&\\frac {c}{(z-\\bar {z})^{2\\Delta }}\\:,\\\\ \\left <\\Psi (z,\\bar {z})\\right >&=&\\frac 1{(z-\\bar {z})^{2\\Delta }} \\left [c^{\\prime }-2c\\log {(z-\\bar {z})}\\right ]. \\end {eqnarray}",
"\\begin {eqnarray} \\left <\\Phi (z_{1})\\Phi (z_{2})\\right >&=&u^{2\\Delta }f_{1}(v)\\:\\:\\:\\:\\:\\:\\:\\:\\:\\:\\:\\^^M\\:\\:\\:\\:\\:\\:\\:\\:\\:\\:\\:\\:\\:\\:\\:\\:\\:\\:\\:\\:\\:\\:\\:\\:\\:\\:\\:\\:\\:\\:\\:\\:\\:\\end {eqnarray}",
"\\begin {eqnarray} \\left <\\Phi (z_{1})\\Psi (z_{2})\\right >&=&u^{2\\Delta }\\left (f_{2}(v)-2\\log (z_{2}-\\bar {z_{2}})f_{1}(v)\\right )\\end {eqnarray}",
"\\begin {eqnarray} \\:\\:\\:\\:\\:\\:\\:\\:\\:\\:\\:\\:\\:\\:\\:\\:\\:\\:\\:\\:\\:\\:\\:\\:\\:\\:\\left <\\Psi (z_{1})\\Psi (z_{2})\\right >~=~ u^{2\\Delta }(f_{3}(v)-2\\log \\left [(z_{1}-{\\bar {z}}_{1}) (z_{2}-{\\bar {z}}_{2})\\right ]f_{2}(v) \\\\ \\:\\:\\:\\:\\:\\:\\:\\:\\:\\:\\:\\:\\:\\:\\:\\:\\:\\:\\:\\:\\:\\:\\:\\:\\:\\: +4\\log (z_{1}-{\\bar {z}}_{1})\\log (z_{2}-{\\bar {z}}_{2})f_{1}(v)) \\end {eqnarray}",
"\\begin {eqnarray} \\frac {\\partial {w}}{\\partial {t}}&=&-\\epsilon _{\\alpha \\beta }\\partial _{\\alpha }{\\phi }\\partial _{\\beta }{w}+\\epsilon _{\\alpha \\beta }\\partial _{\\alpha }\\psi \\partial _{\\beta }{J}+\\mu \\nabla ^{2}w~\\\\ \\frac {\\partial {\\psi }}{\\partial {t}}&=&-\\epsilon _{\\alpha \\beta }\\partial _{\\alpha }{\\phi }\\partial _{\\beta }{\\psi }+\\eta J~, \\end {eqnarray}",
"\\begin {eqnarray} V_{\\alpha }&=&\\epsilon _{\\alpha \\beta }\\partial _{\\beta }{\\phi }~\\\\ B_{\\alpha }&=&\\epsilon _{\\alpha \\beta }\\partial _{\\beta }{\\psi }~, \\end {eqnarray}"
],
"latex_norm": [
"$ u = ( z _ { 1 } - \\bar { z } _ { 1 } ) ( z _ { 2 } - \\bar { z } _ { 2 } ) \\slash ( z _ { 1 } - z _ { 2 } ) ( \\bar { z } _ { 1 } - \\bar { z } _ { 2 } ) ( z _ { 1 } - \\bar { z } _ { 2 } ) ( \\bar { z } _ { 1 } - z _ { 2 } ) $",
"$ v = ( z _ { 1 } - z _ { 2 } ) ( \\bar { z } _ { 1 } - \\bar { z } _ { 2 } ) \\slash ( z _ { 1 } - \\bar { z } _ { 1 } ) ( z _ { 2 } - \\bar { z } _ { 2 } ) \\> $",
"$ f _ { 1 } , f _ { 2 } , f _ { 3 } $",
"$ f _ { 1 } , f _ { 2 } , f _ { 3 } $",
"$ \\phi $",
"$ \\psi $",
"$ w = \\nabla ^ { 2 } \\phi $",
"$ J = \\nabla ^ { 2 } \\psi $",
"$ \\mu $",
"$ \\eta $",
"$ \\phi $",
"$ \\psi $",
"\\begin{align*} \\langle \\Phi ( z , \\bar { z } ) \\rangle & = & \\frac { c } { ( z - \\bar { z } ) ^ { 2 \\Delta } } \\> , \\\\ \\langle \\Psi ( z , \\bar { z } ) \\rangle & = & \\frac { 1 } { ( z - \\bar { z } ) ^ { 2 \\Delta } } [ c ^ { \\prime } - 2 c \\operatorname { l o g } ( z - \\bar { z } ) ] . \\end{align*}",
"\\begin{align*} \\langle \\Phi ( z _ { 1 } ) \\Phi ( z _ { 2 } ) \\rangle & = & u ^ { 2 \\Delta } f _ { 1 } ( v ) \\> \\> \\> \\> \\> \\> \\> \\> \\> \\> \\> ~ \\> \\> \\> \\> \\> \\> \\> \\> \\> \\> \\> \\> \\> \\> \\> \\> \\> \\> \\> \\> \\> \\> \\> \\> \\> \\> \\> \\> \\> \\> \\> \\> \\> \\end{align*}",
"\\begin{align*} \\langle \\Phi ( z _ { 1 } ) \\Psi ( z _ { 2 } ) \\rangle & = & u ^ { 2 \\Delta } ( f _ { 2 } ( v ) - 2 \\operatorname { l o g } ( z _ { 2 } - \\bar { z _ { 2 } } ) f _ { 1 } ( v ) ) \\end{align*}",
"\\begin{align*} \\> \\> \\> \\> \\> \\> \\> \\> \\> \\> \\> \\> \\> \\> \\> \\> \\> \\> \\> \\> \\> \\> \\> \\> \\> \\> \\langle \\Psi ( z _ { 1 } ) \\Psi ( z _ { 2 } ) \\rangle ~ = ~ u ^ { 2 \\Delta } ( f _ { 3 } ( v ) - 2 \\operatorname { l o g } [ ( z _ { 1 } - \\bar { z } _ { 1 } ) ( z _ { 2 } - \\bar { z } _ { 2 } ) ] f _ { 2 } ( v ) \\\\ \\> \\> \\> \\> \\> \\> \\> \\> \\> \\> \\> \\> \\> \\> \\> \\> \\> \\> \\> \\> \\> \\> \\> \\> \\> \\> + 4 \\operatorname { l o g } ( z _ { 1 } - \\bar { z } _ { 1 } ) \\operatorname { l o g } ( z _ { 2 } - \\bar { z } _ { 2 } ) f _ { 1 } ( v ) ) \\end{align*}",
"\\begin{align*} \\frac { \\partial w } { \\partial t } & = & - \\epsilon _ { \\alpha \\beta } \\partial _ { \\alpha } \\phi \\partial _ { \\beta } w + \\epsilon _ { \\alpha \\beta } \\partial _ { \\alpha } \\psi \\partial _ { \\beta } J + \\mu \\nabla ^ { 2 } w ~ \\\\ \\frac { \\partial \\psi } { \\partial t } & = & - \\epsilon _ { \\alpha \\beta } \\partial _ { \\alpha } \\phi \\partial _ { \\beta } \\psi + \\eta J ~ , \\end{align*}",
"\\begin{align*} V _ { \\alpha } & = & \\epsilon _ { \\alpha \\beta } \\partial _ { \\beta } \\phi ~ \\\\ B _ { \\alpha } & = & \\epsilon _ { \\alpha \\beta } \\partial _ { \\beta } \\psi ~ , \\end{align*}"
],
"latex_expand": [
"$ \\mitu = ( \\mitz _ { 1 } - \\bar { \\mitz } _ { 1 } ) ( \\mitz _ { 2 } - \\bar { \\mitz } _ { 2 } ) \\slash ( \\mitz _ { 1 } - \\mitz _ { 2 } ) ( \\bar { \\mitz } _ { 1 } - \\bar { \\mitz } _ { 2 } ) ( \\mitz _ { 1 } - \\bar { \\mitz } _ { 2 } ) ( \\bar { \\mitz } _ { 1 } - \\mitz _ { 2 } ) $",
"$ \\mitv = ( \\mitz _ { 1 } - \\mitz _ { 2 } ) ( \\bar { \\mitz } _ { 1 } - \\bar { \\mitz } _ { 2 } ) \\slash ( \\mitz _ { 1 } - \\bar { \\mitz } _ { 1 } ) ( \\mitz _ { 2 } - \\bar { \\mitz } _ { 2 } ) \\> $",
"$ \\mitf _ { 1 } , \\mitf _ { 2 } , \\mitf _ { 3 } $",
"$ \\mitf _ { 1 } , \\mitf _ { 2 } , \\mitf _ { 3 } $",
"$ \\mitphi $",
"$ \\mitpsi $",
"$ \\mitw = \\nabla ^ { 2 } \\mitphi $",
"$ \\mitJ = \\nabla ^ { 2 } \\mitpsi $",
"$ \\mitmu $",
"$ \\miteta $",
"$ \\mitphi $",
"$ \\mitpsi $",
"\\begin{align*} \\left\\langle \\mupPhi ( \\mitz , \\bar { \\mitz } ) \\right\\rangle & = & \\frac { \\mitc } { ( \\mitz - \\bar { \\mitz } ) ^ { 2 \\mupDelta } } \\> , \\\\ \\left\\langle \\mupPsi ( \\mitz , \\bar { \\mitz } ) \\right\\rangle & = & \\frac { 1 } { ( \\mitz - \\bar { \\mitz } ) ^ { 2 \\mupDelta } } \\left[ \\mitc ^ { \\prime } - 2 \\mitc \\operatorname { l o g } ( \\mitz - \\bar { \\mitz } ) \\right] . \\end{align*}",
"\\begin{align*} \\left\\langle \\mupPhi ( \\mitz _ { 1 } ) \\mupPhi ( \\mitz _ { 2 } ) \\right\\rangle & = & \\mitu ^ { 2 \\mupDelta } \\mitf _ { 1 } ( \\mitv ) \\> \\> \\> \\> \\> \\> \\> \\> \\> \\> \\> ~ \\> \\> \\> \\> \\> \\> \\> \\> \\> \\> \\> \\> \\> \\> \\> \\> \\> \\> \\> \\> \\> \\> \\> \\> \\> \\> \\> \\> \\> \\> \\> \\> \\> \\end{align*}",
"\\begin{align*} \\left\\langle \\mupPhi ( \\mitz _ { 1 } ) \\mupPsi ( \\mitz _ { 2 } ) \\right\\rangle & = & \\mitu ^ { 2 \\mupDelta } \\left( \\mitf _ { 2 } ( \\mitv ) - 2 \\operatorname { l o g } ( \\mitz _ { 2 } - \\bar { \\mitz _ { 2 } } ) \\mitf _ { 1 } ( \\mitv ) \\right) \\end{align*}",
"\\begin{align*} \\> \\> \\> \\> \\> \\> \\> \\> \\> \\> \\> \\> \\> \\> \\> \\> \\> \\> \\> \\> \\> \\> \\> \\> \\> \\> \\left\\langle \\mupPsi ( \\mitz _ { 1 } ) \\mupPsi ( \\mitz _ { 2 } ) \\right\\rangle ~ = ~ \\mitu ^ { 2 \\mupDelta } ( \\mitf _ { 3 } ( \\mitv ) - 2 \\operatorname { l o g } \\left[ ( \\mitz _ { 1 } - \\bar { \\mitz } _ { 1 } ) ( \\mitz _ { 2 } - \\bar { \\mitz } _ { 2 } ) \\right] \\mitf _ { 2 } ( \\mitv ) \\\\ \\> \\> \\> \\> \\> \\> \\> \\> \\> \\> \\> \\> \\> \\> \\> \\> \\> \\> \\> \\> \\> \\> \\> \\> \\> \\> + 4 \\operatorname { l o g } ( \\mitz _ { 1 } - \\bar { \\mitz } _ { 1 } ) \\operatorname { l o g } ( \\mitz _ { 2 } - \\bar { \\mitz } _ { 2 } ) \\mitf _ { 1 } ( \\mitv ) ) \\end{align*}",
"\\begin{align*} \\frac { \\mitpartial \\mitw } { \\mitpartial \\mitt } & = & - \\mitepsilon _ { \\mitalpha \\mitbeta } \\mitpartial _ { \\mitalpha } \\mitphi \\mitpartial _ { \\mitbeta } \\mitw + \\mitepsilon _ { \\mitalpha \\mitbeta } \\mitpartial _ { \\mitalpha } \\mitpsi \\mitpartial _ { \\mitbeta } \\mitJ + \\mitmu \\nabla ^ { 2 } \\mitw ~ \\\\ \\frac { \\mitpartial \\mitpsi } { \\mitpartial \\mitt } & = & - \\mitepsilon _ { \\mitalpha \\mitbeta } \\mitpartial _ { \\mitalpha } \\mitphi \\mitpartial _ { \\mitbeta } \\mitpsi + \\miteta \\mitJ ~ , \\end{align*}",
"\\begin{align*} \\mitV _ { \\mitalpha } & = & \\mitepsilon _ { \\mitalpha \\mitbeta } \\mitpartial _ { \\mitbeta } \\mitphi ~ \\\\ \\mitB _ { \\mitalpha } & = & \\mitepsilon _ { \\mitalpha \\mitbeta } \\mitpartial _ { \\mitbeta } \\mitpsi ~ , \\end{align*}"
],
"x_min": [
0.210099995136261,
0.15690000355243683,
0.5203999876976013,
0.373199999332428,
0.597100019454956,
0.1949000060558319,
0.31380000710487366,
0.5210999846458435,
0.6344000101089478,
0.6862000226974487,
0.7616000175476074,
0.8141000270843506,
0.3151000142097473,
0.29089999198913574,
0.2888999879360199,
0.2906000018119812,
0.3116999864578247,
0.4235999882221222
],
"y_min": [
0.4311999976634979,
0.447299987077713,
0.448199987411499,
0.5127000212669373,
0.6460000276565552,
0.6621000170707703,
0.7515000104904175,
0.7515000104904175,
0.7567999958992004,
0.7567999958992004,
0.7695000171661377,
0.7695000171661377,
0.12470000237226486,
0.3125,
0.34619998931884766,
0.3799000084400177,
0.6758000254631042,
0.791100025177002
],
"x_max": [
0.6723999977111816,
0.4796000123023987,
0.5874000191688538,
0.4408999979496002,
0.6082000136375427,
0.20800000429153442,
0.3864000141620636,
0.5936999917030334,
0.6460999846458435,
0.6966000199317932,
0.7732999920845032,
0.8271999955177307,
0.6772000193595886,
0.521399974822998,
0.7035999894142151,
0.772599995136261,
0.6807000041007996,
0.5680000185966492
],
"y_max": [
0.4449000060558319,
0.460999995470047,
0.4603999853134155,
0.5249000191688538,
0.6582000255584717,
0.6743000149726868,
0.7656999826431274,
0.7656999826431274,
0.7656000256538391,
0.7656000256538391,
0.7817000150680542,
0.7817000150680542,
0.18850000202655792,
0.3353999853134155,
0.3686000108718872,
0.4223000109195709,
0.7426999807357788,
0.828000009059906
],
"expr_type": [
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"isolated",
"isolated",
"isolated",
"isolated",
"isolated",
"isolated"
]
} |
|
0002142_page08 | {
"latex": [
"$\\epsilon _{\\alpha \\beta }$",
"$\\epsilon _{12}=1$",
"$\\phi $",
"$\\psi $",
"$\\phi $",
"$\\psi $",
"$\\Delta =\\frac {-5}{7}$",
"$L$",
"\\begin {eqnarray} \\left <V_{x}(x,y)\\right >&=&\\partial _{y}\\left <\\phi (x,y)\\right >=-\\frac {2\\Delta C}{y^{2\\Delta +1}}~\\\\ \\left <V_{y}(x,y)\\right >&=&-\\partial _{x}\\left <\\phi (x,y)\\right >=0~, \\end {eqnarray}",
"\\begin {eqnarray} \\left <B_{x}(x,y)\\right >&=&\\partial _{y}\\left <\\psi (x,y)\\right >=-\\frac {2\\Delta }{y^{2\\Delta }}\\left [(C^{\\prime }+2C)-2C\\log y\\right ]~\\\\ \\left <B_{y}(x,y)\\right >&=&-\\partial _{x}\\left <\\psi (x,y)\\right >=0~. \\end {eqnarray}",
"\\begin {eqnarray} \\left <\\phi (x,y)\\right >&=&\\left (\\frac {\\pi }{L} \\right )^{2\\Delta }\\frac {C}{(\\sin {\\frac {\\pi }{L}}{y})^{2\\Delta }}\\\\ \\left <\\psi (x,y)\\right >&=&\\left (\\frac {\\pi }{L}\\right )^{2\\Delta } \\frac {1}{(\\sin {\\frac {\\pi }{L}}{y})^{2\\Delta }} \\left (C^{\\prime }+2C\\log {\\frac {\\pi }{L}}-2C\\log \\sin ({\\frac {\\pi }{L}}{y}) \\right ). \\end {eqnarray}"
],
"latex_norm": [
"$ \\epsilon _ { \\alpha \\beta } $",
"$ \\epsilon _ { 1 2 } = 1 $",
"$ \\phi $",
"$ \\psi $",
"$ \\phi $",
"$ \\psi $",
"$ \\Delta = \\frac { - 5 } { 7 } $",
"$ L $",
"\\begin{align*} \\langle V _ { x } ( x , y ) \\rangle & = & \\partial _ { y } \\langle \\phi ( x , y ) \\rangle = - \\frac { 2 \\Delta C } { y ^ { 2 \\Delta + 1 } } ~ \\\\ \\langle V _ { y } ( x , y ) \\rangle & = & - \\partial _ { x } \\langle \\phi ( x , y ) \\rangle = 0 ~ , \\end{align*}",
"\\begin{align*} \\langle B _ { x } ( x , y ) \\rangle & = & \\partial _ { y } \\langle \\psi ( x , y ) \\rangle = - \\frac { 2 \\Delta } { y ^ { 2 \\Delta } } [ ( C ^ { \\prime } + 2 C ) - 2 C \\operatorname { l o g } y ] ~ \\\\ \\langle B _ { y } ( x , y ) \\rangle & = & - \\partial _ { x } \\langle \\psi ( x , y ) \\rangle = 0 ~ . \\end{align*}",
"\\begin{align*} \\langle \\phi ( x , y ) \\rangle & = & { ( \\frac { \\pi } { L } ) } ^ { 2 \\Delta } \\frac { C } { ( \\operatorname { s i n } \\frac { \\pi } { L } y ) ^ { 2 \\Delta } } \\\\ \\langle \\psi ( x , y ) \\rangle & = & { ( \\frac { \\pi } { L } ) } ^ { 2 \\Delta } \\frac { 1 } { ( \\operatorname { s i n } \\frac { \\pi } { L } y ) ^ { 2 \\Delta } } ( C ^ { \\prime } + 2 C \\operatorname { l o g } \\frac { \\pi } { L } - 2 C \\operatorname { l o g } \\operatorname { s i n } ( \\frac { \\pi } { L } y ) ) . \\end{align*}"
],
"latex_expand": [
"$ \\mitepsilon _ { \\mitalpha \\mitbeta } $",
"$ \\mitepsilon _ { 1 2 } = 1 $",
"$ \\mitphi $",
"$ \\mitpsi $",
"$ \\mitphi $",
"$ \\mitpsi $",
"$ \\mupDelta = \\frac { - 5 } { 7 } $",
"$ \\mitL $",
"\\begin{align*} \\left\\langle \\mitV _ { \\mitx } ( \\mitx , \\mity ) \\right\\rangle & = & \\mitpartial _ { \\mity } \\left\\langle \\mitphi ( \\mitx , \\mity ) \\right\\rangle = - \\frac { 2 \\mupDelta \\mitC } { \\mity ^ { 2 \\mupDelta + 1 } } ~ \\\\ \\left\\langle \\mitV _ { \\mity } ( \\mitx , \\mity ) \\right\\rangle & = & - \\mitpartial _ { \\mitx } \\left\\langle \\mitphi ( \\mitx , \\mity ) \\right\\rangle = 0 ~ , \\end{align*}",
"\\begin{align*} \\left\\langle \\mitB _ { \\mitx } ( \\mitx , \\mity ) \\right\\rangle & = & \\mitpartial _ { \\mity } \\left\\langle \\mitpsi ( \\mitx , \\mity ) \\right\\rangle = - \\frac { 2 \\mupDelta } { \\mity ^ { 2 \\mupDelta } } \\left[ ( \\mitC ^ { \\prime } + 2 \\mitC ) - 2 \\mitC \\operatorname { l o g } \\mity \\right] ~ \\\\ \\left\\langle \\mitB _ { \\mity } ( \\mitx , \\mity ) \\right\\rangle & = & - \\mitpartial _ { \\mitx } \\left\\langle \\mitpsi ( \\mitx , \\mity ) \\right\\rangle = 0 ~ . \\end{align*}",
"\\begin{align*} \\left\\langle \\mitphi ( \\mitx , \\mity ) \\right\\rangle & = & { \\left( \\frac { \\mitpi } { \\mitL } \\right) } ^ { 2 \\mupDelta } \\frac { \\mitC } { ( \\operatorname { s i n } \\frac { \\mitpi } { \\mitL } \\mity ) ^ { 2 \\mupDelta } } \\\\ \\left\\langle \\mitpsi ( \\mitx , \\mity ) \\right\\rangle & = & { \\left( \\frac { \\mitpi } { \\mitL } \\right) } ^ { 2 \\mupDelta } \\frac { 1 } { ( \\operatorname { s i n } \\frac { \\mitpi } { \\mitL } \\mity ) ^ { 2 \\mupDelta } } \\left( \\mitC ^ { \\prime } + 2 \\mitC \\operatorname { l o g } \\frac { \\mitpi } { \\mitL } - 2 \\mitC \\operatorname { l o g } \\operatorname { s i n } ( \\frac { \\mitpi } { \\mitL } \\mity ) \\right) . \\end{align*}"
],
"x_min": [
0.21080000698566437,
0.5715000033378601,
0.4104999899864197,
0.4657999873161316,
0.23569999635219574,
0.2881999909877777,
0.7554000020027161,
0.6600000262260437,
0.3393000066280365,
0.25429999828338623,
0.21699999272823334
],
"y_min": [
0.11230000108480453,
0.10939999669790268,
0.125,
0.125,
0.1889999955892563,
0.1889999955892563,
0.3628000020980835,
0.44530001282691956,
0.21040000021457672,
0.29789999127388,
0.4828999936580658
],
"x_max": [
0.2371000051498413,
0.6295999884605408,
0.42160001397132874,
0.4788999855518341,
0.2468000054359436,
0.3012999892234802,
0.8223999738693237,
0.6730999946594238,
0.652400016784668,
0.7387999892234802,
0.7746999859809875
],
"y_max": [
0.1225999966263771,
0.1200999990105629,
0.13670000433921814,
0.13670000433921814,
0.2011999934911728,
0.2011999934911728,
0.3788999915122986,
0.4546000063419342,
0.26660001277923584,
0.35409998893737793,
0.5634999871253967
],
"expr_type": [
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"isolated",
"isolated",
"isolated"
]
} |
|
0002194_page01 | {
"latex": [
"${}^1$",
"${}^2$",
"${}^1$",
"${}^2$",
"$B$",
"$B$",
"$\\alpha '$"
],
"latex_norm": [
"$ { } ^ { 1 } $",
"$ { } ^ { 2 } $",
"$ { } ^ { 1 } $",
"$ { } ^ { 2 } $",
"$ B $",
"$ B $",
"$ \\alpha ^ { \\prime } $"
],
"latex_expand": [
"$ { } ^ { 1 } $",
"$ { } ^ { 2 } $",
"$ { } ^ { 1 } $",
"$ { } ^ { 2 } $",
"$ \\mitB $",
"$ \\mitB $",
"$ \\mitalpha ^ { \\prime } $"
],
"x_min": [
0.4471000134944916,
0.6723999977111816,
0.20319999754428864,
0.23080000281333923,
0.3917999863624573,
0.4187999963760376,
0.49549999833106995
],
"y_min": [
0.3140000104904175,
0.3140000104904175,
0.34130001068115234,
0.385699987411499,
0.5512999892234802,
0.6455000042915344,
0.6919000148773193
],
"x_max": [
0.4553999900817871,
0.6807000041007996,
0.21150000393390656,
0.23980000615119934,
0.4083999991416931,
0.43540000915527344,
0.5134999752044678
],
"y_max": [
0.3257000148296356,
0.3257000148296356,
0.35350000858306885,
0.39739999175071716,
0.5619999766349792,
0.6561999917030334,
0.7031000256538391
],
"expr_type": [
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded"
]
} |
|
0002194_page02 | {
"latex": [
"$AdS$",
"$AdS_5$",
"$\\alpha '$",
"$g_s$"
],
"latex_norm": [
"$ A d S $",
"$ A d S _ { 5 } $",
"$ \\alpha ^ { \\prime } $",
"$ g _ { s } $"
],
"latex_expand": [
"$ \\mitA \\mitd \\mitS $",
"$ \\mitA \\mitd \\mitS _ { 5 } $",
"$ \\mitalpha ^ { \\prime } $",
"$ \\mitg _ { \\mits } $"
],
"x_min": [
0.42570000886917114,
0.2612000107765198,
0.8375999927520752,
0.3779999911785126
],
"y_min": [
0.350600004196167,
0.37450000643730164,
0.7035999894142151,
0.7314000129699707
],
"x_max": [
0.4643999934196472,
0.3068000078201294,
0.8555999994277954,
0.3953000009059906
],
"y_max": [
0.361299991607666,
0.3871999979019165,
0.7148000001907349,
0.7411999702453613
],
"expr_type": [
"embedded",
"embedded",
"embedded",
"embedded"
]
} |
|
0002194_page03 | {
"latex": [
"$B$",
"$B$",
"$\\alpha '$",
"$F^4$",
"$\\alpha '$",
"$B$",
"$n$",
"$n$"
],
"latex_norm": [
"$ B $",
"$ B $",
"$ \\alpha ^ { \\prime } $",
"$ F ^ { 4 } $",
"$ \\alpha ^ { \\prime } $",
"$ B $",
"$ n $",
"$ n $"
],
"latex_expand": [
"$ \\mitB $",
"$ \\mitB $",
"$ \\mitalpha ^ { \\prime } $",
"$ \\mitF ^ { 4 } $",
"$ \\mitalpha ^ { \\prime } $",
"$ \\mitB $",
"$ \\mitn $",
"$ \\mitn $"
],
"x_min": [
0.2515999972820282,
0.2460000067949295,
0.691100001335144,
0.6966000199317932,
0.785099983215332,
0.7692000269889832,
0.186599999666214,
0.691100001335144
],
"y_min": [
0.14839999377727509,
0.17190000414848328,
0.45410001277923584,
0.5473999977111816,
0.54830002784729,
0.6431000232696533,
0.7827000021934509,
0.7827000021934509
],
"x_max": [
0.26750001311302185,
0.26260000467300415,
0.7091000080108643,
0.72079998254776,
0.8030999898910522,
0.7857999801635742,
0.19699999690055847,
0.7014999985694885
],
"y_max": [
0.15870000422000885,
0.18219999969005585,
0.46480000019073486,
0.5590999722480774,
0.5590000152587891,
0.6538000106811523,
0.7886000275611877,
0.7886000275611877
],
"expr_type": [
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded"
]
} |
|
0002194_page04 | {
"latex": [
"$B$",
"$F^4$",
"$B$",
"$F^4$"
],
"latex_norm": [
"$ B $",
"$ F ^ { 4 } $",
"$ B $",
"$ F ^ { 4 } $"
],
"latex_expand": [
"$ \\mitB $",
"$ \\mitF ^ { 4 } $",
"$ \\mitB $",
"$ \\mitF ^ { 4 } $"
],
"x_min": [
0.3537999987602234,
0.37040001153945923,
0.22390000522136688,
0.2687999904155731
],
"y_min": [
0.336899995803833,
0.5005000233650208,
0.6669999957084656,
0.7124000191688538
],
"x_max": [
0.37040001153945923,
0.3939000070095062,
0.24050000309944153,
0.2922999858856201
],
"y_max": [
0.3472000062465668,
0.5121999979019165,
0.677299976348877,
0.7240999937057495
],
"expr_type": [
"embedded",
"embedded",
"embedded",
"embedded"
]
} |
|
0002194_page05 | {
"latex": [
"$B$",
"$B$",
"$B_{ij}$",
"$g_{ij}$",
"$\\Sigma $",
"$\\partial \\Sigma $",
"$B$",
"$F_{ij} = B_{ij}$",
"$B$",
"$F$",
"$B+F$",
"$B$",
"$B$",
"\\begin {eqnarray} S &=& \\frac {1}{4 \\pi \\alpha '} \\int _\\Sigma d^2 \\sigma ( g_{ij} \\partial _a x^i \\partial ^a x^j - 2 \\pi i \\alpha ' B_{ij} \\epsilon ^{ab} \\partial _a x^i \\partial _b x^j ) \\\\ &=& \\frac {1}{4 \\pi \\alpha '} \\int _\\Sigma d^2 \\sigma g_{ij} \\partial _a x^i \\partial ^a x^j - \\frac {i}{2} \\int _{\\partial \\Sigma } d \\tau B_{ij} x^i \\partial _\\tau x^j, \\end {eqnarray}",
"\\begin {equation} S_{int} = -i \\int _{\\partial \\Sigma } d \\tau A_i (x) \\partial _\\tau x^i \\label {S_int} \\end {equation}",
"$$ A_i = -\\frac {1}{2} B_{ij} x^j, $$",
"\\begin {eqnarray} \\delta _\\lambda A_i &=& \\partial _i \\lambda , \\\\ F_{ij} &=& \\partial _i A_j - \\partial _j A_i, \\\\ \\delta _\\lambda F_{ij} &=& 0. \\end {eqnarray}"
],
"latex_norm": [
"$ B $",
"$ B $",
"$ B _ { i j } $",
"$ g _ { i j } $",
"$ \\Sigma $",
"$ \\partial \\Sigma $",
"$ B $",
"$ F _ { i j } = B _ { i j } $",
"$ B $",
"$ F $",
"$ B + F $",
"$ B $",
"$ B $",
"\\begin{align*} S & = & \\frac { 1 } { 4 \\pi \\alpha ^ { \\prime } } \\int _ { \\Sigma } d ^ { 2 } \\sigma ( g _ { i j } \\partial _ { a } x ^ { i } \\partial ^ { a } x ^ { j } - 2 \\pi i \\alpha ^ { \\prime } B _ { i j } \\epsilon ^ { a b } \\partial _ { a } x ^ { i } \\partial _ { b } x ^ { j } ) \\\\ & = & \\frac { 1 } { 4 \\pi \\alpha ^ { \\prime } } \\int _ { \\Sigma } d ^ { 2 } \\sigma g _ { i j } \\partial _ { a } x ^ { i } \\partial ^ { a } x ^ { j } - \\frac { i } { 2 } \\int _ { \\partial \\Sigma } d \\tau B _ { i j } x ^ { i } \\partial _ { \\tau } x ^ { j } , \\end{align*}",
"\\begin{equation*} S _ { i n t } = - i \\int _ { \\partial \\Sigma } d \\tau A _ { i } ( x ) \\partial _ { \\tau } x ^ { i } \\end{equation*}",
"\\begin{equation*} A _ { i } = - \\frac { 1 } { 2 } B _ { i j } x ^ { j } , \\end{equation*}",
"\\begin{align*} \\delta _ { \\lambda } A _ { i } & = & \\partial _ { i } \\lambda , \\\\ F _ { i j } & = & \\partial _ { i } A _ { j } - \\partial _ { j } A _ { i } , \\\\ \\delta _ { \\lambda } F _ { i j } & = & 0 . \\end{align*}"
],
"latex_expand": [
"$ \\mitB $",
"$ \\mitB $",
"$ \\mitB _ { \\miti \\mitj } $",
"$ \\mitg _ { \\miti \\mitj } $",
"$ \\mupSigma $",
"$ \\mitpartial \\mupSigma $",
"$ \\mitB $",
"$ \\mitF _ { \\miti \\mitj } = \\mitB _ { \\miti \\mitj } $",
"$ \\mitB $",
"$ \\mitF $",
"$ \\mitB + \\mitF $",
"$ \\mitB $",
"$ \\mitB $",
"\\begin{align*} \\displaystyle \\mitS & = & \\displaystyle \\frac { 1 } { 4 \\mitpi \\mitalpha ^ { \\prime } } \\int _ { \\mupSigma } \\mitd ^ { 2 } \\mitsigma ( \\mitg _ { \\miti \\mitj } \\mitpartial _ { \\mita } \\mitx ^ { \\miti } \\mitpartial ^ { \\mita } \\mitx ^ { \\mitj } - 2 \\mitpi \\miti \\mitalpha ^ { \\prime } \\mitB _ { \\miti \\mitj } \\mitepsilon ^ { \\mita \\mitb } \\mitpartial _ { \\mita } \\mitx ^ { \\miti } \\mitpartial _ { \\mitb } \\mitx ^ { \\mitj } ) \\\\ & = & \\displaystyle \\frac { 1 } { 4 \\mitpi \\mitalpha ^ { \\prime } } \\int _ { \\mupSigma } \\mitd ^ { 2 } \\mitsigma \\mitg _ { \\miti \\mitj } \\mitpartial _ { \\mita } \\mitx ^ { \\miti } \\mitpartial ^ { \\mita } \\mitx ^ { \\mitj } - \\frac { \\miti } { 2 } \\int _ { \\mitpartial \\mupSigma } \\mitd \\mittau \\mitB _ { \\miti \\mitj } \\mitx ^ { \\miti } \\mitpartial _ { \\mittau } \\mitx ^ { \\mitj } , \\end{align*}",
"\\begin{equation*} \\mitS _ { \\miti \\mitn \\mitt } = - \\miti \\int _ { \\mitpartial \\mupSigma } \\mitd \\mittau \\mitA _ { \\miti } ( \\mitx ) \\mitpartial _ { \\mittau } \\mitx ^ { \\miti } \\end{equation*}",
"\\begin{equation*} \\mitA _ { \\miti } = - \\frac { 1 } { 2 } \\mitB _ { \\miti \\mitj } \\mitx ^ { \\mitj } , \\end{equation*}",
"\\begin{align*} \\displaystyle \\mitdelta _ { \\mitlambda } \\mitA _ { \\miti } & = & \\displaystyle \\mitpartial _ { \\miti } \\mitlambda , \\\\ \\displaystyle \\mitF _ { \\miti \\mitj } & = & \\displaystyle \\mitpartial _ { \\miti } \\mitA _ { \\mitj } - \\mitpartial _ { \\mitj } \\mitA _ { \\miti } , \\\\ \\displaystyle \\mitdelta _ { \\mitlambda } \\mitF _ { \\miti \\mitj } & = & \\displaystyle 0 . \\end{align*}"
],
"x_min": [
0.6862000226974487,
0.33719998598098755,
0.515500009059906,
0.19140000641345978,
0.18870000541210175,
0.6931999921798706,
0.7663999795913696,
0.3345000147819519,
0.8769999742507935,
0.1671999990940094,
0.3939000070095062,
0.6876000165939331,
0.7001000046730042,
0.27639999985694885,
0.40149998664855957,
0.4456999897956848,
0.4104999899864197
],
"y_min": [
0.14159999787807465,
0.2046000063419342,
0.2046000063419342,
0.25540000200271606,
0.3774000108242035,
0.3774000108242035,
0.46970000863075256,
0.5468999743461609,
0.5702999830245972,
0.5938000082969666,
0.5938000082969666,
0.5938000082969666,
0.8109999895095825,
0.2964000105857849,
0.4253000020980835,
0.5067999958992004,
0.6696000099182129
],
"x_max": [
0.7062000036239624,
0.3537999987602234,
0.5430999994277954,
0.2134999930858612,
0.20389999449253082,
0.7195000052452087,
0.7829999923706055,
0.4180999994277954,
0.8928999900817871,
0.18310000002384186,
0.44429999589920044,
0.704200029373169,
0.71670001745224,
0.746999979019165,
0.6240000128746033,
0.5735999941825867,
0.609499990940094
],
"y_max": [
0.15379999577999115,
0.21490000188350677,
0.21879999339580536,
0.2660999894142151,
0.3880999982357025,
0.38769999146461487,
0.47999998927116394,
0.5611000061035156,
0.5806000232696533,
0.6040999889373779,
0.6054999828338623,
0.6040999889373779,
0.8213000297546387,
0.3716000020503998,
0.4560999870300293,
0.5371000170707703,
0.7444999814033508
],
"expr_type": [
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"isolated",
"isolated",
"isolated",
"isolated"
]
} |
|
0002194_page06 | {
"latex": [
"$\\tau $",
"$\\tau '$",
"$(g^{-1})^{ij}$",
"$\\epsilon (\\tau )$",
"$1$",
"$-1$",
"$\\tau $",
"$\\theta $",
"$P_n$",
"$x$",
"$x$",
"$x$",
"$\\theta $",
"$\\tau $",
"$B$",
"$\\hat {A}$",
"$\\hat {A}$",
"$\\hat {{\\cal L}}$",
"$\\hat {{\\cal L}}$",
"${\\cal L}$",
"$B$",
"\\begin {equation} \\langle x^i (\\tau ) x^j (\\tau ') \\rangle = - \\alpha ' (G^{-1})^{ij} \\log (\\tau - \\tau ')^2 + \\frac {i}{2} \\theta ^{ij} \\epsilon (\\tau - \\tau '), \\end {equation}",
"\\begin {eqnarray} G_{ij} &=& g_{ij} - (2 \\pi \\alpha ')^2 (B g^{-1} B)_{ij}, \\\\ \\theta ^{ij} &=& - (2 \\pi \\alpha ')^2 \\left ( \\frac {1}{g + 2 \\pi \\alpha ' B} B \\frac {1}{g - 2 \\pi \\alpha ' B} \\right )^{ij}. \\end {eqnarray}",
"\\begin {eqnarray} && \\Big \\langle \\prod _{n=1}^k P_n ( \\partial x (\\tau _n), \\partial ^2 x (\\tau _n), \\ldots ) e^{i p^n \\cdot x (\\tau _n)} \\Big \\rangle _{G,\\theta } \\\\ && = \\exp \\Big ( -\\frac {i}{2} \\sum _{n > m} p^n_i \\theta ^{ij} p^m_j \\epsilon (\\tau _n - \\tau _m) \\Big ) \\\\ && ~~~~~~~~ \\times \\Big \\langle \\prod _{n=1}^k P_n ( \\partial x (\\tau _n), \\partial ^2 x (\\tau _n), \\ldots ) e^{i p^n \\cdot x (\\tau _n)} \\Big \\rangle _{G,\\theta =0}, \\end {eqnarray}"
],
"latex_norm": [
"$ \\tau $",
"$ \\tau ^ { \\prime } $",
"$ ( g ^ { - 1 } ) ^ { i j } $",
"$ \\epsilon ( \\tau ) $",
"$ 1 $",
"$ - 1 $",
"$ \\tau $",
"$ \\theta $",
"$ P _ { n } $",
"$ x $",
"$ x $",
"$ x $",
"$ \\theta $",
"$ \\tau $",
"$ B $",
"$ \\hat { A } $",
"$ \\hat { A } $",
"$ \\hat { L } $",
"$ \\hat { L } $",
"$ L $",
"$ B $",
"\\begin{equation*} \\langle x ^ { i } ( \\tau ) x ^ { j } ( \\tau ^ { \\prime } ) \\rangle = - \\alpha ^ { \\prime } ( G ^ { - 1 } ) ^ { i j } \\operatorname { l o g } ( \\tau - \\tau ^ { \\prime } ) ^ { 2 } + \\frac { i } { 2 } \\theta ^ { i j } \\epsilon ( \\tau - \\tau ^ { \\prime } ) , \\end{equation*}",
"\\begin{align*} G _ { i j } & = & g _ { i j } - ( 2 \\pi \\alpha ^ { \\prime } ) ^ { 2 } ( B g ^ { - 1 } B ) _ { i j } , \\\\ \\theta ^ { i j } & = & - ( 2 \\pi \\alpha ^ { \\prime } ) ^ { 2 } { ( \\frac { 1 } { g + 2 \\pi \\alpha ^ { \\prime } B } B \\frac { 1 } { g - 2 \\pi \\alpha ^ { \\prime } B } ) } ^ { i j } . \\end{align*}",
"\\begin{align*} & & \\langle \\prod _ { n = 1 } ^ { k } P _ { n } ( \\partial x ( \\tau _ { n } ) , \\partial ^ { 2 } x ( \\tau _ { n } ) , \\ldots ) e ^ { i p ^ { n } \\cdot x ( \\tau _ { n } ) } \\rangle _ { G , \\theta } \\\\ & & = \\operatorname { e x p } ( - \\frac { i } { 2 } \\sum _ { n > m } p _ { i } ^ { n } \\theta ^ { i j } p _ { j } ^ { m } \\epsilon ( \\tau _ { n } - \\tau _ { m } ) ) \\\\ & & ~ ~ ~ ~ ~ ~ ~ ~ \\times \\langle \\prod _ { n = 1 } ^ { k } P _ { n } ( \\partial x ( \\tau _ { n } ) , \\partial ^ { 2 } x ( \\tau _ { n } ) , \\ldots ) e ^ { i p ^ { n } \\cdot x ( \\tau _ { n } ) } \\rangle _ { G , \\theta = 0 } , \\end{align*}"
],
"latex_expand": [
"$ \\mittau $",
"$ \\mittau ^ { \\prime } $",
"$ ( \\mitg ^ { - 1 } ) ^ { \\miti \\mitj } $",
"$ \\mitepsilon ( \\mittau ) $",
"$ 1 $",
"$ - 1 $",
"$ \\mittau $",
"$ \\mittheta $",
"$ \\mitP _ { \\mitn } $",
"$ \\mitx $",
"$ \\mitx $",
"$ \\mitx $",
"$ \\mittheta $",
"$ \\mittau $",
"$ \\mitB $",
"$ \\hat { \\mitA } $",
"$ \\hat { \\mitA } $",
"$ \\hat { \\mitL } $",
"$ \\hat { \\mitL } $",
"$ \\mitL $",
"$ \\mitB $",
"\\begin{equation*} \\langle \\mitx ^ { \\miti } ( \\mittau ) \\mitx ^ { \\mitj } ( \\mittau ^ { \\prime } ) \\rangle = - \\mitalpha ^ { \\prime } ( \\mitG ^ { - 1 } ) ^ { \\miti \\mitj } \\operatorname { l o g } ( \\mittau - \\mittau ^ { \\prime } ) ^ { 2 } + \\frac { \\miti } { 2 } \\mittheta ^ { \\miti \\mitj } \\mitepsilon ( \\mittau - \\mittau ^ { \\prime } ) , \\end{equation*}",
"\\begin{align*} \\displaystyle \\mitG _ { \\miti \\mitj } & = & \\displaystyle \\mitg _ { \\miti \\mitj } - ( 2 \\mitpi \\mitalpha ^ { \\prime } ) ^ { 2 } ( \\mitB \\mitg ^ { - 1 } \\mitB ) _ { \\miti \\mitj } , \\\\ \\displaystyle \\mittheta ^ { \\miti \\mitj } & = & \\displaystyle - ( 2 \\mitpi \\mitalpha ^ { \\prime } ) ^ { 2 } { \\left( \\frac { 1 } { \\mitg + 2 \\mitpi \\mitalpha ^ { \\prime } \\mitB } \\mitB \\frac { 1 } { \\mitg - 2 \\mitpi \\mitalpha ^ { \\prime } \\mitB } \\right) } ^ { \\miti \\mitj } . \\end{align*}",
"\\begin{align*} & & \\displaystyle \\Big \\langle \\prod _ { \\mitn = 1 } ^ { \\mitk } \\mitP _ { \\mitn } ( \\mitpartial \\mitx ( \\mittau _ { \\mitn } ) , \\mitpartial ^ { 2 } \\mitx ( \\mittau _ { \\mitn } ) , \\ldots ) \\mite ^ { \\miti \\mitp ^ { \\mitn } \\cdot \\mitx ( \\mittau _ { \\mitn } ) } \\Big \\rangle _ { \\mitG , \\mittheta } \\\\ & & \\displaystyle = \\operatorname { e x p } \\Big ( - \\frac { \\miti } { 2 } \\sum _ { \\mitn > \\mitm } \\mitp _ { \\miti } ^ { \\mitn } \\mittheta ^ { \\miti \\mitj } \\mitp _ { \\mitj } ^ { \\mitm } \\mitepsilon ( \\mittau _ { \\mitn } - \\mittau _ { \\mitm } ) \\Big ) \\\\ & & \\displaystyle ~ ~ ~ ~ ~ ~ ~ ~ \\times \\Big \\langle \\prod _ { \\mitn = 1 } ^ { \\mitk } \\mitP _ { \\mitn } ( \\mitpartial \\mitx ( \\mittau _ { \\mitn } ) , \\mitpartial ^ { 2 } \\mitx ( \\mittau _ { \\mitn } ) , \\ldots ) \\mite ^ { \\miti \\mitp ^ { \\mitn } \\cdot \\mitx ( \\mittau _ { \\mitn } ) } \\Big \\rangle _ { \\mitG , \\mittheta = 0 } , \\end{align*}"
],
"x_min": [
0.652400016784668,
0.7131999731063843,
0.4174000024795532,
0.420199990272522,
0.5370000004768372,
0.5770999789237976,
0.8141000270843506,
0.3109999895095825,
0.18729999661445618,
0.5175999999046326,
0.5742999911308289,
0.1534000039100647,
0.21289999783039093,
0.39320001006126404,
0.1298999935388565,
0.29789999127388,
0.6600000262260437,
0.7056000232696533,
0.8791000247001648,
0.3725000023841858,
0.5446000099182129,
0.2736999988555908,
0.302700012922287,
0.30480000376701355
],
"y_min": [
0.22849999368190765,
0.2240999937057495,
0.3716000020503998,
0.3959999978542328,
0.39750000834465027,
0.39750000834465027,
0.4004000127315521,
0.4203999936580658,
0.5985999703407288,
0.6025000214576721,
0.6025000214576721,
0.649399995803833,
0.6455000042915344,
0.6967999935150146,
0.763700008392334,
0.7836999893188477,
0.7836999893188477,
0.7836999893188477,
0.7836999893188477,
0.8109999895095825,
0.8109999895095825,
0.18310000002384186,
0.2736000120639801,
0.4652000069618225
],
"x_max": [
0.6635000109672546,
0.7290999889373779,
0.4740999937057495,
0.454800009727478,
0.5473999977111816,
0.6033999919891357,
0.8252000212669373,
0.321399986743927,
0.210099995136261,
0.5286999940872192,
0.5860000252723694,
0.16509999334812164,
0.2232999950647354,
0.4043000042438507,
0.14650000631809235,
0.31310001015663147,
0.6751999855041504,
0.7200999855995178,
0.8928999900817871,
0.3869999945163727,
0.5612000226974487,
0.7484999895095825,
0.72079998254776,
0.7526000142097473
],
"y_max": [
0.2353000044822693,
0.2353000044822693,
0.3871999979019165,
0.4106000065803528,
0.4072999954223633,
0.4081999957561493,
0.40720000863075256,
0.43070000410079956,
0.611299991607666,
0.6093000173568726,
0.6093000173568726,
0.6561999917030334,
0.6561999917030334,
0.7031000256538391,
0.7739999890327454,
0.7973999977111816,
0.7973999977111816,
0.7973999977111816,
0.7973999977111816,
0.8213000297546387,
0.8213000297546387,
0.21529999375343323,
0.34369999170303345,
0.5891000032424927
],
"expr_type": [
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"isolated",
"isolated",
"isolated"
]
} |
|
0002194_page07 | {
"latex": [
"$G_{ij}$",
"$g_{ij}$",
"$B$",
"$B$",
"$G_s$",
"$\\theta $",
"$\\ast $",
"$B$",
"$A$",
"$\\hat {A}$",
"$g_{ij}$",
"$G_{ij}$",
"$g_s$",
"$G_s$",
"$\\ast $",
"$B$",
"$A_i$",
"$B$",
"$B+F$",
"$\\hat {A}_i$",
"$B$",
"$G_{ij}$",
"$G_s$",
"$\\theta ^{ij}$",
"$\\ast $",
"\\begin {equation} \\exp \\Big ( -\\frac {i}{2} \\sum _{n > m} p^n_i \\theta ^{ij} p^m_j \\epsilon (\\tau _n - \\tau _m) \\Big ) \\end {equation}",
"\\begin {equation} f(x) \\ast g(x) = \\exp \\left . \\left ( \\frac {i}{2} \\theta ^{ij} \\frac {\\partial }{\\partial \\xi ^i} \\frac {\\partial }{\\partial \\zeta ^j} \\right ) f(x + \\xi ) g(x + \\zeta ) \\right |_{\\xi =\\zeta =0}, \\end {equation}",
"\\begin {eqnarray} \\hat {\\delta }_{\\hat {\\lambda }} \\hat {A}_i &=& \\partial _i \\hat {\\lambda } + i \\hat {\\lambda } \\ast \\hat {A}_i - i \\hat {A}_i \\ast \\hat {\\lambda }, \\\\ \\hat {F}_{ij} &=& \\partial _i \\hat {A}_j - \\partial _j \\hat {A}_i -i \\hat {A}_i \\ast \\hat {A}_j +i \\hat {A}_j \\ast \\hat {A}_i, \\\\ \\hat {\\delta }_{\\hat {\\lambda }} \\hat {F}_{ij} &=& i \\hat {\\lambda } \\ast \\hat {F}_{ij} - i \\hat {F}_{ij} \\ast \\hat {\\lambda }. \\end {eqnarray}"
],
"latex_norm": [
"$ G _ { i j } $",
"$ g _ { i j } $",
"$ B $",
"$ B $",
"$ G _ { s } $",
"$ \\theta $",
"$ \\ast $",
"$ B $",
"$ A $",
"$ \\hat { A } $",
"$ g _ { i j } $",
"$ G _ { i j } $",
"$ g _ { s } $",
"$ G _ { s } $",
"$ \\ast $",
"$ B $",
"$ A _ { i } $",
"$ B $",
"$ B + F $",
"$ \\hat { A } _ { i } $",
"$ B $",
"$ G _ { i j } $",
"$ G _ { s } $",
"$ \\theta ^ { i j } $",
"$ \\ast $",
"\\begin{equation*} \\operatorname { e x p } ( - \\frac { i } { 2 } \\sum _ { n > m } p _ { i } ^ { n } \\theta ^ { i j } p _ { j } ^ { m } \\epsilon ( \\tau _ { n } - \\tau _ { m } ) ) \\end{equation*}",
"\\begin{equation*} f ( x ) \\ast g ( x ) = \\operatorname { e x p } { ( \\frac { i } { 2 } \\theta ^ { i j } \\frac { \\partial } { \\partial \\xi ^ { i } } \\frac { \\partial } { \\partial \\zeta ^ { j } } ) f ( x + \\xi ) g ( x + \\zeta ) \\vert } _ { \\xi = \\zeta = 0 } , \\end{equation*}",
"\\begin{align*} \\hat { \\delta } _ { \\hat { \\lambda } } \\hat { A } _ { i } & = & \\partial _ { i } \\hat { \\lambda } + i \\hat { \\lambda } \\ast \\hat { A } _ { i } - i \\hat { A } _ { i } \\ast \\hat { \\lambda } , \\\\ \\hat { F } _ { i j } & = & \\partial _ { i } \\hat { A } _ { j } - \\partial _ { j } \\hat { A } _ { i } - i \\hat { A } _ { i } \\ast \\hat { A } _ { j } + i \\hat { A } _ { j } \\ast \\hat { A } _ { i } , \\\\ \\hat { \\delta } _ { \\hat { \\lambda } } \\hat { F } _ { i j } & = & i \\hat { \\lambda } \\ast \\hat { F } _ { i j } - i \\hat { F } _ { i j } \\ast \\hat { \\lambda } . \\end{align*}"
],
"latex_expand": [
"$ \\mitG _ { \\miti \\mitj } $",
"$ \\mitg _ { \\miti \\mitj } $",
"$ \\mitB $",
"$ \\mitB $",
"$ \\mitG _ { \\mits } $",
"$ \\mittheta $",
"$ \\ast $",
"$ \\mitB $",
"$ \\mitA $",
"$ \\hat { \\mitA } $",
"$ \\mitg _ { \\miti \\mitj } $",
"$ \\mitG _ { \\miti \\mitj } $",
"$ \\mitg _ { \\mits } $",
"$ \\mitG _ { \\mits } $",
"$ \\ast $",
"$ \\mitB $",
"$ \\mitA _ { \\miti } $",
"$ \\mitB $",
"$ \\mitB + \\mitF $",
"$ \\hat { \\mitA } _ { \\miti } $",
"$ \\mitB $",
"$ \\mitG _ { \\miti \\mitj } $",
"$ \\mitG _ { \\mits } $",
"$ \\mittheta ^ { \\miti \\mitj } $",
"$ \\ast $",
"\\begin{equation*} \\operatorname { e x p } \\Big ( - \\frac { \\miti } { 2 } \\sum _ { \\mitn > \\mitm } \\mitp _ { \\miti } ^ { \\mitn } \\mittheta ^ { \\miti \\mitj } \\mitp _ { \\mitj } ^ { \\mitm } \\mitepsilon ( \\mittau _ { \\mitn } - \\mittau _ { \\mitm } ) \\Big ) \\end{equation*}",
"\\begin{equation*} \\mitf ( \\mitx ) \\ast \\mitg ( \\mitx ) = \\operatorname { e x p } { \\left. \\left( \\frac { \\miti } { 2 } \\mittheta ^ { \\miti \\mitj } \\frac { \\mitpartial } { \\mitpartial \\mitxi ^ { \\miti } } \\frac { \\mitpartial } { \\mitpartial \\mitzeta ^ { \\mitj } } \\right) \\mitf ( \\mitx + \\mitxi ) \\mitg ( \\mitx + \\mitzeta ) \\right\\vert } _ { \\mitxi = \\mitzeta = 0 } , \\end{equation*}",
"\\begin{align*} \\displaystyle \\hat { \\mitdelta } _ { \\hat { \\mitlambda } } \\hat { \\mitA } _ { \\miti } & = & \\displaystyle \\mitpartial _ { \\miti } \\hat { \\mitlambda } + \\miti \\hat { \\mitlambda } \\ast \\hat { \\mitA } _ { \\miti } - \\miti \\hat { \\mitA } _ { \\miti } \\ast \\hat { \\mitlambda } , \\\\ \\displaystyle \\hat { \\mitF } _ { \\miti \\mitj } & = & \\displaystyle \\mitpartial _ { \\miti } \\hat { \\mitA } _ { \\mitj } - \\mitpartial _ { \\mitj } \\hat { \\mitA } _ { \\miti } - \\miti \\hat { \\mitA } _ { \\miti } \\ast \\hat { \\mitA } _ { \\mitj } + \\miti \\hat { \\mitA } _ { \\mitj } \\ast \\hat { \\mitA } _ { \\miti } , \\\\ \\displaystyle \\hat { \\mitdelta } _ { \\hat { \\mitlambda } } \\hat { \\mitF } _ { \\miti \\mitj } & = & \\displaystyle \\miti \\hat { \\mitlambda } \\ast \\hat { \\mitF } _ { \\miti \\mitj } - \\miti \\hat { \\mitF } _ { \\miti \\mitj } \\ast \\hat { \\mitlambda } . \\end{align*}"
],
"x_min": [
0.8644999861717224,
0.2231999933719635,
0.4223000109195709,
0.15549999475479126,
0.20730000734329224,
0.2896000146865845,
0.32199999690055847,
0.5888000130653381,
0.8252000212669373,
0.8727999925613403,
0.1298999935388565,
0.1859000027179718,
0.22599999606609344,
0.27639999985694885,
0.6108999848365784,
0.8715000152587891,
0.5300999879837036,
0.6690000295639038,
0.17970000207424164,
0.5300999879837036,
0.7580999732017517,
0.17970000207424164,
0.2190999984741211,
0.28679999709129333,
0.527999997138977,
0.3682999908924103,
0.2667999863624573,
0.3151000142097473
],
"y_min": [
0.10109999775886536,
0.12839999794960022,
0.14839999377727509,
0.17190000414848328,
0.17190000414848328,
0.19529999792575836,
0.2847000062465668,
0.3467000126838684,
0.3700999915599823,
0.3666999936103821,
0.39750000834465027,
0.39399999380111694,
0.39750000834465027,
0.39399999380111694,
0.3970000147819519,
0.5781000256538391,
0.6538000106811523,
0.6772000193595886,
0.701200008392334,
0.7304999828338623,
0.7577999830245972,
0.7811999917030334,
0.7811999917030334,
0.7792999744415283,
0.7842000126838684,
0.21240000426769257,
0.29829999804496765,
0.4634999930858612
],
"x_max": [
0.892799973487854,
0.24529999494552612,
0.4388999938964844,
0.1720999926328659,
0.23080000281333923,
0.30000001192092896,
0.33239999413490295,
0.605400025844574,
0.840399980545044,
0.8880000114440918,
0.1527000069618225,
0.2142000049352646,
0.24330000579357147,
0.29989999532699585,
0.621999979019165,
0.8881000280380249,
0.5508000254631042,
0.6848999857902527,
0.23569999635219574,
0.5508000254631042,
0.7746999859809875,
0.20730000734329224,
0.2425999939441681,
0.30959999561309814,
0.5383999943733215,
0.6543999910354614,
0.7560999989509583,
0.7049000263214111
],
"y_max": [
0.11569999903440475,
0.13910000026226044,
0.15870000422000885,
0.18219999969005585,
0.18459999561309814,
0.20559999346733093,
0.2919999957084656,
0.3569999933242798,
0.3808000087738037,
0.38089999556541443,
0.4081999957561493,
0.4081999957561493,
0.4068000018596649,
0.40619999170303345,
0.4043000042438507,
0.5884000062942505,
0.6664999723434448,
0.6875,
0.7124000191688538,
0.7465999722480774,
0.7681000232696533,
0.7954000234603882,
0.79339998960495,
0.7914999723434448,
0.7914999723434448,
0.25049999356269836,
0.33980000019073486,
0.5412999987602234
],
"expr_type": [
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"isolated",
"isolated",
"isolated"
]
} |
|
0002194_page08 | {
"latex": [
"$A_i$",
"$\\hat {A}_i$",
"$f_i (\\partial ,F)$",
"$F_{ij}$",
"$\\partial _k F_{ij}$",
"$\\partial _k \\partial _l F_{ij}$",
"$\\hat {A}_i$",
"$A_i$",
"$\\hat {A}_i$",
"$A_i$",
"$\\lambda $",
"$\\hat {\\lambda }$",
"$\\theta $",
"$\\hat {A}_i$",
"$A_i$",
"$$ A_i \\rightarrow A_i + f_i (\\partial ,F), $$",
"\\begin {equation} \\hat {A} (A) + \\hat {\\delta }_{\\hat {\\lambda }} \\hat {A} (A) = \\hat {A} ( A + \\delta _\\lambda A ), \\label {A-hat} \\end {equation}",
"\\begin {eqnarray} \\hat {A}_i &=& A_i - \\frac {1}{2} \\theta ^{kl} A_k (\\partial _l A_i + F_{li}) + O(\\theta ^2), \\\\ \\hat {\\lambda } &=& \\lambda + \\frac {1}{2} \\theta ^{kl} \\partial _k \\lambda A_l + O(\\theta ^2). \\end {eqnarray}"
],
"latex_norm": [
"$ A _ { i } $",
"$ \\hat { A } _ { i } $",
"$ f _ { i } ( \\partial , F ) $",
"$ F _ { i j } $",
"$ \\partial _ { k } F _ { i j } $",
"$ \\partial _ { k } \\partial _ { l } F _ { i j } $",
"$ \\hat { A } _ { i } $",
"$ A _ { i } $",
"$ \\hat { A } _ { i } $",
"$ A _ { i } $",
"$ \\lambda $",
"$ \\hat { \\lambda } $",
"$ \\theta $",
"$ \\hat { A } _ { i } $",
"$ A _ { i } $",
"\\begin{equation*} A _ { i } \\rightarrow A _ { i } + f _ { i } ( \\partial , F ) , \\end{equation*}",
"\\begin{equation*} \\hat { A } ( A ) + \\hat { \\delta } _ { \\hat { \\lambda } } \\hat { A } ( A ) = \\hat { A } ( A + \\delta _ { \\lambda } A ) , \\end{equation*}",
"\\begin{align*} \\hat { A } _ { i } & = & A _ { i } - \\frac { 1 } { 2 } \\theta ^ { k l } A _ { k } ( \\partial _ { l } A _ { i } + F _ { l i } ) + O ( \\theta ^ { 2 } ) , \\\\ \\hat { \\lambda } & = & \\lambda + \\frac { 1 } { 2 } \\theta ^ { k l } \\partial _ { k } \\lambda A _ { l } + O ( \\theta ^ { 2 } ) . \\end{align*}"
],
"latex_expand": [
"$ \\mitA _ { \\miti } $",
"$ \\hat { \\mitA } _ { \\miti } $",
"$ \\mitf _ { \\miti } ( \\mitpartial , \\mitF ) $",
"$ \\mitF _ { \\miti \\mitj } $",
"$ \\mitpartial _ { \\mitk } \\mitF _ { \\miti \\mitj } $",
"$ \\mitpartial _ { \\mitk } \\mitpartial _ { \\mitl } \\mitF _ { \\miti \\mitj } $",
"$ \\hat { \\mitA } _ { \\miti } $",
"$ \\mitA _ { \\miti } $",
"$ \\hat { \\mitA } _ { \\miti } $",
"$ \\mitA _ { \\miti } $",
"$ \\mitlambda $",
"$ \\hat { \\mitlambda } $",
"$ \\mittheta $",
"$ \\hat { \\mitA } _ { \\miti } $",
"$ \\mitA _ { \\miti } $",
"\\begin{equation*} \\mitA _ { \\miti } \\rightarrow \\mitA _ { \\miti } + \\mitf _ { \\miti } ( \\mitpartial , \\mitF ) , \\end{equation*}",
"\\begin{equation*} \\hat { \\mitA } ( \\mitA ) + \\hat { \\mitdelta } _ { \\hat { \\mitlambda } } \\hat { \\mitA } ( \\mitA ) = \\hat { \\mitA } ( \\mitA + \\mitdelta _ { \\mitlambda } \\mitA ) , \\end{equation*}",
"\\begin{align*} \\displaystyle \\hat { \\mitA } _ { \\miti } & = & \\displaystyle \\mitA _ { \\miti } - \\frac { 1 } { 2 } \\mittheta ^ { \\mitk \\mitl } \\mitA _ { \\mitk } ( \\mitpartial _ { \\mitl } \\mitA _ { \\miti } + \\mitF _ { \\mitl \\miti } ) + \\mitO ( \\mittheta ^ { 2 } ) , \\\\ \\displaystyle \\hat { \\mitlambda } & = & \\displaystyle \\mitlambda + \\frac { 1 } { 2 } \\mittheta ^ { \\mitk \\mitl } \\mitpartial _ { \\mitk } \\mitlambda \\mitA _ { \\mitl } + \\mitO ( \\mittheta ^ { 2 } ) . \\end{align*}"
],
"x_min": [
0.31439998745918274,
0.3828999996185303,
0.1859000027179718,
0.7366999983787537,
0.772599995136261,
0.8271999955177307,
0.7774999737739563,
0.2460000067949295,
0.5978000164031982,
0.6517000198364258,
0.28610000014305115,
0.34139999747276306,
0.7623000144958496,
0.3490000069141388,
0.399399995803833,
0.42570000886917114,
0.3772999942302704,
0.3345000147819519
],
"y_min": [
0.24269999563694,
0.23880000412464142,
0.33399999141693115,
0.33500000834465027,
0.33500000834465027,
0.33500000834465027,
0.3783999979496002,
0.4058000147342682,
0.40230000019073486,
0.4058000147342682,
0.49799999594688416,
0.49459999799728394,
0.5214999914169312,
0.6675000190734863,
0.6708999872207642,
0.298799991607666,
0.45649999380111694,
0.5669000148773193
],
"x_max": [
0.335099995136261,
0.4036000072956085,
0.25290000438690186,
0.7623000144958496,
0.8174999952316284,
0.8873000144958496,
0.7989000082015991,
0.26669999957084656,
0.6184999942779541,
0.6723999977111816,
0.2978000044822693,
0.3537999987602234,
0.7727000117301941,
0.37040001153945923,
0.42010000348091125,
0.5942999720573425,
0.6453999876976013,
0.6855999827384949
],
"y_max": [
0.2549000084400177,
0.2549000084400177,
0.3490999937057495,
0.3495999872684479,
0.3495999872684479,
0.3495999872684479,
0.3944999873638153,
0.41850000619888306,
0.41839998960494995,
0.41850000619888306,
0.5087000131607056,
0.5088000297546387,
0.5321999788284302,
0.6836000084877014,
0.6836000084877014,
0.31439998745918274,
0.47850000858306885,
0.6406000256538391
],
"expr_type": [
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"isolated",
"isolated",
"isolated"
]
} |
|
0002194_page09 | {
"latex": [
"$A_i$",
"$\\hat {A}_i$",
"$| \\tau - \\tau ' | < \\delta $",
"$\\delta \\to 0$",
"$\\alpha '$",
"$\\hat {A}_i$",
"$B$",
"$B$",
"$G_{ij}$",
"$G_s$",
"$\\theta ^{ij}$",
"$B$",
"$F^4$",
"$F^4$"
],
"latex_norm": [
"$ A _ { i } $",
"$ \\hat { A } _ { i } $",
"$ \\vert \\tau - \\tau ^ { \\prime } \\vert < \\delta $",
"$ \\delta \\rightarrow 0 $",
"$ \\alpha ^ { \\prime } $",
"$ \\hat { A } _ { i } $",
"$ B $",
"$ B $",
"$ G _ { i j } $",
"$ G _ { s } $",
"$ \\theta ^ { i j } $",
"$ B $",
"$ F ^ { 4 } $",
"$ F ^ { 4 } $"
],
"latex_expand": [
"$ \\mitA _ { \\miti } $",
"$ \\hat { \\mitA } _ { \\miti } $",
"$ \\vert \\mittau - \\mittau ^ { \\prime } \\vert < \\mitdelta $",
"$ \\mitdelta \\rightarrow 0 $",
"$ \\mitalpha ^ { \\prime } $",
"$ \\hat { \\mitA } _ { \\miti } $",
"$ \\mitB $",
"$ \\mitB $",
"$ \\mitG _ { \\miti \\mitj } $",
"$ \\mitG _ { \\mits } $",
"$ \\mittheta ^ { \\miti \\mitj } $",
"$ \\mitB $",
"$ \\mitF ^ { 4 } $",
"$ \\mitF ^ { 4 } $"
],
"x_min": [
0.5543000102043152,
0.8720999956130981,
0.7961000204086304,
0.3012999892234802,
0.8755999803543091,
0.8176000118255615,
0.5389999747276306,
0.34279999136924744,
0.7153000235557556,
0.7573999762535095,
0.8292999863624573,
0.3393000066280365,
0.35589998960494995,
0.45680001378059387
],
"y_min": [
0.2896000146865845,
0.30959999561309814,
0.3594000041484833,
0.3837999999523163,
0.3833000063896179,
0.427700012922287,
0.5019999742507935,
0.5253999829292297,
0.5253999829292297,
0.5253999829292297,
0.5238999724388123,
0.548799991607666,
0.7289999723434448,
0.7954000234603882
],
"x_max": [
0.574999988079071,
0.892799973487854,
0.8928999900817871,
0.36000001430511475,
0.8928999900817871,
0.8382999897003174,
0.5555999875068665,
0.3594000041484833,
0.742900013923645,
0.7802000045776367,
0.8514000177383423,
0.35519999265670776,
0.38420000672340393,
0.48100000619888306
],
"y_max": [
0.30230000615119934,
0.3257000148296356,
0.37400001287460327,
0.3944999873638153,
0.3944999873638153,
0.4438000023365021,
0.5123000144958496,
0.5357000231742859,
0.5396000146865845,
0.538100004196167,
0.5356000065803528,
0.5590999722480774,
0.7436000108718872,
0.8076000213623047
],
"expr_type": [
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded"
]
} |
|
0002194_page10 | {
"latex": [
"$\\alpha '$",
"$\\alpha '$",
"$F^2$",
"$\\alpha '$",
"$\\alpha '$",
"$g^{-1}$",
"$g_{ij}$",
"$G_{ij}$",
"$B$",
"\\begin {eqnarray} (G^{-1})^{ij} &=& (g^{-1})^{ij} + (2 \\pi \\alpha ')^2 ( g^{-1} B g^{-1} B g^{-1} )^{ij} + O(\\alpha '^4), \\\\ \\theta ^{ij} &=& - (2 \\pi \\alpha ')^2 ( g^{-1} B g^{-1} )^{ij} + O(\\alpha '^4), \\\\ f \\ast g &=& fg -\\frac {i}{2} (2 \\pi \\alpha ')^2 ( g^{-1} B g^{-1} )^{kl} \\partial _k f \\partial _l g + O(\\alpha '^4). \\end {eqnarray}",
"\\begin {eqnarray} {\\cal L}(F) &=& \\frac {\\sqrt {\\det g}}{g_s} \\left [ (g^{-1})^{ij} F_{jk} (g^{-1})^{kl} F_{li} + O(\\alpha ') \\right ] \\\\ &=& \\frac {\\sqrt {\\det g}}{g_s} \\left [ F_{ij} F_{ji} + O(\\alpha ') \\right ] \\\\ &\\equiv & \\frac {\\sqrt {\\det g}}{g_s} \\left [ {\\rm Tr} F^2 + O(\\alpha ') \\right ]. \\end {eqnarray}",
"\\begin {equation} A_i B_i \\equiv (g^{-1})^{ij} A_i B_j. \\label {implicit-g-1} \\end {equation}",
"\\begin {equation} \\partial ^2 \\equiv (g^{-1})^{ij} \\partial _i \\partial _j, \\label {implicit-g-2} \\end {equation}",
"\\begin {eqnarray} {\\cal L} (B+F) &=& \\frac {\\sqrt {\\det g}}{g_s} \\left [ {\\rm Tr} (B+F)^2 + O(\\alpha ') \\right ], \\\\ \\hat {{\\cal L}} (\\hat {F}) &=& \\frac {\\sqrt {\\det G}}{G_s} \\left [ (G^{-1})^{ij} \\hat {F}_{jk} \\ast (G^{-1})^{kl} \\hat {F}_{li} + O(\\alpha ') \\right ]. \\end {eqnarray}"
],
"latex_norm": [
"$ \\alpha ^ { \\prime } $",
"$ \\alpha ^ { \\prime } $",
"$ F ^ { 2 } $",
"$ \\alpha ^ { \\prime } $",
"$ \\alpha ^ { \\prime } $",
"$ g ^ { - 1 } $",
"$ g _ { i j } $",
"$ G _ { i j } $",
"$ B $",
"\\begin{align*} ( G ^ { - 1 } ) ^ { i j } & = & ( g ^ { - 1 } ) ^ { i j } + ( 2 \\pi \\alpha ^ { \\prime } ) ^ { 2 } ( g ^ { - 1 } B g ^ { - 1 } B g ^ { - 1 } ) ^ { i j } + O ( \\alpha ^ { \\prime 4 } ) , \\\\ \\theta ^ { i j } & = & - ( 2 \\pi \\alpha ^ { \\prime } ) ^ { 2 } ( g ^ { - 1 } B g ^ { - 1 } ) ^ { i j } + O ( \\alpha ^ { \\prime 4 } ) , \\\\ f \\ast g & = & f g - \\frac { i } { 2 } ( 2 \\pi \\alpha ^ { \\prime } ) ^ { 2 } ( g ^ { - 1 } B g ^ { - 1 } ) ^ { k l } \\partial _ { k } f \\partial _ { l } g + O ( \\alpha ^ { \\prime 4 } ) . \\end{align*}",
"\\begin{align*} L ( F ) & = & \\frac { \\sqrt { \\operatorname { d e t } g } } { g _ { s } } [ ( g ^ { - 1 } ) ^ { i j } F _ { j k } ( g ^ { - 1 } ) ^ { k l } F _ { l i } + O ( \\alpha ^ { \\prime } ) ] \\\\ & = & \\frac { \\sqrt { \\operatorname { d e t } g } } { g _ { s } } [ F _ { i j } F _ { j i } + O ( \\alpha ^ { \\prime } ) ] \\\\ & \\equiv & \\frac { \\sqrt { \\operatorname { d e t } g } } { g _ { s } } [ T r F ^ { 2 } + O ( \\alpha ^ { \\prime } ) ] . \\end{align*}",
"\\begin{equation*} A _ { i } B _ { i } \\equiv ( g ^ { - 1 } ) ^ { i j } A _ { i } B _ { j } . \\end{equation*}",
"\\begin{equation*} \\partial ^ { 2 } \\equiv ( g ^ { - 1 } ) ^ { i j } \\partial _ { i } \\partial _ { j } , \\end{equation*}",
"\\begin{align*} L ( B + F ) & = & \\frac { \\sqrt { \\operatorname { d e t } g } } { g _ { s } } [ T r ( B + F ) ^ { 2 } + O ( \\alpha ^ { \\prime } ) ] , \\\\ \\hat { L } ( \\hat { F } ) & = & \\frac { \\sqrt { \\operatorname { d e t } G } } { G _ { s } } [ ( G ^ { - 1 } ) ^ { i j } \\hat { F } _ { j k } \\ast ( G ^ { - 1 } ) ^ { k l } \\hat { F } _ { l i } + O ( \\alpha ^ { \\prime } ) ] . \\end{align*}"
],
"latex_expand": [
"$ \\mitalpha ^ { \\prime } $",
"$ \\mitalpha ^ { \\prime } $",
"$ \\mitF ^ { 2 } $",
"$ \\mitalpha ^ { \\prime } $",
"$ \\mitalpha ^ { \\prime } $",
"$ \\mitg ^ { - 1 } $",
"$ \\mitg _ { \\miti \\mitj } $",
"$ \\mitG _ { \\miti \\mitj } $",
"$ \\mitB $",
"\\begin{align*} \\displaystyle ( \\mitG ^ { - 1 } ) ^ { \\miti \\mitj } & = & \\displaystyle ( \\mitg ^ { - 1 } ) ^ { \\miti \\mitj } + ( 2 \\mitpi \\mitalpha ^ { \\prime } ) ^ { 2 } ( \\mitg ^ { - 1 } \\mitB \\mitg ^ { - 1 } \\mitB \\mitg ^ { - 1 } ) ^ { \\miti \\mitj } + \\mitO ( \\mitalpha ^ { \\prime 4 } ) , \\\\ \\displaystyle \\mittheta ^ { \\miti \\mitj } & = & \\displaystyle - ( 2 \\mitpi \\mitalpha ^ { \\prime } ) ^ { 2 } ( \\mitg ^ { - 1 } \\mitB \\mitg ^ { - 1 } ) ^ { \\miti \\mitj } + \\mitO ( \\mitalpha ^ { \\prime 4 } ) , \\\\ \\displaystyle \\mitf \\ast \\mitg & = & \\displaystyle \\mitf \\mitg - \\frac { \\miti } { 2 } ( 2 \\mitpi \\mitalpha ^ { \\prime } ) ^ { 2 } ( \\mitg ^ { - 1 } \\mitB \\mitg ^ { - 1 } ) ^ { \\mitk \\mitl } \\mitpartial _ { \\mitk } \\mitf \\mitpartial _ { \\mitl } \\mitg + \\mitO ( \\mitalpha ^ { \\prime 4 } ) . \\end{align*}",
"\\begin{align*} \\displaystyle \\mitL ( \\mitF ) & = & \\displaystyle \\frac { \\sqrt { \\operatorname { d e t } \\mitg } } { \\mitg _ { \\mits } } \\left[ ( \\mitg ^ { - 1 } ) ^ { \\miti \\mitj } \\mitF _ { \\mitj \\mitk } ( \\mitg ^ { - 1 } ) ^ { \\mitk \\mitl } \\mitF _ { \\mitl \\miti } + \\mitO ( \\mitalpha ^ { \\prime } ) \\right] \\\\ & = & \\displaystyle \\frac { \\sqrt { \\operatorname { d e t } \\mitg } } { \\mitg _ { \\mits } } \\left[ \\mitF _ { \\miti \\mitj } \\mitF _ { \\mitj \\miti } + \\mitO ( \\mitalpha ^ { \\prime } ) \\right] \\\\ & \\displaystyle \\equiv & \\displaystyle \\frac { \\sqrt { \\operatorname { d e t } \\mitg } } { \\mitg _ { \\mits } } \\left[ \\mathrm { T r } \\mitF ^ { 2 } + \\mitO ( \\mitalpha ^ { \\prime } ) \\right] . \\end{align*}",
"\\begin{equation*} \\mitA _ { \\miti } \\mitB _ { \\miti } \\equiv ( \\mitg ^ { - 1 } ) ^ { \\miti \\mitj } \\mitA _ { \\miti } \\mitB _ { \\mitj } . \\end{equation*}",
"\\begin{equation*} \\mitpartial ^ { 2 } \\equiv ( \\mitg ^ { - 1 } ) ^ { \\miti \\mitj } \\mitpartial _ { \\miti } \\mitpartial _ { \\mitj } , \\end{equation*}",
"\\begin{align*} \\displaystyle \\mitL ( \\mitB + \\mitF ) & = & \\displaystyle \\frac { \\sqrt { \\operatorname { d e t } \\mitg } } { \\mitg _ { \\mits } } \\left[ \\mathrm { T r } ( \\mitB + \\mitF ) ^ { 2 } + \\mitO ( \\mitalpha ^ { \\prime } ) \\right] , \\\\ \\displaystyle \\hat { \\mitL } ( \\hat { \\mitF } ) & = & \\displaystyle \\frac { \\sqrt { \\operatorname { d e t } \\mitG } } { \\mitG _ { \\mits } } \\left[ ( \\mitG ^ { - 1 } ) ^ { \\miti \\mitj } \\hat { \\mitF } _ { \\mitj \\mitk } \\ast ( \\mitG ^ { - 1 } ) ^ { \\mitk \\mitl } \\hat { \\mitF } _ { \\mitl \\miti } + \\mitO ( \\mitalpha ^ { \\prime } ) \\right] . \\end{align*}"
],
"x_min": [
0.4837999939918518,
0.8755999803543091,
0.2750999927520752,
0.8105999827384949,
0.1306000053882599,
0.6890000104904175,
0.24950000643730164,
0.5673999786376953,
0.3296000063419342,
0.2667999863624573,
0.3012999892234802,
0.42500001192092896,
0.43880000710487366,
0.2612000107765198
],
"y_min": [
0.12399999797344208,
0.2655999958515167,
0.288100004196167,
0.43160000443458557,
0.5259000062942505,
0.548799991607666,
0.6410999894142151,
0.701200008392334,
0.7720000147819519,
0.16990000009536743,
0.3086000084877014,
0.57669997215271,
0.6636000275611877,
0.7890999913215637
],
"x_max": [
0.501800000667572,
0.8928999900817871,
0.2992999851703644,
0.8278999924659729,
0.14790000021457672,
0.7186999917030334,
0.27160000801086426,
0.5957000255584717,
0.34549999237060547,
0.7567999958992004,
0.7186999917030334,
0.6004999876022339,
0.583899974822998,
0.6654999852180481
],
"y_max": [
0.13519999384880066,
0.27630001306533813,
0.3003000020980835,
0.44279998540878296,
0.5371000170707703,
0.5633999705314636,
0.6517999768257141,
0.715399980545044,
0.7822999954223633,
0.26510000228881836,
0.4291999936103821,
0.5967000126838684,
0.6836000084877014,
0.8291000127792358
],
"expr_type": [
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"isolated",
"isolated",
"isolated",
"isolated",
"isolated"
]
} |
|
0002194_page11 | {
"latex": [
"$B$",
"$G_s$",
"$\\hat {A}_i$",
"$\\alpha '$",
"$F^2$",
"$A_i$",
"$\\hat {A}_i$",
"$G_s$",
"$A_i$",
"$\\hat {A}_i$",
"$B$",
"$B+F$",
"$A_i$",
"$\\hat {F}_{ij}$",
"$\\hat {A}_i$",
"$t$",
"$t$",
"$t=1$",
"${\\cal L} (B+F)$",
"$\\hat {{\\cal L}} (\\hat {F})$",
"$\\alpha '$",
"$\\hat {{\\cal L}}$",
"${\\cal L}$",
"$\\alpha '$",
"${\\rm Tr} (B+F)^2$",
"${\\rm Tr} F^2$",
"${\\rm Tr} F^2$",
"\\begin {eqnarray} {\\cal L} (B+F) &=& \\frac {\\sqrt {\\det g}}{g_s} \\left [ {\\rm Tr} (B+F)^2 + O(\\alpha ') \\right ], \\\\ \\hat {{\\cal L}} (\\hat {F}) &=& \\frac {\\sqrt {\\det G}}{G_s} \\left [ (G^{-1})^{ij} \\hat {F}_{jk} \\ast (G^{-1})^{kl} \\hat {F}_{li} + O(\\alpha ') \\right ]. \\end {eqnarray}",
"\\begin {eqnarray} G_s &=& g_s + O(\\alpha '), \\\\ \\hat {A}_i &=& A_i + O(\\alpha '). \\end {eqnarray}",
"\\begin {eqnarray} G_s &=& t g_s + O(\\alpha '), \\\\ \\hat {A}_i &=& \\sqrt {t} A_i + O(\\alpha '), \\end {eqnarray}",
"\\begin {equation} (G^{-1})^{ij} \\hat {F}_{jk} \\ast (G^{-1})^{kl} \\hat {F}_{li} = ( \\partial _i \\hat {A}_j - \\partial _j \\hat {A}_i ) ( \\partial _j \\hat {A}_i - \\partial _i \\hat {A}_j ) + O(\\alpha '^2). \\end {equation}",
"\\begin {equation} f(B+F) = f(F) + {\\rm total~derivative}, \\label {initial} \\end {equation}"
],
"latex_norm": [
"$ B $",
"$ G _ { s } $",
"$ \\hat { A } _ { i } $",
"$ \\alpha ^ { \\prime } $",
"$ F ^ { 2 } $",
"$ A _ { i } $",
"$ \\hat { A } _ { i } $",
"$ G _ { s } $",
"$ A _ { i } $",
"$ \\hat { A } _ { i } $",
"$ B $",
"$ B + F $",
"$ A _ { i } $",
"$ \\hat { F } _ { i j } $",
"$ \\hat { A } _ { i } $",
"$ t $",
"$ t $",
"$ t = 1 $",
"$ L ( B + F ) $",
"$ \\hat { L } ( \\hat { F } ) $",
"$ \\alpha ^ { \\prime } $",
"$ \\hat { L } $",
"$ L $",
"$ \\alpha ^ { \\prime } $",
"$ T r ( B + F ) ^ { 2 } $",
"$ T r F ^ { 2 } $",
"$ T r F ^ { 2 } $",
"\\begin{align*} L ( B + F ) & = & \\frac { \\sqrt { \\operatorname { d e t } g } } { g _ { s } } [ T r ( B + F ) ^ { 2 } + O ( \\alpha ^ { \\prime } ) ] , \\\\ \\hat { L } ( \\hat { F } ) & = & \\frac { \\sqrt { \\operatorname { d e t } G } } { G _ { s } } [ ( G ^ { - 1 } ) ^ { i j } \\hat { F } _ { j k } \\ast ( G ^ { - 1 } ) ^ { k l } \\hat { F } _ { l i } + O ( \\alpha ^ { \\prime } ) ] . \\end{align*}",
"\\begin{align*} G _ { s } & = & g _ { s } + O ( \\alpha ^ { \\prime } ) , \\\\ \\hat { A } _ { i } & = & A _ { i } + O ( \\alpha ^ { \\prime } ) . \\end{align*}",
"\\begin{align*} G _ { s } & = & t g _ { s } + O ( \\alpha ^ { \\prime } ) , \\\\ \\hat { A } _ { i } & = & \\sqrt { t } A _ { i } + O ( \\alpha ^ { \\prime } ) , \\end{align*}",
"\\begin{equation*} ( G ^ { - 1 } ) ^ { i j } \\hat { F } _ { j k } \\ast ( G ^ { - 1 } ) ^ { k l } \\hat { F } _ { l i } = ( \\partial _ { i } \\hat { A } _ { j } - \\partial _ { j } \\hat { A } _ { i } ) ( \\partial _ { j } \\hat { A } _ { i } - \\partial _ { i } \\hat { A } _ { j } ) + O ( \\alpha ^ { \\prime 2 } ) . \\end{equation*}",
"\\begin{equation*} f ( B + F ) = f ( F ) + t o t a l ~ d e r i v a t i v e , \\end{equation*}"
],
"latex_expand": [
"$ \\mitB $",
"$ \\mitG _ { \\mits } $",
"$ \\hat { \\mitA } _ { \\miti } $",
"$ \\mitalpha ^ { \\prime } $",
"$ \\mitF ^ { 2 } $",
"$ \\mitA _ { \\miti } $",
"$ \\hat { \\mitA } _ { \\miti } $",
"$ \\mitG _ { \\mits } $",
"$ \\mitA _ { \\miti } $",
"$ \\hat { \\mitA } _ { \\miti } $",
"$ \\mitB $",
"$ \\mitB + \\mitF $",
"$ \\mitA _ { \\miti } $",
"$ \\hat { \\mitF } _ { \\miti \\mitj } $",
"$ \\hat { \\mitA } _ { \\miti } $",
"$ \\mitt $",
"$ \\mitt $",
"$ \\mitt = 1 $",
"$ \\mitL ( \\mitB + \\mitF ) $",
"$ \\hat { \\mitL } ( \\hat { \\mitF } ) $",
"$ \\mitalpha ^ { \\prime } $",
"$ \\hat { \\mitL } $",
"$ \\mitL $",
"$ \\mitalpha ^ { \\prime } $",
"$ \\mathrm { T r } ( \\mitB + \\mitF ) ^ { 2 } $",
"$ \\mathrm { T r } \\mitF ^ { 2 } $",
"$ \\mathrm { T r } \\mitF ^ { 2 } $",
"\\begin{align*} \\displaystyle \\mitL ( \\mitB + \\mitF ) & = & \\displaystyle \\frac { \\sqrt { \\operatorname { d e t } \\mitg } } { \\mitg _ { \\mits } } \\left[ \\mathrm { T r } ( \\mitB + \\mitF ) ^ { 2 } + \\mitO ( \\mitalpha ^ { \\prime } ) \\right] , \\\\ \\displaystyle \\hat { \\mitL } ( \\hat { \\mitF } ) & = & \\displaystyle \\frac { \\sqrt { \\operatorname { d e t } \\mitG } } { \\mitG _ { \\mits } } \\left[ ( \\mitG ^ { - 1 } ) ^ { \\miti \\mitj } \\hat { \\mitF } _ { \\mitj \\mitk } \\ast ( \\mitG ^ { - 1 } ) ^ { \\mitk \\mitl } \\hat { \\mitF } _ { \\mitl \\miti } + \\mitO ( \\mitalpha ^ { \\prime } ) \\right] . \\end{align*}",
"\\begin{align*} \\displaystyle \\mitG _ { \\mits } & = & \\displaystyle \\mitg _ { \\mits } + \\mitO ( \\mitalpha ^ { \\prime } ) , \\\\ \\displaystyle \\hat { \\mitA } _ { \\miti } & = & \\displaystyle \\mitA _ { \\miti } + \\mitO ( \\mitalpha ^ { \\prime } ) . \\end{align*}",
"\\begin{align*} \\displaystyle \\mitG _ { \\mits } & = & \\displaystyle \\mitt \\mitg _ { \\mits } + \\mitO ( \\mitalpha ^ { \\prime } ) , \\\\ \\displaystyle \\hat { \\mitA } _ { \\miti } & = & \\displaystyle \\sqrt { \\mitt } \\mitA _ { \\miti } + \\mitO ( \\mitalpha ^ { \\prime } ) , \\end{align*}",
"\\begin{equation*} ( \\mitG ^ { - 1 } ) ^ { \\miti \\mitj } \\hat { \\mitF } _ { \\mitj \\mitk } \\ast ( \\mitG ^ { - 1 } ) ^ { \\mitk \\mitl } \\hat { \\mitF } _ { \\mitl \\miti } = ( \\mitpartial _ { \\miti } \\hat { \\mitA } _ { \\mitj } - \\mitpartial _ { \\mitj } \\hat { \\mitA } _ { \\miti } ) ( \\mitpartial _ { \\mitj } \\hat { \\mitA } _ { \\miti } - \\mitpartial _ { \\miti } \\hat { \\mitA } _ { \\mitj } ) + \\mitO ( \\mitalpha ^ { \\prime 2 } ) . \\end{equation*}",
"\\begin{equation*} \\mitf ( \\mitB + \\mitF ) = \\mitf ( \\mitF ) + \\mathrm { t o t a l ~ d e r i v a t i v e } , \\end{equation*}"
],
"x_min": [
0.22869999706745148,
0.8694000244140625,
0.16859999299049377,
0.5224999785423279,
0.1298999935388565,
0.4036000072956085,
0.4657999873161316,
0.6434000134468079,
0.34619998931884766,
0.39739999175071716,
0.5030999779701233,
0.1298999935388565,
0.4512999951839447,
0.6682999730110168,
0.510699987411499,
0.24050000309944153,
0.1527000069618225,
0.8486999869346619,
0.3594000041484833,
0.49070000648498535,
0.8126999735832214,
0.7635999917984009,
0.4471000134944916,
0.8701000213623047,
0.5293999910354614,
0.7415000200271606,
0.373199999332428,
0.29580000042915344,
0.42640000581741333,
0.41260001063346863,
0.2418999969959259,
0.3537999987602234
],
"y_min": [
0.17090000212192535,
0.27390000224113464,
0.29350000619888306,
0.399399995803833,
0.4219000041484833,
0.42329999804496765,
0.41990000009536743,
0.42329999804496765,
0.447299987077713,
0.44339999556541443,
0.447299987077713,
0.4706999957561493,
0.4706999957561493,
0.4668000042438507,
0.49070000648498535,
0.5189999938011169,
0.5425000190734863,
0.5419999957084656,
0.5874000191688538,
0.5849999785423279,
0.5878999829292297,
0.6083999872207642,
0.635699987411499,
0.6348000168800354,
0.7333999872207642,
0.7333999872207642,
0.7567999958992004,
0.08910000324249268,
0.2012999951839447,
0.3278000056743622,
0.6898999810218811,
0.7919999957084656
],
"x_max": [
0.24529999494552612,
0.8928999900817871,
0.18930000066757202,
0.5404999852180481,
0.15410000085830688,
0.42500001192092896,
0.48649999499320984,
0.6668999791145325,
0.3668999969959259,
0.4180999994277954,
0.5196999907493591,
0.18449999392032623,
0.47200000286102295,
0.6931999921798706,
0.5314000248908997,
0.24809999763965607,
0.16030000150203705,
0.8928999900817871,
0.4458000063896179,
0.536300003528595,
0.8306999802589417,
0.7781000137329102,
0.46160000562667847,
0.8873999714851379,
0.6330999732017517,
0.7850000262260437,
0.4174000024795532,
0.7623000144958496,
0.597100019454956,
0.6108999848365784,
0.7836999893188477,
0.6689000129699707
],
"y_max": [
0.18119999766349792,
0.28610000014305115,
0.3100999891757965,
0.4101000130176544,
0.4336000084877014,
0.4359999895095825,
0.4359999895095825,
0.4359999895095825,
0.4595000147819519,
0.4595000147819519,
0.4575999975204468,
0.48190000653266907,
0.48339998722076416,
0.48489999771118164,
0.5067999958992004,
0.5282999873161316,
0.551800012588501,
0.551800012588501,
0.6025000214576721,
0.6025999784469604,
0.5990999937057495,
0.6226000189781189,
0.6460000276565552,
0.6460000276565552,
0.7484999895095825,
0.7451000213623047,
0.7684999704360962,
0.13689999282360077,
0.25279998779296875,
0.37929999828338623,
0.7113999724388123,
0.8101000189781189
],
"expr_type": [
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"isolated",
"isolated",
"isolated",
"isolated",
"isolated"
]
} |
|
0002194_page12 | {
"latex": [
"$\\alpha '$",
"${\\rm Tr} F^2$",
"$F^4$",
"$\\alpha '$",
"$N$",
"$O(B, \\zeta ^3, k^3)$",
"${\\cal L} (B+F)$",
"$O(B, \\zeta ^3, k^3)$",
"${\\rm Tr} (B+F)^4$",
"$[{\\rm Tr} (B+F)^2]^2$",
"\\begin {eqnarray} && {\\rm Tr} (B+F)^2 \\\\ &=& {\\rm Tr} F^2 +2 {\\rm Tr} BF + {\\rm Tr} B^2 \\\\ &=& {\\rm Tr} F^2 + {\\rm total~derivative} + {\\rm const}. \\end {eqnarray}",
"\\begin {eqnarray} && \\frac {\\sqrt {\\det G}}{G_s} (G^{-1})^{ij} \\hat {F}_{jk} \\ast (G^{-1})^{kl} \\hat {F}_{li} \\\\ &=& \\frac {\\sqrt {\\det g}}{G_s} \\Biggl [ ( \\partial _i \\hat {A}_j - \\partial _j \\hat {A}_i ) ( \\partial _j \\hat {A}_i - \\partial _i \\hat {A}_j ) -4 (2 \\pi \\alpha ')^2 B_{kl} \\partial _k \\hat {A}_i \\partial _l \\hat {A}_j \\partial _j \\hat {A}_i \\\\ && +2 (2 \\pi \\alpha ')^2 (B^2)_{ij} ( \\partial _j \\hat {A}_k - \\partial _k \\hat {A}_j ) ( \\partial _k \\hat {A}_i - \\partial _i \\hat {A}_k ) \\\\ && -\\frac {1}{2} (2 \\pi \\alpha ')^2 {\\rm Tr} B^2 ( \\partial _i \\hat {A}_j - \\partial _j \\hat {A}_i ) ( \\partial _j \\hat {A}_i - \\partial _i \\hat {A}_j ) + O(\\alpha '^4) \\Biggr ]. \\end {eqnarray}",
"\\begin {eqnarray} A^{{\\rm asym}~a}_i (x) = \\zeta ^a_i e^{i k^a \\cdot x}, \\qquad a= 1, 2, \\ldots , N, \\\\ ( k^a )^2 =0, \\quad \\zeta ^a \\cdot k^a =0, \\quad \\sum _{a=1}^{N} k^a_i =0, \\end {eqnarray}",
"\\begin {eqnarray} {\\rm Tr} (B+F)^4 &=& {\\rm Tr} F^4 + 4 {\\rm Tr} BF^3 + O(B^2), \\\\ \\left [{\\rm Tr} (B+F)^2 \\right ]^2 &=& ( {\\rm Tr} F^2 )^2 + 4 {\\rm Tr} BF {\\rm Tr} F^2 + O(B^2). \\end {eqnarray}"
],
"latex_norm": [
"$ \\alpha ^ { \\prime } $",
"$ T r F ^ { 2 } $",
"$ F ^ { 4 } $",
"$ \\alpha ^ { \\prime } $",
"$ N $",
"$ O ( B , \\zeta ^ { 3 } , k ^ { 3 } ) $",
"$ L ( B + F ) $",
"$ O ( B , \\zeta ^ { 3 } , k ^ { 3 } ) $",
"$ T r ( B + F ) ^ { 4 } $",
"$ [ T r ( B + F ) ^ { 2 } ] ^ { 2 } $",
"\\begin{align*} & & T r ( B + F ) ^ { 2 } \\\\ & = & T r F ^ { 2 } + 2 T r B F + T r B ^ { 2 } \\\\ & = & T r F ^ { 2 } + t o t a l ~ d e r i v a t i v e + c o n s t . \\end{align*}",
"\\begin{align*} & & \\frac { \\sqrt { \\operatorname { d e t } G } } { G _ { s } } ( G ^ { - 1 } ) ^ { i j } \\hat { F } _ { j k } \\ast ( G ^ { - 1 } ) ^ { k l } \\hat { F } _ { l i } \\\\ & = & \\frac { \\sqrt { \\operatorname { d e t } g } } { G _ { s } } [ ( \\partial _ { i } \\hat { A } _ { j } - \\partial _ { j } \\hat { A } _ { i } ) ( \\partial _ { j } \\hat { A } _ { i } - \\partial _ { i } \\hat { A } _ { j } ) - 4 ( 2 \\pi \\alpha ^ { \\prime } ) ^ { 2 } B _ { k l } \\partial _ { k } \\hat { A } _ { i } \\partial _ { l } \\hat { A } _ { j } \\partial _ { j } \\hat { A } _ { i } \\\\ & & + 2 ( 2 \\pi \\alpha ^ { \\prime } ) ^ { 2 } ( B ^ { 2 } ) _ { i j } ( \\partial _ { j } \\hat { A } _ { k } - \\partial _ { k } \\hat { A } _ { j } ) ( \\partial _ { k } \\hat { A } _ { i } - \\partial _ { i } \\hat { A } _ { k } ) \\\\ & & - \\frac { 1 } { 2 } ( 2 \\pi \\alpha ^ { \\prime } ) ^ { 2 } T r B ^ { 2 } ( \\partial _ { i } \\hat { A } _ { j } - \\partial _ { j } \\hat { A } _ { i } ) ( \\partial _ { j } \\hat { A } _ { i } - \\partial _ { i } \\hat { A } _ { j } ) + O ( \\alpha ^ { \\prime 4 } ) ] . \\end{align*}",
"\\begin{align*} A _ { i } ^ { a s y m ~ a } ( x ) = \\zeta _ { i } ^ { a } e ^ { i k ^ { a } \\cdot x } , \\qquad a = 1 , 2 , \\ldots , N , \\\\ ( k ^ { a } ) ^ { 2 } = 0 , \\quad \\zeta ^ { a } \\cdot k ^ { a } = 0 , \\quad \\sum _ { a = 1 } ^ { N } k _ { i } ^ { a } = 0 , \\end{align*}",
"\\begin{align*} T r ( B + F ) ^ { 4 } & = & T r F ^ { 4 } + 4 T r B F ^ { 3 } + O ( B ^ { 2 } ) , \\\\ { [ T r ( B + F ) ^ { 2 } ] } ^ { 2 } & = & ( T r F ^ { 2 } ) ^ { 2 } + 4 T r B F T r F ^ { 2 } + O ( B ^ { 2 } ) . \\end{align*}"
],
"latex_expand": [
"$ \\mitalpha ^ { \\prime } $",
"$ \\mathrm { T r } \\mitF ^ { 2 } $",
"$ \\mitF ^ { 4 } $",
"$ \\mitalpha ^ { \\prime } $",
"$ \\mitN $",
"$ \\mitO ( \\mitB , \\mitzeta ^ { 3 } , \\mitk ^ { 3 } ) $",
"$ \\mitL ( \\mitB + \\mitF ) $",
"$ \\mitO ( \\mitB , \\mitzeta ^ { 3 } , \\mitk ^ { 3 } ) $",
"$ \\mathrm { T r } ( \\mitB + \\mitF ) ^ { 4 } $",
"$ [ \\mathrm { T r } ( \\mitB + \\mitF ) ^ { 2 } ] ^ { 2 } $",
"\\begin{align*} & & \\displaystyle \\mathrm { T r } ( \\mitB + \\mitF ) ^ { 2 } \\\\ & = & \\displaystyle \\mathrm { T r } \\mitF ^ { 2 } + 2 \\mathrm { T r } \\mitB \\mitF + \\mathrm { T r } \\mitB ^ { 2 } \\\\ & = & \\displaystyle \\mathrm { T r } \\mitF ^ { 2 } + \\mathrm { t o t a l ~ d e r i v a t i v e } + \\mathrm { c o n s t } . \\end{align*}",
"\\begin{align*} & & \\displaystyle \\frac { \\sqrt { \\operatorname { d e t } \\mitG } } { \\mitG _ { \\mits } } ( \\mitG ^ { - 1 } ) ^ { \\miti \\mitj } \\hat { \\mitF } _ { \\mitj \\mitk } \\ast ( \\mitG ^ { - 1 } ) ^ { \\mitk \\mitl } \\hat { \\mitF } _ { \\mitl \\miti } \\\\ & = & \\displaystyle \\frac { \\sqrt { \\operatorname { d e t } \\mitg } } { \\mitG _ { \\mits } } \\Bigg [ ( \\mitpartial _ { \\miti } \\hat { \\mitA } _ { \\mitj } - \\mitpartial _ { \\mitj } \\hat { \\mitA } _ { \\miti } ) ( \\mitpartial _ { \\mitj } \\hat { \\mitA } _ { \\miti } - \\mitpartial _ { \\miti } \\hat { \\mitA } _ { \\mitj } ) - 4 ( 2 \\mitpi \\mitalpha ^ { \\prime } ) ^ { 2 } \\mitB _ { \\mitk \\mitl } \\mitpartial _ { \\mitk } \\hat { \\mitA } _ { \\miti } \\mitpartial _ { \\mitl } \\hat { \\mitA } _ { \\mitj } \\mitpartial _ { \\mitj } \\hat { \\mitA } _ { \\miti } \\\\ & & \\displaystyle + 2 ( 2 \\mitpi \\mitalpha ^ { \\prime } ) ^ { 2 } ( \\mitB ^ { 2 } ) _ { \\miti \\mitj } ( \\mitpartial _ { \\mitj } \\hat { \\mitA } _ { \\mitk } - \\mitpartial _ { \\mitk } \\hat { \\mitA } _ { \\mitj } ) ( \\mitpartial _ { \\mitk } \\hat { \\mitA } _ { \\miti } - \\mitpartial _ { \\miti } \\hat { \\mitA } _ { \\mitk } ) \\\\ & & \\displaystyle - \\frac { 1 } { 2 } ( 2 \\mitpi \\mitalpha ^ { \\prime } ) ^ { 2 } \\mathrm { T r } \\mitB ^ { 2 } ( \\mitpartial _ { \\miti } \\hat { \\mitA } _ { \\mitj } - \\mitpartial _ { \\mitj } \\hat { \\mitA } _ { \\miti } ) ( \\mitpartial _ { \\mitj } \\hat { \\mitA } _ { \\miti } - \\mitpartial _ { \\miti } \\hat { \\mitA } _ { \\mitj } ) + \\mitO ( \\mitalpha ^ { \\prime 4 } ) \\Bigg ] . \\end{align*}",
"\\begin{align*} \\displaystyle \\mitA _ { \\miti } ^ { \\mathrm { a s y m } ~ \\mita } ( \\mitx ) = \\mitzeta _ { \\miti } ^ { \\mita } \\mite ^ { \\miti \\mitk ^ { \\mita } \\cdot \\mitx } , \\qquad \\mita = 1 , 2 , \\ldots , \\mitN , \\\\ \\displaystyle ( \\mitk ^ { \\mita } ) ^ { 2 } = 0 , \\quad \\mitzeta ^ { \\mita } \\cdot \\mitk ^ { \\mita } = 0 , \\quad \\sum _ { \\mita = 1 } ^ { \\mitN } \\mitk _ { \\miti } ^ { \\mita } = 0 , \\end{align*}",
"\\begin{align*} \\displaystyle \\mathrm { T r } ( \\mitB + \\mitF ) ^ { 4 } & = & \\displaystyle \\mathrm { T r } \\mitF ^ { 4 } + 4 \\mathrm { T r } \\mitB \\mitF ^ { 3 } + \\mitO ( \\mitB ^ { 2 } ) , \\\\ \\displaystyle { \\left[ \\mathrm { T r } ( \\mitB + \\mitF ) ^ { 2 } \\right] } ^ { 2 } & = & \\displaystyle ( \\mathrm { T r } \\mitF ^ { 2 } ) ^ { 2 } + 4 \\mathrm { T r } \\mitB \\mitF \\mathrm { T r } \\mitF ^ { 2 } + \\mitO ( \\mitB ^ { 2 } ) . \\end{align*}"
],
"x_min": [
0.2881999909877777,
0.5605000257492065,
0.1996999979019165,
0.2930000126361847,
0.6640999913215637,
0.29159998893737793,
0.6316999793052673,
0.7912999987602234,
0.5860000252723694,
0.7297999858856201,
0.36419999599456787,
0.22939999401569366,
0.3151000142097473,
0.2791999876499176
],
"y_min": [
0.12399999797344208,
0.12300000339746475,
0.24899999797344208,
0.2734000086784363,
0.5,
0.6284000277519226,
0.6762999892234802,
0.7226999998092651,
0.7465999722480774,
0.7465999722480774,
0.15389999747276306,
0.29789999127388,
0.527899980545044,
0.7746000289916992
],
"x_max": [
0.3061999976634979,
0.6047000288963318,
0.22390000522136688,
0.3109999895095825,
0.6820999979972839,
0.3939000070095062,
0.7153000235557556,
0.8928999900817871,
0.6855000257492065,
0.8486999869346619,
0.6758999824523926,
0.8112999796867371,
0.6744999885559082,
0.7443000078201294
],
"y_max": [
0.13519999384880066,
0.13519999384880066,
0.2612000107765198,
0.28459998965263367,
0.5102999806404114,
0.6439999938011169,
0.6909000277519226,
0.7383000254631042,
0.7616999745368958,
0.7616999745368958,
0.23229999840259552,
0.4399000108242035,
0.5985000133514404,
0.8309999704360962
],
"expr_type": [
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"isolated",
"isolated",
"isolated",
"isolated"
]
} |
|
0002194_page13 | {
"latex": [
"${\\rm Tr} BF^3$",
"${\\rm Tr} BF {\\rm Tr} F^2$",
"$F_{ij} = \\partial _i A_j - \\partial _j A_i$",
"$F_{ij} = \\partial _i A_j - \\partial _j A_i$",
"$\\partial ^2 A_i$",
"$\\partial _i A_i$",
"$k^2 =0$",
"$\\zeta \\cdot k =0$",
"$f \\partial _i g \\partial _i h$",
"$f$",
"$g$",
"$h$",
"$k^1 \\cdot k^2 = k^2 \\cdot k^3 = k^3 \\cdot k^1 =0$",
"$k^1 + k^2 + k^3 =0$",
"$( k^a )^2 =0$",
"$f \\partial _i g \\partial _i h$",
"${\\rm Tr} BF^3$",
"${\\rm Tr} BF {\\rm Tr} F^2$",
"$O(B, \\zeta ^3, k^3)$",
"\\begin {equation} 0 = ( k^3 )^2 = ( k^1 + k^2 )^2 = 2 k^1 \\cdot k^2, \\end {equation}",
"\\begin {equation} f \\partial _i g \\partial _i h = \\frac {1}{2} (\\partial ^2 f g h - f \\partial ^2 g h - f g \\partial ^2 h) + \\frac {1}{2} \\partial ^2 (f g h) - \\partial _i ( \\partial _i f g h). \\label {formula} \\end {equation}",
"\\begin {eqnarray} {\\rm Tr} BF^3 &=& B_{ij} F_{jk} F_{kl} F_{li} \\\\ &=& 2 B_{ij} \\partial _j A_k \\partial _k A_l \\partial _l A_i -2 B_{ij} \\partial _j A_k \\partial _k A_l \\partial _i A_l \\\\ && + {\\rm ~terms~with~} \\partial ^2 A + {\\rm total~derivative}, \\\\ {\\rm Tr} BF {\\rm Tr} F^2 &=& B_{ij} F_{ji} F_{kl} F_{lk} \\\\ &=& 4 B_{ij} \\partial _j A_i \\partial _k A_l \\partial _l A_k \\\\ &=& -8 B_{ij} A_i \\partial _k A_l \\partial _j \\partial _l A_k + {\\rm total~derivative} \\\\ &=& 8 B_{ij} \\partial _l A_i \\partial _k A_l \\partial _j A_k + {\\rm a~term~with~} \\partial _l A_l + {\\rm total~derivative}. \\end {eqnarray}",
"$$ {\\rm Tr} ( G^{-1} \\hat {F} \\ast G^{-1} \\hat {F} ) \\to -4 (2 \\pi \\alpha ')^2 B_{kl} \\partial _k \\hat {A}_i \\partial _l \\hat {A}_j \\partial _j \\hat {A}_i, $$",
"\\begin {eqnarray*} {\\rm Tr} BF^3 &\\to & 2 B_{ij} \\partial _j A_k \\partial _k A_l \\partial _l A_i -2 B_{ij} \\partial _i A_l \\partial _j A_k \\partial _k A_l, \\\\ {\\rm Tr} BF {\\rm Tr} F^2 &\\to & 8 B_{ij} \\partial _j A_k \\partial _k A_l \\partial _l A_i. \\end {eqnarray*}"
],
"latex_norm": [
"$ T r B F ^ { 3 } $",
"$ T r B F T r F ^ { 2 } $",
"$ F _ { i j } = \\partial _ { i } A _ { j } - \\partial _ { j } A _ { i } $",
"$ F _ { i j } = \\partial _ { i } A _ { j } - \\partial _ { j } A _ { i } $",
"$ \\partial ^ { 2 } A _ { i } $",
"$ \\partial _ { i } A _ { i } $",
"$ k ^ { 2 } = 0 $",
"$ \\zeta \\cdot k = 0 $",
"$ f \\partial _ { i } g \\partial _ { i } h $",
"$ f $",
"$ g $",
"$ h $",
"$ k ^ { 1 } \\cdot k ^ { 2 } = k ^ { 2 } \\cdot k ^ { 3 } = k ^ { 3 } \\cdot k ^ { 1 } = 0 $",
"$ k ^ { 1 } + k ^ { 2 } + k ^ { 3 } = 0 $",
"$ ( k ^ { a } ) ^ { 2 } = 0 $",
"$ f \\partial _ { i } g \\partial _ { i } h $",
"$ T r B F ^ { 3 } $",
"$ T r B F T r F ^ { 2 } $",
"$ O ( B , \\zeta ^ { 3 } , k ^ { 3 } ) $",
"\\begin{equation*} 0 = ( k ^ { 3 } ) ^ { 2 } = ( k ^ { 1 } + k ^ { 2 } ) ^ { 2 } = 2 k ^ { 1 } \\cdot k ^ { 2 } , \\end{equation*}",
"\\begin{equation*} f \\partial _ { i } g \\partial _ { i } h = \\frac { 1 } { 2 } ( \\partial ^ { 2 } f g h - f \\partial ^ { 2 } g h - f g \\partial ^ { 2 } h ) + \\frac { 1 } { 2 } \\partial ^ { 2 } ( f g h ) - \\partial _ { i } ( \\partial _ { i } f g h ) . \\end{equation*}",
"\\begin{align*} T r B F ^ { 3 } & = & B _ { i j } F _ { j k } F _ { k l } F _ { l i } \\\\ & = & 2 B _ { i j } \\partial _ { j } A _ { k } \\partial _ { k } A _ { l } \\partial _ { l } A _ { i } - 2 B _ { i j } \\partial _ { j } A _ { k } \\partial _ { k } A _ { l } \\partial _ { i } A _ { l } \\\\ & & + ~ t e r m s ~ w i t h ~ \\partial ^ { 2 } A + t o t a l ~ d e r i v a t i v e , \\\\ T r B F T r F ^ { 2 } & = & B _ { i j } F _ { j i } F _ { k l } F _ { l k } \\\\ & = & 4 B _ { i j } \\partial _ { j } A _ { i } \\partial _ { k } A _ { l } \\partial _ { l } A _ { k } \\\\ & = & - 8 B _ { i j } A _ { i } \\partial _ { k } A _ { l } \\partial _ { j } \\partial _ { l } A _ { k } + t o t a l ~ d e r i v a t i v e \\\\ & = & 8 B _ { i j } \\partial _ { l } A _ { i } \\partial _ { k } A _ { l } \\partial _ { j } A _ { k } + a ~ t e r m ~ w i t h ~ \\partial _ { l } A _ { l } + t o t a l ~ d e r i v a t i v e . \\end{align*}",
"\\begin{equation*} T r ( G ^ { - 1 } \\hat { F } \\ast G ^ { - 1 } \\hat { F } ) \\rightarrow - 4 ( 2 \\pi \\alpha ^ { \\prime } ) ^ { 2 } B _ { k l } \\partial _ { k } \\hat { A } _ { i } \\partial _ { l } \\hat { A } _ { j } \\partial _ { j } \\hat { A } _ { i } , \\end{equation*}",
"\\begin{align*} T r B F ^ { 3 } & \\rightarrow & 2 B _ { i j } \\partial _ { j } A _ { k } \\partial _ { k } A _ { l } \\partial _ { l } A _ { i } - 2 B _ { i j } \\partial _ { i } A _ { l } \\partial _ { j } A _ { k } \\partial _ { k } A _ { l } , \\\\ T r B F T r F ^ { 2 } & \\rightarrow & 8 B _ { i j } \\partial _ { j } A _ { k } \\partial _ { k } A _ { l } \\partial _ { l } A _ { i } . \\end{align*}"
],
"latex_expand": [
"$ \\mathrm { T r } \\mitB \\mitF ^ { 3 } $",
"$ \\mathrm { T r } \\mitB \\mitF \\mathrm { T r } \\mitF ^ { 2 } $",
"$ \\mitF _ { \\miti \\mitj } = \\mitpartial _ { \\miti } \\mitA _ { \\mitj } - \\mitpartial _ { \\mitj } \\mitA _ { \\miti } $",
"$ \\mitF _ { \\miti \\mitj } = \\mitpartial _ { \\miti } \\mitA _ { \\mitj } - \\mitpartial _ { \\mitj } \\mitA _ { \\miti } $",
"$ \\mitpartial ^ { 2 } \\mitA _ { \\miti } $",
"$ \\mitpartial _ { \\miti } \\mitA _ { \\miti } $",
"$ \\mitk ^ { 2 } = 0 $",
"$ \\mitzeta \\cdot \\mitk = 0 $",
"$ \\mitf \\mitpartial _ { \\miti } \\mitg \\mitpartial _ { \\miti } \\Planckconst $",
"$ \\mitf $",
"$ \\mitg $",
"$ \\Planckconst $",
"$ \\mitk ^ { 1 } \\cdot \\mitk ^ { 2 } = \\mitk ^ { 2 } \\cdot \\mitk ^ { 3 } = \\mitk ^ { 3 } \\cdot \\mitk ^ { 1 } = 0 $",
"$ \\mitk ^ { 1 } + \\mitk ^ { 2 } + \\mitk ^ { 3 } = 0 $",
"$ ( \\mitk ^ { \\mita } ) ^ { 2 } = 0 $",
"$ \\mitf \\mitpartial _ { \\miti } \\mitg \\mitpartial _ { \\miti } \\Planckconst $",
"$ \\mathrm { T r } \\mitB \\mitF ^ { 3 } $",
"$ \\mathrm { T r } \\mitB \\mitF \\mathrm { T r } \\mitF ^ { 2 } $",
"$ \\mitO ( \\mitB , \\mitzeta ^ { 3 } , \\mitk ^ { 3 } ) $",
"\\begin{equation*} 0 = ( \\mitk ^ { 3 } ) ^ { 2 } = ( \\mitk ^ { 1 } + \\mitk ^ { 2 } ) ^ { 2 } = 2 \\mitk ^ { 1 } \\cdot \\mitk ^ { 2 } , \\end{equation*}",
"\\begin{equation*} \\mitf \\mitpartial _ { \\miti } \\mitg \\mitpartial _ { \\miti } \\Planckconst = \\frac { 1 } { 2 } ( \\mitpartial ^ { 2 } \\mitf \\mitg \\Planckconst - \\mitf \\mitpartial ^ { 2 } \\mitg \\Planckconst - \\mitf \\mitg \\mitpartial ^ { 2 } \\Planckconst ) + \\frac { 1 } { 2 } \\mitpartial ^ { 2 } ( \\mitf \\mitg \\Planckconst ) - \\mitpartial _ { \\miti } ( \\mitpartial _ { \\miti } \\mitf \\mitg \\Planckconst ) . \\end{equation*}",
"\\begin{align*} \\displaystyle \\mathrm { T r } \\mitB \\mitF ^ { 3 } & = & \\displaystyle \\mitB _ { \\miti \\mitj } \\mitF _ { \\mitj \\mitk } \\mitF _ { \\mitk \\mitl } \\mitF _ { \\mitl \\miti } \\\\ & = & \\displaystyle 2 \\mitB _ { \\miti \\mitj } \\mitpartial _ { \\mitj } \\mitA _ { \\mitk } \\mitpartial _ { \\mitk } \\mitA _ { \\mitl } \\mitpartial _ { \\mitl } \\mitA _ { \\miti } - 2 \\mitB _ { \\miti \\mitj } \\mitpartial _ { \\mitj } \\mitA _ { \\mitk } \\mitpartial _ { \\mitk } \\mitA _ { \\mitl } \\mitpartial _ { \\miti } \\mitA _ { \\mitl } \\\\ & & \\displaystyle + ~ \\mathrm { t e r m s } ~ \\mathrm { w i t h } ~ \\mitpartial ^ { 2 } \\mitA + \\mathrm { t o t a l ~ d e r i v a t i v e } , \\\\ \\displaystyle \\mathrm { T r } \\mitB \\mitF \\mathrm { T r } \\mitF ^ { 2 } & = & \\displaystyle \\mitB _ { \\miti \\mitj } \\mitF _ { \\mitj \\miti } \\mitF _ { \\mitk \\mitl } \\mitF _ { \\mitl \\mitk } \\\\ & = & \\displaystyle 4 \\mitB _ { \\miti \\mitj } \\mitpartial _ { \\mitj } \\mitA _ { \\miti } \\mitpartial _ { \\mitk } \\mitA _ { \\mitl } \\mitpartial _ { \\mitl } \\mitA _ { \\mitk } \\\\ & = & \\displaystyle - 8 \\mitB _ { \\miti \\mitj } \\mitA _ { \\miti } \\mitpartial _ { \\mitk } \\mitA _ { \\mitl } \\mitpartial _ { \\mitj } \\mitpartial _ { \\mitl } \\mitA _ { \\mitk } + \\mathrm { t o t a l ~ d e r i v a t i v e } \\\\ & = & \\displaystyle 8 \\mitB _ { \\miti \\mitj } \\mitpartial _ { \\mitl } \\mitA _ { \\miti } \\mitpartial _ { \\mitk } \\mitA _ { \\mitl } \\mitpartial _ { \\mitj } \\mitA _ { \\mitk } + \\mathrm { a } ~ \\mathrm { t e r m } ~ \\mathrm { w i t h } ~ \\mitpartial _ { \\mitl } \\mitA _ { \\mitl } + \\mathrm { t o t a l ~ d e r i v a t i v e } . \\end{align*}",
"\\begin{equation*} \\mathrm { T r } ( \\mitG ^ { - 1 } \\hat { \\mitF } \\ast \\mitG ^ { - 1 } \\hat { \\mitF } ) \\rightarrow - 4 ( 2 \\mitpi \\mitalpha ^ { \\prime } ) ^ { 2 } \\mitB _ { \\mitk \\mitl } \\mitpartial _ { \\mitk } \\hat { \\mitA } _ { \\miti } \\mitpartial _ { \\mitl } \\hat { \\mitA } _ { \\mitj } \\mitpartial _ { \\mitj } \\hat { \\mitA } _ { \\miti } , \\end{equation*}",
"\\begin{align*} \\displaystyle \\mathrm { T r } \\mitB \\mitF ^ { 3 } & \\displaystyle \\rightarrow & \\displaystyle 2 \\mitB _ { \\miti \\mitj } \\mitpartial _ { \\mitj } \\mitA _ { \\mitk } \\mitpartial _ { \\mitk } \\mitA _ { \\mitl } \\mitpartial _ { \\mitl } \\mitA _ { \\miti } - 2 \\mitB _ { \\miti \\mitj } \\mitpartial _ { \\miti } \\mitA _ { \\mitl } \\mitpartial _ { \\mitj } \\mitA _ { \\mitk } \\mitpartial _ { \\mitk } \\mitA _ { \\mitl } , \\\\ \\displaystyle \\mathrm { T r } \\mitB \\mitF \\mathrm { T r } \\mitF ^ { 2 } & \\displaystyle \\rightarrow & \\displaystyle 8 \\mitB _ { \\miti \\mitj } \\mitpartial _ { \\mitj } \\mitA _ { \\mitk } \\mitpartial _ { \\mitk } \\mitA _ { \\mitl } \\mitpartial _ { \\mitl } \\mitA _ { \\miti } . \\end{align*}"
],
"x_min": [
0.3594000041484833,
0.46230000257492065,
0.7843999862670898,
0.1298999935388565,
0.47620001435279846,
0.5501000285148621,
0.6937999725341797,
0.8051000237464905,
0.669700026512146,
0.6392999887466431,
0.6633999943733215,
0.7193999886512756,
0.532800018787384,
0.2653999924659729,
0.4643999934196472,
0.1298999935388565,
0.2922999858856201,
0.396699994802475,
0.1306000053882599,
0.3677000105381012,
0.23839999735355377,
0.1956000030040741,
0.2985000014305115,
0.26739999651908875
],
"y_min": [
0.09960000216960907,
0.09960000216960907,
0.10109999775886536,
0.12449999898672104,
0.12300000339746475,
0.12449999898672104,
0.1469999998807907,
0.14790000021457672,
0.17190000414848328,
0.19529999792575836,
0.19920000433921814,
0.19529999792575836,
0.21729999780654907,
0.2953999936580658,
0.2953999936580658,
0.32030001282691956,
0.41499999165534973,
0.41499999165534973,
0.67330002784729,
0.260699987411499,
0.3441999852657318,
0.44589999318122864,
0.7064999938011169,
0.7770000100135803
],
"x_max": [
0.4194999933242798,
0.5583999752998352,
0.8991000056266785,
0.16930000483989716,
0.5163000226020813,
0.5867000222206116,
0.7566999793052673,
0.8873000144958496,
0.7360000014305115,
0.6510000228881836,
0.673799991607666,
0.7311000227928162,
0.7753999829292297,
0.41670000553131104,
0.5486999750137329,
0.19619999825954437,
0.352400004863739,
0.4921000003814697,
0.2321999967098236,
0.6545000076293945,
0.7871000170707703,
0.8273000121116638,
0.7214000225067139,
0.7524999976158142
],
"y_max": [
0.11180000007152557,
0.11129999905824661,
0.11569999903440475,
0.13910000026226044,
0.1371999979019165,
0.1371999979019165,
0.15870000422000885,
0.1615999937057495,
0.1851000040769577,
0.2084999978542328,
0.2084999978542328,
0.20559999346733093,
0.22949999570846558,
0.30809998512268066,
0.31049999594688416,
0.3334999978542328,
0.42669999599456787,
0.42669999599456787,
0.6888999938964844,
0.2802000045776367,
0.3763999938964844,
0.6312000155448914,
0.7254999876022339,
0.8270000219345093
],
"expr_type": [
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"isolated",
"isolated",
"isolated",
"isolated",
"isolated"
]
} |
|
0002194_page14 | {
"latex": [
"$B_{ij} \\partial _j A_k \\partial _k A_l \\partial _l A_i$",
"$B_{ij} \\partial _i A_l \\partial _j A_k \\partial _k A_l$",
"$\\hat {{\\cal L}} (\\hat {F})$",
"${\\cal L} (B+F)$",
"${\\cal L} (F)$",
"${\\cal L} (B+F)$",
"$\\alpha '$",
"$p$",
"$F^4$",
"$\\hat {A}_i$",
"$A_i$",
"\\begin {equation} 2 (2 \\pi \\alpha ')^2 {\\rm Tr} BF^3 -\\frac {1}{2} (2 \\pi \\alpha ')^2 {\\rm Tr} BF {\\rm Tr} F^2. \\label {BF^3} \\end {equation}",
"\\begin {eqnarray} {\\cal L}(F) = \\frac {\\sqrt {\\det g}}{g_s} \\Biggl [ {\\rm Tr} F^2 + (2 \\pi \\alpha ')^2 \\left [ \\frac {1}{2} {\\rm Tr} F^4 -\\frac {1}{8} ({\\rm Tr} F^2)^2 \\right ] \\\\ + ~O(\\alpha '^4) + {\\rm derivative~corrections~} \\Biggr ]. \\end {eqnarray}",
"\\begin {equation} {\\cal L}_{DBI} (F) = \\frac {1}{g_s (2 \\pi )^p (\\alpha ')^{(p+1)/2}} \\sqrt {\\det (g + 2 \\pi \\alpha ' F)}, \\label {DBI} \\end {equation}",
"\\begin {eqnarray} {\\cal L}(B+F) = \\frac {\\sqrt {\\det g}}{g_s} \\Biggl [ {\\rm Tr} (B+F)^2 + (2 \\pi \\alpha ')^2 \\left [ \\frac {1}{2} {\\rm Tr} (B+F)^4 -\\frac {1}{8} [ {\\rm Tr} (B+F)^2 ]^2 \\right ] \\\\ + ~O(\\alpha '^4) + {\\rm derivative~corrections~} \\Biggr ], \\end {eqnarray}",
"\\begin {eqnarray} \\hat {{\\cal L}}(\\hat {F}) = \\frac {\\sqrt {\\det G}}{G_s} \\Biggl [ {\\rm Tr} ( G^{-1} \\hat {F} \\ast G^{-1} \\hat {F} ) + (2 \\pi \\alpha ')^2 \\biggl [ \\frac {1}{2} {\\rm Tr} ( G^{-1} \\hat {F} )^4_{\\rm arbitrary} \\\\ -\\frac {1}{8} ( {\\rm Tr} ( G^{-1} \\hat {F} )^2 )^2_{\\rm arbitrary} \\biggr ] + ~O(\\alpha '^4) + {\\rm derivative~corrections~} \\Biggr ], \\end {eqnarray}"
],
"latex_norm": [
"$ B _ { i j } \\partial _ { j } A _ { k } \\partial _ { k } A _ { l } \\partial _ { l } A _ { i } $",
"$ B _ { i j } \\partial _ { i } A _ { l } \\partial _ { j } A _ { k } \\partial _ { k } A _ { l } $",
"$ \\hat { L } ( \\hat { F } ) $",
"$ L ( B + F ) $",
"$ L ( F ) $",
"$ L ( B + F ) $",
"$ \\alpha ^ { \\prime } $",
"$ p $",
"$ F ^ { 4 } $",
"$ \\hat { A } _ { i } $",
"$ A _ { i } $",
"\\begin{equation*} 2 ( 2 \\pi \\alpha ^ { \\prime } ) ^ { 2 } T r B F ^ { 3 } - \\frac { 1 } { 2 } ( 2 \\pi \\alpha ^ { \\prime } ) ^ { 2 } T r B F T r F ^ { 2 } . \\end{equation*}",
"\\begin{align*} L ( F ) = \\frac { \\sqrt { \\operatorname { d e t } g } } { g _ { s } } [ T r F ^ { 2 } + ( 2 \\pi \\alpha ^ { \\prime } ) ^ { 2 } [ \\frac { 1 } { 2 } T r F ^ { 4 } - \\frac { 1 } { 8 } ( T r F ^ { 2 } ) ^ { 2 } ] \\\\ + ~ O ( \\alpha ^ { \\prime 4 } ) + d e r i v a t i v e ~ c o r r e c t i o n s ~ ] . \\end{align*}",
"\\begin{equation*} L _ { D B I } ( F ) = \\frac { 1 } { g _ { s } ( 2 \\pi ) ^ { p } ( \\alpha ^ { \\prime } ) ^ { ( p + 1 ) \\slash 2 } } \\sqrt { \\operatorname { d e t } ( g + 2 \\pi \\alpha ^ { \\prime } F ) } , \\end{equation*}",
"\\begin{align*} L ( B + F ) = \\frac { \\sqrt { \\operatorname { d e t } g } } { g _ { s } } [ T r ( B + F ) ^ { 2 } + ( 2 \\pi \\alpha ^ { \\prime } ) ^ { 2 } [ \\frac { 1 } { 2 } T r ( B + F ) ^ { 4 } - \\frac { 1 } { 8 } [ T r ( B + F ) ^ { 2 } ] ^ { 2 } ] \\\\ + ~ O ( \\alpha ^ { \\prime 4 } ) + d e r i v a t i v e ~ c o r r e c t i o n s ~ ] , \\end{align*}",
"\\begin{align*} \\hat { L } ( \\hat { F } ) = \\frac { \\sqrt { \\operatorname { d e t } G } } { G _ { s } } [ T r ( G ^ { - 1 } \\hat { F } \\ast G ^ { - 1 } \\hat { F } ) + ( 2 \\pi \\alpha ^ { \\prime } ) ^ { 2 } [ \\frac { 1 } { 2 } T r ( G ^ { - 1 } \\hat { F } ) _ { a r b i t r a r y } ^ { 4 } \\\\ - \\frac { 1 } { 8 } ( T r ( G ^ { - 1 } \\hat { F } ) ^ { 2 } ) _ { a r b i t r a r y } ^ { 2 } ] + ~ O ( \\alpha ^ { \\prime 4 } ) + d e r i v a t i v e ~ c o r r e c t i o n s ~ ] , \\end{align*}"
],
"latex_expand": [
"$ \\mitB _ { \\miti \\mitj } \\mitpartial _ { \\mitj } \\mitA _ { \\mitk } \\mitpartial _ { \\mitk } \\mitA _ { \\mitl } \\mitpartial _ { \\mitl } \\mitA _ { \\miti } $",
"$ \\mitB _ { \\miti \\mitj } \\mitpartial _ { \\miti } \\mitA _ { \\mitl } \\mitpartial _ { \\mitj } \\mitA _ { \\mitk } \\mitpartial _ { \\mitk } \\mitA _ { \\mitl } $",
"$ \\hat { \\mitL } ( \\hat { \\mitF } ) $",
"$ \\mitL ( \\mitB + \\mitF ) $",
"$ \\mitL ( \\mitF ) $",
"$ \\mitL ( \\mitB + \\mitF ) $",
"$ \\mitalpha ^ { \\prime } $",
"$ \\mitp $",
"$ \\mitF ^ { 4 } $",
"$ \\hat { \\mitA } _ { \\miti } $",
"$ \\mitA _ { \\miti } $",
"\\begin{equation*} 2 ( 2 \\mitpi \\mitalpha ^ { \\prime } ) ^ { 2 } \\mathrm { T r } \\mitB \\mitF ^ { 3 } - \\frac { 1 } { 2 } ( 2 \\mitpi \\mitalpha ^ { \\prime } ) ^ { 2 } \\mathrm { T r } \\mitB \\mitF \\mathrm { T r } \\mitF ^ { 2 } . \\end{equation*}",
"\\begin{align*} \\displaystyle \\mitL ( \\mitF ) = \\frac { \\sqrt { \\operatorname { d e t } \\mitg } } { \\mitg _ { \\mits } } \\Bigg [ \\mathrm { T r } \\mitF ^ { 2 } + ( 2 \\mitpi \\mitalpha ^ { \\prime } ) ^ { 2 } \\left[ \\frac { 1 } { 2 } \\mathrm { T r } \\mitF ^ { 4 } - \\frac { 1 } { 8 } ( \\mathrm { T r } \\mitF ^ { 2 } ) ^ { 2 } \\right] \\\\ \\displaystyle + ~ \\mitO ( \\mitalpha ^ { \\prime 4 } ) + \\mathrm { d e r i v a t i v e ~ c o r r e c t i o n s } ~ \\Bigg ] . \\end{align*}",
"\\begin{equation*} \\mitL _ { \\mitD \\mitB \\mitI } ( \\mitF ) = \\frac { 1 } { \\mitg _ { \\mits } ( 2 \\mitpi ) ^ { \\mitp } ( \\mitalpha ^ { \\prime } ) ^ { ( \\mitp + 1 ) \\slash 2 } } \\sqrt { \\operatorname { d e t } ( \\mitg + 2 \\mitpi \\mitalpha ^ { \\prime } \\mitF ) } , \\end{equation*}",
"\\begin{align*} \\displaystyle \\mitL ( \\mitB + \\mitF ) = \\frac { \\sqrt { \\operatorname { d e t } \\mitg } } { \\mitg _ { \\mits } } \\Bigg [ \\mathrm { T r } ( \\mitB + \\mitF ) ^ { 2 } + ( 2 \\mitpi \\mitalpha ^ { \\prime } ) ^ { 2 } \\left[ \\frac { 1 } { 2 } \\mathrm { T r } ( \\mitB + \\mitF ) ^ { 4 } - \\frac { 1 } { 8 } [ \\mathrm { T r } ( \\mitB + \\mitF ) ^ { 2 } ] ^ { 2 } \\right] \\\\ \\displaystyle + ~ \\mitO ( \\mitalpha ^ { \\prime 4 } ) + \\mathrm { d e r i v a t i v e ~ c o r r e c t i o n s } ~ \\Bigg ] , \\end{align*}",
"\\begin{align*} \\displaystyle \\hat { \\mitL } ( \\hat { \\mitF } ) = \\frac { \\sqrt { \\operatorname { d e t } \\mitG } } { \\mitG _ { \\mits } } \\Bigg [ \\mathrm { T r } ( \\mitG ^ { - 1 } \\hat { \\mitF } \\ast \\mitG ^ { - 1 } \\hat { \\mitF } ) + ( 2 \\mitpi \\mitalpha ^ { \\prime } ) ^ { 2 } \\bigg [ \\frac { 1 } { 2 } \\mathrm { T r } ( \\mitG ^ { - 1 } \\hat { \\mitF } ) _ { \\mathrm { a r b i t r a r y } } ^ { 4 } \\\\ \\displaystyle - \\frac { 1 } { 8 } ( \\mathrm { T r } ( \\mitG ^ { - 1 } \\hat { \\mitF } ) ^ { 2 } ) _ { \\mathrm { a r b i t r a r y } } ^ { 2 } \\bigg ] + ~ \\mitO ( \\mitalpha ^ { \\prime 4 } ) + \\mathrm { d e r i v a t i v e ~ c o r r e c t i o n s } ~ \\Bigg ] , \\end{align*}"
],
"x_min": [
0.7124999761581421,
0.1306000053882599,
0.1298999935388565,
0.6136999726295471,
0.5002999901771545,
0.6365000009536743,
0.33719998598098755,
0.7706000208854675,
0.163100004196167,
0.5763999819755554,
0.630299985408783,
0.3449000120162964,
0.2646999955177307,
0.3068000078201294,
0.16380000114440918,
0.21770000457763672
],
"y_min": [
0.10109999775886536,
0.12449999898672104,
0.1679999977350235,
0.17090000212192535,
0.24609999358654022,
0.24609999358654022,
0.3905999958515167,
0.39500001072883606,
0.48829999566078186,
0.5098000168800354,
0.513700008392334,
0.1973000019788742,
0.2930999994277954,
0.4165000021457672,
0.6284999847412109,
0.7476000189781189
],
"x_max": [
0.8561999797821045,
0.2743000090122223,
0.17550000548362732,
0.699400007724762,
0.545199990272522,
0.7193999886512756,
0.35519999265670776,
0.781000018119812,
0.18729999661445618,
0.5978000164031982,
0.6510000228881836,
0.6815000176429749,
0.7250000238418579,
0.7159000039100647,
0.8266000151634216,
0.7720000147819519
],
"y_max": [
0.11569999903440475,
0.13910000026226044,
0.18610000610351562,
0.1860000044107437,
0.2612000107765198,
0.2612000107765198,
0.40130001306533813,
0.4043000042438507,
0.5005000233650208,
0.5259000062942505,
0.5259000062942505,
0.22949999570846558,
0.3765000104904175,
0.45210000872612,
0.711899995803833,
0.8289999961853027
],
"expr_type": [
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"isolated",
"isolated",
"isolated",
"isolated",
"isolated"
]
} |
|
0002194_page15 | {
"latex": [
"$O(B, \\zeta ^3, k^3)$",
"$\\hat {F}^4$",
"$\\hat {{\\cal L}}(\\hat {F})$",
"$F^4$",
"${\\cal L}(B+F)$",
"$\\ast $",
"$O(\\alpha '^2)$",
"${\\cal L}(B+F)$",
"$O(B)$",
"$O(B^2)$",
"$\\hat {A}_i=A_i$",
"$O(B)$",
"$\\hat {A}_i$",
"$A_i$",
"\\begin {eqnarray} && \\frac {1}{2} (2 \\pi \\alpha ')^2 {\\rm Tr} (B+F)^4 -\\frac {1}{8} (2 \\pi \\alpha ')^2 [ {\\rm Tr} (B+F)^2 ]^2 \\\\ &=& \\frac {1}{2} (2 \\pi \\alpha ')^2 {\\rm Tr} F^4 -\\frac {1}{8} (2 \\pi \\alpha ')^2 ( {\\rm Tr} F^2 )^2 \\\\ && +2 (2 \\pi \\alpha ')^2 {\\rm Tr} BF^3 -\\frac {1}{2} (2 \\pi \\alpha ')^2 {\\rm Tr} BF {\\rm Tr} F^2 \\\\ && +2 (2 \\pi \\alpha ')^2 {\\rm Tr} B^2 F^2 -\\frac {1}{4} (2 \\pi \\alpha ')^2 {\\rm Tr} B^2 {\\rm Tr} F^2 + {\\rm total~derivative} + {\\rm const.}, \\end {eqnarray}",
"\\begin {equation} (2 \\pi \\alpha ')^2 \\left [ {\\rm Tr} ( B F )^2 - \\frac {1}{2} ( {\\rm Tr} B F )^2 \\right ] = {\\rm total~derivative}. \\end {equation}",
"\\begin {eqnarray} \\Delta {\\cal L} &\\equiv & 2 (2 \\pi \\alpha ')^2 {\\rm Tr} BF^3 -\\frac {1}{2} (2 \\pi \\alpha ')^2 {\\rm Tr} BF {\\rm Tr} F^2 - \\Bigl ( -4 (2 \\pi \\alpha ')^2 B_{kl} \\partial _k A_i \\partial _l A_j \\partial _j A_i \\Bigr ) \\\\ &=& 2 (2 \\pi \\alpha ')^2 B_{kl} F_{lj} F_{ji} F_{ik} +2 (2 \\pi \\alpha ')^2 B_{kl} A_k \\partial _l F_{ij} F_{ji} +2 (2 \\pi \\alpha ')^2 B_{kl} \\partial _k A_i \\partial _l A_j F_{ji} \\\\ && + {\\rm ~total~derivative} \\\\ &=& 2 (2 \\pi \\alpha ')^2 B_{kl} F_{ji} ( F_{lj} F_{ik} + A_k \\partial _l F_{ij} + \\partial _k A_i \\partial _l A_j ) + {\\rm total~derivative}. \\end {eqnarray}",
"\\begin {eqnarray} && B_{kl} F_{ji} \\partial _i [ A_k (\\partial _l A_j + F_{lj})] \\\\ &=& B_{kl} F_{ji} [ \\partial _i A_k (\\partial _l A_j + F_{lj}) + A_k (\\partial _l \\partial _i A_j + \\partial _i F_{lj})] \\\\ &=& B_{kl} F_{ji} \\left [ (F_{ik} + \\partial _k A_i) (F_{lj} + \\partial _l A_j) + A_k \\left ( \\frac {1}{2} \\partial _l F_{ij} + \\partial _i F_{lj} \\right ) \\right ] \\\\ &=& B_{kl} F_{ji} ( F_{lj} F_{ik} + A_k \\partial _l F_{ij} + \\partial _k A_i \\partial _l A_j ), \\end {eqnarray}"
],
"latex_norm": [
"$ O ( B , \\zeta ^ { 3 } , k ^ { 3 } ) $",
"$ \\hat { F } ^ { 4 } $",
"$ \\hat { L } ( \\hat { F } ) $",
"$ F ^ { 4 } $",
"$ L ( B + F ) $",
"$ \\ast $",
"$ O ( \\alpha ^ { \\prime 2 } ) $",
"$ L ( B + F ) $",
"$ O ( B ) $",
"$ O ( B ^ { 2 } ) $",
"$ \\hat { A } _ { i } = A _ { i } $",
"$ O ( B ) $",
"$ \\hat { A } _ { i } $",
"$ A _ { i } $",
"\\begin{align*} & & \\frac { 1 } { 2 } ( 2 \\pi \\alpha ^ { \\prime } ) ^ { 2 } T r ( B + F ) ^ { 4 } - \\frac { 1 } { 8 } ( 2 \\pi \\alpha ^ { \\prime } ) ^ { 2 } [ T r ( B + F ) ^ { 2 } ] ^ { 2 } \\\\ & = & \\frac { 1 } { 2 } ( 2 \\pi \\alpha ^ { \\prime } ) ^ { 2 } T r F ^ { 4 } - \\frac { 1 } { 8 } ( 2 \\pi \\alpha ^ { \\prime } ) ^ { 2 } ( T r F ^ { 2 } ) ^ { 2 } \\\\ & & + 2 ( 2 \\pi \\alpha ^ { \\prime } ) ^ { 2 } T r B F ^ { 3 } - \\frac { 1 } { 2 } ( 2 \\pi \\alpha ^ { \\prime } ) ^ { 2 } T r B F T r F ^ { 2 } \\\\ & & + 2 ( 2 \\pi \\alpha ^ { \\prime } ) ^ { 2 } T r B ^ { 2 } F ^ { 2 } - \\frac { 1 } { 4 } ( 2 \\pi \\alpha ^ { \\prime } ) ^ { 2 } T r B ^ { 2 } T r F ^ { 2 } + t o t a l ~ d e r i v a t i v e + c o n s t . , \\end{align*}",
"\\begin{equation*} ( 2 \\pi \\alpha ^ { \\prime } ) ^ { 2 } [ T r ( B F ) ^ { 2 } - \\frac { 1 } { 2 } ( T r B F ) ^ { 2 } ] = t o t a l ~ d e r i v a t i v e . \\end{equation*}",
"\\begin{align*} \\Delta L & \\equiv & 2 ( 2 \\pi \\alpha ^ { \\prime } ) ^ { 2 } T r B F ^ { 3 } - \\frac { 1 } { 2 } ( 2 \\pi \\alpha ^ { \\prime } ) ^ { 2 } T r B F T r F ^ { 2 } - ( - 4 ( 2 \\pi \\alpha ^ { \\prime } ) ^ { 2 } B _ { k l } \\partial _ { k } A _ { i } \\partial _ { l } A _ { j } \\partial _ { j } A _ { i } ) \\\\ & = & 2 ( 2 \\pi \\alpha ^ { \\prime } ) ^ { 2 } B _ { k l } F _ { l j } F _ { j i } F _ { i k } + 2 ( 2 \\pi \\alpha ^ { \\prime } ) ^ { 2 } B _ { k l } A _ { k } \\partial _ { l } F _ { i j } F _ { j i } + 2 ( 2 \\pi \\alpha ^ { \\prime } ) ^ { 2 } B _ { k l } \\partial _ { k } A _ { i } \\partial _ { l } A _ { j } F _ { j i } \\\\ & & + ~ t o t a l ~ d e r i v a t i v e \\\\ & = & 2 ( 2 \\pi \\alpha ^ { \\prime } ) ^ { 2 } B _ { k l } F _ { j i } ( F _ { l j } F _ { i k } + A _ { k } \\partial _ { l } F _ { i j } + \\partial _ { k } A _ { i } \\partial _ { l } A _ { j } ) + t o t a l ~ d e r i v a t i v e . \\end{align*}",
"\\begin{align*} & & B _ { k l } F _ { j i } \\partial _ { i } [ A _ { k } ( \\partial _ { l } A _ { j } + F _ { l j } ) ] \\\\ & = & B _ { k l } F _ { j i } [ \\partial _ { i } A _ { k } ( \\partial _ { l } A _ { j } + F _ { l j } ) + A _ { k } ( \\partial _ { l } \\partial _ { i } A _ { j } + \\partial _ { i } F _ { l j } ) ] \\\\ & = & B _ { k l } F _ { j i } [ ( F _ { i k } + \\partial _ { k } A _ { i } ) ( F _ { l j } + \\partial _ { l } A _ { j } ) + A _ { k } ( \\frac { 1 } { 2 } \\partial _ { l } F _ { i j } + \\partial _ { i } F _ { l j } ) ] \\\\ & = & B _ { k l } F _ { j i } ( F _ { l j } F _ { i k } + A _ { k } \\partial _ { l } F _ { i j } + \\partial _ { k } A _ { i } \\partial _ { l } A _ { j } ) , \\end{align*}"
],
"latex_expand": [
"$ \\mitO ( \\mitB , \\mitzeta ^ { 3 } , \\mitk ^ { 3 } ) $",
"$ \\hat { \\mitF } ^ { 4 } $",
"$ \\hat { \\mitL } ( \\hat { \\mitF } ) $",
"$ \\mitF ^ { 4 } $",
"$ \\mitL ( \\mitB + \\mitF ) $",
"$ \\ast $",
"$ \\mitO ( \\mitalpha ^ { \\prime 2 } ) $",
"$ \\mitL ( \\mitB + \\mitF ) $",
"$ \\mitO ( \\mitB ) $",
"$ \\mitO ( \\mitB ^ { 2 } ) $",
"$ \\hat { \\mitA } _ { \\miti } = \\mitA _ { \\miti } $",
"$ \\mitO ( \\mitB ) $",
"$ \\hat { \\mitA } _ { \\miti } $",
"$ \\mitA _ { \\miti } $",
"\\begin{align*} & & \\displaystyle \\frac { 1 } { 2 } ( 2 \\mitpi \\mitalpha ^ { \\prime } ) ^ { 2 } \\mathrm { T r } ( \\mitB + \\mitF ) ^ { 4 } - \\frac { 1 } { 8 } ( 2 \\mitpi \\mitalpha ^ { \\prime } ) ^ { 2 } [ \\mathrm { T r } ( \\mitB + \\mitF ) ^ { 2 } ] ^ { 2 } \\\\ & = & \\displaystyle \\frac { 1 } { 2 } ( 2 \\mitpi \\mitalpha ^ { \\prime } ) ^ { 2 } \\mathrm { T r } \\mitF ^ { 4 } - \\frac { 1 } { 8 } ( 2 \\mitpi \\mitalpha ^ { \\prime } ) ^ { 2 } ( \\mathrm { T r } \\mitF ^ { 2 } ) ^ { 2 } \\\\ & & \\displaystyle + 2 ( 2 \\mitpi \\mitalpha ^ { \\prime } ) ^ { 2 } \\mathrm { T r } \\mitB \\mitF ^ { 3 } - \\frac { 1 } { 2 } ( 2 \\mitpi \\mitalpha ^ { \\prime } ) ^ { 2 } \\mathrm { T r } \\mitB \\mitF \\mathrm { T r } \\mitF ^ { 2 } \\\\ & & \\displaystyle + 2 ( 2 \\mitpi \\mitalpha ^ { \\prime } ) ^ { 2 } \\mathrm { T r } \\mitB ^ { 2 } \\mitF ^ { 2 } - \\frac { 1 } { 4 } ( 2 \\mitpi \\mitalpha ^ { \\prime } ) ^ { 2 } \\mathrm { T r } \\mitB ^ { 2 } \\mathrm { T r } \\mitF ^ { 2 } + \\mathrm { t o t a l ~ d e r i v a t i v e } + \\mathrm { c o n s t } . , \\end{align*}",
"\\begin{equation*} ( 2 \\mitpi \\mitalpha ^ { \\prime } ) ^ { 2 } \\left[ \\mathrm { T r } ( \\mitB \\mitF ) ^ { 2 } - \\frac { 1 } { 2 } ( \\mathrm { T r } \\mitB \\mitF ) ^ { 2 } \\right] = \\mathrm { t o t a l ~ d e r i v a t i v e } . \\end{equation*}",
"\\begin{align*} \\displaystyle \\mupDelta \\mitL & \\displaystyle \\equiv & \\displaystyle 2 ( 2 \\mitpi \\mitalpha ^ { \\prime } ) ^ { 2 } \\mathrm { T r } \\mitB \\mitF ^ { 3 } - \\frac { 1 } { 2 } ( 2 \\mitpi \\mitalpha ^ { \\prime } ) ^ { 2 } \\mathrm { T r } \\mitB \\mitF \\mathrm { T r } \\mitF ^ { 2 } - \\Big ( - 4 ( 2 \\mitpi \\mitalpha ^ { \\prime } ) ^ { 2 } \\mitB _ { \\mitk \\mitl } \\mitpartial _ { \\mitk } \\mitA _ { \\miti } \\mitpartial _ { \\mitl } \\mitA _ { \\mitj } \\mitpartial _ { \\mitj } \\mitA _ { \\miti } \\Big ) \\\\ & = & \\displaystyle 2 ( 2 \\mitpi \\mitalpha ^ { \\prime } ) ^ { 2 } \\mitB _ { \\mitk \\mitl } \\mitF _ { \\mitl \\mitj } \\mitF _ { \\mitj \\miti } \\mitF _ { \\miti \\mitk } + 2 ( 2 \\mitpi \\mitalpha ^ { \\prime } ) ^ { 2 } \\mitB _ { \\mitk \\mitl } \\mitA _ { \\mitk } \\mitpartial _ { \\mitl } \\mitF _ { \\miti \\mitj } \\mitF _ { \\mitj \\miti } + 2 ( 2 \\mitpi \\mitalpha ^ { \\prime } ) ^ { 2 } \\mitB _ { \\mitk \\mitl } \\mitpartial _ { \\mitk } \\mitA _ { \\miti } \\mitpartial _ { \\mitl } \\mitA _ { \\mitj } \\mitF _ { \\mitj \\miti } \\\\ & & \\displaystyle + ~ \\mathrm { t o t a l ~ d e r i v a t i v e } \\\\ & = & \\displaystyle 2 ( 2 \\mitpi \\mitalpha ^ { \\prime } ) ^ { 2 } \\mitB _ { \\mitk \\mitl } \\mitF _ { \\mitj \\miti } ( \\mitF _ { \\mitl \\mitj } \\mitF _ { \\miti \\mitk } + \\mitA _ { \\mitk } \\mitpartial _ { \\mitl } \\mitF _ { \\miti \\mitj } + \\mitpartial _ { \\mitk } \\mitA _ { \\miti } \\mitpartial _ { \\mitl } \\mitA _ { \\mitj } ) + \\mathrm { t o t a l ~ d e r i v a t i v e } . \\end{align*}",
"\\begin{align*} & & \\displaystyle \\mitB _ { \\mitk \\mitl } \\mitF _ { \\mitj \\miti } \\mitpartial _ { \\miti } [ \\mitA _ { \\mitk } ( \\mitpartial _ { \\mitl } \\mitA _ { \\mitj } + \\mitF _ { \\mitl \\mitj } ) ] \\\\ & = & \\displaystyle \\mitB _ { \\mitk \\mitl } \\mitF _ { \\mitj \\miti } [ \\mitpartial _ { \\miti } \\mitA _ { \\mitk } ( \\mitpartial _ { \\mitl } \\mitA _ { \\mitj } + \\mitF _ { \\mitl \\mitj } ) + \\mitA _ { \\mitk } ( \\mitpartial _ { \\mitl } \\mitpartial _ { \\miti } \\mitA _ { \\mitj } + \\mitpartial _ { \\miti } \\mitF _ { \\mitl \\mitj } ) ] \\\\ & = & \\displaystyle \\mitB _ { \\mitk \\mitl } \\mitF _ { \\mitj \\miti } \\left[ ( \\mitF _ { \\miti \\mitk } + \\mitpartial _ { \\mitk } \\mitA _ { \\miti } ) ( \\mitF _ { \\mitl \\mitj } + \\mitpartial _ { \\mitl } \\mitA _ { \\mitj } ) + \\mitA _ { \\mitk } \\left( \\frac { 1 } { 2 } \\mitpartial _ { \\mitl } \\mitF _ { \\miti \\mitj } + \\mitpartial _ { \\miti } \\mitF _ { \\mitl \\mitj } \\right) \\right] \\\\ & = & \\displaystyle \\mitB _ { \\mitk \\mitl } \\mitF _ { \\mitj \\miti } ( \\mitF _ { \\mitl \\mitj } \\mitF _ { \\miti \\mitk } + \\mitA _ { \\mitk } \\mitpartial _ { \\mitl } \\mitF _ { \\miti \\mitj } + \\mitpartial _ { \\mitk } \\mitA _ { \\miti } \\mitpartial _ { \\mitl } \\mitA _ { \\mitj } ) , \\end{align*}"
],
"x_min": [
0.6151000261306763,
0.1298999935388565,
0.24330000579357147,
0.8133999705314636,
0.15549999475479126,
0.5902000069618225,
0.836899995803833,
0.20800000429153442,
0.2563999891281128,
0.3483000099658966,
0.19830000400543213,
0.6365000009536743,
0.6614000201225281,
0.7153000235557556,
0.20589999854564667,
0.29440000653266907,
0.16099999845027924,
0.29919999837875366
],
"y_min": [
0.09960000216960907,
0.12110000103712082,
0.12110000103712082,
0.12300000339746475,
0.14749999344348907,
0.1753000020980835,
0.31200000643730164,
0.3359000086784363,
0.576200008392334,
0.5756999850273132,
0.5967000126838684,
0.5996000170707703,
0.7484999895095825,
0.7519999742507935,
0.3589000105857849,
0.5297999978065491,
0.6201000213623047,
0.8041999936103821
],
"x_max": [
0.71670001745224,
0.15410000085830688,
0.2881999909877777,
0.836899995803833,
0.24400000274181366,
0.600600004196167,
0.8928999900817871,
0.2937000095844269,
0.30410000681877136,
0.4036000072956085,
0.26600000262260437,
0.6834999918937683,
0.6820999979972839,
0.7360000014305115,
0.8348000049591064,
0.7318999767303467,
0.8618000149726868,
0.5044999718666077
],
"y_max": [
0.1151999980211258,
0.13529999554157257,
0.1386999934911728,
0.13519999384880066,
0.16210000216960907,
0.18209999799728394,
0.32710000872612,
0.3504999876022339,
0.5907999873161316,
0.5907999873161316,
0.6128000020980835,
0.6141999959945679,
0.7645999789237976,
0.7646999955177307,
0.49950000643730164,
0.5630000233650208,
0.736299991607666,
0.8246999979019165
],
"expr_type": [
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"isolated",
"isolated",
"isolated",
"isolated"
]
} |
|
0002194_page16 | {
"latex": [
"$\\Delta {\\cal L}$",
"$\\Delta {\\cal L}$",
"$\\hat {A}_i$",
"$\\Delta {\\cal L}$",
"$\\partial _i F_{ij}$",
"$\\hat {A}_i$",
"$A_i$",
"$\\theta $",
"$B$",
"\\begin {eqnarray} && B_{kl} F_{ji} \\partial _i [ A_k (\\partial _l A_j + F_{lj})] \\\\ &=& B_{kl} F_{ji} [ \\partial _i A_k (\\partial _l A_j + F_{lj}) + A_k (\\partial _l \\partial _i A_j + \\partial _i F_{lj})] \\\\ &=& B_{kl} F_{ji} \\left [ (F_{ik} + \\partial _k A_i) (F_{lj} + \\partial _l A_j) + A_k \\left ( \\frac {1}{2} \\partial _l F_{ij} + \\partial _i F_{lj} \\right ) \\right ] \\\\ &=& B_{kl} F_{ji} ( F_{lj} F_{ik} + A_k \\partial _l F_{ij} + \\partial _k A_i \\partial _l A_j ), \\end {eqnarray}",
"\\begin {equation} F_{ji} \\partial _i F_{lj} = \\frac {1}{2} F_{ji} \\partial _l F_{ij}, \\end {equation}",
"\\begin {equation} B_{kl} F_{ji} (F_{ik} \\partial _l A_j + \\partial _k A_i F_{lj}) =0. \\end {equation}",
"\\begin {eqnarray} \\Delta {\\cal L} &=& 2 (2 \\pi \\alpha ')^2 B_{kl} F_{ji} \\partial _i [ A_k (\\partial _l A_j + F_{lj})] + {\\rm total~derivative} \\\\ &=& 2 (2 \\pi \\alpha ')^2 B_{kl} \\partial _i F_{ij} A_k (\\partial _l A_j + F_{lj}) + {\\rm total~derivative}. \\end {eqnarray}",
"\\begin {equation} \\hat {A}_i = A_i + (2 \\pi \\alpha ')^2 \\Delta A_i + O(\\alpha '^4), \\end {equation}",
"\\begin {equation} (\\partial _i \\hat {A}_j - \\partial _j \\hat {A}_i) (\\partial _j \\hat {A}_i - \\partial _i \\hat {A}_j) = F_{ij} F_{ji} + 4 (2 \\pi \\alpha ')^2 \\partial _i F_{ij} \\Delta A_j + O(\\alpha '^4). \\end {equation}",
"\\begin {equation} 4 (2 \\pi \\alpha ')^2 \\partial _i F_{ij} \\Delta A_j = \\Delta {\\cal L}. \\end {equation}",
"\\begin {equation} \\Delta A_i = \\frac {1}{2} B_{kl} A_k (\\partial _l A_i + F_{li}), \\end {equation}",
"\\begin {equation} \\hat {A}_i = A_i + \\frac {1}{2} (2 \\pi \\alpha ')^2 B_{kl} A_k (\\partial _l A_i + F_{li}) + O(\\alpha '^4). \\label {redefinition-1} \\end {equation}"
],
"latex_norm": [
"$ \\Delta L $",
"$ \\Delta L $",
"$ \\hat { A } _ { i } $",
"$ \\Delta L $",
"$ \\partial _ { i } F _ { i j } $",
"$ \\hat { A } _ { i } $",
"$ A _ { i } $",
"$ \\theta $",
"$ B $",
"\\begin{align*} & & B _ { k l } F _ { j i } \\partial _ { i } [ A _ { k } ( \\partial _ { l } A _ { j } + F _ { l j } ) ] \\\\ & = & B _ { k l } F _ { j i } [ \\partial _ { i } A _ { k } ( \\partial _ { l } A _ { j } + F _ { l j } ) + A _ { k } ( \\partial _ { l } \\partial _ { i } A _ { j } + \\partial _ { i } F _ { l j } ) ] \\\\ & = & B _ { k l } F _ { j i } [ ( F _ { i k } + \\partial _ { k } A _ { i } ) ( F _ { l j } + \\partial _ { l } A _ { j } ) + A _ { k } ( \\frac { 1 } { 2 } \\partial _ { l } F _ { i j } + \\partial _ { i } F _ { l j } ) ] \\\\ & = & B _ { k l } F _ { j i } ( F _ { l j } F _ { i k } + A _ { k } \\partial _ { l } F _ { i j } + \\partial _ { k } A _ { i } \\partial _ { l } A _ { j } ) , \\end{align*}",
"\\begin{equation*} F _ { j i } \\partial _ { i } F _ { l j } = \\frac { 1 } { 2 } F _ { j i } \\partial _ { l } F _ { i j } , \\end{equation*}",
"\\begin{equation*} B _ { k l } F _ { j i } ( F _ { i k } \\partial _ { l } A _ { j } + \\partial _ { k } A _ { i } F _ { l j } ) = 0 . \\end{equation*}",
"\\begin{align*} \\Delta L & = & 2 ( 2 \\pi \\alpha ^ { \\prime } ) ^ { 2 } B _ { k l } F _ { j i } \\partial _ { i } [ A _ { k } ( \\partial _ { l } A _ { j } + F _ { l j } ) ] + t o t a l ~ d e r i v a t i v e \\\\ & = & 2 ( 2 \\pi \\alpha ^ { \\prime } ) ^ { 2 } B _ { k l } \\partial _ { i } F _ { i j } A _ { k } ( \\partial _ { l } A _ { j } + F _ { l j } ) + t o t a l ~ d e r i v a t i v e . \\end{align*}",
"\\begin{equation*} \\hat { A } _ { i } = A _ { i } + ( 2 \\pi \\alpha ^ { \\prime } ) ^ { 2 } \\Delta A _ { i } + O ( \\alpha ^ { \\prime 4 } ) , \\end{equation*}",
"\\begin{equation*} ( \\partial _ { i } \\hat { A } _ { j } - \\partial _ { j } \\hat { A } _ { i } ) ( \\partial _ { j } \\hat { A } _ { i } - \\partial _ { i } \\hat { A } _ { j } ) = F _ { i j } F _ { j i } + 4 ( 2 \\pi \\alpha ^ { \\prime } ) ^ { 2 } \\partial _ { i } F _ { i j } \\Delta A _ { j } + O ( \\alpha ^ { \\prime 4 } ) . \\end{equation*}",
"\\begin{equation*} 4 ( 2 \\pi \\alpha ^ { \\prime } ) ^ { 2 } \\partial _ { i } F _ { i j } \\Delta A _ { j } = \\Delta L . \\end{equation*}",
"\\begin{equation*} \\Delta A _ { i } = \\frac { 1 } { 2 } B _ { k l } A _ { k } ( \\partial _ { l } A _ { i } + F _ { l i } ) , \\end{equation*}",
"\\begin{equation*} \\hat { A } _ { i } = A _ { i } + \\frac { 1 } { 2 } ( 2 \\pi \\alpha ^ { \\prime } ) ^ { 2 } B _ { k l } A _ { k } ( \\partial _ { l } A _ { i } + F _ { l i } ) + O ( \\alpha ^ { \\prime 4 } ) . \\end{equation*}"
],
"latex_expand": [
"$ \\mupDelta \\mitL $",
"$ \\mupDelta \\mitL $",
"$ \\hat { \\mitA } _ { \\miti } $",
"$ \\mupDelta \\mitL $",
"$ \\mitpartial _ { \\miti } \\mitF _ { \\miti \\mitj } $",
"$ \\hat { \\mitA } _ { \\miti } $",
"$ \\mitA _ { \\miti } $",
"$ \\mittheta $",
"$ \\mitB $",
"\\begin{align*} & & \\displaystyle \\mitB _ { \\mitk \\mitl } \\mitF _ { \\mitj \\miti } \\mitpartial _ { \\miti } [ \\mitA _ { \\mitk } ( \\mitpartial _ { \\mitl } \\mitA _ { \\mitj } + \\mitF _ { \\mitl \\mitj } ) ] \\\\ & = & \\displaystyle \\mitB _ { \\mitk \\mitl } \\mitF _ { \\mitj \\miti } [ \\mitpartial _ { \\miti } \\mitA _ { \\mitk } ( \\mitpartial _ { \\mitl } \\mitA _ { \\mitj } + \\mitF _ { \\mitl \\mitj } ) + \\mitA _ { \\mitk } ( \\mitpartial _ { \\mitl } \\mitpartial _ { \\miti } \\mitA _ { \\mitj } + \\mitpartial _ { \\miti } \\mitF _ { \\mitl \\mitj } ) ] \\\\ & = & \\displaystyle \\mitB _ { \\mitk \\mitl } \\mitF _ { \\mitj \\miti } \\left[ ( \\mitF _ { \\miti \\mitk } + \\mitpartial _ { \\mitk } \\mitA _ { \\miti } ) ( \\mitF _ { \\mitl \\mitj } + \\mitpartial _ { \\mitl } \\mitA _ { \\mitj } ) + \\mitA _ { \\mitk } \\left( \\frac { 1 } { 2 } \\mitpartial _ { \\mitl } \\mitF _ { \\miti \\mitj } + \\mitpartial _ { \\miti } \\mitF _ { \\mitl \\mitj } \\right) \\right] \\\\ & = & \\displaystyle \\mitB _ { \\mitk \\mitl } \\mitF _ { \\mitj \\miti } ( \\mitF _ { \\mitl \\mitj } \\mitF _ { \\miti \\mitk } + \\mitA _ { \\mitk } \\mitpartial _ { \\mitl } \\mitF _ { \\miti \\mitj } + \\mitpartial _ { \\mitk } \\mitA _ { \\miti } \\mitpartial _ { \\mitl } \\mitA _ { \\mitj } ) , \\end{align*}",
"\\begin{equation*} \\mitF _ { \\mitj \\miti } \\mitpartial _ { \\miti } \\mitF _ { \\mitl \\mitj } = \\frac { 1 } { 2 } \\mitF _ { \\mitj \\miti } \\mitpartial _ { \\mitl } \\mitF _ { \\miti \\mitj } , \\end{equation*}",
"\\begin{equation*} \\mitB _ { \\mitk \\mitl } \\mitF _ { \\mitj \\miti } ( \\mitF _ { \\miti \\mitk } \\mitpartial _ { \\mitl } \\mitA _ { \\mitj } + \\mitpartial _ { \\mitk } \\mitA _ { \\miti } \\mitF _ { \\mitl \\mitj } ) = 0 . \\end{equation*}",
"\\begin{align*} \\displaystyle \\mupDelta \\mitL & = & \\displaystyle 2 ( 2 \\mitpi \\mitalpha ^ { \\prime } ) ^ { 2 } \\mitB _ { \\mitk \\mitl } \\mitF _ { \\mitj \\miti } \\mitpartial _ { \\miti } [ \\mitA _ { \\mitk } ( \\mitpartial _ { \\mitl } \\mitA _ { \\mitj } + \\mitF _ { \\mitl \\mitj } ) ] + \\mathrm { t o t a l ~ d e r i v a t i v e } \\\\ & = & \\displaystyle 2 ( 2 \\mitpi \\mitalpha ^ { \\prime } ) ^ { 2 } \\mitB _ { \\mitk \\mitl } \\mitpartial _ { \\miti } \\mitF _ { \\miti \\mitj } \\mitA _ { \\mitk } ( \\mitpartial _ { \\mitl } \\mitA _ { \\mitj } + \\mitF _ { \\mitl \\mitj } ) + \\mathrm { t o t a l ~ d e r i v a t i v e } . \\end{align*}",
"\\begin{equation*} \\hat { \\mitA } _ { \\miti } = \\mitA _ { \\miti } + ( 2 \\mitpi \\mitalpha ^ { \\prime } ) ^ { 2 } \\mupDelta \\mitA _ { \\miti } + \\mitO ( \\mitalpha ^ { \\prime 4 } ) , \\end{equation*}",
"\\begin{equation*} ( \\mitpartial _ { \\miti } \\hat { \\mitA } _ { \\mitj } - \\mitpartial _ { \\mitj } \\hat { \\mitA } _ { \\miti } ) ( \\mitpartial _ { \\mitj } \\hat { \\mitA } _ { \\miti } - \\mitpartial _ { \\miti } \\hat { \\mitA } _ { \\mitj } ) = \\mitF _ { \\miti \\mitj } \\mitF _ { \\mitj \\miti } + 4 ( 2 \\mitpi \\mitalpha ^ { \\prime } ) ^ { 2 } \\mitpartial _ { \\miti } \\mitF _ { \\miti \\mitj } \\mupDelta \\mitA _ { \\mitj } + \\mitO ( \\mitalpha ^ { \\prime 4 } ) . \\end{equation*}",
"\\begin{equation*} 4 ( 2 \\mitpi \\mitalpha ^ { \\prime } ) ^ { 2 } \\mitpartial _ { \\miti } \\mitF _ { \\miti \\mitj } \\mupDelta \\mitA _ { \\mitj } = \\mupDelta \\mitL . \\end{equation*}",
"\\begin{equation*} \\mupDelta \\mitA _ { \\miti } = \\frac { 1 } { 2 } \\mitB _ { \\mitk \\mitl } \\mitA _ { \\mitk } ( \\mitpartial _ { \\mitl } \\mitA _ { \\miti } + \\mitF _ { \\mitl \\miti } ) , \\end{equation*}",
"\\begin{equation*} \\hat { \\mitA } _ { \\miti } = \\mitA _ { \\miti } + \\frac { 1 } { 2 } ( 2 \\mitpi \\mitalpha ^ { \\prime } ) ^ { 2 } \\mitB _ { \\mitk \\mitl } \\mitA _ { \\mitk } ( \\mitpartial _ { \\mitl } \\mitA _ { \\miti } + \\mitF _ { \\mitl \\miti } ) + \\mitO ( \\mitalpha ^ { \\prime 4 } ) . \\end{equation*}"
],
"x_min": [
0.3034000098705292,
0.2563999891281128,
0.2549999952316284,
0.5701000094413757,
0.7609000205993652,
0.6061000227928162,
0.6710000038146973,
0.29030001163482666,
0.414000004529953,
0.2563999891281128,
0.42160001397132874,
0.3801000118255615,
0.25290000438690186,
0.3718000054359436,
0.20180000364780426,
0.4043000042438507,
0.3939000070095062,
0.31029999256134033
],
"y_min": [
0.2992999851703644,
0.3984000086784363,
0.41850000619888306,
0.42089998722076416,
0.42089998722076416,
0.711899995803833,
0.7153000235557556,
0.8105000257492065,
0.8109999895095825,
0.0934000015258789,
0.20260000228881836,
0.26460000872612,
0.3278000056743622,
0.4745999872684479,
0.5464000105857849,
0.6195999979972839,
0.6723999977111816,
0.7387999892234802
],
"x_max": [
0.33649998903274536,
0.2874999940395355,
0.27570000290870667,
0.6039000153541565,
0.8023999929428101,
0.626800000667572,
0.6923999786376953,
0.30070000886917114,
0.43059998750686646,
0.7789000272750854,
0.6013000011444092,
0.6455000042915344,
0.7705000042915344,
0.6510000228881836,
0.7739999890327454,
0.6212999820709229,
0.6288999915122986,
0.7160000205039978
],
"y_max": [
0.30959999561309814,
0.40869998931884766,
0.43459999561309814,
0.4311999976634979,
0.43549999594688416,
0.7279999852180481,
0.7279999852180481,
0.8212000131607056,
0.8213000297546387,
0.17090000212192535,
0.23479999601840973,
0.2831999957561493,
0.3797999918460846,
0.49559998512268066,
0.5679000020027161,
0.6395999789237976,
0.7050999999046326,
0.7714999914169312
],
"expr_type": [
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"isolated",
"isolated",
"isolated",
"isolated",
"isolated",
"isolated",
"isolated",
"isolated",
"isolated"
]
} |
|
0002194_page17 | {
"latex": [
"$A_i$",
"$\\hat {A}_i$",
"$F^4$",
"$O(B^2)$",
"$F^2$",
"$G_s$",
"$\\hat {A}_i$",
"$O(B)$",
"$\\alpha '^2$",
"$A_i$",
"$\\hat {A}_i$",
"$O(\\alpha '^2)$",
"$G_s$",
"$\\alpha '^4$",
"$F^4$",
"$O(\\alpha ')$",
"$\\alpha '$",
"$F^2$",
"\\begin {equation} \\frac {1}{4} (2 \\pi \\alpha ')^2 {\\rm Tr} B^2 {\\rm Tr} F^2, \\label {superfluous-B} \\end {equation}",
"\\begin {equation} G_s = g_s \\left [ 1 -\\frac {1}{4} (2 \\pi \\alpha ')^2 {\\rm Tr} B^2 + O(\\alpha '^4) \\right ]. \\label {G_s} \\end {equation}"
],
"latex_norm": [
"$ A _ { i } $",
"$ \\hat { A } _ { i } $",
"$ F ^ { 4 } $",
"$ O ( B ^ { 2 } ) $",
"$ F ^ { 2 } $",
"$ G _ { s } $",
"$ \\hat { A } _ { i } $",
"$ O ( B ) $",
"$ \\alpha ^ { \\prime 2 } $",
"$ A _ { i } $",
"$ \\hat { A } _ { i } $",
"$ O ( \\alpha ^ { \\prime 2 } ) $",
"$ G _ { s } $",
"$ \\alpha ^ { \\prime 4 } $",
"$ F ^ { 4 } $",
"$ O ( \\alpha ^ { \\prime } ) $",
"$ \\alpha ^ { \\prime } $",
"$ F ^ { 2 } $",
"\\begin{equation*} \\frac { 1 } { 4 } ( 2 \\pi \\alpha ^ { \\prime } ) ^ { 2 } T r B ^ { 2 } T r F ^ { 2 } , \\end{equation*}",
"\\begin{equation*} G _ { s } = g _ { s } [ 1 - \\frac { 1 } { 4 } ( 2 \\pi \\alpha ^ { \\prime } ) ^ { 2 } T r B ^ { 2 } + O ( \\alpha ^ { \\prime 4 } ) ] . \\end{equation*}"
],
"latex_expand": [
"$ \\mitA _ { \\miti } $",
"$ \\hat { \\mitA } _ { \\miti } $",
"$ \\mitF ^ { 4 } $",
"$ \\mitO ( \\mitB ^ { 2 } ) $",
"$ \\mitF ^ { 2 } $",
"$ \\mitG _ { \\mits } $",
"$ \\hat { \\mitA } _ { \\miti } $",
"$ \\mitO ( \\mitB ) $",
"$ \\mitalpha ^ { \\prime 2 } $",
"$ \\mitA _ { \\miti } $",
"$ \\hat { \\mitA } _ { \\miti } $",
"$ \\mitO ( \\mitalpha ^ { \\prime 2 } ) $",
"$ \\mitG _ { \\mits } $",
"$ \\mitalpha ^ { \\prime 4 } $",
"$ \\mitF ^ { 4 } $",
"$ \\mitO ( \\mitalpha ^ { \\prime } ) $",
"$ \\mitalpha ^ { \\prime } $",
"$ \\mitF ^ { 2 } $",
"\\begin{equation*} \\frac { 1 } { 4 } ( 2 \\mitpi \\mitalpha ^ { \\prime } ) ^ { 2 } \\mathrm { T r } \\mitB ^ { 2 } \\mathrm { T r } \\mitF ^ { 2 } , \\end{equation*}",
"\\begin{equation*} \\mitG _ { \\mits } = \\mitg _ { \\mits } \\left[ 1 - \\frac { 1 } { 4 } ( 2 \\mitpi \\mitalpha ^ { \\prime } ) ^ { 2 } \\mathrm { T r } \\mitB ^ { 2 } + \\mitO ( \\mitalpha ^ { \\prime 4 } ) \\right] . \\end{equation*}"
],
"x_min": [
0.6371999979019165,
0.48579999804496765,
0.6061000227928162,
0.2003999948501587,
0.32829999923706055,
0.8438000082969666,
0.8341000080108643,
0.4505999982357025,
0.5446000099182129,
0.1298999935388565,
0.1949000060558319,
0.7940999865531921,
0.1527000069618225,
0.5922999978065491,
0.5169000029563904,
0.1762000024318695,
0.8755999803543091,
0.3061999976634979,
0.42500001192092896,
0.34619998931884766
],
"y_min": [
0.10109999775886536,
0.12110000103712082,
0.21729999780654907,
0.288100004196167,
0.36329999566078186,
0.36469998955726624,
0.4413999915122986,
0.46779999136924744,
0.49070000648498535,
0.5156000256538391,
0.5121999979019165,
0.5375999808311462,
0.5625,
0.5609999895095825,
0.6083999872207642,
0.7538999915122986,
0.7865999937057495,
0.8095999956130981,
0.3149000108242035,
0.39989998936653137
],
"x_max": [
0.6578999757766724,
0.5065000057220459,
0.630299985408783,
0.2556999921798706,
0.35249999165534973,
0.8672999739646912,
0.8554999828338623,
0.4975999891757965,
0.5695000290870667,
0.15129999816417694,
0.21559999883174896,
0.849399983882904,
0.1762000024318695,
0.6172000169754028,
0.541100025177002,
0.22529999911785126,
0.8928999900817871,
0.3296999931335449,
0.5978000164031982,
0.6793000102043152
],
"y_max": [
0.11379999667406082,
0.1371999979019165,
0.22949999570846558,
0.3037000000476837,
0.37549999356269836,
0.3774000108242035,
0.45750001072883606,
0.48240000009536743,
0.5023999810218811,
0.5282999873161316,
0.5282999873161316,
0.5532000064849854,
0.5752000212669373,
0.573199987411499,
0.6201000213623047,
0.7684999704360962,
0.7972999811172485,
0.8213000297546387,
0.34709998965263367,
0.43309998512268066
],
"expr_type": [
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"isolated",
"isolated"
]
} |
|
0002194_page18 | {
"latex": [
"$\\alpha '$",
"$\\partial F \\partial F$",
"$F \\partial ^2 F$",
"$F^3$",
"$F \\partial ^2 F$",
"$\\partial F \\partial F$",
"$F^3$",
"$\\partial F \\partial F$",
"$T_3$",
"$T_2$",
"$T_1$",
"$T_2$",
"$\\alpha '$",
"$T_1$",
"$\\hat {F}$",
"$\\alpha '$",
"$\\hat {D} \\hat {F} \\hat {D} \\hat {F}$",
"$\\hat {F} \\hat {D}^2 \\hat {F}$",
"$\\hat {F}^3$",
"$\\hat {F} \\hat {D}^2 \\hat {F}$",
"$\\hat {D} \\hat {F} \\hat {D} \\hat {F}$",
"$\\hat {F}^3$",
"$\\alpha '$",
"$G_{ij}$",
"\\begin {eqnarray} T_1 \\equiv \\partial _i F_{ik} \\partial _j F_{jk}, \\qquad T_2 \\equiv \\partial _j F_{ik} \\partial _i F_{jk}, \\qquad T_3 \\equiv \\partial _k F_{ij} \\partial _k F_{ji}. \\end {eqnarray}",
"\\begin {equation} T_3 = -2 T_2, \\end {equation}",
"\\begin {eqnarray} T_1 &=& - F_{ik} \\partial _i \\partial _j F_{jk} + {\\rm total~derivative}, \\\\ T_2 &=& - F_{ik} \\partial _j \\partial _i F_{jk} + {\\rm total~derivative}. \\end {eqnarray}",
"\\begin {equation} \\hat {D}_i \\hat {F}_{jk} = \\partial _i \\hat {F}_{jk} -i \\hat {A}_i \\ast \\hat {F}_{jk} +i \\hat {F}_{jk} \\ast \\hat {A}_i. \\end {equation}",
"\\begin {eqnarray} && \\hat {T}_1 \\equiv \\hat {D}_i \\hat {F}_{ik} \\ast \\hat {D}_j \\hat {F}_{jk}, \\qquad \\hat {T}_2 \\equiv \\hat {D}_j \\hat {F}_{ik} \\ast \\hat {D}_i \\hat {F}_{jk}, \\qquad \\hat {T}_3 \\equiv \\hat {D}_k \\hat {F}_{ij} \\ast \\hat {D}_k \\hat {F}_{ji}, \\\\ && \\hat {T}_4 \\equiv i \\hat {F}_{ij} \\ast \\hat {F}_{jk} \\ast \\hat {F}_{ki}, \\end {eqnarray}"
],
"latex_norm": [
"$ \\alpha ^ { \\prime } $",
"$ \\partial F \\partial F $",
"$ F \\partial ^ { 2 } F $",
"$ F ^ { 3 } $",
"$ F \\partial ^ { 2 } F $",
"$ \\partial F \\partial F $",
"$ F ^ { 3 } $",
"$ \\partial F \\partial F $",
"$ T _ { 3 } $",
"$ T _ { 2 } $",
"$ T _ { 1 } $",
"$ T _ { 2 } $",
"$ \\alpha ^ { \\prime } $",
"$ T _ { 1 } $",
"$ \\hat { F } $",
"$ \\alpha ^ { \\prime } $",
"$ \\hat { D } \\hat { F } \\hat { D } \\hat { F } $",
"$ \\hat { F } \\hat { D } ^ { 2 } \\hat { F } $",
"$ \\hat { F } ^ { 3 } $",
"$ \\hat { F } \\hat { D } ^ { 2 } \\hat { F } $",
"$ \\hat { D } \\hat { F } \\hat { D } \\hat { F } $",
"$ \\hat { F } ^ { 3 } $",
"$ \\alpha ^ { \\prime } $",
"$ G _ { i j } $",
"\\begin{equation*} T _ { 1 } \\equiv \\partial _ { i } F _ { i k } \\partial _ { j } F _ { j k } , \\qquad T _ { 2 } \\equiv \\partial _ { j } F _ { i k } \\partial _ { i } F _ { j k } , \\qquad T _ { 3 } \\equiv \\partial _ { k } F _ { i j } \\partial _ { k } F _ { j i } . \\end{equation*}",
"\\begin{equation*} T _ { 3 } = - 2 T _ { 2 } , \\end{equation*}",
"\\begin{align*} T _ { 1 } & = & - F _ { i k } \\partial _ { i } \\partial _ { j } F _ { j k } + t o t a l ~ d e r i v a t i v e , \\\\ T _ { 2 } & = & - F _ { i k } \\partial _ { j } \\partial _ { i } F _ { j k } + t o t a l ~ d e r i v a t i v e . \\end{align*}",
"\\begin{equation*} \\hat { D } _ { i } \\hat { F } _ { j k } = \\partial _ { i } \\hat { F } _ { j k } - i \\hat { A } _ { i } \\ast \\hat { F } _ { j k } + i \\hat { F } _ { j k } \\ast \\hat { A } _ { i } . \\end{equation*}",
"\\begin{align*} & & \\hat { T } _ { 1 } \\equiv \\hat { D } _ { i } \\hat { F } _ { i k } \\ast \\hat { D } _ { j } \\hat { F } _ { j k } , \\qquad \\hat { T } _ { 2 } \\equiv \\hat { D } _ { j } \\hat { F } _ { i k } \\ast \\hat { D } _ { i } \\hat { F } _ { j k } , \\qquad \\hat { T } _ { 3 } \\equiv \\hat { D } _ { k } \\hat { F } _ { i j } \\ast \\hat { D } _ { k } \\hat { F } _ { j i } , \\\\ & & \\hat { T } _ { 4 } \\equiv i \\hat { F } _ { i j } \\ast \\hat { F } _ { j k } \\ast \\hat { F } _ { k i } , \\end{align*}"
],
"latex_expand": [
"$ \\mitalpha ^ { \\prime } $",
"$ \\mitpartial \\mitF \\mitpartial \\mitF $",
"$ \\mitF \\mitpartial ^ { 2 } \\mitF $",
"$ \\mitF ^ { 3 } $",
"$ \\mitF \\mitpartial ^ { 2 } \\mitF $",
"$ \\mitpartial \\mitF \\mitpartial \\mitF $",
"$ \\mitF ^ { 3 } $",
"$ \\mitpartial \\mitF \\mitpartial \\mitF $",
"$ \\mitT _ { 3 } $",
"$ \\mitT _ { 2 } $",
"$ \\mitT _ { 1 } $",
"$ \\mitT _ { 2 } $",
"$ \\mitalpha ^ { \\prime } $",
"$ \\mitT _ { 1 } $",
"$ \\hat { \\mitF } $",
"$ \\mitalpha ^ { \\prime } $",
"$ \\hat { \\mitD } \\hat { \\mitF } \\hat { \\mitD } \\hat { \\mitF } $",
"$ \\hat { \\mitF } \\hat { \\mitD } ^ { 2 } \\hat { \\mitF } $",
"$ \\hat { \\mitF } ^ { 3 } $",
"$ \\hat { \\mitF } \\hat { \\mitD } ^ { 2 } \\hat { \\mitF } $",
"$ \\hat { \\mitD } \\hat { \\mitF } \\hat { \\mitD } \\hat { \\mitF } $",
"$ \\hat { \\mitF } ^ { 3 } $",
"$ \\mitalpha ^ { \\prime } $",
"$ \\mitG _ { \\miti \\mitj } $",
"\\begin{equation*} \\displaystyle \\mitT _ { 1 } \\equiv \\mitpartial _ { \\miti } \\mitF _ { \\miti \\mitk } \\mitpartial _ { \\mitj } \\mitF _ { \\mitj \\mitk } , \\qquad \\mitT _ { 2 } \\equiv \\mitpartial _ { \\mitj } \\mitF _ { \\miti \\mitk } \\mitpartial _ { \\miti } \\mitF _ { \\mitj \\mitk } , \\qquad \\mitT _ { 3 } \\equiv \\mitpartial _ { \\mitk } \\mitF _ { \\miti \\mitj } \\mitpartial _ { \\mitk } \\mitF _ { \\mitj \\miti } . \\end{equation*}",
"\\begin{equation*} \\mitT _ { 3 } = - 2 \\mitT _ { 2 } , \\end{equation*}",
"\\begin{align*} \\displaystyle \\mitT _ { 1 } & = & \\displaystyle - \\mitF _ { \\miti \\mitk } \\mitpartial _ { \\miti } \\mitpartial _ { \\mitj } \\mitF _ { \\mitj \\mitk } + \\mathrm { t o t a l ~ d e r i v a t i v e } , \\\\ \\displaystyle \\mitT _ { 2 } & = & \\displaystyle - \\mitF _ { \\miti \\mitk } \\mitpartial _ { \\mitj } \\mitpartial _ { \\miti } \\mitF _ { \\mitj \\mitk } + \\mathrm { t o t a l ~ d e r i v a t i v e } . \\end{align*}",
"\\begin{equation*} \\hat { \\mitD } _ { \\miti } \\hat { \\mitF } _ { \\mitj \\mitk } = \\mitpartial _ { \\miti } \\hat { \\mitF } _ { \\mitj \\mitk } - \\miti \\hat { \\mitA } _ { \\miti } \\ast \\hat { \\mitF } _ { \\mitj \\mitk } + \\miti \\hat { \\mitF } _ { \\mitj \\mitk } \\ast \\hat { \\mitA } _ { \\miti } . \\end{equation*}",
"\\begin{align*} & & \\displaystyle \\hat { \\mitT } _ { 1 } \\equiv \\hat { \\mitD } _ { \\miti } \\hat { \\mitF } _ { \\miti \\mitk } \\ast \\hat { \\mitD } _ { \\mitj } \\hat { \\mitF } _ { \\mitj \\mitk } , \\qquad \\hat { \\mitT } _ { 2 } \\equiv \\hat { \\mitD } _ { \\mitj } \\hat { \\mitF } _ { \\miti \\mitk } \\ast \\hat { \\mitD } _ { \\miti } \\hat { \\mitF } _ { \\mitj \\mitk } , \\qquad \\hat { \\mitT } _ { 3 } \\equiv \\hat { \\mitD } _ { \\mitk } \\hat { \\mitF } _ { \\miti \\mitj } \\ast \\hat { \\mitD } _ { \\mitk } \\hat { \\mitF } _ { \\mitj \\miti } , \\\\ & & \\displaystyle \\hat { \\mitT } _ { 4 } \\equiv \\miti \\hat { \\mitF } _ { \\miti \\mitj } \\ast \\hat { \\mitF } _ { \\mitj \\mitk } \\ast \\hat { \\mitF } _ { \\mitk \\miti } , \\end{align*}"
],
"x_min": [
0.2134999930858612,
0.41600000858306885,
0.4837999939918518,
0.5825999975204468,
0.1298999935388565,
0.47749999165534973,
0.1306000053882599,
0.7200999855995178,
0.44780001044273376,
0.5680999755859375,
0.3862999975681305,
0.4505999982357025,
0.3400000035762787,
0.5605000257492065,
0.7235999703407288,
0.21150000393390656,
0.41119998693466187,
0.4885999858379364,
0.5909000039100647,
0.7809000015258789,
0.3621000051498413,
0.36970001459121704,
0.3849000036716461,
0.8679999709129333,
0.2425999939441681,
0.46160000562667847,
0.3434999883174896,
0.35040000081062317,
0.2281000018119812
],
"y_min": [
0.14749999344348907,
0.14790000021457672,
0.1469999998807907,
0.1469999998807907,
0.1703999936580658,
0.17190000414848328,
0.19380000233650208,
0.19529999792575836,
0.29440000653266907,
0.29440000653266907,
0.3700999915599823,
0.3700999915599823,
0.4722000062465668,
0.47269999980926514,
0.5160999894142151,
0.6182000041007996,
0.6151999831199646,
0.6151999831199646,
0.6151999831199646,
0.6151999831199646,
0.638700008392334,
0.6625999808311462,
0.6890000104904175,
0.7832000255584717,
0.24809999763965607,
0.32910001277923584,
0.39899998903274536,
0.5741999745368958,
0.7188000082969666
],
"x_max": [
0.23080000281333923,
0.4706000089645386,
0.5349000096321106,
0.6061000227928162,
0.1809999942779541,
0.5321000218391418,
0.15410000085830688,
0.7746999859809875,
0.46779999136924744,
0.588100016117096,
0.40630000829696655,
0.4706000089645386,
0.3573000133037567,
0.5805000066757202,
0.7394999861717224,
0.22949999570846558,
0.47620001435279846,
0.5453000068664551,
0.6151000261306763,
0.8375999927520752,
0.4271000027656555,
0.3939000070095062,
0.40220001339912415,
0.8928999900817871,
0.7470999956130981,
0.5611000061035156,
0.6765999794006348,
0.6758999824523926,
0.8252000212669373
],
"y_max": [
0.15870000422000885,
0.15860000252723694,
0.15870000422000885,
0.15870000422000885,
0.18209999799728394,
0.1826000064611435,
0.20550000667572021,
0.20559999346733093,
0.30709999799728394,
0.30709999799728394,
0.3822999894618988,
0.3822999894618988,
0.4828999936580658,
0.48539999127388,
0.5303000211715698,
0.6294000148773193,
0.6294000148773193,
0.6294000148773193,
0.6294000148773193,
0.6294000148773193,
0.652899980545044,
0.6762999892234802,
0.7002000212669373,
0.7954000234603882,
0.27480000257492065,
0.3452000021934509,
0.453000009059906,
0.5957000255584717,
0.7728000283241272
],
"expr_type": [
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"isolated",
"isolated",
"isolated",
"isolated",
"isolated"
]
} |
|
0002194_page19 | {
"latex": [
"$\\hat {F}^3$",
"$i$",
"$\\hat {T}_3$",
"$\\hat {T}_2$",
"$\\hat {T}_1$",
"$\\hat {T}_2$",
"$\\hat {D}_i$",
"$\\hat {D}_j$",
"$\\hat {T}_1$",
"$\\hat {T}_2$",
"$\\hat {T}_4$",
"$\\{ \\hat {T}_1, \\hat {T}_4 \\}$",
"$O(\\alpha ')$",
"$\\hat {T}_4$",
"$\\hat {T}_4$",
"$F_{ij} \\partial _k \\partial _i F_{jk}$",
"$O(\\alpha ')$",
"$T_1$",
"$T_1$",
"$F^2$",
"\\begin {equation} \\hat {T}_3 = -2 \\hat {T}_2, \\end {equation}",
"\\begin {eqnarray} \\hat {T}_1 &=& - \\hat {F}_{ik} \\ast \\hat {D}_i \\hat {D}_j \\hat {F}_{jk} + {\\rm total~derivative}, \\\\ \\hat {T}_2 &=& - \\hat {F}_{ik} \\ast \\hat {D}_j \\hat {D}_i \\hat {F}_{jk} + {\\rm total~derivative}, \\end {eqnarray}",
"\\begin {eqnarray} \\hat {T}_1 - \\hat {T}_2 &=& - \\hat {F}_{ik} \\ast [ \\hat {D}_i, \\hat {D}_j] \\hat {F}_{jk} + {\\rm total~derivative} \\\\ &=& - \\hat {F}_{ik} \\ast (-i \\hat {F}_{ij} \\ast \\hat {F}_{jk} +i \\hat {F}_{jk} \\ast \\hat {F}_{ij}) + {\\rm total~derivative} \\\\ &=& -2 \\hat {T}_4 + {\\rm total~derivative}. \\end {eqnarray}",
"\\begin {equation} \\hat {T}_4 = \\frac {i}{2} \\hat {F}_{ij} \\ast (\\hat {F}_{jk} \\ast \\hat {F}_{ki} - \\hat {F}_{ki} \\ast \\hat {F}_{jk}) = \\frac {1}{2} \\hat {F}_{ij} \\ast [ \\hat {D}_k, \\hat {D}_i] \\hat {F}_{jk}, \\end {equation}",
"\\begin {eqnarray} \\tilde {A}_i &=& A_i + a (2 \\pi \\alpha ') \\partial _j F_{ji} + O(\\alpha '^2), \\\\ \\tilde {F}_{ij} \\tilde {F}_{ji} &=& F_{ij} F_{ji} + 4 a (2 \\pi \\alpha ') \\partial _i F_{ij} \\partial _k F_{kj} + {\\rm total~derivative} + O(\\alpha '^2). \\end {eqnarray}"
],
"latex_norm": [
"$ \\hat { F } ^ { 3 } $",
"$ i $",
"$ \\hat { T } _ { 3 } $",
"$ \\hat { T } _ { 2 } $",
"$ \\hat { T } _ { 1 } $",
"$ \\hat { T } _ { 2 } $",
"$ \\hat { D } _ { i } $",
"$ \\hat { D } _ { j } $",
"$ \\hat { T } _ { 1 } $",
"$ \\hat { T } _ { 2 } $",
"$ \\hat { T } _ { 4 } $",
"$ \\{ \\hat { T } _ { 1 } , \\hat { T } _ { 4 } \\} $",
"$ O ( \\alpha ^ { \\prime } ) $",
"$ \\hat { T } _ { 4 } $",
"$ \\hat { T } _ { 4 } $",
"$ F _ { i j } \\partial _ { k } \\partial _ { i } F _ { j k } $",
"$ O ( \\alpha ^ { \\prime } ) $",
"$ T _ { 1 } $",
"$ T _ { 1 } $",
"$ F ^ { 2 } $",
"\\begin{equation*} \\hat { T } _ { 3 } = - 2 \\hat { T } _ { 2 } , \\end{equation*}",
"\\begin{align*} \\hat { T } _ { 1 } & = & - \\hat { F } _ { i k } \\ast \\hat { D } _ { i } \\hat { D } _ { j } \\hat { F } _ { j k } + t o t a l ~ d e r i v a t i v e , \\\\ \\hat { T } _ { 2 } & = & - \\hat { F } _ { i k } \\ast \\hat { D } _ { j } \\hat { D } _ { i } \\hat { F } _ { j k } + t o t a l ~ d e r i v a t i v e , \\end{align*}",
"\\begin{align*} \\hat { T } _ { 1 } - \\hat { T } _ { 2 } & = & - \\hat { F } _ { i k } \\ast [ \\hat { D } _ { i } , \\hat { D } _ { j } ] \\hat { F } _ { j k } + t o t a l ~ d e r i v a t i v e \\\\ & = & - \\hat { F } _ { i k } \\ast ( - i \\hat { F } _ { i j } \\ast \\hat { F } _ { j k } + i \\hat { F } _ { j k } \\ast \\hat { F } _ { i j } ) + t o t a l ~ d e r i v a t i v e \\\\ & = & - 2 \\hat { T } _ { 4 } + t o t a l ~ d e r i v a t i v e . \\end{align*}",
"\\begin{equation*} \\hat { T } _ { 4 } = \\frac { i } { 2 } \\hat { F } _ { i j } \\ast ( \\hat { F } _ { j k } \\ast \\hat { F } _ { k i } - \\hat { F } _ { k i } \\ast \\hat { F } _ { j k } ) = \\frac { 1 } { 2 } \\hat { F } _ { i j } \\ast [ \\hat { D } _ { k } , \\hat { D } _ { i } ] \\hat { F } _ { j k } , \\end{equation*}",
"\\begin{align*} \\widetilde { A } _ { i } & = & A _ { i } + a ( 2 \\pi \\alpha ^ { \\prime } ) \\partial _ { j } F _ { j i } + O ( \\alpha ^ { \\prime 2 } ) , \\\\ \\widetilde { F } _ { i j } \\widetilde { F } _ { j i } & = & F _ { i j } F _ { j i } + 4 a ( 2 \\pi \\alpha ^ { \\prime } ) \\partial _ { i } F _ { i j } \\partial _ { k } F _ { k j } + t o t a l ~ d e r i v a t i v e + O ( \\alpha ^ { \\prime 2 } ) . \\end{align*}"
],
"latex_expand": [
"$ \\hat { \\mitF } ^ { 3 } $",
"$ \\miti $",
"$ \\hat { \\mitT } _ { 3 } $",
"$ \\hat { \\mitT } _ { 2 } $",
"$ \\hat { \\mitT } _ { 1 } $",
"$ \\hat { \\mitT } _ { 2 } $",
"$ \\hat { \\mitD } _ { \\miti } $",
"$ \\hat { \\mitD } _ { \\mitj } $",
"$ \\hat { \\mitT } _ { 1 } $",
"$ \\hat { \\mitT } _ { 2 } $",
"$ \\hat { \\mitT } _ { 4 } $",
"$ \\{ \\hat { \\mitT } _ { 1 } , \\hat { \\mitT } _ { 4 } \\} $",
"$ \\mitO ( \\mitalpha ^ { \\prime } ) $",
"$ \\hat { \\mitT } _ { 4 } $",
"$ \\hat { \\mitT } _ { 4 } $",
"$ \\mitF _ { \\miti \\mitj } \\mitpartial _ { \\mitk } \\mitpartial _ { \\miti } \\mitF _ { \\mitj \\mitk } $",
"$ \\mitO ( \\mitalpha ^ { \\prime } ) $",
"$ \\mitT _ { 1 } $",
"$ \\mitT _ { 1 } $",
"$ \\mitF ^ { 2 } $",
"\\begin{equation*} \\hat { \\mitT } _ { 3 } = - 2 \\hat { \\mitT } _ { 2 } , \\end{equation*}",
"\\begin{align*} \\displaystyle \\hat { \\mitT } _ { 1 } & = & \\displaystyle - \\hat { \\mitF } _ { \\miti \\mitk } \\ast \\hat { \\mitD } _ { \\miti } \\hat { \\mitD } _ { \\mitj } \\hat { \\mitF } _ { \\mitj \\mitk } + \\mathrm { t o t a l ~ d e r i v a t i v e } , \\\\ \\displaystyle \\hat { \\mitT } _ { 2 } & = & \\displaystyle - \\hat { \\mitF } _ { \\miti \\mitk } \\ast \\hat { \\mitD } _ { \\mitj } \\hat { \\mitD } _ { \\miti } \\hat { \\mitF } _ { \\mitj \\mitk } + \\mathrm { t o t a l ~ d e r i v a t i v e } , \\end{align*}",
"\\begin{align*} \\displaystyle \\hat { \\mitT } _ { 1 } - \\hat { \\mitT } _ { 2 } & = & \\displaystyle - \\hat { \\mitF } _ { \\miti \\mitk } \\ast [ \\hat { \\mitD } _ { \\miti } , \\hat { \\mitD } _ { \\mitj } ] \\hat { \\mitF } _ { \\mitj \\mitk } + \\mathrm { t o t a l ~ d e r i v a t i v e } \\\\ & = & \\displaystyle - \\hat { \\mitF } _ { \\miti \\mitk } \\ast ( - \\miti \\hat { \\mitF } _ { \\miti \\mitj } \\ast \\hat { \\mitF } _ { \\mitj \\mitk } + \\miti \\hat { \\mitF } _ { \\mitj \\mitk } \\ast \\hat { \\mitF } _ { \\miti \\mitj } ) + \\mathrm { t o t a l ~ d e r i v a t i v e } \\\\ & = & \\displaystyle - 2 \\hat { \\mitT } _ { 4 } + \\mathrm { t o t a l ~ d e r i v a t i v e } . \\end{align*}",
"\\begin{equation*} \\hat { \\mitT } _ { 4 } = \\frac { \\miti } { 2 } \\hat { \\mitF } _ { \\miti \\mitj } \\ast ( \\hat { \\mitF } _ { \\mitj \\mitk } \\ast \\hat { \\mitF } _ { \\mitk \\miti } - \\hat { \\mitF } _ { \\mitk \\miti } \\ast \\hat { \\mitF } _ { \\mitj \\mitk } ) = \\frac { 1 } { 2 } \\hat { \\mitF } _ { \\miti \\mitj } \\ast [ \\hat { \\mitD } _ { \\mitk } , \\hat { \\mitD } _ { \\miti } ] \\hat { \\mitF } _ { \\mitj \\mitk } , \\end{equation*}",
"\\begin{align*} \\displaystyle \\tilde { \\mitA } _ { \\miti } & = & \\displaystyle \\mitA _ { \\miti } + \\mita ( 2 \\mitpi \\mitalpha ^ { \\prime } ) \\mitpartial _ { \\mitj } \\mitF _ { \\mitj \\miti } + \\mitO ( \\mitalpha ^ { \\prime 2 } ) , \\\\ \\displaystyle \\tilde { \\mitF } _ { \\miti \\mitj } \\tilde { \\mitF } _ { \\mitj \\miti } & = & \\displaystyle \\mitF _ { \\miti \\mitj } \\mitF _ { \\mitj \\miti } + 4 \\mita ( 2 \\mitpi \\mitalpha ^ { \\prime } ) \\mitpartial _ { \\miti } \\mitF _ { \\miti \\mitj } \\mitpartial _ { \\mitk } \\mitF _ { \\mitk \\mitj } + \\mathrm { t o t a l ~ d e r i v a t i v e } + \\mitO ( \\mitalpha ^ { \\prime 2 } ) . \\end{align*}"
],
"x_min": [
0.3449000120162964,
0.4499000012874603,
0.21150000393390656,
0.33169999718666077,
0.2549999952316284,
0.31929999589920044,
0.18799999356269836,
0.2556999921798706,
0.7070000171661377,
0.7387999892234802,
0.8044000267982483,
0.2639999985694885,
0.4499000012874603,
0.4187999963760376,
0.44510000944137573,
0.6151000261306763,
0.37529999017715454,
0.5770999789237976,
0.8727999925613403,
0.20389999449253082,
0.46160000562667847,
0.32829999923706055,
0.23839999735355377,
0.27300000190734863,
0.22110000252723694
],
"y_min": [
0.09769999980926514,
0.10159999877214432,
0.12110000103712082,
0.12110000103712082,
0.18119999766349792,
0.18119999766349792,
0.2685999870300293,
0.2685999870300293,
0.2685999870300293,
0.2685999870300293,
0.2685999870300293,
0.4066999852657318,
0.4097000062465668,
0.4302000105381012,
0.47749999165534973,
0.5648999810218811,
0.6586999893188477,
0.7300000190734863,
0.7300000190734863,
0.7519999742507935,
0.14790000021457672,
0.20810000598430634,
0.31949999928474426,
0.49900001287460327,
0.7770000100135803
],
"x_max": [
0.3684000074863434,
0.45680001378059387,
0.23149999976158142,
0.35109999775886536,
0.2750000059604645,
0.3393000066280365,
0.210099995136261,
0.2799000144004822,
0.7269999980926514,
0.7588000297546387,
0.824400007724762,
0.33239999413490295,
0.4982999861240387,
0.43880000710487366,
0.4645000100135803,
0.7035999894142151,
0.4237000048160553,
0.597100019454956,
0.892799973487854,
0.2281000018119812,
0.5611000061035156,
0.6952999830245972,
0.7850000262260437,
0.7498000264167786,
0.802299976348877
],
"y_max": [
0.11140000075101852,
0.11140000075101852,
0.1371999979019165,
0.1371999979019165,
0.19779999554157257,
0.19779999554157257,
0.2847000062465668,
0.2867000102996826,
0.2847000062465668,
0.2847000062465668,
0.2847000062465668,
0.4242999851703644,
0.4242999851703644,
0.4462999999523163,
0.4936000108718872,
0.5795000195503235,
0.67330002784729,
0.7426999807357788,
0.7426999807357788,
0.76419997215271,
0.1678999960422516,
0.2581000030040741,
0.3968999981880188,
0.5311999917030334,
0.8270000219345093
],
"expr_type": [
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"isolated",
"isolated",
"isolated",
"isolated",
"isolated"
]
} |
|
0002194_page20 | {
"latex": [
"$\\tilde {A}_i$",
"$B$",
"$B+F$",
"$A_i$",
"$B$",
"$B+F$",
"$A_i$",
"$\\tilde {A}_i$",
"$f_i$",
"$T_1$",
"$\\partial _i (B+F)_{jk} = \\partial _i F_{jk}$",
"$B$",
"$T_1$",
"$T_1$",
"$\\hat {T}_1$",
"$\\hat {T}_4$",
"$\\hat {T}_1$",
"$\\hat {F}^2$",
"$\\hat {T}_1$",
"$O(\\alpha ')$",
"${\\cal L} (B+F)$",
"$\\hat {T}_4$",
"$\\hat {{\\cal L}} (\\hat {F})$",
"$\\alpha '$",
"$O(\\alpha ')$",
"\\begin {equation} (B+ \\tilde {F})_{ij} = (B+F)_{ij} + a (2 \\pi \\alpha ') \\partial ^2 (B+F)_{ij} + O(\\alpha '^2). \\end {equation}",
"\\begin {equation} \\tilde {A}_i = A_i + f_i (\\partial F, \\partial ^2 F, \\ldots ), \\end {equation}",
"\\begin {eqnarray} \\tilde {\\hat {A}}_i &=& \\hat {A}_i + a (2 \\pi \\alpha ') \\hat {D}_j \\hat {F}_{ji} + O(\\alpha '^2), \\\\ \\tilde {\\hat {F}}_{ij} \\ast \\tilde {\\hat {F}}_{ji} &=& \\hat {F}_{ij} \\ast \\hat {F}_{ji} + 4 a (2 \\pi \\alpha ') \\hat {D}_i \\hat {F}_{ij} \\ast \\hat {D}_k \\hat {F}_{kj} + {\\rm total~derivative} + O(\\alpha '^2). \\end {eqnarray}",
"\\begin {equation} \\hat {A}_i = A_i + O(\\alpha '^2), \\label {no-alpha'} \\end {equation}"
],
"latex_norm": [
"$ \\widetilde { A } _ { i } $",
"$ B $",
"$ B + F $",
"$ A _ { i } $",
"$ B $",
"$ B + F $",
"$ A _ { i } $",
"$ \\widetilde { A } _ { i } $",
"$ f _ { i } $",
"$ T _ { 1 } $",
"$ \\partial _ { i } ( B + F ) _ { j k } = \\partial _ { i } F _ { j k } $",
"$ B $",
"$ T _ { 1 } $",
"$ T _ { 1 } $",
"$ \\hat { T } _ { 1 } $",
"$ \\hat { T } _ { 4 } $",
"$ \\hat { T } _ { 1 } $",
"$ \\hat { F } ^ { 2 } $",
"$ \\hat { T } _ { 1 } $",
"$ O ( \\alpha ^ { \\prime } ) $",
"$ L ( B + F ) $",
"$ \\hat { T } _ { 4 } $",
"$ \\hat { L } ( \\hat { F } ) $",
"$ \\alpha ^ { \\prime } $",
"$ O ( \\alpha ^ { \\prime } ) $",
"\\begin{equation*} ( B + \\widetilde { F } ) _ { i j } = ( B + F ) _ { i j } + a ( 2 \\pi \\alpha ^ { \\prime } ) \\partial ^ { 2 } ( B + F ) _ { i j } + O ( \\alpha ^ { \\prime 2 } ) . \\end{equation*}",
"\\begin{equation*} \\widetilde { A } _ { i } = A _ { i } + f _ { i } ( \\partial F , \\partial ^ { 2 } F , \\ldots ) , \\end{equation*}",
"\\begin{align*} \\widetilde { \\hat { A } } _ { i } & = & \\hat { A } _ { i } + a ( 2 \\pi \\alpha ^ { \\prime } ) \\hat { D } _ { j } \\hat { F } _ { j i } + O ( \\alpha ^ { \\prime 2 } ) , \\\\ \\widetilde { \\hat { F } } _ { i j } \\ast \\widetilde { \\hat { F } } _ { j i } & = & \\hat { F } _ { i j } \\ast \\hat { F } _ { j i } + 4 a ( 2 \\pi \\alpha ^ { \\prime } ) \\hat { D } _ { i } \\hat { F } _ { i j } \\ast \\hat { D } _ { k } \\hat { F } _ { k j } + t o t a l ~ d e r i v a t i v e + O ( \\alpha ^ { \\prime 2 } ) . \\end{align*}",
"\\begin{equation*} \\hat { A } _ { i } = A _ { i } + O ( \\alpha ^ { \\prime 2 } ) , \\end{equation*}"
],
"latex_expand": [
"$ \\tilde { \\mitA } _ { \\miti } $",
"$ \\mitB $",
"$ \\mitB + \\mitF $",
"$ \\mitA _ { \\miti } $",
"$ \\mitB $",
"$ \\mitB + \\mitF $",
"$ \\mitA _ { \\miti } $",
"$ \\tilde { \\mitA } _ { \\miti } $",
"$ \\mitf _ { \\miti } $",
"$ \\mitT _ { 1 } $",
"$ \\mitpartial _ { \\miti } ( \\mitB + \\mitF ) _ { \\mitj \\mitk } = \\mitpartial _ { \\miti } \\mitF _ { \\mitj \\mitk } $",
"$ \\mitB $",
"$ \\mitT _ { 1 } $",
"$ \\mitT _ { 1 } $",
"$ \\hat { \\mitT } _ { 1 } $",
"$ \\hat { \\mitT } _ { 4 } $",
"$ \\hat { \\mitT } _ { 1 } $",
"$ \\hat { \\mitF } ^ { 2 } $",
"$ \\hat { \\mitT } _ { 1 } $",
"$ \\mitO ( \\mitalpha ^ { \\prime } ) $",
"$ \\mitL ( \\mitB + \\mitF ) $",
"$ \\hat { \\mitT } _ { 4 } $",
"$ \\hat { \\mitL } ( \\hat { \\mitF } ) $",
"$ \\mitalpha ^ { \\prime } $",
"$ \\mitO ( \\mitalpha ^ { \\prime } ) $",
"\\begin{equation*} ( \\mitB + \\tilde { \\mitF } ) _ { \\miti \\mitj } = ( \\mitB + \\mitF ) _ { \\miti \\mitj } + \\mita ( 2 \\mitpi \\mitalpha ^ { \\prime } ) \\mitpartial ^ { 2 } ( \\mitB + \\mitF ) _ { \\miti \\mitj } + \\mitO ( \\mitalpha ^ { \\prime 2 } ) . \\end{equation*}",
"\\begin{equation*} \\tilde { \\mitA } _ { \\miti } = \\mitA _ { \\miti } + \\mitf _ { \\miti } ( \\mitpartial \\mitF , \\mitpartial ^ { 2 } \\mitF , \\ldots ) , \\end{equation*}",
"\\begin{align*} \\displaystyle \\tilde { \\hat { \\mitA } } _ { \\miti } & = & \\displaystyle \\hat { \\mitA } _ { \\miti } + \\mita ( 2 \\mitpi \\mitalpha ^ { \\prime } ) \\hat { \\mitD } _ { \\mitj } \\hat { \\mitF } _ { \\mitj \\miti } + \\mitO ( \\mitalpha ^ { \\prime 2 } ) , \\\\ \\displaystyle \\tilde { \\hat { \\mitF } } _ { \\miti \\mitj } \\ast \\tilde { \\hat { \\mitF } } _ { \\mitj \\miti } & = & \\displaystyle \\hat { \\mitF } _ { \\miti \\mitj } \\ast \\hat { \\mitF } _ { \\mitj \\miti } + 4 \\mita ( 2 \\mitpi \\mitalpha ^ { \\prime } ) \\hat { \\mitD } _ { \\miti } \\hat { \\mitF } _ { \\miti \\mitj } \\ast \\hat { \\mitD } _ { \\mitk } \\hat { \\mitF } _ { \\mitk \\mitj } + \\mathrm { t o t a l ~ d e r i v a t i v e } + \\mitO ( \\mitalpha ^ { \\prime 2 } ) . \\end{align*}",
"\\begin{equation*} \\hat { \\mitA } _ { \\miti } = \\mitA _ { \\miti } + \\mitO ( \\mitalpha ^ { \\prime 2 } ) , \\end{equation*}"
],
"x_min": [
0.6351000070571899,
0.7706000208854675,
0.19830000400543213,
0.4982999861240387,
0.6661999821662903,
0.1306000053882599,
0.32409998774528503,
0.39250001311302185,
0.33239999413490295,
0.4505999982357025,
0.27160000801086426,
0.5839999914169312,
0.1298999935388565,
0.4505999982357025,
0.6488999724388123,
0.7131999731063843,
0.4036000072956085,
0.6406000256538391,
0.8727999925613403,
0.5439000129699707,
0.6682999730110168,
0.8727999925613403,
0.25429999828338623,
0.3815000057220459,
0.22939999401569366,
0.27639999985694885,
0.396699994802475,
0.18379999697208405,
0.4332999885082245
],
"y_min": [
0.16850000619888306,
0.17190000414848328,
0.19529999792575836,
0.19529999792575836,
0.19529999792575836,
0.21879999339580536,
0.21879999339580536,
0.21529999375343323,
0.33640000224113464,
0.35989999771118164,
0.38280001282691956,
0.3837999999523163,
0.40720000863075256,
0.45410001277923584,
0.4975999891757965,
0.4975999891757965,
0.5214999914169312,
0.5214999914169312,
0.6660000085830688,
0.7157999873161316,
0.7157999873161316,
0.7134000062942505,
0.7368000149726868,
0.7397000193595886,
0.8101000189781189,
0.1298999935388565,
0.29440000653266907,
0.5758000016212463,
0.7685999870300293
],
"x_max": [
0.6557999849319458,
0.7871999740600586,
0.25220000743865967,
0.5189999938011169,
0.6827999949455261,
0.18870000541210175,
0.3447999954223633,
0.4131999909877777,
0.3483000099658966,
0.4706000089645386,
0.44920000433921814,
0.600600004196167,
0.14990000426769257,
0.4706000089645386,
0.6689000129699707,
0.7332000136375427,
0.4235999882221222,
0.6640999913215637,
0.892799973487854,
0.5929999947547913,
0.7526000142097473,
0.892799973487854,
0.29989999532699585,
0.39879998564720154,
0.2784999907016754,
0.7491000294685364,
0.6261000037193298,
0.8396000266075134,
0.5888000130653381
],
"y_max": [
0.18410000205039978,
0.18219999969005585,
0.20649999380111694,
0.20749999582767487,
0.20559999346733093,
0.23000000417232513,
0.23149999976158142,
0.2313999980688095,
0.3495999872684479,
0.3725999891757965,
0.3978999853134155,
0.39410001039505005,
0.41940000653266907,
0.4668000042438507,
0.513700008392334,
0.513700008392334,
0.5375999808311462,
0.5351999998092651,
0.6820999979972839,
0.73089998960495,
0.73089998960495,
0.7294999957084656,
0.7544000148773193,
0.7504000067710876,
0.8246999979019165,
0.1509000062942505,
0.3149000108242035,
0.6277999877929688,
0.7896000146865845
],
"expr_type": [
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"isolated",
"isolated",
"isolated",
"isolated"
]
} |
|
0002194_page21 | {
"latex": [
"$\\hat {T}_4$",
"$O(B)$",
"$\\hat {T}_4$",
"$\\hat {T}_4$",
"$i \\, {\\rm tr} {\\rm Tr} F^3$",
"$\\hat {F}^2$",
"$O(B, \\zeta ^3, k^3)$",
"$F^4$",
"${\\cal L} (B+F)$",
"$\\hat {T}_4$",
"$\\alpha '$",
"$\\hat {T}_4$",
"$\\alpha '$",
"$O(B, \\zeta ^3, k^5)$",
"$O(\\partial ^2 F^4)$",
"$F$",
"$B+F$",
"$O(\\partial ^2 F^4)$",
"\\begin {eqnarray} i \\, {\\rm tr} {\\rm Tr} (B+F)^3 &=& \\frac {i}{2} {\\rm tr} (B+F)_{ij} [ (B+F)_{jk}, (B+F)_{ki} ] \\\\ &=& \\frac {i}{2} {\\rm tr} F_{ij} [ F_{jk}, F_{ki} ] + \\frac {i}{2} B_{ij} {\\rm tr} [ F_{jk}, F_{ki} ] \\\\ &=& i \\, {\\rm tr} {\\rm Tr} F^3. \\end {eqnarray}",
"\\begin {equation} \\hat {T}_4 = \\frac {1}{2} (2 \\pi \\alpha ')^2 B_{nm} \\hat {F}_{ij} \\partial _n \\hat {F}_{jk} \\partial _m \\hat {F}_{ki} + O(\\alpha '^4). \\label {T_4-expansion} \\end {equation}",
"\\begin {eqnarray} \\hat {T}_4 &=& (2 \\pi \\alpha ')^2 B_{nm} \\partial _i \\hat {A}_j \\partial _n \\partial _j \\hat {A}_k \\partial _m \\partial _k \\hat {A}_i \\\\ && + {\\rm ~terms~with~} \\partial ^2 A + {\\rm total~derivative} + O(\\alpha '^4). \\end {eqnarray}"
],
"latex_norm": [
"$ \\hat { T } _ { 4 } $",
"$ O ( B ) $",
"$ \\hat { T } _ { 4 } $",
"$ \\hat { T } _ { 4 } $",
"$ i \\, t r T r F ^ { 3 } $",
"$ \\hat { F } ^ { 2 } $",
"$ O ( B , \\zeta ^ { 3 } , k ^ { 3 } ) $",
"$ F ^ { 4 } $",
"$ L ( B + F ) $",
"$ \\hat { T } _ { 4 } $",
"$ \\alpha ^ { \\prime } $",
"$ \\hat { T } _ { 4 } $",
"$ \\alpha ^ { \\prime } $",
"$ O ( B , \\zeta ^ { 3 } , k ^ { 5 } ) $",
"$ O ( \\partial ^ { 2 } F ^ { 4 } ) $",
"$ F $",
"$ B + F $",
"$ O ( \\partial ^ { 2 } F ^ { 4 } ) $",
"\\begin{align*} i \\, t r T r ( B + F ) ^ { 3 } & = & \\frac { i } { 2 } t r ( B + F ) _ { i j } [ ( B + F ) _ { j k } , ( B + F ) _ { k i } ] \\\\ & = & \\frac { i } { 2 } t r F _ { i j } [ F _ { j k } , F _ { k i } ] + \\frac { i } { 2 } B _ { i j } t r [ F _ { j k } , F _ { k i } ] \\\\ & = & i \\, t r T r F ^ { 3 } . \\end{align*}",
"\\begin{equation*} \\hat { T } _ { 4 } = \\frac { 1 } { 2 } ( 2 \\pi \\alpha ^ { \\prime } ) ^ { 2 } B _ { n m } \\hat { F } _ { i j } \\partial _ { n } \\hat { F } _ { j k } \\partial _ { m } \\hat { F } _ { k i } + O ( \\alpha ^ { \\prime 4 } ) . \\end{equation*}",
"\\begin{align*} \\hat { T } _ { 4 } & = & ( 2 \\pi \\alpha ^ { \\prime } ) ^ { 2 } B _ { n m } \\partial _ { i } \\hat { A } _ { j } \\partial _ { n } \\partial _ { j } \\hat { A } _ { k } \\partial _ { m } \\partial _ { k } \\hat { A } _ { i } \\\\ & & + ~ t e r m s ~ w i t h ~ \\partial ^ { 2 } A + t o t a l ~ d e r i v a t i v e + O ( \\alpha ^ { \\prime 4 } ) . \\end{align*}"
],
"latex_expand": [
"$ \\hat { \\mitT } _ { 4 } $",
"$ \\mitO ( \\mitB ) $",
"$ \\hat { \\mitT } _ { 4 } $",
"$ \\hat { \\mitT } _ { 4 } $",
"$ \\miti \\, \\mathrm { t r T r } \\mitF ^ { 3 } $",
"$ \\hat { \\mitF } ^ { 2 } $",
"$ \\mitO ( \\mitB , \\mitzeta ^ { 3 } , \\mitk ^ { 3 } ) $",
"$ \\mitF ^ { 4 } $",
"$ \\mitL ( \\mitB + \\mitF ) $",
"$ \\hat { \\mitT } _ { 4 } $",
"$ \\mitalpha ^ { \\prime } $",
"$ \\hat { \\mitT } _ { 4 } $",
"$ \\mitalpha ^ { \\prime } $",
"$ \\mitO ( \\mitB , \\mitzeta ^ { 3 } , \\mitk ^ { 5 } ) $",
"$ \\mitO ( \\mitpartial ^ { 2 } \\mitF ^ { 4 } ) $",
"$ \\mitF $",
"$ \\mitB + \\mitF $",
"$ \\mitO ( \\mitpartial ^ { 2 } \\mitF ^ { 4 } ) $",
"\\begin{align*} \\displaystyle \\miti \\, \\mathrm { t r T r } ( \\mitB + \\mitF ) ^ { 3 } & = & \\displaystyle \\frac { \\miti } { 2 } \\mathrm { t r } ( \\mitB + \\mitF ) _ { \\miti \\mitj } [ ( \\mitB + \\mitF ) _ { \\mitj \\mitk } , ( \\mitB + \\mitF ) _ { \\mitk \\miti } ] \\\\ & = & \\displaystyle \\frac { \\miti } { 2 } \\mathrm { t r } \\mitF _ { \\miti \\mitj } [ \\mitF _ { \\mitj \\mitk } , \\mitF _ { \\mitk \\miti } ] + \\frac { \\miti } { 2 } \\mitB _ { \\miti \\mitj } \\mathrm { t r } [ \\mitF _ { \\mitj \\mitk } , \\mitF _ { \\mitk \\miti } ] \\\\ & = & \\displaystyle \\miti \\, \\mathrm { t r T r } \\mitF ^ { 3 } . \\end{align*}",
"\\begin{equation*} \\hat { \\mitT } _ { 4 } = \\frac { 1 } { 2 } ( 2 \\mitpi \\mitalpha ^ { \\prime } ) ^ { 2 } \\mitB _ { \\mitn \\mitm } \\hat { \\mitF } _ { \\miti \\mitj } \\mitpartial _ { \\mitn } \\hat { \\mitF } _ { \\mitj \\mitk } \\mitpartial _ { \\mitm } \\hat { \\mitF } _ { \\mitk \\miti } + \\mitO ( \\mitalpha ^ { \\prime 4 } ) . \\end{equation*}",
"\\begin{align*} \\displaystyle \\hat { \\mitT } _ { 4 } & = & \\displaystyle ( 2 \\mitpi \\mitalpha ^ { \\prime } ) ^ { 2 } \\mitB _ { \\mitn \\mitm } \\mitpartial _ { \\miti } \\hat { \\mitA } _ { \\mitj } \\mitpartial _ { \\mitn } \\mitpartial _ { \\mitj } \\hat { \\mitA } _ { \\mitk } \\mitpartial _ { \\mitm } \\mitpartial _ { \\mitk } \\hat { \\mitA } _ { \\miti } \\\\ & & \\displaystyle + ~ \\mathrm { t e r m s } ~ \\mathrm { w i t h } ~ \\mitpartial ^ { 2 } \\mitA + \\mathrm { t o t a l ~ d e r i v a t i v e } + \\mitO ( \\mitalpha ^ { \\prime 4 } ) . \\end{align*}"
],
"x_min": [
0.4050000011920929,
0.399399995803833,
0.27230000495910645,
0.1298999935388565,
0.8181999921798706,
0.5085999965667725,
0.38839998841285706,
0.6136999726295471,
0.4235999882221222,
0.3537999987602234,
0.5460000038146973,
0.24740000069141388,
0.43810001015663147,
0.31929999589920044,
0.5825999975204468,
0.4375,
0.5073000192642212,
0.7533000111579895,
0.27090001106262207,
0.32829999923706055,
0.2750999927520752
],
"y_min": [
0.09769999980926514,
0.12399999797344208,
0.1445000022649765,
0.19189999997615814,
0.19380000233650208,
0.40720000863075256,
0.4325999915599823,
0.4325999915599823,
0.45649999380111694,
0.47749999165534973,
0.4805000126361847,
0.5249000191688538,
0.5278000235557556,
0.7523999810218811,
0.7759000062942505,
0.8008000254631042,
0.8008000254631042,
0.7993000149726868,
0.26759999990463257,
0.5536999702453613,
0.657800018787384
],
"x_max": [
0.42500001192092896,
0.446399986743927,
0.2922999858856201,
0.14990000426769257,
0.8880000114440918,
0.532800018787384,
0.49000000953674316,
0.6378999948501587,
0.510699987411499,
0.37380000948905945,
0.5640000104904175,
0.26739999651908875,
0.4553999900817871,
0.42160001397132874,
0.656499981880188,
0.45339998602867126,
0.5654000043869019,
0.8271999955177307,
0.7526000142097473,
0.6980000138282776,
0.7484999895095825
],
"y_max": [
0.11379999667406082,
0.13860000669956207,
0.16060000658035278,
0.20800000429153442,
0.20550000667572021,
0.42089998722076416,
0.448199987411499,
0.44429999589920044,
0.4715999960899353,
0.4936000108718872,
0.4916999936103821,
0.5410000085830688,
0.5385000109672546,
0.7674999833106995,
0.7914999723434448,
0.8111000061035156,
0.8125,
0.8148999810218811,
0.3589000105857849,
0.5863999724388123,
0.7092999815940857
],
"expr_type": [
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"embedded",
"isolated",
"isolated",
"isolated"
]
} |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.