image
image
page_id
string
expressions
sequence
0001015_page02
{ "latex": [ "$S(\\phi )$", "$\\phi $", "$\\exp (-Ht)$", "$\\psi (x)$", "$d\\mu $", "$x$", "$x(t)$", "$V$", "$H= L +V(x)$", "$L$", "$x(t)$", "\\begin {equation} H = \\half p^2 + V(x) \\end {equation}", "\\begin {equation}\\label {EVeq} \\exp (-Ht) \\psi (x) = \\int d\\mu \\exp \\left ( -\\int _0^t V((x(s)) ds \\right ) \\psi (x(t)) \\end {equation}" ], "latex_norm": [ "$ S ( \\phi ) $", "$ \\phi $", "$ e x p ( - H t ) $", "$ \\psi ( x ) $", "$ d \\mu $", "$ x $", "$ x ( t ) $", "$ V $", "$ H = L + V ( x ) $", "$ L $", "$ x ( t ) $", "\\begin{equation*} H = \\frac { 1 } { 2 } p ^ { 2 } + V ( x ) \\end{equation*}", "\\begin{equation*} \\operatorname { e x p } ( - H t ) \\psi ( x ) = \\int d \\mu \\operatorname { e x p } ( - \\int _ { 0 } ^ { t } V ( ( x ( s ) ) d s ) \\psi ( x ( t ) ) \\end{equation*}" ], "latex_expand": [ "$ \\mitS ( \\mitphi ) $", "$ \\mitphi $", "$ \\mathrm { e x p } ( - \\mitH \\mitt ) $", "$ \\mitpsi ( \\mitx ) $", "$ \\mitd \\mitmu $", "$ \\mitx $", "$ \\mitx ( \\mitt ) $", "$ \\mitV $", "$ \\mitH = \\mitL + \\mitV ( \\mitx ) $", "$ \\mitL $", "$ \\mitx ( \\mitt ) $", "\\begin{equation*} \\mitH = \\frac { 1 } { 2 } \\mitp ^ { 2 } + \\mitV ( \\mitx ) \\end{equation*}", "\\begin{equation*} \\operatorname { e x p } ( - \\mitH \\mitt ) \\mitpsi ( \\mitx ) = \\int \\mitd \\mitmu \\operatorname { e x p } \\left( - \\int _ { 0 } ^ { \\mitt } \\mitV ( ( \\mitx ( \\mits ) ) \\mitd \\mits \\right) \\mitpsi ( \\mitx ( \\mitt ) ) \\end{equation*}" ], "x_min": [ 0.22939999401569366, 0.484499990940094, 0.6917999982833862, 0.29789999127388, 0.227400004863739, 0.579800009727478, 0.6371999979019165, 0.44780001044273376, 0.5569999814033508, 0.7554000020027161, 0.6068000197410583, 0.22179999947547913, 0.22179999947547913 ], "y_min": [ 0.15770000219345093, 0.1581999957561493, 0.5814999938011169, 0.5985999703407288, 0.6729000210762024, 0.676800012588501, 0.6723999977111816, 0.6904000043869019, 0.7407000064849854, 0.7416999936103821, 0.7583000063896179, 0.5375999808311462, 0.6220999956130981 ], "x_max": [ 0.2694999873638153, 0.4968999922275543, 0.7781999707221985, 0.33869999647140503, 0.2502000033855438, 0.5909000039100647, 0.6711000204086304, 0.4643999934196472, 0.6897000074386597, 0.7692000269889832, 0.6406999826431274, 0.3675999939441681, 0.6973000168800354 ], "y_max": [ 0.17229999601840973, 0.17190000414848328, 0.5965999960899353, 0.6136999726295471, 0.6866000294685364, 0.6836000084877014, 0.6869999766349792, 0.7006999850273132, 0.7558000087738037, 0.7523999810218811, 0.7728999853134155, 0.5698000192642212, 0.6607000231742859 ], "expr_type": [ "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "isolated", "isolated" ] }
0001015_page03
{ "latex": [ "$x: I \\to M$", "$I$", "$[0,t]$", "$M$", "$n$", "$g$", "$\\omega =dh$", "$M$", "$\\omega = \\Omu (x) d\\Xmu $", "$\\omega = \\Omu (x) d\\Xmu $", "$\\dot {x}^{\\mu }(t')= \\frac {d{x}^{\\mu }}{d t'}$", "$S[x(.)] = i(h(x(t))-h(x(0)))$", "$x(t)$", "$\\omega =0$", "$h$", "$M$", "$\\omega =dh$", "$\\Pmu $", "$\\Xmu $", "$n$", "$H(p,x)= \\Pmu \\Xmu - \\Lag (x,\\dot {x})$", "$H(p,x)= \\Pmu \\Xmu - \\Lag (x,\\dot {x})$", "$\\omega $", "$\\Pb {\\Tmu }{T_{\\nu }}=0$", "$\\Pb {\\Tmu }{H_c}=0$", "$\\Tmu $", "$\\psi (x)$", "$\\Pmu =-i \\Dmu $", "$\\Pmu $", "$-i\\DDmu $", "$\\XXmu \\psi =0$", "$\\XXmu =g^{\\mu \\nu } (p_{\\nu } + i\\omega _{\\nu })$", "\\begin {equation}\\label {ACeq} S[x(.)] = \\Intot i\\Omu (x(t'))\\dot {x}^{\\mu }(t') \\, dt' \\end {equation}", "\\begin {equation}\\label {MOMeq} \\Pmu = \\frac {\\delta \\Lag }{\\delta \\dot {x}^\\mu } = i\\Omu , \\end {equation}", "\\begin {equation} \\Tmu \\equiv \\Pmu - i\\Omu . \\end {equation}", "\\begin {equation}\\label {GTeq} \\delta _{\\epsilon }\\psi (x) =-i \\epsilon (\\Dmu \\psi (x) + \\Omu (x) \\psi (x)) \\end {equation}" ], "latex_norm": [ "$ x : I \\rightarrow M $", "$ I $", "$ [ 0 , t ] $", "$ M $", "$ n $", "$ g $", "$ \\omega = d h $", "$ M $", "$ \\omega = \\omega _ { \\mu } ( x ) d x ^ { \\mu } $", "$ \\omega = \\omega _ { \\mu } ( x ) d x ^ { \\mu } $", "$ \\dot { x } ^ { \\mu } ( t ^ { \\prime } ) = \\frac { d x ^ { \\mu } } { d t ^ { \\prime } } $", "$ S [ x ( . ) ] = i ( h ( x ( t ) ) - h ( x ( 0 ) ) ) $", "$ x ( t ) $", "$ \\omega = 0 $", "$ h $", "$ M $", "$ \\omega = d h $", "$ p _ { \\mu } $", "$ x ^ { \\mu } $", "$ n $", "$ H ( p , x ) = p _ { \\mu } x ^ { \\mu } - L ( x , \\dot { x } ) $", "$ H ( p , x ) = p _ { \\mu } x ^ { \\mu } - L ( x , \\dot { x } ) $", "$ \\omega $", "$ \\{ T _ { \\mu } , T _ { \\nu } \\} = 0 $", "$ \\{ T _ { \\mu } , H _ { c } \\} = 0 $", "$ T _ { \\mu } $", "$ \\psi ( x ) $", "$ p _ { \\mu } = - i \\partial _ { \\mu } $", "$ p _ { \\mu } $", "$ - i \\nabla _ { \\mu } $", "$ X ^ { \\mu } \\psi = 0 $", "$ X ^ { \\mu } = g ^ { \\mu \\nu } ( p _ { \\nu } + i \\omega _ { \\nu } ) $", "\\begin{equation*} S [ x ( . ) ] = \\int _ { 0 } ^ { t } i \\omega _ { \\mu } ( x ( t ^ { \\prime } ) ) \\dot { x } ^ { \\mu } ( t ^ { \\prime } ) \\, d t ^ { \\prime } \\end{equation*}", "\\begin{equation*} p _ { \\mu } = \\frac { \\delta L } { \\delta \\dot { x } ^ { \\mu } } = i \\omega _ { \\mu } , \\end{equation*}", "\\begin{equation*} T _ { \\mu } \\equiv p _ { \\mu } - i \\omega _ { \\mu } . \\end{equation*}", "\\begin{equation*} \\delta _ { \\epsilon } \\psi ( x ) = - i \\epsilon ( \\partial _ { \\mu } \\psi ( x ) + \\omega _ { \\mu } ( x ) \\psi ( x ) ) \\end{equation*}" ], "latex_expand": [ "$ \\mitx : \\mitI \\rightarrow \\mitM $", "$ \\mitI $", "$ [ 0 , \\mitt ] $", "$ \\mitM $", "$ \\mitn $", "$ \\mitg $", "$ \\mitomega = \\mitd \\Planckconst $", "$ \\mitM $", "$ \\mitomega = \\mitomega _ { \\mitmu } ( \\mitx ) \\mitd \\mitx ^ { \\mitmu } $", "$ \\mitomega = \\mitomega _ { \\mitmu } ( \\mitx ) \\mitd \\mitx ^ { \\mitmu } $", "$ \\dot { \\mitx } ^ { \\mitmu } ( \\mitt ^ { \\prime } ) = \\frac { \\mitd \\mitx ^ { \\mitmu } } { \\mitd \\mitt ^ { \\prime } } $", "$ \\mitS [ \\mitx ( . ) ] = \\miti ( \\Planckconst ( \\mitx ( \\mitt ) ) - \\Planckconst ( \\mitx ( 0 ) ) ) $", "$ \\mitx ( \\mitt ) $", "$ \\mitomega = 0 $", "$ \\Planckconst $", "$ \\mitM $", "$ \\mitomega = \\mitd \\Planckconst $", "$ \\mitp _ { \\mitmu } $", "$ \\mitx ^ { \\mitmu } $", "$ \\mitn $", "$ \\mitH ( \\mitp , \\mitx ) = \\mitp _ { \\mitmu } \\mitx ^ { \\mitmu } - \\mitL ( \\mitx , \\dot { \\mitx } ) $", "$ \\mitH ( \\mitp , \\mitx ) = \\mitp _ { \\mitmu } \\mitx ^ { \\mitmu } - \\mitL ( \\mitx , \\dot { \\mitx } ) $", "$ \\mitomega $", "$ \\left\\{ \\mitT _ { \\mitmu } , \\mitT _ { \\mitnu } \\right \\} = 0 $", "$ \\left\\{ \\mitT _ { \\mitmu } , \\mitH _ { \\mitc } \\right \\} = 0 $", "$ \\mitT _ { \\mitmu } $", "$ \\mitpsi ( \\mitx ) $", "$ \\mitp _ { \\mitmu } = - \\miti \\mitpartial _ { \\mitmu } $", "$ \\mitp _ { \\mitmu } $", "$ - \\miti \\nabla _ { \\mitmu } $", "$ \\mitX ^ { \\mitmu } \\mitpsi = 0 $", "$ \\mitX ^ { \\mitmu } = \\mitg ^ { \\mitmu \\mitnu } ( \\mitp _ { \\mitnu } + \\miti \\mitomega _ { \\mitnu } ) $", "\\begin{equation*} \\mitS [ \\mitx ( . ) ] = \\int _ { 0 } ^ { \\mitt } \\miti \\mitomega _ { \\mitmu } ( \\mitx ( \\mitt ^ { \\prime } ) ) \\dot { \\mitx } ^ { \\mitmu } ( \\mitt ^ { \\prime } ) \\, \\mitd \\mitt ^ { \\prime } \\end{equation*}", "\\begin{equation*} \\mitp _ { \\mitmu } = \\frac { \\mitdelta \\mitL } { \\mitdelta \\dot { \\mitx } ^ { \\mitmu } } = \\miti \\mitomega _ { \\mitmu } , \\end{equation*}", "\\begin{equation*} \\mitT _ { \\mitmu } \\equiv \\mitp _ { \\mitmu } - \\miti \\mitomega _ { \\mitmu } . \\end{equation*}", "\\begin{equation*} \\mitdelta _ { \\mitepsilon } \\mitpsi ( \\mitx ) = - \\miti \\mitepsilon ( \\mitpartial _ { \\mitmu } \\mitpsi ( \\mitx ) + \\mitomega _ { \\mitmu } ( \\mitx ) \\mitpsi ( \\mitx ) ) \\end{equation*}" ], "x_min": [ 0.4733999967575073, 0.6427000164985657, 0.7892000079154968, 0.21080000698566437, 0.28540000319480896, 0.7084000110626221, 0.1728000044822693, 0.4650999903678894, 0.7892000079154968, 0.1728000044822693, 0.29580000042915344, 0.1728000044822693, 0.7573999762535095, 0.6578999757766724, 0.3068000078201294, 0.5273000001907349, 0.6316999793052673, 0.31029999256134033, 0.44850000739097595, 0.45890000462532043, 0.6717000007629395, 0.1728000044822693, 0.6814000010490417, 0.5612000226974487, 0.7103999853134155, 0.6690000295639038, 0.23149999976158142, 0.2646999955177307, 0.31380000710487366, 0.7186999917030334, 0.7387999892234802, 0.22939999401569366, 0.22179999947547913, 0.22179999947547913, 0.22179999947547913, 0.22179999947547913 ], "y_min": [ 0.27149999141693115, 0.27149999141693115, 0.2705000042915344, 0.28859999775886536, 0.2919999957084656, 0.2919999957084656, 0.37599998712539673, 0.37599998712539673, 0.375, 0.3921000063419342, 0.3905999958515167, 0.4092000126838684, 0.4262999892234802, 0.4447999894618988, 0.46140000224113464, 0.461899995803833, 0.46140000224113464, 0.49950000643730164, 0.4966000020503998, 0.5659000277519226, 0.6172000169754028, 0.6342999935150146, 0.6557999849319458, 0.6685000061988831, 0.6685000061988831, 0.6865000128746033, 0.7411999702453613, 0.7588000297546387, 0.7797999978065491, 0.7764000296592712, 0.8105000257492065, 0.82669997215271, 0.326200008392334, 0.5181000232696533, 0.586899995803833, 0.7099999785423279 ], "x_max": [ 0.5722000002861023, 0.6538000106811523, 0.8258000016212463, 0.2321999967098236, 0.2978000044822693, 0.7195000052452087, 0.23430000245571136, 0.48649999499320984, 0.8292999863624573, 0.2522999942302704, 0.39809998869895935, 0.4291999936103821, 0.7919999957084656, 0.7124999761581421, 0.31850001215934753, 0.5493999719619751, 0.6952999830245972, 0.3296999931335449, 0.4699000120162964, 0.47130000591278076, 0.8264999985694885, 0.23360000550746918, 0.6952000260353088, 0.6675999760627747, 0.8209999799728394, 0.6904000043869019, 0.27160000801086426, 0.3628000020980835, 0.33320000767707825, 0.7670999765396118, 0.8266000151634216, 0.3953000009059906, 0.492000013589859, 0.36489999294281006, 0.35030001401901245, 0.5245000123977661 ], "y_max": [ 0.2818000018596649, 0.2818000018596649, 0.2851000130176544, 0.2989000082015991, 0.298799991607666, 0.3012999892234802, 0.3862999975681305, 0.3862999975681305, 0.39010000228881836, 0.40720000863075256, 0.4081999957561493, 0.4242999851703644, 0.4413999915122986, 0.45509999990463257, 0.47209998965263367, 0.4722000062465668, 0.47209998965263367, 0.510200023651123, 0.5063999891281128, 0.572700023651123, 0.6323000192642212, 0.649399995803833, 0.6625999808311462, 0.6836000084877014, 0.6836000084877014, 0.7006999850273132, 0.7558000087738037, 0.7734000086784363, 0.7904999852180481, 0.7906000018119812, 0.8237000107765198, 0.8417999744415283, 0.36480000615119934, 0.5512999892234802, 0.6044999957084656, 0.728600025177002 ], "expr_type": [ "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "isolated", "isolated", "isolated", "isolated" ] }
0001015_page04
{ "latex": [ "$\\Etamu $", "$\\Pimu $", "$(2n,2n)$", "$\\Etamu ,\\Pimu $", "$\\nabla $", "$\\psi (x,\\eta )$", "$\\Pmu =-i \\DDmu $", "$\\Pimu = -i\\frac {\\partial }{\\partial \\Etamu }$", "$\\psi (x,\\eta )$", "$(n,n)$", "$SM$", "$\\Xmu ,\\Etamu $", "$Q$", "$Q=\\Etamu \\Tmu =-i\\Etamu (\\Dmu + \\omega )$", "$Q=\\Etamu \\Tmu =-i\\Etamu (\\Dmu + \\omega )$", "$\\chi $", "$\\chi = \\Pimu \\XXmu = -ig^{\\mu \\nu } \\Pimu (\\nabla _{\\nu }-\\omega _{\\nu })$", "$M$", "$\\psi (x,\\eta )$", "$Q=-i\\Emh d \\Eph $", "$\\chi = \\Eph \\delta \\Emh $", "$d$", "$\\delta = *d*$", "$h$", "$\\chi =\\Pimu \\XXmu $", "$h$", "$Q$", "$h$", "$H_g$", "\\begin {equation}\\label {SPBeq} d\\Pmu \\wedge d \\Xmu + \\nabla \\Pimu \\wedge \\nabla \\Etamu + \\frac 12 dx^{\\mu } \\wedge dx^{\\nu } \\Curv {\\mu }{\\nu }{\\kappa }{\\lambda }\\eta ^{\\kappa }\\pi _{\\lambda }, \\end {equation}", "\\begin {eqnarray}\\DDmu \\psi (x,\\eta ) = \\Dmu \\psi (x,\\eta ) + \\Gam {\\mu }{\\nu }{\\lambda } \\eta ^{\\nu } \\frac {\\partial }{\\partial \\eta ^{\\lambda }}\\psi (x,\\eta ). \\end {eqnarray}", "\\begin {eqnarray}H_g &=& i( Q \\chi + \\chi Q) \\End &=& d \\delta + \\delta d + g^{\\mu \\nu }\\Omu \\omega _{\\nu } -i (\\Pimu \\eta ^{\\nu } - \\eta ^{\\nu }\\Pimu ) \\frac {\\partial ^2 h }{\\partial \\Xmu \\partial x_{\\nu }}. \\end {eqnarray}" ], "latex_norm": [ "$ \\eta ^ { \\mu } $", "$ \\pi _ { \\mu } $", "$ ( 2 n , 2 n ) $", "$ \\eta ^ { \\mu } , \\pi _ { \\mu } $", "$ \\nabla $", "$ \\psi ( x , \\eta ) $", "$ p _ { \\mu } = - i \\nabla _ { \\mu } $", "$ \\pi _ { \\mu } = - i \\frac { \\partial } { \\partial \\eta ^ { \\mu } } $", "$ \\psi ( x , \\eta ) $", "$ ( n , n ) $", "$ S M $", "$ x ^ { \\mu } , \\eta ^ { \\mu } $", "$ Q $", "$ Q = \\eta ^ { \\mu } T _ { \\mu } = - i \\eta ^ { \\mu } ( \\partial _ { \\mu } + \\omega ) $", "$ Q = \\eta ^ { \\mu } T _ { \\mu } = - i \\eta ^ { \\mu } ( \\partial _ { \\mu } + \\omega ) $", "$ \\chi $", "$ \\chi = \\pi _ { \\mu } X ^ { \\mu } = - i g ^ { \\mu \\nu } \\pi _ { \\mu } ( \\nabla _ { \\nu } - \\omega _ { \\nu } ) $", "$ M $", "$ \\psi ( x , \\eta ) $", "$ Q = - i e ^ { - h } d e ^ { h } $", "$ \\chi = e ^ { h } \\delta e ^ { - h } $", "$ d $", "$ \\delta = \\ast d \\ast $", "$ h $", "$ \\chi = \\pi _ { \\mu } X ^ { \\mu } $", "$ h $", "$ Q $", "$ h $", "$ H _ { g } $", "\\begin{equation*} d p _ { \\mu } \\wedge d x ^ { \\mu } + \\nabla \\pi _ { \\mu } \\wedge \\nabla \\eta ^ { \\mu } + \\frac { 1 } { 2 } d x ^ { \\mu } \\wedge d x ^ { \\nu } R _ { \\mu \\nu \\kappa } { } ^ { \\lambda } \\eta ^ { \\kappa } \\pi _ { \\lambda } , \\end{equation*}", "\\begin{equation*} \\nabla _ { \\mu } \\psi ( x , \\eta ) = \\partial _ { \\mu } \\psi ( x , \\eta ) + \\Gamma _ { \\mu \\nu } ^ { \\lambda } \\eta ^ { \\nu } \\frac { \\partial } { \\partial \\eta ^ { \\lambda } } \\psi ( x , \\eta ) . \\end{equation*}", "\\begin{align*} H _ { g } & = & i ( Q \\chi + \\chi Q ) \\\\ & = & d \\delta + \\delta d + g ^ { \\mu \\nu } \\omega _ { \\mu } \\omega _ { \\nu } - i ( \\pi _ { \\mu } \\eta ^ { \\nu } - \\eta ^ { \\nu } \\pi _ { \\mu } ) \\frac { \\partial ^ { 2 } h } { \\partial x ^ { \\mu } \\partial x _ { \\nu } } . \\end{align*}" ], "latex_expand": [ "$ \\miteta ^ { \\mitmu } $", "$ \\mitpi _ { \\mitmu } $", "$ ( 2 \\mitn , 2 \\mitn ) $", "$ \\miteta ^ { \\mitmu } , \\mitpi _ { \\mitmu } $", "$ \\nabla $", "$ \\mitpsi ( \\mitx , \\miteta ) $", "$ \\mitp _ { \\mitmu } = - \\miti \\nabla _ { \\mitmu } $", "$ \\mitpi _ { \\mitmu } = - \\miti \\frac { \\mitpartial } { \\mitpartial \\miteta ^ { \\mitmu } } $", "$ \\mitpsi ( \\mitx , \\miteta ) $", "$ ( \\mitn , \\mitn ) $", "$ \\mitS \\mitM $", "$ \\mitx ^ { \\mitmu } , \\miteta ^ { \\mitmu } $", "$ \\mitQ $", "$ \\mitQ = \\miteta ^ { \\mitmu } \\mitT _ { \\mitmu } = - \\miti \\miteta ^ { \\mitmu } ( \\mitpartial _ { \\mitmu } + \\mitomega ) $", "$ \\mitQ = \\miteta ^ { \\mitmu } \\mitT _ { \\mitmu } = - \\miti \\miteta ^ { \\mitmu } ( \\mitpartial _ { \\mitmu } + \\mitomega ) $", "$ \\mitchi $", "$ \\mitchi = \\mitpi _ { \\mitmu } \\mitX ^ { \\mitmu } = - \\miti \\mitg ^ { \\mitmu \\mitnu } \\mitpi _ { \\mitmu } ( \\nabla _ { \\mitnu } - \\mitomega _ { \\mitnu } ) $", "$ \\mitM $", "$ \\mitpsi ( \\mitx , \\miteta ) $", "$ \\mitQ = - \\miti \\mite ^ { - \\Planckconst } \\mitd \\mite ^ { \\Planckconst } $", "$ \\mitchi = \\mite ^ { \\Planckconst } \\mitdelta \\mite ^ { - \\Planckconst } $", "$ \\mitd $", "$ \\mitdelta = \\ast \\mitd \\ast $", "$ \\Planckconst $", "$ \\mitchi = \\mitpi _ { \\mitmu } \\mitX ^ { \\mitmu } $", "$ \\Planckconst $", "$ \\mitQ $", "$ \\Planckconst $", "$ \\mitH _ { \\mitg } $", "\\begin{equation*} \\mitd \\mitp _ { \\mitmu } \\wedge \\mitd \\mitx ^ { \\mitmu } + \\nabla \\mitpi _ { \\mitmu } \\wedge \\nabla \\miteta ^ { \\mitmu } + \\frac { 1 } { 2 } \\mitd \\mitx ^ { \\mitmu } \\wedge \\mitd \\mitx ^ { \\mitnu } \\mitR _ { \\mitmu \\mitnu \\mitkappa } { } ^ { \\mitlambda } \\miteta ^ { \\mitkappa } \\mitpi _ { \\mitlambda } , \\end{equation*}", "\\begin{equation*} \\nabla _ { \\mitmu } \\mitpsi ( \\mitx , \\miteta ) = \\mitpartial _ { \\mitmu } \\mitpsi ( \\mitx , \\miteta ) + \\mupGamma _ { \\mitmu \\mitnu } ^ { \\mitlambda } \\miteta ^ { \\mitnu } \\frac { \\mitpartial } { \\mitpartial \\miteta ^ { \\mitlambda } } \\mitpsi ( \\mitx , \\miteta ) . \\end{equation*}", "\\begin{align*} \\mitH _ { \\mitg } & = & \\miti ( \\mitQ \\mitchi + \\mitchi \\mitQ ) \\\\ & = & \\mitd \\mitdelta + \\mitdelta \\mitd + \\mitg ^ { \\mitmu \\mitnu } \\mitomega _ { \\mitmu } \\mitomega _ { \\mitnu } - \\miti ( \\mitpi _ { \\mitmu } \\miteta ^ { \\mitnu } - \\miteta ^ { \\mitnu } \\mitpi _ { \\mitmu } ) \\frac { \\mitpartial ^ { 2 } \\Planckconst } { \\mitpartial \\mitx ^ { \\mitmu } \\mitpartial \\mitx _ { \\mitnu } } . \\end{align*}" ], "x_min": [ 0.43470001220703125, 0.8051000237464905, 0.5522000193595886, 0.41260001063346863, 0.23569999635219574, 0.2224999964237213, 0.5044999718666077, 0.6191999912261963, 0.257099986076355, 0.5009999871253967, 0.7912999987602234, 0.3711000084877014, 0.367000013589859, 0.6115999817848206, 0.1728000044822693, 0.553600013256073, 0.1728000044822693, 0.3898000121116638, 0.5902000069618225, 0.6980000138282776, 0.1728000044822693, 0.33379998803138733, 0.738099992275238, 0.3075000047683716, 0.4499000012874603, 0.6061000227928162, 0.31029999256134033, 0.367000013589859, 0.7276999950408936, 0.22179999947547913, 0.22179999947547913, 0.22179999947547913 ], "y_min": [ 0.17630000412464142, 0.17919999361038208, 0.19189999997615814, 0.21040000021457672, 0.29490000009536743, 0.3456999957561493, 0.3467000126838684, 0.3441999852657318, 0.364300012588501, 0.364300012588501, 0.365200012922287, 0.38280001282691956, 0.4706999957561493, 0.46970000863075256, 0.48730000853538513, 0.5088000297546387, 0.5214999914169312, 0.5396000146865845, 0.5386000275611877, 0.5375999808311462, 0.5547000169754028, 0.5565999746322632, 0.5565999746322632, 0.6840999722480774, 0.7529000043869019, 0.7871000170707703, 0.8217999935150146, 0.8384000062942505, 0.8389000296592712, 0.24950000643730164, 0.42100000381469727, 0.598800003528595 ], "x_max": [ 0.4546999931335449, 0.8258000016212463, 0.6205999851226807, 0.46239998936653137, 0.2529999911785126, 0.2825999855995178, 0.605400025844574, 0.7228999733924866, 0.3172000050544739, 0.5493999719619751, 0.8264999985694885, 0.42089998722076416, 0.3828999996185303, 0.8258000016212463, 0.19349999725818634, 0.5659999847412109, 0.46860000491142273, 0.41190001368522644, 0.6503000259399414, 0.8209999799728394, 0.2702000141143799, 0.3441999852657318, 0.8058000206947327, 0.3192000091075897, 0.5383999943733215, 0.6177999973297119, 0.32690000534057617, 0.37869998812675476, 0.7526000142097473, 0.64410001039505, 0.5860000252723694, 0.6820999979972839 ], "y_max": [ 0.1889999955892563, 0.1898999959230423, 0.20649999380111694, 0.2240999937057495, 0.3052000105381012, 0.3603000044822693, 0.36090001463890076, 0.3637000024318695, 0.3788999915122986, 0.3788999915122986, 0.37549999356269836, 0.3955000042915344, 0.4839000105857849, 0.4853000044822693, 0.5023999810218811, 0.5185999870300293, 0.5365999937057495, 0.5498999953269958, 0.5532000064849854, 0.5526999831199646, 0.5698000192642212, 0.5669000148773193, 0.5669000148773193, 0.6948000192642212, 0.7670999765396118, 0.7973999977111816, 0.8349999785423279, 0.8490999937057495, 0.8531000018119812, 0.2816999852657318, 0.460999995470047, 0.656000018119812 ], "expr_type": [ "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "isolated", "isolated", "isolated" ] }
0001015_page05
{ "latex": [ "$H_g$", "$x_t,\\eta _t$", "$SM$", "$\\Xmu ,\\Etamu $", "$b_t$", "$(\\theta _t,\\rho _t)$", "$(d+ \\delta )^2$", "$J$", "$u:\\Sigma \\to M$", "$\\Sigma $", "$2m$", "$M$", "$H^{\\alpha }_{\\mu }$", "$\\Etamu $", "$\\pi ^{\\alpha }_{\\mu }$", "$\\alpha =1,2$", "$\\Sigma $", "$\\mu =1,\\dots ,2 m$", "$M$", "$H$", "$\\pi $", "$P^{^{-}}H=0, P^{^{-}}\\pi =0$", "$P^{^{-}}{}^{\\alpha \\mu }_{\\beta \\nu } =\\delta ^{\\alpha }_{\\beta }\\delta ^{\\mu }_{\\nu }- \\epsilon ^{\\alpha }_{\\beta }J^{\\mu }_{\\nu }$", "$\\epsilon $", "$\\Sigma $", "$J$", "\\begin {eqnarray} \\Xmu _t &=& \\Xmu + \\Intot e^{\\mu }_{a,s}\\circ db^{a}_s , \\End e^{\\mu }_{a,t}&=& e^{\\mu }_{a} +\\Intot -e^{\\nu }_{a,s} e^{\\lambda }_{b,s} \\Gam {\\nu }{\\lambda }{\\mu }(x_s) \\circ db^{b}_s \\End \\Etamu _t &=& \\Etamu + \\theta ^{a}_t e^{\\mu }_{a,t} \\End +&&\\!\\!\\!\\!\\!\\!\\!\\!\\! \\Intot \\big ( - \\eta ^{\\nu }_s \\Gam {\\nu }{\\lambda }{\\mu } e^{\\lambda }_{b,s} \\circ db^{b}_s - \\theta ^a_t de^{\\mu }_{a,s} +\\frac {1}{4}\\eta ^{\\nu }_s \\Curv {\\nu }{\\lambda }{\\kappa }{\\mu } (x_s)\\eta ^{\\lambda }_s\\rho ^{a}_s e^{\\kappa }_{a,s} ds \\big ), \\end {eqnarray}" ], "latex_norm": [ "$ H _ { g } $", "$ x _ { t } , \\eta _ { t } $", "$ S M $", "$ x ^ { \\mu } , \\eta ^ { \\mu } $", "$ b _ { t } $", "$ ( \\theta _ { t } , \\rho _ { t } ) $", "$ ( d + \\delta ) ^ { 2 } $", "$ J $", "$ u : \\Sigma \\rightarrow M $", "$ \\Sigma $", "$ 2 m $", "$ M $", "$ H _ { \\mu } ^ { \\alpha } $", "$ \\eta ^ { \\mu } $", "$ \\pi _ { \\mu } ^ { \\alpha } $", "$ \\alpha = 1 , 2 $", "$ \\Sigma $", "$ \\mu = 1 , \\ldots , 2 m $", "$ M $", "$ H $", "$ \\pi $", "$ P ^ { { } ^ { - } } H = 0 , P ^ { { } ^ { - } } \\pi = 0 $", "$ P ^ { { } ^ { - } } { } _ { \\beta \\nu } ^ { \\alpha \\mu } = \\delta _ { \\beta } ^ { \\alpha } \\delta _ { \\nu } ^ { \\mu } - \\epsilon _ { \\beta } ^ { \\alpha } J _ { \\nu } ^ { \\mu } $", "$ \\epsilon $", "$ \\Sigma $", "$ J $", "\\begin{align*} x _ { t } ^ { \\mu } & = & x ^ { \\mu } + \\int _ { 0 } ^ { t } e _ { a , s } ^ { \\mu } \\circ d b _ { s } ^ { a } , \\\\ e _ { a , t } ^ { \\mu } & = & e _ { a } ^ { \\mu } + \\int _ { 0 } ^ { t } - e _ { a , s } ^ { \\nu } e _ { b , s } ^ { \\lambda } \\Gamma _ { \\nu \\lambda } ^ { \\mu } ( x _ { s } ) \\circ d b _ { s } ^ { b } \\\\ \\eta _ { t } ^ { \\mu } & = & \\eta ^ { \\mu } + \\theta _ { t } ^ { a } e _ { a , t } ^ { \\mu } \\\\ + & & \\! \\! \\! \\! \\! \\! \\! \\! \\! \\int _ { 0 } ^ { t } ( - \\eta _ { s } ^ { \\nu } \\Gamma _ { \\nu \\lambda } ^ { \\mu } e _ { b , s } ^ { \\lambda } \\circ d b _ { s } ^ { b } - \\theta _ { t } ^ { a } d e _ { a , s } ^ { \\mu } + \\frac { 1 } { 4 } \\eta _ { s } ^ { \\nu } R _ { \\nu \\lambda \\kappa } { } ^ { \\mu } ( x _ { s } ) \\eta _ { s } ^ { \\lambda } \\rho _ { s } ^ { a } e _ { a , s } ^ { \\kappa } d s ) , \\end{align*}" ], "latex_expand": [ "$ \\mitH _ { \\mitg } $", "$ \\mitx _ { \\mitt } , \\miteta _ { \\mitt } $", "$ \\mitS \\mitM $", "$ \\mitx ^ { \\mitmu } , \\miteta ^ { \\mitmu } $", "$ \\mitb _ { \\mitt } $", "$ ( \\mittheta _ { \\mitt } , \\mitrho _ { \\mitt } ) $", "$ ( \\mitd + \\mitdelta ) ^ { 2 } $", "$ \\mitJ $", "$ \\mitu : \\mupSigma \\rightarrow \\mitM $", "$ \\mupSigma $", "$ 2 \\mitm $", "$ \\mitM $", "$ \\mitH _ { \\mitmu } ^ { \\mitalpha } $", "$ \\miteta ^ { \\mitmu } $", "$ \\mitpi _ { \\mitmu } ^ { \\mitalpha } $", "$ \\mitalpha = 1 , 2 $", "$ \\mupSigma $", "$ \\mitmu = 1 , \\ldots , 2 \\mitm $", "$ \\mitM $", "$ \\mitH $", "$ \\mitpi $", "$ \\mitP ^ { { } ^ { - } } \\mitH = 0 , \\mitP ^ { { } ^ { - } } \\mitpi = 0 $", "$ \\mitP ^ { { } ^ { - } } { } _ { \\mitbeta \\mitnu } ^ { \\mitalpha \\mitmu } = \\mitdelta _ { \\mitbeta } ^ { \\mitalpha } \\mitdelta _ { \\mitnu } ^ { \\mitmu } - \\mitepsilon _ { \\mitbeta } ^ { \\mitalpha } \\mitJ _ { \\mitnu } ^ { \\mitmu } $", "$ \\mitepsilon $", "$ \\mupSigma $", "$ \\mitJ $", "\\begin{align*} \\mitx _ { \\mitt } ^ { \\mitmu } & = & \\mitx ^ { \\mitmu } + \\int _ { 0 } ^ { \\mitt } \\mite _ { \\mita , \\mits } ^ { \\mitmu } \\vysmwhtcircle \\mitd \\mitb _ { \\mits } ^ { \\mita } , \\\\ \\mite _ { \\mita , \\mitt } ^ { \\mitmu } & = & \\mite _ { \\mita } ^ { \\mitmu } + \\int _ { 0 } ^ { \\mitt } - \\mite _ { \\mita , \\mits } ^ { \\mitnu } \\mite _ { \\mitb , \\mits } ^ { \\mitlambda } \\mupGamma _ { \\mitnu \\mitlambda } ^ { \\mitmu } ( \\mitx _ { \\mits } ) \\vysmwhtcircle \\mitd \\mitb _ { \\mits } ^ { \\mitb } \\\\ \\miteta _ { \\mitt } ^ { \\mitmu } & = & \\miteta ^ { \\mitmu } + \\mittheta _ { \\mitt } ^ { \\mita } \\mite _ { \\mita , \\mitt } ^ { \\mitmu } \\\\ + & & \\! \\! \\! \\! \\! \\! \\! \\! \\! \\int _ { 0 } ^ { \\mitt } \\big ( - \\miteta _ { \\mits } ^ { \\mitnu } \\mupGamma _ { \\mitnu \\mitlambda } ^ { \\mitmu } \\mite _ { \\mitb , \\mits } ^ { \\mitlambda } \\vysmwhtcircle \\mitd \\mitb _ { \\mits } ^ { \\mitb } - \\mittheta _ { \\mitt } ^ { \\mita } \\mitd \\mite _ { \\mita , \\mits } ^ { \\mitmu } + \\frac { 1 } { 4 } \\miteta _ { \\mits } ^ { \\mitnu } \\mitR _ { \\mitnu \\mitlambda \\mitkappa } { } ^ { \\mitmu } ( \\mitx _ { \\mits } ) \\miteta _ { \\mits } ^ { \\mitlambda } \\mitrho _ { \\mits } ^ { \\mita } \\mite _ { \\mita , \\mits } ^ { \\mitkappa } \\mitd \\mits \\big ) , \\end{align*}" ], "x_min": [ 0.1728000044822693, 0.3124000132083893, 0.5396999716758728, 0.7713000178337097, 0.22939999401569366, 0.5708000063896179, 0.7269999980926514, 0.5493999719619751, 0.3711000084877014, 0.7193999886512756, 0.1728000044822693, 0.5342000126838684, 0.326200008392334, 0.5631999969482422, 0.6295999884605408, 0.7221999764442444, 0.26809999346733093, 0.3434999883174896, 0.6061000227928162, 0.7477999925613403, 0.8141000270843506, 0.33169999718666077, 0.557699978351593, 0.3386000096797943, 0.5777000188827515, 0.6371999979019165, 0.21809999644756317 ], "y_min": [ 0.17579999566078186, 0.26510000228881836, 0.2612000107765198, 0.26170000433921814, 0.448199987411499, 0.44780001044273376, 0.4814000129699707, 0.7416999936103821, 0.7592999935150146, 0.7592999935150146, 0.7768999934196472, 0.7764000296592712, 0.7935000061988831, 0.7939000129699707, 0.7939000129699707, 0.7939000129699707, 0.8105000257492065, 0.8109999895095825, 0.8105000257492065, 0.8105000257492065, 0.8140000104904175, 0.8241999745368958, 0.8241999745368958, 0.8485999703407288, 0.8446999788284302, 0.8446999788284302, 0.29829999804496765 ], "x_max": [ 0.19769999384880066, 0.3546000123023987, 0.5748999714851379, 0.8210999965667725, 0.24459999799728394, 0.626800000667572, 0.7954000234603882, 0.5631999969482422, 0.48579999804496765, 0.7339000105857849, 0.2003999948501587, 0.5555999875068665, 0.3544999957084656, 0.583899974822998, 0.6517000198364258, 0.7926999926567078, 0.2825999855995178, 0.46860000491142273, 0.6274999976158142, 0.7664999961853027, 0.8258000016212463, 0.4968999922275543, 0.7276999950408936, 0.34689998626708984, 0.592199981212616, 0.6503000259399414, 0.7684000134468079 ], "y_max": [ 0.1899999976158142, 0.274399995803833, 0.2718999981880188, 0.274399995803833, 0.4609000086784363, 0.46239998936653137, 0.4970000088214874, 0.7523999810218811, 0.769599974155426, 0.769599974155426, 0.7867000102996826, 0.7867000102996826, 0.8090999722480774, 0.8065999746322632, 0.8090000152587891, 0.8065999746322632, 0.8208000063896179, 0.8237000107765198, 0.8208000063896179, 0.8208000063896179, 0.8208000063896179, 0.8407999873161316, 0.8436999917030334, 0.8549000024795532, 0.8550000190734863, 0.8550000190734863, 0.4366999864578247 ], "expr_type": [ "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "isolated" ] }
0001015_page06
{ "latex": [ "$M$", "$\\delta u^{\\mu } = i \\epsilon \\eta ^{\\mu }$", "$J$", "$M$", "$u:\\Sigma \\to M$", "$p^{\\alpha }_{\\mu }$", "$H^{\\alpha }_{\\mu }$", "${\\cal {P}}_{\\mu }^{\\alpha }$", "$\\pi ^{\\alpha }_{\\mu }$", "$J$" ], "latex_norm": [ "$ M $", "$ \\delta u ^ { \\mu } = i \\epsilon \\eta ^ { \\mu } $", "$ J $", "$ M $", "$ u : \\Sigma \\rightarrow M $", "$ p _ { \\mu } ^ { \\alpha } $", "$ H _ { \\mu } ^ { \\alpha } $", "$ P _ { \\mu } ^ { \\alpha } $", "$ \\pi _ { \\mu } ^ { \\alpha } $", "$ J $" ], "latex_expand": [ "$ \\mitM $", "$ \\mitdelta \\mitu ^ { \\mitmu } = \\miti \\mitepsilon \\miteta ^ { \\mitmu } $", "$ \\mitJ $", "$ \\mitM $", "$ \\mitu : \\mupSigma \\rightarrow \\mitM $", "$ \\mitp _ { \\mitmu } ^ { \\mitalpha } $", "$ \\mitH _ { \\mitmu } ^ { \\mitalpha } $", "$ \\mitP _ { \\mitmu } ^ { \\mitalpha } $", "$ \\mitpi _ { \\mitmu } ^ { \\mitalpha } $", "$ \\mitJ $" ], "x_min": [ 0.2922999858856201, 0.4090999960899353, 0.24740000069141388, 0.46650001406669617, 0.257099986076355, 0.5722000002861023, 0.31380000710487366, 0.8003000020980835, 0.3808000087738037, 0.367000013589859 ], "y_min": [ 0.15870000422000885, 0.1753000020980835, 0.20999999344348907, 0.20999999344348907, 0.31299999356269836, 0.31349998712539673, 0.33009999990463257, 0.33009999990463257, 0.34769999980926514, 0.364300012588501 ], "x_max": [ 0.31369999051094055, 0.5009999871253967, 0.2605000138282776, 0.4878999888896942, 0.35179999470710754, 0.5928999781608582, 0.34209999442100525, 0.8259000182151794, 0.4036000072956085, 0.3801000118255615 ], "y_max": [ 0.16899999976158142, 0.1889999955892563, 0.22030000388622284, 0.22030000388622284, 0.32330000400543213, 0.3285999894142151, 0.3456999957561493, 0.3456999957561493, 0.3628000020980835, 0.37459999322891235 ], "expr_type": [ "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded" ] }
0001073_page01
{ "latex": [ "$U(1)$", "$\\theta $" ], "latex_norm": [ "$ U ( 1 ) $", "$ \\theta $" ], "latex_expand": [ "$ \\mitU ( 1 ) $", "$ \\mittheta $" ], "x_min": [ 0.3019999861717224, 0.3917999863624573 ], "y_min": [ 0.5996000170707703, 0.6226000189781189 ], "x_max": [ 0.34279999136924744, 0.40220001339912415 ], "y_max": [ 0.6141999959945679, 0.6328999996185303 ], "expr_type": [ "embedded", "embedded" ] }
0001073_page02
{ "latex": [ "$B$", "$U(2)$", "$B$", "$O(\\theta )$", "$U(1)$", "$\\phi $", "$\\mathbb {R}^3\\setminus \\{0\\}$", "$S^2$", "$\\pi _1(U(1))=\\mathbb {Z}$", "$m\\propto 1/g_{\\rm YM}$", "$O(\\theta ^2)$", "$U(1)$", "$A$", "$\\theta $", "$U(1)$" ], "latex_norm": [ "$ B $", "$ U ( 2 ) $", "$ B $", "$ O ( \\theta ) $", "$ U ( 1 ) $", "$ \\phi $", "$ R ^ { 3 } \\setminus \\{ 0 \\} $", "$ S ^ { 2 } $", "$ \\pi _ { 1 } ( U ( 1 ) ) = Z $", "$ m \\propto 1 \\slash g _ { Y M } $", "$ O ( \\theta ^ { 2 } ) $", "$ U ( 1 ) $", "$ A $", "$ \\theta $", "$ U ( 1 ) $" ], "latex_expand": [ "$ \\mitB $", "$ \\mitU ( 2 ) $", "$ \\mitB $", "$ \\mitO ( \\mittheta ) $", "$ \\mitU ( 1 ) $", "$ \\mitphi $", "$ \\BbbR ^ { 3 } \\setminus \\{ 0 \\} $", "$ \\mitS ^ { 2 } $", "$ \\mitpi _ { 1 } ( \\mitU ( 1 ) ) = \\BbbZ $", "$ \\mitm \\propto 1 \\slash \\mitg _ { \\mathrm { Y M } } $", "$ \\mitO ( \\mittheta ^ { 2 } ) $", "$ \\mitU ( 1 ) $", "$ \\mitA $", "$ \\mittheta $", "$ \\mitU ( 1 ) $" ], "x_min": [ 0.883899986743927, 0.6420000195503235, 0.13750000298023224, 0.47269999980926514, 0.13750000298023224, 0.41670000553131104, 0.7635999917984009, 0.34279999136924744, 0.4036000072956085, 0.22110000252723694, 0.3772999942302704, 0.17000000178813934, 0.36629998683929443, 0.48170000314712524, 0.5853000283241272 ], "y_min": [ 0.08250000327825546, 0.2378000020980835, 0.2612000107765198, 0.30469998717308044, 0.32710000872612, 0.35010001063346863, 0.3711000084877014, 0.3935999870300293, 0.4165000021457672, 0.48339998722076416, 0.7505000233650208, 0.7728999853134155, 0.7738999724388123, 0.7738999724388123, 0.8403000235557556 ], "x_max": [ 0.9004999995231628, 0.6834999918937683, 0.15410000085830688, 0.5134999752044678, 0.17829999327659607, 0.42910000681877136, 0.836899995803833, 0.36419999599456787, 0.5203999876976013, 0.328900009393692, 0.42640000581741333, 0.21080000698566437, 0.3813999891281128, 0.4921000003814697, 0.6261000037193298 ], "y_max": [ 0.09319999814033508, 0.25290000438690186, 0.27149999141693115, 0.3197999894618988, 0.3416999876499176, 0.36329999566078186, 0.38670000433921814, 0.40529999136924744, 0.4311000108718872, 0.49799999594688416, 0.7656000256538391, 0.7879999876022339, 0.784600019454956, 0.784600019454956, 0.8549000024795532 ], "expr_type": [ "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded" ] }
0001073_page03
{ "latex": [ "$\\star $", "$O(\\theta ^2)$", "$F$", "$i$", "$j$", "$O(\\theta ^2)$", "$\\theta $", "$F$", "$i$", "$F$", "$A$", "$A$", "$A\\simeq A^0+A^1+A^2$", "$\\theta $", "$F_{ij}\\simeq F_{ij}^0+F_{ij}^1+F_{ij}^2$", "$f^{1, 2}=dA^{1, 2}$", "$g$", "$\\ast 1$", "$F$", "$\\theta $", "$f(x)\\star g(x)=\\exp (\\frac {i}{2}\\theta _{ij}\\partial _i\\partial _j') f(x)g(x')|_{x=x'}$", "$[x_i, x_j]=i\\theta _{ij}$", "$A_0=0$", "\\begin {equation} F=dA-\\frac {i}{2}[A, A]_{\\star }. \\end {equation}", "\\begin {equation} \\label {eq:F_ij} F_{ij}\\simeq \\partial _i A_j-\\partial _j A_i+\\theta _{mn}\\partial _m A_i \\partial _n A_j, \\end {equation}", "\\begin {eqnarray} F_{ij}^0 & = & \\partial _i A_j^0-\\partial _j A_i^0 \\\\ F_{ij}^1 & = & \\partial _i A_j^1-\\partial _j A_i^1+\\theta _{mn}\\partial _m A_i^0 \\partial _n A_j^0 \\\\ F_{ij}^2 & = & \\partial _i A_j^2-\\partial _j A_i^2+\\theta _{mn}\\partial _m A_i^0 \\partial _n A_j^1+\\theta _{mn}\\partial _m A_i^1 \\partial _n A_j^0. \\end {eqnarray}", "\\begin {equation} \\label {eq:DF} DF=4\\pi g\\delta ^3(\\vec r\\,)\\ast \\!1 \\end {equation}", "\\begin {equation} DF=dF-i[A, F]_{\\star }. \\end {equation}", "\\begin {eqnarray} dF^0 & = & 4\\pi g\\delta ^3(\\vec r\\,)\\ast \\!1 \\\\ dF^1 & = & -\\theta _{mn}\\partial _m A^0\\wedge \\partial _n F^0 \\\\ dF^2 & = & -\\theta _{mn}\\partial _m A^1\\wedge \\partial _n F^0 -\\theta _{mn}\\partial _m A^0\\wedge \\partial _n F^1. \\end {eqnarray}" ], "latex_norm": [ "$ \\star $", "$ O ( \\theta ^ { 2 } ) $", "$ F $", "$ i $", "$ j $", "$ O ( \\theta ^ { 2 } ) $", "$ \\theta $", "$ F $", "$ i $", "$ F $", "$ A $", "$ A $", "$ A \\sime A ^ { 0 } + A ^ { 1 } + A ^ { 2 } $", "$ \\theta $", "$ F _ { i j } \\sime F _ { i j } ^ { 0 } + F _ { i j } ^ { 1 } + F _ { i j } ^ { 2 } $", "$ f ^ { 1 , 2 } = d A ^ { 1 , 2 } $", "$ g $", "$ \\ast 1 $", "$ F $", "$ \\theta $", "$ f ( x ) \\star g ( x ) = e x p ( \\frac { i } { 2 } \\theta _ { i j } \\partial _ { i } \\partial _ { j } ^ { \\prime } ) f ( x ) g ( x ^ { \\prime } ) \\vert _ { x = x ^ { \\prime } } $", "$ [ x _ { i } , x _ { j } ] = i \\theta _ { i j } $", "$ A _ { 0 } = 0 $", "\\begin{equation*} F = d A - \\frac { i } { 2 } [ A , A ] _ { \\star } . \\end{equation*}", "\\begin{equation*} F _ { i j } \\sime \\partial _ { i } A _ { j } - \\partial _ { j } A _ { i } + \\theta _ { m n } \\partial _ { m } A _ { i } \\partial _ { n } A _ { j } , \\end{equation*}", "\\begin{align*} F _ { i j } ^ { 0 } & = & \\partial _ { i } A _ { j } ^ { 0 } - \\partial _ { j } A _ { i } ^ { 0 } \\\\ F _ { i j } ^ { 1 } & = & \\partial _ { i } A _ { j } ^ { 1 } - \\partial _ { j } A _ { i } ^ { 1 } + \\theta _ { m n } \\partial _ { m } A _ { i } ^ { 0 } \\partial _ { n } A _ { j } ^ { 0 } \\\\ F _ { i j } ^ { 2 } & = & \\partial _ { i } A _ { j } ^ { 2 } - \\partial _ { j } A _ { i } ^ { 2 } + \\theta _ { m n } \\partial _ { m } A _ { i } ^ { 0 } \\partial _ { n } A _ { j } ^ { 1 } + \\theta _ { m n } \\partial _ { m } A _ { i } ^ { 1 } \\partial _ { n } A _ { j } ^ { 0 } . \\end{align*}", "\\begin{equation*} D F = 4 \\pi g \\delta ^ { 3 } ( \\vec { r } \\, ) \\ast \\! 1 \\end{equation*}", "\\begin{equation*} D F = d F - i [ A , F ] _ { \\star } . \\end{equation*}", "\\begin{align*} d F ^ { 0 } & = & 4 \\pi g \\delta ^ { 3 } ( \\vec { r } \\, ) \\ast \\! 1 \\\\ d F ^ { 1 } & = & - \\theta _ { m n } \\partial _ { m } A ^ { 0 } \\wedge \\partial _ { n } F ^ { 0 } \\\\ d F ^ { 2 } & = & - \\theta _ { m n } \\partial _ { m } A ^ { 1 } \\wedge \\partial _ { n } F ^ { 0 } - \\theta _ { m n } \\partial _ { m } A ^ { 0 } \\wedge \\partial _ { n } F ^ { 1 } . \\end{align*}" ], "latex_expand": [ "$ \\star $", "$ \\mitO ( \\mittheta ^ { 2 } ) $", "$ \\mitF $", "$ \\miti $", "$ \\mitj $", "$ \\mitO ( \\mittheta ^ { 2 } ) $", "$ \\mittheta $", "$ \\mitF $", "$ \\miti $", "$ \\mitF $", "$ \\mitA $", "$ \\mitA $", "$ \\mitA \\sime \\mitA ^ { 0 } + \\mitA ^ { 1 } + \\mitA ^ { 2 } $", "$ \\mittheta $", "$ \\mitF _ { \\miti \\mitj } \\sime \\mitF _ { \\miti \\mitj } ^ { 0 } + \\mitF _ { \\miti \\mitj } ^ { 1 } + \\mitF _ { \\miti \\mitj } ^ { 2 } $", "$ \\mitf ^ { 1 , 2 } = \\mitd \\mitA ^ { 1 , 2 } $", "$ \\mitg $", "$ \\ast 1 $", "$ \\mitF $", "$ \\mittheta $", "$ \\mitf ( \\mitx ) \\star \\mitg ( \\mitx ) = \\mathrm { e x p } ( \\frac { \\miti } { 2 } \\mittheta _ { \\miti \\mitj } \\mitpartial _ { \\miti } \\mitpartial _ { \\mitj } ^ { \\prime } ) \\mitf ( \\mitx ) \\mitg ( \\mitx ^ { \\prime } ) \\vert _ { \\mitx = \\mitx ^ { \\prime } } $", "$ [ \\mitx _ { \\miti } , \\mitx _ { \\mitj } ] = \\miti \\mittheta _ { \\miti \\mitj } $", "$ \\mitA _ { 0 } = 0 $", "\\begin{equation*} \\mitF = \\mitd \\mitA - \\frac { \\miti } { 2 } [ \\mitA , \\mitA ] _ { \\star } . \\end{equation*}", "\\begin{equation*} \\mitF _ { \\miti \\mitj } \\sime \\mitpartial _ { \\miti } \\mitA _ { \\mitj } - \\mitpartial _ { \\mitj } \\mitA _ { \\miti } + \\mittheta _ { \\mitm \\mitn } \\mitpartial _ { \\mitm } \\mitA _ { \\miti } \\mitpartial _ { \\mitn } \\mitA _ { \\mitj } , \\end{equation*}", "\\begin{align*} \\mitF _ { \\miti \\mitj } ^ { 0 } & = & \\mitpartial _ { \\miti } \\mitA _ { \\mitj } ^ { 0 } - \\mitpartial _ { \\mitj } \\mitA _ { \\miti } ^ { 0 } \\\\ \\mitF _ { \\miti \\mitj } ^ { 1 } & = & \\mitpartial _ { \\miti } \\mitA _ { \\mitj } ^ { 1 } - \\mitpartial _ { \\mitj } \\mitA _ { \\miti } ^ { 1 } + \\mittheta _ { \\mitm \\mitn } \\mitpartial _ { \\mitm } \\mitA _ { \\miti } ^ { 0 } \\mitpartial _ { \\mitn } \\mitA _ { \\mitj } ^ { 0 } \\\\ \\mitF _ { \\miti \\mitj } ^ { 2 } & = & \\mitpartial _ { \\miti } \\mitA _ { \\mitj } ^ { 2 } - \\mitpartial _ { \\mitj } \\mitA _ { \\miti } ^ { 2 } + \\mittheta _ { \\mitm \\mitn } \\mitpartial _ { \\mitm } \\mitA _ { \\miti } ^ { 0 } \\mitpartial _ { \\mitn } \\mitA _ { \\mitj } ^ { 1 } + \\mittheta _ { \\mitm \\mitn } \\mitpartial _ { \\mitm } \\mitA _ { \\miti } ^ { 1 } \\mitpartial _ { \\mitn } \\mitA _ { \\mitj } ^ { 0 } . \\end{align*}", "\\begin{equation*} \\mitD \\mitF = 4 \\mitpi \\mitg \\mitdelta ^ { 3 } ( \\vec { \\mitr } \\, ) \\ast \\! 1 \\end{equation*}", "\\begin{equation*} \\mitD \\mitF = \\mitd \\mitF - \\miti [ \\mitA , \\mitF ] _ { \\star } . \\end{equation*}", "\\begin{align*} \\mitd \\mitF ^ { 0 } & = & 4 \\mitpi \\mitg \\mitdelta ^ { 3 } ( \\vec { \\mitr } \\, ) \\ast \\! 1 \\\\ \\mitd \\mitF ^ { 1 } & = & - \\mittheta _ { \\mitm \\mitn } \\mitpartial _ { \\mitm } \\mitA ^ { 0 } \\wedge \\mitpartial _ { \\mitn } \\mitF ^ { 0 } \\\\ \\mitd \\mitF ^ { 2 } & = & - \\mittheta _ { \\mitm \\mitn } \\mitpartial _ { \\mitm } \\mitA ^ { 1 } \\wedge \\mitpartial _ { \\mitn } \\mitF ^ { 0 } - \\mittheta _ { \\mitm \\mitn } \\mitpartial _ { \\mitm } \\mitA ^ { 0 } \\wedge \\mitpartial _ { \\mitn } \\mitF ^ { 1 } . \\end{align*}" ], "x_min": [ 0.45750001072883606, 0.34279999136924744, 0.40290001034736633, 0.19280000030994415, 0.21080000698566437, 0.5645999908447266, 0.15889999270439148, 0.16030000150203705, 0.460999995470047, 0.5169000029563904, 0.7760999798774719, 0.6924999952316284, 0.7387999892234802, 0.47130000591278076, 0.652400016784668, 0.4291999936103821, 0.1949000060558319, 0.45890000462532043, 0.13750000298023224, 0.29580000042915344, 0.1678999960422516, 0.5113999843597412, 0.47269999980926514, 0.43470001220703125, 0.367000013589859, 0.2930000126361847, 0.43810001015663147, 0.4291999936103821, 0.321399986743927 ], "y_min": [ 0.15279999375343323, 0.21879999339580536, 0.22020000219345093, 0.29100000858306885, 0.29100000858306885, 0.2890999913215637, 0.31299999356269836, 0.3353999853134155, 0.3353999853134155, 0.3353999853134155, 0.35740000009536743, 0.3799000084400177, 0.3783999979496002, 0.40230000019073486, 0.4009000062942505, 0.5282999873161316, 0.6265000104904175, 0.6234999895095825, 0.6449999809265137, 0.7153000235557556, 0.8270999789237976, 0.8281000256538391, 0.8442000150680542, 0.17239999771118164, 0.25200000405311584, 0.4302999973297119, 0.5820000171661377, 0.6762999892234802, 0.745199978351593 ], "x_max": [ 0.46860000491142273, 0.3912000060081482, 0.4194999933242798, 0.2003999948501587, 0.22050000727176666, 0.6136999726295471, 0.16930000483989716, 0.1762000024318695, 0.46860000491142273, 0.532800018787384, 0.7912999987602234, 0.7077000141143799, 0.9004999995231628, 0.48170000314712524, 0.8278999924659729, 0.5376999974250793, 0.20600000023841858, 0.4796000123023987, 0.1534000039100647, 0.3061999976634979, 0.4733999967575073, 0.6082000136375427, 0.5238000154495239, 0.605400025844574, 0.669700026512146, 0.7450000047683716, 0.6025999784469604, 0.6110000014305115, 0.71670001745224 ], "y_max": [ 0.15960000455379486, 0.23389999568462372, 0.2304999977350235, 0.3012999892234802, 0.3037000000476837, 0.30469998717308044, 0.32330000400543213, 0.3456999957561493, 0.3456999957561493, 0.3456999957561493, 0.36809998750686646, 0.3901999890804291, 0.3910999894142151, 0.41260001063346863, 0.4180000126361847, 0.542900025844574, 0.6358000040054321, 0.6333000063896179, 0.6553000211715698, 0.7260000109672546, 0.842199981212616, 0.8413000106811523, 0.8549000024795532, 0.20509999990463257, 0.2700999975204468, 0.5072000026702881, 0.6014999747276306, 0.6944000124931335, 0.8187000155448914 ], "expr_type": [ "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "isolated", "isolated", "isolated", "isolated", "isolated", "isolated" ] }
0001073_page04
{ "latex": [ "$\\nabla \\cdot \\vec B^0=4\\pi g\\delta ^3(\\vec r\\,)$", "$B^0=\\ast F^0$", "$\\vec B^0=g\\vec r/r^3$", "$A^0$", "$A^{1, 2}$", "$A^0$", "$i\\to k$", "$j\\to i$", "$k\\to j$", "$m\\leftrightarrow n$", "$d f^1=0$", "$f^1=0$", "$A^1$", "$A^1$", "$A^0$", "$F^1$", "$-2\\epsilon _{ijk}(\\theta _{mn} \\theta _{pq}\\partial _m A^0_k\\partial _q A^0_j \\partial _n \\partial _p A^0_i)$", "$j$", "$k$", "$d f^2=0$", "$A^2$", "$f^{1, 2}$", "$f^{1, 2}=dA^{1, 2}$", "$F^0=dA^0$", "$S^2$", "$A^0$", "$A$", "$A$", "$g\\simeq g^0+g^1+g^2$", "$|A^0|\\sim 1/r$", "$|F^0|\\sim 1/r^2$", "$|F^1|\\sim 1/r^4$", "$|F^2|=0$", "\\begin {eqnarray} \\epsilon _{ijk}\\partial _i f^1_{jk} & = & -\\epsilon _{ijk}\\partial _i (\\theta _{mn}\\partial _m A^0_j\\partial _n A^0_k) -\\epsilon _{ijk}\\theta _{nm}\\partial _n A^0_k\\partial _m F^0_{ij} \\\\ &= & -\\epsilon _{ijk}\\theta _{mn}\\Big (\\partial _m \\partial _i A^0_j \\partial _n A^0_k +\\partial _mA^0_j\\partial _n\\partial _i A^0_k -\\partial _n A^0_k\\partial _m (\\partial _i A_j^0- \\partial _j A_i^0)\\Big ). \\end {eqnarray}", "\\begin {eqnarray} \\epsilon _{ijk}\\partial _i f^2_{jk} & = & -\\epsilon _{ijk}\\partial _i \\Big (\\theta _{mn}(\\partial _m A^0_j\\partial _n A^1_k- \\partial _m A^0_k\\partial _n A^1_j)\\Big ) \\\\ && -\\epsilon _{ijk}\\theta _{nm}\\partial _n A^1_k\\partial _m F^0_{ij} -\\epsilon _{ijk}\\theta _{mn}\\partial _m A^0_k\\partial _n F^1_{ij}. \\end {eqnarray}", "\\begin {equation} \\epsilon _{ijk}\\partial _i f^2_{jk}=-\\epsilon _{ijk}\\theta _{mn}\\theta _{pq} \\partial _m A^0_k\\partial _n (\\partial _p A^0_i\\partial _q A^0_j). \\end {equation}", "\\begin {equation} m=\\int |F|^2 \\sim \\int _0^{\\infty } r^2dr\\left | \\frac {1}{r^2}+\\frac {1}{r^4} \\right |^2=\\infty . \\end {equation}" ], "latex_norm": [ "$ \\nabla \\cdot \\vec { B } ^ { 0 } = 4 \\pi g \\delta ^ { 3 } ( \\vec { r } \\, ) $", "$ B ^ { 0 } = \\ast F ^ { 0 } $", "$ \\vec { B } ^ { 0 } = g \\vec { r } \\slash r ^ { 3 } $", "$ A ^ { 0 } $", "$ A ^ { 1 , 2 } $", "$ A ^ { 0 } $", "$ i \\rightarrow k $", "$ j \\rightarrow i $", "$ k \\rightarrow j $", "$ m \\leftrightarrow n $", "$ d f ^ { 1 } = 0 $", "$ f ^ { 1 } = 0 $", "$ A ^ { 1 } $", "$ A ^ { 1 } $", "$ A ^ { 0 } $", "$ F ^ { 1 } $", "$ - 2 \\epsilon _ { i j k } ( \\theta _ { m n } \\theta _ { p q } \\partial _ { m } A _ { k } ^ { 0 } \\partial _ { q } A _ { j } ^ { 0 } \\partial _ { n } \\partial _ { p } A _ { i } ^ { 0 } ) $", "$ j $", "$ k $", "$ d f ^ { 2 } = 0 $", "$ A ^ { 2 } $", "$ f ^ { 1 , 2 } $", "$ f ^ { 1 , 2 } = d A ^ { 1 , 2 } $", "$ F ^ { 0 } = d A ^ { 0 } $", "$ S ^ { 2 } $", "$ A ^ { 0 } $", "$ A $", "$ A $", "$ g \\sime g ^ { 0 } + g ^ { 1 } + g ^ { 2 } $", "$ \\vert A ^ { 0 } \\vert \\sim 1 \\slash r $", "$ \\vert F ^ { 0 } \\vert \\sim 1 \\slash r ^ { 2 } $", "$ \\vert F ^ { 1 } \\vert \\sim 1 \\slash r ^ { 4 } $", "$ \\vert F ^ { 2 } \\vert = 0 $", "\\begin{align*} \\epsilon _ { i j k } \\partial _ { i } f _ { j k } ^ { 1 } & = & - \\epsilon _ { i j k } \\partial _ { i } ( \\theta _ { m n } \\partial _ { m } A _ { j } ^ { 0 } \\partial _ { n } A _ { k } ^ { 0 } ) - \\epsilon _ { i j k } \\theta _ { n m } \\partial _ { n } A _ { k } ^ { 0 } \\partial _ { m } F _ { i j } ^ { 0 } \\\\ & = & - \\epsilon _ { i j k } \\theta _ { m n } ( \\partial _ { m } \\partial _ { i } A _ { j } ^ { 0 } \\partial _ { n } A _ { k } ^ { 0 } + \\partial _ { m } A _ { j } ^ { 0 } \\partial _ { n } \\partial _ { i } A _ { k } ^ { 0 } - \\partial _ { n } A _ { k } ^ { 0 } \\partial _ { m } ( \\partial _ { i } A _ { j } ^ { 0 } - \\partial _ { j } A _ { i } ^ { 0 } ) ) . \\end{align*}", "\\begin{align*} \\epsilon _ { i j k } \\partial _ { i } f _ { j k } ^ { 2 } & = & - \\epsilon _ { i j k } \\partial _ { i } ( \\theta _ { m n } ( \\partial _ { m } A _ { j } ^ { 0 } \\partial _ { n } A _ { k } ^ { 1 } - \\partial _ { m } A _ { k } ^ { 0 } \\partial _ { n } A _ { j } ^ { 1 } ) ) \\\\ & & - \\epsilon _ { i j k } \\theta _ { n m } \\partial _ { n } A _ { k } ^ { 1 } \\partial _ { m } F _ { i j } ^ { 0 } - \\epsilon _ { i j k } \\theta _ { m n } \\partial _ { m } A _ { k } ^ { 0 } \\partial _ { n } F _ { i j } ^ { 1 } . \\end{align*}", "\\begin{equation*} \\epsilon _ { i j k } \\partial _ { i } f _ { j k } ^ { 2 } = - \\epsilon _ { i j k } \\theta _ { m n } \\theta _ { p q } \\partial _ { m } A _ { k } ^ { 0 } \\partial _ { n } ( \\partial _ { p } A _ { i } ^ { 0 } \\partial _ { q } A _ { j } ^ { 0 } ) . \\end{equation*}", "\\begin{equation*} m = \\int \\vert F \\vert ^ { 2 } \\sim \\int _ { 0 } ^ { \\infty } r ^ { 2 } d r { \\vert \\frac { 1 } { r ^ { 2 } } + \\frac { 1 } { r ^ { 4 } } \\vert } ^ { 2 } = \\infty . \\end{equation*}" ], "latex_expand": [ "$ \\nabla \\cdot \\vec { \\mitB } ^ { 0 } = 4 \\mitpi \\mitg \\mitdelta ^ { 3 } ( \\vec { \\mitr } \\, ) $", "$ \\mitB ^ { 0 } = \\ast \\mitF ^ { 0 } $", "$ \\vec { \\mitB } ^ { 0 } = \\mitg \\vec { \\mitr } \\slash \\mitr ^ { 3 } $", "$ \\mitA ^ { 0 } $", "$ \\mitA ^ { 1 , 2 } $", "$ \\mitA ^ { 0 } $", "$ \\miti \\rightarrow \\mitk $", "$ \\mitj \\rightarrow \\miti $", "$ \\mitk \\rightarrow \\mitj $", "$ \\mitm \\leftrightarrow \\mitn $", "$ \\mitd \\mitf ^ { 1 } = 0 $", "$ \\mitf ^ { 1 } = 0 $", "$ \\mitA ^ { 1 } $", "$ \\mitA ^ { 1 } $", "$ \\mitA ^ { 0 } $", "$ \\mitF ^ { 1 } $", "$ - 2 \\mitepsilon _ { \\miti \\mitj \\mitk } ( \\mittheta _ { \\mitm \\mitn } \\mittheta _ { \\mitp \\mitq } \\mitpartial _ { \\mitm } \\mitA _ { \\mitk } ^ { 0 } \\mitpartial _ { \\mitq } \\mitA _ { \\mitj } ^ { 0 } \\mitpartial _ { \\mitn } \\mitpartial _ { \\mitp } \\mitA _ { \\miti } ^ { 0 } ) $", "$ \\mitj $", "$ \\mitk $", "$ \\mitd \\mitf ^ { 2 } = 0 $", "$ \\mitA ^ { 2 } $", "$ \\mitf ^ { 1 , 2 } $", "$ \\mitf ^ { 1 , 2 } = \\mitd \\mitA ^ { 1 , 2 } $", "$ \\mitF ^ { 0 } = \\mitd \\mitA ^ { 0 } $", "$ \\mitS ^ { 2 } $", "$ \\mitA ^ { 0 } $", "$ \\mitA $", "$ \\mitA $", "$ \\mitg \\sime \\mitg ^ { 0 } + \\mitg ^ { 1 } + \\mitg ^ { 2 } $", "$ \\vert \\mitA ^ { 0 } \\vert \\sim 1 \\slash \\mitr $", "$ \\vert \\mitF ^ { 0 } \\vert \\sim 1 \\slash \\mitr ^ { 2 } $", "$ \\vert \\mitF ^ { 1 } \\vert \\sim 1 \\slash \\mitr ^ { 4 } $", "$ \\vert \\mitF ^ { 2 } \\vert = 0 $", "\\begin{align*} \\mitepsilon _ { \\miti \\mitj \\mitk } \\mitpartial _ { \\miti } \\mitf _ { \\mitj \\mitk } ^ { 1 } & = & - \\mitepsilon _ { \\miti \\mitj \\mitk } \\mitpartial _ { \\miti } ( \\mittheta _ { \\mitm \\mitn } \\mitpartial _ { \\mitm } \\mitA _ { \\mitj } ^ { 0 } \\mitpartial _ { \\mitn } \\mitA _ { \\mitk } ^ { 0 } ) - \\mitepsilon _ { \\miti \\mitj \\mitk } \\mittheta _ { \\mitn \\mitm } \\mitpartial _ { \\mitn } \\mitA _ { \\mitk } ^ { 0 } \\mitpartial _ { \\mitm } \\mitF _ { \\miti \\mitj } ^ { 0 } \\\\ & = & - \\mitepsilon _ { \\miti \\mitj \\mitk } \\mittheta _ { \\mitm \\mitn } \\Big ( \\mitpartial _ { \\mitm } \\mitpartial _ { \\miti } \\mitA _ { \\mitj } ^ { 0 } \\mitpartial _ { \\mitn } \\mitA _ { \\mitk } ^ { 0 } + \\mitpartial _ { \\mitm } \\mitA _ { \\mitj } ^ { 0 } \\mitpartial _ { \\mitn } \\mitpartial _ { \\miti } \\mitA _ { \\mitk } ^ { 0 } - \\mitpartial _ { \\mitn } \\mitA _ { \\mitk } ^ { 0 } \\mitpartial _ { \\mitm } ( \\mitpartial _ { \\miti } \\mitA _ { \\mitj } ^ { 0 } - \\mitpartial _ { \\mitj } \\mitA _ { \\miti } ^ { 0 } ) \\Big ) . \\end{align*}", "\\begin{align*} \\mitepsilon _ { \\miti \\mitj \\mitk } \\mitpartial _ { \\miti } \\mitf _ { \\mitj \\mitk } ^ { 2 } & = & - \\mitepsilon _ { \\miti \\mitj \\mitk } \\mitpartial _ { \\miti } \\Big ( \\mittheta _ { \\mitm \\mitn } ( \\mitpartial _ { \\mitm } \\mitA _ { \\mitj } ^ { 0 } \\mitpartial _ { \\mitn } \\mitA _ { \\mitk } ^ { 1 } - \\mitpartial _ { \\mitm } \\mitA _ { \\mitk } ^ { 0 } \\mitpartial _ { \\mitn } \\mitA _ { \\mitj } ^ { 1 } ) \\Big ) \\\\ & & - \\mitepsilon _ { \\miti \\mitj \\mitk } \\mittheta _ { \\mitn \\mitm } \\mitpartial _ { \\mitn } \\mitA _ { \\mitk } ^ { 1 } \\mitpartial _ { \\mitm } \\mitF _ { \\miti \\mitj } ^ { 0 } - \\mitepsilon _ { \\miti \\mitj \\mitk } \\mittheta _ { \\mitm \\mitn } \\mitpartial _ { \\mitm } \\mitA _ { \\mitk } ^ { 0 } \\mitpartial _ { \\mitn } \\mitF _ { \\miti \\mitj } ^ { 1 } . \\end{align*}", "\\begin{equation*} \\mitepsilon _ { \\miti \\mitj \\mitk } \\mitpartial _ { \\miti } \\mitf _ { \\mitj \\mitk } ^ { 2 } = - \\mitepsilon _ { \\miti \\mitj \\mitk } \\mittheta _ { \\mitm \\mitn } \\mittheta _ { \\mitp \\mitq } \\mitpartial _ { \\mitm } \\mitA _ { \\mitk } ^ { 0 } \\mitpartial _ { \\mitn } ( \\mitpartial _ { \\mitp } \\mitA _ { \\miti } ^ { 0 } \\mitpartial _ { \\mitq } \\mitA _ { \\mitj } ^ { 0 } ) . \\end{equation*}", "\\begin{equation*} \\mitm = \\int \\vert \\mitF \\vert ^ { 2 } \\sim \\int _ { 0 } ^ { \\infty } \\mitr ^ { 2 } \\mitd \\mitr { \\left\\vert \\frac { 1 } { \\mitr ^ { 2 } } + \\frac { 1 } { \\mitr ^ { 4 } } \\right\\vert } ^ { 2 } = \\infty . \\end{equation*}" ], "x_min": [ 0.5453000068664551, 0.7706000208854675, 0.29510000348091125, 0.44369998574256897, 0.5465999841690063, 0.6924999952316284, 0.19349999725818634, 0.259799987077713, 0.3248000144958496, 0.4271000027656555, 0.3959999978542328, 0.8438000082969666, 0.7387999892234802, 0.30059999227523804, 0.8093000054359436, 0.13750000298023224, 0.48240000009536743, 0.3359000086784363, 0.3912000060081482, 0.3352000117301941, 0.5286999940872192, 0.31380000710487366, 0.7989000082015991, 0.6420000195503235, 0.16380000114440918, 0.6288999915122986, 0.8852999806404114, 0.8285999894142151, 0.37040001153945923, 0.35249999165534973, 0.4546999931335449, 0.5652999877929688, 0.7084000110626221, 0.19140000641345978, 0.29159998893737793, 0.33660000562667847, 0.3449000120162964 ], "y_min": [ 0.08399999886751175, 0.08640000224113464, 0.10639999806880951, 0.10890000313520432, 0.13130000233650208, 0.13130000233650208, 0.2754000127315521, 0.2759000062942505, 0.2754000127315521, 0.27880001068115234, 0.2964000105857849, 0.2964000105857849, 0.3188000023365021, 0.46140000224113464, 0.46140000224113464, 0.4839000105857849, 0.5508000254631042, 0.5752000212669373, 0.5741999745368958, 0.5952000021934509, 0.5952000021934509, 0.6176999807357788, 0.6176999807357788, 0.6401000022888184, 0.6621000170707703, 0.6621000170707703, 0.6859999895095825, 0.7085000276565552, 0.7738999724388123, 0.7958999872207642, 0.7964000105857849, 0.7958999872207642, 0.7958999872207642, 0.1808999925851822, 0.3628000020980835, 0.5131999850273132, 0.8198000192642212 ], "x_max": [ 0.7111999988555908, 0.8597000241279602, 0.3939000070095062, 0.46720001101493835, 0.5812000036239624, 0.7160000205039978, 0.2467000037431717, 0.311599999666214, 0.3808000087738037, 0.4921000003814697, 0.4596000015735626, 0.9004999995231628, 0.7616000175476074, 0.32409998774528503, 0.8327999711036682, 0.16169999539852142, 0.7554000020027161, 0.3456000089645386, 0.40290001034736633, 0.40149998664855957, 0.5522000193595886, 0.3456000089645386, 0.9004999995231628, 0.7269999980926514, 0.1859000027179718, 0.6517000198364258, 0.9004999995231628, 0.8438000082969666, 0.5134999752044678, 0.4429999887943268, 0.5534999966621399, 0.6633999943733215, 0.7796000242233276, 0.8458999991416931, 0.7462999820709229, 0.7035999894142151, 0.6952999830245972 ], "y_max": [ 0.10209999978542328, 0.09860000014305115, 0.12449999898672104, 0.12060000002384186, 0.14300000667572021, 0.14300000667572021, 0.28610000014305115, 0.28859999775886536, 0.28859999775886536, 0.28610000014305115, 0.3109999895095825, 0.3109999895095825, 0.3305000066757202, 0.4731000065803528, 0.4731000065803528, 0.49559998512268066, 0.5679000020027161, 0.5878999829292297, 0.5849000215530396, 0.6097999811172485, 0.6068999767303467, 0.6323000192642212, 0.6323000192642212, 0.6517999768257141, 0.6743000149726868, 0.6743000149726868, 0.6963000297546387, 0.7188000082969666, 0.7885000109672546, 0.8115000128746033, 0.8115000128746033, 0.8115000128746033, 0.8115000128746033, 0.23579999804496765, 0.4187999963760376, 0.5346999764442444, 0.8603000044822693 ], "expr_type": [ "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "isolated", "isolated", "isolated", "isolated" ] }
0001073_page05
{ "latex": [ "$\\phi $", "$\\phi $", "$\\star $", "$U(1)$", "$\\lambda =\\lambda ^0+\\lambda ^1+\\cdots $", "$\\vec f =q\\vec v\\times \\vec B$", "$\\delta \\vec f =0$", "$\\delta B=\\ast \\delta F$", "$\\rho _{\\rm V}$", "$\\theta =1/B$", "$B$", "$\\theta $", "$\\rho _{\\rm V}$", "$B$", "$B$", "\\begin {eqnarray} \\delta F & \\simeq & [i\\lambda , F]_{\\star } \\\\ &\\simeq & 0-\\theta _{mn}\\partial _m \\lambda ^0\\partial _n F^0 -(\\theta _{mn}\\partial _m \\lambda ^1\\partial _n F^0 +\\theta _{mn}\\partial _m \\lambda ^0\\partial _n F^1), \\end {eqnarray}", "\\begin {eqnarray} \\rho _{\\rm V} & = & \\frac {1}{8\\pi }B^2=\\frac {1}{8\\pi \\theta ^2},\\\\ && \\end {eqnarray}" ], "latex_norm": [ "$ \\phi $", "$ \\phi $", "$ \\star $", "$ U ( 1 ) $", "$ \\lambda = \\lambda ^ { 0 } + \\lambda ^ { 1 } + \\cdots $", "$ \\vec { f } = q \\vec { v } \\times \\vec { B } $", "$ \\delta \\vec { f } = 0 $", "$ \\delta B = \\ast \\delta F $", "$ \\rho _ { V } $", "$ \\theta = 1 \\slash B $", "$ B $", "$ \\theta $", "$ \\rho _ { V } $", "$ B $", "$ B $", "\\begin{align*} \\delta F & \\sime & [ i \\lambda , F ] _ { \\star } \\\\ & \\sime & 0 - \\theta _ { m n } \\partial _ { m } \\lambda ^ { 0 } \\partial _ { n } F ^ { 0 } - ( \\theta _ { m n } \\partial _ { m } \\lambda ^ { 1 } \\partial _ { n } F ^ { 0 } + \\theta _ { m n } \\partial _ { m } \\lambda ^ { 0 } \\partial _ { n } F ^ { 1 } ) , \\end{align*}", "\\begin{align*} \\rho _ { V } & = & \\frac { 1 } { 8 \\pi } B ^ { 2 } = \\frac { 1 } { 8 \\pi \\theta ^ { 2 } } , \\end{align*}" ], "latex_expand": [ "$ \\mitphi $", "$ \\mitphi $", "$ \\star $", "$ \\mitU ( 1 ) $", "$ \\mitlambda = \\mitlambda ^ { 0 } + \\mitlambda ^ { 1 } + \\cdots $", "$ \\vec { \\mitf } = \\mitq \\vec { \\mitv } \\times \\vec { \\mitB } $", "$ \\mitdelta \\vec { \\mitf } = 0 $", "$ \\mitdelta \\mitB = \\ast \\mitdelta \\mitF $", "$ \\mitrho _ { \\mathrm { V } } $", "$ \\mittheta = 1 \\slash \\mitB $", "$ \\mitB $", "$ \\mittheta $", "$ \\mitrho _ { \\mathrm { V } } $", "$ \\mitB $", "$ \\mitB $", "\\begin{align*} \\mitdelta \\mitF & \\sime & [ \\miti \\mitlambda , \\mitF ] _ { \\star } \\\\ & \\sime & 0 - \\mittheta _ { \\mitm \\mitn } \\mitpartial _ { \\mitm } \\mitlambda ^ { 0 } \\mitpartial _ { \\mitn } \\mitF ^ { 0 } - ( \\mittheta _ { \\mitm \\mitn } \\mitpartial _ { \\mitm } \\mitlambda ^ { 1 } \\mitpartial _ { \\mitn } \\mitF ^ { 0 } + \\mittheta _ { \\mitm \\mitn } \\mitpartial _ { \\mitm } \\mitlambda ^ { 0 } \\mitpartial _ { \\mitn } \\mitF ^ { 1 } ) , \\end{align*}", "\\begin{align*} \\mitrho _ { \\mathrm { V } } & = & \\frac { 1 } { 8 \\mitpi } \\mitB ^ { 2 } = \\frac { 1 } { 8 \\mitpi \\mittheta ^ { 2 } } , \\end{align*}" ], "x_min": [ 0.3248000144958496, 0.4083999991416931, 0.760200023651123, 0.2184000015258789, 0.19280000030994415, 0.2549999952316284, 0.5383999943733215, 0.6557999849319458, 0.20659999549388885, 0.1817999929189682, 0.8341000080108643, 0.2847000062465668, 0.5695000290870667, 0.883899986743927, 0.49070000648498535, 0.25850000977516174, 0.4291999936103821 ], "y_min": [ 0.23880000412464142, 0.2612000107765198, 0.3091000020503998, 0.32710000872612, 0.427700012922287, 0.4916999936103821, 0.4916999936103821, 0.4961000084877014, 0.6557999849319458, 0.6958000063896179, 0.6967999935150146, 0.7188000082969666, 0.7226999998092651, 0.7192000150680542, 0.826200008392334, 0.35910001397132874, 0.76419997215271 ], "x_max": [ 0.33649998903274536, 0.42010000348091125, 0.7706000208854675, 0.25920000672340393, 0.33169999718666077, 0.3483000099658966, 0.5964999794960022, 0.742900013923645, 0.22939999401569366, 0.25780001282691956, 0.8507000207901001, 0.29510000348091125, 0.5916000008583069, 0.9004999995231628, 0.5044999718666077, 0.7789000272750854, 0.605400025844574 ], "y_max": [ 0.25200000405311584, 0.274399995803833, 0.3158999979496002, 0.3416999876499176, 0.44040000438690186, 0.5092999935150146, 0.5092999935150146, 0.5063999891281128, 0.6650999784469604, 0.7103999853134155, 0.707099974155426, 0.7294999957084656, 0.7325000166893005, 0.7294999957084656, 0.8349999785423279, 0.40220001339912415, 0.7998999953269958 ], "expr_type": [ "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "isolated", "isolated" ] }
0001073_page06
{ "latex": [ "$\\rho _{\\rm V}$", "\\begin {equation} \\sqrt {\\theta }=\\left (\\frac {1}{8\\pi \\rho _{\\rm V}}\\right )^{1/4}\\simeq \\left (\\frac {1}{8\\pi \\times 10^{-47}\\,\\,\\mathrm {GeV}^4}\\right )^{1/4} \\simeq 5.0\\times 10^{-3}\\,\\,\\mathrm {cm}. \\end {equation}" ], "latex_norm": [ "$ \\rho _ { V } $", "\\begin{equation*} \\sqrt { \\theta } = { ( \\frac { 1 } { 8 \\pi \\rho _ { V } } ) } ^ { 1 \\slash 4 } \\sime { ( \\frac { 1 } { 8 \\pi \\times 1 0 ^ { - 4 7 } \\, \\, { G e V } ^ { 4 } } ) } ^ { 1 \\slash 4 } \\sime 5 . 0 \\times 1 0 ^ { - 3 } \\, \\, c m . \\end{equation*}" ], "latex_expand": [ "$ \\mitrho _ { \\mathrm { V } } $", "\\begin{equation*} \\sqrt { \\mittheta } = { \\left( \\frac { 1 } { 8 \\mitpi \\mitrho _ { \\mathrm { V } } } \\right) } ^ { 1 \\slash 4 } \\sime { \\left( \\frac { 1 } { 8 \\mitpi \\times 1 0 ^ { - 4 7 } \\, \\, { \\mathrm { G e V } } ^ { 4 } } \\right) } ^ { 1 \\slash 4 } \\sime 5 . 0 \\times 1 0 ^ { - 3 } \\, \\, \\mathrm { c m } . \\end{equation*}" ], "x_min": [ 0.37940001487731934, 0.25220000743865967 ], "y_min": [ 0.19480000436306, 0.1128000020980835 ], "x_max": [ 0.40220001339912415, 0.7885000109672546 ], "y_max": [ 0.2046000063419342, 0.15379999577999115 ], "expr_type": [ "embedded", "isolated" ] }
0001073_page07
{ "latex": [ "$\\mathcal {N}=2$", "$R^4$", "$p$" ], "latex_norm": [ "$ N = 2 $", "$ R ^ { 4 } $", "$ p $" ], "latex_expand": [ "$ \\mscrN = 2 $", "$ \\mitR ^ { 4 } $", "$ \\mitp $" ], "x_min": [ 0.6177999973297119, 0.33719998598098755, 0.541100025177002 ], "y_min": [ 0.274399995803833, 0.7240999937057495, 0.763700008392334 ], "x_max": [ 0.6765000224113464, 0.36070001125335693, 0.5515000224113464 ], "y_max": [ 0.2847000062465668, 0.736299991607666, 0.7730000019073486 ], "expr_type": [ "embedded", "embedded", "embedded" ] }
0001101_page01
{ "latex": [ "$^1$", "$^2$", "$^1$", "$^3$", "$^1$", "$^2$", "$^3$", "$N=1$", "$SU(3)_{C} \\times SU(2)_{L} \\times U(1)_{Y}$" ], "latex_norm": [ "$ { } ^ { 1 } $", "$ { } ^ { 2 } $", "$ { } ^ { 1 } $", "$ { } ^ { 3 } $", "$ { } ^ { 1 } $", "$ { } ^ { 2 } $", "$ { } ^ { 3 } $", "$ N = 1 $", "$ S U ( 3 ) _ { C } \\times S U ( 2 ) _ { L } \\times U ( 1 ) _ { Y } $" ], "latex_expand": [ "$ { } ^ { 1 } $", "$ { } ^ { 2 } $", "$ { } ^ { 1 } $", "$ { } ^ { 3 } $", "$ { } ^ { 1 } $", "$ { } ^ { 2 } $", "$ { } ^ { 3 } $", "$ \\mitN = 1 $", "$ \\mitS \\mitU ( 3 ) _ { \\mitC } \\times \\mitS \\mitU ( 2 ) _ { \\mitL } \\times \\mitU ( 1 ) _ { \\mitY } $" ], "x_min": [ 0.33239999413490295, 0.4691999852657318, 0.6018999814987183, 0.7829999923706055, 0.2840000092983246, 0.30550000071525574, 0.3718000054359436, 0.35109999775886536, 0.30820000171661377 ], "y_min": [ 0.26030001044273376, 0.26030001044273376, 0.26030001044273376, 0.26030001044273376, 0.288100004196167, 0.32710000872612, 0.3662000000476837, 0.5601000189781189, 0.5961999893188477 ], "x_max": [ 0.3407000005245209, 0.47749999165534973, 0.6101999878883362, 0.7912999987602234, 0.2922999858856201, 0.31380000710487366, 0.3801000118255615, 0.39739999175071716, 0.5030999779701233 ], "y_max": [ 0.27149999141693115, 0.27149999141693115, 0.27149999141693115, 0.27149999141693115, 0.29980000853538513, 0.33880001306533813, 0.3774000108242035, 0.5688999891281128, 0.6083999872207642 ], "expr_type": [ "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded" ] }
0001101_page02
{ "latex": [ "$S^1/Z_2$", "$N=1$", "$E_{8}$", "$N=1$", "$R$", "$10^{16}$", "$\\rho $", "$R$", "$E_{8}$", "$3+1$", "$F_{ab}=F_{\\bar a\\bar b}=g^{a \\bar b}F_{a \\bar b}=0$", "$N=1$", "$E_{8}$", "$G$", "$G\\times H \\subseteq E_{8}$", "$E_{8}$", "$H$", "$G$", "$E_{8}$", "$E_{8}$", "$E_{6}$", "$SO(10)$", "$SU(5)$", "$SU(3)_{C} \\times SU(2)_{L} \\times U(1)_{Y}$", "$E_{8}$", "$E_{6}$", "$G=SU(3)$", "$X$", "$G\\subseteq E_{8}$" ], "latex_norm": [ "$ S ^ { 1 } \\slash Z _ { 2 } $", "$ N = 1 $", "$ E _ { 8 } $", "$ N = 1 $", "$ R $", "$ 1 0 ^ { 1 6 } $", "$ \\rho $", "$ R $", "$ E _ { 8 } $", "$ 3 + 1 $", "$ F _ { a b } = F _ { \\bar { a } \\bar { b } } = g ^ { a \\bar { b } } F _ { a \\bar { b } } = 0 $", "$ N = 1 $", "$ E _ { 8 } $", "$ G $", "$ G \\times H \\subseteq E _ { 8 } $", "$ E _ { 8 } $", "$ H $", "$ G $", "$ E _ { 8 } $", "$ E _ { 8 } $", "$ E _ { 6 } $", "$ S O ( 1 0 ) $", "$ S U ( 5 ) $", "$ S U ( 3 ) _ { C } \\times S U ( 2 ) _ { L } \\times U ( 1 ) _ { Y } $", "$ E _ { 8 } $", "$ E _ { 6 } $", "$ G = S U ( 3 ) $", "$ X $", "$ G \\subseteq E _ { 8 } $" ], "latex_expand": [ "$ \\mitS ^ { 1 } \\slash \\mitZ _ { 2 } $", "$ \\mitN = 1 $", "$ \\mitE _ { 8 } $", "$ \\mitN = 1 $", "$ \\mitR $", "$ 1 0 ^ { 1 6 } $", "$ \\mitrho $", "$ \\mitR $", "$ \\mitE _ { 8 } $", "$ 3 + 1 $", "$ \\mitF _ { \\mita \\mitb } = \\mitF _ { \\bar { \\mita } \\bar { \\mitb } } = \\mitg ^ { \\mita \\bar { \\mitb } } \\mitF _ { \\mita \\bar { \\mitb } } = 0 $", "$ \\mitN = 1 $", "$ \\mitE _ { 8 } $", "$ \\mitG $", "$ \\mitG \\times \\mitH \\subseteq \\mitE _ { 8 } $", "$ \\mitE _ { 8 } $", "$ \\mitH $", "$ \\mitG $", "$ \\mitE _ { 8 } $", "$ \\mitE _ { 8 } $", "$ \\mitE _ { 6 } $", "$ \\mitS \\mitO ( 1 0 ) $", "$ \\mitS \\mitU ( 5 ) $", "$ \\mitS \\mitU ( 3 ) _ { \\mitC } \\times \\mitS \\mitU ( 2 ) _ { \\mitL } \\times \\mitU ( 1 ) _ { \\mitY } $", "$ \\mitE _ { 8 } $", "$ \\mitE _ { 6 } $", "$ \\mitG = \\mitS \\mitU ( 3 ) $", "$ \\mitX $", "$ \\mitG \\subseteq \\mitE _ { 8 } $" ], "x_min": [ 0.24529999494552612, 0.3711000084877014, 0.4325999915599823, 0.1949000060558319, 0.5992000102996826, 0.7630000114440918, 0.2833000123500824, 0.420199990272522, 0.17900000512599945, 0.5590999722480774, 0.120899997651577, 0.33309999108314514, 0.35589998960494995, 0.5860000252723694, 0.669700026512146, 0.8859999775886536, 0.4519999921321869, 0.7885000109672546, 0.8334000110626221, 0.7027999758720398, 0.7795000076293945, 0.8126999735832214, 0.120899997651577, 0.5342000126838684, 0.2134999930858612, 0.2605000138282776, 0.36559998989105225, 0.7954000234603882, 0.695900022983551 ], "y_min": [ 0.1615999937057495, 0.16359999775886536, 0.16359999775886536, 0.2890999913215637, 0.3100999891757965, 0.30809998512268066, 0.33399999141693115, 0.3310999870300293, 0.4146000146865845, 0.4359999895095825, 0.47360000014305115, 0.47749999165534973, 0.4984999895095825, 0.5189999938011169, 0.5189999938011169, 0.5189999938011169, 0.5400000214576721, 0.5400000214576721, 0.5400000214576721, 0.5609999895095825, 0.5820000171661377, 0.5810999870300293, 0.6021000146865845, 0.6021000146865845, 0.6234999895095825, 0.6234999895095825, 0.6230000257492065, 0.7285000085830688, 0.7494999766349792 ], "x_max": [ 0.29510000348091125, 0.4221999943256378, 0.4546999931335449, 0.24879999458789825, 0.6136999726295471, 0.7968999743461609, 0.2930000126361847, 0.43470001220703125, 0.20110000669956207, 0.6013000011444092, 0.3206000030040741, 0.38839998841285706, 0.3779999911785126, 0.6004999876022339, 0.7817000150680542, 0.9081000089645386, 0.4693000018596649, 0.8036999702453613, 0.8554999828338623, 0.7249000072479248, 0.8015999794006348, 0.8720999956130981, 0.1712999939918518, 0.755299985408783, 0.23559999465942383, 0.2825999855995178, 0.4546999931335449, 0.8126999735832214, 0.7588000297546387 ], "y_max": [ 0.1762000024318695, 0.1729000061750412, 0.17479999363422394, 0.29840001463890076, 0.31940001249313354, 0.31929999589920044, 0.34279999136924744, 0.34040001034736633, 0.42579999566078186, 0.4458000063896179, 0.490200012922287, 0.4867999851703644, 0.5097000002861023, 0.5288000106811523, 0.5307000279426575, 0.5307000279426575, 0.5497999787330627, 0.5497999787330627, 0.5511999726295471, 0.5722000002861023, 0.5932000279426575, 0.5947999954223633, 0.6158000230789185, 0.6158000230789185, 0.635200023651123, 0.635200023651123, 0.6362000107765198, 0.7378000020980835, 0.760699987411499 ], "expr_type": [ "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded" ] }
0001101_page03
{ "latex": [ "$G$", "$X$", "$SU(n)\\subset E_{8}$", "$SU(n)$", "$SU(n)$", "$E_{6}$", "$SO(10)$", "$SU(5)$", "$SU(3)$", "$SU(4)$", "$SU(5)$", "$E_{8}$", "$SU(3)_{C} \\times SU(2)_{L} \\times U(1)_{Y}$", "$SU(5)$", "$SU(3)_{C} \\times SU(2)_{L} \\times U(1)_{Y}$" ], "latex_norm": [ "$ G $", "$ X $", "$ S U ( n ) \\subset E _ { 8 } $", "$ S U ( n ) $", "$ S U ( n ) $", "$ E _ { 6 } $", "$ S O ( 1 0 ) $", "$ S U ( 5 ) $", "$ S U ( 3 ) $", "$ S U ( 4 ) $", "$ S U ( 5 ) $", "$ E _ { 8 } $", "$ S U ( 3 ) _ { C } \\times S U ( 2 ) _ { L } \\times U ( 1 ) _ { Y } $", "$ S U ( 5 ) $", "$ S U ( 3 ) _ { C } \\times S U ( 2 ) _ { L } \\times U ( 1 ) _ { Y } $" ], "latex_expand": [ "$ \\mitG $", "$ \\mitX $", "$ \\mitS \\mitU ( \\mitn ) \\subset \\mitE _ { 8 } $", "$ \\mitS \\mitU ( \\mitn ) $", "$ \\mitS \\mitU ( \\mitn ) $", "$ \\mitE _ { 6 } $", "$ \\mitS \\mitO ( 1 0 ) $", "$ \\mitS \\mitU ( 5 ) $", "$ \\mitS \\mitU ( 3 ) $", "$ \\mitS \\mitU ( 4 ) $", "$ \\mitS \\mitU ( 5 ) $", "$ \\mitE _ { 8 } $", "$ \\mitS \\mitU ( 3 ) _ { \\mitC } \\times \\mitS \\mitU ( 2 ) _ { \\mitL } \\times \\mitU ( 1 ) _ { \\mitY } $", "$ \\mitS \\mitU ( 5 ) $", "$ \\mitS \\mitU ( 3 ) _ { \\mitC } \\times \\mitS \\mitU ( 2 ) _ { \\mitL } \\times \\mitU ( 1 ) _ { \\mitY } $" ], "x_min": [ 0.7269999980926514, 0.7878000140190125, 0.3718000054359436, 0.47620001435279846, 0.120899997651577, 0.2418999969959259, 0.274399995803833, 0.37389999628067017, 0.17970000207424164, 0.24050000309944153, 0.33169999718666077, 0.7975000143051147, 0.33660000562667847, 0.8568999767303467, 0.6039999723434448 ], "y_min": [ 0.17139999568462372, 0.17190000414848328, 0.3174000084400177, 0.3379000127315521, 0.4009000062942505, 0.44339999556541443, 0.44290000200271606, 0.44290000200271606, 0.46389999985694885, 0.46389999985694885, 0.46389999985694885, 0.4643999934196472, 0.48489999771118164, 0.7773000001907349, 0.79830002784729 ], "x_max": [ 0.7422000169754028, 0.8044000267982483, 0.4740999937057495, 0.5286999940872192, 0.17339999973773956, 0.2639999985694885, 0.33379998803138733, 0.42500001192092896, 0.23010000586509705, 0.29159998893737793, 0.38280001282691956, 0.819599986076355, 0.5570999979972839, 0.9079999923706055, 0.8209999799728394 ], "y_max": [ 0.18119999766349792, 0.18119999766349792, 0.33059999346733093, 0.3515999913215637, 0.4146000146865845, 0.45509999990463257, 0.4560999870300293, 0.4560999870300293, 0.4771000146865845, 0.4771000146865845, 0.4771000146865845, 0.47609999775886536, 0.49810001254081726, 0.7910000085830688, 0.8119999766349792 ], "expr_type": [ "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded" ] }
0001101_page04
{ "latex": [ "$N=1$", "$SU(3)_{C} \\times SU(2)_{L} \\times U(1)_{Y}$", "$3+1$", "$3+1$", "$Z=X/\\tau _{X}$", "$\\pi _{1}(Z)=\\ZZ _{2}$", "$SU(5)$", "$\\pi _{1}(Z)=\\ZZ _{2}$", "$SU(5)$", "$SU(3)_{C} \\times SU(2)_{L} \\times U(1)_{Y}$", "$SU(3)_{C} \\times SU(2)_{L} \\times U(1)_{Y}$", "$B=F_{2}$", "$B=dP_{3}$", "$SU(n)$", "$n$", "$N=1$", "$SU(3)_{C}\\times SU(2)_{L}\\times U(1)_{Y}$", "$X$", "$Z=X/\\tau _X$", "$E_8$", "$X$", "$\\sigma $", "$\\xi $", "$B$", "$X$", "$X$" ], "latex_norm": [ "$ N = 1 $", "$ S U ( 3 ) _ { C } \\times S U ( 2 ) _ { L } \\times U ( 1 ) _ { Y } $", "$ 3 + 1 $", "$ 3 + 1 $", "$ Z = X \\slash \\tau _ { X } $", "$ \\pi _ { 1 } ( Z ) = Z _ { 2 } $", "$ S U ( 5 ) $", "$ \\pi _ { 1 } ( Z ) = Z _ { 2 } $", "$ S U ( 5 ) $", "$ S U ( 3 ) _ { C } \\times S U ( 2 ) _ { L } \\times U ( 1 ) _ { Y } $", "$ S U ( 3 ) _ { C } \\times S U ( 2 ) _ { L } \\times U ( 1 ) _ { Y } $", "$ B = F _ { 2 } $", "$ B = d P _ { 3 } $", "$ S U ( n ) $", "$ n $", "$ N = 1 $", "$ S U ( 3 ) _ { C } \\times S U ( 2 ) _ { L } \\times U ( 1 ) _ { Y } $", "$ X $", "$ Z = X \\slash \\tau _ { X } $", "$ E _ { 8 } $", "$ X $", "$ \\sigma $", "$ \\xi $", "$ B $", "$ X $", "$ X $" ], "latex_expand": [ "$ \\mitN = 1 $", "$ \\mitS \\mitU ( 3 ) _ { \\mitC } \\times \\mitS \\mitU ( 2 ) _ { \\mitL } \\times \\mitU ( 1 ) _ { \\mitY } $", "$ 3 + 1 $", "$ 3 + 1 $", "$ \\mitZ = \\mitX \\slash \\mittau _ { \\mitX } $", "$ \\mitpi _ { 1 } ( \\mitZ ) = \\BbbZ _ { 2 } $", "$ \\mitS \\mitU ( 5 ) $", "$ \\mitpi _ { 1 } ( \\mitZ ) = \\BbbZ _ { 2 } $", "$ \\mitS \\mitU ( 5 ) $", "$ \\mitS \\mitU ( 3 ) _ { \\mitC } \\times \\mitS \\mitU ( 2 ) _ { \\mitL } \\times \\mitU ( 1 ) _ { \\mitY } $", "$ \\mitS \\mitU ( 3 ) _ { \\mitC } \\times \\mitS \\mitU ( 2 ) _ { \\mitL } \\times \\mitU ( 1 ) _ { \\mitY } $", "$ \\mitB = \\mitF _ { 2 } $", "$ \\mitB = \\mitd \\mitP _ { 3 } $", "$ \\mitS \\mitU ( \\mitn ) $", "$ \\mitn $", "$ \\mitN = 1 $", "$ \\mitS \\mitU ( 3 ) _ { \\mitC } \\times \\mitS \\mitU ( 2 ) _ { \\mitL } \\times \\mitU ( 1 ) _ { \\mitY } $", "$ \\mitX $", "$ \\mitZ = \\mitX \\slash \\mittau _ { \\mitX } $", "$ \\mitE _ { 8 } $", "$ \\mitX $", "$ \\mitsigma $", "$ \\mitxi $", "$ \\mitB $", "$ \\mitX $", "$ \\mitX $" ], "x_min": [ 0.3779999911785126, 0.19900000095367432, 0.2046000063419342, 0.7635999917984009, 0.27709999680519104, 0.120899997651577, 0.8521000146865845, 0.17069999873638153, 0.6309999823570251, 0.8258000016212463, 0.120899997651577, 0.38909998536109924, 0.6807000041007996, 0.5266000032424927, 0.6122999787330627, 0.14509999752044678, 0.2791999876499176, 0.120899997651577, 0.5059000253677368, 0.47749999165534973, 0.7781999707221985, 0.26809999346733093, 0.31859999895095825, 0.6855999827384949, 0.7249000072479248, 0.8141000270843506 ], "y_min": [ 0.10890000313520432, 0.14990000426769257, 0.17239999771118164, 0.17239999771118164, 0.3589000105857849, 0.3799000084400177, 0.3799000084400177, 0.4009000062942505, 0.4009000062942505, 0.4009000062942505, 0.4219000041484833, 0.44339999556541443, 0.4643999934196472, 0.5654000043869019, 0.5698000192642212, 0.5874000191688538, 0.6074000000953674, 0.6499000191688538, 0.6704000234603882, 0.6919000148773193, 0.7445999979972839, 0.7685999870300293, 0.7651000022888184, 0.7651000022888184, 0.7651000022888184, 0.7860999703407288 ], "x_max": [ 0.42910000681877136, 0.42149999737739563, 0.24740000069141388, 0.8058000206947327, 0.3628000020980835, 0.21209999918937683, 0.9024999737739563, 0.2687999904155731, 0.6814000010490417, 0.9079999923706055, 0.25839999318122864, 0.44850000739097595, 0.7498000264167786, 0.5791000127792358, 0.6240000128746033, 0.20180000364780426, 0.4975999891757965, 0.13750000298023224, 0.5936999917030334, 0.49959999322891235, 0.7954999804496765, 0.2791999876499176, 0.32829999923706055, 0.7008000016212463, 0.7422000169754028, 0.8313999772071838 ], "y_max": [ 0.11869999766349792, 0.16359999775886536, 0.18219999969005585, 0.18219999969005585, 0.3725999891757965, 0.3935999870300293, 0.3935999870300293, 0.4146000146865845, 0.4146000146865845, 0.4146000146865845, 0.43560001254081726, 0.45509999990463257, 0.47609999775886536, 0.5791000127792358, 0.5756999850273132, 0.5967000126838684, 0.6211000084877014, 0.6596999764442444, 0.6836000084877014, 0.7035999894142151, 0.7538999915122986, 0.7749000191688538, 0.7773000001907349, 0.7749000191688538, 0.7749000191688538, 0.7958999872207642 ], "expr_type": [ "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded" ] }
0001101_page05
{ "latex": [ "$\\tau _{B}$", "$B$", "$a$", "$b$", "$\\tau _{B}$", "$\\tau _{X}$", "$X$", "$\\mathcal {F}_{\\tau _B}$", "$\\tau _{B}$", "$V$", "$X$", "$\\eta $", "$B$", "$\\lambda $", "$\\kappa _i$", "$m$", "$B$", "$V$", "$V_{Z}$", "$Z$", "$\\eta $", "$B$", "$\\k _i$", "$V_{Z}$", "$Z$", "$N_{\\text {gen}}=3$", "$V$", "$X$", "\\begin {equation} g_{2} = 4(a^{2}-b) , \\qquad g_{3} = 4ab . \\label {eq:43} \\end {equation}", "\\begin {equation} \\Delta = \\Delta _{1}\\Delta _{2}^{2} , \\label {eq:44} \\end {equation}", "\\begin {equation} \\Delta _{1} = a^{2}-4b , \\qquad \\Delta _{2}=4(2a^{2}+b) . \\label {eq:45} \\end {equation}", "\\begin {equation} \\mathcal {F}_{\\tau _B} \\cap \\{\\Delta =0\\} = \\emptyset . \\label {eq:46} \\end {equation}", "\\begin {equation} \\l - \\sfrac {1}{2} \\in \\ZZ , \\qquad \\k _i - \\shf m \\in \\ZZ , \\label {eq:47} \\end {equation}", "\\begin {equation} \\eta \\text { is effective} \\label {eq:47A} \\end {equation}", "\\begin {equation} \\begin {aligned} \\tau _{B}(\\eta ) &= \\eta , \\\\ \\sum _i \\k _i &= \\eta \\cdot c_1 \\end {aligned} \\label {eq:48} \\end {equation}", "\\begin {equation} N_{\\text {gen}} = \\sfrac {1}{2}c_{3}(V_{Z}) . \\label {eq:49} \\end {equation}" ], "latex_norm": [ "$ \\tau _ { B } $", "$ B $", "$ a $", "$ b $", "$ \\tau _ { B } $", "$ \\tau _ { X } $", "$ X $", "$ F _ { \\tau _ { B } } $", "$ \\tau _ { B } $", "$ V $", "$ X $", "$ \\eta $", "$ B $", "$ \\lambda $", "$ \\kappa _ { i } $", "$ m $", "$ B $", "$ V $", "$ V _ { Z } $", "$ Z $", "$ \\eta $", "$ B $", "$ \\kappa _ { i } $", "$ V _ { Z } $", "$ Z $", "$ N _ { g e n } = 3 $", "$ V $", "$ X $", "\\begin{equation*} g _ { 2 } = 4 ( a ^ { 2 } - b ) , \\qquad g _ { 3 } = 4 a b . \\end{equation*}", "\\begin{equation*} \\Delta = \\Delta _ { 1 } \\Delta _ { 2 } ^ { 2 } , \\end{equation*}", "\\begin{equation*} \\Delta _ { 1 } = a ^ { 2 } - 4 b , \\qquad \\Delta _ { 2 } = 4 ( 2 a ^ { 2 } + b ) . \\end{equation*}", "\\begin{equation*} F _ { \\tau _ { B } } \\cap \\{ \\Delta = 0 \\} = \\emptyset . \\end{equation*}", "\\begin{equation*} \\lambda - \\frac { 1 } { 2 } \\in Z , \\qquad \\kappa _ { i } - \\frac { 1 } { 2 } m \\in Z , \\end{equation*}", "\\begin{equation*} \\eta ~ i s ~ e f f e c t i v e \\end{equation*}", "\\begin{align*} \\begin{array}{rl} \\tau _ { B } ( \\eta ) & = \\eta , \\\\ \\sum _ { i } \\kappa _ { i } & = \\eta \\cdot c _ { 1 } \\end{array} \\end{align*}", "\\begin{equation*} N _ { g e n } = \\frac { 1 } { 2 } c _ { 3 } ( V _ { Z } ) . \\end{equation*}" ], "latex_expand": [ "$ \\mittau _ { \\mitB } $", "$ \\mitB $", "$ \\mita $", "$ \\mitb $", "$ \\mittau _ { \\mitB } $", "$ \\mittau _ { \\mitX } $", "$ \\mitX $", "$ \\mscrF _ { \\mittau _ { \\mitB } } $", "$ \\mittau _ { \\mitB } $", "$ \\mitV $", "$ \\mitX $", "$ \\miteta $", "$ \\mitB $", "$ \\mitlambda $", "$ \\mitkappa _ { \\miti } $", "$ \\mitm $", "$ \\mitB $", "$ \\mitV $", "$ \\mitV _ { \\mitZ } $", "$ \\mitZ $", "$ \\miteta $", "$ \\mitB $", "$ \\mitkappa _ { \\miti } $", "$ \\mitV _ { \\mitZ } $", "$ \\mitZ $", "$ \\mitN _ { \\mathrm { g e n } } = 3 $", "$ \\mitV $", "$ \\mitX $", "\\begin{equation*} \\mitg _ { 2 } = 4 ( \\mita ^ { 2 } - \\mitb ) , \\qquad \\mitg _ { 3 } = 4 \\mita \\mitb . \\end{equation*}", "\\begin{equation*} \\mupDelta = \\mupDelta _ { 1 } \\mupDelta _ { 2 } ^ { 2 } , \\end{equation*}", "\\begin{equation*} \\mupDelta _ { 1 } = \\mita ^ { 2 } - 4 \\mitb , \\qquad \\mupDelta _ { 2 } = 4 ( 2 \\mita ^ { 2 } + \\mitb ) . \\end{equation*}", "\\begin{equation*} \\displaystyle \\mscrF _ { \\mittau _ { \\mitB } } \\cap \\{ \\mupDelta = 0 \\} = \\varnothing . \\end{equation*}", "\\begin{equation*} \\mitlambda - { \\textstyle \\frac { 1 } { 2 } } \\in \\BbbZ , \\qquad \\mitkappa _ { \\miti } - { \\textstyle \\frac { 1 } { 2 } } \\mitm \\in \\BbbZ , \\end{equation*}", "\\begin{equation*} \\miteta ~ \\mathrm { i s } ~ \\mathrm { e f f e c t i v e } \\end{equation*}", "\\begin{align*} \\begin{array}{rl} \\mittau _ { \\mitB } ( \\miteta ) & = \\miteta , \\\\ \\sum \\limits _ { \\miti } \\mitkappa _ { \\miti } & = \\miteta \\cdot \\mitc _ { 1 } \\end{array} \\end{align*}", "\\begin{equation*} \\mitN _ { \\mathrm { g e n } } = { \\textstyle \\frac { 1 } { 2 } } \\mitc _ { 3 } ( \\mitV _ { \\mitZ } ) . \\end{equation*}" ], "x_min": [ 0.8618000149726868, 0.16660000383853912, 0.3677000105381012, 0.42089998722076416, 0.6151000261306763, 0.25290000438690186, 0.3061999976634979, 0.5598000288009644, 0.6488999724388123, 0.7193999886512756, 0.7774999737739563, 0.6115999817848206, 0.7193999886512756, 0.16660000383853912, 0.2190999984741211, 0.20800000429153442, 0.27300000190734863, 0.515500009059906, 0.7864999771118164, 0.8555999994277954, 0.2093999981880188, 0.2467000037431717, 0.4277999997138977, 0.30959999561309814, 0.3765999972820282, 0.2053000032901764, 0.7580999732017517, 0.8181999921798706, 0.4223000109195709, 0.49000000953674316, 0.3953000009059906, 0.45820000767707825, 0.42089998722076416, 0.487199991941452, 0.48240000009536743, 0.44920000433921814 ], "y_min": [ 0.28119999170303345, 0.298799991607666, 0.30219998955726624, 0.298799991607666, 0.30219998955726624, 0.32280001044273376, 0.3197999894618988, 0.3197999894618988, 0.32280001044273376, 0.3905999958515167, 0.3905999958515167, 0.41499999165534973, 0.4115999937057495, 0.43209999799728394, 0.43549999594688416, 0.5015000104904175, 0.5640000104904175, 0.5952000021934509, 0.5952000021934509, 0.5952000021934509, 0.6195999979972839, 0.6161999702453613, 0.6195999979972839, 0.7567999958992004, 0.7567999958992004, 0.8227999806404114, 0.8227999806404114, 0.8227999806404114, 0.13570000231266022, 0.18950000405311584, 0.23880000412464142, 0.3481000065803528, 0.46000000834465027, 0.5278000235557556, 0.6431999802589417, 0.7842000126838684 ], "x_max": [ 0.8824999928474426, 0.1817999929189682, 0.3781000077724457, 0.4291999936103821, 0.6358000040054321, 0.2750000059604645, 0.32280001044273376, 0.5916000008583069, 0.6696000099182129, 0.7346000075340271, 0.7947999835014343, 0.6212999820709229, 0.7346000075340271, 0.1776999980211258, 0.23569999635219574, 0.22460000216960907, 0.2881999909877777, 0.5307000279426575, 0.8093000054359436, 0.8701000213623047, 0.21979999542236328, 0.26190000772476196, 0.44440001249313354, 0.33169999718666077, 0.3910999894142151, 0.27649998664855957, 0.7732999920845032, 0.8348000049591064, 0.6552000045776367, 0.5839999914169312, 0.6814000010490417, 0.6184999942779541, 0.6531000137329102, 0.5895000100135803, 0.5943999886512756, 0.5819000005722046 ], "y_max": [ 0.28949999809265137, 0.30809998512268066, 0.30809998512268066, 0.30809998512268066, 0.3100000023841858, 0.3310999870300293, 0.32910001277923584, 0.33250001072883606, 0.3310999870300293, 0.39989998936653137, 0.39989998936653137, 0.42329999804496765, 0.42089998722076416, 0.44190001487731934, 0.4438000023365021, 0.5077999830245972, 0.5738000273704529, 0.6050000190734863, 0.6068999767303467, 0.6050000190734863, 0.6279000043869019, 0.6255000233650208, 0.6273999810218811, 0.7684999704360962, 0.7666000127792358, 0.8360000252723694, 0.832099974155426, 0.832099974155426, 0.1543000042438507, 0.2084999978542328, 0.2574000060558319, 0.36570000648498535, 0.4794999957084656, 0.542900025844574, 0.6973000168800354, 0.8036999702453613 ], "expr_type": [ "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "isolated", "isolated", "isolated", "isolated", "isolated", "isolated", "isolated", "isolated" ] }
0001101_page06
{ "latex": [ "$[W_{Z}]$", "$V_{Z1}$", "$V_{Z2}$", "$V_{Z2}$", "$E_{8}$", "$c_{2}(V_{Z2})$", "$X$", "$[W_{Z}]$", "$Z$", "$[W_{Z}]$", "$[W]$", "$X$", "$[W]$", "\\begin {equation} 6 = \\lambda \\eta ( \\eta -nc_{1}) . \\label {eq:50} \\end {equation}", "\\begin {equation} [W_{Z}] = c_{2}(TZ) - c_{2}(V_{Z1}) - c_{2}(V_{Z2}) , \\label {eq:51} \\end {equation}", "\\begin {equation} [W_{Z}] = \\frac {1}{2}q_{*}[W] , \\label {eq:51A} \\end {equation}", "\\begin {equation} [W] = c_{2}(TX) - c_{2}(V) . \\label {eq:52} \\end {equation}", "\\begin {equation} [W] = \\sigma _{*}W_{B} + c(F-N) + dN \\label {eq:53} \\end {equation}", "\\begin {equation} W_{B} = 12c_1-\\eta \\label {eq:54} \\end {equation}", "\\begin {align} c &= c_2 + \\left (\\frac {1}{24}(n^{3}-n)+11\\right )c_1^{2} - \\hf \\left (\\l ^{2}-\\frac {1}{4}\\right ) n\\eta \\left (\\eta -nc_1\\right ) - \\sum _{i}\\k _i^{2} , \\\\ d &= c_2 + \\left (\\frac {1}{24}(n^{3}-n)-1\\right )c_1^{2} - \\hf \\left (\\l ^{2}-\\frac {1}{4}\\right ) n\\eta \\left (\\eta -nc_1\\right ) - \\sum _{i}\\k _i^{2} + \\sum _{i}\\k _i . \\end {align}", "\\begin {equation} W_{B} \\text { is effective in $B$}, \\quad c \\geq 0, \\quad d \\geq 0 . \\label {eq:57} \\end {equation}" ], "latex_norm": [ "$ [ W _ { Z } ] $", "$ V _ { Z 1 } $", "$ V _ { Z 2 } $", "$ V _ { Z 2 } $", "$ E _ { 8 } $", "$ c _ { 2 } ( V _ { Z 2 } ) $", "$ X $", "$ [ W _ { Z } ] $", "$ Z $", "$ [ W _ { Z } ] $", "$ [ W ] $", "$ X $", "$ [ W ] $", "\\begin{equation*} 6 = \\lambda \\eta ( \\eta - n c _ { 1 } ) . \\end{equation*}", "\\begin{equation*} [ W _ { Z } ] = c _ { 2 } ( T Z ) - c _ { 2 } ( V _ { Z 1 } ) - c _ { 2 } ( V _ { Z 2 } ) , \\end{equation*}", "\\begin{equation*} [ W _ { Z } ] = \\frac { 1 } { 2 } q _ { \\ast } [ W ] , \\end{equation*}", "\\begin{equation*} [ W ] = c _ { 2 } ( T X ) - c _ { 2 } ( V ) . \\end{equation*}", "\\begin{equation*} [ W ] = \\sigma _ { \\ast } W _ { B } + c ( F - N ) + d N \\end{equation*}", "\\begin{equation*} W _ { B } = 1 2 c _ { 1 } - \\eta \\end{equation*}", "\\begin{align*} c & = c _ { 2 } + ( \\frac { 1 } { 2 4 } ( n ^ { 3 } - n ) + 1 1 ) c _ { 1 } ^ { 2 } - \\frac { 1 } { 2 } ( \\lambda ^ { 2 } - \\frac { 1 } { 4 } ) n \\eta ( \\eta - n c _ { 1 } ) - \\sum _ { i } \\kappa _ { i } ^ { 2 } , \\\\ d & = c _ { 2 } + ( \\frac { 1 } { 2 4 } ( n ^ { 3 } - n ) - 1 ) c _ { 1 } ^ { 2 } - \\frac { 1 } { 2 } ( \\lambda ^ { 2 } - \\frac { 1 } { 4 } ) n \\eta ( \\eta - n c _ { 1 } ) - \\sum _ { i } \\kappa _ { i } ^ { 2 } + \\sum _ { i } \\kappa _ { i } . \\end{align*}", "\\begin{equation*} W _ { B } i s ~ e f f e c t i v e ~ i n ~ B , \\quad c \\geq 0 , \\quad d \\geq 0 . \\end{equation*}" ], "latex_expand": [ "$ [ \\mitW _ { \\mitZ } ] $", "$ \\mitV _ { \\mitZ 1 } $", "$ \\mitV _ { \\mitZ 2 } $", "$ \\mitV _ { \\mitZ 2 } $", "$ \\mitE _ { 8 } $", "$ \\mitc _ { 2 } ( \\mitV _ { \\mitZ 2 } ) $", "$ \\mitX $", "$ [ \\mitW _ { \\mitZ } ] $", "$ \\mitZ $", "$ [ \\mitW _ { \\mitZ } ] $", "$ [ \\mitW ] $", "$ \\mitX $", "$ [ \\mitW ] $", "\\begin{equation*} 6 = \\mitlambda \\miteta ( \\miteta - \\mitn \\mitc _ { 1 } ) . \\end{equation*}", "\\begin{equation*} [ \\mitW _ { \\mitZ } ] = \\mitc _ { 2 } ( \\mitT \\mitZ ) - \\mitc _ { 2 } ( \\mitV _ { \\mitZ 1 } ) - \\mitc _ { 2 } ( \\mitV _ { \\mitZ 2 } ) , \\end{equation*}", "\\begin{equation*} [ \\mitW _ { \\mitZ } ] = \\frac { 1 } { 2 } \\mitq _ { \\ast } [ \\mitW ] , \\end{equation*}", "\\begin{equation*} [ \\mitW ] = \\mitc _ { 2 } ( \\mitT \\mitX ) - \\mitc _ { 2 } ( \\mitV ) . \\end{equation*}", "\\begin{equation*} [ \\mitW ] = \\mitsigma _ { \\ast } \\mitW _ { \\mitB } + \\mitc ( \\mitF - \\mitN ) + \\mitd \\mitN \\end{equation*}", "\\begin{equation*} \\mitW _ { \\mitB } = 1 2 \\mitc _ { 1 } - \\miteta \\end{equation*}", "\\begin{align*} \\mitc & = \\mitc _ { 2 } + \\left( \\frac { 1 } { 2 4 } ( \\mitn ^ { 3 } - \\mitn ) + 1 1 \\right) \\mitc _ { 1 } ^ { 2 } - \\frac { 1 } { 2 } \\left( \\mitlambda ^ { 2 } - \\frac { 1 } { 4 } \\right) \\mitn \\miteta \\left( \\miteta - \\mitn \\mitc _ { 1 } \\right) - \\sum _ { \\miti } \\mitkappa _ { \\miti } ^ { 2 } , \\\\ \\mitd & = \\mitc _ { 2 } + \\left( \\frac { 1 } { 2 4 } ( \\mitn ^ { 3 } - \\mitn ) - 1 \\right) \\mitc _ { 1 } ^ { 2 } - \\frac { 1 } { 2 } \\left( \\mitlambda ^ { 2 } - \\frac { 1 } { 4 } \\right) \\mitn \\miteta \\left( \\miteta - \\mitn \\mitc _ { 1 } \\right) - \\sum _ { \\miti } \\mitkappa _ { \\miti } ^ { 2 } + \\sum _ { \\miti } \\mitkappa _ { \\miti } . \\end{align*}", "\\begin{equation*} \\mitW _ { \\mitB } \\mathrm { i s ~ e f f e c t i v e ~ i n } \\mitB , \\quad \\mitc \\geq 0 , \\quad \\mitd \\geq 0 . \\end{equation*}" ], "x_min": [ 0.1720999926328659, 0.37040001153945923, 0.4408999979496002, 0.673799991607666, 0.28610000014305115, 0.6585999727249146, 0.4519999921321869, 0.20319999754428864, 0.120899997651577, 0.6614000201225281, 0.32829999923706055, 0.7346000075340271, 0.4000999927520752, 0.4706000089645386, 0.3677000105381012, 0.44850000739097595, 0.42089998722076416, 0.3898000121116638, 0.45399999618530273, 0.18799999356269836, 0.3849000036716461 ], "y_min": [ 0.24899999797344208, 0.2709999978542328, 0.2709999978542328, 0.2919999957084656, 0.3125, 0.31200000643730164, 0.40139999985694885, 0.6826000213623047, 0.7045999765396118, 0.7035999894142151, 0.7246000170707703, 0.725600004196167, 0.7768999934196472, 0.1386999934911728, 0.211899995803833, 0.35600000619888306, 0.4311999976634979, 0.486299991607666, 0.5365999937057495, 0.5913000106811523, 0.8086000084877014 ], "x_max": [ 0.21150000393390656, 0.4000999927520752, 0.4706000089645386, 0.703499972820282, 0.3075000047683716, 0.7179999947547913, 0.46860000491142273, 0.2425999939441681, 0.13539999723434448, 0.7008000016212463, 0.3587000072002411, 0.7519000172615051, 0.43050000071525574, 0.6061000227928162, 0.6600000262260437, 0.5791000127792358, 0.6108999848365784, 0.6420000195503235, 0.5770000219345093, 0.7940999865531921, 0.6916999816894531 ], "y_max": [ 0.26269999146461487, 0.28220000863075256, 0.28220000863075256, 0.30320000648498535, 0.32420000433921814, 0.3257000148296356, 0.41119998693466187, 0.6963000297546387, 0.7139000296592712, 0.7172999978065491, 0.7383000254631042, 0.7348999977111816, 0.7906000018119812, 0.155799999833107, 0.22849999368190765, 0.3862999975681305, 0.44830000400543213, 0.5029000043869019, 0.5516999959945679, 0.6697999835014343, 0.8237000107765198 ], "expr_type": [ "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "isolated", "isolated", "isolated", "isolated", "isolated", "isolated", "isolated", "isolated" ] }
0001101_page07
{ "latex": [ "$E_{8}$", "$G$", "$H$", "$E_{8}$", "$H$", "$G \\times H \\subset E_{8}$", "$G$", "$H$", "$H$", "$SU(5)\\times SU(5)\\subset E_{8}$", "$Z$", "\\begin {equation} G \\times H \\subset E_{8} . \\label {eq:58} \\end {equation}", "\\begin {equation} \\eta > nc_{1}. \\label {eq:59} \\end {equation}", "\\begin {equation} G = SU(5) . \\label {eq:60} \\end {equation}", "\\begin {equation} H = SU(5) . \\label {eq:61} \\end {equation}", "\\begin {equation} \\pi _{1}(Z)=\\ZZ _{2} . \\label {eq:62} \\end {equation}", "\\begin {equation} SU(5) \\rightarrow SU(3)_{C} \\times SU(2)_{L} \\times U(1)_{Y} , \\label {eq:63} \\end {equation}", "\\begin {equation} \\mathcal {G} = \\left (\\begin {array}{cc} \\mathbf {1}_3 & \\\\ & -\\mathbf {1}_2 \\end {array}\\right ) . \\label {eq:64} \\end {equation}" ], "latex_norm": [ "$ E _ { 8 } $", "$ G $", "$ H $", "$ E _ { 8 } $", "$ H $", "$ G \\times H \\subset E _ { 8 } $", "$ G $", "$ H $", "$ H $", "$ S U ( 5 ) \\times S U ( 5 ) \\subset E _ { 8 } $", "$ Z $", "\\begin{equation*} G \\times H \\subset E _ { 8 } . \\end{equation*}", "\\begin{equation*} \\eta > n c _ { 1 } . \\end{equation*}", "\\begin{equation*} G = S U ( 5 ) . \\end{equation*}", "\\begin{equation*} H = S U ( 5 ) . \\end{equation*}", "\\begin{equation*} \\pi _ { 1 } ( Z ) = Z _ { 2 } . \\end{equation*}", "\\begin{equation*} S U ( 5 ) \\rightarrow S U ( 3 ) _ { C } \\times S U ( 2 ) _ { L } \\times U ( 1 ) _ { Y } , \\end{equation*}", "\\begin{align*} G = ( \\begin{array}{cc} 1 _ { 3 } & \\\\ & - 1 _ { 2 } \\end{array} ) . \\end{align*}" ], "latex_expand": [ "$ \\mitE _ { 8 } $", "$ \\mitG $", "$ \\mitH $", "$ \\mitE _ { 8 } $", "$ \\mitH $", "$ \\mitG \\times \\mitH \\subset \\mitE _ { 8 } $", "$ \\mitG $", "$ \\mitH $", "$ \\mitH $", "$ \\mitS \\mitU ( 5 ) \\times \\mitS \\mitU ( 5 ) \\subset \\mitE _ { 8 } $", "$ \\mitZ $", "\\begin{equation*} \\mitG \\times \\mitH \\subset \\mitE _ { 8 } . \\end{equation*}", "\\begin{equation*} \\miteta > \\mitn \\mitc _ { 1 } . \\end{equation*}", "\\begin{equation*} \\mitG = \\mitS \\mitU ( 5 ) . \\end{equation*}", "\\begin{equation*} \\mitH = \\mitS \\mitU ( 5 ) . \\end{equation*}", "\\begin{equation*} \\mitpi _ { 1 } ( \\mitZ ) = \\BbbZ _ { 2 } . \\end{equation*}", "\\begin{equation*} \\mitS \\mitU ( 5 ) \\rightarrow \\mitS \\mitU ( 3 ) _ { \\mitC } \\times \\mitS \\mitU ( 2 ) _ { \\mitL } \\times \\mitU ( 1 ) _ { \\mitY } , \\end{equation*}", "\\begin{align*} \\mscrG = \\left( \\begin{array}{cc} \\mbfone _ { 3 } & \\\\ & - \\mbfone _ { 2 } \\end{array} \\right) . \\end{align*}" ], "x_min": [ 0.3946000039577484, 0.1395999938249588, 0.29789999127388, 0.8859999775886536, 0.27639999985694885, 0.3765999972820282, 0.5245000123977661, 0.2142000049352646, 0.2653999924659729, 0.3068000078201294, 0.19769999384880066, 0.46160000562667847, 0.5037999749183655, 0.46720001101493835, 0.4657999873161316, 0.4657999873161316, 0.3614000082015991, 0.45750001072883606 ], "y_min": [ 0.10890000313520432, 0.16850000619888306, 0.18950000405311584, 0.23100000619888306, 0.25200000405311584, 0.3012999892234802, 0.3012999892234802, 0.32179999351501465, 0.40720000863075256, 0.42719998955726624, 0.5679000020027161, 0.13529999554157257, 0.35010001063346863, 0.4535999894142151, 0.5131999850273132, 0.5938000082969666, 0.6528000235557556, 0.7451000213623047 ], "x_max": [ 0.41670000553131104, 0.15410000085830688, 0.31520000100135803, 0.9081000089645386, 0.2937000095844269, 0.48159998655319214, 0.5396999716758728, 0.23149999976158142, 0.2827000021934509, 0.47609999775886536, 0.21220000088214874, 0.5694000124931335, 0.5735999941825867, 0.5640000104904175, 0.5652999877929688, 0.5652999877929688, 0.6661999821662903, 0.6191999912261963 ], "y_max": [ 0.12060000002384186, 0.1777999997138977, 0.1987999975681305, 0.24269999563694, 0.26179999113082886, 0.3125, 0.31060001254081726, 0.33160001039505005, 0.4165000021457672, 0.44040000438690186, 0.5771999955177307, 0.14990000426769257, 0.3637999892234802, 0.4702000021934509, 0.5297999978065491, 0.6104000210762024, 0.6699000000953674, 0.7910000085830688 ], "expr_type": [ "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "isolated", "isolated", "isolated", "isolated", "isolated", "isolated", "isolated" ] }
0001101_page08
{ "latex": [ "$\\PP ^1$", "$\\PP ^1$", "$F_2$", "$\\cS $", "$\\cE $", "$F_2$", "$\\tau _B$", "$B$", "$\\PP ^1$", "$(u,v)$", "$\\PP ^1$", "$(u,v)\\to (-u,v)$", "$(0,1)$", "$(1,0)$", "$u$", "$\\tau_B$", "$\\PP ^1$", "$\\PP ^1$", "${\\cal {F}}_{\\tau _{B}}$", "$\\tau_X$", "$\\tau_B$", "$a$", "$b$", "$K_B^{-2}$", "$K_B^{-4}$", "$K_B$", "$\\tau_B$", "$X$", "$a$", "$b$", "$\\Delta _{1}$", "$\\Delta _{2}$", "$a$", "$b$", "\\begin {equation} B = F_2. \\end {equation}", "\\begin {equation} \\cS \\cdot \\cS = -2, \\qquad \\cS \\cdot \\cE = 1, \\qquad \\cE \\cdot \\cE = 0. \\label {eq:intc2} \\end {equation}", "\\begin {equation} c_1(F_2) = 2\\cS + 4\\cE , \\label {c1F2} \\end {equation}", "\\begin {equation} c_2(F_2) = 4. \\label {c2F2} \\end {equation}", "\\begin {equation} \\D _1 = a^2 - 4b, \\qquad \\D _2 = 4\\left (2a^2 + b\\right ), \\end {equation}", "\\begin {equation} \\tau _B(a) = a, \\qquad \\tau _B(b) = b. \\label {eq:hi} \\end {equation}" ], "latex_norm": [ "$ { C P } ^ { 1 } $", "$ { C P } ^ { 1 } $", "$ F _ { 2 } $", "$ S $", "$ E $", "$ F _ { 2 } $", "$ \\tau _ { B } $", "$ B $", "$ { C P } ^ { 1 } $", "$ ( u , v ) $", "$ { C P } ^ { 1 } $", "$ ( u , v ) \\rightarrow ( - u , v ) $", "$ ( 0 , 1 ) $", "$ ( 1 , 0 ) $", "$ u $", "$ \\tau _ { B } $", "$ { C P } ^ { 1 } $", "$ { C P } ^ { 1 } $", "$ F _ { \\tau _ { B } } $", "$ \\tau _ { X } $", "$ \\tau _ { B } $", "$ a $", "$ b $", "$ K _ { B } ^ { - 2 } $", "$ K _ { B } ^ { - 4 } $", "$ K _ { B } $", "$ \\tau _ { B } $", "$ X $", "$ a $", "$ b $", "$ \\Delta _ { 1 } $", "$ \\Delta _ { 2 } $", "$ a $", "$ b $", "\\begin{equation*} B = F _ { 2 } . \\end{equation*}", "\\begin{equation*} S \\cdot S = - 2 , \\qquad S \\cdot E = 1 , \\qquad E \\cdot E = 0 . \\end{equation*}", "\\begin{equation*} c _ { 1 } ( F _ { 2 } ) = 2 S + 4 E , \\end{equation*}", "\\begin{equation*} c _ { 2 } ( F _ { 2 } ) = 4 . \\end{equation*}", "\\begin{equation*} \\Delta _ { 1 } = a ^ { 2 } - 4 b , \\qquad \\Delta _ { 2 } = 4 ( 2 a ^ { 2 } + b ) , \\end{equation*}", "\\begin{equation*} \\tau _ { B } ( a ) = a , \\qquad \\tau _ { B } ( b ) = b . \\end{equation*}" ], "latex_expand": [ "$ { \\BbbC \\BbbP } ^ { 1 } $", "$ { \\BbbC \\BbbP } ^ { 1 } $", "$ \\mitF _ { 2 } $", "$ \\mscrS $", "$ \\mscrE $", "$ \\mitF _ { 2 } $", "$ \\mittau _ { \\mitB } $", "$ \\mitB $", "$ { \\BbbC \\BbbP } ^ { 1 } $", "$ ( \\mitu , \\mitv ) $", "$ { \\BbbC \\BbbP } ^ { 1 } $", "$ ( \\mitu , \\mitv ) \\rightarrow ( - \\mitu , \\mitv ) $", "$ ( 0 , 1 ) $", "$ ( 1 , 0 ) $", "$ \\mitu $", "$ \\mittau _ { \\mitB } $", "$ { \\BbbC \\BbbP } ^ { 1 } $", "$ { \\BbbC \\BbbP } ^ { 1 } $", "$ \\mitF _ { \\mittau _ { \\mitB } } $", "$ \\mittau _ { \\mitX } $", "$ \\mittau _ { \\mitB } $", "$ \\mita $", "$ \\mitb $", "$ \\mitK _ { \\mitB } ^ { - 2 } $", "$ \\mitK _ { \\mitB } ^ { - 4 } $", "$ \\mitK _ { \\mitB } $", "$ \\mittau _ { \\mitB } $", "$ \\mitX $", "$ \\mita $", "$ \\mitb $", "$ \\mupDelta _ { 1 } $", "$ \\mupDelta _ { 2 } $", "$ \\mita $", "$ \\mitb $", "\\begin{equation*} \\mitB = \\mitF _ { 2 } . \\end{equation*}", "\\begin{equation*} \\mscrS \\cdot \\mscrS = - 2 , \\qquad \\mscrS \\cdot \\mscrE = 1 , \\qquad \\mscrE \\cdot \\mscrE = 0 . \\end{equation*}", "\\begin{equation*} \\mitc _ { 1 } ( \\mitF _ { 2 } ) = 2 \\mscrS + 4 \\mscrE , \\end{equation*}", "\\begin{equation*} \\mitc _ { 2 } ( \\mitF _ { 2 } ) = 4 . \\end{equation*}", "\\begin{equation*} \\mupDelta _ { 1 } = \\mita ^ { 2 } - 4 \\mitb , \\qquad \\mupDelta _ { 2 } = 4 \\left( 2 \\mita ^ { 2 } + \\mitb \\right) , \\end{equation*}", "\\begin{equation*} \\displaystyle \\mittau _ { \\mitB } ( \\mita ) = \\mita , \\qquad \\mittau _ { \\mitB } ( \\mitb ) = \\mitb . \\end{equation*}" ], "x_min": [ 0.6538000106811523, 0.8141000270843506, 0.3779999911785126, 0.583299994468689, 0.7366999983787537, 0.42570000886917114, 0.4733999967575073, 0.8873999714851379, 0.5446000099182129, 0.6082000136375427, 0.120899997651577, 0.43050000071525574, 0.2053000032901764, 0.45399999618530273, 0.5548999905586243, 0.8549000024795532, 0.40639999508857727, 0.6247000098228455, 0.7193999886512756, 0.6281999945640564, 0.7008000016212463, 0.29030001163482666, 0.34139999747276306, 0.4747999906539917, 0.5522000193595886, 0.7498000264167786, 0.4036000072956085, 0.5846999883651733, 0.4056999981403351, 0.4596000015735626, 0.7311999797821045, 0.7989000082015991, 0.39879998564720154, 0.4526999890804291, 0.48170000314712524, 0.3537999987602234, 0.4408999979496002, 0.4699000120162964, 0.367000013589859, 0.41260001063346863 ], "y_min": [ 0.20649999380111694, 0.20649999380111694, 0.23000000417232513, 0.23000000417232513, 0.23000000417232513, 0.3003000020980835, 0.42089998722076416, 0.4180000126361847, 0.43650001287460327, 0.43799999356269836, 0.4569999873638153, 0.45899999141693115, 0.47999998927116394, 0.47999998927116394, 0.4839000105857849, 0.4839000105857849, 0.49900001287460327, 0.49900001287460327, 0.5015000104904175, 0.5468999743461609, 0.5468999743461609, 0.6561999917030334, 0.6528000235557556, 0.6503999829292297, 0.6503999829292297, 0.6528000235557556, 0.6772000193595886, 0.673799991607666, 0.7451000213623047, 0.7416999936103821, 0.7416999936103821, 0.7416999936103821, 0.7660999894142151, 0.7627000212669373, 0.17329999804496765, 0.27000001072883606, 0.33149999380111694, 0.38670000433921814, 0.6147000193595886, 0.7050999999046326 ], "x_max": [ 0.6862999796867371, 0.8465999960899353, 0.3986999988555908, 0.5957000255584717, 0.7483999729156494, 0.4456999897956848, 0.49410000443458557, 0.9025999903678894, 0.5770999789237976, 0.6510000228881836, 0.1534000039100647, 0.5604000091552734, 0.24609999358654022, 0.49549999833106995, 0.5659999847412109, 0.8755999803543091, 0.43959999084472656, 0.6571999788284302, 0.7512000203132629, 0.6503000259399414, 0.7214999794960022, 0.30070000886917114, 0.349700003862381, 0.510699987411499, 0.588100016117096, 0.7781000137329102, 0.4242999851703644, 0.6019999980926514, 0.4153999984264374, 0.46790000796318054, 0.7554000020027161, 0.8230999708175659, 0.4092000126838684, 0.460999995470047, 0.5493999719619751, 0.6772000193595886, 0.5874000191688538, 0.5611000061035156, 0.6614000201225281, 0.6184999942779541 ], "y_max": [ 0.21870000660419464, 0.21870000660419464, 0.24120000004768372, 0.23929999768733978, 0.23929999768733978, 0.31200000643730164, 0.4291999936103821, 0.42730000615119934, 0.448199987411499, 0.451200008392334, 0.4691999852657318, 0.4722000062465668, 0.49320000410079956, 0.49320000410079956, 0.490200012922287, 0.49219998717308044, 0.5112000107765198, 0.5112000107765198, 0.5146999955177307, 0.5547000169754028, 0.5547000169754028, 0.6625000238418579, 0.6625999808311462, 0.6664999723434448, 0.6664999723434448, 0.6644999980926514, 0.6855000257492065, 0.6836000084877014, 0.7513999938964844, 0.7515000104904175, 0.7534000277519226, 0.7534000277519226, 0.7724000215530396, 0.7724999785423279, 0.18790000677108765, 0.2851000130176544, 0.34860000014305115, 0.4032999873161316, 0.6347000002861023, 0.7221999764442444 ], "expr_type": [ "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "isolated", "isolated", "isolated", "isolated", "isolated", "isolated" ] }
0001101_page09
{ "latex": [ "$\\eta $", "$F_{2}$", "$\\tau _{B}$", "$\\cS $", "$\\cE $", "$\\eta $", "$\\cS $", "$\\cE $", "$\\eta $", "$\\tau _{B}(\\eta )=\\eta $", "$\\eta $", "$\\l $", "$\\k _{i}$", "$\\l $", "$\\k _i$", "$i=1,\\dots ,4\\eta \\cdot c_1$", "$\\sum _i\\k _i^2$", "$\\sum _i\\k _i=\\eta \\cdot c_1$", "$n=5$", "$n=5$", "$W$", "$[W]$", "$c$", "$d$", "$F-N$", "$N$", "$k$", "\\begin {equation} \\tau _B(\\cS ) = \\cS , \\qquad \\tau _B(\\cE ) = \\cE . \\label {eq:hello} \\end {equation}", "\\begin {equation} \\begin {aligned} \\text {solution 1:} & \\quad \\eta = 14\\mathcal {S} + 22\\mathcal {E}, \\quad \\l = \\sfrac {3}{2}, \\\\ {}& \\sum _i\\k _i = \\eta \\cdot c_1 = 44, \\quad \\sum _i \\k _i^2 \\leq 60 , \\\\ \\text {solution 2:} & \\quad \\eta = 24\\mathcal {S} + 30\\mathcal {E}, \\quad \\l = -\\sfrac {1}{2}, \\\\ {}& \\sum _i\\k _i = \\eta \\cdot c_1 = 60, \\quad \\sum _i \\k _i^2 \\leq 76 . \\end {aligned} \\label {solF2} \\end {equation}", "\\begin {equation} \\begin {aligned} \\text {solution 1:} \\quad & [W] = \\s _{*}\\left (10\\cS +26\\cE \\right ) + \\left (112-k\\right )\\left (F-N\\right ) + \\left (60-k\\right ) N, \\\\ \\text {solution 2:} \\quad & [W] = \\s _{*}\\left (18\\cE \\right ) + \\left (132-k\\right )\\left (F-N\\right ) + \\left (76-k\\right ) N, \\end {aligned} \\label {eq:branes} \\end {equation}", "\\begin {equation} k = \\sum _i \\k _i^2 \\end {equation}", "\\begin {equation} \\begin {aligned} \\text {solution 1:} \\quad & W_{B} = 10\\cS + 26\\cE , \\\\ \\text {solution 2:} \\quad & W_{B} = 18\\cE , \\end {aligned} \\end {equation}" ], "latex_norm": [ "$ \\eta $", "$ F _ { 2 } $", "$ \\tau _ { B } $", "$ S $", "$ E $", "$ \\eta $", "$ S $", "$ E $", "$ \\eta $", "$ \\tau _ { B } ( \\eta ) = \\eta $", "$ \\eta $", "$ \\lambda $", "$ \\kappa _ { i } $", "$ \\lambda $", "$ \\kappa _ { i } $", "$ i = 1 , \\ldots , 4 \\eta \\cdot c _ { 1 } $", "$ \\sum _ { i } \\kappa _ { i } ^ { 2 } $", "$ \\sum _ { i } \\kappa _ { i } = \\eta \\cdot c _ { 1 } $", "$ n = 5 $", "$ n = 5 $", "$ W $", "$ [ W ] $", "$ c $", "$ d $", "$ F - N $", "$ N $", "$ k $", "\\begin{equation*} \\tau _ { B } ( S ) = S , \\qquad \\tau _ { B } ( E ) = E . \\end{equation*}", "\\begin{equation*} \\begin{array}{ll} s o l u t i o n ~ 1 : & \\quad \\eta = 1 4 S + 2 2 E , \\quad \\lambda = \\frac { 3 } { 2 } , \\\\ & \\sum _ { i } \\kappa _ { i } = \\eta \\cdot c _ { 1 } = 4 4 , \\quad \\sum _ { i } \\kappa _ { i } ^ { 2 } \\leq 6 0 , \\\\ s o l u t i o n ~ 2 : & \\quad \\eta = 2 4 S + 3 0 E , \\quad \\lambda = - \\frac { 1 } { 2 } , \\\\ & \\sum _ { i } \\kappa _ { i } = \\eta \\cdot c _ { 1 } = 6 0 , \\quad \\sum _ { i } \\kappa _ { i } ^ { 2 } \\leq 7 6 . \\end{array} \\end{equation*}", "\\begin{align*} \\begin{array}{ll} s o l u t i o n ~ 1 : \\quad & [ W ] = \\sigma _ { \\ast } ( 1 0 S + 2 6 E ) + ( 1 1 2 - k ) ( F - N ) + ( 6 0 - k ) N , \\\\ s o l u t i o n ~ 2 : \\quad & [ W ] = \\sigma _ { \\ast } ( 1 8 E ) + ( 1 3 2 - k ) ( F - N ) + ( 7 6 - k ) N , \\end{array} \\end{align*}", "\\begin{equation*} k = \\sum _ { i } \\kappa _ { i } ^ { 2 } \\end{equation*}", "\\begin{align*} \\begin{array}{ll} s o l u t i o n ~ 1 : \\quad & W _ { B } = 1 0 S + 2 6 E , \\\\ s o l u t i o n ~ 2 : \\quad & W _ { B } = 1 8 E , \\end{array} \\end{align*}" ], "latex_expand": [ "$ \\miteta $", "$ \\mitF _ { 2 } $", "$ \\mittau _ { \\mitB } $", "$ \\mscrS $", "$ \\mscrE $", "$ \\miteta $", "$ \\mscrS $", "$ \\mscrE $", "$ \\miteta $", "$ \\mittau _ { \\mitB } ( \\miteta ) = \\miteta $", "$ \\miteta $", "$ \\mitlambda $", "$ \\mitkappa _ { \\miti } $", "$ \\mitlambda $", "$ \\mitkappa _ { \\miti } $", "$ \\miti = 1 , \\ldots , 4 \\miteta \\cdot \\mitc _ { 1 } $", "$ \\sum _ { \\miti } \\mitkappa _ { \\miti } ^ { 2 } $", "$ \\sum _ { \\miti } \\mitkappa _ { \\miti } = \\miteta \\cdot \\mitc _ { 1 } $", "$ \\mitn = 5 $", "$ \\mitn = 5 $", "$ \\mitW $", "$ [ \\mitW ] $", "$ \\mitc $", "$ \\mitd $", "$ \\mitF - \\mitN $", "$ \\mitN $", "$ \\mitk $", "\\begin{equation*} \\displaystyle \\mittau _ { \\mitB } ( \\mscrS ) = \\mscrS , \\qquad \\mittau _ { \\mitB } ( \\mscrE ) = \\mscrE . \\end{equation*}", "\\begin{equation*} \\begin{array}{ll} \\mathrm { so l u t i o n ~ 1 } : & \\quad \\miteta = 1 4 \\mscrS + 2 2 \\mscrE , \\quad \\mitlambda = { \\textstyle \\frac { 3 } { 2 } } , \\\\ & \\sum \\limits _ { \\miti } \\mitkappa _ { \\miti } = \\miteta \\cdot \\mitc _ { 1 } = 4 4 , \\quad \\sum \\limits _ { \\miti } \\mitkappa _ { \\miti } ^ { 2 } \\leq 6 0 , \\\\ \\mathrm { s o l u t i o n ~ 2 } : & \\quad \\miteta = 2 4 \\mscrS + 3 0 \\mscrE , \\quad \\mitlambda = - { \\textstyle \\frac { 1 } { 2 } } , \\\\ & \\sum \\limits _ { \\miti } \\mitkappa _ { \\miti } = \\miteta \\cdot \\mitc _ { 1 } = 6 0 , \\quad \\sum \\limits _ { \\miti } \\mitkappa _ { \\miti } ^ { 2 } \\leq 7 6 . \\end{array} \\end{equation*}", "\\begin{align*} \\begin{array}{ll} \\mathrm { s o l u t i o n ~ 1 } : \\quad & [ \\mitW ] = \\mitsigma _ { \\ast } \\left( 1 0 \\mscrS + 2 6 \\mscrE \\right) + \\left( 1 1 2 - \\mitk \\right) \\left( \\mitF - \\mitN \\right) + \\left( 6 0 - \\mitk \\right) \\mitN , \\\\ \\mathrm { s o l u t i o n ~ 2 } : \\quad & [ \\mitW ] = \\mitsigma _ { \\ast } \\left( 1 8 \\mscrE \\right) + \\left( 1 3 2 - \\mitk \\right) \\left( \\mitF - \\mitN \\right) + \\left( 7 6 - \\mitk \\right) \\mitN , \\end{array} \\end{align*}", "\\begin{equation*} \\mitk = \\sum _ { \\miti } \\mitkappa _ { \\miti } ^ { 2 } \\end{equation*}", "\\begin{align*} \\begin{array}{ll} \\mathrm { s o l u t i o n ~ 1 } : \\quad & \\mitW _ { \\mitB } = 1 0 \\mscrS + 2 6 \\mscrE , \\\\ \\mathrm { s o l u t i o n ~ 2 } : \\quad & \\mitW _ { \\mitB } = 1 8 \\mscrE , \\end{array} \\end{align*}" ], "x_min": [ 0.4174000024795532, 0.4553999900817871, 0.802299976348877, 0.32899999618530273, 0.3828999996185303, 0.24529999494552612, 0.46790000796318054, 0.5217999815940857, 0.7415000200271606, 0.8238000273704529, 0.3352000117301941, 0.35589998960494995, 0.4077000021934509, 0.4097999930381775, 0.31029999256134033, 0.37599998712539673, 0.23360000550746918, 0.5210999846458435, 0.20180000364780426, 0.6212999820709229, 0.6607000231742859, 0.4422999918460846, 0.760200023651123, 0.8065000176429749, 0.19900000095367432, 0.2922999858856201, 0.8238000273704529, 0.40639999508857727, 0.33379998803138733, 0.2370000034570694, 0.47269999980926514, 0.3917999863624573 ], "y_min": [ 0.11230000108480453, 0.10890000313520432, 0.11230000108480453, 0.1509000062942505, 0.1509000062942505, 0.21969999372959137, 0.21629999577999115, 0.2168000042438507, 0.21969999372959137, 0.21580000221729279, 0.24070000648498535, 0.23729999363422394, 0.24070000648498535, 0.41359999775886536, 0.43799999356269836, 0.4350999891757965, 0.4535999894142151, 0.4546000063419342, 0.4771000146865845, 0.5185999870300293, 0.5390999913215637, 0.6958000063896179, 0.7842000126838684, 0.7807999849319458, 0.801800012588501, 0.801800012588501, 0.801800012588501, 0.17970000207424164, 0.2797999978065491, 0.5791000127792358, 0.6538000106811523, 0.7188000082969666 ], "x_max": [ 0.4277999997138977, 0.47540000081062317, 0.8230000138282776, 0.34209999442100525, 0.3953000009059906, 0.2549999952316284, 0.48100000619888306, 0.5335000157356262, 0.7519000172615051, 0.9025999903678894, 0.3456000089645386, 0.367000013589859, 0.4242999851703644, 0.42089998722076416, 0.32690000534057617, 0.5087000131607056, 0.28130000829696655, 0.6288999915122986, 0.2515999972820282, 0.6765999794006348, 0.6807000041007996, 0.47269999980926514, 0.7684999704360962, 0.8169000148773193, 0.2515000104904175, 0.30959999561309814, 0.8342000246047974, 0.6248000264167786, 0.6973000168800354, 0.7940000295639038, 0.5583999752998352, 0.63919997215271 ], "y_max": [ 0.12110000103712082, 0.1200999990105629, 0.12060000002384186, 0.16019999980926514, 0.16019999980926514, 0.22849999368190765, 0.22609999775886536, 0.22609999775886536, 0.22849999368190765, 0.22949999570846558, 0.24950000643730164, 0.24709999561309814, 0.24899999797344208, 0.42340001463890076, 0.4458000063896179, 0.44679999351501465, 0.46869999170303345, 0.46880000829696655, 0.48590001463890076, 0.527899980545044, 0.5489000082015991, 0.7095000147819519, 0.7904999852180481, 0.7906000018119812, 0.8125, 0.8116000294685364, 0.8111000061035156, 0.19629999995231628, 0.4004000127315521, 0.6284000277519226, 0.6884999871253967, 0.7681000232696533 ], "expr_type": [ "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "isolated", "isolated", "isolated", "isolated", "isolated" ] }
0001101_page10
{ "latex": [ "$n=5$", "$\\eta > 5c_{1}$", "$\\eta $", "$c_{1}$", "$B=F_{2}$", "$Z$", "$\\pi _{1}(Z)=\\ZZ _{2}$", "$V_{Z}$", "$N=1$", "$H=SU(5)$", "$\\pi _{1}(Z)=\\ZZ _{2}$", "$Z$", "\\begin {equation} \\eta > 5c_1 = 10\\cS +20\\cE \\end {equation}", "\\begin {equation} SU(5) \\rightarrow SU(3)_{C} \\times SU(2)_{L} \\times U(1)_{Y} , \\end {equation}" ], "latex_norm": [ "$ n = 5 $", "$ \\eta > 5 c _ { 1 } $", "$ \\eta $", "$ c _ { 1 } $", "$ B = F _ { 2 } $", "$ Z $", "$ \\pi _ { 1 } ( Z ) = Z _ { 2 } $", "$ V _ { Z } $", "$ N = 1 $", "$ H = S U ( 5 ) $", "$ \\pi _ { 1 } ( Z ) = Z _ { 2 } $", "$ Z $", "\\begin{equation*} \\eta > 5 c _ { 1 } = 1 0 S + 2 0 E \\end{equation*}", "\\begin{equation*} S U ( 5 ) \\rightarrow S U ( 3 ) _ { C } \\times S U ( 2 ) _ { L } \\times U ( 1 ) _ { Y } , \\end{equation*}" ], "latex_expand": [ "$ \\mitn = 5 $", "$ \\miteta > 5 \\mitc _ { 1 } $", "$ \\miteta $", "$ \\mitc _ { 1 } $", "$ \\mitB = \\mitF _ { 2 } $", "$ \\mitZ $", "$ \\mitpi _ { 1 } ( \\mitZ ) = \\BbbZ _ { 2 } $", "$ \\mitV _ { \\mitZ } $", "$ \\mitN = 1 $", "$ \\mitH = \\mitS \\mitU ( 5 ) $", "$ \\mitpi _ { 1 } ( \\mitZ ) = \\BbbZ _ { 2 } $", "$ \\mitZ $", "\\begin{equation*} \\miteta > 5 \\mitc _ { 1 } = 1 0 \\mscrS + 2 0 \\mscrE \\end{equation*}", "\\begin{equation*} \\mitS \\mitU ( 5 ) \\rightarrow \\mitS \\mitU ( 3 ) _ { \\mitC } \\times \\mitS \\mitU ( 2 ) _ { \\mitL } \\times \\mitU ( 1 ) _ { \\mitY } , \\end{equation*}" ], "x_min": [ 0.3310000002384186, 0.652400016784668, 0.41530001163482666, 0.46720001101493835, 0.489300012588501, 0.21289999783039093, 0.6931999921798706, 0.6247000098228455, 0.8568999767303467, 0.8162000179290771, 0.4235999882221222, 0.4036000072956085, 0.43050000071525574, 0.3614000082015991 ], "y_min": [ 0.10939999669790268, 0.10939999669790268, 0.20309999585151672, 0.20309999585151672, 0.2206999957561493, 0.24169999361038208, 0.24070000648498535, 0.2831999957561493, 0.2831999957561493, 0.3037000000476837, 0.32420000433921814, 0.43309998512268066, 0.14749999344348907, 0.3540000021457672 ], "x_max": [ 0.382099986076355, 0.7181000113487244, 0.42570000886917114, 0.4837999939918518, 0.5486999750137329, 0.227400004863739, 0.7919999957084656, 0.6467999815940857, 0.9079999923706055, 0.9081000089645386, 0.5148000121116638, 0.4180999994277954, 0.6004999876022339, 0.6661999821662903 ], "y_max": [ 0.11869999766349792, 0.12110000103712082, 0.211899995803833, 0.21089999377727509, 0.23190000653266907, 0.25099998712539673, 0.25440001487731934, 0.29490000009536743, 0.2930000126361847, 0.31690001487731934, 0.3379000127315521, 0.4424000084400177, 0.16259999573230743, 0.3711000084877014 ], "expr_type": [ "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "isolated", "isolated" ] }
0001113_page02
{ "latex": [ "$F_{MN}=\\partial _MA_N-\\partial _NA_M$", "$D_M \\phi =\\partial _M +ieA_M$", "$A(r)$", "$\\varphi (r)$", "$O(\\epsilon )$", "$(\\epsilon =1/\\sqrt {a})$", "$(X^5,X^6)$", "$(X^0-X^3)$", "$a$", "$R<<a$", "$A_M^0$", "$\\phi ^0$", "$X^M=Y^M(\\xi ^\\mu )$", "$(\\mu =0-3)$", "$x^M$", "$X^M$", "$n_m^M$", "$\\Psi _i$", "$\\Psi _f$", "\\begin {equation} {\\cal L}=-{1\\over 4}F_{MN}F^{MN}+D_M\\phi ^\\dagger D^M\\phi +a|\\phi |^2-b|\\phi |^4 +c \\label {1} \\end {equation}", "\\begin {equation} A_M=\\epsilon _{0123MN}A(r)X^N/r,\\ \\phi =\\varphi (r)e^{in\\theta },\\ (r^2=(x^5)^2+(x^6)^2) \\label {2} \\end {equation}", "\\begin {eqnarray}\\displaystyle &-\\frac {1}{r}\\frac {d}{dr}\\left (r{d \\over dr}\\varphi \\right ) +\\left [\\left ({n \\over r}+eA\\right )^2-a+2b\\varphi ^2\\right ]\\varphi =0\\cr &-{d \\over dr}\\left ({1\\over r}{d \\over dr}rA\\right ) +\\varphi ^2\\left (e^2A^2+{en \\over r}\\right )=0 \\end {eqnarray}", "\\begin {equation} X^M=Y^M(x^\\mu )+n_m^M x^m,\\ \\ (M=0-3,5,6,\\ \\mu =0-3,\\ m=5,6) \\label {4} \\end {equation}", "\\begin {equation} A_M^0=\\epsilon _{0123MN}A(r)x^N/r,\\ \\phi ^0=\\varphi (r)e^{in\\theta }.\\ (r^2=x^m x^m) \\label {5} \\end {equation}", "\\begin {equation} S_{fi}=\\int \\prod _{X^M}dA_Md\\phi d\\phi ^\\dagger \\exp \\left [i\\int {\\cal L}d^6X \\right ]\\Psi _f^*\\Psi _i\\prod _{X^M}\\delta (\\partial _MA^M) \\label {6} \\end {equation}" ], "latex_norm": [ "$ F _ { M N } = \\partial _ { M } A _ { N } - \\partial _ { N } A _ { M } $", "$ D _ { M } \\phi = \\partial _ { M } + i e A _ { M } $", "$ A ( r ) $", "$ \\varphi ( r ) $", "$ O ( \\epsilon ) $", "$ ( \\epsilon = 1 \\slash \\sqrt { a } ) $", "$ ( X ^ { 5 } , X ^ { 6 } ) $", "$ ( X ^ { 0 } - X ^ { 3 } ) $", "$ a $", "$ R < < a $", "$ A _ { M } ^ { 0 } $", "$ \\phi ^ { 0 } $", "$ X ^ { M } = Y ^ { M } ( \\xi ^ { \\mu } ) $", "$ ( \\mu = 0 - 3 ) $", "$ x ^ { M } $", "$ X ^ { M } $", "$ n _ { m } ^ { M } $", "$ \\Psi _ { i } $", "$ \\Psi _ { f } $", "\\begin{equation*} L = - \\frac { 1 } { 4 } F _ { M N } F ^ { M N } + D _ { M } \\phi ^ { \\dagger } D ^ { M } \\phi + a \\vert \\phi \\vert ^ { 2 } - b \\vert \\phi \\vert ^ { 4 } + c \\end{equation*}", "\\begin{equation*} A _ { M } = \\epsilon _ { 0 1 2 3 M N } A ( r ) X ^ { N } \\slash r , ~ \\phi = \\varphi ( r ) e ^ { i n \\theta } , ~ ( r ^ { 2 } = ( x ^ { 5 } ) ^ { 2 } + ( x ^ { 6 } ) ^ { 2 } ) \\end{equation*}", "\\begin{align*} & - \\frac { 1 } { r } \\frac { d } { d r } ( r \\frac { d } { d r } \\varphi ) + [ { ( \\frac { n } { r } + e A ) } ^ { 2 } - a + 2 b \\varphi ^ { 2 } ] \\varphi = 0 \\\\ & - \\frac { d } { d r } ( \\frac { 1 } { r } \\frac { d } { d r } r A ) + \\varphi ^ { 2 } ( e ^ { 2 } A ^ { 2 } + \\frac { e n } { r } ) = 0 \\end{align*}", "\\begin{equation*} X ^ { M } = Y ^ { M } ( x ^ { \\mu } ) + n _ { m } ^ { M } x ^ { m } , ~ ~ ( M = 0 - 3 , 5 , 6 , ~ \\mu = 0 - 3 , ~ m = 5 , 6 ) \\end{equation*}", "\\begin{equation*} A _ { M } ^ { 0 } = \\epsilon _ { 0 1 2 3 M N } A ( r ) x ^ { N } \\slash r , ~ \\phi ^ { 0 } = \\varphi ( r ) e ^ { i n \\theta } . ~ ( r ^ { 2 } = x ^ { m } x ^ { m } ) \\end{equation*}", "\\begin{equation*} S _ { f i } = \\int \\prod _ { X ^ { M } } d A _ { M } d \\phi d \\phi ^ { \\dagger } \\operatorname { e x p } [ i \\int L d ^ { 6 } X ] \\Psi _ { f } ^ { \\ast } \\Psi _ { i } \\prod _ { X ^ { M } } \\delta ( \\partial _ { M } A ^ { M } ) \\end{equation*}" ], "latex_expand": [ "$ \\mitF _ { \\mitM \\mitN } = \\mitpartial _ { \\mitM } \\mitA _ { \\mitN } - \\mitpartial _ { \\mitN } \\mitA _ { \\mitM } $", "$ \\mitD _ { \\mitM } \\mitphi = \\mitpartial _ { \\mitM } + \\miti \\mite \\mitA _ { \\mitM } $", "$ \\mitA ( \\mitr ) $", "$ \\mitvarphi ( \\mitr ) $", "$ \\mitO ( \\mitepsilon ) $", "$ ( \\mitepsilon = 1 \\slash \\sqrt { \\mita } ) $", "$ ( \\mitX ^ { 5 } , \\mitX ^ { 6 } ) $", "$ ( \\mitX ^ { 0 } - \\mitX ^ { 3 } ) $", "$ \\mita $", "$ \\mitR < < \\mita $", "$ \\mitA _ { \\mitM } ^ { 0 } $", "$ \\mitphi ^ { 0 } $", "$ \\mitX ^ { \\mitM } = \\mitY ^ { \\mitM } ( \\mitxi ^ { \\mitmu } ) $", "$ ( \\mitmu = 0 - 3 ) $", "$ \\mitx ^ { \\mitM } $", "$ \\mitX ^ { \\mitM } $", "$ \\mitn _ { \\mitm } ^ { \\mitM } $", "$ \\mupPsi _ { \\miti } $", "$ \\mupPsi _ { \\mitf } $", "\\begin{equation*} \\mitL = - \\frac { 1 } { 4 } \\mitF _ { \\mitM \\mitN } \\mitF ^ { \\mitM \\mitN } + \\mitD _ { \\mitM } \\mitphi ^ { \\dagger } \\mitD ^ { \\mitM } \\mitphi + \\mita \\vert \\mitphi \\vert ^ { 2 } - \\mitb \\vert \\mitphi \\vert ^ { 4 } + \\mitc \\end{equation*}", "\\begin{equation*} \\mitA _ { \\mitM } = \\mitepsilon _ { 0 1 2 3 \\mitM \\mitN } \\mitA ( \\mitr ) \\mitX ^ { \\mitN } \\slash \\mitr , ~ \\mitphi = \\mitvarphi ( \\mitr ) \\mite ^ { \\miti \\mitn \\mittheta } , ~ ( \\mitr ^ { 2 } = ( \\mitx ^ { 5 } ) ^ { 2 } + ( \\mitx ^ { 6 } ) ^ { 2 } ) \\end{equation*}", "\\begin{align*} & - \\frac { 1 } { \\mitr } \\frac { \\mitd } { \\mitd \\mitr } \\left( \\mitr \\frac { \\mitd } { \\mitd \\mitr } \\mitvarphi \\right) + \\left[ { \\left( \\frac { \\mitn } { \\mitr } + \\mite \\mitA \\right) } ^ { 2 } - \\mita + 2 \\mitb \\mitvarphi ^ { 2 } \\right] \\mitvarphi = 0 \\\\ & - \\frac { \\mitd } { \\mitd \\mitr } \\left( \\frac { 1 } { \\mitr } \\frac { \\mitd } { \\mitd \\mitr } \\mitr \\mitA \\right) + \\mitvarphi ^ { 2 } \\left( \\mite ^ { 2 } \\mitA ^ { 2 } + \\frac { \\mite \\mitn } { \\mitr } \\right) = 0 \\end{align*}", "\\begin{equation*} \\mitX ^ { \\mitM } = \\mitY ^ { \\mitM } ( \\mitx ^ { \\mitmu } ) + \\mitn _ { \\mitm } ^ { \\mitM } \\mitx ^ { \\mitm } , ~ ~ ( \\mitM = 0 - 3 , 5 , 6 , ~ \\mitmu = 0 - 3 , ~ \\mitm = 5 , 6 ) \\end{equation*}", "\\begin{equation*} \\mitA _ { \\mitM } ^ { 0 } = \\mitepsilon _ { 0 1 2 3 \\mitM \\mitN } \\mitA ( \\mitr ) \\mitx ^ { \\mitN } \\slash \\mitr , ~ \\mitphi ^ { 0 } = \\mitvarphi ( \\mitr ) \\mite ^ { \\miti \\mitn \\mittheta } . ~ ( \\mitr ^ { 2 } = \\mitx ^ { \\mitm } \\mitx ^ { \\mitm } ) \\end{equation*}", "\\begin{equation*} \\mitS _ { \\mitf \\miti } = \\int \\prod _ { \\mitX ^ { \\mitM } } \\mitd \\mitA _ { \\mitM } \\mitd \\mitphi \\mitd \\mitphi ^ { \\dagger } \\operatorname { e x p } \\left[ \\miti \\int \\mitL \\mitd ^ { 6 } \\mitX \\right] \\mupPsi _ { \\mitf } ^ { \\ast } \\mupPsi _ { \\miti } \\prod _ { \\mitX ^ { \\mitM } } \\mitdelta ( \\mitpartial _ { \\mitM } \\mitA ^ { \\mitM } ) \\end{equation*}" ], "x_min": [ 0.13410000503063202, 0.3808000087738037, 0.13410000503063202, 0.2184000015258789, 0.4706000089645386, 0.5162000060081482, 0.07739999890327454, 0.515500009059906, 0.7753999829292297, 0.29580000042915344, 0.8568999767303467, 0.1160999983549118, 0.43470001220703125, 0.5687999725341797, 0.17419999837875366, 0.13199999928474426, 0.44440001249313354, 0.46720001101493835, 0.532800018787384, 0.2639999985694885, 0.22390000522136688, 0.28769999742507935, 0.2046000063419342, 0.2549999952316284, 0.23639999330043793 ], "y_min": [ 0.47850000858306885, 0.47850000858306885, 0.5346999764442444, 0.5346999764442444, 0.625, 0.6240000128746033, 0.6410999894142151, 0.6410999894142151, 0.6464999914169312, 0.6601999998092651, 0.6586999893188477, 0.6758000254631042, 0.6753000020980835, 0.6762999892234802, 0.6923999786376953, 0.7490000128746033, 0.7490000128746033, 0.8246999979019165, 0.8246999979019165, 0.4336000084877014, 0.5009999871253967, 0.5590999722480774, 0.7167999744415283, 0.7904999852180481, 0.8471999764442444 ], "x_max": [ 0.33660000562667847, 0.5486999750137329, 0.17419999837875366, 0.2563999891281128, 0.5092999935150146, 0.6150000095367432, 0.15410000085830688, 0.6053000092506409, 0.7864999771118164, 0.367000013589859, 0.8880000114440918, 0.13609999418258667, 0.5626000165939331, 0.6682999730110168, 0.20180000364780426, 0.16660000383853912, 0.47269999980926514, 0.4885999858379364, 0.557699978351593, 0.703499972820282, 0.7436000108718872, 0.682200014591217, 0.763700008392334, 0.7124999761581421, 0.7311999797821045 ], "y_max": [ 0.4912000000476837, 0.4916999936103821, 0.5493000149726868, 0.5493000149726868, 0.6395999789237976, 0.6395999789237976, 0.6567000150680542, 0.6567000150680542, 0.6532999873161316, 0.6704999804496765, 0.673799991607666, 0.6904000043869019, 0.6909000277519226, 0.6909000277519226, 0.7045999765396118, 0.7612000107765198, 0.7645999789237976, 0.836899995803833, 0.8389000296592712, 0.46630001068115234, 0.5210000276565552, 0.6136999726295471, 0.7368000149726868, 0.8100000023841858, 0.8858000040054321 ], "expr_type": [ "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "isolated", "isolated", "isolated", "isolated", "isolated", "isolated" ] }
0001113_page03
{ "latex": [ "$C^M(\\xi ^\\mu )$", "$|\\widetilde \\phi |^2$", "$(\\widetilde \\phi =\\phi -\\sqrt {a/2b})$", "$N(\\xi ^\\mu )$", "$x^\\mu =\\xi ^\\mu $", "$\\prod _{X_{/\\!/}}$", "$\\xi ^\\mu $", "$x^M$", "$A_M$", "$\\phi $", "$B_{\\bar N}= A_{\\bar N}-A^0_{\\bar N}$", "$\\sigma =\\phi -\\phi ^0$", "$\\widetilde C^\\mu =0$", "$V^{\\bar N M}$", "$g^{LM}$", "$\\nabla _M$", "$D_M^0=\\nabla _M+ieA_M^0$", "$J_0=\\int |\\widetilde \\phi ^0|^2dx^5dx^6$", "${\\cal L}_2$", "$|\\phi ^0|^2$", "$g_{m\\mu }=O(R/a)<<1$", "$g_{mn}=-\\delta _{mn}+O(R/a)$", "$B_{\\bar M}$", "$B_{\\bar \\mu }$", "$B_{\\bar m}$", "$S^{\\rm eff}$", "$\\delta $", "$\\delta =\\int dk e^{ikx}$", "\\begin {equation} 1=\\int \\prod _{X_{/\\!/}}dY^M(\\xi ^\\mu )\\delta \\left (Y^M(\\xi ^\\mu )-C^M(\\xi ^\\mu )\\right ) \\label {7} \\end {equation}", "\\begin {equation} C^M(\\xi ^\\mu )=\\int _{N(\\xi ^\\mu )} X^M |\\widetilde \\phi |^2 d^2X_{\\perp }\\Bigg / \\int _{N(\\xi ^\\mu )} |\\widetilde \\phi |^2 d^2X_{\\perp } \\label {8} \\end {equation}", "\\begin {equation} S_{fi}=\\int \\prod _{X_{/\\!/}}dY^M\\prod _{X^M}dB_{\\bar N} d\\sigma d\\sigma ^\\dagger \\delta (\\sqrt {-g} \\nabla _{\\bar N}B^{\\bar N} \\prod _{X_{/\\!/}}\\delta (\\widetilde C^M) \\exp \\left [i\\int \\left ({\\cal L}_0+{\\cal L}_1 \\right )\\sqrt {-g}d^6x\\right ]\\Psi _f^*\\Psi _i \\label {9} \\end {equation}", "\\begin {eqnarray} {\\cal L}_0 &=& {\\cal L}(\\phi =\\phi _0, A_M=A_M^0) \\\\ {\\cal L}_2 &=& -\\frac {1}{2}g^{LM}\\nabla _L B_{\\bar N} \\nabla _M B^{\\bar N} +B_{\\bar N} B^{\\bar N} e^2 |\\phi ^0|^2 +g^{LM}(D_L^0\\sigma )^\\dagger (D_M^0\\sigma )\\cr &&-4ieV^{\\bar N M} B_{\\bar N} {\\rm Im} \\left ( \\sigma ^\\dagger D_M^0 \\phi ^0 \\right ) +a|\\sigma |^2 -b\\left [ 4|\\phi ^0\\sigma |^2 +2{\\rm Re}(\\sigma ^\\dagger \\phi ^0)^2\\right ], \\\\ \\widetilde C^m &=& \\int x^m |\\widetilde \\phi |^2 dx^5 dx^6 \\Bigg / \\int |\\widetilde \\phi |^2 dx^5 dx^6 \\\\ &=& \\frac {1}{J_0}\\int x^m \\left [|\\sigma |^2 + {\\rm Re}(\\widetilde \\phi ^0\\sigma ^\\dagger ) \\left \\{1-\\frac {2}{J_0}\\int {\\rm Re}(\\widetilde \\phi ^0\\sigma ^\\dagger )dx^5 dx^6\\right \\}\\right ]dx^5 dx^6, \\end {eqnarray}", "\\begin {equation} S^{\\rm eff} = -i\\ln \\int \\prod _{X^M}dB_{\\bar N} d\\sigma d\\sigma ^\\dagger \\delta \\left (\\sqrt {-g}\\nabla _{\\bar N}B^{\\bar N}\\right )\\prod _{X_{/\\!/}}\\delta (\\widetilde C^M) \\exp \\left [i\\int \\sqrt {-g}{\\cal L}_2 d^6 x \\right ]. \\label {14} \\end {equation}", "\\begin {equation} S^{\\rm eff} = -i\\ln \\int \\prod _{\\xi ^\\mu }dw_m\\prod _{x^M}dB_{\\bar M} d\\sigma d\\sigma ^\\dagger dv \\exp \\left [i\\int (\\Xi \\Phi +\\Phi ^\\dagger \\Delta \\Phi )d^6x\\right ] \\label {15} \\end {equation}" ], "latex_norm": [ "$ C ^ { M } ( \\xi ^ { \\mu } ) $", "$ \\vert \\widetilde { \\phi } \\vert ^ { 2 } $", "$ ( \\widetilde { \\phi } = \\phi - \\sqrt { a \\slash 2 b } ) $", "$ N ( \\xi ^ { \\mu } ) $", "$ x ^ { \\mu } = \\xi ^ { \\mu } $", "$ \\prod _ { X _ { \\slash \\! \\slash } } $", "$ \\xi ^ { \\mu } $", "$ x ^ { M } $", "$ A _ { M } $", "$ \\phi $", "$ B _ { \\bar { N } } = A _ { \\bar { N } } - A _ { \\bar { N } } ^ { 0 } $", "$ \\sigma = \\phi - \\phi ^ { 0 } $", "$ \\widetilde { C } ^ { \\mu } = 0 $", "$ V ^ { \\bar { N } M } $", "$ g ^ { L M } $", "$ \\nabla _ { M } $", "$ D _ { M } ^ { 0 } = \\nabla _ { M } + i e A _ { M } ^ { 0 } $", "$ J _ { 0 } = \\int \\vert \\widetilde { \\phi } ^ { 0 } \\vert ^ { 2 } d x ^ { 5 } d x ^ { 6 } $", "$ L _ { 2 } $", "$ \\vert \\phi ^ { 0 } \\vert ^ { 2 } $", "$ g _ { m \\mu } = O ( R \\slash a ) < < 1 $", "$ g _ { m n } = - \\delta _ { m n } + O ( R \\slash a ) $", "$ B _ { \\bar { M } } $", "$ B _ { \\bar { \\mu } } $", "$ B _ { \\bar { m } } $", "$ S ^ { e f f } $", "$ \\delta $", "$ \\delta = \\int d k e ^ { i k x } $", "\\begin{equation*} 1 = \\int \\prod _ { X _ { \\slash \\! \\slash } } d Y ^ { M } ( \\xi ^ { \\mu } ) \\delta ( Y ^ { M } ( \\xi ^ { \\mu } ) - C ^ { M } ( \\xi ^ { \\mu } ) ) \\end{equation*}", "\\begin{equation*} C ^ { M } ( \\xi ^ { \\mu } ) = \\int _ { N ( \\xi ^ { \\mu } ) } X ^ { M } \\vert \\widetilde { \\phi } \\vert ^ { 2 } d ^ { 2 } X _ { \\perp } \\slash \\int _ { N ( \\xi ^ { \\mu } ) } \\vert \\widetilde { \\phi } \\vert ^ { 2 } d ^ { 2 } X _ { \\perp } \\end{equation*}", "\\begin{equation*} S _ { f i } = \\int \\prod _ { X _ { \\slash \\! \\slash } } d Y ^ { M } \\prod _ { X ^ { M } } d B _ { \\bar { N } } d \\sigma d \\sigma ^ { \\dagger } \\delta ( \\sqrt { - g } \\nabla _ { \\bar { N } } B ^ { \\bar { N } } \\prod _ { X _ { \\slash \\! \\slash } } \\delta ( \\widetilde { C } ^ { M } ) \\operatorname { e x p } [ i \\int ( L _ { 0 } + L _ { 1 } ) \\sqrt { - g } d ^ { 6 } x ] \\Psi _ { f } ^ { \\ast } \\Psi _ { i } \\end{equation*}", "\\begin{align*} L _ { 0 } & = & L ( \\phi = \\phi _ { 0 } , A _ { M } = A _ { M } ^ { 0 } ) \\\\ L _ { 2 } & = & - \\frac { 1 } { 2 } g ^ { L M } \\nabla _ { L } B _ { \\bar { N } } \\nabla _ { M } B ^ { \\bar { N } } + B _ { \\bar { N } } B ^ { \\bar { N } } e ^ { 2 } \\vert \\phi ^ { 0 } \\vert ^ { 2 } + g ^ { L M } ( D _ { L } ^ { 0 } \\sigma ) ^ { \\dagger } ( D _ { M } ^ { 0 } \\sigma ) \\\\ & & - 4 i e V ^ { \\bar { N } M } B _ { \\bar { N } } I m ( \\sigma ^ { \\dagger } D _ { M } ^ { 0 } \\phi ^ { 0 } ) + a \\vert \\sigma \\vert ^ { 2 } - b [ 4 \\vert \\phi ^ { 0 } \\sigma \\vert ^ { 2 } + 2 R e ( \\sigma ^ { \\dagger } \\phi ^ { 0 } ) ^ { 2 } ] , \\\\ \\widetilde { C } ^ { m } & = & \\int x ^ { m } \\vert \\widetilde { \\phi } \\vert ^ { 2 } d x ^ { 5 } d x ^ { 6 } \\slash \\int \\vert \\widetilde { \\phi } \\vert ^ { 2 } d x ^ { 5 } d x ^ { 6 } \\\\ & = & \\frac { 1 } { J _ { 0 } } \\int x ^ { m } [ \\vert \\sigma \\vert ^ { 2 } + R e ( \\widetilde { \\phi } ^ { 0 } \\sigma ^ { \\dagger } ) \\{ 1 - \\frac { 2 } { J _ { 0 } } \\int R e ( \\widetilde { \\phi } ^ { 0 } \\sigma ^ { \\dagger } ) d x ^ { 5 } d x ^ { 6 } \\} ] d x ^ { 5 } d x ^ { 6 } , \\end{align*}", "\\begin{equation*} S ^ { e f f } = - i \\operatorname { l n } \\int \\prod _ { X ^ { M } } d B _ { \\bar { N } } d \\sigma d \\sigma ^ { \\dagger } \\delta ( \\sqrt { - g } \\nabla _ { \\bar { N } } B ^ { \\bar { N } } ) \\prod _ { X _ { \\slash \\! \\slash } } \\delta ( \\widetilde { C } ^ { M } ) \\operatorname { e x p } [ i \\int \\sqrt { - g } L _ { 2 } d ^ { 6 } x ] . \\end{equation*}", "\\begin{equation*} S ^ { e f f } = - i \\operatorname { l n } \\int \\prod _ { \\xi ^ { \\mu } } d w _ { m } \\prod _ { x ^ { M } } d B _ { \\bar { M } } d \\sigma d \\sigma ^ { \\dagger } d v \\operatorname { e x p } [ i \\int ( \\Xi \\Phi + \\Phi ^ { \\dagger } \\Delta \\Phi ) d ^ { 6 } x ] \\end{equation*}" ], "latex_expand": [ "$ \\mitC ^ { \\mitM } ( \\mitxi ^ { \\mitmu } ) $", "$ \\vert \\widetilde { \\mitphi } \\vert ^ { 2 } $", "$ ( \\widetilde { \\mitphi } = \\mitphi - \\sqrt { \\mita \\slash 2 \\mitb } ) $", "$ \\mitN ( \\mitxi ^ { \\mitmu } ) $", "$ \\mitx ^ { \\mitmu } = \\mitxi ^ { \\mitmu } $", "$ \\prod _ { \\mitX _ { \\slash \\! \\slash } } $", "$ \\mitxi ^ { \\mitmu } $", "$ \\mitx ^ { \\mitM } $", "$ \\mitA _ { \\mitM } $", "$ \\mitphi $", "$ \\mitB _ { \\bar { \\mitN } } = \\mitA _ { \\bar { \\mitN } } - \\mitA _ { \\bar { \\mitN } } ^ { 0 } $", "$ \\mitsigma = \\mitphi - \\mitphi ^ { 0 } $", "$ \\widetilde { \\mitC } ^ { \\mitmu } = 0 $", "$ \\mitV ^ { \\bar { \\mitN } \\mitM } $", "$ \\mitg ^ { \\mitL \\mitM } $", "$ \\nabla _ { \\mitM } $", "$ \\mitD _ { \\mitM } ^ { 0 } = \\nabla _ { \\mitM } + \\miti \\mite \\mitA _ { \\mitM } ^ { 0 } $", "$ \\mitJ _ { 0 } = \\int \\nolimits \\vert \\widetilde { \\mitphi } ^ { 0 } \\vert ^ { 2 } \\mitd \\mitx ^ { 5 } \\mitd \\mitx ^ { 6 } $", "$ \\mitL _ { 2 } $", "$ \\vert \\mitphi ^ { 0 } \\vert ^ { 2 } $", "$ \\mitg _ { \\mitm \\mitmu } = \\mitO ( \\mitR \\slash \\mita ) < < 1 $", "$ \\mitg _ { \\mitm \\mitn } = - \\mitdelta _ { \\mitm \\mitn } + \\mitO ( \\mitR \\slash \\mita ) $", "$ \\mitB _ { \\bar { \\mitM } } $", "$ \\mitB _ { \\bar { \\mitmu } } $", "$ \\mitB _ { \\bar { \\mitm } } $", "$ \\mitS ^ { \\mathrm { e f f } } $", "$ \\mitdelta $", "$ \\mitdelta = \\int \\nolimits \\mitd \\mitk \\mite ^ { \\miti \\mitk \\mitx } $", "\\begin{equation*} 1 = \\int \\prod _ { \\mitX _ { \\slash \\! \\slash } } \\mitd \\mitY ^ { \\mitM } ( \\mitxi ^ { \\mitmu } ) \\mitdelta \\left( \\mitY ^ { \\mitM } ( \\mitxi ^ { \\mitmu } ) - \\mitC ^ { \\mitM } ( \\mitxi ^ { \\mitmu } ) \\right) \\end{equation*}", "\\begin{equation*} \\mitC ^ { \\mitM } ( \\mitxi ^ { \\mitmu } ) = \\int _ { \\mitN ( \\mitxi ^ { \\mitmu } ) } \\mitX ^ { \\mitM } \\vert \\widetilde { \\mitphi } \\vert ^ { 2 } \\mitd ^ { 2 } \\mitX _ { \\perp } \\Biggl / \\int _ { \\mitN ( \\mitxi ^ { \\mitmu } ) } \\vert \\widetilde { \\mitphi } \\vert ^ { 2 } \\mitd ^ { 2 } \\mitX _ { \\perp } \\end{equation*}", "\\begin{equation*} \\mitS _ { \\mitf \\miti } = \\int \\prod _ { \\mitX _ { \\slash \\! \\slash } } \\mitd \\mitY ^ { \\mitM } \\prod _ { \\mitX ^ { \\mitM } } \\mitd \\mitB _ { \\bar { \\mitN } } \\mitd \\mitsigma \\mitd \\mitsigma ^ { \\dagger } \\mitdelta ( \\sqrt { - \\mitg } \\nabla _ { \\bar { \\mitN } } \\mitB ^ { \\bar { \\mitN } } \\prod _ { \\mitX _ { \\slash \\! \\slash } } \\mitdelta ( \\widetilde { \\mitC } ^ { \\mitM } ) \\operatorname { e x p } \\left[ \\miti \\int \\left( \\mitL _ { 0 } + \\mitL _ { 1 } \\right) \\sqrt { - \\mitg } \\mitd ^ { 6 } \\mitx \\right] \\mupPsi _ { \\mitf } ^ { \\ast } \\mupPsi _ { \\miti } \\end{equation*}", "\\begin{align*} \\mitL _ { 0 } & = & \\mitL ( \\mitphi = \\mitphi _ { 0 } , \\mitA _ { \\mitM } = \\mitA _ { \\mitM } ^ { 0 } ) \\\\ \\mitL _ { 2 } & = & - \\frac { 1 } { 2 } \\mitg ^ { \\mitL \\mitM } \\nabla _ { \\mitL } \\mitB _ { \\bar { \\mitN } } \\nabla _ { \\mitM } \\mitB ^ { \\bar { \\mitN } } + \\mitB _ { \\bar { \\mitN } } \\mitB ^ { \\bar { \\mitN } } \\mite ^ { 2 } \\vert \\mitphi ^ { 0 } \\vert ^ { 2 } + \\mitg ^ { \\mitL \\mitM } ( \\mitD _ { \\mitL } ^ { 0 } \\mitsigma ) ^ { \\dagger } ( \\mitD _ { \\mitM } ^ { 0 } \\mitsigma ) \\\\ & & - 4 \\miti \\mite \\mitV ^ { \\bar { \\mitN } \\mitM } \\mitB _ { \\bar { \\mitN } } \\mathrm { I m } \\left( \\mitsigma ^ { \\dagger } \\mitD _ { \\mitM } ^ { 0 } \\mitphi ^ { 0 } \\right) + \\mita \\vert \\mitsigma \\vert ^ { 2 } - \\mitb \\left[ 4 \\vert \\mitphi ^ { 0 } \\mitsigma \\vert ^ { 2 } + 2 \\mathrm { R e } ( \\mitsigma ^ { \\dagger } \\mitphi ^ { 0 } ) ^ { 2 } \\right] , \\\\ \\widetilde { \\mitC } ^ { \\mitm } & = & \\int \\mitx ^ { \\mitm } \\vert \\widetilde { \\mitphi } \\vert ^ { 2 } \\mitd \\mitx ^ { 5 } \\mitd \\mitx ^ { 6 } \\Biggl / \\int \\vert \\widetilde { \\mitphi } \\vert ^ { 2 } \\mitd \\mitx ^ { 5 } \\mitd \\mitx ^ { 6 } \\\\ & = & \\frac { 1 } { \\mitJ _ { 0 } } \\int \\mitx ^ { \\mitm } \\left[ \\vert \\mitsigma \\vert ^ { 2 } + \\mathrm { R e } ( \\widetilde { \\mitphi } ^ { 0 } \\mitsigma ^ { \\dagger } ) \\left\\{ 1 - \\frac { 2 } { \\mitJ _ { 0 } } \\int \\mathrm { R e } ( \\widetilde { \\mitphi } ^ { 0 } \\mitsigma ^ { \\dagger } ) \\mitd \\mitx ^ { 5 } \\mitd \\mitx ^ { 6 } \\right\\} \\right] \\mitd \\mitx ^ { 5 } \\mitd \\mitx ^ { 6 } , \\end{align*}", "\\begin{equation*} \\mitS ^ { \\mathrm { e f f } } = - \\miti \\operatorname { l n } \\int \\prod _ { \\mitX ^ { \\mitM } } \\mitd \\mitB _ { \\bar { \\mitN } } \\mitd \\mitsigma \\mitd \\mitsigma ^ { \\dagger } \\mitdelta \\left( \\sqrt { - \\mitg } \\nabla _ { \\bar { \\mitN } } \\mitB ^ { \\bar { \\mitN } } \\right) \\prod _ { \\mitX _ { \\slash \\! \\slash } } \\mitdelta ( \\widetilde { \\mitC } ^ { \\mitM } ) \\operatorname { e x p } \\left[ \\miti \\int \\sqrt { - \\mitg } \\mitL _ { 2 } \\mitd ^ { 6 } \\mitx \\right] . \\end{equation*}", "\\begin{equation*} \\mitS ^ { \\mathrm { e f f } } = - \\miti \\operatorname { l n } \\int \\prod _ { \\mitxi ^ { \\mitmu } } \\mitd \\mitw _ { \\mitm } \\prod _ { \\mitx ^ { \\mitM } } \\mitd \\mitB _ { \\bar { \\mitM } } \\mitd \\mitsigma \\mitd \\mitsigma ^ { \\dagger } \\mitd \\mitv \\operatorname { e x p } \\left[ \\miti \\int ( \\mupXi \\mupPhi + \\mupPhi ^ { \\dagger } \\mupDelta \\mupPhi ) \\mitd ^ { 6 } \\mitx \\right] \\end{equation*}" ], "x_min": [ 0.1348000019788742, 0.5238000154495239, 0.5619000196456909, 0.07739999890327454, 0.2881999909877777, 0.11060000211000443, 0.5555999875068665, 0.7172999978065491, 0.34279999136924744, 0.420199990272522, 0.7056000232696533, 0.07739999890327454, 0.11749999970197678, 0.8016999959945679, 0.15960000455379486, 0.373199999332428, 0.673799991607666, 0.07739999890327454, 0.40290001034736633, 0.5092999935150146, 0.7269999980926514, 0.10090000182390213, 0.349700003862381, 0.621999979019165, 0.7975000143051147, 0.13680000603199005, 0.3939000070095062, 0.5224999785423279, 0.3061999976634979, 0.27709999680519104, 0.0885000005364418, 0.16779999434947968, 0.15760000050067902, 0.20319999754428864 ], "y_min": [ 0.15719999372959137, 0.155799999833107, 0.15379999577999115, 0.17679999768733978, 0.1776999980211258, 0.2572999894618988, 0.25679999589920044, 0.27489998936653137, 0.2939000129699707, 0.29350000619888306, 0.29249998927116394, 0.30959999561309814, 0.5820000171661377, 0.5820000171661377, 0.600600004196167, 0.6025000214576721, 0.6011000275611877, 0.6161999702453613, 0.6195999979972839, 0.6352999806404114, 0.635699987411499, 0.6532999873161316, 0.6542999744415283, 0.6542999744415283, 0.6542999744415283, 0.7378000020980835, 0.8217999935150146, 0.8198000192642212, 0.09960000216960907, 0.20309999585151672, 0.3353999853134155, 0.4180000126361847, 0.76419997215271, 0.8467000126838684 ], "x_max": [ 0.20110000669956207, 0.5548999905586243, 0.7098000049591064, 0.1298999935388565, 0.3544999957084656, 0.15070000290870667, 0.574999988079071, 0.7448999881744385, 0.37389999628067017, 0.4325999915599823, 0.8486999869346619, 0.1720999926328659, 0.1859000027179718, 0.8465999960899353, 0.19619999825954437, 0.40639999508857727, 0.8424000144004822, 0.23909999430179596, 0.42500001192092896, 0.5486999750137329, 0.9031999707221985, 0.302700012922287, 0.3815000057220459, 0.6468999981880188, 0.8264999985694885, 0.1665000021457672, 0.4043000042438507, 0.6248000264167786, 0.6586999893188477, 0.6904000043869019, 0.854200005531311, 0.7957000136375427, 0.810699999332428, 0.7616000175476074 ], "y_max": [ 0.17329999804496765, 0.17339999973773956, 0.17630000412464142, 0.19189999997615814, 0.19089999794960022, 0.27390000224113464, 0.27000001072883606, 0.2870999872684479, 0.3061000108718872, 0.30720001459121704, 0.3086000084877014, 0.32420000433921814, 0.5957000255584717, 0.5957000255584717, 0.6157000064849854, 0.6151999831199646, 0.6166999936103821, 0.6338000297546387, 0.6323000192642212, 0.6509000062942505, 0.6513000130653381, 0.667900025844574, 0.6675000190734863, 0.6685000061988831, 0.6664999723434448, 0.7505000233650208, 0.832099974155426, 0.8349000215530396, 0.13920000195503235, 0.24220000207424164, 0.3763999938964844, 0.5687000155448914, 0.8051999807357788, 0.8858000040054321 ], "expr_type": [ "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "isolated", "isolated", "isolated", "isolated", "isolated", "isolated" ] }
0001113_page04
{ "latex": [ "$\\delta ^m$", "$B_{\\bar N}$", "$\\sigma $", "$\\sigma ^\\dagger $", "$v$", "$\\Xi _0=\\Xi |_{v=0}$", "$S^{\\rm eff}$", "$h^{MN}=g^{MN}-\\eta ^{MN}$", "$\\eta ^{MN}={\\rm diag}(1,-1,-1,-1,-1,-1)$", "$w$", "$\\Delta |_{h^{MN}=0,w=0}\\equiv \\Delta _0$", "$\\Delta _0$", "$\\Delta _0^{\\rm sp}$", "$\\Delta _0^{\\rm ex}$", "$x^\\mu $", "$x^m$", "$\\Delta _0$", "$\\Delta _0^{\\rm V}$", "$\\Delta _0^{\\rm S}$", "$B^\\mu $", "$(S^{(1)},S^{(2)},S^{(3)},S^{(4)})=(B^5,B^6,\\sigma ,\\sigma ^\\dagger )$", "$\\square \\,= \\eta ^{\\mu \\nu }\\partial _\\mu \\partial _\\nu $", "$V_k$", "$S_k^{(0)}$", "${m_k}^2$", "${m'_k}^2$", "$\\Delta _{\\rm int}$", "$\\Delta '_{\\rm int}$", "$h^{\\mu \\nu }$", "$w$", "\\begin {eqnarray} &&\\hskip -5mm \\Phi ^\\dagger =(B^{\\bar M},\\sigma ,\\sigma ^\\dagger ), \\\\ &&\\hskip -5mm \\Xi =\\sqrt {-g}(\\nabla _{\\bar M}v, \\ w_m x^m \\widetilde \\phi ^{0\\dagger }/J_0, \\ w_m x^m \\widetilde \\phi ^0/J_0), \\\\ &&\\hskip -5mm \\Delta =\\sqrt {-g} \\\\ &&\\hskip-5mm \\times \\begin{pmatrix} \\hskip-1mm \\eta _{\\bar M \\bar N}\\left (\\frac {1}{2}\\nabla _L\\nabla ^L+e^2|\\phi ^0|^2\\right ) & ieD_{\\bar M}^0\\phi ^{0\\dagger } & -ieD_{\\bar M}^0\\phi ^{0} \\cr -ieD_{\\bar N}^0\\phi ^{0} & \\hskip -3mm\\frac {1}{2}D_L^0 D^{0L} +\\frac {a}{2}-2b|\\phi ^0|^2+\\delta _{11}^mw_m & -b(\\phi ^0)^2+\\delta _{12}^m w_m \\cr ieD_{\\bar N}^0\\phi ^{0\\dagger } & -b(\\phi ^0\\dagger )^2+\\delta _{21}^m w_m & \\hskip -3mm\\frac {1}{2}D_L^0 D^{0L} +\\frac {a}{2}-2b|\\phi ^0|^2+\\delta _{22}^mw_m \\end{pmatrix} \\end {eqnarray}", "\\begin {equation} \\delta ^m (x,x') = \\frac {1}{2J_0}x^m\\delta (x-x') +\\frac {1}{2{J_0}^2}(x^m+x'^m) \\begin{pmatrix} \\widetilde \\phi ^0(x)\\cr \\widetilde \\phi ^0(x)^\\dagger \\end{pmatrix} \\begin{pmatrix} \\widetilde \\phi ^0(x')^\\dagger &\\widetilde \\phi ^0(x') \\end{pmatrix} \\label {19} \\end {equation}", "\\begin {equation} S^{\\rm eff} = \\frac {1}{2}i{\\rm Tr}\\ln \\Delta +\\frac {1}{2}i{\\rm Tr}\\ln \\left [\\partial _M\\sqrt {-g}(\\Delta ^{-1})^{MN}\\sqrt {-g}\\partial _N\\right ] -\\frac {1}{4}\\int \\Xi _0^\\dagger \\Delta ^{-1}\\Xi _0d^6x \\label {20} \\end {equation}", "\\begin {eqnarray} &&\\hskip -13mm \\Delta _0^{\\rm V,sp}=\\frac {1}{2}\\ \\square \\,, \\ \\ \\^^M\\Delta _0^{\\rm S,sp}=\\frac {1}{2}\\ \\square \\,, \\ \\ \\^^M\\Delta _0^{\\rm V,ex}=-\\frac {1}{2}\\partial _l \\partial _l+e^2|\\phi ^0|^2, \\cr &&\\hskip -13mm \\Delta _0^{\\rm S,ex} =\\begin{pmatrix} \\left (-\\frac {1}{2}\\partial _l\\partial _l+e^2|\\phi ^0|^2\\right )\\eta _{mn} & ieD_{n}^0\\phi ^{0\\dagger } & -ieD_{n}^0\\phi ^{0} \\cr -ieD_{m}^0\\phi ^{0} & -\\frac {1}{2}D_l^0 D_l^0 +\\frac {a}{2}-b|\\phi ^0|^2 & -b(\\phi ^0)^2 \\cr ieD_{m}^0\\phi ^{0\\dagger } & -b(\\phi ^{0\\dagger })^2 & -\\frac {1}{2}D_l^0 D_l^0 +\\frac {a}{2}-b|\\phi ^0|^2 \\end{pmatrix} \\end {eqnarray}", "\\begin {eqnarray} \\left [({\\Delta _0^{\\rm V}})^{-1}\\right ]^{\\mu \\nu } &=&\\eta ^{\\mu \\nu }\\sum _{k(}\\,\\square \\,+{m_k}^2)^{-1}V_k(x^m)V_k(x'^m), \\cr \\left [({\\Delta _0^{\\rm V}})^{-1}\\right ]^{\\mu \\nu } &=&\\sum _{k(}\\,\\square \\,+{m'_k}^2)^{-1}S_k^{(a)}(x^m)S_k^{(b)}(x'^m), \\end {eqnarray}", "\\begin {equation} \\Delta _0^{\\rm V,ex} V_k = {m_k}^2 V_k, \\ \\ \\ \\^^M\\Delta _0^{{\\rm S,ex}(a)(b)} S_k^{(b)} = {m'_k}^2 S_k^{(a)}. \\label {23} \\end {equation}", "\\begin {eqnarray} &&\\hskip -10mm \\Delta =\\Delta _0(1+\\Delta _0^{-1}\\Delta _{\\rm int}), \\\\ &&\\hskip -10mm \\partial _M\\sqrt {-g}(\\Delta ^{-1})^{MN}\\sqrt {-g}\\partial _N =1+{\\Delta '_0}^{-1} +\\partial _m(\\Delta _0^{-1})^{mn}\\partial _n+\\Delta '_{\\rm int}, \\end {eqnarray}", "\\begin {equation} {\\Delta '_0}^{-1}=\\sum _k {m_k}^2(\\,\\square \\,+{m_k}^2)^{-1}V_k(x^m)V_k(x'^m). \\label {26} \\end {equation}" ], "latex_norm": [ "$ \\delta ^ { m } $", "$ B _ { \\bar { N } } $", "$ \\sigma $", "$ \\sigma ^ { \\dagger } $", "$ v $", "$ \\Xi _ { 0 } = \\Xi \\vert _ { v = 0 } $", "$ S ^ { e f f } $", "$ h ^ { M N } = g ^ { M N } - \\eta ^ { M N } $", "$ \\eta ^ { M N } = d i a g ( 1 , - 1 , - 1 , - 1 , - 1 , - 1 ) $", "$ w $", "$ \\Delta \\vert _ { h ^ { M N } = 0 , w = 0 } \\equiv \\Delta _ { 0 } $", "$ \\Delta _ { 0 } $", "$ \\Delta _ { 0 } ^ { s p } $", "$ \\Delta _ { 0 } ^ { e x } $", "$ x ^ { \\mu } $", "$ x ^ { m } $", "$ \\Delta _ { 0 } $", "$ \\Delta _ { 0 } ^ { V } $", "$ \\Delta _ { 0 } ^ { S } $", "$ B ^ { \\mu } $", "$ ( S ^ { ( 1 ) } , S ^ { ( 2 ) } , S ^ { ( 3 ) } , S ^ { ( 4 ) } ) = ( B ^ { 5 } , B ^ { 6 } , \\sigma , \\sigma ^ { \\dagger } ) $", "$ \\square \\, = \\eta ^ { \\mu \\nu } \\partial _ { \\mu } \\partial _ { \\nu } $", "$ V _ { k } $", "$ S _ { k } ^ { ( 0 ) } $", "$ { m _ { k } } ^ { 2 } $", "$ { m _ { k } ^ { \\prime } } ^ { 2 } $", "$ \\Delta _ { i n t } $", "$ \\Delta _ { i n t } ^ { \\prime } $", "$ h ^ { \\mu \\nu } $", "$ w $", "\\begin{align*} & & \\hspace{-14.23pt} \\Phi ^ { \\dagger } = ( B ^ { \\bar { M } } , \\sigma , \\sigma ^ { \\dagger } ) , \\\\ & & \\hspace{-14.23pt} \\Xi = \\sqrt { - g } ( \\nabla _ { \\bar { M } } v , ~ w _ { m } x ^ { m } \\widetilde { \\phi } ^ { 0 \\dagger } \\slash J _ { 0 } , ~ w _ { m } x ^ { m } \\widetilde { \\phi } ^ { 0 } \\slash J _ { 0 } ) , \\\\ & & \\hspace{-14.23pt} \\Delta = \\sqrt { - g } \\\\ \\hspace{-14.23pt} \\times ( \\begin{array}{ccc} \\hspace{-2.85pt} \\eta _ { \\bar { M } \\bar { N } } ( \\frac { 1 } { 2 } \\nabla _ { L } \\nabla ^ { L } + e ^ { 2 } \\vert \\phi ^ { 0 } \\vert ^ { 2 } ) & i e D _ { \\bar { M } } ^ { 0 } \\phi ^ { 0 \\dagger } & - i e D _ { \\bar { M } } ^ { 0 } \\phi ^ { 0 } \\\\ - i e D _ { \\bar { N } } ^ { 0 } \\phi ^ { 0 } & \\hspace{-8.54pt} \\frac { 1 } { 2 } D _ { L } ^ { 0 } D ^ { 0 L } + \\frac { a } { 2 } - 2 b \\vert \\phi ^ { 0 } \\vert ^ { 2 } + \\delta _ { 1 1 } ^ { m } w _ { m } & - b ( \\phi ^ { 0 } ) ^ { 2 } + \\delta _ { 1 2 } ^ { m } w _ { m } \\\\ i e D _ { \\bar { N } } ^ { 0 } \\phi ^ { 0 \\dagger } & - b ( \\phi ^ { 0 } \\dagger ) ^ { 2 } + \\delta _ { 2 1 } ^ { m } w _ { m } & \\hspace{-8.54pt} \\frac { 1 } { 2 } D _ { L } ^ { 0 } D ^ { 0 L } + \\frac { a } { 2 } - 2 b \\vert \\phi ^ { 0 } \\vert ^ { 2 } + \\delta _ { 2 2 } ^ { m } w _ { m } \\end{array} ) \\end{align*}", "\\begin{align*} \\delta ^ { m } ( x , x ^ { \\prime } ) = \\frac { 1 } { 2 J _ { 0 } } x ^ { m } \\delta ( x - x ^ { \\prime } ) + \\frac { 1 } { 2 { J _ { 0 } } ^ { 2 } } ( x ^ { m } + x ^ { \\prime m } ) ( \\begin{array}{c} \\widetilde { \\phi } ^ { 0 } ( x ) \\\\ \\widetilde { \\phi } ^ { 0 } ( x ) ^ { \\dagger } \\end{array} ) ( \\begin{array}{cc} \\widetilde { \\phi } ^ { 0 } ( x ^ { \\prime } ) ^ { \\dagger } & \\widetilde { \\phi } ^ { 0 } ( x ^ { \\prime } ) \\end{array} ) \\end{align*}", "\\begin{equation*} S ^ { e f f } = \\frac { 1 } { 2 } i T r \\operatorname { l n } \\Delta + \\frac { 1 } { 2 } i T r \\operatorname { l n } [ \\partial _ { M } \\sqrt { - g } ( \\Delta ^ { - 1 } ) ^ { M N } \\sqrt { - g } \\partial _ { N } ] - \\frac { 1 } { 4 } \\int \\Xi _ { 0 } ^ { \\dagger } \\Delta ^ { - 1 } \\Xi _ { 0 } d ^ { 6 } x \\end{equation*}", "\\begin{align*} & \\hspace{-36.99pt} \\Delta _ { 0 } ^ { V , s p } = \\frac { 1 } { 2 } ~ \\square \\, , ~ ~ ~ \\Delta _ { 0 } ^ { S , s p } = \\frac { 1 } { 2 } ~ \\square \\, , ~ ~ ~ \\Delta _ { 0 } ^ { V , e x } = - \\frac { 1 } { 2 } \\partial _ { l } \\partial _ { l } + e ^ { 2 } \\vert \\phi ^ { 0 } \\vert ^ { 2 } , \\\\ \\hspace{-36.99pt} \\Delta _ { 0 } ^ { S , e x } = ( \\begin{array}{ccc} & i e D _ { n } ^ { 0 } \\phi ^ { 0 \\dagger } & - i e D _ { n } ^ { 0 } \\phi ^ { 0 } \\\\ - i e D _ { m } ^ { 0 } \\phi ^ { 0 } & - \\frac { 1 } { 2 } D _ { l } ^ { 0 } D _ { l } ^ { 0 } + \\frac { a } { 2 } - b \\vert \\phi ^ { 0 } \\vert ^ { 2 } & - b ( \\phi ^ { 0 } ) ^ { 2 } \\\\ i e D _ { m } ^ { 0 } \\phi ^ { 0 \\dagger } & - b ( \\phi ^ { 0 \\dagger } ) ^ { 2 } & - \\frac { 1 } { 2 } D _ { l } ^ { 0 } D _ { l } ^ { 0 } + \\frac { a } { 2 } - b \\vert \\phi ^ { 0 } \\vert ^ { 2 } \\end{array} ) \\end{align*}", "\\begin{align*} { [ ( \\Delta _ { 0 } ^ { V } ) ^ { - 1 } ] } ^ { \\mu \\nu } & = & \\eta ^ { \\mu \\nu } \\sum _ { k ( } \\, \\square \\, + { m _ { k } } ^ { 2 } ) ^ { - 1 } V _ { k } ( x ^ { m } ) V _ { k } ( x ^ { \\prime m } ) , \\\\ { [ ( \\Delta _ { 0 } ^ { V } ) ^ { - 1 } ] } ^ { \\mu \\nu } & = & \\sum _ { k ( } \\, \\square \\, + { m _ { k } ^ { \\prime } } ^ { 2 } ) ^ { - 1 } S _ { k } ^ { ( a ) } ( x ^ { m } ) S _ { k } ^ { ( b ) } ( x ^ { \\prime m } ) , \\end{align*}", "\\begin{equation*} \\Delta _ { 0 } ^ { V , e x } V _ { k } = { m _ { k } } ^ { 2 } V _ { k } , ~ ~ ~ ~ \\Delta _ { 0 } ^ { S , e x ( a ) ( b ) } S _ { k } ^ { ( b ) } = { m _ { k } ^ { \\prime } } ^ { 2 } S _ { k } ^ { ( a ) } . \\end{equation*}", "\\begin{align*} & & \\hspace{-28.45pt} \\Delta = \\Delta _ { 0 } ( 1 + \\Delta _ { 0 } ^ { - 1 } \\Delta _ { i n t } ) , \\\\ & & \\hspace{-28.45pt} \\partial _ { M } \\sqrt { - g } ( \\Delta ^ { - 1 } ) ^ { M N } \\sqrt { - g } \\partial _ { N } = 1 + { \\Delta _ { 0 } ^ { \\prime } } ^ { - 1 } + \\partial _ { m } ( \\Delta _ { 0 } ^ { - 1 } ) ^ { m n } \\partial _ { n } + \\Delta _ { i n t } ^ { \\prime } , \\end{align*}", "\\begin{equation*} { \\Delta _ { 0 } ^ { \\prime } } ^ { - 1 } = \\sum _ { k } { m _ { k } } ^ { 2 } ( \\, \\square \\, + { m _ { k } } ^ { 2 } ) ^ { - 1 } V _ { k } ( x ^ { m } ) V _ { k } ( x ^ { \\prime m } ) . \\end{equation*}" ], "latex_expand": [ "$ \\mitdelta ^ { \\mitm } $", "$ \\mitB _ { \\bar { \\mitN } } $", "$ \\mitsigma $", "$ \\mitsigma ^ { \\dagger } $", "$ \\mitv $", "$ \\mupXi _ { 0 } = \\mupXi \\vert _ { \\mitv = 0 } $", "$ \\mitS ^ { \\mathrm { e f f } } $", "$ \\Planckconst ^ { \\mitM \\mitN } = \\mitg ^ { \\mitM \\mitN } - \\miteta ^ { \\mitM \\mitN } $", "$ \\miteta ^ { \\mitM \\mitN } = \\mathrm { d i a g } ( 1 , - 1 , - 1 , - 1 , - 1 , - 1 ) $", "$ \\mitw $", "$ \\mupDelta \\vert _ { \\Planckconst ^ { \\mitM \\mitN } = 0 , \\mitw = 0 } \\equiv \\mupDelta _ { 0 } $", "$ \\mupDelta _ { 0 } $", "$ \\mupDelta _ { 0 } ^ { \\mathrm { s p } } $", "$ \\mupDelta _ { 0 } ^ { \\mathrm { e x } } $", "$ \\mitx ^ { \\mitmu } $", "$ \\mitx ^ { \\mitm } $", "$ \\mupDelta _ { 0 } $", "$ \\mupDelta _ { 0 } ^ { \\mathrm { V } } $", "$ \\mupDelta _ { 0 } ^ { \\mathrm { S } } $", "$ \\mitB ^ { \\mitmu } $", "$ ( \\mitS ^ { ( 1 ) } , \\mitS ^ { ( 2 ) } , \\mitS ^ { ( 3 ) } , \\mitS ^ { ( 4 ) } ) = ( \\mitB ^ { 5 } , \\mitB ^ { 6 } , \\mitsigma , \\mitsigma ^ { \\dagger } ) $", "$ \\square \\, = \\miteta ^ { \\mitmu \\mitnu } \\mitpartial _ { \\mitmu } \\mitpartial _ { \\mitnu } $", "$ \\mitV _ { \\mitk } $", "$ \\mitS _ { \\mitk } ^ { ( 0 ) } $", "$ { \\mitm _ { \\mitk } } ^ { 2 } $", "$ { \\mitm _ { \\mitk } ^ { \\prime } } ^ { 2 } $", "$ \\mupDelta _ { \\mathrm { i n t } } $", "$ \\mupDelta _ { \\mathrm { i n t } } ^ { \\prime } $", "$ \\Planckconst ^ { \\mitmu \\mitnu } $", "$ \\mitw $", "\\begin{align*} & & \\displaystyle \\hspace{-14.23pt} \\mupPhi ^ { \\dagger } = ( \\mitB ^ { \\bar { \\mitM } } , \\mitsigma , \\mitsigma ^ { \\dagger } ) , \\\\ & & \\displaystyle \\hspace{-14.23pt} \\mupXi = \\sqrt { - \\mitg } ( \\nabla _ { \\bar { \\mitM } } \\mitv , ~ \\mitw _ { \\mitm } \\mitx ^ { \\mitm } \\widetilde { \\mitphi } ^ { 0 \\dagger } \\slash \\mitJ _ { 0 } , ~ \\mitw _ { \\mitm } \\mitx ^ { \\mitm } \\widetilde { \\mitphi } ^ { 0 } \\slash \\mitJ _ { 0 } ) , \\\\ & & \\displaystyle \\hspace{-14.23pt} \\mupDelta = \\sqrt { - \\mitg } \\\\ \\displaystyle \\hspace{-14.23pt} \\times \\left( \\begin{array}{ccc} \\hspace{-2.85pt} \\miteta _ { \\bar { \\mitM } \\bar { \\mitN } } \\left( \\frac { 1 } { 2 } \\nabla _ { \\mitL } \\nabla ^ { \\mitL } + \\mite ^ { 2 } \\vert \\mitphi ^ { 0 } \\vert ^ { 2 } \\right) & \\miti \\mite \\mitD _ { \\bar { \\mitM } } ^ { 0 } \\mitphi ^ { 0 \\dagger } & - \\miti \\mite \\mitD _ { \\bar { \\mitM } } ^ { 0 } \\mitphi ^ { 0 } \\\\ - \\miti \\mite \\mitD _ { \\bar { \\mitN } } ^ { 0 } \\mitphi ^ { 0 } & \\hspace{-8.54pt} \\frac { 1 } { 2 } \\mitD _ { \\mitL } ^ { 0 } \\mitD ^ { 0 \\mitL } + \\frac { \\mita } { 2 } - 2 \\mitb \\vert \\mitphi ^ { 0 } \\vert ^ { 2 } + \\mitdelta _ { 1 1 } ^ { \\mitm } \\mitw _ { \\mitm } & - \\mitb ( \\mitphi ^ { 0 } ) ^ { 2 } + \\mitdelta _ { 1 2 } ^ { \\mitm } \\mitw _ { \\mitm } \\\\ \\miti \\mite \\mitD _ { \\bar { \\mitN } } ^ { 0 } \\mitphi ^ { 0 \\dagger } & - \\mitb ( \\mitphi ^ { 0 } \\dagger ) ^ { 2 } + \\mitdelta _ { 2 1 } ^ { \\mitm } \\mitw _ { \\mitm } & \\hspace{-8.54pt} \\frac { 1 } { 2 } \\mitD _ { \\mitL } ^ { 0 } \\mitD ^ { 0 \\mitL } + \\frac { \\mita } { 2 } - 2 \\mitb \\vert \\mitphi ^ { 0 } \\vert ^ { 2 } + \\mitdelta _ { 2 2 } ^ { \\mitm } \\mitw _ { \\mitm } \\end{array} \\right) \\end{align*}", "\\begin{align*} \\displaystyle \\mitdelta ^ { \\mitm } ( \\mitx , \\mitx ^ { \\prime } ) = \\frac { 1 } { 2 \\mitJ _ { 0 } } \\mitx ^ { \\mitm } \\mitdelta ( \\mitx - \\mitx ^ { \\prime } ) + \\frac { 1 } { 2 { \\mitJ _ { 0 } } ^ { 2 } } ( \\mitx ^ { \\mitm } + \\mitx ^ { \\prime \\mitm } ) \\left( \\begin{array}{c} \\widetilde { \\mitphi } ^ { 0 } ( \\mitx ) \\\\ \\widetilde { \\mitphi } ^ { 0 } ( \\mitx ) ^ { \\dagger } \\end{array} \\right) \\left( \\begin{array}{cc} \\widetilde { \\mitphi } ^ { 0 } ( \\mitx ^ { \\prime } ) ^ { \\dagger } & \\widetilde { \\mitphi } ^ { 0 } ( \\mitx ^ { \\prime } ) \\end{array} \\right) \\end{align*}", "\\begin{equation*} \\mitS ^ { \\mathrm { e f f } } = \\frac { 1 } { 2 } \\miti \\mathrm { T r } \\operatorname { l n } \\mupDelta + \\frac { 1 } { 2 } \\miti \\mathrm { T r } \\operatorname { l n } \\left[ \\mitpartial _ { \\mitM } \\sqrt { - \\mitg } ( \\mupDelta ^ { - 1 } ) ^ { \\mitM \\mitN } \\sqrt { - \\mitg } \\mitpartial _ { \\mitN } \\right] - \\frac { 1 } { 4 } \\int \\mupXi _ { 0 } ^ { \\dagger } \\mupDelta ^ { - 1 } \\mupXi _ { 0 } \\mitd ^ { 6 } \\mitx \\end{equation*}", "\\begin{align*} & \\displaystyle \\hspace{-36.99pt} \\mupDelta _ { 0 } ^ { \\mathrm { V } , \\mathrm { s p } } = \\frac { 1 } { 2 } ~ \\square \\, , ~ ~ ~ \\mupDelta _ { 0 } ^ { \\mathrm { S } , \\mathrm { s p } } = \\frac { 1 } { 2 } ~ \\square \\, , ~ ~ ~ \\mupDelta _ { 0 } ^ { \\mathrm { V } , \\mathrm { e x } } = - \\frac { 1 } { 2 } \\mitpartial _ { \\mitl } \\mitpartial _ { \\mitl } + \\mite ^ { 2 } \\vert \\mitphi ^ { 0 } \\vert ^ { 2 } , \\\\ \\displaystyle \\hspace{-36.99pt} \\mupDelta _ { 0 } ^ { \\mathrm { S } , \\mathrm { e x } } = \\left( \\begin{array}{ccc} & \\miti \\mite \\mitD _ { \\mitn } ^ { 0 } \\mitphi ^ { 0 \\dagger } & - \\miti \\mite \\mitD _ { \\mitn } ^ { 0 } \\mitphi ^ { 0 } \\\\ - \\miti \\mite \\mitD _ { \\mitm } ^ { 0 } \\mitphi ^ { 0 } & - \\frac { 1 } { 2 } \\mitD _ { \\mitl } ^ { 0 } \\mitD _ { \\mitl } ^ { 0 } + \\frac { \\mita } { 2 } - \\mitb \\vert \\mitphi ^ { 0 } \\vert ^ { 2 } & - \\mitb ( \\mitphi ^ { 0 } ) ^ { 2 } \\\\ \\miti \\mite \\mitD _ { \\mitm } ^ { 0 } \\mitphi ^ { 0 \\dagger } & - \\mitb ( \\mitphi ^ { 0 \\dagger } ) ^ { 2 } & - \\frac { 1 } { 2 } \\mitD _ { \\mitl } ^ { 0 } \\mitD _ { \\mitl } ^ { 0 } + \\frac { \\mita } { 2 } - \\mitb \\vert \\mitphi ^ { 0 } \\vert ^ { 2 } \\end{array} \\right) \\end{align*}", "\\begin{align*} \\displaystyle { \\left[ ( \\mupDelta _ { 0 } ^ { \\mathrm { V } } ) ^ { - 1 } \\right] } ^ { \\mitmu \\mitnu } & = & \\displaystyle \\miteta ^ { \\mitmu \\mitnu } \\sum _ { \\mitk ( } \\, \\square \\, + { \\mitm _ { \\mitk } } ^ { 2 } ) ^ { - 1 } \\mitV _ { \\mitk } ( \\mitx ^ { \\mitm } ) \\mitV _ { \\mitk } ( \\mitx ^ { \\prime \\mitm } ) , \\\\ \\displaystyle { \\left[ ( \\mupDelta _ { 0 } ^ { \\mathrm { V } } ) ^ { - 1 } \\right] } ^ { \\mitmu \\mitnu } & = & \\displaystyle \\sum _ { \\mitk ( } \\, \\square \\, + { \\mitm _ { \\mitk } ^ { \\prime } } ^ { 2 } ) ^ { - 1 } \\mitS _ { \\mitk } ^ { ( \\mita ) } ( \\mitx ^ { \\mitm } ) \\mitS _ { \\mitk } ^ { ( \\mitb ) } ( \\mitx ^ { \\prime \\mitm } ) , \\end{align*}", "\\begin{equation*} \\mupDelta _ { 0 } ^ { \\mathrm { V } , \\mathrm { e x } } \\mitV _ { \\mitk } = { \\mitm _ { \\mitk } } ^ { 2 } \\mitV _ { \\mitk } , ~ ~ ~ ~ \\mupDelta _ { 0 } ^ { \\mathrm { S } , \\mathrm { e x } ( \\mita ) ( \\mitb ) } \\mitS _ { \\mitk } ^ { ( \\mitb ) } = { \\mitm _ { \\mitk } ^ { \\prime } } ^ { 2 } \\mitS _ { \\mitk } ^ { ( \\mita ) } . \\end{equation*}", "\\begin{align*} & & \\hspace{-28.45pt} \\mupDelta = \\mupDelta _ { 0 } ( 1 + \\mupDelta _ { 0 } ^ { - 1 } \\mupDelta _ { \\mathrm { i n t } } ) , \\\\ & & \\hspace{-28.45pt} \\mitpartial _ { \\mitM } \\sqrt { - \\mitg } ( \\mupDelta ^ { - 1 } ) ^ { \\mitM \\mitN } \\sqrt { - \\mitg } \\mitpartial _ { \\mitN } = 1 + { \\mupDelta _ { 0 } ^ { \\prime } } ^ { - 1 } + \\mitpartial _ { \\mitm } ( \\mupDelta _ { 0 } ^ { - 1 } ) ^ { \\mitm \\mitn } \\mitpartial _ { \\mitn } + \\mupDelta _ { \\mathrm { i n t } } ^ { \\prime } , \\end{align*}", "\\begin{equation*} \\displaystyle { \\mupDelta _ { 0 } ^ { \\prime } } ^ { - 1 } = \\sum _ { \\mitk } { \\mitm _ { \\mitk } } ^ { 2 } ( \\, \\square \\, + { \\mitm _ { \\mitk } } ^ { 2 } ) ^ { - 1 } \\mitV _ { \\mitk } ( \\mitx ^ { \\mitm } ) \\mitV _ { \\mitk } ( \\mitx ^ { \\prime \\mitm } ) . \\end{equation*}" ], "x_min": [ 0.13410000503063202, 0.3822000026702881, 0.42289999127388, 0.446399986743927, 0.5162000060081482, 0.652400016784668, 0.07739999890327454, 0.4242999851703644, 0.5964000225067139, 0.11540000140666962, 0.5016999840736389, 0.6730999946594238, 0.16380000114440918, 0.23770000040531158, 0.6075000166893005, 0.07739999890327454, 0.4050000011920929, 0.7815999984741211, 0.8568999767303467, 0.3621000051498413, 0.5652999877929688, 0.13410000503063202, 0.13410000503063202, 0.16590000689029694, 0.21080000698566437, 0.2888999879360199, 0.13410000503063202, 0.2134999930858612, 0.5555999875068665, 0.6288999915122986, 0.08709999918937683, 0.16380000114440918, 0.17069999873638153, 0.11800000071525574, 0.25850000977516174, 0.2874999940395355, 0.21220000088214874, 0.2971999943256378 ], "y_min": [ 0.20020000636577606, 0.2768999934196472, 0.28029999136924744, 0.27489998936653137, 0.28029999136924744, 0.2759000062942505, 0.3495999872684479, 0.3495999872684479, 0.3495999872684479, 0.37209999561309814, 0.3677000105381012, 0.3686999976634979, 0.384799987077713, 0.385699987411499, 0.3862000107765198, 0.4032999873161316, 0.4027999937534332, 0.4009000062942505, 0.4009000062942505, 0.41990000009536743, 0.41749998927116394, 0.5630000233650208, 0.6726999878883362, 0.6675000190734863, 0.6711999773979187, 0.6697999835014343, 0.814300000667572, 0.8137999773025513, 0.814300000667572, 0.8181999921798706, 0.06790000200271606, 0.22460000216960907, 0.30219998955726624, 0.46480000019073486, 0.5893999934196472, 0.7020999789237976, 0.7581999897956848, 0.84170001745224 ], "x_max": [ 0.15760000050067902, 0.41119998693466187, 0.43529999256134033, 0.4657999873161316, 0.5266000032424927, 0.7457000017166138, 0.10779999941587448, 0.5845999717712402, 0.8949000239372253, 0.1306000053882599, 0.6593000292778015, 0.6980000138282776, 0.1949000060558319, 0.2687999904155731, 0.6288999915122986, 0.1023000031709671, 0.42989999055862427, 0.8098999857902527, 0.8824999928474426, 0.38769999146461487, 0.8824999928474426, 0.24330000579357147, 0.15479999780654907, 0.19910000264644623, 0.24469999969005585, 0.32280001044273376, 0.16930000483989716, 0.24809999763965607, 0.5845999717712402, 0.64410001039505, 0.885699987411499, 0.8003000020980835, 0.7975000143051147, 0.8191999793052673, 0.7035999894142151, 0.6800000071525574, 0.7360000014305115, 0.6711000204086304 ], "y_max": [ 0.21050000190734863, 0.29010000824928284, 0.2870999872684479, 0.2870999872684479, 0.2870999872684479, 0.2904999852180481, 0.3617999851703644, 0.36469998955726624, 0.365200012922287, 0.3788999915122986, 0.3833000063896179, 0.3813999891281128, 0.399399995803833, 0.399399995803833, 0.3959999978542328, 0.413100004196167, 0.4154999852180481, 0.4165000021457672, 0.4165000021457672, 0.4302000105381012, 0.4341000020503998, 0.5776000022888184, 0.6854000091552734, 0.6861000061035156, 0.6854000091552734, 0.6869000196456909, 0.8270000219345093, 0.828000009059906, 0.8245999813079834, 0.8245000243186951, 0.18690000474452972, 0.26019999384880066, 0.33489999175071716, 0.5511000156402588, 0.656499981880188, 0.7240999937057495, 0.8029999732971191, 0.8744000196456909 ], "expr_type": [ "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "isolated", "isolated", "isolated", "isolated", "isolated", "isolated", "isolated", "isolated" ] }
0001113_page05
{ "latex": [ "$h^{\\mu \\nu }$", "$w$", "$\\Lambda $", "$\\sqrt {a}$", "$N_0$", "$N_1$", "$\\alpha _0$", "$\\alpha _1$", "$\\beta _0$", "$\\beta _1$", "$O(1)$", "$\\alpha _c$", "$\\beta _c$", "${\\cal L}_0$", "\\begin {equation} S^{\\rm eff} = \\int \\sqrt {-g}\\left [ (N_0\\alpha _0+N_1\\alpha _1+\\alpha _c)\\Lambda ^4+ (N_0\\beta _0+N_1\\beta _1+\\beta _c)\\Lambda ^2R\\right ] d^4x \\label {27} \\end {equation}", "\\begin {equation} S = \\int \\sqrt {-g}\\left (\\lambda + \\frac {1}{16\\pi G}R\\right )d^4x \\label {28} \\end {equation}", "\\begin {equation} \\lambda = \\int {\\cal L}_0 dx^5 dx^6 + (N_0\\alpha _0+N_1\\alpha _1+\\alpha _c)\\Lambda ^4, \\ \\ \\ \\^^M\\frac {1}{16\\pi G}=(N_0\\beta _0+N_1\\beta _1+\\beta _c)\\Lambda ^2. \\label {29} \\end {equation}" ], "latex_norm": [ "$ h ^ { \\mu \\nu } $", "$ w $", "$ \\Lambda $", "$ \\sqrt { a } $", "$ N _ { 0 } $", "$ N _ { 1 } $", "$ \\alpha _ { 0 } $", "$ \\alpha _ { 1 } $", "$ \\beta _ { 0 } $", "$ \\beta _ { 1 } $", "$ O ( 1 ) $", "$ \\alpha _ { c } $", "$ \\beta _ { c } $", "$ L _ { 0 } $", "\\begin{equation*} S ^ { e f f } = \\int \\sqrt { - g } [ ( N _ { 0 } \\alpha _ { 0 } + N _ { 1 } \\alpha _ { 1 } + \\alpha _ { c } ) \\Lambda ^ { 4 } + ( N _ { 0 } \\beta _ { 0 } + N _ { 1 } \\beta _ { 1 } + \\beta _ { c } ) \\Lambda ^ { 2 } R ] d ^ { 4 } x \\end{equation*}", "\\begin{equation*} S = \\int \\sqrt { - g } ( \\lambda + \\frac { 1 } { 1 6 \\pi G } R ) d ^ { 4 } x \\end{equation*}", "\\begin{equation*} \\lambda = \\int L _ { 0 } d x ^ { 5 } d x ^ { 6 } + ( N _ { 0 } \\alpha _ { 0 } + N _ { 1 } \\alpha _ { 1 } + \\alpha _ { c } ) \\Lambda ^ { 4 } , ~ ~ ~ ~ \\frac { 1 } { 1 6 \\pi G } = ( N _ { 0 } \\beta _ { 0 } + N _ { 1 } \\beta _ { 1 } + \\beta _ { c } ) \\Lambda ^ { 2 } . \\end{equation*}" ], "latex_expand": [ "$ \\Planckconst ^ { \\mitmu \\mitnu } $", "$ \\mitw $", "$ \\mupLambda $", "$ \\sqrt { \\mita } $", "$ \\mitN _ { 0 } $", "$ \\mitN _ { 1 } $", "$ \\mitalpha _ { 0 } $", "$ \\mitalpha _ { 1 } $", "$ \\mitbeta _ { 0 } $", "$ \\mitbeta _ { 1 } $", "$ \\mitO ( 1 ) $", "$ \\mitalpha _ { \\mitc } $", "$ \\mitbeta _ { \\mitc } $", "$ \\mitL _ { 0 } $", "\\begin{equation*} \\mitS ^ { \\mathrm { e f f } } = \\int \\sqrt { - \\mitg } \\left[ ( \\mitN _ { 0 } \\mitalpha _ { 0 } + \\mitN _ { 1 } \\mitalpha _ { 1 } + \\mitalpha _ { \\mitc } ) \\mupLambda ^ { 4 } + ( \\mitN _ { 0 } \\mitbeta _ { 0 } + \\mitN _ { 1 } \\mitbeta _ { 1 } + \\mitbeta _ { \\mitc } ) \\mupLambda ^ { 2 } \\mitR \\right] \\mitd ^ { 4 } \\mitx \\end{equation*}", "\\begin{equation*} \\mitS = \\int \\sqrt { - \\mitg } \\left( \\mitlambda + \\frac { 1 } { 1 6 \\mitpi \\mitG } \\mitR \\right) \\mitd ^ { 4 } \\mitx \\end{equation*}", "\\begin{equation*} \\mitlambda = \\int \\mitL _ { 0 } \\mitd \\mitx ^ { 5 } \\mitd \\mitx ^ { 6 } + ( \\mitN _ { 0 } \\mitalpha _ { 0 } + \\mitN _ { 1 } \\mitalpha _ { 1 } + \\mitalpha _ { \\mitc } ) \\mupLambda ^ { 4 } , ~ ~ ~ ~ \\frac { 1 } { 1 6 \\mitpi \\mitG } = ( \\mitN _ { 0 } \\mitbeta _ { 0 } + \\mitN _ { 1 } \\mitbeta _ { 1 } + \\mitbeta _ { \\mitc } ) \\mupLambda ^ { 2 } . \\end{equation*}" ], "x_min": [ 0.819599986076355, 0.07739999890327454, 0.2702000141143799, 0.4456999897956848, 0.3628000020980835, 0.4332999885082245, 0.3621000051498413, 0.39739999175071716, 0.4318999946117401, 0.4650999903678894, 0.7325999736785889, 0.3808000087738037, 0.446399986743927, 0.5224999785423279, 0.1859000027179718, 0.349700003862381, 0.15070000290870667 ], "y_min": [ 0.04050000011920929, 0.061500001698732376, 0.07519999891519547, 0.07320000231266022, 0.1898999959230423, 0.1898999959230423, 0.21089999377727509, 0.21089999377727509, 0.2070000022649765, 0.2070000022649765, 0.20649999380111694, 0.2451000064611435, 0.24169999361038208, 0.2587999999523163, 0.14790000021457672, 0.28119999170303345, 0.3452000021934509 ], "x_max": [ 0.8485999703407288, 0.09260000288486481, 0.2847000062465668, 0.4733000099658966, 0.3869999945163727, 0.45750001072883606, 0.38350000977516174, 0.4180999994277954, 0.4512999951839447, 0.48510000109672546, 0.7741000056266785, 0.4007999897003174, 0.4643999934196472, 0.5446000099182129, 0.7815999984741211, 0.6177999973297119, 0.8169000148773193 ], "y_max": [ 0.05119999870657921, 0.06780000030994415, 0.08550000190734863, 0.08879999816417694, 0.20260000228881836, 0.20260000228881836, 0.21969999372959137, 0.21969999372959137, 0.2206999957561493, 0.2206999957561493, 0.22110000252723694, 0.2538999915122986, 0.2549000084400177, 0.27149999141693115, 0.17820000648498535, 0.31439998745918274, 0.37790000438690186 ], "expr_type": [ "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "isolated", "isolated", "isolated" ] }
0001125_page02
{ "latex": [ "\\( 2\\pi \\alpha ' \\)", "\\( A_{\\mu } \\)", "\\( h_{ab} \\)", "\\( \\partial {\\cal M} \\)", "\\( G_{\\mu \\nu }=\\delta _{\\mu \\nu } \\)", "\\( B \\)", "\\( N^{a} \\)", "\\( \\partial {\\cal M} \\)", "\\( N_{a}dz^{a},\\, d\\tau \\)", "\\( i \\)", "\\( \\sqrt {-h}\\rightarrow i\\sqrt {h} \\)", "\\( A_{\\mu } \\)", "\\( iA_{\\mu } \\)", "\\( i \\)", "\\begin {equation} S=\\frac {1}{2\\pi \\alpha ' }\\left [ \\frac {1}{2}\\int _{\\cal M}d^{2}z\\sqrt {h} h^{ab}\\partial _{a}X_{\\mu }\\partial _{b}X^{\\mu } +\\int _{\\partial {\\cal M}}d\\tau A_{\\mu }\\partial _{\\tau } X^{\\mu }\\right ] \\plabel {act} \\end {equation}" ], "latex_norm": [ "$ 2 \\pi \\alpha ^ { \\prime } $", "$ A _ { \\mu } $", "$ h _ { a b } $", "$ \\partial M $", "$ G _ { \\mu \\nu } = \\delta _ { \\mu \\nu } $", "$ B $", "$ N ^ { a } $", "$ \\partial M $", "$ N _ { a } d z ^ { a } , \\, d \\tau $", "$ i $", "$ \\sqrt { - h } \\rightarrow i \\sqrt { h } $", "$ A _ { \\mu } $", "$ i A _ { \\mu } $", "$ i $", "\\begin{equation*} S = \\frac { 1 } { 2 \\pi \\alpha ^ { \\prime } } [ \\frac { 1 } { 2 } \\int _ { M } d ^ { 2 } z \\sqrt { h } h ^ { a b } \\partial _ { a } X _ { \\mu } \\partial _ { b } X ^ { \\mu } + \\int _ { \\partial M } d \\tau A _ { \\mu } \\partial _ { \\tau } X ^ { \\mu } ] \\end{equation*}" ], "latex_expand": [ "$ 2 \\mitpi \\mitalpha ^ { \\prime } $", "$ \\mitA _ { \\mitmu } $", "$ \\Planckconst _ { \\mita \\mitb } $", "$ \\mitpartial \\mitM $", "$ \\mitG _ { \\mitmu \\mitnu } = \\mitdelta _ { \\mitmu \\mitnu } $", "$ \\mitB $", "$ \\mitN ^ { \\mita } $", "$ \\mitpartial \\mitM $", "$ \\mitN _ { \\mita } \\mitd \\mitz ^ { \\mita } , \\, \\mitd \\mittau $", "$ \\miti $", "$ \\sqrt { - \\Planckconst } \\rightarrow \\miti \\sqrt { \\Planckconst } $", "$ \\mitA _ { \\mitmu } $", "$ \\miti \\mitA _ { \\mitmu } $", "$ \\miti $", "\\begin{equation*} \\mitS = \\frac { 1 } { 2 \\mitpi \\mitalpha ^ { \\prime } } \\left[ \\frac { 1 } { 2 } \\int _ { \\mitM } \\mitd ^ { 2 } \\mitz \\sqrt { \\Planckconst } \\Planckconst ^ { \\mita \\mitb } \\mitpartial _ { \\mita } \\mitX _ { \\mitmu } \\mitpartial _ { \\mitb } \\mitX ^ { \\mitmu } + \\int _ { \\mitpartial \\mitM } \\mitd \\mittau \\mitA _ { \\mitmu } \\mitpartial _ { \\mittau } \\mitX ^ { \\mitmu } \\right] \\end{equation*}" ], "x_min": [ 0.30550000071525574, 0.41670000553131104, 0.14509999752044678, 0.396699994802475, 0.321399986743927, 0.14509999752044678, 0.3537999987602234, 0.6082000136375427, 0.7491000294685364, 0.6869000196456909, 0.5073000192642212, 0.3393000066280365, 0.3959999978542328, 0.2799000144004822, 0.2460000067949295 ], "y_min": [ 0.5619999766349792, 0.5800999999046326, 0.5971999764442444, 0.5971999764442444, 0.6312999725341797, 0.6488999724388123, 0.6660000085830688, 0.6830999851226807, 0.6830999851226807, 0.7348999977111816, 0.7480000257492065, 0.7689999938011169, 0.7689999938011169, 0.7865999937057495, 0.5098000168800354 ], "x_max": [ 0.3456000089645386, 0.4415999948978424, 0.17139999568462372, 0.4325999915599823, 0.40709999203681946, 0.16169999539852142, 0.3808000087738037, 0.64410001039505, 0.8355000019073486, 0.6937999725341797, 0.6281999945640564, 0.36419999599456787, 0.4271000027656555, 0.2874999940395355, 0.7332000136375427 ], "y_max": [ 0.573199987411499, 0.5942999720573425, 0.6098999977111816, 0.6079000234603882, 0.6459000110626221, 0.6592000126838684, 0.6762999892234802, 0.6934000253677368, 0.6963000297546387, 0.744700014591217, 0.7641000151634216, 0.7832000255584717, 0.7832000255584717, 0.7964000105857849, 0.5473999977111816 ], "expr_type": [ "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "isolated" ] }
0001125_page05
{ "latex": [ "\\( b_{0},\\, b_{1},\\, b_{2},\\, \\gamma ,\\, \\sigma _{1} \\)", "\\( b_{0} \\)", "\\( \\sigma _{1} \\)", "\\( b_{0}+\\sigma _{1}\\Gamma ^{2} \\)", "\\( k_{ij}\\Gamma ^{i}\\Gamma ^{j}=k\\Gamma ^{2} \\)", "\\( \\zeta \\)", "\\( D \\)", "\\( s \\)", "\\( \\zeta _{D}(0)=a_{1}(1,D,{\\mathcal {B}}) \\)", "\\( s\\rightarrow 0 \\)", "\\( (1/2\\pi )\\int _{\\partial {\\cal M}}d\\tau \\, G_{\\mu }\\dot {\\bar {X}}^{\\mu } \\)", "\\( i \\)", "\\begin {eqnarray} && \\gamma =\\frac {1}{4}\\left [ \\frac {2}{\\sqrt {1+\\Gamma ^{2}}}-1\\right ]\\,, \\\\ && b_{1}=\\frac {1}{\\sqrt {-\\Gamma ^{2}}}{\\textrm {Artanh}} (\\sqrt {-\\Gamma ^{2}})-\\frac {1}{2}\\,,\\\\ && b_{2}=\\frac {2}{1+\\Gamma ^{2}}\\,,\\\\ && b_{0}+\\sigma _{1}\\Gamma ^{2}=\\frac {1}{3}\\, \\,, \\end {eqnarray}", "\\begin {equation} \\zeta _{D}(s)={\\textrm {Tr}}(D^{-s})\\, \\, .\\plabel {defzeta} \\end {equation}", "\\begin {equation} W=-\\frac {1}{2s}\\zeta _{D}(0)-\\frac {1}{2}\\zeta ' _{D}(0)\\,,\\label {W2} \\end {equation}", "\\begin {equation} W_{{\\mbox {\\scriptsize {div}}}}=-\\frac {1}{2s}\\frac {1}{4\\pi } \\int _{\\partial {\\cal M}}d\\tau \\, \\left [ -\\dot {\\bar {X}}^{\\rho }(\\partial _{\\nu }F_{\\mu \\rho } +\\partial _{\\mu }F_{\\nu \\rho })(1+F^{2})^{-1}_{\\nu \\mu } +\\frac {1}{3}k\\delta _{\\nu }^{\\nu }\\right ] .\\label {Wdiv} \\end {equation}", "\\begin {equation} \\beta _{\\mu }^{A}\\propto (\\partial _{\\rho }F_{\\nu \\mu })(1+F^{2})^{-1}_{\\nu \\rho }\\,.\\label {beta} \\end {equation}" ], "latex_norm": [ "$ b _ { 0 } , \\, b _ { 1 } , \\, b _ { 2 } , \\, \\gamma , \\, \\sigma _ { 1 } $", "$ b _ { 0 } $", "$ \\sigma _ { 1 } $", "$ b _ { 0 } + \\sigma _ { 1 } \\Gamma ^ { 2 } $", "$ k _ { i j } \\Gamma ^ { i } \\Gamma ^ { j } = k \\Gamma ^ { 2 } $", "$ \\zeta $", "$ D $", "$ s $", "$ \\zeta _ { D } ( 0 ) = a _ { 1 } ( 1 , D , B ) $", "$ s \\rightarrow 0 $", "$ ( 1 \\slash 2 \\pi ) \\int _ { \\partial M } d \\tau \\, G _ { \\mu } \\dot { \\bar { X } } ^ { \\mu } $", "$ i $", "\\begin{align*} & & \\gamma = \\frac { 1 } { 4 } [ \\frac { 2 } { \\sqrt { 1 + \\Gamma ^ { 2 } } } - 1 ] \\, , \\\\ & & b _ { 1 } = \\frac { 1 } { \\sqrt { - \\Gamma ^ { 2 } } } A r t a n h ( \\sqrt { - \\Gamma ^ { 2 } } ) - \\frac { 1 } { 2 } \\, , \\\\ & & b _ { 2 } = \\frac { 2 } { 1 + \\Gamma ^ { 2 } } \\, , \\\\ & & b _ { 0 } + \\sigma _ { 1 } \\Gamma ^ { 2 } = \\frac { 1 } { 3 } \\, \\, , \\end{align*}", "\\begin{equation*} \\zeta _ { D } ( s ) = T r ( D ^ { - s } ) \\, \\, . \\end{equation*}", "\\begin{equation*} W = - \\frac { 1 } { 2 s } \\zeta _ { D } ( 0 ) - \\frac { 1 } { 2 } \\zeta _ { D } ^ { \\prime } ( 0 ) \\, , \\end{equation*}", "\\begin{equation*} W _ { d i v } = - \\frac { 1 } { 2 s } \\frac { 1 } { 4 \\pi } \\int _ { \\partial M } d \\tau \\, [ - \\dot { \\bar { X } } ^ { \\rho } ( \\partial _ { \\nu } F _ { \\mu \\rho } + \\partial _ { \\mu } F _ { \\nu \\rho } ) ( 1 + F ^ { 2 } ) _ { \\nu \\mu } ^ { - 1 } + \\frac { 1 } { 3 } k \\delta _ { \\nu } ^ { \\nu } ] . \\end{equation*}", "\\begin{equation*} \\beta _ { \\mu } ^ { A } \\propto ( \\partial _ { \\rho } F _ { \\nu \\mu } ) ( 1 + F ^ { 2 } ) _ { \\nu \\rho } ^ { - 1 } \\, . \\end{equation*}" ], "latex_expand": [ "$ \\mitb _ { 0 } , \\, \\mitb _ { 1 } , \\, \\mitb _ { 2 } , \\, \\mitgamma , \\, \\mitsigma _ { 1 } $", "$ \\mitb _ { 0 } $", "$ \\mitsigma _ { 1 } $", "$ \\mitb _ { 0 } + \\mitsigma _ { 1 } \\mupGamma ^ { 2 } $", "$ \\mitk _ { \\miti \\mitj } \\mupGamma ^ { \\miti } \\mupGamma ^ { \\mitj } = \\mitk \\mupGamma ^ { 2 } $", "$ \\mitzeta $", "$ \\mitD $", "$ \\mits $", "$ \\mitzeta _ { \\mitD } ( 0 ) = \\mita _ { 1 } ( 1 , \\mitD , \\mscrB ) $", "$ \\mits \\rightarrow 0 $", "$ ( 1 \\slash 2 \\mitpi ) \\int \\nolimits _ { \\mitpartial \\mitM } \\mitd \\mittau \\, \\mitG _ { \\mitmu } \\dot { \\bar { \\mitX } } ^ { \\mitmu } $", "$ \\miti $", "\\begin{align*} & & \\mitgamma = \\frac { 1 } { 4 } \\left[ \\frac { 2 } { \\sqrt { 1 + \\mupGamma ^ { 2 } } } - 1 \\right] \\, , \\\\ & & \\mitb _ { 1 } = \\frac { 1 } { \\sqrt { - \\mupGamma ^ { 2 } } } \\mathrm { A r t a n h } ( \\sqrt { - \\mupGamma ^ { 2 } } ) - \\frac { 1 } { 2 } \\, , \\\\ & & \\mitb _ { 2 } = \\frac { 2 } { 1 + \\mupGamma ^ { 2 } } \\, , \\\\ & & \\mitb _ { 0 } + \\mitsigma _ { 1 } \\mupGamma ^ { 2 } = \\frac { 1 } { 3 } \\, \\, , \\end{align*}", "\\begin{equation*} \\mitzeta _ { \\mitD } ( \\mits ) = \\mathrm { T r } ( \\mitD ^ { - \\mits } ) \\, \\, . \\end{equation*}", "\\begin{equation*} \\mitW = - \\frac { 1 } { 2 \\mits } \\mitzeta _ { \\mitD } ( 0 ) - \\frac { 1 } { 2 } \\mitzeta _ { \\mitD } ^ { \\prime } ( 0 ) \\, , \\end{equation*}", "\\begin{equation*} \\mitW _ { \\mathrm { d i v } } = - \\frac { 1 } { 2 \\mits } \\frac { 1 } { 4 \\mitpi } \\int _ { \\mitpartial \\mitM } \\mitd \\mittau \\, \\left[ - \\dot { \\bar { \\mitX } } ^ { \\mitrho } ( \\mitpartial _ { \\mitnu } \\mitF _ { \\mitmu \\mitrho } + \\mitpartial _ { \\mitmu } \\mitF _ { \\mitnu \\mitrho } ) ( 1 + \\mitF ^ { 2 } ) _ { \\mitnu \\mitmu } ^ { - 1 } + \\frac { 1 } { 3 } \\mitk \\mitdelta _ { \\mitnu } ^ { \\mitnu } \\right] . \\end{equation*}", "\\begin{equation*} \\mitbeta _ { \\mitmu } ^ { \\mitA } \\propto ( \\mitpartial _ { \\mitrho } \\mitF _ { \\mitnu \\mitmu } ) ( 1 + \\mitF ^ { 2 } ) _ { \\mitnu \\mitrho } ^ { - 1 } \\, . \\end{equation*}" ], "x_min": [ 0.3912000060081482, 0.4291999936103821, 0.4921000003814697, 0.3172000050544739, 0.5529000163078308, 0.36629998683929443, 0.2888999879360199, 0.6254000067710876, 0.30480000376701355, 0.16859999299049377, 0.6952000260353088, 0.41600000858306885, 0.367000013589859, 0.41190001368522644, 0.37459999322891235, 0.18799999356269836, 0.3822000026702881 ], "y_min": [ 0.1348000019788742, 0.31450000405311584, 0.31839999556541443, 0.33059999346733093, 0.33009999990463257, 0.4790000021457672, 0.4961000084877014, 0.6317999958992004, 0.6615999937057495, 0.6801999807357788, 0.7548999786376953, 0.8389000296592712, 0.16110000014305115, 0.5214999914169312, 0.5814999938011169, 0.7031000256538391, 0.8022000193595886 ], "x_max": [ 0.5196999907493591, 0.4465000033378601, 0.5115000009536743, 0.3986999988555908, 0.6744999885559082, 0.3767000138759613, 0.3061999976634979, 0.6351000070571899, 0.4740999937057495, 0.21969999372959137, 0.871399998664856, 0.42289999127388, 0.6434000134468079, 0.5708000063896179, 0.6047000288963318, 0.7595000267028809, 0.600600004196167 ], "y_max": [ 0.14800000190734863, 0.3271999955177307, 0.3271999955177307, 0.3447999954223633, 0.34619998931884766, 0.49219998717308044, 0.5063999891281128, 0.6381000280380249, 0.6761999726295471, 0.6899999976158142, 0.7753999829292297, 0.8486999869346619, 0.3010999858379364, 0.5404999852180481, 0.6141999959945679, 0.7411999702453613, 0.8237000107765198 ], "expr_type": [ "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "isolated", "isolated", "isolated", "isolated", "isolated" ] }
0001125_page06
{ "latex": [ "\\( A_{\\mu } \\)", "\\( F_{\\mu \\nu } \\)", "\\( \\delta _{\\nu }^{\\nu } \\)", "\\( F \\)", "\\( \\mathcal {M} \\)", "\\( {\\cal M} \\)", "\\( 2\\pi \\chi (\\mathcal {M})=\\int _{\\partial {\\cal M}}d\\tau k \\)", "\\( \\delta h_{ab}=(\\delta k)h_{ab} \\)", "\\( \\delta k \\)", "\\( W_{{\\mbox {\\scriptsize {ren}}}} \\)", "\\( N_{a}dz^{a},d\\tau \\)", "\\( \\zeta \\)", "\\( \\delta \\zeta _{D_{k}}(s)=s\\mbox {Tr}(D^{-s}\\delta k) \\)", "\\( \\zeta (0|\\delta k,D)=a_{1}(\\delta k,D,{\\mathcal {B}}) \\)", "\\begin {equation} \\delta W_{{\\mbox {\\scriptsize {ren}}}}= \\frac {1}{2}\\int _{\\cal M}d^{2}z\\sqrt {h}\\delta h^{ab}T_{ab} =-\\frac {1}{2}\\int _{\\cal M}d^{2}z\\sqrt {h}\\delta k(x)T_{a}^{a}(x)\\,,\\label {T} \\end {equation}", "\\begin {eqnarray} && \\Delta \\rightarrow (1-k+\\dots )\\Delta ,\\\\ && {\\mathcal {B}}\\rightarrow (1-\\frac {k}{2}+\\dots ){\\mathcal {B}}\\,. \\end {eqnarray}", "\\begin {equation} \\zeta (s|\\delta k,D)={\\textrm {Tr}}(\\delta kD^{-s})\\plabel {varW} \\end {equation}", "\\begin {equation} \\plabel {TX}\\delta W_{{\\mbox {\\scriptsize {ren}}}}=-\\frac {1}{2}\\zeta (0|\\delta k,D)\\quad , \\end {equation}", "\\begin {equation} \\zeta (0|\\delta k,D)=\\int d^{2}z\\sqrt {h}\\delta k(z)T_{a}^{a}(x)\\; .\\plabel {T2} \\end {equation}", "\\begin {eqnarray} && \\int _{\\cal M}\\sqrt {h}d^{2}zf(z)T_{a}^{a}(z)= \\frac {1}{4\\pi }\\int _{\\partial {\\cal M}}d\\tau \\, \\left [ f(\\tau )\\left ( \\frac {1}{3}k\\delta _{\\nu }^{\\nu } -2\\dot {\\bar {X}}^{\\rho }(\\partial _{\\nu }F_{\\mu \\rho }) (1+F^{2})^{-1}_{\\nu \\mu }\\right ) \\right . \\\\ && \\qquad \\qquad \\left . +(\\nabla _{N}f)\\left ( (-F^{2})_{\\mu \\nu }^{-1/2}{\\textrm {Artanh}}(\\sqrt {-F^{2}})_{\\nu \\mu }- \\frac {1}{2}\\delta _{\\mu }^{\\mu }\\right ) \\right ]\\,. \\end {eqnarray}" ], "latex_norm": [ "$ A _ { \\mu } $", "$ F _ { \\mu \\nu } $", "$ \\delta _ { \\nu } ^ { \\nu } $", "$ F $", "$ M $", "$ M $", "$ 2 \\pi \\chi ( M ) = \\int _ { \\partial M } d \\tau k $", "$ \\delta h _ { a b } = ( \\delta k ) h _ { a b } $", "$ \\delta k $", "$ W _ { r e n } $", "$ N _ { a } d z ^ { a } , d \\tau $", "$ \\zeta $", "$ \\delta \\zeta _ { D _ { k } } ( s ) = s T r ( D ^ { - s } \\delta k ) $", "$ \\zeta ( 0 \\vert \\delta k , D ) = a _ { 1 } ( \\delta k , D , B ) $", "\\begin{equation*} \\delta W _ { r e n } = \\frac { 1 } { 2 } \\int _ { M } d ^ { 2 } z \\sqrt { h } \\delta h ^ { a b } T _ { a b } = - \\frac { 1 } { 2 } \\int _ { M } d ^ { 2 } z \\sqrt { h } \\delta k ( x ) T _ { a } ^ { a } ( x ) \\, , \\end{equation*}", "\\begin{align*} & & \\Delta \\rightarrow ( 1 - k + \\ldots \\, ) \\Delta , \\\\ & & B \\rightarrow ( 1 - \\frac { k } { 2 } + \\ldots \\, ) B \\, . \\end{align*}", "\\begin{equation*} \\zeta ( s \\vert \\delta k , D ) = T r ( \\delta k D ^ { - s } ) \\end{equation*}", "\\begin{equation*} \\delta W _ { r e n } = - \\frac { 1 } { 2 } \\zeta ( 0 \\vert \\delta k , D ) \\quad , \\end{equation*}", "\\begin{equation*} \\zeta ( 0 \\vert \\delta k , D ) = \\int d ^ { 2 } z \\sqrt { h } \\delta k ( z ) T _ { a } ^ { a } ( x ) \\; . \\end{equation*}", "\\begin{align*} & & \\int _ { M } \\sqrt { h } d ^ { 2 } z f ( z ) T _ { a } ^ { a } ( z ) = \\frac { 1 } { 4 \\pi } \\int _ { \\partial M } d \\tau \\, [ f ( \\tau ) ( \\frac { 1 } { 3 } k \\delta _ { \\nu } ^ { \\nu } - 2 \\dot { \\bar { X } } ^ { \\rho } ( \\partial _ { \\nu } F _ { \\mu \\rho } ) ( 1 + F ^ { 2 } ) _ { \\nu \\mu } ^ { - 1 } ) \\\\ & & \\qquad \\qquad + ( \\nabla _ { N } f ) ( ( - F ^ { 2 } ) _ { \\mu \\nu } ^ { - 1 \\slash 2 } A r t a n h ( \\sqrt { - F ^ { 2 } } ) _ { \\nu \\mu } - \\frac { 1 } { 2 } \\delta _ { \\mu } ^ { \\mu } ) ] \\, . \\end{align*}" ], "latex_expand": [ "$ \\mitA _ { \\mitmu } $", "$ \\mitF _ { \\mitmu \\mitnu } $", "$ \\mitdelta _ { \\mitnu } ^ { \\mitnu } $", "$ \\mitF $", "$ \\mscrM $", "$ \\mitM $", "$ 2 \\mitpi \\mitchi ( \\mscrM ) = \\int \\nolimits _ { \\mitpartial \\mitM } \\mitd \\mittau \\mitk $", "$ \\mitdelta \\Planckconst _ { \\mita \\mitb } = ( \\mitdelta \\mitk ) \\Planckconst _ { \\mita \\mitb } $", "$ \\mitdelta \\mitk $", "$ \\mitW _ { \\mathrm { r e n } } $", "$ \\mitN _ { \\mita } \\mitd \\mitz ^ { \\mita } , \\mitd \\mittau $", "$ \\mitzeta $", "$ \\mitdelta \\mitzeta _ { \\mitD _ { \\mitk } } ( \\mits ) = \\mits \\mathrm { T r } ( \\mitD ^ { - \\mits } \\mitdelta \\mitk ) $", "$ \\mitzeta ( 0 \\vert \\mitdelta \\mitk , \\mitD ) = \\mita _ { 1 } ( \\mitdelta \\mitk , \\mitD , \\mscrB ) $", "\\begin{equation*} \\mitdelta \\mitW _ { \\mathrm { r e n } } = \\frac { 1 } { 2 } \\int _ { \\mitM } \\mitd ^ { 2 } \\mitz \\sqrt { \\Planckconst } \\mitdelta \\Planckconst ^ { \\mita \\mitb } \\mitT _ { \\mita \\mitb } = - \\frac { 1 } { 2 } \\int _ { \\mitM } \\mitd ^ { 2 } \\mitz \\sqrt { \\Planckconst } \\mitdelta \\mitk ( \\mitx ) \\mitT _ { \\mita } ^ { \\mita } ( \\mitx ) \\, , \\end{equation*}", "\\begin{align*} & & \\mupDelta \\rightarrow ( 1 - \\mitk + \\ldots \\, ) \\mupDelta , \\\\ & & \\mscrB \\rightarrow ( 1 - \\frac { \\mitk } { 2 } + \\ldots \\, ) \\mscrB \\, . \\end{align*}", "\\begin{equation*} \\mitzeta ( \\mits \\vert \\mitdelta \\mitk , \\mitD ) = \\mathrm { T r } ( \\mitdelta \\mitk \\mitD ^ { - \\mits } ) \\end{equation*}", "\\begin{equation*} \\mitdelta \\mitW _ { \\mathrm { r e n } } = - \\frac { 1 } { 2 } \\mitzeta ( 0 \\vert \\mitdelta \\mitk , \\mitD ) \\quad , \\end{equation*}", "\\begin{equation*} \\mitzeta ( 0 \\vert \\mitdelta \\mitk , \\mitD ) = \\int \\mitd ^ { 2 } \\mitz \\sqrt { \\Planckconst } \\mitdelta \\mitk ( \\mitz ) \\mitT _ { \\mita } ^ { \\mita } ( \\mitx ) \\; . \\end{equation*}", "\\begin{align*} & & \\int _ { \\mitM } \\sqrt { \\Planckconst } \\mitd ^ { 2 } \\mitz \\mitf ( \\mitz ) \\mitT _ { \\mita } ^ { \\mita } ( \\mitz ) = \\frac { 1 } { 4 \\mitpi } \\int _ { \\mitpartial \\mitM } \\mitd \\mittau \\, \\left[ \\mitf ( \\mittau ) \\left( \\frac { 1 } { 3 } \\mitk \\mitdelta _ { \\mitnu } ^ { \\mitnu } - 2 \\dot { \\bar { \\mitX } } ^ { \\mitrho } ( \\mitpartial _ { \\mitnu } \\mitF _ { \\mitmu \\mitrho } ) ( 1 + \\mitF ^ { 2 } ) _ { \\mitnu \\mitmu } ^ { - 1 } \\right) \\right. \\\\ & & \\qquad \\qquad \\left. + ( \\nabla _ { \\mitN } \\mitf ) \\left( ( - \\mitF ^ { 2 } ) _ { \\mitmu \\mitnu } ^ { - 1 \\slash 2 } \\mathrm { A r t a n h } ( \\sqrt { - \\mitF ^ { 2 } } ) _ { \\mitnu \\mitmu } - \\frac { 1 } { 2 } \\mitdelta _ { \\mitmu } ^ { \\mitmu } \\right) \\right] \\, . \\end{align*}" ], "x_min": [ 0.5999000072479248, 0.489300012588501, 0.4036000072956085, 0.6082000136375427, 0.3199999928474426, 0.2881999909877777, 0.32690000534057617, 0.2370000034570694, 0.583299994468689, 0.23360000550746918, 0.678600013256073, 0.487199991941452, 0.27570000290870667, 0.5619000196456909, 0.24050000309944153, 0.4147000014781952, 0.38769999146461487, 0.3801000118255615, 0.3407000005245209, 0.18310000002384186 ], "y_min": [ 0.1348000019788742, 0.16940000653266907, 0.20309999585151672, 0.20360000431537628, 0.2378000020980835, 0.2549000084400177, 0.25290000438690186, 0.288100004196167, 0.2890999913215637, 0.37599998712539673, 0.4975999891757965, 0.5663999915122986, 0.6869999766349792, 0.7562999725341797, 0.3280999958515167, 0.4325999915599823, 0.5889000296592712, 0.6435999870300293, 0.7099999785423279, 0.7958999872207642 ], "x_max": [ 0.6248000264167786, 0.5196999907493591, 0.4223000109195709, 0.6241000294685364, 0.3449000120162964, 0.31310001015663147, 0.4982999861240387, 0.3668999969959259, 0.6047000288963318, 0.2736999988555908, 0.7621999979019165, 0.4975999891757965, 0.4657000005245209, 0.7829999923706055, 0.7387999892234802, 0.5992000102996826, 0.5950000286102295, 0.5999000072479248, 0.6427000164985657, 0.8271999955177307 ], "y_max": [ 0.149399995803833, 0.18359999358654022, 0.21729999780654907, 0.21389999985694885, 0.24809999763965607, 0.2651999890804291, 0.27000001072883606, 0.30320000648498535, 0.29980000853538513, 0.388700008392334, 0.5113000273704529, 0.5795999765396118, 0.7020999789237976, 0.7709000110626221, 0.36419999599456787, 0.4875999987125397, 0.6079000234603882, 0.6758000254631042, 0.745199978351593, 0.8773999810218811 ], "expr_type": [ "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "isolated", "isolated", "isolated", "isolated", "isolated", "isolated" ] }
0001125_page07
{ "latex": [ "\\( F\\rightarrow 0 \\)", "\\( F_{\\mu \\nu } \\)", "\\( F_{\\mu \\nu } \\)", "$F_{\\mu \\nu }$" ], "latex_norm": [ "$ F \\rightarrow 0 $", "$ F _ { \\mu \\nu } $", "$ F _ { \\mu \\nu } $", "$ F _ { \\mu \\nu } $" ], "latex_expand": [ "$ \\mitF \\rightarrow 0 $", "$ \\mitF _ { \\mitmu \\mitnu } $", "$ \\mitF _ { \\mitmu \\mitnu } $", "$ \\mitF _ { \\mitmu \\mitnu } $" ], "x_min": [ 0.25850000977516174, 0.45399999618530273, 0.44920000433921814, 0.6496000289916992 ], "y_min": [ 0.1348000019788742, 0.5054000020027161, 0.5396000146865845, 0.5907999873161316 ], "x_max": [ 0.32420000433921814, 0.4844000041484833, 0.4796000123023987, 0.6800000071525574 ], "y_max": [ 0.14550000429153442, 0.519599974155426, 0.5537999868392944, 0.605400025844574 ], "expr_type": [ "embedded", "embedded", "embedded", "embedded" ] }
0001129_page01
{ "latex": [ "${\\cal A}^{(n)}$", "$n$", "${\\cal A}^{(0)}$" ], "latex_norm": [ "$ A ^ { ( n ) } $", "$ n $", "$ A ^ { ( 0 ) } $" ], "latex_expand": [ "$ \\mitA ^ { ( \\mitn ) } $", "$ \\mitn $", "$ \\mitA ^ { ( 0 ) } $" ], "x_min": [ 0.4174000024795532, 0.6061000227928162, 0.71670001745224 ], "y_min": [ 0.5166000127792358, 0.5220000147819519, 0.5166000127792358 ], "x_max": [ 0.44850000739097595, 0.6158000230789185, 0.7457000017166138 ], "y_max": [ 0.5268999934196472, 0.5268999934196472, 0.5268999934196472 ], "expr_type": [ "embedded", "embedded", "embedded" ] }
0001129_page02
{ "latex": [ "$S$", "$S(g)\\>(g\\in {\\cal D}(\\RR ^4))$", "$g$", "$g\\rightarrow S(g)$", "$S$", "$\\hbar $", "$S$", "\\begin {equation} (\\w +m^2)\\varphi =0\\label {2.1} \\end {equation}" ], "latex_norm": [ "$ S $", "$ S ( g ) \\> ( g \\in D ( R ^ { 4 } ) ) $", "$ g $", "$ g \\rightarrow S ( g ) $", "$ S $", "$ \\hbar $", "$ S $", "\\begin{equation*} ( \\square + m ^ { 2 } ) \\varphi = 0 \\end{equation*}" ], "latex_expand": [ "$ \\mitS $", "$ \\mitS ( \\mitg ) \\> ( \\mitg \\in \\mitD ( \\BbbR ^ { 4 } ) ) $", "$ \\mitg $", "$ \\mitg \\rightarrow \\mitS ( \\mitg ) $", "$ \\mitS $", "$ \\hslash $", "$ \\mitS $", "\\begin{equation*} ( \\square + \\mitm ^ { 2 } ) \\mitvarphi = 0 \\end{equation*}" ], "x_min": [ 0.49549999833106995, 0.5812000036239624, 0.3248000144958496, 0.23569999635219574, 0.6545000076293945, 0.3359000086784363, 0.6704000234603882, 0.44440001249313354 ], "y_min": [ 0.3813000023365021, 0.3799000084400177, 0.3984000086784363, 0.42329999804496765, 0.45210000872612, 0.5659000277519226, 0.7720000147819519, 0.8223000168800354 ], "x_max": [ 0.5072000026702881, 0.7117999792098999, 0.33379998803138733, 0.30480000376701355, 0.6661999821662903, 0.3449000120162964, 0.6862999796867371, 0.5557000041007996 ], "y_max": [ 0.39010000228881836, 0.39309999346733093, 0.4066999852657318, 0.43549999594688416, 0.4609000086784363, 0.5746999979019165, 0.7842000126838684, 0.8393999934196472 ], "expr_type": [ "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "isolated" ] }
0001129_page03
{ "latex": [ "$\\Delta _{\\rm ret,av}$", "$(\\w +m^2)$", "$\\bar V_\\pm $", "$\\Delta =\\Delta _{\\rm ret}-\\Delta _{\\rm av}$", "$\\Delta =\\Delta _{\\rm ret}-\\Delta _{\\rm av}$", "${\\cal A}$", "$\\varphi (f),\\> f\\in {\\cal D}(\\RR ^4)$", "$\\varphi (f),\\> f\\in {\\cal D}(\\RR ^4)$", "$<f,g>=\\int d^4x f(x)g(x)$", "${\\cal A}$", "$*$", "$\\pi $", "$\\omega _0$", "$\\omega _0:{\\cal A}\\to \\CC $", "$\\Delta _+$", "$\\Delta $", "${\\cal H}$", "$\\Omega $", "${\\cal H}$", "$\\varphi $", "$\\pi $", "${\\cal D}\\subset {\\cal H}$", "$A$", "${\\cal H}$", "$\\varphi $", "${\\cal B}$", "${\\cal B}$", "$A$", "$-\\tau $", "$\\tau $", "$\\tau >0$", "${\\rm supp}\\>g\\, \\subset \\,(-\\tau ,\\tau )\\times {\\rm R}^3$", "$S$", "\\begin {equation} (\\w +m^2)\\Delta _{\\rm ret,av} =\\delta , \\quad \\quad {\\rm supp}\\>\\Delta _{\\rm ret,av}\\subset \\bar V_\\pm ,\\label {2.2} \\end {equation}", "\\begin {eqnarray} &&f\\mapsto \\varphi (f) {\\rm \\ is \\ linear },\\\\ &&\\varphi ((\\w +m^2) f)=0,\\\\ &&\\varphi (f)^{*}=\\varphi (\\bar f),\\\\ &&[\\varphi (f),\\varphi (g)]=i<f,\\Delta *g>.\\end {eqnarray}", "\\begin {equation} \\omega _0(\\varphi (f)\\varphi (g))=i<f,\\Delta _+ *g>\\label {2.7} \\end {equation}", "\\begin {displaymath} (\\Omega ,\\pi (A)\\Omega )=\\omega _{0}(A)\\ ,\\ A\\in {\\cal A}\\ . \\end {displaymath}", "\\begin {eqnarray} &&(i)\\> \\varphi (f)\\in {\\rm End}({\\cal D})\\\\ &&(ii)\\> f\\mapsto \\varphi (f)\\Phi \\quad \\quad {\\rm \\ is \\ continuous}\\quad \\forall \\Phi \\in {\\cal D}.\\end {eqnarray}", "\\begin {equation} [A(f),\\varphi (g)]=0\\quad \\quad {\\rm if}\\quad (x-y)^2<0\\quad \\forall (x,y)\\in ({\\rm supp}\\>f\\times {\\rm supp}\\>g).\\label {2.8} \\end {equation}", "\\begin {equation} H_I(t)=-\\int d^3x\\,g(t,{\\vec x})A(t,{\\vec x}),\\quad \\quad g\\in {\\cal D}(\\RR ^4),\\label {2.9} \\end {equation}", "\\begin {equation} S(g)={\\bf 1}+\\sum _{n=1}^\\infty \\frac {i^n}{n!}\\int dx_1...dx_n\\, T\\bigl ( A(x_1)...A(x_n)\\bigr ) g(x_1)...g(x_n).\\label {2.10} \\end {equation}" ], "latex_norm": [ "$ \\Delta _ { r e t , a v } $", "$ ( \\square + m ^ { 2 } ) $", "$ \\bar { V } _ { \\pm } $", "$ \\Delta = \\Delta _ { r e t } - \\Delta _ { a v } $", "$ \\Delta = \\Delta _ { r e t } - \\Delta _ { a v } $", "$ A $", "$ \\varphi ( f ) , \\> f \\in D ( R ^ { 4 } ) $", "$ \\varphi ( f ) , \\> f \\in D ( R ^ { 4 } ) $", "$ < f , g > = \\int d ^ { 4 } x f ( x ) g ( x ) $", "$ A $", "$ \\ast $", "$ \\pi $", "$ \\omega _ { 0 } $", "$ \\omega _ { 0 } : A \\rightarrow C $", "$ \\Delta _ { + } $", "$ \\Delta $", "$ H $", "$ \\Omega $", "$ H $", "$ \\varphi $", "$ \\pi $", "$ D \\subset H $", "$ A $", "$ H $", "$ \\varphi $", "$ B $", "$ B $", "$ A $", "$ - \\tau $", "$ \\tau $", "$ \\tau > 0 $", "$ s u p p \\> g \\, \\subset \\, ( - \\tau , \\tau ) \\times R ^ { 3 } $", "$ S $", "\\begin{equation*} ( \\square + m ^ { 2 } ) \\Delta _ { r e t , a v } = \\delta , \\quad \\quad s u p p \\> \\Delta _ { r e t , a v } \\subset \\bar { V } _ { \\pm } , \\end{equation*}", "\\begin{align*} & & f \\mapsto \\varphi ( f ) ~ i s ~ l i n e a r , \\\\ & & \\varphi ( ( \\square + m ^ { 2 } ) f ) = 0 , \\\\ & & \\varphi ( f ) ^ { \\ast } = \\varphi ( \\bar { f } ) , \\\\ & & [ \\varphi ( f ) , \\varphi ( g ) ] = i < f , \\Delta \\ast g > . \\end{align*}", "\\begin{equation*} \\omega _ { 0 } ( \\varphi ( f ) \\varphi ( g ) ) = i < f , \\Delta _ { + } \\ast g > \\end{equation*}", "\\begin{equation*} ( \\Omega , \\pi ( A ) \\Omega ) = \\omega _ { 0 } ( A ) ~ , ~ A \\in A ~ . \\end{equation*}", "\\begin{align*} & & ( i ) \\> \\varphi ( f ) \\in E n d ( D ) \\\\ & & ( i i ) \\> f \\mapsto \\varphi ( f ) \\Phi \\quad \\quad ~ i s ~ c o n t i n u o u s \\quad \\forall \\Phi \\in D . \\end{align*}", "\\begin{equation*} [ A ( f ) , \\varphi ( g ) ] = 0 \\quad \\quad i f \\quad ( x - y ) ^ { 2 } < 0 \\quad \\forall ( x , y ) \\in ( s u p p \\> f \\times s u p p \\> g ) . \\end{equation*}", "\\begin{equation*} H _ { I } ( t ) = - \\int d ^ { 3 } x \\, g ( t , \\vec { x } ) A ( t , \\vec { x } ) , \\quad \\quad g \\in D ( R ^ { 4 } ) , \\end{equation*}", "\\begin{equation*} S ( g ) = 1 + \\sum _ { n = 1 } ^ { \\infty } \\frac { i ^ { n } } { n ! } \\int d x _ { 1 } . . . d x _ { n } \\, T ( A ( x _ { 1 } ) . . . A ( x _ { n } ) ) g ( x _ { 1 } ) . . . g ( x _ { n } ) . \\end{equation*}" ], "latex_expand": [ "$ \\mupDelta _ { \\mathrm { r e t } , \\mathrm { a v } } $", "$ ( \\square + \\mitm ^ { 2 } ) $", "$ \\bar { \\mitV } _ { \\pm } $", "$ \\mupDelta = \\mupDelta _ { \\mathrm { r e t } } - \\mupDelta _ { \\mathrm { a v } } $", "$ \\mupDelta = \\mupDelta _ { \\mathrm { r e t } } - \\mupDelta _ { \\mathrm { a v } } $", "$ \\mitA $", "$ \\mitvarphi ( \\mitf ) , \\> \\mitf \\in \\mitD ( \\BbbR ^ { 4 } ) $", "$ \\mitvarphi ( \\mitf ) , \\> \\mitf \\in \\mitD ( \\BbbR ^ { 4 } ) $", "$ < \\mitf , \\mitg > = \\int \\nolimits \\mitd ^ { 4 } \\mitx \\mitf ( \\mitx ) \\mitg ( \\mitx ) $", "$ \\mitA $", "$ \\ast $", "$ \\mitpi $", "$ \\mitomega _ { 0 } $", "$ \\mitomega _ { 0 } : \\mitA \\rightarrow \\BbbC $", "$ \\mupDelta _ { + } $", "$ \\mupDelta $", "$ \\mitH $", "$ \\mupOmega $", "$ \\mitH $", "$ \\mitvarphi $", "$ \\mitpi $", "$ \\mitD \\subset \\mitH $", "$ \\mitA $", "$ \\mitH $", "$ \\mitvarphi $", "$ \\mitB $", "$ \\mitB $", "$ \\mitA $", "$ - \\mittau $", "$ \\mittau $", "$ \\mittau > 0 $", "$ \\mathrm { s u p p } \\> \\mitg \\, \\subset \\, ( - \\mittau , \\mittau ) \\times \\mathrm { R } ^ { 3 } $", "$ \\mitS $", "\\begin{equation*} ( \\square + \\mitm ^ { 2 } ) \\mupDelta _ { \\mathrm { r e t } , \\mathrm { a v } } = \\mitdelta , \\quad \\quad \\mathrm { s u p p } \\> \\mupDelta _ { \\mathrm { r e t } , \\mathrm { a v } } \\subset \\bar { \\mitV } _ { \\pm } , \\end{equation*}", "\\begin{align*} & & \\mitf \\mapsto \\mitvarphi ( \\mitf ) \\mathrm { ~ i s ~ l i n e a r } , \\\\ & & \\mitvarphi ( ( \\square + \\mitm ^ { 2 } ) \\mitf ) = 0 , \\\\ & & \\mitvarphi ( \\mitf ) ^ { \\ast } = \\mitvarphi ( \\bar { \\mitf } ) , \\\\ & & [ \\mitvarphi ( \\mitf ) , \\mitvarphi ( \\mitg ) ] = \\miti < \\mitf , \\mupDelta \\ast \\mitg > . \\end{align*}", "\\begin{equation*} \\mitomega _ { 0 } ( \\mitvarphi ( \\mitf ) \\mitvarphi ( \\mitg ) ) = \\miti < \\mitf , \\mupDelta _ { + } \\ast \\mitg > \\end{equation*}", "\\begin{equation*} ( \\mupOmega , \\mitpi ( \\mitA ) \\mupOmega ) = \\mitomega _ { 0 } ( \\mitA ) ~ , ~ \\mitA \\in \\mitA ~ . \\end{equation*}", "\\begin{align*} & & ( \\miti ) \\> \\mitvarphi ( \\mitf ) \\in \\mathrm { E n d } ( \\mitD ) \\\\ & & ( \\miti \\miti ) \\> \\mitf \\mapsto \\mitvarphi ( \\mitf ) \\mupPhi \\quad \\quad \\mathrm { ~ i s ~ c o n t i n u o u s } \\quad \\forall \\mupPhi \\in \\mitD . \\end{align*}", "\\begin{equation*} [ \\mitA ( \\mitf ) , \\mitvarphi ( \\mitg ) ] = 0 \\quad \\quad \\mathrm { i f } \\quad ( \\mitx - \\mity ) ^ { 2 } < 0 \\quad \\forall ( \\mitx , \\mity ) \\in ( \\mathrm { s u p p } \\> \\mitf \\times \\mathrm { s u p p } \\> \\mitg ) . \\end{equation*}", "\\begin{equation*} \\mitH _ { \\mitI } ( \\mitt ) = - \\int \\mitd ^ { 3 } \\mitx \\, \\mitg ( \\mitt , \\vec { \\mitx } ) \\mitA ( \\mitt , \\vec { \\mitx } ) , \\quad \\quad \\mitg \\in \\mitD ( \\BbbR ^ { 4 } ) , \\end{equation*}", "\\begin{equation*} \\mitS ( \\mitg ) = 1 + \\sum _ { \\mitn = 1 } ^ { \\infty } \\frac { \\miti ^ { \\mitn } } { \\mitn ! } \\int \\mitd \\mitx _ { 1 } . . . \\mitd \\mitx _ { \\mitn } \\, \\mitT \\big ( \\mitA ( \\mitx _ { 1 } ) . . . \\mitA ( \\mitx _ { \\mitn } ) \\big ) \\mitg ( \\mitx _ { 1 } ) . . . \\mitg ( \\mitx _ { \\mitn } ) . \\end{equation*}" ], "x_min": [ 0.4361000061035156, 0.30709999799728394, 0.25920000672340393, 0.7540000081062317, 0.2093999981880188, 0.487199991941452, 0.7200999855995178, 0.2093999981880188, 0.5044999718666077, 0.2660999894142151, 0.326200008392334, 0.46790000796318054, 0.4699000120162964, 0.5860000252723694, 0.2563999891281128, 0.515500009059906, 0.6917999982833862, 0.2093999981880188, 0.23909999430179596, 0.33379998803138733, 0.6585999727249146, 0.6039999723434448, 0.37459999322891235, 0.4174000024795532, 0.23010000586509705, 0.5120999813079834, 0.3012999892234802, 0.6108999848365784, 0.541100025177002, 0.5916000008583069, 0.6621000170707703, 0.24459999799728394, 0.44780001044273376, 0.33660000562667847, 0.40700000524520874, 0.3801000118255615, 0.38769999146461487, 0.3544999957084656, 0.2556999921798706, 0.326200008392334, 0.2736999988555908 ], "y_min": [ 0.1543000042438507, 0.1673000007867813, 0.21580000221729279, 0.21729999780654907, 0.2313999980688095, 0.2313999980688095, 0.23000000417232513, 0.24410000443458557, 0.3467000126838684, 0.36230000853538513, 0.36469998955726624, 0.37940001487731934, 0.3935999870300293, 0.3905999958515167, 0.45410001277923584, 0.45410001277923584, 0.45410001277923584, 0.4683000147342682, 0.5311999917030334, 0.5342000126838684, 0.5342000126838684, 0.5454000234603882, 0.6122999787330627, 0.6122999787330627, 0.6294000148773193, 0.6758000254631042, 0.6894999742507935, 0.76419997215271, 0.7939000129699707, 0.7958999872207642, 0.7935000061988831, 0.8051999807357788, 0.8070999979972839, 0.1875, 0.2632000148296356, 0.4253000020980835, 0.5048999786376953, 0.5630000233650208, 0.6455000042915344, 0.7226999998092651, 0.826200008392334 ], "x_max": [ 0.4851999878883362, 0.362199991941452, 0.28060001134872437, 0.7975000143051147, 0.2827000021934509, 0.5002999901771545, 0.7961000204086304, 0.2556999921798706, 0.6869000196456909, 0.2799000144004822, 0.3352000117301941, 0.4790000021457672, 0.4885999858379364, 0.6703000068664551, 0.28200000524520874, 0.5299999713897705, 0.7070000171661377, 0.22179999947547913, 0.25360000133514404, 0.3449000120162964, 0.6690000295639038, 0.6543999910354614, 0.38769999146461487, 0.4318999946117401, 0.24120000004768372, 0.5238000154495239, 0.31369999051094055, 0.6236000061035156, 0.5631999969482422, 0.6013000011444092, 0.7063000202178955, 0.4041999876499176, 0.4595000147819519, 0.6607000231742859, 0.6233000159263611, 0.6151000261306763, 0.609499990940094, 0.6765000224113464, 0.7443000078201294, 0.6704000234603882, 0.7264000177383423 ], "y_max": [ 0.1665000021457672, 0.17949999868869781, 0.2290000021457672, 0.2280000001192093, 0.24210000038146973, 0.2401999980211258, 0.24320000410079956, 0.2572999894618988, 0.36039999127388, 0.3711000084877014, 0.3709999918937683, 0.38530001044273376, 0.40139999985694885, 0.40130001306533813, 0.4652999937534332, 0.46239998936653137, 0.46239998936653137, 0.4771000146865845, 0.5400000214576721, 0.5425000190734863, 0.5400999784469604, 0.5547000169754028, 0.6211000084877014, 0.6211000084877014, 0.6377000212669373, 0.6840999722480774, 0.6983000040054321, 0.7730000019073486, 0.8022000193595886, 0.8012999892234802, 0.801800012588501, 0.8184000253677368, 0.8159000277519226, 0.20509999990463257, 0.3357999920845032, 0.4408999979496002, 0.5185999870300293, 0.6004999876022339, 0.6625999808311462, 0.753000020980835, 0.864799976348877 ], "expr_type": [ "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "isolated", "isolated", "isolated", "isolated", "isolated", "isolated", "isolated", "isolated" ] }
0001129_page04
{ "latex": [ "$T$", "$T\\bigl (...\\bigr )$", "$A$", "$\\varphi $", "$n$", "$C^\\infty $", "${\\cal B}^n$", "$T\\bigl ( A_1(x_1)...A_n(x_n)\\bigr )$", "${\\cal D}$", "$\\{x_{k+1},...,x_n\\}\\,\\cap \\, (\\{x_1,...,x_k\\}+\\bar V_+)=\\emptyset $", "$S$", "$S(g)$", "${\\bf 1}$", "$\\bar T(...)$", "${\\cal P}(\\{1,...,n\\})$", "$\\{1,...,n\\}$", "$|P|$", "$P$", "$\\bar T$", "$\\{x_{k+1},...,x_n\\}\\,\\cap \\, (\\{x_1,...,x_k\\}+\\bar V_+)=\\emptyset $", "$S(g)$", "$f,g,h\\in {\\cal D}(\\RR ^4)$", "$({\\rm supp}\\>f + \\bar V_+)\\,\\cap \\,{\\rm supp}\\>h=\\emptyset $", "$g$", "$g=0$", "$S(\\cdot )$", "$g=0$", "$S(f)\\in {\\cal A}$", "$\\forall f\\in {\\cal D}(\\RR ^4,{\\cal V})$", "$f$", "$f=\\sum _if_i(x)A_i,\\>f_i\\in {\\cal D}(\\RR ^4,\\RR ), \\>A_i\\in {\\cal V}$", "$T(...)$", "$A_1=A_2=...=A_n$", "$A_1=A_2=...=A_n$", "\\begin {equation} T\\bigl ( A(x_1)...A(x_n)\\bigr ) =T\\bigl ( A(x_1)...A(x_k)\\bigr ) T\\bigl ( A(x_{k+1})...A(x_n)\\bigr ) \\label {2.11}\\end {equation}", "\\begin {equation} S(g)^{-1}={\\bf 1}+\\sum _{n=1}^\\infty \\frac {(-i)^n}{n!}\\int dx_1...dx_n\\, \\bar T\\bigl ( A(x_1)...A(x_n)\\bigr ) g(x_1)...g(x_n),\\label {2.12a} \\end {equation}", "\\begin {equation} \\bar T\\bigl ( A(x_1)...A(x_n)\\bigr )\\=d\\sum _{P\\in {\\cal P}(\\{1,...,n\\})} (-1)^{|P|+n}\\prod _{p\\in P}T\\bigl ( A(x_i),i\\in p)\\ .\\label {2.12b} \\end {equation}", "\\begin {equation} \\bar T\\bigl ( A(x_1)...A(x_n)\\bigr ) =\\bar T\\bigl ( A(x_{k+1})... A(x_n)\\bigr )\\bar T\\bigl ( A(x_1)...A(x_k)\\bigr ) \\label {2.12c}\\end {equation}", "\\begin {equation} S(f+g+h)=S(f+g)S(g)^{-1}S(g+h), \\label {2.12} \\end {equation}" ], "latex_norm": [ "$ T $", "$ T ( . . . ) $", "$ A $", "$ \\varphi $", "$ n $", "$ C ^ { \\infty } $", "$ B ^ { n } $", "$ T ( A _ { 1 } ( x _ { 1 } ) . . . A _ { n } ( x _ { n } ) ) $", "$ D $", "$ \\{ x _ { k + 1 } , . . . , x _ { n } \\} \\, \\cap \\, ( \\{ x _ { 1 } , . . . , x _ { k } \\} + \\bar { V } _ { + } ) = \\emptyset $", "$ S $", "$ S ( g ) $", "$ 1 $", "$ \\bar { T } ( . . . ) $", "$ P ( \\{ 1 , . . . , n \\} ) $", "$ \\{ 1 , . . . , n \\} $", "$ \\vert P \\vert $", "$ P $", "$ \\bar { T } $", "$ \\{ x _ { k + 1 } , . . . , x _ { n } \\} \\, \\cap \\, ( \\{ x _ { 1 } , . . . , x _ { k } \\} + \\bar { V } _ { + } ) = \\emptyset $", "$ S ( g ) $", "$ f , g , h \\in D ( R ^ { 4 } ) $", "$ ( s u p p \\> f + \\bar { V } _ { + } ) \\, \\cap \\, s u p p \\> h = \\emptyset $", "$ g $", "$ g = 0 $", "$ S ( \\cdot ) $", "$ g = 0 $", "$ S ( f ) \\in A $", "$ \\forall f \\in D ( R ^ { 4 } , V ) $", "$ f $", "$ f = \\sum _ { i } f _ { i } ( x ) A _ { i } , \\> f _ { i } \\in D ( R ^ { 4 } , R ) , \\> A _ { i } \\in V $", "$ T ( . . . ) $", "$ A _ { 1 } = A _ { 2 } = . . . = A _ { n } $", "$ A _ { 1 } = A _ { 2 } = . . . = A _ { n } $", "\\begin{equation*} T ( A ( x _ { 1 } ) . . . A ( x _ { n } ) ) = T ( A ( x _ { 1 } ) . . . A ( x _ { k } ) ) T ( A ( x _ { k + 1 } ) . . . A ( x _ { n } ) ) \\end{equation*}", "\\begin{equation*} S ( g ) ^ { - 1 } = 1 + \\sum _ { n = 1 } ^ { \\infty } \\frac { ( - i ) ^ { n } } { n ! } \\int d x _ { 1 } . . . d x _ { n } \\, \\bar { T } ( A ( x _ { 1 } ) . . . A ( x _ { n } ) ) g ( x _ { 1 } ) . . . g ( x _ { n } ) , \\end{equation*}", "\\begin{equation*} \\bar { T } ( A ( x _ { 1 } ) . . . A ( x _ { n } ) ) \\, \\overset { d e f } { = } \\, \\sum _ { P \\in P ( \\{ 1 , . . . , n \\} ) } ( - 1 ) ^ { \\vert P \\vert + n } \\prod _ { p \\in P } T ( A ( x _ { i } ) , i \\in p ) ~ . \\end{equation*}", "\\begin{equation*} \\bar { T } ( A ( x _ { 1 } ) . . . A ( x _ { n } ) ) = \\bar { T } ( A ( x _ { k + 1 } ) . . . A ( x _ { n } ) ) \\bar { T } ( A ( x _ { 1 } ) . . . A ( x _ { k } ) ) \\end{equation*}", "\\begin{equation*} S ( f + g + h ) = S ( f + g ) S ( g ) ^ { - 1 } S ( g + h ) , \\end{equation*}" ], "latex_expand": [ "$ \\mitT $", "$ \\mitT \\big ( . . . \\big ) $", "$ \\mitA $", "$ \\mitvarphi $", "$ \\mitn $", "$ \\mitC ^ { \\infty } $", "$ \\mitB ^ { \\mitn } $", "$ \\mitT \\big ( \\mitA _ { 1 } ( \\mitx _ { 1 } ) . . . \\mitA _ { \\mitn } ( \\mitx _ { \\mitn } ) \\big ) $", "$ \\mitD $", "$ \\{ \\mitx _ { \\mitk + 1 } , . . . , \\mitx _ { \\mitn } \\} \\, \\cap \\, ( \\{ \\mitx _ { 1 } , . . . , \\mitx _ { \\mitk } \\} + \\bar { \\mitV } _ { + } ) = \\varnothing $", "$ \\mitS $", "$ \\mitS ( \\mitg ) $", "$ 1 $", "$ \\bar { \\mitT } ( . . . ) $", "$ \\mitP ( \\{ 1 , . . . , \\mitn \\} ) $", "$ \\{ 1 , . . . , \\mitn \\} $", "$ \\vert \\mitP \\vert $", "$ \\mitP $", "$ \\bar { \\mitT } $", "$ \\{ \\mitx _ { \\mitk + 1 } , . . . , \\mitx _ { \\mitn } \\} \\, \\cap \\, ( \\{ \\mitx _ { 1 } , . . . , \\mitx _ { \\mitk } \\} + \\bar { \\mitV } _ { + } ) = \\varnothing $", "$ \\mitS ( \\mitg ) $", "$ \\mitf , \\mitg , \\Planckconst \\in \\mitD ( \\BbbR ^ { 4 } ) $", "$ ( \\mathrm { s u p p } \\> \\mitf + \\bar { \\mitV } _ { + } ) \\, \\cap \\, \\mathrm { s u p p } \\> \\Planckconst = \\varnothing $", "$ \\mitg $", "$ \\mitg = 0 $", "$ \\mitS ( \\cdot ) $", "$ \\mitg = 0 $", "$ \\mitS ( \\mitf ) \\in \\mitA $", "$ \\forall \\mitf \\in \\mitD ( \\BbbR ^ { 4 } , \\mitV ) $", "$ \\mitf $", "$ \\mitf = \\sum _ { \\miti } \\mitf _ { \\miti } ( \\mitx ) \\mitA _ { \\miti } , \\> \\mitf _ { \\miti } \\in \\mitD ( \\BbbR ^ { 4 } , \\BbbR ) , \\> \\mitA _ { \\miti } \\in \\mitV $", "$ \\mitT ( . . . ) $", "$ \\mitA _ { 1 } = \\mitA _ { 2 } = . . . = \\mitA _ { \\mitn } $", "$ \\mitA _ { 1 } = \\mitA _ { 2 } = . . . = \\mitA _ { \\mitn } $", "\\begin{equation*} \\mitT \\big ( \\mitA ( \\mitx _ { 1 } ) . . . \\mitA ( \\mitx _ { \\mitn } ) \\big ) = \\mitT \\big ( \\mitA ( \\mitx _ { 1 } ) . . . \\mitA ( \\mitx _ { \\mitk } ) \\big ) \\mitT \\big ( \\mitA ( \\mitx _ { \\mitk + 1 } ) . . . \\mitA ( \\mitx _ { \\mitn } ) \\big ) \\end{equation*}", "\\begin{equation*} \\mitS ( \\mitg ) ^ { - 1 } = 1 + \\sum _ { \\mitn = 1 } ^ { \\infty } \\frac { ( - \\miti ) ^ { \\mitn } } { \\mitn ! } \\int \\mitd \\mitx _ { 1 } . . . \\mitd \\mitx _ { \\mitn } \\, \\bar { \\mitT } \\big ( \\mitA ( \\mitx _ { 1 } ) . . . \\mitA ( \\mitx _ { \\mitn } ) \\big ) \\mitg ( \\mitx _ { 1 } ) . . . \\mitg ( \\mitx _ { \\mitn } ) , \\end{equation*}", "\\begin{equation*} \\bar { \\mitT } \\big ( \\mitA ( \\mitx _ { 1 } ) . . . \\mitA ( \\mitx _ { \\mitn } ) \\big ) \\, \\overset { \\mathrm { d e f } } { = } \\, \\sum _ { \\mitP \\in \\mitP ( \\{ 1 , . . . , \\mitn \\} ) } ( - 1 ) ^ { \\vert \\mitP \\vert + \\mitn } \\prod _ { \\mitp \\in \\mitP } \\mitT \\big ( \\mitA ( \\mitx _ { \\miti } ) , \\miti \\in \\mitp ) ~ . \\end{equation*}", "\\begin{equation*} \\bar { \\mitT } \\big ( \\mitA ( \\mitx _ { 1 } ) . . . \\mitA ( \\mitx _ { \\mitn } ) \\big ) = \\bar { \\mitT } \\big ( \\mitA ( \\mitx _ { \\mitk + 1 } ) . . . \\mitA ( \\mitx _ { \\mitn } ) \\big ) \\bar { \\mitT } \\big ( \\mitA ( \\mitx _ { 1 } ) . . . \\mitA ( \\mitx _ { \\mitk } ) \\big ) \\end{equation*}", "\\begin{equation*} \\mitS ( \\mitf + \\mitg + \\Planckconst ) = \\mitS ( \\mitf + \\mitg ) \\mitS ( \\mitg ) ^ { - 1 } \\mitS ( \\mitg + \\Planckconst ) , \\end{equation*}" ], "x_min": [ 0.46299999952316284, 0.5631999969482422, 0.40700000524520874, 0.42989999055862427, 0.42500001192092896, 0.2093999981880188, 0.6247000098228455, 0.3075000047683716, 0.48170000314712524, 0.22669999301433563, 0.579800009727478, 0.652400016784668, 0.2093999981880188, 0.49900001287460327, 0.2549999952316284, 0.6184999942779541, 0.7200999855995178, 0.367000013589859, 0.4332999885082245, 0.22460000216960907, 0.5756999850273132, 0.2093999981880188, 0.414000004529953, 0.767799973487854, 0.2093999981880188, 0.2093999981880188, 0.5231999754905701, 0.2971999943256378, 0.37529999017715454, 0.5210999846458435, 0.6344000101089478, 0.4796000123023987, 0.7139000296592712, 0.2093999981880188, 0.28610000014305115, 0.23499999940395355, 0.2502000033855438, 0.28610000014305115, 0.3483000099658966 ], "y_min": [ 0.1543000042438507, 0.15230000019073486, 0.16850000619888306, 0.1996999979019165, 0.21389999985694885, 0.22509999573230743, 0.22509999573230743, 0.23729999363422394, 0.23929999768733978, 0.3041999936103821, 0.30570000410079956, 0.30469998717308044, 0.3345000147819519, 0.40529999136924744, 0.4887999892234802, 0.4887999892234802, 0.4887999892234802, 0.5038999915122986, 0.5023999810218811, 0.5541999936103821, 0.5692999958992004, 0.6348000168800354, 0.6348000168800354, 0.63919997215271, 0.6654999852180481, 0.6923999786376953, 0.6937999725341797, 0.8144999742507935, 0.8134999871253967, 0.8148999810218811, 0.8140000104904175, 0.8384000062942505, 0.8389000296592712, 0.8500999808311462, 0.274399995803833, 0.3544999957084656, 0.4408999979496002, 0.524399995803833, 0.6050000190734863 ], "x_max": [ 0.47609999775886536, 0.6047000288963318, 0.42010000348091125, 0.4415999948978424, 0.43540000915527344, 0.23770000040531158, 0.6460999846458435, 0.45329999923706055, 0.49619999527931213, 0.5266000032424927, 0.5914999842643738, 0.6862999796867371, 0.21979999542236328, 0.5383999943733215, 0.34549999237060547, 0.6827999949455261, 0.742900013923645, 0.3808000087738037, 0.4456999897956848, 0.51419997215271, 0.6089000105857849, 0.3255000114440918, 0.6351000070571899, 0.7767999768257141, 0.25429999828338623, 0.23909999430179596, 0.5673999786376953, 0.36559998989105225, 0.48030000925064087, 0.531499981880188, 0.7878000140190125, 0.5134999752044678, 0.7878000140190125, 0.259799987077713, 0.7139000296592712, 0.7325999736785889, 0.7200999855995178, 0.7139000296592712, 0.6488999724388123 ], "y_max": [ 0.163100004196167, 0.16689999401569366, 0.17730000615119934, 0.20800000429153442, 0.21979999542236328, 0.23389999568462372, 0.23389999568462372, 0.2524000108242035, 0.24809999763965607, 0.3174000084400177, 0.31450000405311584, 0.3174000084400177, 0.34279999136924744, 0.41850000619888306, 0.5015000104904175, 0.5015000104904175, 0.5015000104904175, 0.5127000212669373, 0.5127000212669373, 0.5679000020027161, 0.5814999938011169, 0.6480000019073486, 0.6480000019073486, 0.6474999785423279, 0.6758000254631042, 0.7045999765396118, 0.7041000127792358, 0.82669997215271, 0.82669997215271, 0.8260999917984009, 0.8277000188827515, 0.8482000231742859, 0.8471999764442444, 0.8583999872207642, 0.29249998927116394, 0.39259999990463257, 0.476500004529953, 0.5429999828338623, 0.6220999956130981 ], "expr_type": [ "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "isolated", "isolated", "isolated", "isolated", "isolated" ] }
0001129_page05
{ "latex": [ "$f=\\sum _if_i(x)A_i,\\>f_i\\in {\\cal D}(\\RR ^4,\\RR ), \\>A_i\\in {\\cal V}$", "${\\cal V}$", "${\\cal A}$", "$*$", "${\\cal V}$", "$S(f)$", "$S$", "$g$", "$S_{g}(f)$", "$f$", "$S$", "$A_{g}(x)=\\frac {\\delta }{\\delta h(x)}S_{g}(hA)|_{h=0}$", "$A\\in {\\cal V}$", "$h\\in {\\cal D}({\\RR }^4)$", "$h\\in {\\cal D}({\\RR }^4)$", "$g\\rightarrow $", "${\\cal O}$", "$*$", "${\\cal A}_{g}({\\cal O})$", "$\\{ S_{g}(h)\\>,\\>h\\in {\\cal D}({\\cal O},{\\cal V})\\}$", "$\\{ S_{g}(h)\\>,\\>h\\in {\\cal D}({\\cal O},{\\cal V})\\}$", "${\\cal A}_{g}({\\cal O})$", "$g$", "$g\\equiv g'$", "${\\cal O}$", "$V\\in {\\cal A}$", "$S$", "$g\\in {\\cal D}(\\RR ^4,{\\cal V})$", "${\\cal L}\\in {\\cal V}$", "$\\Theta ({\\cal O})$", "$\\theta \\in {\\cal D}(\\RR ^4)$", "$1$", "${\\cal O}$", "${\\cal U}(\\theta ,\\theta ^\\prime )$", "$V\\in {\\cal A}$", "${\\cal A}_{\\cal L}({\\cal O})$", "${\\cal A}_{\\cal L}({\\cal O})$", "$S_{\\cal L}(h)$", "$i_{21}: {\\cal A}_{\\cal L}({\\cal O}_1)\\hookrightarrow {\\cal A}_ {\\cal L}({\\cal O}_2)$", "$i_{21}: {\\cal A}_{\\cal L}({\\cal O}_1)\\hookrightarrow {\\cal A}_ {\\cal L}({\\cal O}_2)$", "${\\cal O}_1\\subset {\\cal O}_2$", "\\begin {equation} S_{g}(f)\\=d S(g)^{-1}S(g+f),\\label {relS} \\end {equation}", "\\begin {equation} [S_{g}(h),S_{g}(f)]=0\\quad \\quad {\\rm if}\\quad (x-y)^2<0\\quad \\forall (x,y)\\in {\\rm supp}\\>h \\times {\\rm supp}\\>f.\\label {3.2} \\end {equation}", "\\begin {equation} VS_{g}(h)V^{-1}=S_{g'}(h),\\quad \\quad \\forall \\>h\\in {\\cal D}({\\cal O},{\\cal V}).\\label {3.3} \\end {equation}", "\\begin {equation} \\bigcup _{\\theta \\in \\Theta ({\\cal O})}\\{\\theta \\}\\times {\\cal A}_ {\\theta {\\cal L}}({\\cal O}).\\label {3.4} \\end {equation}", "\\begin {equation} VS_{\\theta {\\cal L}}(h)=S_{\\theta ^\\prime {\\cal L}}(h)V,\\quad \\quad \\forall \\>h\\in {\\cal D}({\\cal O},{\\cal V}).\\label {3.5} \\end {equation}", "\\begin {eqnarray} &&{\\cal A}_{\\cal L}({\\cal O})\\ni A=(A_\\theta )_{\\theta \\in \\Theta ({\\cal O})} \\quad \\quad (A_\\theta \\in {\\cal A}_{\\theta {\\cal L}}({\\cal O}))\\\\ &&VA_\\theta =A_{\\theta ^\\prime }V,\\quad \\quad \\forall V\\in {\\cal U}(\\theta ,\\theta ^\\prime ).\\end {eqnarray}", "\\begin {equation} (S_{\\cal L}(h))_\\theta =S_{\\theta {\\cal L}}(h).\\label {3.8} \\end {equation}" ], "latex_norm": [ "$ f = \\sum _ { i } f _ { i } ( x ) A _ { i } , \\> f _ { i } \\in D ( R ^ { 4 } , R ) , \\> A _ { i } \\in V $", "$ V $", "$ A $", "$ \\ast $", "$ V $", "$ S ( f ) $", "$ S $", "$ g $", "$ S _ { g } ( f ) $", "$ f $", "$ S $", "$ A _ { g } ( x ) = \\frac { \\delta } { \\delta h ( x ) } S _ { g } ( h A ) \\vert _ { h = 0 } $", "$ A \\in V $", "$ h \\in D ( R ^ { 4 } ) $", "$ h \\in D ( R ^ { 4 } ) $", "$ g \\rightarrow $", "$ O $", "$ \\ast $", "$ A _ { g } ( O ) $", "$ \\{ S _ { g } ( h ) \\> , \\> h \\in D ( O , V ) \\} $", "$ \\{ S _ { g } ( h ) \\> , \\> h \\in D ( O , V ) \\} $", "$ A _ { g } ( O ) $", "$ g $", "$ g \\equiv g ^ { \\prime } $", "$ O $", "$ V \\in A $", "$ S $", "$ g \\in D ( R ^ { 4 } , V ) $", "$ L \\in V $", "$ \\Theta ( O ) $", "$ \\theta \\in D ( R ^ { 4 } ) $", "$ 1 $", "$ O $", "$ U ( \\theta , \\theta ^ { \\prime } ) $", "$ V \\in A $", "$ A _ { L } ( O ) $", "$ A _ { L } ( O ) $", "$ S _ { L } ( h ) $", "$ i _ { 2 1 } : A _ { L } ( O _ { 1 } ) \\hookrightarrow A _ { L } ( O _ { 2 } ) $", "$ i _ { 2 1 } : A _ { L } ( O _ { 1 } ) \\hookrightarrow A _ { L } ( O _ { 2 } ) $", "$ O _ { 1 } \\subset O _ { 2 } $", "\\begin{equation*} S _ { g } ( f ) \\, \\overset { d e f } { = } \\, S ( g ) ^ { - 1 } S ( g + f ) , \\end{equation*}", "\\begin{equation*} [ S _ { g } ( h ) , S _ { g } ( f ) ] = 0 \\quad \\quad i f \\quad ( x - y ) ^ { 2 } < 0 \\quad \\forall ( x , y ) \\in s u p p \\> h \\times s u p p \\> f . \\end{equation*}", "\\begin{equation*} V S _ { g } ( h ) V ^ { - 1 } = S _ { g ^ { \\prime } } ( h ) , \\quad \\quad \\forall \\> h \\in D ( O , V ) . \\end{equation*}", "\\begin{equation*} \\cup _ { \\theta \\in \\Theta ( O ) } \\{ \\theta \\} \\times A _ { \\theta L } ( O ) . \\end{equation*}", "\\begin{equation*} V S _ { \\theta L } ( h ) = S _ { \\theta ^ { \\prime } L } ( h ) V , \\quad \\quad \\forall \\> h \\in D ( O , V ) . \\end{equation*}", "\\begin{align*} & & A _ { L } ( O ) \\ni A = ( A _ { \\theta } ) _ { \\theta \\in \\Theta ( O ) } \\quad \\quad ( A _ { \\theta } \\in A _ { \\theta L } ( O ) ) \\\\ & & V A _ { \\theta } = A _ { \\theta ^ { \\prime } } V , \\quad \\quad \\forall V \\in U ( \\theta , \\theta ^ { \\prime } ) . \\end{align*}", "\\begin{equation*} ( S _ { L } ( h ) ) _ { \\theta } = S _ { \\theta L } ( h ) . \\end{equation*}" ], "latex_expand": [ "$ \\mitf = \\sum _ { \\miti } \\mitf _ { \\miti } ( \\mitx ) \\mitA _ { \\miti } , \\> \\mitf _ { \\miti } \\in \\mitD ( \\BbbR ^ { 4 } , \\BbbR ) , \\> \\mitA _ { \\miti } \\in \\mitV $", "$ \\mitV $", "$ \\mitA $", "$ \\ast $", "$ \\mitV $", "$ \\mitS ( \\mitf ) $", "$ \\mitS $", "$ \\mitg $", "$ \\mitS _ { \\mitg } ( \\mitf ) $", "$ \\mitf $", "$ \\mitS $", "$ \\mitA _ { \\mitg } ( \\mitx ) = \\frac { \\mitdelta } { \\mitdelta \\Planckconst ( \\mitx ) } \\mitS _ { \\mitg } ( \\Planckconst \\mitA ) \\vert _ { \\Planckconst = 0 } $", "$ \\mitA \\in \\mitV $", "$ \\Planckconst \\in \\mitD ( \\BbbR ^ { 4 } ) $", "$ \\Planckconst \\in \\mitD ( \\BbbR ^ { 4 } ) $", "$ \\mitg \\rightarrow $", "$ \\mitO $", "$ \\ast $", "$ \\mitA _ { \\mitg } ( \\mitO ) $", "$ \\{ \\mitS _ { \\mitg } ( \\Planckconst ) \\> , \\> \\Planckconst \\in \\mitD ( \\mitO , \\mitV ) \\} $", "$ \\{ \\mitS _ { \\mitg } ( \\Planckconst ) \\> , \\> \\Planckconst \\in \\mitD ( \\mitO , \\mitV ) \\} $", "$ \\mitA _ { \\mitg } ( \\mitO ) $", "$ \\mitg $", "$ \\mitg \\equiv \\mitg ^ { \\prime } $", "$ \\mitO $", "$ \\mitV \\in \\mitA $", "$ \\mitS $", "$ \\mitg \\in \\mitD ( \\BbbR ^ { 4 } , \\mitV ) $", "$ \\mitL \\in \\mitV $", "$ \\mupTheta ( \\mitO ) $", "$ \\mittheta \\in \\mitD ( \\BbbR ^ { 4 } ) $", "$ 1 $", "$ \\mitO $", "$ \\mitU ( \\mittheta , \\mittheta ^ { \\prime } ) $", "$ \\mitV \\in \\mitA $", "$ \\mitA _ { \\mitL } ( \\mitO ) $", "$ \\mitA _ { \\mitL } ( \\mitO ) $", "$ \\mitS _ { \\mitL } ( \\Planckconst ) $", "$ \\miti _ { 2 1 } : \\mitA _ { \\mitL } ( \\mitO _ { 1 } ) \\hookrightarrow \\mitA _ { \\mitL } ( \\mitO _ { 2 } ) $", "$ \\miti _ { 2 1 } : \\mitA _ { \\mitL } ( \\mitO _ { 1 } ) \\hookrightarrow \\mitA _ { \\mitL } ( \\mitO _ { 2 } ) $", "$ \\mitO _ { 1 } \\subset \\mitO _ { 2 } $", "\\begin{equation*} \\mitS _ { \\mitg } ( \\mitf ) \\, \\overset { \\mathrm { d e f } } { = } \\, \\mitS ( \\mitg ) ^ { - 1 } \\mitS ( \\mitg + \\mitf ) , \\end{equation*}", "\\begin{equation*} [ \\mitS _ { \\mitg } ( \\Planckconst ) , \\mitS _ { \\mitg } ( \\mitf ) ] = 0 \\quad \\quad \\mathrm { i f } \\quad ( \\mitx - \\mity ) ^ { 2 } < 0 \\quad \\forall ( \\mitx , \\mity ) \\in \\mathrm { s u p p } \\> \\Planckconst \\times \\mathrm { s u p p } \\> \\mitf . \\end{equation*}", "\\begin{equation*} \\mitV \\mitS _ { \\mitg } ( \\Planckconst ) \\mitV ^ { - 1 } = \\mitS _ { \\mitg ^ { \\prime } } ( \\Planckconst ) , \\quad \\quad \\forall \\> \\Planckconst \\in \\mitD ( \\mitO , \\mitV ) . \\end{equation*}", "\\begin{equation*} \\bigcup _ { \\mittheta \\in \\mupTheta ( \\mitO ) } \\{ \\mittheta \\} \\times \\mitA _ { \\mittheta \\mitL } ( \\mitO ) . \\end{equation*}", "\\begin{equation*} \\mitV \\mitS _ { \\mittheta \\mitL } ( \\Planckconst ) = \\mitS _ { \\mittheta ^ { \\prime } \\mitL } ( \\Planckconst ) \\mitV , \\quad \\quad \\forall \\> \\Planckconst \\in \\mitD ( \\mitO , \\mitV ) . \\end{equation*}", "\\begin{align*} & & \\mitA _ { \\mitL } ( \\mitO ) \\ni \\mitA = ( \\mitA _ { \\mittheta } ) _ { \\mittheta \\in \\mupTheta ( \\mitO ) } \\quad \\quad ( \\mitA _ { \\mittheta } \\in \\mitA _ { \\mittheta \\mitL } ( \\mitO ) ) \\\\ & & \\mitV \\mitA _ { \\mittheta } = \\mitA _ { \\mittheta ^ { \\prime } } \\mitV , \\quad \\quad \\forall \\mitV \\in \\mitU ( \\mittheta , \\mittheta ^ { \\prime } ) . \\end{align*}", "\\begin{equation*} ( \\mitS _ { \\mitL } ( \\Planckconst ) ) _ { \\mittheta } = \\mitS _ { \\mittheta \\mitL } ( \\Planckconst ) . \\end{equation*}" ], "x_min": [ 0.2093999981880188, 0.3959999978542328, 0.7103999853134155, 0.25850000977516174, 0.5149000287055969, 0.36489999294281006, 0.2093999981880188, 0.2971999943256378, 0.4499000012874603, 0.742900013923645, 0.3801000118255615, 0.49410000443458557, 0.6966000199317932, 0.7588000297546387, 0.2093999981880188, 0.6344000101089478, 0.7732999920845032, 0.39250001311302185, 0.46650001406669617, 0.6931999921798706, 0.2093999981880188, 0.2093999981880188, 0.4368000030517578, 0.5791000127792358, 0.47130000591278076, 0.699400007724762, 0.3483000099658966, 0.5625, 0.2799000144004822, 0.6647999882698059, 0.326200008392334, 0.5888000130653381, 0.34279999136924744, 0.23980000615119934, 0.4878999888896942, 0.25360000133514404, 0.2093999981880188, 0.5252000093460083, 0.7559999823570251, 0.2093999981880188, 0.3828999996185303, 0.4050000011920929, 0.24050000309944153, 0.3476000130176544, 0.4194999933242798, 0.3490000069141388, 0.349700003862381, 0.4284999966621399 ], "y_min": [ 0.15330000221729279, 0.1543000042438507, 0.16750000417232513, 0.1851000040769577, 0.1826000064611435, 0.19580000638961792, 0.22509999573230743, 0.263700008392334, 0.259799987077713, 0.260699987411499, 0.27489998936653137, 0.3246999979019165, 0.32710000872612, 0.32519999146461487, 0.3393999934196472, 0.3472000062465668, 0.3725999891757965, 0.38920000195503235, 0.385699987411499, 0.385699987411499, 0.39989998936653137, 0.42820000648498535, 0.43209999799728394, 0.42820000648498535, 0.44339999556541443, 0.44339999556541443, 0.5356000065803528, 0.5342000126838684, 0.5640000104904175, 0.5634999871253967, 0.57669997215271, 0.5785999894142151, 0.5922999978065491, 0.6592000126838684, 0.6601999998092651, 0.7113999724388123, 0.7811999917030334, 0.7811999917030334, 0.8335000276565552, 0.8476999998092651, 0.8481000065803528, 0.2304999977350235, 0.2953999936580658, 0.46630001068115234, 0.6128000020980835, 0.6820999979972839, 0.7310000061988831, 0.8036999702453613 ], "x_max": [ 0.33660000562667847, 0.4077000021934509, 0.7242000102996826, 0.26820001006126404, 0.5266000032424927, 0.3995000123977661, 0.22110000252723694, 0.3061999976634979, 0.49140000343322754, 0.7533000111579895, 0.3917999863624573, 0.6848000288009644, 0.746999979019165, 0.789900004863739, 0.2563999891281128, 0.6668999791145325, 0.7878000140190125, 0.40149998664855957, 0.5149000287055969, 0.7878999710083008, 0.2777999937534332, 0.25780001282691956, 0.4465000033378601, 0.6240000128746033, 0.48579999804496765, 0.7491999864578247, 0.36000001430511475, 0.6571999788284302, 0.3296999931335449, 0.7049000263214111, 0.40290001034736633, 0.5978000164031982, 0.3573000133037567, 0.29440000653266907, 0.5356000065803528, 0.30399999022483826, 0.2605000138282776, 0.5687000155448914, 0.7906000018119812, 0.35249999165534973, 0.4472000002861023, 0.5916000008583069, 0.7297999858856201, 0.6517000198364258, 0.5777999758720398, 0.6510000228881836, 0.6814000010490417, 0.5716000199317932 ], "y_max": [ 0.16599999368190765, 0.163100004196167, 0.17630000412464142, 0.19140000641345978, 0.19140000641345978, 0.2084999978542328, 0.23389999568462372, 0.2720000147819519, 0.27300000190734863, 0.2718999981880188, 0.28369998931884766, 0.3418000042438507, 0.3359000086784363, 0.3384000062942505, 0.3531000018119812, 0.35499998927116394, 0.38089999556541443, 0.3950999975204468, 0.3984000086784363, 0.3984000086784363, 0.413100004196167, 0.4413999915122986, 0.4399000108242035, 0.4399000108242035, 0.4521999955177307, 0.4526999890804291, 0.5443999767303467, 0.5473999977111816, 0.5733000040054321, 0.5756999850273132, 0.589900016784668, 0.586899995803833, 0.6011000275611877, 0.6718999743461609, 0.6690000295639038, 0.7235999703407288, 0.79339998960495, 0.79339998960495, 0.8457000255584717, 0.8598999977111816, 0.8587999939918518, 0.2515000104904175, 0.31299999356269836, 0.4839000105857849, 0.6470000147819519, 0.697700023651123, 0.7684999704360962, 0.8198000192642212 ], "expr_type": [ "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "isolated", "isolated", "isolated", "isolated", "isolated", "isolated", "isolated" ] }
0001129_page06
{ "latex": [ "${\\cal A}_{\\theta {\\cal L}}({\\cal O}_1)\\subset {\\cal A}_{\\theta {\\cal L}}({\\cal O}_2)$", "$\\theta \\in \\Theta ({\\cal O}_2)$", "$\\Theta ({\\cal O}_1)$", "$\\Theta ({\\cal O}_2)$", "$i_{12}\\circ i_{23}=i_{13}$", "${\\cal O}_3\\subset {\\cal O}_2 \\subset {\\cal O}_1$", "$V\\in {\\cal U}(\\theta ,\\theta ^\\prime )$", "$A,B\\in {\\cal A}_{\\cal L}({\\cal O})$", "$n$", "$n$", "$(A_\\theta -B_\\theta )={\\cal O}(g^{n+1})$", "$(A_\\theta -B_\\theta )={\\cal O}(g^{n+1})$", "$A_{\\theta ^\\prime }-B_{\\theta ^\\prime }= V^{-1}(A_\\theta -B_\\theta )V={\\cal O}(g^{n+1})$", "$S$", "$S_{\\theta {\\cal L}}(h)$", "$U$", "${\\cal P}_+^\\uparrow $", "$\\forall L\\in {\\cal P}_+^\\uparrow $", "${\\cal L}$", "${\\cal V}$", "$D$", "$A\\in {\\cal A}_{\\cal L}({\\cal O}),\\>\\theta \\in \\Theta (L{\\cal O})$", "$\\alpha _L(A)$", "$\\alpha _L$", "${\\cal A}_{\\cal L}({\\cal O})$", "$T_{\\cal L}(f^{\\otimes n})$", "$f\\in {\\cal D} ({\\cal O},{\\cal V}),\\>n\\in \\NN _0$", "\\begin {equation} {\\cal A}_{\\cal L}\\=d \\cup _{\\cal O}{\\cal A}_{\\cal L}({\\cal O}).\\label {global} \\end {equation}", "\\begin {equation} U(L)S_{\\theta {\\cal L}}(h)U(L)^{-1}=S_{\\theta _L{\\cal L}}(h_L),\\quad \\theta _L(x):=\\theta (L^{-1}x),\\>h_L(x):=D(L)h(L^{-1}x),\\label {3.9} \\end {equation}", "\\begin {equation} (\\alpha _L(A))_\\theta \\=d U(L)A_{\\theta _{L^{-1}}}U(L)^{-1}.\\label {3.10} \\end {equation}", "\\begin {equation} \\alpha _L{\\cal A}_{\\cal L}({\\cal O})={\\cal A}_{\\cal L}(L{\\cal O}),\\quad \\quad \\alpha _{L_1L_2}=\\alpha _{L_1}\\alpha _{L_2}. \\label {3.10a}\\end {equation}", "\\begin {equation} S_{\\cal L}(\\lambda f)=\\sum _{n=0}^\\infty \\frac {i^n\\lambda ^n}{n!}T_{\\cal L}(f^{\\otimes n}) \\label {E:timeordered products} \\end {equation}", "\\begin {equation} T_{\\cal L}(hA)=:A_{\\cal L}(h)\\ ,\\ A\\in {\\cal V},\\ h\\in {\\cal D}(\\RR ^4)\\ , \\label {E:interacting fields} \\end {equation}" ], "latex_norm": [ "$ A _ { \\theta L } ( O _ { 1 } ) \\subset A _ { \\theta L } ( O _ { 2 } ) $", "$ \\theta \\in \\Theta ( O _ { 2 } ) $", "$ \\Theta ( O _ { 1 } ) $", "$ \\Theta ( O _ { 2 } ) $", "$ i _ { 1 2 } \\circ i _ { 2 3 } = i _ { 1 3 } $", "$ O _ { 3 } \\subset O _ { 2 } \\subset O _ { 1 } $", "$ V \\in U ( \\theta , \\theta ^ { \\prime } ) $", "$ A , B \\in A _ { L } ( O ) $", "$ n $", "$ n $", "$ ( A _ { \\theta } - B _ { \\theta } ) = O ( g ^ { n + 1 } ) $", "$ ( A _ { \\theta } - B _ { \\theta } ) = O ( g ^ { n + 1 } ) $", "$ A _ { \\theta ^ { \\prime } } - B _ { \\theta ^ { \\prime } } = V ^ { - 1 } ( A _ { \\theta } - B _ { \\theta } ) V = O ( g ^ { n + 1 } ) $", "$ S $", "$ S _ { \\theta L } ( h ) $", "$ U $", "$ P _ { + } ^ { \\uparrow } $", "$ \\forall L \\in P _ { + } ^ { \\uparrow } $", "$ L $", "$ V $", "$ D $", "$ A \\in A _ { L } ( O ) , \\> \\theta \\in \\Theta ( L O ) $", "$ \\alpha _ { L } ( A ) $", "$ \\alpha _ { L } $", "$ A _ { L } ( O ) $", "$ T _ { L } ( f ^ { \\otimes n } ) $", "$ f \\in D ( O , V ) , \\> n \\in N _ { 0 } $", "\\begin{equation*} A _ { L } \\, \\overset { d e f } { = } \\, \\cup _ { O } A _ { L } ( O ) . \\end{equation*}", "\\begin{equation*} U ( L ) S _ { \\theta L } ( h ) U ( L ) ^ { - 1 } = S _ { \\theta _ { L } L } ( h _ { L } ) , \\quad \\theta _ { L } ( x ) : = \\theta ( L ^ { - 1 } x ) , \\> h _ { L } ( x ) : = D ( L ) h ( L ^ { - 1 } x ) , \\end{equation*}", "\\begin{equation*} ( \\alpha _ { L } ( A ) ) _ { \\theta } \\, \\overset { d e f } { = } \\, U ( L ) A _ { \\theta _ { L ^ { - 1 } } } U ( L ) ^ { - 1 } . \\end{equation*}", "\\begin{equation*} \\alpha _ { L } A _ { L } ( O ) = A _ { L } ( L O ) , \\quad \\quad \\alpha _ { L _ { 1 } L _ { 2 } } = \\alpha _ { L _ { 1 } } \\alpha _ { L _ { 2 } } . \\end{equation*}", "\\begin{equation*} S _ { L } ( \\lambda f ) = \\sum _ { n = 0 } ^ { \\infty } \\frac { i ^ { n } \\lambda ^ { n } } { n ! } T _ { L } ( f ^ { \\otimes n } ) \\end{equation*}", "\\begin{equation*} T _ { L } ( h A ) = : A _ { L } ( h ) ~ , ~ A \\in V , ~ h \\in D ( R ^ { 4 } ) ~ , \\end{equation*}" ], "latex_expand": [ "$ \\mitA _ { \\mittheta \\mitL } ( \\mitO _ { 1 } ) \\subset \\mitA _ { \\mittheta \\mitL } ( \\mitO _ { 2 } ) $", "$ \\mittheta \\in \\mupTheta ( \\mitO _ { 2 } ) $", "$ \\mupTheta ( \\mitO _ { 1 } ) $", "$ \\mupTheta ( \\mitO _ { 2 } ) $", "$ \\miti _ { 1 2 } \\vysmwhtcircle \\miti _ { 2 3 } = \\miti _ { 1 3 } $", "$ \\mitO _ { 3 } \\subset \\mitO _ { 2 } \\subset \\mitO _ { 1 } $", "$ \\mitV \\in \\mitU ( \\mittheta , \\mittheta ^ { \\prime } ) $", "$ \\mitA , \\mitB \\in \\mitA _ { \\mitL } ( \\mitO ) $", "$ \\mitn $", "$ \\mitn $", "$ ( \\mitA _ { \\mittheta } - \\mitB _ { \\mittheta } ) = \\mitO ( \\mitg ^ { \\mitn + 1 } ) $", "$ ( \\mitA _ { \\mittheta } - \\mitB _ { \\mittheta } ) = \\mitO ( \\mitg ^ { \\mitn + 1 } ) $", "$ \\mitA _ { \\mittheta ^ { \\prime } } - \\mitB _ { \\mittheta ^ { \\prime } } = \\mitV ^ { - 1 } ( \\mitA _ { \\mittheta } - \\mitB _ { \\mittheta } ) \\mitV = \\mitO ( \\mitg ^ { \\mitn + 1 } ) $", "$ \\mitS $", "$ \\mitS _ { \\mittheta \\mitL } ( \\Planckconst ) $", "$ \\mitU $", "$ \\mitP _ { + } ^ { \\uparrow } $", "$ \\forall \\mitL \\in \\mitP _ { + } ^ { \\uparrow } $", "$ \\mitL $", "$ \\mitV $", "$ \\mitD $", "$ \\mitA \\in \\mitA _ { \\mitL } ( \\mitO ) , \\> \\mittheta \\in \\mupTheta ( \\mitL \\mitO ) $", "$ \\mitalpha _ { \\mitL } ( \\mitA ) $", "$ \\mitalpha _ { \\mitL } $", "$ \\mitA _ { \\mitL } ( \\mitO ) $", "$ \\mitT _ { \\mitL } ( \\mitf ^ { \\otimes \\mitn } ) $", "$ \\mitf \\in \\mitD ( \\mitO , \\mitV ) , \\> \\mitn \\in \\BbbN _ { 0 } $", "\\begin{equation*} \\mitA _ { \\mitL } \\, \\overset { \\mathrm { d e f } } { = } \\, \\cup _ { \\mitO } \\mitA _ { \\mitL } ( \\mitO ) . \\end{equation*}", "\\begin{equation*} \\mitU ( \\mitL ) \\mitS _ { \\mittheta \\mitL } ( \\Planckconst ) \\mitU ( \\mitL ) ^ { - 1 } = \\mitS _ { \\mittheta _ { \\mitL } \\mitL } ( \\Planckconst _ { \\mitL } ) , \\quad \\mittheta _ { \\mitL } ( \\mitx ) : = \\mittheta ( \\mitL ^ { - 1 } \\mitx ) , \\> \\Planckconst _ { \\mitL } ( \\mitx ) : = \\mitD ( \\mitL ) \\Planckconst ( \\mitL ^ { - 1 } \\mitx ) , \\end{equation*}", "\\begin{equation*} ( \\mitalpha _ { \\mitL } ( \\mitA ) ) _ { \\mittheta } \\, \\overset { \\mathrm { d e f } } { = } \\, \\mitU ( \\mitL ) \\mitA _ { \\mittheta _ { \\mitL ^ { - 1 } } } \\mitU ( \\mitL ) ^ { - 1 } . \\end{equation*}", "\\begin{equation*} \\mitalpha _ { \\mitL } \\mitA _ { \\mitL } ( \\mitO ) = \\mitA _ { \\mitL } ( \\mitL \\mitO ) , \\quad \\quad \\mitalpha _ { \\mitL _ { 1 } \\mitL _ { 2 } } = \\mitalpha _ { \\mitL _ { 1 } } \\mitalpha _ { \\mitL _ { 2 } } . \\end{equation*}", "\\begin{equation*} \\mitS _ { \\mitL } ( \\mitlambda \\mitf ) = \\sum _ { \\mitn = 0 } ^ { \\infty } \\frac { \\miti ^ { \\mitn } \\mitlambda ^ { \\mitn } } { \\mitn ! } \\mitT _ { \\mitL } ( \\mitf ^ { \\otimes \\mitn } ) \\end{equation*}", "\\begin{equation*} \\mitT _ { \\mitL } ( \\Planckconst \\mitA ) = : \\mitA _ { \\mitL } ( \\Planckconst ) ~ , ~ \\mitA \\in \\mitV , ~ \\Planckconst \\in \\mitD ( \\BbbR ^ { 4 } ) ~ , \\end{equation*}" ], "x_min": [ 0.28679999709129333, 0.47200000286102295, 0.2093999981880188, 0.2840000092983246, 0.2093999981880188, 0.33169999718666077, 0.5196999907493591, 0.6827999949455261, 0.274399995803833, 0.5929999947547913, 0.7436000108718872, 0.2093999981880188, 0.3828999996185303, 0.6212999820709229, 0.7077000141143799, 0.6101999878883362, 0.2093999981880188, 0.2093999981880188, 0.36070001125335693, 0.5638999938964844, 0.4133000075817108, 0.23499999940395355, 0.5162000060081482, 0.33169999718666077, 0.43540000915527344, 0.4187999963760376, 0.5245000123977661, 0.4318999946117401, 0.21150000393390656, 0.3822000026702881, 0.3379000127315521, 0.396699994802475, 0.35179999470710754 ], "y_min": [ 0.15330000221729279, 0.15330000221729279, 0.16750000417232513, 0.16750000417232513, 0.18310000002384186, 0.1826000064611435, 0.25099998712539673, 0.26510000228881836, 0.2831999957561493, 0.2831999957561493, 0.27880001068115234, 0.2930000126361847, 0.2930000126361847, 0.3086000084877014, 0.30809998512268066, 0.336899995803833, 0.3490999937057495, 0.40529999136924744, 0.40869998931884766, 0.40869998931884766, 0.42239999771118164, 0.45019999146461487, 0.5059000253677368, 0.5238999724388123, 0.7782999873161316, 0.8062000274658203, 0.8065999746322632, 0.2168000042438507, 0.37299999594688416, 0.4717000126838684, 0.5449000000953674, 0.6190999746322632, 0.7192000150680542 ], "x_max": [ 0.43950000405311584, 0.5501000285148621, 0.257099986076355, 0.3310000002384186, 0.3034000098705292, 0.43950000405311584, 0.6165000200271606, 0.7878000140190125, 0.2847999930381775, 0.6033999919891357, 0.7912999987602234, 0.3206999897956848, 0.6779999732971191, 0.6330000162124634, 0.7574999928474426, 0.6233000159263611, 0.2328999936580658, 0.28200000524520874, 0.3723999857902527, 0.5756000280380249, 0.4277999997138977, 0.4097999930381775, 0.5631999969482422, 0.3531000018119812, 0.48579999804496765, 0.48170000314712524, 0.6765000224113464, 0.5680000185966492, 0.7857999801635742, 0.617900013923645, 0.6620000004768372, 0.6032999753952026, 0.6448000073432922 ], "y_max": [ 0.16599999368190765, 0.16599999368190765, 0.18019999563694, 0.18019999563694, 0.19339999556541443, 0.19329999387264252, 0.263700008392334, 0.2777999937534332, 0.2890999913215637, 0.2890999913215637, 0.2919999957084656, 0.3061999976634979, 0.3061999976634979, 0.3174000084400177, 0.32030001282691956, 0.3456999957561493, 0.365200012922287, 0.42089998722076416, 0.4169999957084656, 0.4169999957084656, 0.4311999976634979, 0.4629000127315521, 0.5185999870300293, 0.5311999917030334, 0.7904999852180481, 0.8188999891281128, 0.8187999725341797, 0.23729999363422394, 0.39010000228881836, 0.4936999976634979, 0.5609999895095825, 0.6571999788284302, 0.73580002784729 ], "expr_type": [ "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "isolated", "isolated", "isolated", "isolated", "isolated", "isolated" ] }
0001129_page07
{ "latex": [ "$S$", "$S(f)$", "$S(\\sum _{i=1}^n f_{i})$", "$S(\\sum _{i\\in K}f_{i})^{\\pm 1}$", "$K\\subset \\{1,\\ldots ,n\\}$", "$i,j\\in K$", "$\\supp f_{i}$", "$\\supp f_{j}$", "$f_{i}$", "$d$", "$\\sum _{i\\in K}f_{i}$", "$2d$", "$d>0$", "$S$", "$({\\cal O}_\\alpha )$", "${\\cal O}$", "$\\bigvee $", "$S(f)$", "$f$", "$f,g,h\\in {\\cal D}({\\cal O},{\\cal V})$", "$({\\cal O})$", "$S$", "$S$", "$x=$", "$S(f)$", "$f\\in {\\cal D}({\\cal O},{\\cal V})$", "$({\\cal O})<r$", "$n$", "$n$", "$S$", "$f=0$", "$T_{n}$", "$n$", "${\\cal U}_n \\=d \\{(y_1,...,y_n)\\in \\RR ^{4n}\\>|\\>{\\rm max}_{i<j}|y_i-y_j|< \\frac {r}{2}\\}$", "${\\cal U}_n \\=d \\{(y_1,...,y_n)\\in \\RR ^{4n}\\>|\\>{\\rm max}_{i<j}|y_i-y_j|< \\frac {r}{2}\\}$", "${\\cal V}^{\\otimes n}$", "$T_1(x)$", "$\\RR ^4$", "$S$", "$(x_i-y_j)^2<0\\quad \\forall (i,j)$", "$(x_1,...x_n)\\in {\\cal U}_n,\\> (y_1,...,y_m)\\in {\\cal U}_m$", "$T_n\\vert _{{\\cal U}_n}$", "$T_n(x_1,...,x_n)$", "$\\RR ^{4n}$", "$n$", "$T_k$", "$k\\leq n-1$", "$m$", "$f=\\sum _if_i(x)A_i,\\>f_i\\in {\\cal D}(\\RR ^4), \\>A_i\\in {\\cal V}$", "$f=\\sum _if_i(x)A_i,\\>f_i\\in {\\cal D}(\\RR ^4), \\>A_i\\in {\\cal V}$", "$\\int dx_1...dx_n\\,\\sum _{i_1...i_n} T\\bigl (A_{i_1}(x_1)...A_{i_n}(x_n)\\bigr )f_{i_1}(x_1)...f_{i_n}(x_n)$", "$\\int dx_1...dx_n\\,T_n(x_1,...,x_n)f(x_1)...f(x_n) \\equiv T_n(f^{\\otimes n})$", "\\begin {equation} {\\cal A}_{\\cal L}({\\cal O})=\\bigvee _\\alpha {\\cal A}_{\\cal L}({\\cal O}_\\alpha )\\label {3.11} \\end {equation}", "\\begin {displaymath} [S(f),S(g)]=0\\quad \\mbox {if}\\quad \\supp f\\> \\mbox {is spacelike to }\\supp g\\ . \\end {displaymath}", "\\begin {equation} [T_n(x_1,...,x_n),T_m(y_1,...y_m)]=0\\label {2.21} \\end {equation}", "\\begin {equation} [T_m(x_1,...,x_m),T_k(y_1,...y_k)]=0\\quad {\\rm for}\\quad (x_1,...x_m)\\in {\\cal U}_m,\\>k\\leq n-1\\label {2.22} \\end {equation}", "\\begin {equation} [T_l(x_1,...,x_l),T_k(y_1,...y_k)]=0\\quad {\\rm for}\\quad l,k\\leq n-1, \\label {2.23}\\end {equation}" ], "latex_norm": [ "$ S $", "$ S ( f ) $", "$ S ( \\sum _ { i = 1 } ^ { n } f _ { i } ) $", "$ S ( \\sum _ { i \\in K } f _ { i } ) ^ { \\pm 1 } $", "$ K \\subset \\{ 1 , \\ldots , n \\} $", "$ i , j \\in K $", "$ s u p p \\> f _ { i } $", "$ s u p p \\> f _ { j } $", "$ f _ { i } $", "$ d $", "$ \\sum _ { i \\in K } f _ { i } $", "$ 2 d $", "$ d > 0 $", "$ S $", "$ ( O _ { \\alpha } ) $", "$ O $", "$ \\vee $", "$ S ( f ) $", "$ f $", "$ f , g , h \\in D ( O , V ) $", "$ ( O ) $", "$ S $", "$ S $", "$ x = $", "$ S ( f ) $", "$ f \\in D ( O , V ) $", "$ ( O ) < r $", "$ n $", "$ n $", "$ S $", "$ f = 0 $", "$ T _ { n } $", "$ n $", "$ U _ { n } \\, \\overset { d e f } { = } \\, \\{ ( y _ { 1 } , . . . , y _ { n } ) \\in R ^ { 4 n } \\> \\vert \\> { m a x } _ { i < j } \\vert y _ { i } - y _ { j } \\vert < \\frac { r } { 2 } \\} $", "$ U _ { n } \\, \\overset { d e f } { = } \\, \\{ ( y _ { 1 } , . . . , y _ { n } ) \\in R ^ { 4 n } \\> \\vert \\> { m a x } _ { i < j } \\vert y _ { i } - y _ { j } \\vert < \\frac { r } { 2 } \\} $", "$ V ^ { \\otimes n } $", "$ T _ { 1 } ( x ) $", "$ R ^ { 4 } $", "$ S $", "$ ( x _ { i } - y _ { j } ) ^ { 2 } < 0 \\quad \\forall ( i , j ) $", "$ ( x _ { 1 } , . . . x _ { n } ) \\in U _ { n } , \\> ( y _ { 1 } , . . . , y _ { m } ) \\in U _ { m } $", "$ T _ { n } \\vert _ { U _ { n } } $", "$ T _ { n } ( x _ { 1 } , . . . , x _ { n } ) $", "$ R ^ { 4 n } $", "$ n $", "$ T _ { k } $", "$ k \\leq n - 1 $", "$ m $", "$ f = \\sum _ { i } f _ { i } ( x ) A _ { i } , \\> f _ { i } \\in D ( R ^ { 4 } ) , \\> A _ { i } \\in V $", "$ f = \\sum _ { i } f _ { i } ( x ) A _ { i } , \\> f _ { i } \\in D ( R ^ { 4 } ) , \\> A _ { i } \\in V $", "$ \\int d x _ { 1 } . . . d x _ { n } \\, \\sum _ { i _ { 1 } . . . i _ { n } } T ( A _ { i _ { 1 } } ( x _ { 1 } ) . . . A _ { i _ { n } } ( x _ { n } ) ) f _ { i _ { 1 } } ( x _ { 1 } ) . . . f _ { i _ { n } } ( x _ { n } ) $", "$ \\int d x _ { 1 } . . . d x _ { n } \\, T _ { n } ( x _ { 1 } , . . . , x _ { n } ) f ( x _ { 1 } ) . . . f ( x _ { n } ) \\equiv T _ { n } ( f ^ { \\otimes n } ) $", "\\begin{equation*} A _ { L } ( O ) = \\vee _ { \\alpha } A _ { L } ( O _ { \\alpha } ) \\end{equation*}", "\\begin{equation*} [ S ( f ) , S ( g ) ] = 0 \\quad i f \\quad s u p p \\> f \\> i s ~ s p a c e l i k e ~ t o ~ s u p p \\> g ~ . \\end{equation*}", "\\begin{equation*} [ T _ { n } ( x _ { 1 } , . . . , x _ { n } ) , T _ { m } ( y _ { 1 } , . . . y _ { m } ) ] = 0 \\end{equation*}", "\\begin{equation*} [ T _ { m } ( x _ { 1 } , . . . , x _ { m } ) , T _ { k } ( y _ { 1 } , . . . y _ { k } ) ] = 0 \\quad f o r \\quad ( x _ { 1 } , . . . x _ { m } ) \\in U _ { m } , \\> k \\leq n - 1 \\end{equation*}", "\\begin{equation*} [ T _ { l } ( x _ { 1 } , . . . , x _ { l } ) , T _ { k } ( y _ { 1 } , . . . y _ { k } ) ] = 0 \\quad f o r \\quad l , k \\leq n - 1 , \\end{equation*}" ], "latex_expand": [ "$ \\mitS $", "$ \\mitS ( \\mitf ) $", "$ \\mitS ( \\sum _ { \\miti = 1 } ^ { \\mitn } \\mitf _ { \\miti } ) $", "$ \\mitS ( \\sum _ { \\miti \\in \\mitK } \\mitf _ { \\miti } ) ^ { \\pm 1 } $", "$ \\mitK \\subset \\{ 1 , \\ldots , \\mitn \\} $", "$ \\miti , \\mitj \\in \\mitK $", "$ \\mathrm { s u p p } \\> \\mitf _ { \\miti } $", "$ \\mathrm { s u p p } \\> \\mitf _ { \\mitj } $", "$ \\mitf _ { \\miti } $", "$ \\mitd $", "$ \\sum _ { \\miti \\in \\mitK } \\mitf _ { \\miti } $", "$ 2 \\mitd $", "$ \\mitd > 0 $", "$ \\mitS $", "$ ( \\mitO _ { \\mitalpha } ) $", "$ \\mitO $", "$ \\bigvee $", "$ \\mitS ( \\mitf ) $", "$ \\mitf $", "$ \\mitf , \\mitg , \\Planckconst \\in \\mitD ( \\mitO , \\mitV ) $", "$ ( \\mitO ) $", "$ \\mitS $", "$ \\mitS $", "$ \\mitx = $", "$ \\mitS ( \\mitf ) $", "$ \\mitf \\in \\mitD ( \\mitO , \\mitV ) $", "$ ( \\mitO ) < \\mitr $", "$ \\mitn $", "$ \\mitn $", "$ \\mitS $", "$ \\mitf = 0 $", "$ \\mitT _ { \\mitn } $", "$ \\mitn $", "$ \\mitU _ { \\mitn } \\, \\overset { \\mathrm { d e f } } { = } \\, \\{ ( \\mity _ { 1 } , . . . , \\mity _ { \\mitn } ) \\in \\BbbR ^ { 4 \\mitn } \\> \\vert \\> { \\mathrm { m a x } } _ { \\miti < \\mitj } \\vert \\mity _ { \\miti } - \\mity _ { \\mitj } \\vert < \\frac { \\mitr } { 2 } \\} $", "$ \\mitU _ { \\mitn } \\, \\overset { \\mathrm { d e f } } { = } \\, \\{ ( \\mity _ { 1 } , . . . , \\mity _ { \\mitn } ) \\in \\BbbR ^ { 4 \\mitn } \\> \\vert \\> { \\mathrm { m a x } } _ { \\miti < \\mitj } \\vert \\mity _ { \\miti } - \\mity _ { \\mitj } \\vert < \\frac { \\mitr } { 2 } \\} $", "$ \\mitV ^ { \\otimes \\mitn } $", "$ \\mitT _ { 1 } ( \\mitx ) $", "$ \\BbbR ^ { 4 } $", "$ \\mitS $", "$ ( \\mitx _ { \\miti } - \\mity _ { \\mitj } ) ^ { 2 } < 0 \\quad \\forall ( \\miti , \\mitj ) $", "$ ( \\mitx _ { 1 } , . . . \\mitx _ { \\mitn } ) \\in \\mitU _ { \\mitn } , \\> ( \\mity _ { 1 } , . . . , \\mity _ { \\mitm } ) \\in \\mitU _ { \\mitm } $", "$ \\mitT _ { \\mitn } \\vert _ { \\mitU _ { \\mitn } } $", "$ \\mitT _ { \\mitn } ( \\mitx _ { 1 } , . . . , \\mitx _ { \\mitn } ) $", "$ \\BbbR ^ { 4 \\mitn } $", "$ \\mitn $", "$ \\mitT _ { \\mitk } $", "$ \\mitk \\leq \\mitn - 1 $", "$ \\mitm $", "$ \\mitf = \\sum _ { \\miti } \\mitf _ { \\miti } ( \\mitx ) \\mitA _ { \\miti } , \\> \\mitf _ { \\miti } \\in \\mitD ( \\BbbR ^ { 4 } ) , \\> \\mitA _ { \\miti } \\in \\mitV $", "$ \\mitf = \\sum _ { \\miti } \\mitf _ { \\miti } ( \\mitx ) \\mitA _ { \\miti } , \\> \\mitf _ { \\miti } \\in \\mitD ( \\BbbR ^ { 4 } ) , \\> \\mitA _ { \\miti } \\in \\mitV $", "$ \\int \\nolimits \\mitd \\mitx _ { 1 } . . . \\mitd \\mitx _ { \\mitn } \\, \\sum _ { \\miti _ { 1 } . . . \\miti _ { \\mitn } } \\mitT \\big ( \\mitA _ { \\miti _ { 1 } } ( \\mitx _ { 1 } ) . . . \\mitA _ { \\miti _ { \\mitn } } ( \\mitx _ { \\mitn } ) \\big ) \\mitf _ { \\miti _ { 1 } } ( \\mitx _ { 1 } ) . . . \\mitf _ { \\miti _ { \\mitn } } ( \\mitx _ { \\mitn } ) $", "$ \\int \\nolimits \\mitd \\mitx _ { 1 } . . . \\mitd \\mitx _ { \\mitn } \\, \\mitT _ { \\mitn } ( \\mitx _ { 1 } , . . . , \\mitx _ { \\mitn } ) \\mitf ( \\mitx _ { 1 } ) . . . \\mitf ( \\mitx _ { \\mitn } ) \\equiv \\mitT _ { \\mitn } ( \\mitf ^ { \\otimes \\mitn } ) $", "\\begin{equation*} \\mitA _ { \\mitL } ( \\mitO ) = \\bigvee _ { \\mitalpha } \\mitA _ { \\mitL } ( \\mitO _ { \\mitalpha } ) \\end{equation*}", "\\begin{equation*} [ \\mitS ( \\mitf ) , \\mitS ( \\mitg ) ] = 0 \\quad \\mathrm { i f } \\quad \\mathrm { s u p p } \\> \\mitf \\> \\mathrm { i s } ~ \\mathrm { s p a c e l i k e } ~ \\mathrm { t o } ~ \\mathrm { s u p p } \\> \\mitg ~ . \\end{equation*}", "\\begin{equation*} [ \\mitT _ { \\mitn } ( \\mitx _ { 1 } , . . . , \\mitx _ { \\mitn } ) , \\mitT _ { \\mitm } ( \\mity _ { 1 } , . . . \\mity _ { \\mitm } ) ] = 0 \\end{equation*}", "\\begin{equation*} [ \\mitT _ { \\mitm } ( \\mitx _ { 1 } , . . . , \\mitx _ { \\mitm } ) , \\mitT _ { \\mitk } ( \\mity _ { 1 } , . . . \\mity _ { \\mitk } ) ] = 0 \\quad \\mathrm { f o r } \\quad ( \\mitx _ { 1 } , . . . \\mitx _ { \\mitm } ) \\in \\mitU _ { \\mitm } , \\> \\mitk \\leq \\mitn - 1 \\end{equation*}", "\\begin{equation*} [ \\mitT _ { \\mitl } ( \\mitx _ { 1 } , . . . , \\mitx _ { \\mitl } ) , \\mitT _ { \\mitk } ( \\mity _ { 1 } , . . . \\mity _ { \\mitk } ) ] = 0 \\quad \\mathrm { f o r } \\quad \\mitl , \\mitk \\leq \\mitn - 1 , \\end{equation*}" ], "x_min": [ 0.6690000295639038, 0.7533000111579895, 0.6309999823570251, 0.31439998745918274, 0.536300003528595, 0.35249999165534973, 0.5791000127792358, 0.6704000234603882, 0.4147000014781952, 0.7450000047683716, 0.2971999943256378, 0.605400025844574, 0.6593000292778015, 0.489300012588501, 0.25850000977516174, 0.5009999871253967, 0.6917999982833862, 0.2784999907016754, 0.36629998683929443, 0.37529999017715454, 0.5501000285148621, 0.6474999785423279, 0.7091000080108643, 0.2971999943256378, 0.2653999924659729, 0.4000999927520752, 0.7228999733924866, 0.42160001397132874, 0.5356000065803528, 0.7559999823570251, 0.2093999981880188, 0.5453000068664551, 0.7774999737739563, 0.4666999876499176, 0.2093999981880188, 0.37599998712539673, 0.5695000290870667, 0.6377000212669373, 0.4097999930381775, 0.23569999635219574, 0.4368000030517578, 0.24400000274181366, 0.5942999720573425, 0.2093999981880188, 0.36010000109672546, 0.5300999879837036, 0.7160000205039978, 0.21629999577999115, 0.6477000117301941, 0.2093999981880188, 0.38769999146461487, 0.2667999863624573, 0.42160001397132874, 0.3116999864578247, 0.37940001487731934, 0.23909999430179596, 0.3158000111579895 ], "y_min": [ 0.18019999563694, 0.17919999361038208, 0.2070000022649765, 0.22120000422000885, 0.22220000624656677, 0.23680000007152557, 0.23680000007152557, 0.23680000007152557, 0.25099998712539673, 0.25099998712539673, 0.26460000872612, 0.26510000228881836, 0.26510000228881836, 0.2797999978065491, 0.3393999934196472, 0.33980000019073486, 0.3393999934196472, 0.38179999589920044, 0.3822999894618988, 0.3959999978542328, 0.3959999978542328, 0.4580000042915344, 0.4722000062465668, 0.5175999999046326, 0.5419999957084656, 0.5419999957084656, 0.5419999957084656, 0.5601000189781189, 0.5601000189781189, 0.5570999979972839, 0.5713000297546387, 0.5713000297546387, 0.5741999745368958, 0.5830000042915344, 0.5971999764442444, 0.6015999913215637, 0.6021000146865845, 0.5989999771118164, 0.6309000253677368, 0.6762999892234802, 0.6772000193595886, 0.6913999915122986, 0.7056000232696533, 0.7192000150680542, 0.7235999703407288, 0.7207000255584717, 0.7202000021934509, 0.7846999764442444, 0.8237000107765198, 0.836899995803833, 0.8356999754905701, 0.8500999808311462, 0.30219998955726624, 0.4325999915599823, 0.6503999829292297, 0.7538999915122986, 0.8008000254631042 ], "x_max": [ 0.6807000041007996, 0.7878999710083008, 0.7124999761581421, 0.4180999994277954, 0.6496000289916992, 0.41119998693466187, 0.631600022315979, 0.7243000268936157, 0.4291999936103821, 0.7540000081062317, 0.3580000102519989, 0.6226999759674072, 0.6987000107765198, 0.5009999871253967, 0.29510000348091125, 0.515500009059906, 0.7063000202178955, 0.31310001015663147, 0.3767000138759613, 0.5024999976158142, 0.5770999789237976, 0.6592000126838684, 0.72079998254776, 0.326200008392334, 0.30000001192092896, 0.492000013589859, 0.7829999923706055, 0.4320000112056732, 0.5460000038146973, 0.7677000164985657, 0.25220000743865967, 0.5647000074386597, 0.7878999710083008, 0.7893999814987183, 0.2287999987602234, 0.40779998898506165, 0.6103000044822693, 0.6603999733924866, 0.42149999737739563, 0.39879998564720154, 0.6814000010490417, 0.2854999899864197, 0.6916999816894531, 0.23770000040531158, 0.37049999833106995, 0.548799991607666, 0.7829999923706055, 0.23149999976158142, 0.7878000140190125, 0.3061999976634979, 0.7878000140190125, 0.579200029373169, 0.578499972820282, 0.6855999827384949, 0.6198999881744385, 0.7311999797821045, 0.6814000010490417 ], "y_max": [ 0.1889999955892563, 0.19189999997615814, 0.2206999957561493, 0.23579999804496765, 0.23440000414848328, 0.24799999594688416, 0.24799999594688416, 0.24899999797344208, 0.2621999979019165, 0.259799987077713, 0.2782999873161316, 0.27390000224113464, 0.274399995803833, 0.28859999775886536, 0.3515999913215637, 0.34860000014305115, 0.3515999913215637, 0.3944999873638153, 0.3935000002384186, 0.4081999957561493, 0.4081999957561493, 0.46630001068115234, 0.48100000619888306, 0.5235000252723694, 0.5547000169754028, 0.5547000169754028, 0.5547000169754028, 0.5659999847412109, 0.5659999847412109, 0.5659000277519226, 0.5824999809265137, 0.5820000171661377, 0.5800999999046326, 0.5993000268936157, 0.6152999997138977, 0.6114000082015991, 0.614300012588501, 0.6133000254631042, 0.6396999955177307, 0.6899999976158142, 0.6894000172615051, 0.7035999894142151, 0.7178000211715698, 0.7294999957084656, 0.7294999957084656, 0.7310000061988831, 0.73089998960495, 0.7900999784469604, 0.8345999717712402, 0.8481000065803528, 0.847599983215332, 0.861299991607666, 0.3330000042915344, 0.4458000063896179, 0.6664999723434448, 0.7695000171661377, 0.8163999915122986 ], "expr_type": [ "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "isolated", "isolated", "isolated", "isolated", "isolated" ] }
0001129_page08
{ "latex": [ "$(x_i-y_j)^2<0\\quad \\forall (i,j)$", "${\\cal J}$", "$I$", "$\\{1,...,n\\}$", "${\\cal C}_I\\=d \\{(x_1,...,x_n)\\in \\RR ^{4n}\\>|\\>x_i\\not \\in J^-(x_j),\\,i\\in I,\\,j\\in I^c\\}$", "$I\\in {\\cal J}$", "${\\cal D}({\\cal C}_I)$", "$I\\in {\\cal C}_I$", "$I_1,I_2\\in {\\cal J},\\>{\\cal C}_{I_1}\\cap C_{I_2}\\not =\\emptyset $", "$\\{f_I\\}_{I\\in {\\cal J}}\\cup \\{f_0\\}$", "$\\RR ^{4n}$", "$\\{{\\cal C}_I\\}_ {I\\in {\\cal J}}\\cup {\\cal U}_n$", "${\\rm supp}\\>f_I\\subset {\\cal C}_I, {\\rm supp}\\>f_0\\subset {\\cal U}_n$", "$\\{f_I\\}_{I\\in {\\cal J}}\\cup \\{f_0\\}$", "$T_{n}$", "$n-1$", "$n$", "$T$", "$S$", "$S(g)$", "$g\\in {\\cal D}(\\RR ^4,{\\cal V})$", "$S(g)$", "$g\\in {\\cal D}(\\RR ^4,{\\cal V})$", "$\\hbar $", "$\\hbar $", "$T_n(x_1,...,x_n)$", "${\\bf N1}-{\\bf N4}$", "$\\Delta _n \\equiv \\{(x_1,...,x_n)\\> |\\> x_1=...=x_n\\}$", "${\\cal U}_n$", "$\\Delta _n$", "$T$", "$T$", "\\begin {equation} \\bigcup _{I\\in {\\cal J}}{\\cal C}_I\\>\\cup \\> {\\cal U}_n=\\RR ^{4n}.\\label {2.24} \\end {equation}", "\\begin {equation} T^I(x_I)=T(\\prod _{i\\in I}A_i(x_i)),\\quad \\quad x_I=(x_i,i\\in I).\\label {2.25} \\end {equation}", "\\begin {equation} T_I(x)\\=d T^I(x_I)T^{I^c}(x_{I^c})\\label {2.26} \\end {equation}", "\\begin {equation} T_{I_1}\\vert _{{\\cal C}_{I_1}\\cap {\\cal C}_{I_2}}= T_{I_2}\\vert _{{\\cal C}_{I_1}\\cap {\\cal C}_{I_2}}.\\label {2.27} \\end {equation}", "\\begin {equation} T_n(h)\\=d T_n\\vert _{{\\cal U}_n}(f_0h)+\\sum _{I\\in {\\cal J}}T_I(f_Ih),\\quad \\quad h\\in {\\cal D}(\\RR ^{4n},{\\cal V}^{\\otimes n}).\\label {2.28} \\end {equation}" ], "latex_norm": [ "$ ( x _ { i } - y _ { j } ) ^ { 2 } < 0 \\quad \\forall ( i , j ) $", "$ J $", "$ I $", "$ \\{ 1 , . . . , n \\} $", "$ C _ { I } \\, \\overset { d e f } { = } \\, \\{ ( x _ { 1 } , . . . , x _ { n } ) \\in R ^ { 4 n } \\> \\vert \\> x _ { i } \\notin J ^ { - } ( x _ { j } ) , \\, i \\in I , \\, j \\in I ^ { c } \\} $", "$ I \\in J $", "$ D ( C _ { I } ) $", "$ I \\in C _ { I } $", "$ I _ { 1 } , I _ { 2 } \\in J , \\> C _ { I _ { 1 } } \\cap C _ { I _ { 2 } } \\ne \\emptyset $", "$ \\{ f _ { I } \\} _ { I \\in J } \\cup \\{ f _ { 0 } \\} $", "$ R ^ { 4 n } $", "$ \\{ C _ { I } \\} _ { I \\in J } \\cup U _ { n } $", "$ s u p p \\> f _ { I } \\subset C _ { I } , s u p p \\> f _ { 0 } \\subset U _ { n } $", "$ \\{ f _ { I } \\} _ { I \\in J } \\cup \\{ f _ { 0 } \\} $", "$ T _ { n } $", "$ n - 1 $", "$ n $", "$ T $", "$ S $", "$ S ( g ) $", "$ g \\in D ( R ^ { 4 } , V ) $", "$ S ( g ) $", "$ g \\in D ( R ^ { 4 } , V ) $", "$ \\hbar $", "$ \\hbar $", "$ T _ { n } ( x _ { 1 } , . . . , x _ { n } ) $", "$ N 1 - N 4 $", "$ \\Delta _ { n } \\equiv \\{ ( x _ { 1 } , . . . , x _ { n } ) \\> \\vert \\> x _ { 1 } = . . . = x _ { n } \\} $", "$ U _ { n } $", "$ \\Delta _ { n } $", "$ T $", "$ T $", "\\begin{equation*} \\cup _ { I \\in J } C _ { I } \\> \\cup \\> U _ { n } = R ^ { 4 n } . \\end{equation*}", "\\begin{equation*} T ^ { I } ( x _ { I } ) = T ( \\prod _ { i \\in I } A _ { i } ( x _ { i } ) ) , \\quad \\quad x _ { I } = ( x _ { i } , i \\in I ) . \\end{equation*}", "\\begin{equation*} T _ { I } ( x ) \\, \\overset { d e f } { = } \\, T ^ { I } ( x _ { I } ) T ^ { I ^ { c } } ( x _ { I ^ { c } } ) \\end{equation*}", "\\begin{equation*} T _ { I _ { 1 } } \\vert _ { C _ { I _ { 1 } } \\cap C _ { I _ { 2 } } } = T _ { I _ { 2 } } \\vert _ { C _ { I _ { 1 } } \\cap C _ { I _ { 2 } } } . \\end{equation*}", "\\begin{equation*} T _ { n } ( h ) \\, \\overset { d e f } { = } \\, T _ { n } \\vert _ { U _ { n } } ( f _ { 0 } h ) + \\sum _ { I \\in J } T _ { I } ( f _ { I } h ) , \\quad \\quad h \\in D ( R ^ { 4 n } , V ^ { \\otimes n } ) . \\end{equation*}" ], "latex_expand": [ "$ ( \\mitx _ { \\miti } - \\mity _ { \\mitj } ) ^ { 2 } < 0 \\quad \\forall ( \\miti , \\mitj ) $", "$ \\mitJ $", "$ \\mitI $", "$ \\{ 1 , . . . , \\mitn \\} $", "$ \\mitC _ { \\mitI } \\, \\overset { \\mathrm { d e f } } { = } \\, \\{ ( \\mitx _ { 1 } , . . . , \\mitx _ { \\mitn } ) \\in \\BbbR ^ { 4 \\mitn } \\> \\vert \\> \\mitx _ { \\miti } \\notin \\mitJ ^ { - } ( \\mitx _ { \\mitj } ) , \\, \\miti \\in \\mitI , \\, \\mitj \\in \\mitI ^ { \\mitc } \\} $", "$ \\mitI \\in \\mitJ $", "$ \\mitD ( \\mitC _ { \\mitI } ) $", "$ \\mitI \\in \\mitC _ { \\mitI } $", "$ \\mitI _ { 1 } , \\mitI _ { 2 } \\in \\mitJ , \\> \\mitC _ { \\mitI _ { 1 } } \\cap \\mitC _ { \\mitI _ { 2 } } \\ne \\varnothing $", "$ \\{ \\mitf _ { \\mitI } \\} _ { \\mitI \\in \\mitJ } \\cup \\{ \\mitf _ { 0 } \\} $", "$ \\BbbR ^ { 4 \\mitn } $", "$ \\{ \\mitC _ { \\mitI } \\} _ { \\mitI \\in \\mitJ } \\cup \\mitU _ { \\mitn } $", "$ \\mathrm { s u p p } \\> \\mitf _ { \\mitI } \\subset \\mitC _ { \\mitI } , \\mathrm { s u p p } \\> \\mitf _ { 0 } \\subset \\mitU _ { \\mitn } $", "$ \\{ \\mitf _ { \\mitI } \\} _ { \\mitI \\in \\mitJ } \\cup \\{ \\mitf _ { 0 } \\} $", "$ \\mitT _ { \\mitn } $", "$ \\mitn - 1 $", "$ \\mitn $", "$ \\mitT $", "$ \\mitS $", "$ \\mitS ( \\mitg ) $", "$ \\mitg \\in \\mitD ( \\BbbR ^ { 4 } , \\mitV ) $", "$ \\mitS ( \\mitg ) $", "$ \\mitg \\in \\mitD ( \\BbbR ^ { 4 } , \\mitV ) $", "$ \\hslash $", "$ \\hslash $", "$ \\mitT _ { \\mitn } ( \\mitx _ { 1 } , . . . , \\mitx _ { \\mitn } ) $", "$ \\mitN 1 - \\mitN 4 $", "$ \\mupDelta _ { \\mitn } \\equiv \\{ ( \\mitx _ { 1 } , . . . , \\mitx _ { \\mitn } ) \\> \\vert \\> \\mitx _ { 1 } = . . . = \\mitx _ { \\mitn } \\} $", "$ \\mitU _ { \\mitn } $", "$ \\mupDelta _ { \\mitn } $", "$ \\mitT $", "$ \\mitT $", "\\begin{equation*} \\bigcup _ { \\mitI \\in \\mitJ } \\mitC _ { \\mitI } \\> \\cup \\> \\mitU _ { \\mitn } = \\BbbR ^ { 4 \\mitn } . \\end{equation*}", "\\begin{equation*} \\mitT ^ { \\mitI } ( \\mitx _ { \\mitI } ) = \\mitT ( \\prod _ { \\miti \\in \\mitI } \\mitA _ { \\miti } ( \\mitx _ { \\miti } ) ) , \\quad \\quad \\mitx _ { \\mitI } = ( \\mitx _ { \\miti } , \\miti \\in \\mitI ) . \\end{equation*}", "\\begin{equation*} \\mitT _ { \\mitI } ( \\mitx ) \\, \\overset { \\mathrm { d e f } } { = } \\, \\mitT ^ { \\mitI } ( \\mitx _ { \\mitI } ) \\mitT ^ { \\mitI ^ { \\mitc } } ( \\mitx _ { \\mitI ^ { \\mitc } } ) \\end{equation*}", "\\begin{equation*} \\mitT _ { \\mitI _ { 1 } } \\vert _ { \\mitC _ { \\mitI _ { 1 } } \\cap \\mitC _ { \\mitI _ { 2 } } } = \\mitT _ { \\mitI _ { 2 } } \\vert _ { \\mitC _ { \\mitI _ { 1 } } \\cap \\mitC _ { \\mitI _ { 2 } } } . \\end{equation*}", "\\begin{equation*} \\mitT _ { \\mitn } ( \\Planckconst ) \\, \\overset { \\mathrm { d e f } } { = } \\, \\mitT _ { \\mitn } \\vert _ { \\mitU _ { \\mitn } } ( \\mitf _ { 0 } \\Planckconst ) + \\sum _ { \\mitI \\in \\mitJ } \\mitT _ { \\mitI } ( \\mitf _ { \\mitI } \\Planckconst ) , \\quad \\quad \\Planckconst \\in \\mitD ( \\BbbR ^ { 4 \\mitn } , \\mitV ^ { \\otimes \\mitn } ) . \\end{equation*}" ], "x_min": [ 0.22460000216960907, 0.2646999955177307, 0.6585999727249146, 0.2093999981880188, 0.41260001063346863, 0.2667999863624573, 0.23770000040531158, 0.2667999863624573, 0.3544999957084656, 0.27300000190734863, 0.6690000295639038, 0.23010000586509705, 0.34139999747276306, 0.2093999981880188, 0.39879998564720154, 0.2093999981880188, 0.3483000099658966, 0.5396999716758728, 0.7706000208854675, 0.2646999955177307, 0.5238000154495239, 0.6633999943733215, 0.29580000042915344, 0.22939999401569366, 0.4885999858379364, 0.6309999823570251, 0.6039999723434448, 0.2667999863624573, 0.33169999718666077, 0.36970001459121704, 0.5203999876976013, 0.34619998931884766, 0.4235999882221222, 0.33660000562667847, 0.4097999930381775, 0.4077000021934509, 0.2881999909877777 ], "y_min": [ 0.15279999375343323, 0.1826000064611435, 0.1826000064611435, 0.19920000433921814, 0.19429999589920044, 0.21389999985694885, 0.3197999894618988, 0.35839998722076416, 0.35740000009536743, 0.4066999852657318, 0.4058000147342682, 0.42089998722076416, 0.4214000105857849, 0.4984999895095825, 0.49900001287460327, 0.5278000235557556, 0.5303000211715698, 0.5414999723434448, 0.5414999723434448, 0.5551999807357788, 0.5541999936103821, 0.5551999807357788, 0.6758000254631042, 0.6913999915122986, 0.7196999788284302, 0.7836999893188477, 0.7954000234603882, 0.8173999786376953, 0.8291000127792358, 0.8291000127792358, 0.8403000235557556, 0.8515999913215637, 0.22220000624656677, 0.27730000019073486, 0.3296000063419342, 0.37790000438690186, 0.44040000438690186 ], "x_max": [ 0.3862999975681305, 0.2799000144004822, 0.6675999760627747, 0.2736999988555908, 0.7878999710083008, 0.3109999895095825, 0.28049999475479126, 0.31310001015663147, 0.5349000096321106, 0.3815000057220459, 0.6966000199317932, 0.3296000063419342, 0.5383999943733215, 0.32269999384880066, 0.41819998621940613, 0.2502000033855438, 0.3587000072002411, 0.5521000027656555, 0.7822999954223633, 0.29789999127388, 0.6198999881744385, 0.6966000199317932, 0.396699994802475, 0.23839999735355377, 0.4982999861240387, 0.7153000235557556, 0.6647999882698059, 0.4790000021457672, 0.349700003862381, 0.3903999924659729, 0.5307999849319458, 0.35659998655319214, 0.5735999941825867, 0.6635000109672546, 0.5895000100135803, 0.592199981212616, 0.7117999792098999 ], "y_max": [ 0.16599999368190765, 0.1923999935388565, 0.19140000641345978, 0.21140000224113464, 0.211899995803833, 0.22370000183582306, 0.33250001072883606, 0.36910000443458557, 0.3700999915599823, 0.4189000129699707, 0.41609999537467957, 0.43309998512268066, 0.4325999915599823, 0.510699987411499, 0.5097000002861023, 0.5371000170707703, 0.5361999869346619, 0.5503000020980835, 0.5503000020980835, 0.5673999786376953, 0.5673999786376953, 0.5673999786376953, 0.6890000104904175, 0.7002000212669373, 0.7285000085830688, 0.7935000061988831, 0.8032000064849854, 0.8271999955177307, 0.8374000191688538, 0.8374000191688538, 0.847599983215332, 0.8589000105857849, 0.2549000084400177, 0.3095000088214874, 0.35010001063346863, 0.3955000042915344, 0.4740999937057495 ], "expr_type": [ "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "isolated", "isolated", "isolated", "isolated", "isolated" ] }
0001129_page09
{ "latex": [ "$\\hbar $", "$a\\>\\times _\\hbar \\> b$", "$\\hbar $", "$\\varphi _{\\rm class} (x)$", "$(\\w +m^2)\\varphi _{\\rm class}=0$", "$\\Delta $", "$\\Delta $", "$t_0\\in \\CC $", "$N<\\infty $", "$t_n$", "$A(t)=0$", "$t_0=0$", "$t_n=(\\w _i+m^2)g_n$", "$n>0$", "$i=i(n)$", "$g_n$", "$\\varphi _{\\rm class}(x_1)... \\varphi _{\\rm class}(x_n)$", "$:\\varphi (x_1)...\\varphi (x_n):$", "$\\varphi $", "$\\hbar $", "$\\hbar $", "$\\delta $", "$t_n$", "$*$", "$*$", "$\\times _\\hbar $", "\\begin {equation} a\\>\\times _\\hbar \\> b\\quad \\buildrel \\hbar \\rightarrow 0\\over \\longrightarrow \\quad ab,\\quad \\quad \\quad \\frac {1}{\\hbar }(a\\>\\times _\\hbar \\> b\\>-\\> b\\>\\times _\\hbar \\> a) \\quad \\buildrel \\hbar \\rightarrow 0\\over \\longrightarrow \\quad \\{a,b\\}.\\label {C1} \\end {equation}", "\\begin {equation} \\{\\varphi _{\\rm class} (x),\\varphi _{\\rm class} (y)\\}=\\Delta (x-y)\\label {C2} \\end {equation}", "\\begin {equation} \\phi (t)=t_0+\\sum _{n=1}^N\\int \\varphi _{\\rm class}(x_1)...\\varphi _{\\rm class} (x_n)t_n(x_1,...,x_n)dx_1...dx_n,\\quad t\\equiv (t_0,t_1,...),\\label {C3} \\end {equation}", "\\begin {eqnarray} :\\prod _{i\\in I}\\varphi (x_i):\\times _\\hbar \\>:\\prod _{j\\in J}\\varphi (x_j): &=& \\\\ \\sum _{K\\subset I}\\sum _{\\alpha :K\\rightarrow J\\>{\\rm injective}}\\prod _{j\\in K} i\\hbar \\Delta _+(x_j-x_{\\alpha (j)})&&:\\prod _{l\\in (I\\setminus K)\\cup (J\\setminus \\alpha (K))}\\varphi (x_l):\\end {eqnarray}", "\\begin {equation} {\\cal W}_{n}\\=d\\{t\\in {\\cal D}^{\\prime }(\\RR ^{4n})_{\\rm symm}\\>,\\>\\supp t \\mbox { compact },\\> {\\rm WF}(t)\\>\\cap \\>(\\RR ^{4n}\\times \\overline {V_+^n\\cup V_-^n})=\\emptyset \\} \\end {equation}" ], "latex_norm": [ "$ \\hbar $", "$ a \\> \\times _ { \\hbar } \\> b $", "$ \\hbar $", "$ \\varphi _ { c l a s s } ( x ) $", "$ ( \\square + m ^ { 2 } ) \\varphi _ { c l a s s } = 0 $", "$ \\Delta $", "$ \\Delta $", "$ t _ { 0 } \\in C $", "$ N < \\infty $", "$ t _ { n } $", "$ A ( t ) = 0 $", "$ t _ { 0 } = 0 $", "$ t _ { n } = ( \\square { } _ { i } + m ^ { 2 } ) g _ { n } $", "$ n > 0 $", "$ i = i ( n ) $", "$ g _ { n } $", "$ \\varphi _ { c l a s s } ( x _ { 1 } ) . . . \\varphi _ { c l a s s } ( x _ { n } ) $", "$ : \\varphi ( x _ { 1 } ) . . . \\varphi ( x _ { n } ) : $", "$ \\varphi $", "$ \\hbar $", "$ \\hbar $", "$ \\delta $", "$ t _ { n } $", "$ \\ast $", "$ \\ast $", "$ \\times _ { \\hbar } $", "\\begin{equation*} a \\> \\times _ { \\hbar } \\> b \\quad \\overset { \\hbar \\rightarrow 0 } { \\longrightarrow } \\quad a b , \\quad \\quad \\quad \\frac { 1 } { \\hbar } ( a \\> \\times _ { \\hbar } \\> b \\> - \\> b \\> \\times _ { \\hbar } \\> a ) \\quad \\overset { \\hbar \\rightarrow 0 } { \\longrightarrow } \\quad \\{ a , b \\} . \\end{equation*}", "\\begin{equation*} \\{ \\varphi _ { c l a s s } ( x ) , \\varphi _ { c l a s s } ( y ) \\} = \\Delta ( x - y ) \\end{equation*}", "\\begin{equation*} \\phi ( t ) = t _ { 0 } + \\sum _ { n = 1 } ^ { N } \\int \\varphi _ { c l a s s } ( x _ { 1 } ) . . . \\varphi _ { c l a s s } ( x _ { n } ) t _ { n } ( x _ { 1 } , . . . , x _ { n } ) d x _ { 1 } . . . d x _ { n } , \\quad t \\equiv ( t _ { 0 } , t _ { 1 } , . . . ) , \\end{equation*}", "\\begin{align*} : \\prod _ { i \\in I } \\varphi ( x _ { i } ) : \\times _ { \\hbar } \\> : \\prod _ { j \\in J } \\varphi ( x _ { j } ) : & = \\\\ \\sum _ { K \\subset I } \\sum _ { \\alpha : K \\rightarrow J \\> i n j e c t i v e } \\prod _ { j \\in K } i \\hbar \\Delta _ { + } ( x _ { j } - x _ { \\alpha ( j ) } ) & & : \\prod _ { l \\in ( I \\setminus K ) \\cup ( J \\setminus \\alpha ( K ) ) } \\varphi ( x _ { l } ) : \\end{align*}", "\\begin{equation*} W _ { n } \\, \\overset { d e f } { = } \\, \\{ t \\in D ^ { \\prime } ( R ^ { 4 n } ) _ { s y m m } \\> , \\> s u p p \\> t ~ c o m p a c t ~ , \\> W F ( t ) \\> \\cap \\> ( R ^ { 4 n } \\times \\overline { V _ { + } ^ { n } \\cup V _ { - } ^ { n } } ) = \\emptyset \\} \\end{equation*}" ], "latex_expand": [ "$ \\hslash $", "$ \\mita \\> \\times _ { \\hslash } \\> \\mitb $", "$ \\hslash $", "$ \\mitvarphi _ { \\mathrm { c l a s s } } ( \\mitx ) $", "$ ( \\square + \\mitm ^ { 2 } ) \\mitvarphi _ { \\mathrm { c l a s s } } = 0 $", "$ \\mupDelta $", "$ \\mupDelta $", "$ \\mitt _ { 0 } \\in \\BbbC $", "$ \\mitN < \\infty $", "$ \\mitt _ { \\mitn } $", "$ \\mitA ( \\mitt ) = 0 $", "$ \\mitt _ { 0 } = 0 $", "$ \\mitt _ { \\mitn } = ( \\square { } _ { \\miti } + \\mitm ^ { 2 } ) \\mitg _ { \\mitn } $", "$ \\mitn > 0 $", "$ \\miti = \\miti ( \\mitn ) $", "$ \\mitg _ { \\mitn } $", "$ \\mitvarphi _ { \\mathrm { c l a s s } } ( \\mitx _ { 1 } ) . . . \\mitvarphi _ { \\mathrm { c l a s s } } ( \\mitx _ { \\mitn } ) $", "$ : \\mitvarphi ( \\mitx _ { 1 } ) . . . \\mitvarphi ( \\mitx _ { \\mitn } ) : $", "$ \\mitvarphi $", "$ \\hslash $", "$ \\hslash $", "$ \\mitdelta $", "$ \\mitt _ { \\mitn } $", "$ \\ast $", "$ \\ast $", "$ \\times _ { \\hslash } $", "\\begin{equation*} \\mita \\> \\times _ { \\hslash } \\> \\mitb \\quad \\overset { \\hslash \\rightarrow 0 } { \\longrightarrow } \\quad \\mita \\mitb , \\quad \\quad \\quad \\frac { 1 } { \\hslash } ( \\mita \\> \\times _ { \\hslash } \\> \\mitb \\> - \\> \\mitb \\> \\times _ { \\hslash } \\> \\mita ) \\quad \\overset { \\hslash \\rightarrow 0 } { \\longrightarrow } \\quad \\{ \\mita , \\mitb \\} . \\end{equation*}", "\\begin{equation*} \\{ \\mitvarphi _ { \\mathrm { c l a s s } } ( \\mitx ) , \\mitvarphi _ { \\mathrm { c l a s s } } ( \\mity ) \\} = \\mupDelta ( \\mitx - \\mity ) \\end{equation*}", "\\begin{equation*} \\mitphi ( \\mitt ) = \\mitt _ { 0 } + \\sum _ { \\mitn = 1 } ^ { \\mitN } \\int \\mitvarphi _ { \\mathrm { c l a s s } } ( \\mitx _ { 1 } ) . . . \\mitvarphi _ { \\mathrm { c l a s s } } ( \\mitx _ { \\mitn } ) \\mitt _ { \\mitn } ( \\mitx _ { 1 } , . . . , \\mitx _ { \\mitn } ) \\mitd \\mitx _ { 1 } . . . \\mitd \\mitx _ { \\mitn } , \\quad \\mitt \\equiv ( \\mitt _ { 0 } , \\mitt _ { 1 } , . . . ) , \\end{equation*}", "\\begin{align*} : \\prod _ { \\miti \\in \\mitI } \\mitvarphi ( \\mitx _ { \\miti } ) : \\times _ { \\hslash } \\> : \\prod _ { \\mitj \\in \\mitJ } \\mitvarphi ( \\mitx _ { \\mitj } ) : & = \\\\ \\sum _ { \\mitK \\subset \\mitI } \\sum _ { \\mitalpha : \\mitK \\rightarrow \\mitJ \\> \\mathrm { i n j e c t i v e } } \\prod _ { \\mitj \\in \\mitK } \\miti \\hslash \\mupDelta _ { + } ( \\mitx _ { \\mitj } - \\mitx _ { \\mitalpha ( \\mitj ) } ) & & : \\prod _ { \\mitl \\in ( \\mitI \\setminus \\mitK ) \\cup ( \\mitJ \\setminus \\mitalpha ( \\mitK ) ) } \\mitvarphi ( \\mitx _ { \\mitl } ) : \\end{align*}", "\\begin{equation*} \\mitW _ { \\mitn } \\, \\overset { \\mathrm { d e f } } { = } \\, \\{ \\mitt \\in \\mitD ^ { \\prime } ( \\BbbR ^ { 4 \\mitn } ) _ { \\mathrm { s y m m } } \\> , \\> \\mathrm { s u p p } \\> \\mitt ~ \\mathrm { c o m p a c t } ~ , \\> \\mathrm { W F } ( \\mitt ) \\> \\cap \\> ( \\BbbR ^ { 4 \\mitn } \\times \\overline { \\mitV _ { + } ^ { \\mitn } \\cup \\mitV _ { - } ^ { \\mitn } } ) = \\varnothing \\} \\end{equation*}" ], "x_min": [ 0.7360000014305115, 0.25290000438690186, 0.5078999996185303, 0.5619000196456909, 0.6358000040054321, 0.21629999577999115, 0.7450000047683716, 0.25780001282691956, 0.3856000006198883, 0.4512999951839447, 0.40220001339912415, 0.4837999939918518, 0.5652999877929688, 0.7415000200271606, 0.2515999972820282, 0.38839998841285706, 0.5612000226974487, 0.5224999785423279, 0.6510000228881836, 0.2093999981880188, 0.2328999936580658, 0.6814000010490417, 0.23499999940395355, 0.45680001378059387, 0.3296000063419342, 0.5695000290870667, 0.24879999458789825, 0.3815000057220459, 0.21080000698566437, 0.23909999430179596, 0.2184000015258789 ], "y_min": [ 0.2328999936580658, 0.24709999561309814, 0.24709999561309814, 0.31540000438690186, 0.3149000108242035, 0.37700000405311584, 0.37700000405311584, 0.47609999775886536, 0.47609999775886536, 0.4771000146865845, 0.5038999915122986, 0.5054000020027161, 0.5029000043869019, 0.5054000020027161, 0.5181000232696533, 0.5220000147819519, 0.5321999788284302, 0.5464000105857849, 0.5503000020980835, 0.5756999850273132, 0.7148000001907349, 0.7289999723434448, 0.7583000063896179, 0.8198000192642212, 0.8310999870300293, 0.8295999765396118, 0.26420000195503235, 0.3495999872684479, 0.4203999936580658, 0.5932999849319458, 0.7860999703407288 ], "x_max": [ 0.7457000017166138, 0.3061000108718872, 0.5175999999046326, 0.6233999729156494, 0.7829999923706055, 0.23010000586509705, 0.7595000267028809, 0.30550000071525574, 0.4408999979496002, 0.46720001101493835, 0.4650999903678894, 0.5286999940872192, 0.6897000074386597, 0.7829999923706055, 0.3089999854564667, 0.4056999981403351, 0.7153000235557556, 0.6392999887466431, 0.6626999974250793, 0.2190999984741211, 0.2425999939441681, 0.6897000074386597, 0.250900000333786, 0.4643999934196472, 0.33719998598098755, 0.5881999731063843, 0.7214999794960022, 0.6184999942779541, 0.7864999771118164, 0.7580999732017517, 0.7502999901771545 ], "y_max": [ 0.24169999361038208, 0.25780001282691956, 0.25589999556541443, 0.3280999958515167, 0.3280999958515167, 0.38580000400543213, 0.38580000400543213, 0.4867999851703644, 0.48539999127388, 0.4869000017642975, 0.5160999894142151, 0.5152000188827515, 0.5160999894142151, 0.513700008392334, 0.5307999849319458, 0.5297999978065491, 0.5449000000953674, 0.5590999722480774, 0.5580999851226807, 0.5845000147819519, 0.7235999703407288, 0.7378000020980835, 0.7681000232696533, 0.8246999979019165, 0.8364999890327454, 0.8378999829292297, 0.2919999957084656, 0.365200012922287, 0.4609000086784363, 0.6610000133514404, 0.8076000213623047 ], "expr_type": [ "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "isolated", "isolated", "isolated", "isolated", "isolated" ] }
0001129_page10
{ "latex": [ "${\\rm WF}$", "$t\\in {\\cal W}_{n}$", "$k$", "${\\cal S}$", "$x_1,...,x_{n+m-2k}$", "$t$", "$s$", "$(t\\otimes _{k} s)$", "${\\cal W}_{n+m-2k}$", "$*$", "${\\cal W}_0\\=d\\CC $", "${\\cal W}\\=d\\bigoplus _{n=0}^\\infty {\\cal W}_{n}$", "$t\\in {\\cal W}$", "$t_n$", "$t$", "${\\cal W}_{n}$", "$*$", "$(t^*)_{n}\\=d(\\bar t_{n})$", "${\\cal W}$", "${\\cal N}$", "${\\cal W}$", "$(\\w +m^2)f,\\>f\\in {\\cal D}(\\RR ^4)$", "$\\hbar $", "$(\\w +m^2)f$", "$\\phi $", "$\\bar {\\cal W}={\\cal W}/{\\cal N}$", "$\\hbar $", "$\\bar {\\cal W}$", "$(\\varphi ^{\\otimes n})(t),\\>t\\in {\\cal W}_n$", "$\\hbar \\rightarrow 0$", "$(t\\otimes _k s)_n\\=d\\sum _{m+l=n}t_{m+k}\\otimes _k s_{l+k}$", "$\\cdot $", "\\begin {equation} (\\varphi ^{\\otimes n})(t) \\=d\\int :\\varphi (x_1)...\\varphi (x_n): t(x_1,...,x_n)\\,dx_1...dx_n,\\quad (\\varphi ^{\\otimes 0})\\=d {\\bf 1},\\label {W3} \\end {equation}", "\\begin {equation} :\\varphi ^n(f):=(\\varphi ^{\\otimes n})(t)\\ ,\\ f\\in {\\cal D}(\\RR ^4)\\ ,\\ t(x_{1},\\ldots ,x_{n})=f(x_{1})\\prod _{i=2}^n \\delta (x_{i}-x_{1}) \\label {E:Wick powers} \\end {equation}", "\\begin {equation} (\\varphi ^{\\otimes n})(t)\\times _\\hbar (\\varphi ^{\\otimes m})(s)= \\sum _{k=0}^{{\\rm min}\\{n,m\\}}\\hbar ^k(\\varphi ^{\\otimes (n+m-2k)}) (t\\otimes _{k} s)\\label {W6} \\end {equation}", "\\begin {eqnarray} (t\\otimes _{k} s)(x_1,...,x_{n+m-2k})={\\cal S}\\frac {n!m!i^k} {k!(n-k)!(m-k)!}\\int dy_1...dy_{2k}\\Delta _+(y_1-y_2)...\\\\ \\Delta _+(y_{2k-1}-y_{2k})t(x_1,...,x_{n-k},y_1,y_3,...,y_{2k-1})\\\\ s(x_{n-k+1},...,x_{n+m-2k},y_2,y_4,...,y_{2k})\\end {eqnarray}", "\\begin {equation} (t\\times _{\\hbar }s)_{n}=\\sum _{m+l-2k=n}\\hbar ^k t_{m}\\otimes _{k}s_{l}. \\label {product on W} \\end {equation}", "\\begin {eqnarray} \\lim _{\\hbar \\to 0}\\phi (t)\\times _\\hbar \\phi (s)&=& \\lim _{\\hbar \\to 0}\\phi (\\sum _{n}\\hbar ^n t\\otimes _n s)\\\\ &=& \\phi (t\\otimes _0 s)=\\phi (t)\\cdot \\phi (s) \\end {eqnarray}", "\\begin {equation} \\lim _{\\hbar \\to 0}\\frac {1}{i\\hbar }[\\phi (t),\\phi (s)]_\\hbar = \\phi (t\\otimes _1 s-s\\otimes _1 t)=\\{\\phi (t),\\phi (s)\\} \\end {equation}" ], "latex_norm": [ "$ W F $", "$ t \\in W _ { n } $", "$ k $", "$ S $", "$ x _ { 1 } , . . . , x _ { n + m - 2 k } $", "$ t $", "$ s $", "$ ( t \\otimes _ { k } s ) $", "$ W _ { n + m - 2 k } $", "$ \\ast $", "$ W _ { 0 } \\, \\overset { d e f } { = } \\, C $", "$ W \\, \\overset { d e f } { = } \\, \\oplus _ { n = 0 } ^ { \\infty } W _ { n } $", "$ t \\in W $", "$ t _ { n } $", "$ t $", "$ W _ { n } $", "$ \\ast $", "$ ( t ^ { \\ast } ) _ { n } \\, \\overset { d e f } { = } \\, ( \\bar { t } _ { n } ) $", "$ W $", "$ N $", "$ W $", "$ ( \\square + m ^ { 2 } ) f , \\> f \\in D ( R ^ { 4 } ) $", "$ \\hbar $", "$ ( \\square + m ^ { 2 } ) f $", "$ \\phi $", "$ \\bar { W } = W \\slash N $", "$ \\hbar $", "$ \\bar { W } $", "$ ( \\varphi ^ { \\otimes n } ) ( t ) , \\> t \\in W _ { n } $", "$ \\hbar \\rightarrow 0 $", "$ ( t \\otimes _ { k } s ) _ { n } \\, \\overset { d e f } { = } \\, \\sum _ { m + l = n } t _ { m + k } \\otimes _ { k } s _ { l + k } $", "$ \\cdot $", "\\begin{equation*} ( \\varphi ^ { \\otimes n } ) ( t ) \\, \\overset { d e f } { = } \\, \\int : \\varphi ( x _ { 1 } ) . . . \\varphi ( x _ { n } ) : t ( x _ { 1 } , . . . , x _ { n } ) \\, d x _ { 1 } . . . d x _ { n } , \\quad ( \\varphi ^ { \\otimes 0 } ) \\, \\overset { d e f } { = } \\, 1 , \\end{equation*}", "\\begin{equation*} : \\varphi ^ { n } ( f ) : = ( \\varphi ^ { \\otimes n } ) ( t ) ~ , ~ f \\in D ( R ^ { 4 } ) ~ , ~ t ( x _ { 1 } , \\ldots , x _ { n } ) = f ( x _ { 1 } ) \\prod _ { i = 2 } ^ { n } \\delta ( x _ { i } - x _ { 1 } ) \\end{equation*}", "\\begin{equation*} ( \\varphi ^ { \\otimes n } ) ( t ) \\times _ { \\hbar } ( \\varphi ^ { \\otimes m } ) ( s ) = \\sum _ { k = 0 } ^ { m i n \\{ n , m \\} } \\hbar ^ { k } ( \\varphi ^ { \\otimes ( n + m - 2 k ) } ) ( t \\otimes _ { k } s ) \\end{equation*}", "\\begin{align*} ( t \\otimes _ { k } s ) ( x _ { 1 } , . . . , x _ { n + m - 2 k } ) = S \\frac { n ! m ! i ^ { k } } { k ! ( n - k ) ! ( m - k ) ! } \\int d y _ { 1 } . . . d y _ { 2 k } \\Delta _ { + } ( y _ { 1 } - y _ { 2 } ) . . . \\\\ \\Delta _ { + } ( y _ { 2 k - 1 } - y _ { 2 k } ) t ( x _ { 1 } , . . . , x _ { n - k } , y _ { 1 } , y _ { 3 } , . . . , y _ { 2 k - 1 } ) \\\\ s ( x _ { n - k + 1 } , . . . , x _ { n + m - 2 k } , y _ { 2 } , y _ { 4 } , . . . , y _ { 2 k } ) \\end{align*}", "\\begin{equation*} ( t \\times _ { \\hbar } s ) _ { n } = \\sum _ { m + l - 2 k = n } \\hbar ^ { k } t _ { m } \\otimes _ { k } s _ { l } . \\end{equation*}", "\\begin{align*} \\underset { \\hbar \\rightarrow 0 } { \\operatorname { l i m } } \\phi ( t ) \\times _ { \\hbar } \\phi ( s ) & = & \\underset { \\hbar \\rightarrow 0 } { \\operatorname { l i m } } \\phi ( \\sum _ { n } \\hbar ^ { n } t \\otimes _ { n } s ) \\\\ & = & \\phi ( t \\otimes _ { 0 } s ) = \\phi ( t ) \\cdot \\phi ( s ) \\end{align*}", "\\begin{equation*} \\underset { \\hbar \\rightarrow 0 } { \\operatorname { l i m } } \\frac { 1 } { i \\hbar } [ \\phi ( t ) , \\phi ( s ) ] _ { \\hbar } = \\phi ( t \\otimes _ { 1 } s - s \\otimes _ { 1 } t ) = \\{ \\phi ( t ) , \\phi ( s ) \\} \\end{equation*}" ], "latex_expand": [ "$ \\mathrm { W F } $", "$ \\mitt \\in \\mitW _ { \\mitn } $", "$ \\mitk $", "$ \\mitS $", "$ \\mitx _ { 1 } , . . . , \\mitx _ { \\mitn + \\mitm - 2 \\mitk } $", "$ \\mitt $", "$ \\mits $", "$ ( \\mitt \\otimes _ { \\mitk } \\mits ) $", "$ \\mitW _ { \\mitn + \\mitm - 2 \\mitk } $", "$ \\ast $", "$ \\mitW _ { 0 } \\, \\overset { \\mathrm { d e f } } { = } \\, \\BbbC $", "$ \\mitW \\, \\overset { \\mathrm { d e f } } { = } \\, \\bigoplus _ { \\mitn = 0 } ^ { \\infty } \\mitW _ { \\mitn } $", "$ \\mitt \\in \\mitW $", "$ \\mitt _ { \\mitn } $", "$ \\mitt $", "$ \\mitW _ { \\mitn } $", "$ \\ast $", "$ ( \\mitt ^ { \\ast } ) _ { \\mitn } \\, \\overset { \\mathrm { d e f } } { = } \\, ( \\bar { \\mitt } _ { \\mitn } ) $", "$ \\mitW $", "$ \\mitN $", "$ \\mitW $", "$ ( \\square + \\mitm ^ { 2 } ) \\mitf , \\> \\mitf \\in \\mitD ( \\BbbR ^ { 4 } ) $", "$ \\hslash $", "$ ( \\square + \\mitm ^ { 2 } ) \\mitf $", "$ \\mitphi $", "$ \\bar { \\mitW } = \\mitW \\slash \\mitN $", "$ \\hslash $", "$ \\bar { \\mitW } $", "$ ( \\mitvarphi ^ { \\otimes \\mitn } ) ( \\mitt ) , \\> \\mitt \\in \\mitW _ { \\mitn } $", "$ \\hslash \\rightarrow 0 $", "$ ( \\mitt \\otimes _ { \\mitk } \\mits ) _ { \\mitn } \\, \\overset { \\mathrm { d e f } } { = } \\, \\sum _ { \\mitm + \\mitl = \\mitn } \\mitt _ { \\mitm + \\mitk } \\otimes _ { \\mitk } \\mits _ { \\mitl + \\mitk } $", "$ \\cdot $", "\\begin{equation*} ( \\mitvarphi ^ { \\otimes \\mitn } ) ( \\mitt ) \\, \\overset { \\mathrm { d e f } } { = } \\, \\int : \\mitvarphi ( \\mitx _ { 1 } ) . . . \\mitvarphi ( \\mitx _ { \\mitn } ) : \\mitt ( \\mitx _ { 1 } , . . . , \\mitx _ { \\mitn } ) \\, \\mitd \\mitx _ { 1 } . . . \\mitd \\mitx _ { \\mitn } , \\quad ( \\mitvarphi ^ { \\otimes 0 } ) \\, \\overset { \\mathrm { d e f } } { = } \\, 1 , \\end{equation*}", "\\begin{equation*} : \\mitvarphi ^ { \\mitn } ( \\mitf ) : = ( \\mitvarphi ^ { \\otimes \\mitn } ) ( \\mitt ) ~ , ~ \\mitf \\in \\mitD ( \\BbbR ^ { 4 } ) ~ , ~ \\mitt ( \\mitx _ { 1 } , \\ldots , \\mitx _ { \\mitn } ) = \\mitf ( \\mitx _ { 1 } ) \\prod _ { \\miti = 2 } ^ { \\mitn } \\mitdelta ( \\mitx _ { \\miti } - \\mitx _ { 1 } ) \\end{equation*}", "\\begin{equation*} ( \\mitvarphi ^ { \\otimes \\mitn } ) ( \\mitt ) \\times _ { \\hslash } ( \\mitvarphi ^ { \\otimes \\mitm } ) ( \\mits ) = \\sum _ { \\mitk = 0 } ^ { \\mathrm { m i n } \\{ \\mitn , \\mitm \\} } \\hslash ^ { \\mitk } ( \\mitvarphi ^ { \\otimes ( \\mitn + \\mitm - 2 \\mitk ) } ) ( \\mitt \\otimes _ { \\mitk } \\mits ) \\end{equation*}", "\\begin{align*} ( \\mitt \\otimes _ { \\mitk } \\mits ) ( \\mitx _ { 1 } , . . . , \\mitx _ { \\mitn + \\mitm - 2 \\mitk } ) = \\mitS \\frac { \\mitn ! \\mitm ! \\miti ^ { \\mitk } } { \\mitk ! ( \\mitn - \\mitk ) ! ( \\mitm - \\mitk ) ! } \\int \\mitd \\mity _ { 1 } . . . \\mitd \\mity _ { 2 \\mitk } \\mupDelta _ { + } ( \\mity _ { 1 } - \\mity _ { 2 } ) . . . \\\\ \\mupDelta _ { + } ( \\mity _ { 2 \\mitk - 1 } - \\mity _ { 2 \\mitk } ) \\mitt ( \\mitx _ { 1 } , . . . , \\mitx _ { \\mitn - \\mitk } , \\mity _ { 1 } , \\mity _ { 3 } , . . . , \\mity _ { 2 \\mitk - 1 } ) \\\\ \\mits ( \\mitx _ { \\mitn - \\mitk + 1 } , . . . , \\mitx _ { \\mitn + \\mitm - 2 \\mitk } , \\mity _ { 2 } , \\mity _ { 4 } , . . . , \\mity _ { 2 \\mitk } ) \\end{align*}", "\\begin{equation*} ( \\mitt \\times _ { \\hslash } \\mits ) _ { \\mitn } = \\sum _ { \\mitm + \\mitl - 2 \\mitk = \\mitn } \\hslash ^ { \\mitk } \\mitt _ { \\mitm } \\otimes _ { \\mitk } \\mits _ { \\mitl } . \\end{equation*}", "\\begin{align*} \\underset { \\hslash \\rightarrow 0 } { \\operatorname { l i m } } \\mitphi ( \\mitt ) \\times _ { \\hslash } \\mitphi ( \\mits ) & = & \\underset { \\hslash \\rightarrow 0 } { \\operatorname { l i m } } \\mitphi ( \\sum _ { \\mitn } \\hslash ^ { \\mitn } \\mitt \\otimes _ { \\mitn } \\mits ) \\\\ & = & \\mitphi ( \\mitt \\otimes _ { 0 } \\mits ) = \\mitphi ( \\mitt ) \\cdot \\mitphi ( \\mits ) \\end{align*}", "\\begin{equation*} \\underset { \\hslash \\rightarrow 0 } { \\operatorname { l i m } } \\frac { 1 } { \\miti \\hslash } [ \\mitphi ( \\mitt ) , \\mitphi ( \\mits ) ] _ { \\hslash } = \\mitphi ( \\mitt \\otimes _ { 1 } \\mits - \\mits \\otimes _ { 1 } \\mitt ) = \\{ \\mitphi ( \\mitt ) , \\mitphi ( \\mits ) \\} \\end{equation*}" ], "x_min": [ 0.6226999759674072, 0.7276999950408936, 0.27639999985694885, 0.21629999577999115, 0.45339998602867126, 0.3034000098705292, 0.3483000099658966, 0.5383999943733215, 0.35589998960494995, 0.4733999967575073, 0.2646999955177307, 0.36419999599456787, 0.5259000062942505, 0.6025999784469604, 0.22939999401569366, 0.26190000772476196, 0.33719998598098755, 0.5273000001907349, 0.626800000667572, 0.5501000285148621, 0.5957000255584717, 0.2093999981880188, 0.691100001335144, 0.3345000147819519, 0.7200999855995178, 0.7001000046730042, 0.42989999055862427, 0.4505999982357025, 0.32199999690055847, 0.5853000283241272, 0.2667999863624573, 0.2093999981880188, 0.2370000034570694, 0.22529999911785126, 0.2888999879360199, 0.2093999981880188, 0.3772999942302704, 0.33239999413490295, 0.3019999861717224 ], "y_min": [ 0.1543000042438507, 0.16850000619888306, 0.39259999990463257, 0.49459999799728394, 0.4975999891757965, 0.5092999935150146, 0.5116999745368958, 0.5077999830245972, 0.5228999853134155, 0.5253999829292297, 0.54830002784729, 0.54830002784729, 0.5541999936103821, 0.5551999807357788, 0.573199987411499, 0.5723000168800354, 0.5752000212669373, 0.5669000148773193, 0.5863999724388123, 0.6518999934196472, 0.6518999934196472, 0.6646000146865845, 0.6660000085830688, 0.6786999702453613, 0.6801999807357788, 0.6929000020027161, 0.7089999914169312, 0.7070000171661377, 0.7217000126838684, 0.7231000065803528, 0.8041999936103821, 0.82669997215271, 0.1889999955892563, 0.2660999894142151, 0.33739998936653137, 0.41260001063346863, 0.6068999767303467, 0.7440999746322632, 0.8320000171661377 ], "x_max": [ 0.6510000228881836, 0.7802000045776367, 0.28610000014305115, 0.2280000001192093, 0.5647000074386597, 0.30959999561309814, 0.35659998655319214, 0.5943999886512756, 0.4291999936103821, 0.48240000009536743, 0.3255000114440918, 0.48240000009536743, 0.5722000002861023, 0.6177999973297119, 0.23559999465942383, 0.2881999909877777, 0.34619998931884766, 0.6158000230789185, 0.6455000042915344, 0.5666999816894531, 0.6144000291824341, 0.3862999975681305, 0.7008000016212463, 0.4090999960899353, 0.7304999828338623, 0.7829999923706055, 0.4388999938964844, 0.4693000018596649, 0.44850000739097595, 0.6294999718666077, 0.5189999938011169, 0.21490000188350677, 0.7297000288963318, 0.7394999861717224, 0.7105000019073486, 0.7573999762535095, 0.6219000220298767, 0.6647999882698059, 0.6952000260353088 ], "y_max": [ 0.163100004196167, 0.17880000174045563, 0.40139999985694885, 0.5029000043869019, 0.5059000253677368, 0.5170999765396118, 0.5170999765396118, 0.5199999809265137, 0.5340999960899353, 0.5313000082969666, 0.5644000172615051, 0.5663999915122986, 0.5634999871253967, 0.5644999742507935, 0.5809999704360962, 0.5830000042915344, 0.5810999870300293, 0.5839999914169312, 0.5952000021934509, 0.6607000231742859, 0.6607000231742859, 0.6777999997138977, 0.6747999787330627, 0.6919000148773193, 0.6913999915122986, 0.7060999870300293, 0.7178000211715698, 0.7177000045776367, 0.7348999977111816, 0.7318999767303467, 0.8227999806404114, 0.8325999975204468, 0.21930000185966492, 0.30469998717308044, 0.3799000084400177, 0.48489999771118164, 0.6395999789237976, 0.7972999811172485, 0.8603000044822693 ], "expr_type": [ "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "isolated", "isolated", "isolated", "isolated", "isolated", "isolated", "isolated" ] }
0001129_page11
{ "latex": [ "$(\\bar {\\cal W},\\times _\\hbar )$", "$\\varphi _{\\rm class}$", "$\\omega _0(t)=t_{0}$", "$\\hbar \\ne 0$", "$\\hbar =0$", "$n$", "$T$", "$T_n\\vert _{{\\cal U}_n}$", "$\\Delta _n=\\{(x_1,...,x_n)\\in \\RR ^{4n}|x_1=x_2=...=x_n\\}$", "$\\Delta _n$", "${\\cal L}$", "$\\phi $", "$\\phi $", "$T(A_1(x_1)...A_n(x_n))^*=\\bar T(A_1^*(x_1)... A_n^*(x_n))$", "$\\quad [T(A_1(x_1)...A_n(x_n)),\\phi (x)]=$", "$\\quad \\quad \\quad \\quad =i\\hbar \\sum _{k=1}^n T(A_1(x_1)... \\frac {\\d A_k}{\\d \\phi }(x_k)...A_n(x_n))\\Delta (x_k-x)$", "$\\quad (\\w _x+m^2)T(A_1(x_1)...A_n(x_n)\\phi (x))=$", "$\\quad \\quad \\quad \\quad \\quad \\quad =-i\\hbar \\sum _{k=1}^nT(A_1(x_1)... \\frac {\\d A_k}{\\d \\phi }(x_k)...A_n(x_n))\\delta (x_k-x)$", "$[\\phi (x),\\phi (y)]=i\\hbar \\Delta (x-y)$", "$*$", "$T$", "$\\Delta _n$", "$t_0\\in {\\cal D}'(\\RR ^{4(n-1)}\\setminus \\{0\\})$", "$t\\in {\\cal D}'(\\RR ^{4(n-1)})$", "$t$", "$t_0$", "$t(f)=t_0(f),\\>\\forall f\\in {\\cal D}(\\RR ^{4(n-1)}\\setminus \\{0\\})$", "$t_0(y)$", "$t(y)$", "$y=0$", "${\\rm sd}(t_0)\\leq {\\rm sd}(t)$", "${\\rm sd}(t_0)<4(n-1)$", "$\\delta $", "\\begin {equation} {\\rm sd}(t)\\=d {\\rm inf}\\{\\delta \\in \\RR \\>,\\>\\lim _{\\lambda \\to 0} \\lambda ^\\delta t(\\lambda x)=0\\}.\\label {4.3a} \\end {equation}", "\\begin {equation} {\\rm sd}(t_0)={\\rm sd}(t).\\label {4.3b} \\end {equation}" ], "latex_norm": [ "$ ( \\bar { W } , \\times _ { \\hbar } ) $", "$ \\varphi _ { c l a s s } $", "$ \\omega _ { 0 } ( t ) = t _ { 0 } $", "$ \\hbar \\ne 0 $", "$ \\hbar = 0 $", "$ n $", "$ T $", "$ T _ { n } \\vert _ { U _ { n } } $", "$ \\Delta _ { n } = \\{ ( x _ { 1 } , . . . , x _ { n } ) \\in R ^ { 4 n } \\vert x _ { 1 } = x _ { 2 } = . . . = x _ { n } \\} $", "$ \\Delta _ { n } $", "$ L $", "$ \\phi $", "$ \\phi $", "$ T ( A _ { 1 } ( x _ { 1 } ) . . . A _ { n } ( x _ { n } ) ) ^ { \\ast } = \\bar { T } ( A _ { 1 } ^ { \\ast } ( x _ { 1 } ) . . . A _ { n } ^ { \\ast } ( x _ { n } ) ) $", "$ \\quad [ T ( A _ { 1 } ( x _ { 1 } ) . . . A _ { n } ( x _ { n } ) ) , \\phi ( x ) ] = $", "$ \\quad \\quad \\quad \\quad = i \\hbar \\sum _ { k = 1 } ^ { n } T ( A _ { 1 } ( x _ { 1 } ) . . . \\frac { \\partial A _ { k } } { \\partial \\phi } ( x _ { k } ) . . . A _ { n } ( x _ { n } ) ) \\Delta ( x _ { k } - x ) $", "$ \\quad ( \\square { } _ { x } + m ^ { 2 } ) T ( A _ { 1 } ( x _ { 1 } ) . . . A _ { n } ( x _ { n } ) \\phi ( x ) ) = $", "$ \\quad \\quad \\quad \\quad \\quad \\quad = - i \\hbar \\sum _ { k = 1 } ^ { n } T ( A _ { 1 } ( x _ { 1 } ) . . . \\frac { \\partial A _ { k } } { \\partial \\phi } ( x _ { k } ) . . . A _ { n } ( x _ { n } ) ) \\delta ( x _ { k } - x ) $", "$ [ \\phi ( x ) , \\phi ( y ) ] = i \\hbar \\Delta ( x - y ) $", "$ \\ast $", "$ T $", "$ \\Delta _ { n } $", "$ t _ { 0 } \\in D ^ { \\prime } ( R ^ { 4 ( n - 1 ) } \\setminus \\{ 0 \\} ) $", "$ t \\in D ^ { \\prime } ( R ^ { 4 ( n - 1 ) } ) $", "$ t $", "$ t _ { 0 } $", "$ t ( f ) = t _ { 0 } ( f ) , \\> \\forall f \\in D ( R ^ { 4 ( n - 1 ) } \\setminus \\{ 0 \\} ) $", "$ t _ { 0 } ( y ) $", "$ t ( y ) $", "$ y = 0 $", "$ s d ( t _ { 0 } ) \\leq s d ( t ) $", "$ s d ( t _ { 0 } ) < 4 ( n - 1 ) $", "$ \\delta $", "\\begin{equation*} s d ( t ) \\, \\overset { d e f } { = } \\, i n f \\{ \\delta \\in R \\> , \\> \\underset { \\lambda \\rightarrow 0 } { \\operatorname { l i m } } \\lambda ^ { \\delta } t ( \\lambda x ) = 0 \\} . \\end{equation*}", "\\begin{equation*} s d ( t _ { 0 } ) = s d ( t ) . \\end{equation*}" ], "latex_expand": [ "$ ( \\bar { \\mitW } , \\times _ { \\hslash } ) $", "$ \\mitvarphi _ { \\mathrm { c l a s s } } $", "$ \\mitomega _ { 0 } ( \\mitt ) = \\mitt _ { 0 } $", "$ \\hslash \\ne 0 $", "$ \\hslash = 0 $", "$ \\mitn $", "$ \\mitT $", "$ \\mitT _ { \\mitn } \\vert _ { \\mitU _ { \\mitn } } $", "$ \\mupDelta _ { \\mitn } = \\{ ( \\mitx _ { 1 } , . . . , \\mitx _ { \\mitn } ) \\in \\BbbR ^ { 4 \\mitn } \\vert \\mitx _ { 1 } = \\mitx _ { 2 } = . . . = \\mitx _ { \\mitn } \\} $", "$ \\mupDelta _ { \\mitn } $", "$ \\mitL $", "$ \\mitphi $", "$ \\mitphi $", "$ \\mitT ( \\mitA _ { 1 } ( \\mitx _ { 1 } ) . . . \\mitA _ { \\mitn } ( \\mitx _ { \\mitn } ) ) ^ { \\ast } = \\bar { \\mitT } ( \\mitA _ { 1 } ^ { \\ast } ( \\mitx _ { 1 } ) . . . \\mitA _ { \\mitn } ^ { \\ast } ( \\mitx _ { \\mitn } ) ) $", "$ \\quad [ \\mitT ( \\mitA _ { 1 } ( \\mitx _ { 1 } ) . . . \\mitA _ { \\mitn } ( \\mitx _ { \\mitn } ) ) , \\mitphi ( \\mitx ) ] = $", "$ \\quad \\quad \\quad \\quad = \\miti \\hslash \\sum _ { \\mitk = 1 } ^ { \\mitn } \\mitT ( \\mitA _ { 1 } ( \\mitx _ { 1 } ) . . . \\frac { \\mitpartial \\mitA _ { \\mitk } } { \\mitpartial \\mitphi } ( \\mitx _ { \\mitk } ) . . . \\mitA _ { \\mitn } ( \\mitx _ { \\mitn } ) ) \\mupDelta ( \\mitx _ { \\mitk } - \\mitx ) $", "$ \\quad ( \\square { } _ { \\mitx } + \\mitm ^ { 2 } ) \\mitT ( \\mitA _ { 1 } ( \\mitx _ { 1 } ) . . . \\mitA _ { \\mitn } ( \\mitx _ { \\mitn } ) \\mitphi ( \\mitx ) ) = $", "$ \\quad \\quad \\quad \\quad \\quad \\quad = - \\miti \\hslash \\sum _ { \\mitk = 1 } ^ { \\mitn } \\mitT ( \\mitA _ { 1 } ( \\mitx _ { 1 } ) . . . \\frac { \\mitpartial \\mitA _ { \\mitk } } { \\mitpartial \\mitphi } ( \\mitx _ { \\mitk } ) . . . \\mitA _ { \\mitn } ( \\mitx _ { \\mitn } ) ) \\mitdelta ( \\mitx _ { \\mitk } - \\mitx ) $", "$ [ \\mitphi ( \\mitx ) , \\mitphi ( \\mity ) ] = \\miti \\hslash \\mupDelta ( \\mitx - \\mity ) $", "$ \\ast $", "$ \\mitT $", "$ \\mupDelta _ { \\mitn } $", "$ \\mitt _ { 0 } \\in \\mitD ^ { \\prime } ( \\BbbR ^ { 4 ( \\mitn - 1 ) } \\setminus \\{ 0 \\} ) $", "$ \\mitt \\in \\mitD ^ { \\prime } ( \\BbbR ^ { 4 ( \\mitn - 1 ) } ) $", "$ \\mitt $", "$ \\mitt _ { 0 } $", "$ \\mitt ( \\mitf ) = \\mitt _ { 0 } ( \\mitf ) , \\> \\forall \\mitf \\in \\mitD ( \\BbbR ^ { 4 ( \\mitn - 1 ) } \\setminus \\{ 0 \\} ) $", "$ \\mitt _ { 0 } ( \\mity ) $", "$ \\mitt ( \\mity ) $", "$ \\mity = 0 $", "$ \\mathrm { s d } ( \\mitt _ { 0 } ) \\leq \\mathrm { s d } ( \\mitt ) $", "$ \\mathrm { s d } ( \\mitt _ { 0 } ) < 4 ( \\mitn - 1 ) $", "$ \\mitdelta $", "\\begin{equation*} \\mathrm { s d } ( \\mitt ) \\, \\overset { \\mathrm { d e f } } { = } \\, \\mathrm { i n f } \\{ \\mitdelta \\in \\BbbR \\> , \\> \\underset { \\mitlambda \\rightarrow 0 } { \\operatorname { l i m } } \\mitlambda ^ { \\mitdelta } \\mitt ( \\mitlambda \\mitx ) = 0 \\} . \\end{equation*}", "\\begin{equation*} \\mathrm { s d } ( \\mitt _ { 0 } ) = \\mathrm { s d } ( \\mitt ) . \\end{equation*}" ], "x_min": [ 0.5059000253677368, 0.5612000226974487, 0.31380000710487366, 0.5238000154495239, 0.3158000111579895, 0.7588000297546387, 0.4560999870300293, 0.746399998664856, 0.26260000467300415, 0.33309999108314514, 0.3869999945163727, 0.6295999884605408, 0.3124000132083893, 0.34139999747276306, 0.2800000011920929, 0.30000001192092896, 0.2800000011920929, 0.33000001311302185, 0.25850000977516174, 0.35179999470710754, 0.3434999883174896, 0.4456999897956848, 0.30000001192092896, 0.49000000953674316, 0.6834999918937683, 0.22869999706745148, 0.2630000114440918, 0.6848999857902527, 0.7595000267028809, 0.23010000586509705, 0.3124000132083893, 0.4643999934196472, 0.597100019454956, 0.3621000051498413, 0.446399986743927 ], "y_min": [ 0.15230000019073486, 0.17139999568462372, 0.2240999937057495, 0.22509999573230743, 0.23929999768733978, 0.33980000019073486, 0.365200012922287, 0.36469998955726624, 0.40619999170303345, 0.4219000041484833, 0.4507000148296356, 0.4507000148296356, 0.46480000019073486, 0.5038999915122986, 0.5199999809265137, 0.53329998254776, 0.5501000285148621, 0.5630999803543091, 0.5814999938011169, 0.5990999937057495, 0.6532999873161316, 0.6532999873161316, 0.6650000214576721, 0.6650000214576721, 0.6679999828338623, 0.6826000213623047, 0.6800000071525574, 0.6812000274658203, 0.6812000274658203, 0.6963000297546387, 0.7554000020027161, 0.8051999807357788, 0.8202999830245972, 0.7167999744415283, 0.7803000211715698 ], "x_max": [ 0.5659999847412109, 0.600600004196167, 0.38909998536109924, 0.5659999847412109, 0.35929998755455017, 0.7692000269889832, 0.4691999852657318, 0.7878999710083008, 0.5902000069618225, 0.35659998655319214, 0.3986999988555908, 0.6399999856948853, 0.32280001044273376, 0.6571999788284302, 0.4975000023841858, 0.6775000095367432, 0.6323000192642212, 0.7123000025749207, 0.4472000002861023, 0.36079999804496765, 0.35659998655319214, 0.4691999852657318, 0.4657000005245209, 0.6057000160217285, 0.6897000074386597, 0.24320000410079956, 0.5336999893188477, 0.72079998254776, 0.7878000140190125, 0.2702000141143799, 0.41679999232292175, 0.5992000102996826, 0.6061000227928162, 0.6377999782562256, 0.5534999966621399 ], "y_max": [ 0.16599999368190765, 0.17919999361038208, 0.23680000007152557, 0.2363000065088272, 0.24809999763965607, 0.3456999957561493, 0.37400001287460327, 0.37689998745918274, 0.41940000653266907, 0.4325999915599823, 0.4595000147819519, 0.46140000224113464, 0.4754999876022339, 0.5170999765396118, 0.5320000052452087, 0.5486000180244446, 0.5626000165939331, 0.5785999894142151, 0.5936999917030334, 0.6050000190734863, 0.6621000170707703, 0.6636000275611877, 0.6793000102043152, 0.6793000102043152, 0.6762999892234802, 0.6923999786376953, 0.6942999958992004, 0.6934000253677368, 0.6934000253677368, 0.70660001039505, 0.7681000232696533, 0.8179000020027161, 0.8291000127792358, 0.7432000041007996, 0.7964000105857849 ], "expr_type": [ "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "isolated", "isolated" ] }
0001129_page12
{ "latex": [ "$({\\rm sd}(t_0)-4(n-1))$", "$t$", "$C_a$", "${\\rm dim}({\\cal L})\\leq 4$", "$C_a$", "$\\phi $", "$g,f\\in {\\cal D}(\\RR ^4,{\\cal V})$", "$R$", "$n$", "$m$", "$R_{n,m}$", "$\\hbar ^n$", "$(a_1\\times _\\hbar ...\\times _\\hbar a_n)^c$", "$(a_1\\times _\\hbar ...\\times _\\hbar a_n)$", "$a_i$", "$T_n^c$", "$T_n$", "$a_i$", "$\\times _\\hbar $", "$a,b$", "$a\\cdot b=M_0(a,b)$", "$(a_1\\times _\\hbar ...\\times _\\hbar a_n)^c$", "\\begin {equation} t(y)+\\sum _{|a|\\leq {\\rm sd}(t_0)-4(n-1)}C_a\\d ^a\\delta (y)\\label {4.3c} \\end {equation}", "\\begin {equation} S_{g}(f)=\\sum _{n,m}\\frac {i^{n+m}}{n!m!}R_{n,m} (g^{\\otimes n};f^{\\otimes m}), \\label {E:retarded products} \\end {equation}", "\\begin {equation} R_{n,m}(g^{\\otimes n};f^{\\otimes m})= \\sum _{k=0}^{n}(-1)^k\\frac {n!}{k!(n-k)!} \\bar {T}_{k}(g^{\\otimes k})\\times _\\hbar T_{n-k+m}(g^{\\otimes (n-k)} \\otimes f^{\\otimes m}).\\label {R=T} \\end {equation}", "\\begin {equation} {\\rm supp}\\>R_{n,m}\\bigl (...\\bigr )\\subset \\{(y_1,...y_n,x_1,...,x_m)\\>,\\>\\{y_1,...y_n\\}\\subset (\\{x_1,...,x_m\\} +\\bar V_-)\\} \\ .\\label {L15a} \\end {equation}", "\\begin {equation} a\\times _\\hbar b=\\sum _{n\\geq 0}\\hbar ^n M_n(a,b),\\label {W2a} \\end {equation}", "\\begin {equation} :\\prod _{i\\in I}\\varphi (x_i):\\cdot :\\prod _{j\\in J}\\varphi (x_j): = :\\prod _{i\\in I}\\varphi (x_i)\\prod _{j\\in J}\\varphi (x_j):\\label {C} \\end {equation}", "\\begin {equation} (a_1\\times _\\hbar ...\\times _\\hbar a_n)^c\\=d (a_1\\times _\\hbar ... \\times _\\hbar a_n) -\\sum _{|P|\\geq 2}\\prod _{J\\in P}(a_{j_1}\\times _\\hbar ...\\times _\\hbar a_{j_{|J|}})^c,\\label {conn} \\end {equation}" ], "latex_norm": [ "$ ( s d ( t _ { 0 } ) - 4 ( n - 1 ) ) $", "$ t $", "$ C _ { a } $", "$ d i m ( L ) \\leq 4 $", "$ C _ { a } $", "$ \\phi $", "$ g , f \\in D ( R ^ { 4 } , V ) $", "$ R $", "$ n $", "$ m $", "$ R _ { n , m } $", "$ \\hbar ^ { n } $", "$ ( a _ { 1 } \\times _ { \\hbar } . . . \\times _ { \\hbar } a _ { n } ) ^ { c } $", "$ ( a _ { 1 } \\times _ { \\hbar } . . . \\times _ { \\hbar } a _ { n } ) $", "$ a _ { i } $", "$ T _ { n } ^ { c } $", "$ T _ { n } $", "$ a _ { i } $", "$ \\times _ { \\hbar } $", "$ a , b $", "$ a \\cdot b = M _ { 0 } ( a , b ) $", "$ ( a _ { 1 } \\times _ { \\hbar } . . . \\times _ { \\hbar } a _ { n } ) ^ { c } $", "\\begin{equation*} t ( y ) + \\sum _ { \\vert a \\vert \\leq s d ( t _ { 0 } ) - 4 ( n - 1 ) } C _ { a } \\partial ^ { a } \\delta ( y ) \\end{equation*}", "\\begin{equation*} S _ { g } ( f ) = \\sum _ { n , m } \\frac { i ^ { n + m } } { n ! m ! } R _ { n , m } ( g ^ { \\otimes n } ; f ^ { \\otimes m } ) , \\end{equation*}", "\\begin{equation*} R _ { n , m } ( g ^ { \\otimes n } ; f ^ { \\otimes m } ) = \\sum _ { k = 0 } ^ { n } ( - 1 ) ^ { k } \\frac { n ! } { k ! ( n - k ) ! } \\bar { T } _ { k } ( g ^ { \\otimes k } ) \\times _ { \\hbar } T _ { n - k + m } ( g ^ { \\otimes ( n - k ) } \\otimes f ^ { \\otimes m } ) . \\end{equation*}", "\\begin{equation*} s u p p \\> R _ { n , m } ( . . . ) \\subset \\{ ( y _ { 1 } , . . . y _ { n } , x _ { 1 } , . . . , x _ { m } ) \\> , \\> \\{ y _ { 1 } , . . . y _ { n } \\} \\subset ( \\{ x _ { 1 } , . . . , x _ { m } \\} + \\bar { V } _ { - } ) \\} ~ . \\end{equation*}", "\\begin{equation*} a \\times _ { \\hbar } b = \\sum _ { n \\geq 0 } \\hbar ^ { n } M _ { n } ( a , b ) , \\end{equation*}", "\\begin{equation*} : \\prod _ { i \\in I } \\varphi ( x _ { i } ) : \\cdot : \\prod _ { j \\in J } \\varphi ( x _ { j } ) : = : \\prod _ { i \\in I } \\varphi ( x _ { i } ) \\prod _ { j \\in J } \\varphi ( x _ { j } ) : \\end{equation*}", "\\begin{equation*} ( a _ { 1 } \\times _ { \\hbar } . . . \\times _ { \\hbar } a _ { n } ) ^ { c } \\, \\overset { d e f } { = } \\, ( a _ { 1 } \\times _ { \\hbar } . . . \\times _ { \\hbar } a _ { n } ) - \\sum _ { \\vert P \\vert \\geq 2 } \\prod _ { J \\in P } ( a _ { j _ { 1 } } \\times _ { \\hbar } . . . \\times _ { \\hbar } a _ { j _ { \\vert J \\vert } } ) ^ { c } , \\end{equation*}" ], "latex_expand": [ "$ ( \\mathrm { s d } ( \\mitt _ { 0 } ) - 4 ( \\mitn - 1 ) ) $", "$ \\mitt $", "$ \\mitC _ { \\mita } $", "$ \\mathrm { d i m } ( \\mitL ) \\leq 4 $", "$ \\mitC _ { \\mita } $", "$ \\mitphi $", "$ \\mitg , \\mitf \\in \\mitD ( \\BbbR ^ { 4 } , \\mitV ) $", "$ \\mitR $", "$ \\mitn $", "$ \\mitm $", "$ \\mitR _ { \\mitn , \\mitm } $", "$ \\hslash ^ { \\mitn } $", "$ ( \\mita _ { 1 } \\times _ { \\hslash } . . . \\times _ { \\hslash } \\mita _ { \\mitn } ) ^ { \\mitc } $", "$ ( \\mita _ { 1 } \\times _ { \\hslash } . . . \\times _ { \\hslash } \\mita _ { \\mitn } ) $", "$ \\mita _ { \\miti } $", "$ \\mitT _ { \\mitn } ^ { \\mitc } $", "$ \\mitT _ { \\mitn } $", "$ \\mita _ { \\miti } $", "$ \\times _ { \\hslash } $", "$ \\mita , \\mitb $", "$ \\mita \\cdot \\mitb = \\mitM _ { 0 } ( \\mita , \\mitb ) $", "$ ( \\mita _ { 1 } \\times _ { \\hslash } . . . \\times _ { \\hslash } \\mita _ { \\mitn } ) ^ { \\mitc } $", "\\begin{equation*} \\mitt ( \\mity ) + \\sum _ { \\vert \\mita \\vert \\leq \\mathrm { s d } ( \\mitt _ { 0 } ) - 4 ( \\mitn - 1 ) } \\mitC _ { \\mita } \\mitpartial ^ { \\mita } \\mitdelta ( \\mity ) \\end{equation*}", "\\begin{equation*} \\mitS _ { \\mitg } ( \\mitf ) = \\sum _ { \\mitn , \\mitm } \\frac { \\miti ^ { \\mitn + \\mitm } } { \\mitn ! \\mitm ! } \\mitR _ { \\mitn , \\mitm } ( \\mitg ^ { \\otimes \\mitn } ; \\mitf ^ { \\otimes \\mitm } ) , \\end{equation*}", "\\begin{equation*} \\mitR _ { \\mitn , \\mitm } ( \\mitg ^ { \\otimes \\mitn } ; \\mitf ^ { \\otimes \\mitm } ) = \\sum _ { \\mitk = 0 } ^ { \\mitn } ( - 1 ) ^ { \\mitk } \\frac { \\mitn ! } { \\mitk ! ( \\mitn - \\mitk ) ! } \\bar { \\mitT } _ { \\mitk } ( \\mitg ^ { \\otimes \\mitk } ) \\times _ { \\hslash } \\mitT _ { \\mitn - \\mitk + \\mitm } ( \\mitg ^ { \\otimes ( \\mitn - \\mitk ) } \\otimes \\mitf ^ { \\otimes \\mitm } ) . \\end{equation*}", "\\begin{equation*} \\mathrm { s u p p } \\> \\mitR _ { \\mitn , \\mitm } \\big ( . . . \\big ) \\subset \\{ ( \\mity _ { 1 } , . . . \\mity _ { \\mitn } , \\mitx _ { 1 } , . . . , \\mitx _ { \\mitm } ) \\> , \\> \\{ \\mity _ { 1 } , . . . \\mity _ { \\mitn } \\} \\subset ( \\{ \\mitx _ { 1 } , . . . , \\mitx _ { \\mitm } \\} + \\bar { \\mitV } _ { - } ) \\} ~ . \\end{equation*}", "\\begin{equation*} \\mita \\times _ { \\hslash } \\mitb = \\sum _ { \\mitn \\geq 0 } \\hslash ^ { \\mitn } \\mitM _ { \\mitn } ( \\mita , \\mitb ) , \\end{equation*}", "\\begin{equation*} : \\prod _ { \\miti \\in \\mitI } \\mitvarphi ( \\mitx _ { \\miti } ) : \\cdot : \\prod _ { \\mitj \\in \\mitJ } \\mitvarphi ( \\mitx _ { \\mitj } ) : = : \\prod _ { \\miti \\in \\mitI } \\mitvarphi ( \\mitx _ { \\miti } ) \\prod _ { \\mitj \\in \\mitJ } \\mitvarphi ( \\mitx _ { \\mitj } ) : \\end{equation*}", "\\begin{equation*} ( \\mita _ { 1 } \\times _ { \\hslash } . . . \\times _ { \\hslash } \\mita _ { \\mitn } ) ^ { \\mitc } \\, \\overset { \\mathrm { d e f } } { = } \\, ( \\mita _ { 1 } \\times _ { \\hslash } . . . \\times _ { \\hslash } \\mita _ { \\mitn } ) - \\sum _ { \\vert \\mitP \\vert \\geq 2 } \\prod _ { \\mitJ \\in \\mitP } ( \\mita _ { \\mitj _ { 1 } } \\times _ { \\hslash } . . . \\times _ { \\hslash } \\mita _ { \\mitj _ { \\vert \\mitJ \\vert } } ) ^ { \\mitc } , \\end{equation*}" ], "x_min": [ 0.2093999981880188, 0.4339999854564667, 0.25850000977516174, 0.48170000314712524, 0.2093999981880188, 0.5645999908447266, 0.259799987077713, 0.22050000727176666, 0.43050000071525574, 0.2888999879360199, 0.4602999985218048, 0.5819000005722046, 0.42570000886917114, 0.5715000033378601, 0.772599995136261, 0.7193999886512756, 0.373199999332428, 0.4325999915599823, 0.2093999981880188, 0.259799987077713, 0.27230000495910645, 0.2093999981880188, 0.3822000026702881, 0.36899998784065247, 0.2190999984741211, 0.2184000015258789, 0.40700000524520874, 0.3206999897956848, 0.23010000586509705 ], "y_min": [ 0.15330000221729279, 0.21289999783039093, 0.22609999775886536, 0.2538999915122986, 0.2831999957561493, 0.3109999895095825, 0.427700012922287, 0.4438000023365021, 0.5303000211715698, 0.5443999767303467, 0.5971999764442444, 0.5971999764442444, 0.6104000210762024, 0.6104000210762024, 0.614300012588501, 0.6255000233650208, 0.6395999789237976, 0.6708999872207642, 0.6836000084877014, 0.7289999723434448, 0.7426999807357788, 0.8130000233650208, 0.16990000009536743, 0.38280001282691956, 0.47269999980926514, 0.5565999746322632, 0.6913999915122986, 0.7588000297546387, 0.8291000127792358 ], "x_max": [ 0.34619998931884766, 0.44020000100135803, 0.2784999907016754, 0.5687999725341797, 0.23010000586509705, 0.574999988079071, 0.37940001487731934, 0.23430000245571136, 0.4408999979496002, 0.30410000681877136, 0.4982999861240387, 0.600600004196167, 0.5479999780654907, 0.6869000196456909, 0.7878000140190125, 0.7387999892234802, 0.39259999990463257, 0.44780001044273376, 0.23149999976158142, 0.2833000123500824, 0.38359999656677246, 0.3359000086784363, 0.617900013923645, 0.6274999976158142, 0.7803000211715698, 0.746399998664856, 0.5900999903678894, 0.669700026512146, 0.7366999983787537 ], "y_max": [ 0.16599999368190765, 0.2206999957561493, 0.23680000007152557, 0.2660999894142151, 0.29350000619888306, 0.3222000002861023, 0.4413999915122986, 0.45210000872612, 0.5361999869346619, 0.5503000020980835, 0.6093999743461609, 0.6060000061988831, 0.6230999827384949, 0.6230999827384949, 0.6215999722480774, 0.6371999979019165, 0.6503000259399414, 0.6786999702453613, 0.6929000020027161, 0.7401999831199646, 0.7548999786376953, 0.8252000212669373, 0.20409999787807465, 0.42089998722076416, 0.5117999911308289, 0.5752000212669373, 0.7246000170707703, 0.7919999957084656, 0.8647000193595886 ], "expr_type": [ "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "isolated", "isolated", "isolated", "isolated", "isolated", "isolated", "isolated" ] }
0001129_page13
{ "latex": [ "$\\{j_1,...,j_{|J|}\\}=J$", "$j_1<...<j_{|J|}$", "$P$", "$\\{1,...,n\\}$", "$\\prod $", "$T_n^c$", "$\\bar T_n^c\\equiv (\\bar T_n)^c$", "$a_1,...,a_n$", "${\\cal O} (\\hbar ^0)$", "$a_i$", "$a_1\\times _\\hbar ...\\times _\\hbar a_n$", "$\\Delta _+$", "$\\hbar $", "$\\sim \\hbar ^0$", "$a_1,...,a_n$", "$n$", "$1$", "$0$", "$(n-1)$", "${\\cal O}(\\hbar ^{n-1})$", "$\\quad \\w $", "${\\cal B}\\ni A_1,...,A_n={\\cal O}(\\hbar ^0)$", "$x_i\\not = x_j,\\> \\forall 1\\leq i<j\\leq n$", "$\\pi \\in {\\cal S}_n$", "$n$", "$T^c$", "$n$", "$\\Delta _n$", "$T(J):=T(\\prod _{j\\in J}A_j(x_j)),\\> J\\subset \\{1,... ,n\\}$", "$I\\subset \\{1,...,n\\},\\> I\\not =\\emptyset ,\\>I^c\\not =\\emptyset $", "$\\sqcup $", "$k=0$", "$(r+s)$", "$k\\geq (r+s-1)$", "$T^c(I_l)$", "$T^c(J_m)$", "$\\sum _{l=1}^r (|I_l|-1)+\\sum _{m=1}^r (|J_m|-1)+(r+s-1)=n-1$", "$\\hbar $", "$\\hbar $", "${\\cal D}(\\RR ^{4n}\\setminus \\Delta _n)$", "$(T_n-T_n^c)$", "$<n$", "$\\Delta _n$", "$T_n$", "$\\Delta _n$", "\\begin {equation} T_n^c(f_1\\otimes ...\\otimes f_n)\\=d T_n(f_1\\otimes ...\\otimes f_n) -\\sum _{|P|\\geq 2}\\prod _{p\\in P}T_{|p|}^c(\\otimes _{j\\in p}f_j),\\label {T^c} \\end {equation}", "\\begin {equation} (a_1\\times _\\hbar ...\\times _\\hbar a_n)^c={\\cal O}(\\hbar ^{n-1}). \\end {equation}", "\\begin {equation} T^c\\bigl (A_1(x_1)...A_n(x_n)\\bigr )=(A_{\\pi 1}(x_{\\pi 1})\\times _\\hbar ... \\times _\\hbar A_{\\pi n}(x_{\\pi n}))^c={\\cal O}(\\hbar ^{n-1}). \\label {ordnung:hbar} \\end {equation}", "\\begin {equation} T^c\\bigl (A_1(x_1)...A_n(x_n)\\bigr )={\\cal O}(\\hbar ^{n-1})\\quad \\quad {\\rm on}\\quad {\\cal D}(\\RR ^{4n}).\\label {T^c:hbar} \\end {equation}", "\\begin {eqnarray} T\\bigl (A_1(x_1)...A_n(x_n)\\bigr )= T(I)\\times _\\hbar T(I^c)= \\sum _{r=1}^{{}|I|}\\sum _{s=1}^{{}|I^c|}\\sum _{I_1\\sqcup ...\\sqcup I_r=I} \\sum _{J_1\\sqcup ...\\sqcup J_s=I^c}\\\\ \\sum _{k\\geq 0}\\hbar ^k M_k\\Bigl (T^c(I_1)\\cdot ...\\cdot T^c(I_r), T^c(J_1)\\cdot ...\\cdot T^c(J_s)\\Bigr ),\\end {eqnarray}" ], "latex_norm": [ "$ \\{ j _ { 1 } , . . . , j _ { \\vert J \\vert } \\} = J $", "$ j _ { 1 } < . . . < j _ { \\vert J \\vert } $", "$ P $", "$ \\{ 1 , . . . , n \\} $", "$ \\prod $", "$ T _ { n } ^ { c } $", "$ \\bar { T } _ { n } ^ { c } \\equiv ( \\bar { T } _ { n } ) ^ { c } $", "$ a _ { 1 } , . . . , a _ { n } $", "$ O ( \\hbar ^ { 0 } ) $", "$ a _ { i } $", "$ a _ { 1 } \\times _ { \\hbar } . . . \\times _ { \\hbar } a _ { n } $", "$ \\Delta _ { + } $", "$ \\hbar $", "$ \\sim \\hbar ^ { 0 } $", "$ a _ { 1 } , . . . , a _ { n } $", "$ n $", "$ 1 $", "$ 0 $", "$ ( n - 1 ) $", "$ O ( \\hbar ^ { n - 1 } ) $", "$ \\quad \\square $", "$ B \\ni A _ { 1 } , . . . , A _ { n } = O ( \\hbar ^ { 0 } ) $", "$ x _ { i } \\ne x _ { j } , \\> \\forall 1 \\leq i < j \\leq n $", "$ \\pi \\in S _ { n } $", "$ n $", "$ T ^ { c } $", "$ n $", "$ \\Delta _ { n } $", "$ T ( J ) : = T ( \\prod _ { j \\in J } A _ { j } ( x _ { j } ) ) , \\> J \\subset \\{ 1 , . . . , n \\} $", "$ I \\subset \\{ 1 , . . . , n \\} , \\> I \\ne \\emptyset , \\> I ^ { c } \\ne \\emptyset $", "$ \\sqcup $", "$ k = 0 $", "$ ( r + s ) $", "$ k \\geq ( r + s - 1 ) $", "$ T ^ { c } ( I _ { l } ) $", "$ T ^ { c } ( J _ { m } ) $", "$ \\sum _ { l = 1 } ^ { r } ( \\vert I _ { l } \\vert - 1 ) + \\sum _ { m = 1 } ^ { r } ( \\vert J _ { m } \\vert - 1 ) + ( r + s - 1 ) = n - 1 $", "$ \\hbar $", "$ \\hbar $", "$ D ( R ^ { 4 n } \\setminus \\Delta _ { n } ) $", "$ ( T _ { n } - T _ { n } ^ { c } ) $", "$ < n $", "$ \\Delta _ { n } $", "$ T _ { n } $", "$ \\Delta _ { n } $", "\\begin{equation*} T _ { n } ^ { c } ( f _ { 1 } \\otimes . . . \\otimes f _ { n } ) \\, \\overset { d e f } { = } \\, T _ { n } ( f _ { 1 } \\otimes . . . \\otimes f _ { n } ) - \\sum _ { \\vert P \\vert \\geq 2 } \\prod _ { p \\in P } T _ { \\vert p \\vert } ^ { c } ( \\otimes _ { j \\in p } f _ { j } ) , \\end{equation*}", "\\begin{equation*} ( a _ { 1 } \\times _ { \\hbar } . . . \\times _ { \\hbar } a _ { n } ) ^ { c } = O ( \\hbar ^ { n - 1 } ) . \\end{equation*}", "\\begin{equation*} T ^ { c } ( A _ { 1 } ( x _ { 1 } ) . . . A _ { n } ( x _ { n } ) ) = ( A _ { \\pi 1 } ( x _ { \\pi 1 } ) \\times _ { \\hbar } . . . \\times _ { \\hbar } A _ { \\pi n } ( x _ { \\pi n } ) ) ^ { c } = O ( \\hbar ^ { n - 1 } ) . \\end{equation*}", "\\begin{equation*} T ^ { c } ( A _ { 1 } ( x _ { 1 } ) . . . A _ { n } ( x _ { n } ) ) = O ( \\hbar ^ { n - 1 } ) \\quad \\quad o n \\quad D ( R ^ { 4 n } ) . \\end{equation*}", "\\begin{align*} T ( A _ { 1 } ( x _ { 1 } ) . . . A _ { n } ( x _ { n } ) ) = T ( I ) \\times _ { \\hbar } T ( I ^ { c } ) = \\sum _ { r = 1 } ^ { \\vert I \\vert } \\sum _ { s = 1 } ^ { \\vert I ^ { c } \\vert } \\sum _ { I _ { 1 } \\sqcup . . . \\sqcup I _ { r } = I } \\sum _ { J _ { 1 } \\sqcup . . . \\sqcup J _ { s } = I ^ { c } } \\\\ \\sum _ { k \\geq 0 } \\hbar ^ { k } M _ { k } ( T ^ { c } ( I _ { 1 } ) \\cdot . . . \\cdot T ^ { c } ( I _ { r } ) , T ^ { c } ( J _ { 1 } ) \\cdot . . . \\cdot T ^ { c } ( J _ { s } ) ) , \\end{align*}" ], "latex_expand": [ "$ \\{ \\mitj _ { 1 } , . . . , \\mitj _ { \\vert \\mitJ \\vert } \\} = \\mitJ $", "$ \\mitj _ { 1 } < . . . < \\mitj _ { \\vert \\mitJ \\vert } $", "$ \\mitP $", "$ \\{ 1 , . . . , \\mitn \\} $", "$ \\prod $", "$ \\mitT _ { \\mitn } ^ { \\mitc } $", "$ \\bar { \\mitT } _ { \\mitn } ^ { \\mitc } \\equiv ( \\bar { \\mitT } _ { \\mitn } ) ^ { \\mitc } $", "$ \\mita _ { 1 } , . . . , \\mita _ { \\mitn } $", "$ \\mitO ( \\hslash ^ { 0 } ) $", "$ \\mita _ { \\miti } $", "$ \\mita _ { 1 } \\times _ { \\hslash } . . . \\times _ { \\hslash } \\mita _ { \\mitn } $", "$ \\mupDelta _ { + } $", "$ \\hslash $", "$ \\sim \\hslash ^ { 0 } $", "$ \\mita _ { 1 } , . . . , \\mita _ { \\mitn } $", "$ \\mitn $", "$ 1 $", "$ 0 $", "$ ( \\mitn - 1 ) $", "$ \\mitO ( \\hslash ^ { \\mitn - 1 } ) $", "$ \\quad \\square $", "$ \\mitB \\ni \\mitA _ { 1 } , . . . , \\mitA _ { \\mitn } = \\mitO ( \\hslash ^ { 0 } ) $", "$ \\mitx _ { \\miti } \\ne \\mitx _ { \\mitj } , \\> \\forall 1 \\leq \\miti < \\mitj \\leq \\mitn $", "$ \\mitpi \\in \\mitS _ { \\mitn } $", "$ \\mitn $", "$ \\mitT ^ { \\mitc } $", "$ \\mitn $", "$ \\mupDelta _ { \\mitn } $", "$ \\mitT ( \\mitJ ) : = \\mitT ( \\prod _ { \\mitj \\in \\mitJ } \\mitA _ { \\mitj } ( \\mitx _ { \\mitj } ) ) , \\> \\mitJ \\subset \\{ 1 , . . . , \\mitn \\} $", "$ \\mitI \\subset \\{ 1 , . . . , \\mitn \\} , \\> \\mitI \\ne \\varnothing , \\> \\mitI ^ { \\mitc } \\ne \\varnothing $", "$ \\sqcup $", "$ \\mitk = 0 $", "$ ( \\mitr + \\mits ) $", "$ \\mitk \\geq ( \\mitr + \\mits - 1 ) $", "$ \\mitT ^ { \\mitc } ( \\mitI _ { \\mitl } ) $", "$ \\mitT ^ { \\mitc } ( \\mitJ _ { \\mitm } ) $", "$ \\sum _ { \\mitl = 1 } ^ { \\mitr } ( \\vert \\mitI _ { \\mitl } \\vert - 1 ) + \\sum _ { \\mitm = 1 } ^ { \\mitr } ( \\vert \\mitJ _ { \\mitm } \\vert - 1 ) + ( \\mitr + \\mits - 1 ) = \\mitn - 1 $", "$ \\hslash $", "$ \\hslash $", "$ \\mitD ( \\BbbR ^ { 4 \\mitn } \\setminus \\mupDelta _ { \\mitn } ) $", "$ ( \\mitT _ { \\mitn } - \\mitT _ { \\mitn } ^ { \\mitc } ) $", "$ < \\mitn $", "$ \\mupDelta _ { \\mitn } $", "$ \\mitT _ { \\mitn } $", "$ \\mupDelta _ { \\mitn } $", "\\begin{equation*} \\mitT _ { \\mitn } ^ { \\mitc } ( \\mitf _ { 1 } \\otimes . . . \\otimes \\mitf _ { \\mitn } ) \\, \\overset { \\mathrm { d e f } } { = } \\, \\mitT _ { \\mitn } ( \\mitf _ { 1 } \\otimes . . . \\otimes \\mitf _ { \\mitn } ) - \\sum _ { \\vert \\mitP \\vert \\geq 2 } \\prod _ { \\mitp \\in \\mitP } \\mitT _ { \\vert \\mitp \\vert } ^ { \\mitc } ( \\otimes _ { \\mitj \\in \\mitp } \\mitf _ { \\mitj } ) , \\end{equation*}", "\\begin{equation*} ( \\mita _ { 1 } \\times _ { \\hslash } . . . \\times _ { \\hslash } \\mita _ { \\mitn } ) ^ { \\mitc } = \\mitO ( \\hslash ^ { \\mitn - 1 } ) . \\end{equation*}", "\\begin{equation*} \\mitT ^ { \\mitc } \\big ( \\mitA _ { 1 } ( \\mitx _ { 1 } ) . . . \\mitA _ { \\mitn } ( \\mitx _ { \\mitn } ) \\big ) = ( \\mitA _ { \\mitpi 1 } ( \\mitx _ { \\mitpi 1 } ) \\times _ { \\hslash } . . . \\times _ { \\hslash } \\mitA _ { \\mitpi \\mitn } ( \\mitx _ { \\mitpi \\mitn } ) ) ^ { \\mitc } = \\mitO ( \\hslash ^ { \\mitn - 1 } ) . \\end{equation*}", "\\begin{equation*} \\mitT ^ { \\mitc } \\big ( \\mitA _ { 1 } ( \\mitx _ { 1 } ) . . . \\mitA _ { \\mitn } ( \\mitx _ { \\mitn } ) \\big ) = \\mitO ( \\hslash ^ { \\mitn - 1 } ) \\quad \\quad \\mathrm { o n } \\quad \\mitD ( \\BbbR ^ { 4 \\mitn } ) . \\end{equation*}", "\\begin{align*} \\mitT \\big ( \\mitA _ { 1 } ( \\mitx _ { 1 } ) . . . \\mitA _ { \\mitn } ( \\mitx _ { \\mitn } ) \\big ) = \\mitT ( \\mitI ) \\times _ { \\hslash } \\mitT ( \\mitI ^ { \\mitc } ) = \\sum _ { \\mitr = 1 } ^ { \\vert \\mitI \\vert } \\sum _ { \\mits = 1 } ^ { \\vert \\mitI ^ { \\mitc } \\vert } \\sum _ { \\mitI _ { 1 } \\sqcup . . . \\sqcup \\mitI _ { \\mitr } = \\mitI } \\sum _ { \\mitJ _ { 1 } \\sqcup . . . \\sqcup \\mitJ _ { \\mits } = \\mitI ^ { \\mitc } } \\\\ \\sum _ { \\mitk \\geq 0 } \\hslash ^ { \\mitk } \\mitM _ { \\mitk } \\Big ( \\mitT ^ { \\mitc } ( \\mitI _ { 1 } ) \\cdot . . . \\cdot \\mitT ^ { \\mitc } ( \\mitI _ { \\mitr } ) , \\mitT ^ { \\mitc } ( \\mitJ _ { 1 } ) \\cdot . . . \\cdot \\mitT ^ { \\mitc } ( \\mitJ _ { \\mits } ) \\Big ) , \\end{align*}" ], "x_min": [ 0.25920000672340393, 0.39250001311302185, 0.7540000081062317, 0.2093999981880188, 0.48100000619888306, 0.7512000203132629, 0.7027999758720398, 0.7243000268936157, 0.29510000348091125, 0.6399000287055969, 0.3359000086784363, 0.7366999983787537, 0.39809998869895935, 0.5217999815940857, 0.2093999981880188, 0.2093999981880188, 0.5529000163078308, 0.5860000252723694, 0.3765999972820282, 0.25360000133514404, 0.3425000011920929, 0.2646999955177307, 0.47200000286102295, 0.31929999589920044, 0.2093999981880188, 0.48100000619888306, 0.6834999918937683, 0.5853000283241272, 0.49559998512268066, 0.4415999948978424, 0.25920000672340393, 0.2827000021934509, 0.4505999982357025, 0.5598000288009644, 0.5182999968528748, 0.6039999723434448, 0.26190000772476196, 0.27160000801086426, 0.5169000029563904, 0.2093999981880188, 0.3248000144958496, 0.25920000672340393, 0.4934000074863434, 0.72079998254776, 0.7642999887466431, 0.274399995803833, 0.3912000060081482, 0.23770000040531158, 0.3165000081062317, 0.22869999706745148 ], "y_min": [ 0.15330000221729279, 0.1543000042438507, 0.1543000042438507, 0.16750000417232513, 0.16750000417232513, 0.16850000619888306, 0.2485000044107437, 0.2671000063419342, 0.2768999934196472, 0.3310999870300293, 0.34380000829696655, 0.3422999978065491, 0.3564000129699707, 0.35499998927116394, 0.3734999895095825, 0.3882000148296356, 0.38530001044273376, 0.38530001044273376, 0.3984000086784363, 0.4115999937057495, 0.41350001096725464, 0.42579999566078186, 0.42719998955726624, 0.44190001487731934, 0.586899995803833, 0.5839999914169312, 0.586899995803833, 0.5981000065803528, 0.611299991607666, 0.6252999901771545, 0.7378000020980835, 0.7505000233650208, 0.75, 0.76419997215271, 0.7782999873161316, 0.7782999873161316, 0.7919999957084656, 0.8070999979972839, 0.8070999979972839, 0.8202999830245972, 0.8349999785423279, 0.8515999913215637, 0.8500999808311462, 0.8500999808311462, 0.8500999808311462, 0.20170000195503235, 0.29789999127388, 0.46140000224113464, 0.510699987411499, 0.6455000042915344 ], "x_max": [ 0.3808000087738037, 0.498199999332428, 0.7670999765396118, 0.274399995803833, 0.4968999922275543, 0.7706000208854675, 0.7829999923706055, 0.7878999710083008, 0.3393000066280365, 0.6550999879837036, 0.4472000002861023, 0.7623000144958496, 0.40779998898506165, 0.5583999752998352, 0.27300000190734863, 0.21979999542236328, 0.5619000196456909, 0.5950000286102295, 0.42980000376701355, 0.3158000111579895, 0.35499998927116394, 0.4339999854564667, 0.6474999785423279, 0.36970001459121704, 0.21979999542236328, 0.5004000067710876, 0.694599986076355, 0.6087999939918518, 0.7829999923706055, 0.652999997138977, 0.27090001106262207, 0.32280001044273376, 0.4968999922275543, 0.669700026512146, 0.5631999969482422, 0.6578999757766724, 0.6682999730110168, 0.28130000829696655, 0.5266000032424927, 0.3034000098705292, 0.3959999978542328, 0.2874999940395355, 0.5169000029563904, 0.7401999831199646, 0.7878000140190125, 0.7228999733924866, 0.6089000105857849, 0.7318000197410583, 0.6827999949455261, 0.7353000044822693 ], "y_max": [ 0.16699999570846558, 0.16699999570846558, 0.163100004196167, 0.18019999563694, 0.18019999563694, 0.18019999563694, 0.26170000433921814, 0.2754000127315521, 0.29010000824928284, 0.33889999985694885, 0.3531000018119812, 0.3540000021457672, 0.365200012922287, 0.3652999997138977, 0.38179999589920044, 0.3935999870300293, 0.3935999870300293, 0.3935999870300293, 0.4106000065803528, 0.42480000853538513, 0.4228000044822693, 0.4390000104904175, 0.43939998745918274, 0.4521999955177307, 0.5928000211715698, 0.5928000211715698, 0.5928000211715698, 0.6087999939918518, 0.6251999735832214, 0.6381999850273132, 0.7451000213623047, 0.7592999935150146, 0.7621999979019165, 0.7764000296592712, 0.7904999852180481, 0.7904999852180481, 0.8057000041007996, 0.8159000277519226, 0.8159000277519226, 0.8335000276565552, 0.8471999764442444, 0.8593999743461609, 0.8604000210762024, 0.8604000210762024, 0.8604000210762024, 0.23729999363422394, 0.3149999976158142, 0.4794999957084656, 0.5292999744415283, 0.7245000004768372 ], "expr_type": [ "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "isolated", "isolated", "isolated", "isolated", "isolated" ] }
0001129_page14
{ "latex": [ "$T_n^c$", "$T_n^c$", "$\\bar T_n^c$", "$T_n$", "$\\bar T_n$", "$T_n^c$", "$\\bar T_n^c$", "$<\\Omega ,T^c(A_1...A_n)\\Omega >$", "$A_j$", "$\\Omega $", "$T_n$", "$\\bar T_n^c$", "${\\cal D}(\\RR ^4,{\\cal V})\\ni f_j,g_k= {\\cal O}(\\hbar ^0)$", "$R_{n,m}(f_1\\otimes ...\\otimes f_n; g_1\\otimes ...\\otimes g_m)$", "$f_j$", "$g_k$", "$R_{n,m}(f_1\\otimes ...\\otimes f_n;g_1\\otimes ...\\otimes g_m) ={\\cal O}(\\hbar ^n)$", "$R_{n,m}(Y;X),\\>Y\\equiv \\{y_1,...,y_n\\},\\>X\\equiv \\{x_1,...,x_m\\}$", "$R_{n,m}(Y;X),\\>Y\\equiv \\{y_1,...,y_n\\},\\>X\\equiv \\{x_1,...,x_m\\}$", "$J\\subset Y$", "$(Y\\setminus J)\\cup X$", "$R_{n,m}(Y;X)$", "$\\sum _{P\\subset J}(-1)^{|P|} \\bar T(P) \\times _\\hbar T(J\\setminus P)=0$", "$S^{-1}S={\\bf 1}$", "$J$", "$R$", "$T$", "$\\bar T$", "$\\prod $", "$\\sqcup $", "$\\hbar $", "$m=1$", "$n\\geq |P|+|Q|-1$", "$m\\geq 1$", "$\\hbar $", "$m$", "$g_j$", "$m=1$", "$n\\geq |P|+|Q|-m$", "$(|I|-|P|)+(|I^c|+m-|Q|)+(|P|+|Q|-m)=n$", "$\\quad \\w $", "\\begin {equation} \\sum _{I\\subset Y}(-1)^{|I|}\\Bigl (\\bar T(I\\cap J^c)\\bar T(I\\cap J)\\Bigr ) \\times _\\hbar \\Bigl (T(I^c\\cap J)T(I^c\\cap J^c,X)\\Bigr ). \\end {equation}", "\\begin {eqnarray} R_{n,m}(f_1\\otimes ...\\otimes f_n;g_1\\otimes ...\\otimes g_m)= \\sum _{I\\subset \\{1,...,n\\}}(-1)^{|I|}\\sum _{P\\in {\\rm Part}(I)} \\sum _{Q\\in {\\rm Part}(I^c\\sqcup \\{1,...,m\\})}\\\\ \\Bigl (\\prod _{p\\in P}\\bar T_{|p|}^c(\\otimes _{i\\in p}f_i)\\Bigr )\\times _\\hbar \\Bigl (\\prod _{q\\in Q}T_{|q|}^c(\\otimes _{i\\in q}f_i\\otimes \\otimes _{j\\in q}g_j)\\Bigr ) \\end {eqnarray}", "\\begin {equation} \\prod _{p\\in P}\\bar T_{|p|}^c(\\otimes _{i\\in p}f_i)={\\cal O}(\\hbar ^{|I|-|P|}), \\quad \\prod _{q\\in Q}T_{|q|}^c(\\otimes _{i\\in q}f_i\\otimes \\otimes _{j\\in q}g_j)={\\cal O}(\\hbar ^{|I^c|+m-|Q|}).\\label {prod:hbar} \\end {equation}", "\\begin {equation} \\Bigl (\\prod _{p\\in P}\\bar T_{|p|}^c(...)\\Bigr )\\times _\\hbar \\Bigl (\\prod _{q\\in Q}T_{|q|}^c(...)\\Bigr )=\\sum _{n\\geq 0}\\hbar ^n M_n\\Bigl (\\prod _{p\\in P}\\bar T_{|p|}^c(...),\\prod _{q\\in Q}T_{|q|}^c(...)\\Bigr ) \\end {equation}" ], "latex_norm": [ "$ T _ { n } ^ { c } $", "$ T _ { n } ^ { c } $", "$ \\bar { T } _ { n } ^ { c } $", "$ T _ { n } $", "$ \\bar { T } _ { n } $", "$ T _ { n } ^ { c } $", "$ \\bar { T } _ { n } ^ { c } $", "$ < \\Omega , T ^ { c } ( A _ { 1 } . . . A _ { n } ) \\Omega > $", "$ A _ { j } $", "$ \\Omega $", "$ T _ { n } $", "$ \\bar { T } _ { n } ^ { c } $", "$ D ( R ^ { 4 } , V ) \\ni f _ { j } , g _ { k } = O ( \\hbar ^ { 0 } ) $", "$ R _ { n , m } ( f _ { 1 } \\otimes . . . \\otimes f _ { n } ; g _ { 1 } \\otimes . . . \\otimes g _ { m } ) $", "$ f _ { j } $", "$ g _ { k } $", "$ R _ { n , m } ( f _ { 1 } \\otimes . . . \\otimes f _ { n } ; g _ { 1 } \\otimes . . . \\otimes g _ { m } ) = O ( \\hbar ^ { n } ) $", "$ R _ { n , m } ( Y ; X ) , \\> Y \\equiv \\{ y _ { 1 } , . . . , y _ { n } \\} , \\> X \\equiv \\{ x _ { 1 } , . . . , x _ { m } \\} $", "$ R _ { n , m } ( Y ; X ) , \\> Y \\equiv \\{ y _ { 1 } , . . . , y _ { n } \\} , \\> X \\equiv \\{ x _ { 1 } , . . . , x _ { m } \\} $", "$ J \\subset Y $", "$ ( Y \\setminus J ) \\cup X $", "$ R _ { n , m } ( Y ; X ) $", "$ \\sum _ { P \\subset J } ( - 1 ) ^ { \\vert P \\vert } \\bar { T } ( P ) \\times _ { \\hbar } T ( J \\setminus P ) = 0 $", "$ S ^ { - 1 } S = 1 $", "$ J $", "$ R $", "$ T $", "$ \\bar { T } $", "$ \\prod $", "$ \\sqcup $", "$ \\hbar $", "$ m = 1 $", "$ n \\geq \\vert P \\vert + \\vert Q \\vert - 1 $", "$ m \\geq 1 $", "$ \\hbar $", "$ m $", "$ g _ { j } $", "$ m = 1 $", "$ n \\geq \\vert P \\vert + \\vert Q \\vert - m $", "$ ( \\vert I \\vert - \\vert P \\vert ) + ( \\vert I ^ { c } \\vert + m - \\vert Q \\vert ) + ( \\vert P \\vert + \\vert Q \\vert - m ) = n $", "$ \\quad \\square $", "\\begin{equation*} \\sum _ { I \\subset Y } ( - 1 ) ^ { \\vert I \\vert } ( \\bar { T } ( I \\cap J ^ { c } ) \\bar { T } ( I \\cap J ) ) \\times _ { \\hbar } ( T ( I ^ { c } \\cap J ) T ( I ^ { c } \\cap J ^ { c } , X ) ) . \\end{equation*}", "\\begin{align*} R _ { n , m } ( f _ { 1 } \\otimes . . . \\otimes f _ { n } ; g _ { 1 } \\otimes . . . \\otimes g _ { m } ) = \\sum _ { I \\subset \\{ 1 , . . . , n \\} } ( - 1 ) ^ { \\vert I \\vert } \\sum _ { P \\in P a r t ( I ) } \\sum _ { Q \\in P a r t ( I ^ { c } \\sqcup \\{ 1 , . . . , m \\} ) } \\\\ ( \\prod _ { p \\in P } \\bar { T } _ { \\vert p \\vert } ^ { c } ( \\otimes _ { i \\in p } f _ { i } ) ) \\times _ { \\hbar } ( \\prod _ { q \\in Q } T _ { \\vert q \\vert } ^ { c } ( \\otimes _ { i \\in q } f _ { i } \\otimes \\otimes _ { j \\in q } g _ { j } ) ) \\end{align*}", "\\begin{equation*} \\prod _ { p \\in P } \\bar { T } _ { \\vert p \\vert } ^ { c } ( \\otimes _ { i \\in p } f _ { i } ) = O ( \\hbar ^ { \\vert I \\vert - \\vert P \\vert } ) , \\quad \\prod _ { q \\in Q } T _ { \\vert q \\vert } ^ { c } ( \\otimes _ { i \\in q } f _ { i } \\otimes \\otimes _ { j \\in q } g _ { j } ) = O ( \\hbar ^ { \\vert I ^ { c } \\vert + m - \\vert Q \\vert } ) . \\end{equation*}", "\\begin{equation*} ( \\prod _ { p \\in P } \\bar { T } _ { \\vert p \\vert } ^ { c } ( . . . ) ) \\times _ { \\hbar } ( \\prod _ { q \\in Q } T _ { \\vert q \\vert } ^ { c } ( . . . ) ) = \\sum _ { n \\geq 0 } \\hbar ^ { n } M _ { n } ( \\prod _ { p \\in P } \\bar { T } _ { \\vert p \\vert } ^ { c } ( . . . ) , \\prod _ { q \\in Q } T _ { \\vert q \\vert } ^ { c } ( . . . ) ) \\end{equation*}" ], "latex_expand": [ "$ \\mitT _ { \\mitn } ^ { \\mitc } $", "$ \\mitT _ { \\mitn } ^ { \\mitc } $", "$ \\bar { \\mitT } _ { \\mitn } ^ { \\mitc } $", "$ \\mitT _ { \\mitn } $", "$ \\bar { \\mitT } _ { \\mitn } $", "$ \\mitT _ { \\mitn } ^ { \\mitc } $", "$ \\bar { \\mitT } _ { \\mitn } ^ { \\mitc } $", "$ < \\mupOmega , \\mitT ^ { \\mitc } ( \\mitA _ { 1 } . . . \\mitA _ { \\mitn } ) \\mupOmega > $", "$ \\mitA _ { \\mitj } $", "$ \\mupOmega $", "$ \\mitT _ { \\mitn } $", "$ \\bar { \\mitT } _ { \\mitn } ^ { \\mitc } $", "$ \\mitD ( \\BbbR ^ { 4 } , \\mitV ) \\ni \\mitf _ { \\mitj } , \\mitg _ { \\mitk } = \\mitO ( \\hslash ^ { 0 } ) $", "$ \\mitR _ { \\mitn , \\mitm } ( \\mitf _ { 1 } \\otimes . . . \\otimes \\mitf _ { \\mitn } ; \\mitg _ { 1 } \\otimes . . . \\otimes \\mitg _ { \\mitm } ) $", "$ \\mitf _ { \\mitj } $", "$ \\mitg _ { \\mitk } $", "$ \\mitR _ { \\mitn , \\mitm } ( \\mitf _ { 1 } \\otimes . . . \\otimes \\mitf _ { \\mitn } ; \\mitg _ { 1 } \\otimes . . . \\otimes \\mitg _ { \\mitm } ) = \\mitO ( \\hslash ^ { \\mitn } ) $", "$ \\mitR _ { \\mitn , \\mitm } ( \\mitY ; \\mitX ) , \\> \\mitY \\equiv \\{ \\mity _ { 1 } , . . . , \\mity _ { \\mitn } \\} , \\> \\mitX \\equiv \\{ \\mitx _ { 1 } , . . . , \\mitx _ { \\mitm } \\} $", "$ \\mitR _ { \\mitn , \\mitm } ( \\mitY ; \\mitX ) , \\> \\mitY \\equiv \\{ \\mity _ { 1 } , . . . , \\mity _ { \\mitn } \\} , \\> \\mitX \\equiv \\{ \\mitx _ { 1 } , . . . , \\mitx _ { \\mitm } \\} $", "$ \\mitJ \\subset \\mitY $", "$ ( \\mitY \\setminus \\mitJ ) \\cup \\mitX $", "$ \\mitR _ { \\mitn , \\mitm } ( \\mitY ; \\mitX ) $", "$ \\sum _ { \\mitP \\subset \\mitJ } ( - 1 ) ^ { \\vert \\mitP \\vert } \\bar { \\mitT } ( \\mitP ) \\times _ { \\hslash } \\mitT ( \\mitJ \\setminus \\mitP ) = 0 $", "$ \\mitS ^ { - 1 } \\mitS = 1 $", "$ \\mitJ $", "$ \\mitR $", "$ \\mitT $", "$ \\bar { \\mitT } $", "$ \\prod $", "$ \\sqcup $", "$ \\hslash $", "$ \\mitm = 1 $", "$ \\mitn \\geq \\vert \\mitP \\vert + \\vert \\mitQ \\vert - 1 $", "$ \\mitm \\geq 1 $", "$ \\hslash $", "$ \\mitm $", "$ \\mitg _ { \\mitj } $", "$ \\mitm = 1 $", "$ \\mitn \\geq \\vert \\mitP \\vert + \\vert \\mitQ \\vert - \\mitm $", "$ ( \\vert \\mitI \\vert - \\vert \\mitP \\vert ) + ( \\vert \\mitI ^ { \\mitc } \\vert + \\mitm - \\vert \\mitQ \\vert ) + ( \\vert \\mitP \\vert + \\vert \\mitQ \\vert - \\mitm ) = \\mitn $", "$ \\quad \\square $", "\\begin{equation*} \\sum _ { \\mitI \\subset \\mitY } ( - 1 ) ^ { \\vert \\mitI \\vert } \\Big ( \\bar { \\mitT } ( \\mitI \\cap \\mitJ ^ { \\mitc } ) \\bar { \\mitT } ( \\mitI \\cap \\mitJ ) \\Big ) \\times _ { \\hslash } \\Big ( \\mitT ( \\mitI ^ { \\mitc } \\cap \\mitJ ) \\mitT ( \\mitI ^ { \\mitc } \\cap \\mitJ ^ { \\mitc } , \\mitX ) \\Big ) . \\end{equation*}", "\\begin{align*} \\mitR _ { \\mitn , \\mitm } ( \\mitf _ { 1 } \\otimes . . . \\otimes \\mitf _ { \\mitn } ; \\mitg _ { 1 } \\otimes . . . \\otimes \\mitg _ { \\mitm } ) = \\sum _ { \\mitI \\subset \\{ 1 , . . . , \\mitn \\} } ( - 1 ) ^ { \\vert \\mitI \\vert } \\sum _ { \\mitP \\in \\mathrm { P a r t } ( \\mitI ) } \\sum _ { \\mitQ \\in \\mathrm { P a r t } ( \\mitI ^ { \\mitc } \\sqcup \\{ 1 , . . . , \\mitm \\} ) } \\\\ \\Big ( \\prod _ { \\mitp \\in \\mitP } \\bar { \\mitT } _ { \\vert \\mitp \\vert } ^ { \\mitc } ( \\otimes _ { \\miti \\in \\mitp } \\mitf _ { \\miti } ) \\Big ) \\times _ { \\hslash } \\Big ( \\prod _ { \\mitq \\in \\mitQ } \\mitT _ { \\vert \\mitq \\vert } ^ { \\mitc } ( \\otimes _ { \\miti \\in \\mitq } \\mitf _ { \\miti } \\otimes \\otimes _ { \\mitj \\in \\mitq } \\mitg _ { \\mitj } ) \\Big ) \\end{align*}", "\\begin{equation*} \\prod _ { \\mitp \\in \\mitP } \\bar { \\mitT } _ { \\vert \\mitp \\vert } ^ { \\mitc } ( \\otimes _ { \\miti \\in \\mitp } \\mitf _ { \\miti } ) = \\mitO ( \\hslash ^ { \\vert \\mitI \\vert - \\vert \\mitP \\vert } ) , \\quad \\prod _ { \\mitq \\in \\mitQ } \\mitT _ { \\vert \\mitq \\vert } ^ { \\mitc } ( \\otimes _ { \\miti \\in \\mitq } \\mitf _ { \\miti } \\otimes \\otimes _ { \\mitj \\in \\mitq } \\mitg _ { \\mitj } ) = \\mitO ( \\hslash ^ { \\vert \\mitI ^ { \\mitc } \\vert + \\mitm - \\vert \\mitQ \\vert } ) . \\end{equation*}", "\\begin{equation*} \\Big ( \\prod _ { \\mitp \\in \\mitP } \\bar { \\mitT } _ { \\vert \\mitp \\vert } ^ { \\mitc } ( . . . ) \\Big ) \\times _ { \\hslash } \\Big ( \\prod _ { \\mitq \\in \\mitQ } \\mitT _ { \\vert \\mitq \\vert } ^ { \\mitc } ( . . . ) \\Big ) = \\sum _ { \\mitn \\geq 0 } \\hslash ^ { \\mitn } \\mitM _ { \\mitn } \\Big ( \\prod _ { \\mitp \\in \\mitP } \\bar { \\mitT } _ { \\vert \\mitp \\vert } ^ { \\mitc } ( . . . ) , \\prod _ { \\mitq \\in \\mitQ } \\mitT _ { \\vert \\mitq \\vert } ^ { \\mitc } ( . . . ) \\Big ) \\end{equation*}" ], "x_min": [ 0.32199999690055847, 0.3580000102519989, 0.41530001163482666, 0.47620001435279846, 0.5335000157356262, 0.7353000044822693, 0.2093999981880188, 0.6288999915122986, 0.2833000123500824, 0.5569999814033508, 0.6496000289916992, 0.47620001435279846, 0.39320001006126404, 0.5085999965667725, 0.3808000087738037, 0.6758999824523926, 0.26260000467300415, 0.5266000032424927, 0.2093999981880188, 0.6883000135421753, 0.5224999785423279, 0.3255000114440918, 0.5030999779701233, 0.7031000256538391, 0.46299999952316284, 0.3779999911785126, 0.6503000259399414, 0.7056000232696533, 0.3068000078201294, 0.6164000034332275, 0.6578999757766724, 0.6917999982833862, 0.6025999784469604, 0.5149000287055969, 0.23149999976158142, 0.4519999921321869, 0.446399986743927, 0.5812000036239624, 0.38769999146461487, 0.3151000142097473, 0.7214999794960022, 0.2694999873638153, 0.2093999981880188, 0.2142000049352646, 0.22599999606609344 ], "y_min": [ 0.1543000042438507, 0.16850000619888306, 0.16699999570846558, 0.16850000619888306, 0.16699999570846558, 0.16850000619888306, 0.18119999766349792, 0.18160000443458557, 0.19679999351501465, 0.19679999351501465, 0.23929999768733978, 0.2660999894142151, 0.29490000009536743, 0.3237000107765198, 0.3384000062942505, 0.3418000042438507, 0.3521000146865845, 0.3666999936103821, 0.38089999556541443, 0.3813000023365021, 0.39500001072883606, 0.42329999804496765, 0.47749999165534973, 0.4925000071525574, 0.5102999806404114, 0.524399995803833, 0.524399995803833, 0.5228999853134155, 0.6157000064849854, 0.6182000041007996, 0.6942999958992004, 0.7509999871253967, 0.76419997215271, 0.7797999978065491, 0.7935000061988831, 0.8105000257492065, 0.8246999979019165, 0.8223000168800354, 0.8349999785423279, 0.8490999937057495, 0.8514999747276306, 0.43950000405311584, 0.5400000214576721, 0.6455000042915344, 0.7095000147819519 ], "x_max": [ 0.34139999747276306, 0.3774000108242035, 0.43470001220703125, 0.49559998512268066, 0.5529000163078308, 0.7547000050544739, 0.2287999987602234, 0.7878000140190125, 0.30329999327659607, 0.5694000124931335, 0.6682999730110168, 0.49559998512268066, 0.588100016117096, 0.7483999729156494, 0.396699994802475, 0.6924999952316284, 0.5673999786376953, 0.7878000140190125, 0.29510000348091125, 0.7386999726295471, 0.6165000200271606, 0.41260001063346863, 0.7577999830245972, 0.7817999720573425, 0.474700003862381, 0.3910999894142151, 0.6626999974250793, 0.7186999917030334, 0.32269999384880066, 0.6280999779701233, 0.6668999791145325, 0.7373999953269958, 0.7200999855995178, 0.5612000226974487, 0.24120000004768372, 0.46720001101493835, 0.46160000562667847, 0.631600022315979, 0.5224999785423279, 0.6916999816894531, 0.7283999919891357, 0.7269999980926514, 0.7864999771118164, 0.7822999954223633, 0.7443000078201294 ], "y_max": [ 0.1655000001192093, 0.18019999563694, 0.18019999563694, 0.17880000174045563, 0.17870000004768372, 0.18019999563694, 0.19439999759197235, 0.19429999589920044, 0.20900000631809235, 0.20559999346733093, 0.25, 0.2793000042438507, 0.30809998512268066, 0.336899995803833, 0.35109999775886536, 0.3495999872684479, 0.3652999997138977, 0.37940001487731934, 0.3935999870300293, 0.3905999958515167, 0.40720000863075256, 0.4359999895095825, 0.492900013923645, 0.5078999996185303, 0.51910001039505, 0.5332000255584717, 0.5332000255584717, 0.5332000255584717, 0.6279000043869019, 0.625, 0.7031000256538391, 0.7592999935150146, 0.7764000296592712, 0.7896000146865845, 0.801800012588501, 0.8159000277519226, 0.8335000276565552, 0.8306000232696533, 0.8471999764442444, 0.8618000149726868, 0.8579000234603882, 0.4731999933719635, 0.6107000112533569, 0.6786999702453613, 0.7437000274658203 ], "expr_type": [ "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "isolated", "isolated", "isolated", "isolated" ] }
0001129_page15
{ "latex": [ "${\\cal L}$", "$\\theta {\\cal L}$", "$\\theta \\in {\\cal D}(\\RR ^4)$", "${\\cal O}$", "${\\cal O}$", "$\\theta ,\\theta '\\in \\Theta ({\\cal O})$", "$v$", "$v(\\varphi _{\\theta \\cal L}(x))= \\varphi _{\\theta '\\cal L}(x) $", "$x\\in {\\cal O}$", "$\\varphi _{\\cal L}$", "$\\times _{\\hbar }$", "$k\\geq 2$", "$S$", "\\begin {equation} (\\w +m^2)\\varphi _{\\cal L}(x) =-\\Bigl (\\frac {\\d {\\cal L}}{\\d \\varphi }\\Bigr )_{\\cal L}(x), \\label {E:field equation} \\end {equation}", "\\begin {equation} \\begin {split} \\{\\varphi _{\\cal L}(0,{\\bf x}),\\varphi _{\\cal L}(0,{\\bf y})\\}=&0= \\{\\dot {\\varphi }_{\\cal L}(0,{\\bf x}),\\dot {\\varphi }_{\\cal L} (0,{\\bf y})\\}\\\\ \\{\\varphi _{\\cal L}(0,{\\bf x}),\\dot {\\varphi }_{\\cal L}(0,{\\bf y})\\}&= \\delta ({\\bf x}-{\\bf y})\\ . \\end {split} \\label {E:canonical Poisson brackets} \\end {equation}", "\\begin {eqnarray} \\varphi _{\\theta {\\cal L}}(x)=\\sum _{n=0}^{\\infty } \\int _{y_1^0\\leq y_2^0 \\leq ...y_n^0\\leq x^0}dy_1dy_2...dy_n\\,\\theta (y_1)...\\theta (y_n)\\\\ \\{{\\cal L}(y_1),\\{{\\cal L}(y_2),... \\{{\\cal L}(y_n),\\varphi (x)\\}...\\}\\}\\end {eqnarray}", "\\begin {equation} \\{\\cdot ,\\cdot \\}\\to \\frac {1}{i\\hbar }[\\cdot ,\\cdot ]_{\\hbar }\\label {coPb} \\end {equation}", "\\begin {eqnarray} \\frac {1}{i\\hbar }[:\\varphi ^n(x):&,&:\\varphi ^m(y):]_{\\hbar }=\\sum _{k=1}^{{}{\\rm min} \\>\\{n,m\\}} (i\\hbar )^{k-1}\\frac {n!m!}{(n-k)!(m-k)!}\\\\ &&\\Bigl (\\Delta _+(x-y)^k-\\Delta _+(y-x)^k\\Bigr ) :\\varphi ^{(n-k)}(x)\\varphi ^{(m-k)}(y): \\end {eqnarray}" ], "latex_norm": [ "$ L $", "$ \\theta L $", "$ \\theta \\in D ( R ^ { 4 } ) $", "$ O $", "$ O $", "$ \\theta , \\theta ^ { \\prime } \\in \\Theta ( O ) $", "$ v $", "$ v ( \\varphi _ { \\theta L } ( x ) ) = \\varphi _ { \\theta ^ { \\prime } L } ( x ) $", "$ x \\in O $", "$ \\varphi _ { L } $", "$ \\times _ { \\hbar } $", "$ k \\geq 2 $", "$ S $", "\\begin{equation*} ( \\square + m ^ { 2 } ) \\varphi _ { L } ( x ) = - ( \\frac { \\partial L } { \\partial \\varphi } ) _ { L } ( x ) , \\end{equation*}", "\\begin{align*} \\begin{array}{rl} \\{ \\varphi _ { L } ( 0 , x ) , \\varphi _ { L } ( 0 , y ) \\} = & 0 = \\{ \\dot { \\varphi } _ { L } ( 0 , x ) , \\dot { \\varphi } _ { L } ( 0 , y ) \\} \\\\ \\{ \\varphi _ { L } ( 0 , x ) , \\dot { \\varphi } _ { L } ( 0 , y ) \\} & = \\delta ( x - y ) ~ . \\end{array} \\end{align*}", "\\begin{align*} \\varphi _ { \\theta L } ( x ) = \\sum _ { n = 0 } ^ { \\infty } \\int _ { y _ { 1 } ^ { 0 } \\leq y _ { 2 } ^ { 0 } \\leq . . . y _ { n } ^ { 0 } \\leq x ^ { 0 } } d y _ { 1 } d y _ { 2 } . . . d y _ { n } \\, \\theta ( y _ { 1 } ) . . . \\theta ( y _ { n } ) \\\\ \\{ L ( y _ { 1 } ) , \\{ L ( y _ { 2 } ) , . . . \\{ L ( y _ { n } ) , \\varphi ( x ) \\} . . . \\} \\} \\end{align*}", "\\begin{equation*} \\{ \\cdot , \\cdot \\} \\rightarrow \\frac { 1 } { i \\hbar } [ \\cdot , \\cdot ] _ { \\hbar } \\end{equation*}", "\\begin{align*} \\frac { 1 } { i \\hbar } [ : \\varphi ^ { n } ( x ) : & , & : \\varphi ^ { m } ( y ) : ] _ { \\hbar } = \\sum _ { k = 1 } ^ { m i n \\> \\{ n , m \\} } ( i \\hbar ) ^ { k - 1 } \\frac { n ! m ! } { ( n - k ) ! ( m - k ) ! } \\\\ & & ( \\Delta _ { + } ( x - y ) ^ { k } - \\Delta _ { + } ( y - x ) ^ { k } ) : \\varphi ^ { ( n - k ) } ( x ) \\varphi ^ { ( m - k ) } ( y ) : \\end{align*}" ], "latex_expand": [ "$ \\mitL $", "$ \\mittheta \\mitL $", "$ \\mittheta \\in \\mitD ( \\BbbR ^ { 4 } ) $", "$ \\mitO $", "$ \\mitO $", "$ \\mittheta , \\mittheta ^ { \\prime } \\in \\mupTheta ( \\mitO ) $", "$ \\mitv $", "$ \\mitv ( \\mitvarphi _ { \\mittheta \\mitL } ( \\mitx ) ) = \\mitvarphi _ { \\mittheta ^ { \\prime } \\mitL } ( \\mitx ) $", "$ \\mitx \\in \\mitO $", "$ \\mitvarphi _ { \\mitL } $", "$ \\times _ { \\hslash } $", "$ \\mitk \\geq 2 $", "$ \\mitS $", "\\begin{equation*} ( \\square + \\mitm ^ { 2 } ) \\mitvarphi _ { \\mitL } ( \\mitx ) = - \\Big ( \\frac { \\mitpartial \\mitL } { \\mitpartial \\mitvarphi } \\Big ) _ { \\mitL } ( \\mitx ) , \\end{equation*}", "\\begin{align*} \\begin{array}{rl} \\{ \\mitvarphi _ { \\mitL } ( 0 , \\mitx ) , \\mitvarphi _ { \\mitL } ( 0 , \\mity ) \\} = & 0 = \\{ \\dot { \\mitvarphi } _ { \\mitL } ( 0 , \\mitx ) , \\dot { \\mitvarphi } _ { \\mitL } ( 0 , \\mity ) \\} \\\\ \\{ \\mitvarphi _ { \\mitL } ( 0 , \\mitx ) , \\dot { \\mitvarphi } _ { \\mitL } ( 0 , \\mity ) \\} & = \\mitdelta ( \\mitx - \\mity ) ~ . \\end{array} \\end{align*}", "\\begin{align*} \\mitvarphi _ { \\mittheta \\mitL } ( \\mitx ) = \\sum _ { \\mitn = 0 } ^ { \\infty } \\int _ { \\mity _ { 1 } ^ { 0 } \\leq \\mity _ { 2 } ^ { 0 } \\leq . . . \\mity _ { \\mitn } ^ { 0 } \\leq \\mitx ^ { 0 } } \\mitd \\mity _ { 1 } \\mitd \\mity _ { 2 } . . . \\mitd \\mity _ { \\mitn } \\, \\mittheta ( \\mity _ { 1 } ) . . . \\mittheta ( \\mity _ { \\mitn } ) \\\\ \\{ \\mitL ( \\mity _ { 1 } ) , \\{ \\mitL ( \\mity _ { 2 } ) , . . . \\{ \\mitL ( \\mity _ { \\mitn } ) , \\mitvarphi ( \\mitx ) \\} . . . \\} \\} \\end{align*}", "\\begin{equation*} \\{ \\cdot , \\cdot \\} \\rightarrow \\frac { 1 } { \\miti \\hslash } [ \\cdot , \\cdot ] _ { \\hslash } \\end{equation*}", "\\begin{align*} \\frac { 1 } { \\miti \\hslash } [ : \\mitvarphi ^ { \\mitn } ( \\mitx ) : & , & : \\mitvarphi ^ { \\mitm } ( \\mity ) : ] _ { \\hslash } = \\sum _ { \\mitk = 1 } ^ { \\mathrm { m i n } \\> \\{ \\mitn , \\mitm \\} } ( \\miti \\hslash ) ^ { \\mitk - 1 } \\frac { \\mitn ! \\mitm ! } { ( \\mitn - \\mitk ) ! ( \\mitm - \\mitk ) ! } \\\\ & & \\Big ( \\mupDelta _ { + } ( \\mitx - \\mity ) ^ { \\mitk } - \\mupDelta _ { + } ( \\mity - \\mitx ) ^ { \\mitk } \\Big ) : \\mitvarphi ^ { ( \\mitn - \\mitk ) } ( \\mitx ) \\mitvarphi ^ { ( \\mitm - \\mitk ) } ( \\mity ) : \\end{align*}" ], "x_min": [ 0.23980000615119934, 0.7304999828338623, 0.2093999981880188, 0.4553999900817871, 0.460999995470047, 0.6075000166893005, 0.32409998774528503, 0.3765999972820282, 0.5812000036239624, 0.2093999981880188, 0.6082000136375427, 0.6448000073432922, 0.5770999789237976, 0.3828999996185303, 0.3296000063419342, 0.2840000092983246, 0.4422999918460846, 0.24529999494552612 ], "y_min": [ 0.19040000438690186, 0.3544999957084656, 0.36719998717308044, 0.4966000020503998, 0.5112000107765198, 0.5102999806404114, 0.5282999873161316, 0.524399995803833, 0.5253999829292297, 0.5425000190734863, 0.6689000129699707, 0.6815999746322632, 0.8359000086784363, 0.23680000007152557, 0.2953999936580658, 0.41359999775886536, 0.6294000148773193, 0.6958000063896179 ], "x_max": [ 0.2515000104904175, 0.7505000233650208, 0.2888999879360199, 0.4699000120162964, 0.4747999906539917, 0.699400007724762, 0.33309999108314514, 0.5266000032424927, 0.6261000037193298, 0.23080000281333923, 0.630299985408783, 0.6848999857902527, 0.5888000130653381, 0.6144000291824341, 0.6675000190734863, 0.6793000102043152, 0.557699978351593, 0.7519000172615051 ], "y_max": [ 0.19869999587535858, 0.36329999566078186, 0.38040000200271606, 0.5054000020027161, 0.5199999809265137, 0.5224999785423279, 0.5342000126838684, 0.5371000170707703, 0.5346999764442444, 0.5503000020980835, 0.6782000064849854, 0.6919000148773193, 0.8446999788284302, 0.26759999990463257, 0.33149999380111694, 0.47369998693466187, 0.6567000150680542, 0.7689999938011169 ], "expr_type": [ "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "isolated", "isolated", "isolated", "isolated", "isolated" ] }
0001129_page16
{ "latex": [ "$\\supp g$", "$\\supp f, \\supp h$", "$\\bar {T}_{1}=T_{1}$", "$m=1$", "$y_i\\not = y_j\\>\\forall i\\not = j$", "$R_{n,1}(y_1,...,y_n;x)$", "${\\cal L}$", "$y_i$", "$\\hbar \\rightarrow 0$", "$R\\bigl (\\hbar ^{-1}{\\cal L}(y_1)...\\hbar ^{-1}{\\cal L} (y_n);\\varphi (x)\\bigr )$", "$\\hbar $", "$\\hbar ^{-1}$", "${\\cal L}$", "$R_{n,1}((\\theta {\\cal L})^{\\otimes n};f\\varphi )$", "$R_{n,1}$", "$\\varphi _{\\cal L}$", "$\\Bigl ( \\frac {\\d {\\cal L}}{\\d \\varphi } \\Bigr )_{\\cal L}$", "$\\varphi _{\\cal L}$", "$S$", "$S_{\\hbar ^{-1}\\theta {\\cal L}}(f)\\>(f\\in {\\cal D} (\\RR ^4,{\\cal V}))$", "${\\cal A}_{\\hbar ^{-1}\\theta \\cal L}$", "$\\hbar $", "$V\\in {\\cal U}(\\theta ,\\theta ^\\prime )$", "$S$", "$\\theta _-\\in {\\cal D}(\\RR ^4)$", "$(\\theta -\\theta ^\\prime )$", "$\\theta -\\theta ^\\prime =\\theta _+ +\\theta _-$", "$\\theta -\\theta ^\\prime =\\theta _+ +\\theta _-$", "${\\rm supp}\\>\\theta _+ \\cap (C({\\cal O}) +\\bar V_-)=\\emptyset $", "${\\rm supp}\\>\\theta _- \\cap (C({\\cal O}) +\\bar V_+)=\\emptyset $", "\\begin {equation} R_{n+1,m}(g\\otimes h^{\\otimes n};f^{\\otimes m}) = -[T_{1}(g),R_{n,m}(h^{\\otimes n};f^{\\otimes m})]_\\hbar \\label {recursionR} \\end {equation}", "\\begin {eqnarray} R\\bigl ({\\cal L}(y_1)...{\\cal L}(y_n);\\varphi (x)\\bigr )=(-1)^n \\sum _{\\pi \\in {\\cal S}_n}\\Theta (x^0-y_{\\pi n}^0)\\Theta (y_{\\pi n}^0- y_{\\pi (n-1)}^0)...\\\\ \\Theta (y_{\\pi 2}^0-y_{\\pi 1}^0) [{\\cal L}(y_{\\pi 1}),[{\\cal L}(y_{\\pi 2})... [{\\cal L}(y_{\\pi n}),\\varphi (x)]_\\hbar ...]_\\hbar ]_\\hbar .\\end {eqnarray}", "\\begin {equation} \\varphi _{\\theta {\\cal L}}(h)=\\sum _{n=0}^\\infty \\frac {i^n}{n!\\hbar ^n} R_{n,1}((\\theta {\\cal L})^{\\otimes n};h\\varphi ),\\quad \\quad h\\in {\\cal D}(\\RR ^4),\\label {intfield} \\end {equation}", "\\begin {equation} (\\w +m^2)\\varphi _{\\cal L}(x)=-\\Bigl ( \\frac {\\d {\\cal L}}{\\d \\varphi } \\Bigr )_{\\cal L}(x).\\label {4.4} \\end {equation}", "\\begin {equation} V=S_{\\hbar ^{-1}\\theta {\\cal L}}(\\hbar ^{-1}\\theta _-{\\cal L})^{-1} \\in {\\cal U}(\\theta ,\\theta ^\\prime )\\label {E:V=S} \\end {equation}" ], "latex_norm": [ "$ s u p p \\> g $", "$ s u p p \\> f , s u p p \\> h $", "$ \\bar { T } _ { 1 } = T _ { 1 } $", "$ m = 1 $", "$ y _ { i } \\ne y _ { j } \\> \\forall i \\ne j $", "$ R _ { n , 1 } ( y _ { 1 } , . . . , y _ { n } ; x ) $", "$ L $", "$ y _ { i } $", "$ \\hbar \\rightarrow 0 $", "$ R ( \\hbar ^ { - 1 } L ( y _ { 1 } ) . . . \\hbar ^ { - 1 } L ( y _ { n } ) ; \\varphi ( x ) ) $", "$ \\hbar $", "$ \\hbar ^ { - 1 } $", "$ L $", "$ R _ { n , 1 } ( ( \\theta L ) ^ { \\otimes n } ; f \\varphi ) $", "$ R _ { n , 1 } $", "$ \\varphi _ { L } $", "$ ( \\frac { \\partial L } { \\partial \\varphi } ) _ { L } $", "$ \\varphi _ { L } $", "$ S $", "$ S _ { \\hbar ^ { - 1 } \\theta L } ( f ) \\> ( f \\in D ( R ^ { 4 } , V ) ) $", "$ A _ { \\hbar ^ { - 1 } \\theta L } $", "$ \\hbar $", "$ V \\in U ( \\theta , \\theta ^ { \\prime } ) $", "$ S $", "$ \\theta _ { - } \\in D ( R ^ { 4 } ) $", "$ ( \\theta - \\theta ^ { \\prime } ) $", "$ \\theta - \\theta ^ { \\prime } = \\theta _ { + } + \\theta _ { - } $", "$ \\theta - \\theta ^ { \\prime } = \\theta _ { + } + \\theta _ { - } $", "$ s u p p \\> \\theta _ { + } \\cap ( C ( O ) + \\bar { V } _ { - } ) = \\emptyset $", "$ s u p p \\> \\theta _ { - } \\cap ( C ( O ) + \\bar { V } _ { + } ) = \\emptyset $", "\\begin{equation*} R _ { n + 1 , m } ( g \\otimes h ^ { \\otimes n } ; f ^ { \\otimes m } ) = - [ T _ { 1 } ( g ) , R _ { n , m } ( h ^ { \\otimes n } ; f ^ { \\otimes m } ) ] _ { \\hbar } \\end{equation*}", "\\begin{align*} R ( L ( y _ { 1 } ) . . . L ( y _ { n } ) ; \\varphi ( x ) ) = ( - 1 ) ^ { n } \\sum _ { \\pi \\in S _ { n } } \\Theta ( x ^ { 0 } - y _ { \\pi n } ^ { 0 } ) \\Theta ( y _ { \\pi n } ^ { 0 } - y _ { \\pi ( n - 1 ) } ^ { 0 } ) . . . \\\\ \\Theta ( y _ { \\pi 2 } ^ { 0 } - y _ { \\pi 1 } ^ { 0 } ) [ L ( y _ { \\pi 1 } ) , [ L ( y _ { \\pi 2 } ) . . . [ L ( y _ { \\pi n } ) , \\varphi ( x ) ] _ { \\hbar } . . . ] _ { \\hbar } ] _ { \\hbar } . \\end{align*}", "\\begin{equation*} \\varphi _ { \\theta L } ( h ) = \\sum _ { n = 0 } ^ { \\infty } \\frac { i ^ { n } } { n ! \\hbar ^ { n } } R _ { n , 1 } ( ( \\theta L ) ^ { \\otimes n } ; h \\varphi ) , \\quad \\quad h \\in D ( R ^ { 4 } ) , \\end{equation*}", "\\begin{equation*} ( \\square + m ^ { 2 } ) \\varphi _ { L } ( x ) = - ( \\frac { \\partial L } { \\partial \\varphi } ) _ { L } ( x ) . \\end{equation*}", "\\begin{equation*} V = S _ { \\hbar ^ { - 1 } \\theta L } ( \\hbar ^ { - 1 } \\theta _ { - } L ) ^ { - 1 } \\in U ( \\theta , \\theta ^ { \\prime } ) \\end{equation*}" ], "latex_expand": [ "$ \\mathrm { s u p p } \\> \\mitg $", "$ \\mathrm { s u p p } \\> \\mitf , \\mathrm { s u p p } \\> \\Planckconst $", "$ \\bar { \\mitT } _ { 1 } = \\mitT _ { 1 } $", "$ \\mitm = 1 $", "$ \\mity _ { \\miti } \\ne \\mity _ { \\mitj } \\> \\forall \\miti \\ne \\mitj $", "$ \\mitR _ { \\mitn , 1 } ( \\mity _ { 1 } , . . . , \\mity _ { \\mitn } ; \\mitx ) $", "$ \\mitL $", "$ \\mity _ { \\miti } $", "$ \\hslash \\rightarrow 0 $", "$ \\mitR \\big ( \\hslash ^ { - 1 } \\mitL ( \\mity _ { 1 } ) . . . \\hslash ^ { - 1 } \\mitL ( \\mity _ { \\mitn } ) ; \\mitvarphi ( \\mitx ) \\big ) $", "$ \\hslash $", "$ \\hslash ^ { - 1 } $", "$ \\mitL $", "$ \\mitR _ { \\mitn , 1 } ( ( \\mittheta \\mitL ) ^ { \\otimes \\mitn } ; \\mitf \\mitvarphi ) $", "$ \\mitR _ { \\mitn , 1 } $", "$ \\mitvarphi _ { \\mitL } $", "$ \\Big ( \\frac { \\mitpartial \\mitL } { \\mitpartial \\mitvarphi } \\Big ) _ { \\mitL } $", "$ \\mitvarphi _ { \\mitL } $", "$ \\mitS $", "$ \\mitS _ { \\hslash ^ { - 1 } \\mittheta \\mitL } ( \\mitf ) \\> ( \\mitf \\in \\mitD ( \\BbbR ^ { 4 } , \\mitV ) ) $", "$ \\mitA _ { \\hslash ^ { - 1 } \\mittheta \\mitL } $", "$ \\hslash $", "$ \\mitV \\in \\mitU ( \\mittheta , \\mittheta ^ { \\prime } ) $", "$ \\mitS $", "$ \\mittheta _ { - } \\in \\mitD ( \\BbbR ^ { 4 } ) $", "$ ( \\mittheta - \\mittheta ^ { \\prime } ) $", "$ \\mittheta - \\mittheta ^ { \\prime } = \\mittheta _ { + } + \\mittheta _ { - } $", "$ \\mittheta - \\mittheta ^ { \\prime } = \\mittheta _ { + } + \\mittheta _ { - } $", "$ \\mathrm { s u p p } \\> \\mittheta _ { + } \\cap ( \\mitC ( \\mitO ) + \\bar { \\mitV } _ { - } ) = \\varnothing $", "$ \\mathrm { s u p p } \\> \\mittheta _ { - } \\cap ( \\mitC ( \\mitO ) + \\bar { \\mitV } _ { + } ) = \\varnothing $", "\\begin{equation*} \\mitR _ { \\mitn + 1 , \\mitm } ( \\mitg \\otimes \\Planckconst ^ { \\otimes \\mitn } ; \\mitf ^ { \\otimes \\mitm } ) = - [ \\mitT _ { 1 } ( \\mitg ) , \\mitR _ { \\mitn , \\mitm } ( \\Planckconst ^ { \\otimes \\mitn } ; \\mitf ^ { \\otimes \\mitm } ) ] _ { \\hslash } \\end{equation*}", "\\begin{align*} \\mitR \\big ( \\mitL ( \\mity _ { 1 } ) . . . \\mitL ( \\mity _ { \\mitn } ) ; \\mitvarphi ( \\mitx ) \\big ) = ( - 1 ) ^ { \\mitn } \\sum _ { \\mitpi \\in \\mitS _ { \\mitn } } \\mupTheta ( \\mitx ^ { 0 } - \\mity _ { \\mitpi \\mitn } ^ { 0 } ) \\mupTheta ( \\mity _ { \\mitpi \\mitn } ^ { 0 } - \\mity _ { \\mitpi ( \\mitn - 1 ) } ^ { 0 } ) . . . \\\\ \\mupTheta ( \\mity _ { \\mitpi 2 } ^ { 0 } - \\mity _ { \\mitpi 1 } ^ { 0 } ) [ \\mitL ( \\mity _ { \\mitpi 1 } ) , [ \\mitL ( \\mity _ { \\mitpi 2 } ) . . . [ \\mitL ( \\mity _ { \\mitpi \\mitn } ) , \\mitvarphi ( \\mitx ) ] _ { \\hslash } . . . ] _ { \\hslash } ] _ { \\hslash } . \\end{align*}", "\\begin{equation*} \\mitvarphi _ { \\mittheta \\mitL } ( \\Planckconst ) = \\sum _ { \\mitn = 0 } ^ { \\infty } \\frac { \\miti ^ { \\mitn } } { \\mitn ! \\hslash ^ { \\mitn } } \\mitR _ { \\mitn , 1 } ( ( \\mittheta \\mitL ) ^ { \\otimes \\mitn } ; \\Planckconst \\mitvarphi ) , \\quad \\quad \\Planckconst \\in \\mitD ( \\BbbR ^ { 4 } ) , \\end{equation*}", "\\begin{equation*} ( \\square + \\mitm ^ { 2 } ) \\mitvarphi _ { \\mitL } ( \\mitx ) = - \\Big ( \\frac { \\mitpartial \\mitL } { \\mitpartial \\mitvarphi } \\Big ) _ { \\mitL } ( \\mitx ) . \\end{equation*}", "\\begin{equation*} \\mitV = \\mitS _ { \\hslash ^ { - 1 } \\mittheta \\mitL } ( \\hslash ^ { - 1 } \\mittheta _ { - } \\mitL ) ^ { - 1 } \\in \\mitU ( \\mittheta , \\mittheta ^ { \\prime } ) \\end{equation*}" ], "x_min": [ 0.3248000144958496, 0.5867000222206116, 0.420199990272522, 0.5715000033378601, 0.6557999849319458, 0.3393000066280365, 0.48510000109672546, 0.6917999982833862, 0.5805000066757202, 0.5680999755859375, 0.5162000060081482, 0.2093999981880188, 0.5396999716758728, 0.2093999981880188, 0.3255000114440918, 0.5985000133514404, 0.250900000333786, 0.5687999725341797, 0.43470001220703125, 0.5182999968528748, 0.4043000042438507, 0.600600004196167, 0.699400007724762, 0.396699994802475, 0.25850000977516174, 0.5950000286102295, 0.7263000011444092, 0.2093999981880188, 0.3075000047683716, 0.5389999747276306, 0.30550000071525574, 0.2321999967098236, 0.30410000681877136, 0.38420000672340393, 0.37389999628067017 ], "y_min": [ 0.18410000205039978, 0.18119999766349792, 0.24609999358654022, 0.24799999594688416, 0.2476000040769577, 0.260699987411499, 0.3481000065803528, 0.365200012922287, 0.3765000104904175, 0.388700008392334, 0.4047999978065491, 0.5038999915122986, 0.5195000171661377, 0.5327000021934509, 0.5907999873161316, 0.5938000082969666, 0.6689000129699707, 0.6772000193595886, 0.7064999938011169, 0.7050999999046326, 0.7211999893188477, 0.7207000255584717, 0.7343999743461609, 0.7494999766349792, 0.7997999787330627, 0.8008000254631042, 0.8008000254631042, 0.8148999810218811, 0.8140000104904175, 0.8140000104904175, 0.21780000627040863, 0.2847000062465668, 0.4413999915122986, 0.6269999742507935, 0.7714999914169312 ], "x_max": [ 0.3718000054359436, 0.6897000074386597, 0.478300005197525, 0.6177999973297119, 0.7588000297546387, 0.4643999934196472, 0.4975000023841858, 0.7063000202178955, 0.6240000128746033, 0.7878999710083008, 0.5252000093460083, 0.2370000034570694, 0.5514000058174133, 0.33660000562667847, 0.3587000072002411, 0.6198999881744385, 0.302700012922287, 0.5902000069618225, 0.446399986743927, 0.704200029373169, 0.45820000767707825, 0.6103000044822693, 0.7878999710083008, 0.4083999991416931, 0.3456000089645386, 0.6510000228881836, 0.7940000295639038, 0.2660999894142151, 0.5023999810218811, 0.7332000136375427, 0.694599986076355, 0.7311999797821045, 0.6931999921798706, 0.6157000064849854, 0.6261000037193298 ], "y_max": [ 0.19290000200271606, 0.19290000200271606, 0.2583000063896179, 0.25679999589920044, 0.26030001044273376, 0.27390000224113464, 0.35690000653266907, 0.3734999895095825, 0.38580000400543213, 0.40380001068115234, 0.4140999913215637, 0.5145999789237976, 0.5288000106811523, 0.5464000105857849, 0.6029999852180481, 0.6021000146865845, 0.6917999982833862, 0.6855000257492065, 0.7157999873161316, 0.7188000082969666, 0.7324000000953674, 0.7300000190734863, 0.7470999956130981, 0.7583000063896179, 0.8134999871253967, 0.8134999871253967, 0.8134999871253967, 0.8276000022888184, 0.8277000188827515, 0.8277000188827515, 0.23489999771118164, 0.3409000039100647, 0.4794999957084656, 0.657800018787384, 0.7886000275611877 ], "expr_type": [ "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "isolated", "isolated", "isolated", "isolated", "isolated" ] }
0001129_page17
{ "latex": [ "$C({\\cal O})$", "${\\cal O}$", "$\\theta $", "$\\theta ^\\prime $", "$V$", "$\\hbar $", "${\\cal A}$", "${\\cal A} ({\\cal O})$", "$\\bigvee _{n\\in \\NN _0}\\hbar ^n {\\cal A}$", "$\\bigvee _{n\\in \\NN _0}\\hbar ^n {\\cal A}({\\cal O})$", "${\\cal A}$", "$\\hbar $", "$R_{n,m}(...;...)=\\sum _{a=1}^m R_{n,m}^{(a)} (...;...)$", "$R_{n,m}^{(a)}(...;...)$", "$a$", "$a$", "$\\times _\\hbar $", "${\\cal O}(\\hbar ^{-1})$", "$A\\in {\\cal A}({\\cal O})$", "$V\\times _\\hbar A\\times _\\hbar V^{-1}$", "$V$", "$V$", "$V^{-1}$", "$A$", "$V$", "$A$", "$V^{-1}$", "$A$", "$A$", "$n$", "$\\hbar $", "$V\\times _\\hbar A\\times _\\hbar V^{-1}$", "$\\hbar $", "$\\hbar ^{n-1}$", "$V\\times _\\hbar A\\times _\\hbar V^{-1}$", "$V$", "$V^{-1}$", "$r$", "$s$", "$(r+s)$", "$\\hbar ^{(r+s)}$", "$Y_1\\sqcup Y_2=Y$", "$X_1\\sqcup X_2=X$", "$R(Y,X)$", "$(Y_1,X_1)$", "$(Y_2,X_2)$", "${\\bf 1}=VV^{-1}=VV^*$", "\\begin {equation} R_{n,m}^{(a)}((\\hbar ^{-1}\\theta {\\cal L})^{\\otimes n}; (\\hbar ^{-1}\\theta _-{\\cal L})^{\\otimes m})={\\cal O}(\\hbar ^{-a}). \\label {R^a} \\end {equation}", "\\begin {equation} {\\cal A}({\\cal O})\\ni A={\\cal O}(\\hbar ^n)\\quad \\Longrightarrow \\quad V\\times _\\hbar A\\times _\\hbar V^{-1}={\\cal O}(\\hbar ^n)\\label {E:Ad(V)A} \\end {equation}", "\\begin {eqnarray} \\sum _{I\\subset Y}(-1)^{|I\\cap Y_1|}[\\bar T(I\\cap Y_1)\\times _\\hbar T(I^c\\cap Y_1,X_1)]\\cdot \\\\ (-1)^{|I\\cap Y_2|}[\\bar T(I\\cap Y_2)\\times _\\hbar T(I^c\\cap Y_2,X_2)]\\\\ =R(Y_1,X_1)\\cdot R(Y_2,X_2).\\end {eqnarray}", "\\begin {equation} \\sum _{Y_1\\sqcup Y_2=Y,\\>X_1\\sqcup X_2=X}(-1)^{(|Y_1|+|X_1|)} R^*(Y_1,X_1)\\times _\\hbar R(Y_2,X_2)=0\\label {V^*V} \\end {equation}" ], "latex_norm": [ "$ C ( O ) $", "$ O $", "$ \\theta $", "$ \\theta ^ { \\prime } $", "$ V $", "$ \\hbar $", "$ A $", "$ A ( O ) $", "$ \\vee _ { n \\in N _ { 0 } } \\hbar ^ { n } A $", "$ \\vee _ { n \\in N _ { 0 } } \\hbar ^ { n } A ( O ) $", "$ A $", "$ \\hbar $", "$ R _ { n , m } ( . . . ; . . . ) = \\sum _ { a = 1 } ^ { m } R _ { n , m } ^ { ( a ) } ( . . . ; . . . ) $", "$ R _ { n , m } ^ { ( a ) } ( . . . ; . . . ) $", "$ a $", "$ a $", "$ \\times _ { \\hbar } $", "$ O ( \\hbar ^ { - 1 } ) $", "$ A \\in A ( O ) $", "$ V \\times _ { \\hbar } A \\times _ { \\hbar } V ^ { - 1 } $", "$ V $", "$ V $", "$ V ^ { - 1 } $", "$ A $", "$ V $", "$ A $", "$ V ^ { - 1 } $", "$ A $", "$ A $", "$ n $", "$ \\hbar $", "$ V \\times _ { \\hbar } A \\times _ { \\hbar } V ^ { - 1 } $", "$ \\hbar $", "$ \\hbar ^ { n - 1 } $", "$ V \\times _ { \\hbar } A \\times _ { \\hbar } V ^ { - 1 } $", "$ V $", "$ V ^ { - 1 } $", "$ r $", "$ s $", "$ ( r + s ) $", "$ \\hbar ^ { ( r + s ) } $", "$ Y _ { 1 } \\sqcup Y _ { 2 } = Y $", "$ X _ { 1 } \\sqcup X _ { 2 } = X $", "$ R ( Y , X ) $", "$ ( Y _ { 1 } , X _ { 1 } ) $", "$ ( Y _ { 2 } , X _ { 2 } ) $", "$ 1 = V V ^ { - 1 } = V V ^ { \\ast } $", "\\begin{equation*} R _ { n , m } ^ { ( a ) } ( ( \\hbar ^ { - 1 } \\theta L ) ^ { \\otimes n } ; ( \\hbar ^ { - 1 } \\theta _ { - } L ) ^ { \\otimes m } ) = O ( \\hbar ^ { - a } ) . \\end{equation*}", "\\begin{equation*} A ( O ) \\ni A = O ( \\hbar ^ { n } ) \\quad \\Longrightarrow \\quad V \\times _ { \\hbar } A \\times _ { \\hbar } V ^ { - 1 } = O ( \\hbar ^ { n } ) \\end{equation*}", "\\begin{align*} \\sum _ { I \\subset Y } ( - 1 ) ^ { \\vert I \\cap Y _ { 1 } \\vert } [ \\bar { T } ( I \\cap Y _ { 1 } ) \\times _ { \\hbar } T ( I ^ { c } \\cap Y _ { 1 } , X _ { 1 } ) ] \\cdot \\\\ ( - 1 ) ^ { \\vert I \\cap Y _ { 2 } \\vert } [ \\bar { T } ( I \\cap Y _ { 2 } ) \\times _ { \\hbar } T ( I ^ { c } \\cap Y _ { 2 } , X _ { 2 } ) ] \\\\ = R ( Y _ { 1 } , X _ { 1 } ) \\cdot R ( Y _ { 2 } , X _ { 2 } ) . \\end{align*}", "\\begin{equation*} \\sum _ { Y _ { 1 } \\sqcup Y _ { 2 } = Y , \\> X _ { 1 } \\sqcup X _ { 2 } = X } ( - 1 ) ^ { ( \\vert Y _ { 1 } \\vert + \\vert X _ { 1 } \\vert ) } R ^ { \\ast } ( Y _ { 1 } , X _ { 1 } ) \\times _ { \\hbar } R ( Y _ { 2 } , X _ { 2 } ) = 0 \\end{equation*}" ], "latex_expand": [ "$ \\mitC ( \\mitO ) $", "$ \\mitO $", "$ \\mittheta $", "$ \\mittheta ^ { \\prime } $", "$ \\mitV $", "$ \\hslash $", "$ \\mitA $", "$ \\mitA ( \\mitO ) $", "$ \\bigvee _ { \\mitn \\in \\BbbN _ { 0 } } \\hslash ^ { \\mitn } \\mitA $", "$ \\bigvee _ { \\mitn \\in \\BbbN _ { 0 } } \\hslash ^ { \\mitn } \\mitA ( \\mitO ) $", "$ \\mitA $", "$ \\hslash $", "$ \\mitR _ { \\mitn , \\mitm } ( . . . ; . . . ) = \\sum _ { \\mita = 1 } ^ { \\mitm } \\mitR _ { \\mitn , \\mitm } ^ { ( \\mita ) } ( . . . ; . . . ) $", "$ \\mitR _ { \\mitn , \\mitm } ^ { ( \\mita ) } ( . . . ; . . . ) $", "$ \\mita $", "$ \\mita $", "$ \\times _ { \\hslash } $", "$ \\mitO ( \\hslash ^ { - 1 } ) $", "$ \\mitA \\in \\mitA ( \\mitO ) $", "$ \\mitV \\times _ { \\hslash } \\mitA \\times _ { \\hslash } \\mitV ^ { - 1 } $", "$ \\mitV $", "$ \\mitV $", "$ \\mitV ^ { - 1 } $", "$ \\mitA $", "$ \\mitV $", "$ \\mitA $", "$ \\mitV ^ { - 1 } $", "$ \\mitA $", "$ \\mitA $", "$ \\mitn $", "$ \\hslash $", "$ \\mitV \\times _ { \\hslash } \\mitA \\times _ { \\hslash } \\mitV ^ { - 1 } $", "$ \\hslash $", "$ \\hslash ^ { \\mitn - 1 } $", "$ \\mitV \\times _ { \\hslash } \\mitA \\times _ { \\hslash } \\mitV ^ { - 1 } $", "$ \\mitV $", "$ \\mitV ^ { - 1 } $", "$ \\mitr $", "$ \\mits $", "$ ( \\mitr + \\mits ) $", "$ \\hslash ^ { ( \\mitr + \\mits ) } $", "$ \\mitY _ { 1 } \\sqcup \\mitY _ { 2 } = \\mitY $", "$ \\mitX _ { 1 } \\sqcup \\mitX _ { 2 } = \\mitX $", "$ \\mitR ( \\mitY , \\mitX ) $", "$ ( \\mitY _ { 1 } , \\mitX _ { 1 } ) $", "$ ( \\mitY _ { 2 } , \\mitX _ { 2 } ) $", "$ 1 = \\mitV \\mitV ^ { - 1 } = \\mitV \\mitV ^ { \\ast } $", "\\begin{equation*} \\mitR _ { \\mitn , \\mitm } ^ { ( \\mita ) } ( ( \\hslash ^ { - 1 } \\mittheta \\mitL ) ^ { \\otimes \\mitn } ; ( \\hslash ^ { - 1 } \\mittheta _ { - } \\mitL ) ^ { \\otimes \\mitm } ) = \\mitO ( \\hslash ^ { - \\mita } ) . \\end{equation*}", "\\begin{equation*} \\mitA ( \\mitO ) \\ni \\mitA = \\mitO ( \\hslash ^ { \\mitn } ) \\quad \\Longrightarrow \\quad \\mitV \\times _ { \\hslash } \\mitA \\times _ { \\hslash } \\mitV ^ { - 1 } = \\mitO ( \\hslash ^ { \\mitn } ) \\end{equation*}", "\\begin{align*} \\sum _ { \\mitI \\subset \\mitY } ( - 1 ) ^ { \\vert \\mitI \\cap \\mitY _ { 1 } \\vert } [ \\bar { \\mitT } ( \\mitI \\cap \\mitY _ { 1 } ) \\times _ { \\hslash } \\mitT ( \\mitI ^ { \\mitc } \\cap \\mitY _ { 1 } , \\mitX _ { 1 } ) ] \\cdot \\\\ ( - 1 ) ^ { \\vert \\mitI \\cap \\mitY _ { 2 } \\vert } [ \\bar { \\mitT } ( \\mitI \\cap \\mitY _ { 2 } ) \\times _ { \\hslash } \\mitT ( \\mitI ^ { \\mitc } \\cap \\mitY _ { 2 } , \\mitX _ { 2 } ) ] \\\\ = \\mitR ( \\mitY _ { 1 } , \\mitX _ { 1 } ) \\cdot \\mitR ( \\mitY _ { 2 } , \\mitX _ { 2 } ) . \\end{align*}", "\\begin{equation*} \\sum _ { \\mitY _ { 1 } \\sqcup \\mitY _ { 2 } = \\mitY , \\> \\mitX _ { 1 } \\sqcup \\mitX _ { 2 } = \\mitX } ( - 1 ) ^ { ( \\vert \\mitY _ { 1 } \\vert + \\vert \\mitX _ { 1 } \\vert ) } \\mitR ^ { \\ast } ( \\mitY _ { 1 } , \\mitX _ { 1 } ) \\times _ { \\hslash } \\mitR ( \\mitY _ { 2 } , \\mitX _ { 2 } ) = 0 \\end{equation*}" ], "x_min": [ 0.2093999981880188, 0.574999988079071, 0.6593000292778015, 0.704200029373169, 0.28200000524520874, 0.5127999782562256, 0.4429999887943268, 0.4927000105381012, 0.5605000257492065, 0.6793000102043152, 0.4927000105381012, 0.5099999904632568, 0.4097999930381775, 0.7014999985694885, 0.4429999887943268, 0.4000999927520752, 0.36629998683929443, 0.25360000133514404, 0.2937000095844269, 0.6710000038146973, 0.2639999985694885, 0.6855999827384949, 0.7559999823570251, 0.5113999843597412, 0.3124000132083893, 0.5508000254631042, 0.40639999508857727, 0.6834999918937683, 0.32829999923706055, 0.45890000462532043, 0.5638999938964844, 0.2093999981880188, 0.49070000648498535, 0.7519000172615051, 0.5687999725341797, 0.5245000123977661, 0.5770999789237976, 0.6538000106811523, 0.7008000016212463, 0.5860000252723694, 0.3124000132083893, 0.3587000072002411, 0.46860000491142273, 0.4429999887943268, 0.6690000295639038, 0.4133000075817108, 0.25360000133514404, 0.34209999442100525, 0.3019999861717224, 0.3172000050544739, 0.274399995803833 ], "y_min": [ 0.15189999341964722, 0.15279999375343323, 0.15230000019073486, 0.15189999341964722, 0.16699999570846558, 0.16699999570846558, 0.18119999766349792, 0.18070000410079956, 0.18070000410079956, 0.18019999563694, 0.19529999792575836, 0.2094999998807907, 0.24799999594688416, 0.24799999594688416, 0.2694999873638153, 0.3212999999523163, 0.3481000065803528, 0.3734999895095825, 0.388700008392334, 0.38769999146461487, 0.40380001068115234, 0.40380001068115234, 0.4018999934196472, 0.4180000126361847, 0.43209999799728394, 0.43209999799728394, 0.4447999894618988, 0.4462999999523163, 0.4961000084877014, 0.49900001287460327, 0.4961000084877014, 0.5088000297546387, 0.5102999806404114, 0.5088000297546387, 0.5654000043869019, 0.5810999870300293, 0.5795999765396118, 0.5839999914169312, 0.5839999914169312, 0.5946999788284302, 0.6068999767303467, 0.6377000212669373, 0.6377000212669373, 0.6514000296592712, 0.6514000296592712, 0.6654999852180481, 0.7964000105857849, 0.28760001063346863, 0.4706999957561493, 0.7167999744415283, 0.8202999830245972 ], "x_max": [ 0.2502000033855438, 0.5888000130653381, 0.6682999730110168, 0.7179999947547913, 0.29580000042915344, 0.5224999785423279, 0.45680001378059387, 0.5335000157356262, 0.6427000164985657, 0.7878000140190125, 0.5065000057220459, 0.5196999907493591, 0.6503000259399414, 0.7878999710083008, 0.4519999921321869, 0.4090999960899353, 0.38839998841285706, 0.3075000047683716, 0.3682999908924103, 0.7878000140190125, 0.2777999937534332, 0.699400007724762, 0.7878000140190125, 0.5245000123977661, 0.326200008392334, 0.5638999938964844, 0.4381999969482422, 0.6962000131607056, 0.3407000005245209, 0.4693000018596649, 0.5735999941825867, 0.3303000032901764, 0.5004000067710876, 0.7878000140190125, 0.6883999705314636, 0.5382999777793884, 0.6089000105857849, 0.6621000170707703, 0.7091000080108643, 0.6377999782562256, 0.35589998960494995, 0.4560999870300293, 0.5756999850273132, 0.5030999779701233, 0.7283999919891357, 0.47269999980926514, 0.38769999146461487, 0.6578999757766724, 0.6973000168800354, 0.6467999815940857, 0.7221999764442444 ], "y_max": [ 0.16459999978542328, 0.16210000216960907, 0.16210000216960907, 0.16220000386238098, 0.17630000412464142, 0.17630000412464142, 0.19050000607967377, 0.19339999556541443, 0.19529999792575836, 0.19529999792575836, 0.2046000063419342, 0.21879999339580536, 0.26510000228881836, 0.26409998536109924, 0.2754000127315521, 0.32760000228881836, 0.3578999936580658, 0.3871999979019165, 0.40139999985694885, 0.4004000127315521, 0.41260001063346863, 0.41260001063346863, 0.41260001063346863, 0.426800012588501, 0.4413999915122986, 0.4413999915122986, 0.4555000066757202, 0.45559999346733093, 0.5048999786376953, 0.5048999786376953, 0.5048999786376953, 0.5210000276565552, 0.519599974155426, 0.5195000171661377, 0.5781000256538391, 0.590399980545044, 0.5903000235557556, 0.5903000235557556, 0.5903000235557556, 0.6074000000953674, 0.6186000108718872, 0.6488999724388123, 0.6488999724388123, 0.6640999913215637, 0.6640999913215637, 0.6782000064849854, 0.8070999979972839, 0.30709999799728394, 0.4878000020980835, 0.7870000004768372, 0.8535000085830688 ], "expr_type": [ "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "isolated", "isolated", "isolated", "isolated" ] }
0001129_page18
{ "latex": [ "$(Y,X)$", "$Y\\cup X\\not =\\emptyset $", "$Y\\equiv \\{y_1,...y_n\\},\\> X\\equiv \\{x_1,...,x_n\\}$", "$Y$", "$X$", "$Y=Y_3\\sqcup Y_4$", "$X=X_3\\sqcup X_4$", "$Y_3\\cup X_3\\not =\\emptyset $", "$(Y_3,X_3)$", "$A$", "$(Y_4,X_4)$", "$A$", "$R^*$", "$R$", "$\\hbar $", "$I_{n}\\=d\\hbar ^{n} {\\cal A}_{\\cal L}$", "$I_{n}$", "${\\cal A}_{\\cal L}$", "${\\cal O} (\\hbar ^{n+1})$", "$i_{21}: {\\cal A}_{\\cal L}({\\cal O}_1)\\hookrightarrow {\\cal A}_ {\\cal L}({\\cal O}_2)$", "${\\cal O}_1\\subset {\\cal O}_2$", "${\\cal A}_{\\cal L}^{(n)}({\\cal O}_1)\\hookrightarrow {\\cal A}_{\\cal L}^{(n)}({\\cal O}_2)$", "${\\cal A}_{\\cal L}^{(n)}({\\cal O}_1)\\hookrightarrow {\\cal A}_{\\cal L}^{(n)}({\\cal O}_2)$", "$({\\cal A}_{\\cal L}^{(n)}({\\cal O}))$", "$\\hbar ^{n+1}$", "${\\cal A}_{\\cal L}^{(n)}$", "$\\frac {1}{i\\hbar }[\\cdot ,\\cdot ]_{\\hbar }$", "$I_{n}$", "${\\cal A}_{\\cal L}^{(0)}$", "$n\\ne 0$", "$\\hbar $", "$\\hbar $", "$R_{n,m}((\\hbar ^{-1}\\theta {\\cal L})^{\\otimes n}; f_1\\otimes ...\\otimes f_m), \\>{\\cal D}(\\RR ^4,{\\cal V})\\ni f_j={\\cal O}(\\hbar ^0)$", "$n$", "$=$", "$m$", "$m=1$", "$\\hbar $", "\\begin {eqnarray} V\\times _\\hbar A\\times _\\hbar V^{-1}=\\sum _{n,m}\\frac {1}{n!m!}\\int dy_1...dy_ndx_1...dx_m\\,\\theta (y_1)...\\theta (y_n)\\theta _-(x_1)... \\theta _-(x_m)\\\\ \\sum _{Y_1\\sqcup Y_2=Y,\\>X_1\\sqcup X_2=X} (-i)^{(|Y_1|+|X_1|)}i^{(|Y_2|+|X_2|)}R^*(Y_1,X_1)\\times _\\hbar A \\times _\\hbar R(Y_2,X_2),\\end {eqnarray}", "\\begin {eqnarray} \\sum _{Y_1\\sqcup Y_2=Y,\\>X_1\\sqcup X_2=X}(-1)^{(|Y_1\\cap Y_4|+|X_1\\cap X_4|)} [R^*(Y_1\\cap Y_4,X_1\\cap X_4) \\times _\\hbar \\\\ A\\times _\\hbar R(Y_2\\cap Y_4,X_2\\cap X_4)]\\cdot \\\\ (-1)^{(|Y_1\\cap Y_3|+|X_1\\cap X_3|)} [R^*(Y_1\\cap Y_3,X_1\\cap X_3) \\times _\\hbar R(Y_2\\cap Y_3,X_2\\cap X_3)]=0.\\quad \\w \\end {eqnarray}", "\\begin {equation} {\\cal A}_{\\cal L}^{(n)}\\=d\\frac {{\\cal A}_{\\cal L}}{I_{n+1}},\\quad \\quad {\\cal A}_{\\cal L}^{(n)}({\\cal O})\\=d\\frac {{\\cal A}_{\\cal L} ({\\cal O})}{I_{n+1}\\cap {\\cal A}_{\\cal L}({\\cal O})}.\\label {L16a} \\end {equation}" ], "latex_norm": [ "$ ( Y , X ) $", "$ Y \\cup X \\ne \\emptyset $", "$ Y \\equiv \\{ y _ { 1 } , . . . y _ { n } \\} , \\> X \\equiv \\{ x _ { 1 } , . . . , x _ { n } \\} $", "$ Y $", "$ X $", "$ Y = Y _ { 3 } \\sqcup Y _ { 4 } $", "$ X = X _ { 3 } \\sqcup X _ { 4 } $", "$ Y _ { 3 } \\cup X _ { 3 } \\ne \\emptyset $", "$ ( Y _ { 3 } , X _ { 3 } ) $", "$ A $", "$ ( Y _ { 4 } , X _ { 4 } ) $", "$ A $", "$ R ^ { \\ast } $", "$ R $", "$ \\hbar $", "$ I _ { n } \\, \\overset { d e f } { = } \\, \\hbar ^ { n } A _ { L } $", "$ I _ { n } $", "$ A _ { L } $", "$ O ( \\hbar ^ { n + 1 } ) $", "$ i _ { 2 1 } : A _ { L } ( O _ { 1 } ) \\hookrightarrow A _ { L } ( O _ { 2 } ) $", "$ O _ { 1 } \\subset O _ { 2 } $", "$ A _ { L } ^ { ( n ) } ( O _ { 1 } ) \\hookrightarrow A _ { L } ^ { ( n ) } ( O _ { 2 } ) $", "$ A _ { L } ^ { ( n ) } ( O _ { 1 } ) \\hookrightarrow A _ { L } ^ { ( n ) } ( O _ { 2 } ) $", "$ ( A _ { L } ^ { ( n ) } ( O ) ) $", "$ \\hbar ^ { n + 1 } $", "$ A _ { L } ^ { ( n ) } $", "$ \\frac { 1 } { i \\hbar } [ \\cdot , \\cdot ] _ { \\hbar } $", "$ I _ { n } $", "$ A _ { L } ^ { ( 0 ) } $", "$ n \\ne 0 $", "$ \\hbar $", "$ \\hbar $", "$ R _ { n , m } ( ( \\hbar ^ { - 1 } \\theta L ) ^ { \\otimes n } ; f _ { 1 } \\otimes . . . \\otimes f _ { m } ) , \\> D ( R ^ { 4 } , V ) \\ni f _ { j } = O ( \\hbar ^ { 0 } ) $", "$ n $", "$ = $", "$ m $", "$ m = 1 $", "$ \\hbar $", "\\begin{align*} V \\times _ { \\hbar } A \\times _ { \\hbar } V ^ { - 1 } = \\sum _ { n , m } \\frac { 1 } { n ! m ! } \\int d y _ { 1 } . . . d y _ { n } d x _ { 1 } . . . d x _ { m } \\, \\theta ( y _ { 1 } ) . . . \\theta ( y _ { n } ) \\theta _ { - } ( x _ { 1 } ) . . . \\theta _ { - } ( x _ { m } ) \\\\ \\sum _ { Y _ { 1 } \\sqcup Y _ { 2 } = Y , \\> X _ { 1 } \\sqcup X _ { 2 } = X } ( - i ) ^ { ( \\vert Y _ { 1 } \\vert + \\vert X _ { 1 } \\vert ) } i ^ { ( \\vert Y _ { 2 } \\vert + \\vert X _ { 2 } \\vert ) } R ^ { \\ast } ( Y _ { 1 } , X _ { 1 } ) \\times _ { \\hbar } A \\times _ { \\hbar } R ( Y _ { 2 } , X _ { 2 } ) , \\end{align*}", "\\begin{align*} \\sum _ { Y _ { 1 } \\sqcup Y _ { 2 } = Y , \\> X _ { 1 } \\sqcup X _ { 2 } = X } ( - 1 ) ^ { ( \\vert Y _ { 1 } \\cap Y _ { 4 } \\vert + \\vert X _ { 1 } \\cap X _ { 4 } \\vert ) } [ R ^ { \\ast } ( Y _ { 1 } \\cap Y _ { 4 } , X _ { 1 } \\cap X _ { 4 } ) \\times _ { \\hbar } \\\\ A \\times _ { \\hbar } R ( Y _ { 2 } \\cap Y _ { 4 } , X _ { 2 } \\cap X _ { 4 } ) ] \\cdot \\\\ ( - 1 ) ^ { ( \\vert Y _ { 1 } \\cap Y _ { 3 } \\vert + \\vert X _ { 1 } \\cap X _ { 3 } \\vert ) } [ R ^ { \\ast } ( Y _ { 1 } \\cap Y _ { 3 } , X _ { 1 } \\cap X _ { 3 } ) \\times _ { \\hbar } R ( Y _ { 2 } \\cap Y _ { 3 } , X _ { 2 } \\cap X _ { 3 } ) ] = 0 . \\quad \\square \\end{align*}", "\\begin{equation*} A _ { L } ^ { ( n ) } \\, \\overset { d e f } { = } \\, \\frac { A _ { L } } { I _ { n + 1 } } , \\quad \\quad A _ { L } ^ { ( n ) } ( O ) \\, \\overset { d e f } { = } \\, \\frac { A _ { L } ( O ) } { I _ { n + 1 } \\cap A _ { L } ( O ) } . \\end{equation*}" ], "latex_expand": [ "$ ( \\mitY , \\mitX ) $", "$ \\mitY \\cup \\mitX \\ne \\varnothing $", "$ \\mitY \\equiv \\{ \\mity _ { 1 } , . . . \\mity _ { \\mitn } \\} , \\> \\mitX \\equiv \\{ \\mitx _ { 1 } , . . . , \\mitx _ { \\mitn } \\} $", "$ \\mitY $", "$ \\mitX $", "$ \\mitY = \\mitY _ { 3 } \\sqcup \\mitY _ { 4 } $", "$ \\mitX = \\mitX _ { 3 } \\sqcup \\mitX _ { 4 } $", "$ \\mitY _ { 3 } \\cup \\mitX _ { 3 } \\ne \\varnothing $", "$ ( \\mitY _ { 3 } , \\mitX _ { 3 } ) $", "$ \\mitA $", "$ ( \\mitY _ { 4 } , \\mitX _ { 4 } ) $", "$ \\mitA $", "$ \\mitR ^ { \\ast } $", "$ \\mitR $", "$ \\hslash $", "$ \\mitI _ { \\mitn } \\, \\overset { \\mathrm { d e f } } { = } \\, \\hslash ^ { \\mitn } \\mitA _ { \\mitL } $", "$ \\mitI _ { \\mitn } $", "$ \\mitA _ { \\mitL } $", "$ \\mitO ( \\hslash ^ { \\mitn + 1 } ) $", "$ \\miti _ { 2 1 } : \\mitA _ { \\mitL } ( \\mitO _ { 1 } ) \\hookrightarrow \\mitA _ { \\mitL } ( \\mitO _ { 2 } ) $", "$ \\mitO _ { 1 } \\subset \\mitO _ { 2 } $", "$ \\mitA _ { \\mitL } ^ { ( \\mitn ) } ( \\mitO _ { 1 } ) \\hookrightarrow \\mitA _ { \\mitL } ^ { ( \\mitn ) } ( \\mitO _ { 2 } ) $", "$ \\mitA _ { \\mitL } ^ { ( \\mitn ) } ( \\mitO _ { 1 } ) \\hookrightarrow \\mitA _ { \\mitL } ^ { ( \\mitn ) } ( \\mitO _ { 2 } ) $", "$ ( \\mitA _ { \\mitL } ^ { ( \\mitn ) } ( \\mitO ) ) $", "$ \\hslash ^ { \\mitn + 1 } $", "$ \\mitA _ { \\mitL } ^ { ( \\mitn ) } $", "$ \\frac { 1 } { \\miti \\hslash } [ \\cdot , \\cdot ] _ { \\hslash } $", "$ \\mitI _ { \\mitn } $", "$ \\mitA _ { \\mitL } ^ { ( 0 ) } $", "$ \\mitn \\ne 0 $", "$ \\hslash $", "$ \\hslash $", "$ \\mitR _ { \\mitn , \\mitm } ( ( \\hslash ^ { - 1 } \\mittheta \\mitL ) ^ { \\otimes \\mitn } ; \\mitf _ { 1 } \\otimes . . . \\otimes \\mitf _ { \\mitm } ) , \\> \\mitD ( \\BbbR ^ { 4 } , \\mitV ) \\ni \\mitf _ { \\mitj } = \\mitO ( \\hslash ^ { 0 } ) $", "$ \\mitn $", "$ = $", "$ \\mitm $", "$ \\mitm = 1 $", "$ \\hslash $", "\\begin{align*} \\mitV \\times _ { \\hslash } \\mitA \\times _ { \\hslash } \\mitV ^ { - 1 } = \\sum _ { \\mitn , \\mitm } \\frac { 1 } { \\mitn ! \\mitm ! } \\int \\mitd \\mity _ { 1 } . . . \\mitd \\mity _ { \\mitn } \\mitd \\mitx _ { 1 } . . . \\mitd \\mitx _ { \\mitm } \\, \\mittheta ( \\mity _ { 1 } ) . . . \\mittheta ( \\mity _ { \\mitn } ) \\mittheta _ { - } ( \\mitx _ { 1 } ) . . . \\mittheta _ { - } ( \\mitx _ { \\mitm } ) \\\\ \\sum _ { \\mitY _ { 1 } \\sqcup \\mitY _ { 2 } = \\mitY , \\> \\mitX _ { 1 } \\sqcup \\mitX _ { 2 } = \\mitX } ( - \\miti ) ^ { ( \\vert \\mitY _ { 1 } \\vert + \\vert \\mitX _ { 1 } \\vert ) } \\miti ^ { ( \\vert \\mitY _ { 2 } \\vert + \\vert \\mitX _ { 2 } \\vert ) } \\mitR ^ { \\ast } ( \\mitY _ { 1 } , \\mitX _ { 1 } ) \\times _ { \\hslash } \\mitA \\times _ { \\hslash } \\mitR ( \\mitY _ { 2 } , \\mitX _ { 2 } ) , \\end{align*}", "\\begin{align*} \\sum _ { \\mitY _ { 1 } \\sqcup \\mitY _ { 2 } = \\mitY , \\> \\mitX _ { 1 } \\sqcup \\mitX _ { 2 } = \\mitX } ( - 1 ) ^ { ( \\vert \\mitY _ { 1 } \\cap \\mitY _ { 4 } \\vert + \\vert \\mitX _ { 1 } \\cap \\mitX _ { 4 } \\vert ) } [ \\mitR ^ { \\ast } ( \\mitY _ { 1 } \\cap \\mitY _ { 4 } , \\mitX _ { 1 } \\cap \\mitX _ { 4 } ) \\times _ { \\hslash } \\\\ \\mitA \\times _ { \\hslash } \\mitR ( \\mitY _ { 2 } \\cap \\mitY _ { 4 } , \\mitX _ { 2 } \\cap \\mitX _ { 4 } ) ] \\cdot \\\\ ( - 1 ) ^ { ( \\vert \\mitY _ { 1 } \\cap \\mitY _ { 3 } \\vert + \\vert \\mitX _ { 1 } \\cap \\mitX _ { 3 } \\vert ) } [ \\mitR ^ { \\ast } ( \\mitY _ { 1 } \\cap \\mitY _ { 3 } , \\mitX _ { 1 } \\cap \\mitX _ { 3 } ) \\times _ { \\hslash } \\mitR ( \\mitY _ { 2 } \\cap \\mitY _ { 3 } , \\mitX _ { 2 } \\cap \\mitX _ { 3 } ) ] = 0 . \\quad \\square \\end{align*}", "\\begin{equation*} \\mitA _ { \\mitL } ^ { ( \\mitn ) } \\, \\overset { \\mathrm { d e f } } { = } \\, \\frac { \\mitA _ { \\mitL } } { \\mitI _ { \\mitn + 1 } } , \\quad \\quad \\mitA _ { \\mitL } ^ { ( \\mitn ) } ( \\mitO ) \\, \\overset { \\mathrm { d e f } } { = } \\, \\frac { \\mitA _ { \\mitL } ( \\mitO ) } { \\mitI _ { \\mitn + 1 } \\cap \\mitA _ { \\mitL } ( \\mitO ) } . \\end{equation*}" ], "x_min": [ 0.27570000290870667, 0.33239999413490295, 0.47269999980926514, 0.6184999942779541, 0.6690000295639038, 0.28060001134872437, 0.4133000075817108, 0.5273000001907349, 0.5902000069618225, 0.2467000037431717, 0.43880000710487366, 0.6337000131607056, 0.2093999981880188, 0.26809999346733093, 0.7732999920845032, 0.23980000615119934, 0.33379998803138733, 0.5922999978065491, 0.6474999785423279, 0.2791999876499176, 0.48579999804496765, 0.6973000168800354, 0.2093999981880188, 0.6337000131607056, 0.47620001435279846, 0.5252000093460083, 0.2971999943256378, 0.5002999901771545, 0.39320001006126404, 0.4643999934196472, 0.44920000433921814, 0.45399999618530273, 0.2093999981880188, 0.47269999980926514, 0.49000000953674316, 0.6704000234603882, 0.4325999915599823, 0.5819000005722046, 0.2093999981880188, 0.2093999981880188, 0.33309999108314514 ], "y_min": [ 0.15330000221729279, 0.15330000221729279, 0.25679999589920044, 0.2720000147819519, 0.2720000147819519, 0.28610000014305115, 0.28610000014305115, 0.28519999980926514, 0.2992999851703644, 0.31450000405311584, 0.31349998712539673, 0.31450000405311584, 0.34279999136924744, 0.34279999136924744, 0.44429999589920044, 0.4560999870300293, 0.46140000224113464, 0.46140000224113464, 0.5249000191688538, 0.5419999957084656, 0.5429999828338623, 0.5386000275611877, 0.5526999831199646, 0.5557000041007996, 0.5727999806404114, 0.5853999853134155, 0.6021000146865845, 0.6039999723434448, 0.6176999807357788, 0.635699987411499, 0.6640999913215637, 0.6786999702453613, 0.6913999915122986, 0.7099999785423279, 0.7103999853134155, 0.7099999785423279, 0.73580002784729, 0.7354000210762024, 0.17430000007152557, 0.36329999566078186, 0.48100000619888306 ], "x_max": [ 0.32269999384880066, 0.4104999899864197, 0.7243000268936157, 0.6323000192642212, 0.6841999888420105, 0.37389999628067017, 0.5163000226020813, 0.6191999912261963, 0.6496000289916992, 0.259799987077713, 0.498199999332428, 0.6467999815940857, 0.23080000281333923, 0.28119999170303345, 0.7829999923706055, 0.32199999690055847, 0.35040000081062317, 0.6165000200271606, 0.7096999883651733, 0.4560999870300293, 0.5501000285148621, 0.7926999926567078, 0.27709999680519104, 0.7070000171661377, 0.5113999843597412, 0.5583999752998352, 0.3483000099658966, 0.5169000029563904, 0.42500001192092896, 0.5113999843597412, 0.45890000462532043, 0.46299999952316284, 0.6241000294685364, 0.4830999970436096, 0.5030999779701233, 0.6855999827384949, 0.4788999855518341, 0.5916000008583069, 0.7802000045776367, 0.7684999704360962, 0.6661999821662903 ], "y_max": [ 0.1655000001192093, 0.16500000655651093, 0.2694999873638153, 0.28029999136924744, 0.28029999136924744, 0.2964000105857849, 0.2964000105857849, 0.2969000041484833, 0.31150001287460327, 0.32330000400543213, 0.326200008392334, 0.32330000400543213, 0.3515999913215637, 0.3515999913215637, 0.4530999958515167, 0.4722000062465668, 0.47209998965263367, 0.47209998965263367, 0.538100004196167, 0.5547000169754028, 0.5533000230789185, 0.5551999807357788, 0.5698000192642212, 0.5723000168800354, 0.5831000208854675, 0.6019999980926514, 0.6172000169754028, 0.6147000193595886, 0.6342999935150146, 0.6468999981880188, 0.6729000210762024, 0.6875, 0.7050999999046326, 0.7159000039100647, 0.7157999873161316, 0.7159000039100647, 0.7440999746322632, 0.7441999912261963, 0.24549999833106995, 0.43149998784065247, 0.5131999850273132 ], "expr_type": [ "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "isolated", "isolated", "isolated" ] }
0001129_page19
{ "latex": [ "${\\cal G}_{\\cal L}({\\cal O})$", "$g\\rightarrow 1$", "$\\lambda :\\varphi ^{2n}:$", "${\\cal O}$", "$x_1,...,x_k\\not \\in ((\\bar {\\cal O}\\cup \\{x_{k+l+1},...,x_n\\})+\\bar V_-),\\>x_{k+1},...,x_{k+l} \\in {\\cal O}$", "$x_{k+l+1},...,x_n\\not \\in (\\bar {\\cal O}+\\bar V_+)$", "$\\theta \\in \\Theta ({\\cal O})$", "$\\{x_1,...,x_k\\}\\cap ({\\rm supp}\\>\\theta +\\bar V_-)=\\emptyset $", "$\\{x_{k+l+1},...,x_n\\}\\cap ({\\rm supp}\\>\\theta +\\bar V_+)=\\emptyset $", "$R$", "$T_{\\theta {\\cal L}}\\bigl (\\varphi (x_{k+l+1})...\\varphi (x_n)\\bigr )$", "$T_0\\bigl (\\varphi (x_{k+l+1})... \\varphi (x_n)\\bigr )$", "$S_{\\theta {\\cal L}}(f\\varphi )=S(\\theta {\\cal L})^{-1}S(f\\varphi ) S(\\theta {\\cal L})$", "${\\rm supp}\\>f\\cap ({\\rm supp}\\>\\theta +\\bar V_-)=\\emptyset $", "$T_0\\bigl ( \\varphi (x_{k+l+1})...\\varphi (x_n)\\bigr )\\Omega $", "$S(\\theta {\\cal L})^{-1}T_0 \\bigl (\\varphi (x_1)...\\varphi (x_k)\\bigr )^*S(\\theta {\\cal L})\\Omega $", "$g$", "$g_0\\in {\\cal D}(\\RR ^4),\\>g_0(0)=1$", "$\\epsilon \\rightarrow 0\\>\\>(\\epsilon >0)$", "$g_\\epsilon (x)\\equiv g_0(\\epsilon x)$", "$g_0$", "\\begin {eqnarray} \\Bigl (\\Omega ,T_{\\theta {\\cal L}}\\bigl (\\varphi (x_1)...\\varphi (x_n)\\bigr ) \\Omega \\Bigr )= \\Bigl (T_{\\theta {\\cal L}}\\bigl (\\varphi (x_1)...\\varphi (x_k)\\bigr )^*\\Omega , \\\\ T_{\\theta {\\cal L}}\\bigl (\\varphi (x_{k+1})...\\varphi (x_{k+l})\\bigr ) T_{\\theta {\\cal L}}\\Bigl (\\varphi (x_{k+l+1})...\\varphi (x_n)\\bigr )\\Omega \\Bigr ). \\end {eqnarray}", "\\begin {equation} T_{\\theta {\\cal L}}\\bigl (\\varphi (x_1)...\\varphi (x_k)\\bigr )^*=S(\\theta {\\cal L})^{-1}T_0\\bigl (\\varphi (x_1)...\\varphi (x_k)\\bigr )^* S(\\theta {\\cal L}). \\end {equation}" ], "latex_norm": [ "$ G _ { L } ( O ) $", "$ g \\rightarrow 1 $", "$ \\lambda : \\varphi ^ { 2 n } : $", "$ O $", "$ x _ { 1 } , . . . , x _ { k } \\notin ( ( \\bar { O } \\cup \\{ x _ { k + l + 1 } , . . . , x _ { n } \\} ) + \\bar { V } _ { - } ) , \\> x _ { k + 1 } , . . . , x _ { k + l } \\in O $", "$ x _ { k + l + 1 } , . . . , x _ { n } \\notin ( \\bar { O } + \\bar { V } _ { + } ) $", "$ \\theta \\in \\Theta ( O ) $", "$ \\{ x _ { 1 } , . . . , x _ { k } \\} \\cap ( s u p p \\> \\theta + \\bar { V } _ { - } ) = \\emptyset $", "$ \\{ x _ { k + l + 1 } , . . . , x _ { n } \\} \\cap ( s u p p \\> \\theta + \\bar { V } _ { + } ) = \\emptyset $", "$ R $", "$ T _ { \\theta L } ( \\varphi ( x _ { k + l + 1 } ) . . . \\varphi ( x _ { n } ) ) $", "$ T _ { 0 } ( \\varphi ( x _ { k + l + 1 } ) . . . \\varphi ( x _ { n } ) ) $", "$ S _ { \\theta L } ( f \\varphi ) = S ( \\theta L ) ^ { - 1 } S ( f \\varphi ) S ( \\theta L ) $", "$ s u p p \\> f \\cap ( s u p p \\> \\theta + \\bar { V } _ { - } ) = \\emptyset $", "$ T _ { 0 } ( \\varphi ( x _ { k + l + 1 } ) . . . \\varphi ( x _ { n } ) ) \\Omega $", "$ S ( \\theta L ) ^ { - 1 } T _ { 0 } ( \\varphi ( x _ { 1 } ) . . . \\varphi ( x _ { k } ) ) ^ { \\ast } S ( \\theta L ) \\Omega $", "$ g $", "$ g _ { 0 } \\in D ( R ^ { 4 } ) , \\> g _ { 0 } ( 0 ) = 1 $", "$ \\epsilon \\rightarrow 0 \\> \\> ( \\epsilon > 0 ) $", "$ g _ { \\epsilon } ( x ) \\equiv g _ { 0 } ( \\epsilon x ) $", "$ g _ { 0 } $", "\\begin{align*} ( \\Omega , T _ { \\theta L } ( \\varphi ( x _ { 1 } ) . . . \\varphi ( x _ { n } ) ) \\Omega ) = ( T _ { \\theta L } ( \\varphi ( x _ { 1 } ) . . . \\varphi ( x _ { k } ) ) ^ { \\ast } \\Omega , \\\\ T _ { \\theta L } ( \\varphi ( x _ { k + 1 } ) . . . \\varphi ( x _ { k + l } ) ) T _ { \\theta L } ( \\varphi ( x _ { k + l + 1 } ) . . . \\varphi ( x _ { n } ) ) \\Omega ) . \\end{align*}", "\\begin{equation*} T _ { \\theta L } ( \\varphi ( x _ { 1 } ) . . . \\varphi ( x _ { k } ) ) ^ { \\ast } = S ( \\theta L ) ^ { - 1 } T _ { 0 } ( \\varphi ( x _ { 1 } ) . . . \\varphi ( x _ { k } ) ) ^ { \\ast } S ( \\theta L ) . \\end{equation*}" ], "latex_expand": [ "$ \\mitG _ { \\mitL } ( \\mitO ) $", "$ \\mitg \\rightarrow 1 $", "$ \\mitlambda : \\mitvarphi ^ { 2 \\mitn } : $", "$ \\mitO $", "$ \\mitx _ { 1 } , . . . , \\mitx _ { \\mitk } \\notin ( ( \\bar { \\mitO } \\cup \\{ \\mitx _ { \\mitk + \\mitl + 1 } , . . . , \\mitx _ { \\mitn } \\} ) + \\bar { \\mitV } _ { - } ) , \\> \\mitx _ { \\mitk + 1 } , . . . , \\mitx _ { \\mitk + \\mitl } \\in \\mitO $", "$ \\mitx _ { \\mitk + \\mitl + 1 } , . . . , \\mitx _ { \\mitn } \\notin ( \\bar { \\mitO } + \\bar { \\mitV } _ { + } ) $", "$ \\mittheta \\in \\mupTheta ( \\mitO ) $", "$ \\{ \\mitx _ { 1 } , . . . , \\mitx _ { \\mitk } \\} \\cap ( \\mathrm { s u p p } \\> \\mittheta + \\bar { \\mitV } _ { - } ) = \\varnothing $", "$ \\{ \\mitx _ { \\mitk + \\mitl + 1 } , . . . , \\mitx _ { \\mitn } \\} \\cap ( \\mathrm { s u p p } \\> \\mittheta + \\bar { \\mitV } _ { + } ) = \\varnothing $", "$ \\mitR $", "$ \\mitT _ { \\mittheta \\mitL } \\big ( \\mitvarphi ( \\mitx _ { \\mitk + \\mitl + 1 } ) . . . \\mitvarphi ( \\mitx _ { \\mitn } ) \\big ) $", "$ \\mitT _ { 0 } \\big ( \\mitvarphi ( \\mitx _ { \\mitk + \\mitl + 1 } ) . . . \\mitvarphi ( \\mitx _ { \\mitn } ) \\big ) $", "$ \\mitS _ { \\mittheta \\mitL } ( \\mitf \\mitvarphi ) = \\mitS ( \\mittheta \\mitL ) ^ { - 1 } \\mitS ( \\mitf \\mitvarphi ) \\mitS ( \\mittheta \\mitL ) $", "$ \\mathrm { s u p p } \\> \\mitf \\cap ( \\mathrm { s u p p } \\> \\mittheta + \\bar { \\mitV } _ { - } ) = \\varnothing $", "$ \\mitT _ { 0 } \\big ( \\mitvarphi ( \\mitx _ { \\mitk + \\mitl + 1 } ) . . . \\mitvarphi ( \\mitx _ { \\mitn } ) \\big ) \\mupOmega $", "$ \\mitS ( \\mittheta \\mitL ) ^ { - 1 } \\mitT _ { 0 } \\big ( \\mitvarphi ( \\mitx _ { 1 } ) . . . \\mitvarphi ( \\mitx _ { \\mitk } ) \\big ) ^ { \\ast } \\mitS ( \\mittheta \\mitL ) \\mupOmega $", "$ \\mitg $", "$ \\mitg _ { 0 } \\in \\mitD ( \\BbbR ^ { 4 } ) , \\> \\mitg _ { 0 } ( 0 ) = 1 $", "$ \\mitepsilon \\rightarrow 0 \\> \\> ( \\mitepsilon > 0 ) $", "$ \\mitg _ { \\mitepsilon } ( \\mitx ) \\equiv \\mitg _ { 0 } ( \\mitepsilon \\mitx ) $", "$ \\mitg _ { 0 } $", "\\begin{align*} \\Big ( \\mupOmega , \\mitT _ { \\mittheta \\mitL } \\big ( \\mitvarphi ( \\mitx _ { 1 } ) . . . \\mitvarphi ( \\mitx _ { \\mitn } ) \\big ) \\mupOmega \\Big ) = \\Big ( \\mitT _ { \\mittheta \\mitL } \\big ( \\mitvarphi ( \\mitx _ { 1 } ) . . . \\mitvarphi ( \\mitx _ { \\mitk } ) \\big ) ^ { \\ast } \\mupOmega , \\\\ \\mitT _ { \\mittheta \\mitL } \\big ( \\mitvarphi ( \\mitx _ { \\mitk + 1 } ) . . . \\mitvarphi ( \\mitx _ { \\mitk + \\mitl } ) \\big ) \\mitT _ { \\mittheta \\mitL } \\Big ( \\mitvarphi ( \\mitx _ { \\mitk + \\mitl + 1 } ) . . . \\mitvarphi ( \\mitx _ { \\mitn } ) \\big ) \\mupOmega \\Big ) . \\end{align*}", "\\begin{equation*} \\mitT _ { \\mittheta \\mitL } \\big ( \\mitvarphi ( \\mitx _ { 1 } ) . . . \\mitvarphi ( \\mitx _ { \\mitk } ) \\big ) ^ { \\ast } = \\mitS ( \\mittheta \\mitL ) ^ { - 1 } \\mitT _ { 0 } \\big ( \\mitvarphi ( \\mitx _ { 1 } ) . . . \\mitvarphi ( \\mitx _ { \\mitk } ) \\big ) ^ { \\ast } \\mitS ( \\mittheta \\mitL ) . \\end{equation*}" ], "x_min": [ 0.42089998722076416, 0.4284999966621399, 0.7214999794960022, 0.6427000164985657, 0.33660000562667847, 0.2425999939441681, 0.3345000147819519, 0.5009999871253967, 0.2093999981880188, 0.2093999981880188, 0.4368000030517578, 0.3156999945640564, 0.22869999706745148, 0.49480000138282776, 0.6122999787330627, 0.2093999981880188, 0.5370000004768372, 0.5777000188827515, 0.3296000063419342, 0.4361000061035156, 0.487199991941452, 0.28679999709129333, 0.29030001163482666 ], "y_min": [ 0.3521000146865845, 0.4242999851703644, 0.4507000148296356, 0.5375999808311462, 0.5503000020980835, 0.5644999742507935, 0.6650000214576721, 0.6640999913215637, 0.6782000064849854, 0.6942999958992004, 0.6923999786376953, 0.7074999809265137, 0.7214999794960022, 0.7221999764442444, 0.774399995803833, 0.8022000193595886, 0.8314999938011169, 0.8276000022888184, 0.8398000001907349, 0.8398000001907349, 0.8539999723434448, 0.5990999937057495, 0.7432000041007996 ], "x_max": [ 0.46790000796318054, 0.47760000824928284, 0.7822999954223633, 0.6571999788284302, 0.7878999710083008, 0.4325999915599823, 0.4133000075817108, 0.7519000172615051, 0.4781999886035919, 0.2231999933719635, 0.6096000075340271, 0.48089998960494995, 0.46389999985694885, 0.6937999725341797, 0.7878000140190125, 0.4657999873161316, 0.5453000068664551, 0.7228000164031982, 0.41530001163482666, 0.5266000032424927, 0.5009999871253967, 0.6765999794006348, 0.7098000049591064 ], "y_max": [ 0.36480000615119934, 0.4350000023841858, 0.4634000062942505, 0.5464000105857849, 0.5634999871253967, 0.5777000188827515, 0.6772000193595886, 0.677299976348877, 0.6919000148773193, 0.7031000256538391, 0.7070000171661377, 0.7213000059127808, 0.736299991607666, 0.7354000210762024, 0.7894999980926514, 0.817799985408783, 0.8378000259399414, 0.8382999897003174, 0.8496000170707703, 0.8496000170707703, 0.8603000044822693, 0.6542999744415283, 0.7621999979019165 ], "expr_type": [ "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "isolated", "isolated" ] }
0001129_page20
{ "latex": [ "$x_1,...,x_k$", "$(\\bar {\\cal O}\\cup \\{x_{k+l+1},...,x_n\\})$", "$S$", "$\\hat l$", "$\\hat j$", "$S$", "$g\\equiv \\theta \\in \\Theta ({\\cal O})$", "$x\\in {\\cal O}$", "$\\rho $", "${\\rm supp}\\>\\rho \\subset \\{y|\\theta (y)=1\\}$", "$Z(f)$", "$<\\Omega | T\\bigl (\\phi _{\\cal L}(x_1)...\\phi _{\\cal L}(x_m)\\bigr )|\\Omega >$", "$S$", "$\\Omega $", "$\\Delta (x)$", "$3$", "$\\frac {\\delta S}{\\delta \\phi (x)}$", "$S=\\int d^4x\\, [\\frac {1}{2}(\\d _\\mu \\phi (x)\\d ^\\mu \\phi (x)-m^2\\phi ^2(x))+g(x){\\cal L}(x)]$", "$S=\\int d^4x\\, [\\frac {1}{2}(\\d _\\mu \\phi (x)\\d ^\\mu \\phi (x)-m^2\\phi ^2(x))+g(x){\\cal L}(x)]$", "${\\cal L}$", "$4$", "\\begin {eqnarray} (\\w _x+m^2)R\\bigl ({\\cal L}(y_1)...{\\cal L}(y_n);\\phi (x)\\phi (x_1)... \\phi (x_m)\\bigr )=\\\\ -i\\sum _{l=1}^{n}\\delta (x-y_l)R\\bigl ({\\cal L}(y_1)...\\hat l...{\\cal L}(y_n); \\frac {\\d {\\cal L}}{\\d \\phi }(x)\\phi (x_1)...\\phi (x_m)\\bigr )\\\\ -i\\sum _{j=1}^{m}\\delta (x-x_j)R\\bigl ({\\cal L}(y_1)...{\\cal L}(y_n);\\phi (x_1)... \\hat j...\\phi (x_m)\\bigr ),\\end {eqnarray}", "\\begin {equation} f(x)S_{g{\\cal L}}(f\\phi )=(\\w _x+m^2)\\frac {\\delta }{i\\delta f(x)} S_{g{\\cal L}}(f\\phi ) -\\frac {\\delta }{i\\delta \\rho (x)}\\vert _{\\rho =0}S_{g{\\cal L}}(f\\phi +\\rho g\\frac {\\d {\\cal L}}{\\d \\phi }).\\label {4.5a} \\end {equation}", "\\begin {equation} (\\w _x+m^2)\\frac {\\delta }{i\\delta f(x)} S_{\\cal L}(f\\phi )=f(x)S_{\\cal L}(f\\phi )+ \\frac {\\delta }{i\\delta \\rho (x)}\\vert _{\\rho =0}S_{\\cal L}(f\\phi +\\rho \\frac {\\d {\\cal L}}{\\d \\phi }),\\quad x\\in {\\cal O}.\\label {4.5aa} \\end {equation}", "\\begin {equation} Z(f)=\\lim _{g\\to 1}(\\Omega ,S_{g{\\cal L}}(f\\phi )\\Omega ),\\label {4.5b} \\end {equation}", "\\begin {equation} f(x)Z(f)=-\\Delta (x)\\cdot Z(f),\\label {4.5c} \\end {equation}" ], "latex_norm": [ "$ x _ { 1 } , . . . , x _ { k } $", "$ ( \\bar { O } \\cup \\{ x _ { k + l + 1 } , . . . , x _ { n } \\} ) $", "$ S $", "$ \\hat { l } $", "$ \\hat { j } $", "$ S $", "$ g \\equiv \\theta \\in \\Theta ( O ) $", "$ x \\in O $", "$ \\rho $", "$ s u p p \\> \\rho \\subset \\{ y \\vert \\theta ( y ) = 1 \\} $", "$ Z ( f ) $", "$ < \\Omega \\vert T ( \\phi _ { L } ( x _ { 1 } ) . . . \\phi _ { L } ( x _ { m } ) ) \\vert \\Omega > $", "$ S $", "$ \\Omega $", "$ \\Delta ( x ) $", "$ 3 $", "$ \\frac { \\delta S } { \\delta \\phi ( x ) } $", "$ S = \\int d ^ { 4 } x \\, [ \\frac { 1 } { 2 } ( \\partial _ { \\mu } \\phi ( x ) \\partial ^ { \\mu } \\phi ( x ) - m ^ { 2 } \\phi ^ { 2 } ( x ) ) + g ( x ) L ( x ) ] $", "$ S = \\int d ^ { 4 } x \\, [ \\frac { 1 } { 2 } ( \\partial _ { \\mu } \\phi ( x ) \\partial ^ { \\mu } \\phi ( x ) - m ^ { 2 } \\phi ^ { 2 } ( x ) ) + g ( x ) L ( x ) ] $", "$ L $", "$ 4 $", "\\begin{align*} ( \\square _ { x } + m ^ { 2 } ) R ( L ( y _ { 1 } ) . . . L ( y _ { n } ) ; \\phi ( x ) \\phi ( x _ { 1 } ) . . . \\phi ( x _ { m } ) ) = \\\\ - i \\sum _ { l = 1 } ^ { n } \\delta ( x - y _ { l } ) R ( L ( y _ { 1 } ) . . . \\hat { l } . . . L ( y _ { n } ) ; \\frac { \\partial L } { \\partial \\phi } ( x ) \\phi ( x _ { 1 } ) . . . \\phi ( x _ { m } ) ) \\\\ - i \\sum _ { j = 1 } ^ { m } \\delta ( x - x _ { j } ) R ( L ( y _ { 1 } ) . . . L ( y _ { n } ) ; \\phi ( x _ { 1 } ) . . . \\hat { j } . . . \\phi ( x _ { m } ) ) , \\end{align*}", "\\begin{equation*} f ( x ) S _ { g L } ( f \\phi ) = ( \\square _ { x } + m ^ { 2 } ) \\frac { \\delta } { i \\delta f ( x ) } S _ { g L } ( f \\phi ) - \\frac { \\delta } { i \\delta \\rho ( x ) } \\vert _ { \\rho = 0 } S _ { g L } ( f \\phi + \\rho g \\frac { \\partial L } { \\partial \\phi } ) . \\end{equation*}", "\\begin{equation*} ( \\square _ { x } + m ^ { 2 } ) \\frac { \\delta } { i \\delta f ( x ) } S _ { L } ( f \\phi ) = f ( x ) S _ { L } ( f \\phi ) + \\frac { \\delta } { i \\delta \\rho ( x ) } \\vert _ { \\rho = 0 } S _ { L } ( f \\phi + \\rho \\frac { \\partial L } { \\partial \\phi } ) , \\quad x \\in O . \\end{equation*}", "\\begin{equation*} Z ( f ) = \\underset { g \\rightarrow 1 } { \\operatorname { l i m } } ( \\Omega , S _ { g L } ( f \\phi ) \\Omega ) , \\end{equation*}", "\\begin{equation*} f ( x ) Z ( f ) = - \\Delta ( x ) \\cdot Z ( f ) , \\end{equation*}" ], "latex_expand": [ "$ \\mitx _ { 1 } , . . . , \\mitx _ { \\mitk } $", "$ ( \\bar { \\mitO } \\cup \\{ \\mitx _ { \\mitk + \\mitl + 1 } , . . . , \\mitx _ { \\mitn } \\} ) $", "$ \\mitS $", "$ \\hat { \\mitl } $", "$ \\hat { \\mitj } $", "$ \\mitS $", "$ \\mitg \\equiv \\mittheta \\in \\mupTheta ( \\mitO ) $", "$ \\mitx \\in \\mitO $", "$ \\mitrho $", "$ \\mathrm { s u p p } \\> \\mitrho \\subset \\{ \\mity \\vert \\mittheta ( \\mity ) = 1 \\} $", "$ \\mitZ ( \\mitf ) $", "$ < \\mupOmega \\vert \\mitT \\big ( \\mitphi _ { \\mitL } ( \\mitx _ { 1 } ) . . . \\mitphi _ { \\mitL } ( \\mitx _ { \\mitm } ) \\big ) \\vert \\mupOmega > $", "$ \\mitS $", "$ \\mupOmega $", "$ \\mupDelta ( \\mitx ) $", "$ 3 $", "$ \\frac { \\mitdelta \\mitS } { \\mitdelta \\mitphi ( \\mitx ) } $", "$ \\mitS = \\int \\nolimits \\mitd ^ { 4 } \\mitx \\, [ \\frac { 1 } { 2 } ( \\mitpartial _ { \\mitmu } \\mitphi ( \\mitx ) \\mitpartial ^ { \\mitmu } \\mitphi ( \\mitx ) - \\mitm ^ { 2 } \\mitphi ^ { 2 } ( \\mitx ) ) + \\mitg ( \\mitx ) \\mitL ( \\mitx ) ] $", "$ \\mitS = \\int \\nolimits \\mitd ^ { 4 } \\mitx \\, [ \\frac { 1 } { 2 } ( \\mitpartial _ { \\mitmu } \\mitphi ( \\mitx ) \\mitpartial ^ { \\mitmu } \\mitphi ( \\mitx ) - \\mitm ^ { 2 } \\mitphi ^ { 2 } ( \\mitx ) ) + \\mitg ( \\mitx ) \\mitL ( \\mitx ) ] $", "$ \\mitL $", "$ 4 $", "\\begin{align*} ( \\square _ { \\mitx } + \\mitm ^ { 2 } ) \\mitR \\big ( \\mitL ( \\mity _ { 1 } ) . . . \\mitL ( \\mity _ { \\mitn } ) ; \\mitphi ( \\mitx ) \\mitphi ( \\mitx _ { 1 } ) . . . \\mitphi ( \\mitx _ { \\mitm } ) \\big ) = \\\\ - \\miti \\sum _ { \\mitl = 1 } ^ { \\mitn } \\mitdelta ( \\mitx - \\mity _ { \\mitl } ) \\mitR \\big ( \\mitL ( \\mity _ { 1 } ) . . . \\hat { \\mitl } . . . \\mitL ( \\mity _ { \\mitn } ) ; \\frac { \\mitpartial \\mitL } { \\mitpartial \\mitphi } ( \\mitx ) \\mitphi ( \\mitx _ { 1 } ) . . . \\mitphi ( \\mitx _ { \\mitm } ) \\big ) \\\\ - \\miti \\sum _ { \\mitj = 1 } ^ { \\mitm } \\mitdelta ( \\mitx - \\mitx _ { \\mitj } ) \\mitR \\big ( \\mitL ( \\mity _ { 1 } ) . . . \\mitL ( \\mity _ { \\mitn } ) ; \\mitphi ( \\mitx _ { 1 } ) . . . \\hat { \\mitj } . . . \\mitphi ( \\mitx _ { \\mitm } ) \\big ) , \\end{align*}", "\\begin{equation*} \\mitf ( \\mitx ) \\mitS _ { \\mitg \\mitL } ( \\mitf \\mitphi ) = ( \\square _ { \\mitx } + \\mitm ^ { 2 } ) \\frac { \\mitdelta } { \\miti \\mitdelta \\mitf ( \\mitx ) } \\mitS _ { \\mitg \\mitL } ( \\mitf \\mitphi ) - \\frac { \\mitdelta } { \\miti \\mitdelta \\mitrho ( \\mitx ) } \\vert _ { \\mitrho = 0 } \\mitS _ { \\mitg \\mitL } ( \\mitf \\mitphi + \\mitrho \\mitg \\frac { \\mitpartial \\mitL } { \\mitpartial \\mitphi } ) . \\end{equation*}", "\\begin{equation*} ( \\square _ { \\mitx } + \\mitm ^ { 2 } ) \\frac { \\mitdelta } { \\miti \\mitdelta \\mitf ( \\mitx ) } \\mitS _ { \\mitL } ( \\mitf \\mitphi ) = \\mitf ( \\mitx ) \\mitS _ { \\mitL } ( \\mitf \\mitphi ) + \\frac { \\mitdelta } { \\miti \\mitdelta \\mitrho ( \\mitx ) } \\vert _ { \\mitrho = 0 } \\mitS _ { \\mitL } ( \\mitf \\mitphi + \\mitrho \\frac { \\mitpartial \\mitL } { \\mitpartial \\mitphi } ) , \\quad \\mitx \\in \\mitO . \\end{equation*}", "\\begin{equation*} \\mitZ ( \\mitf ) = \\underset { \\mitg \\rightarrow 1 } { \\operatorname { l i m } } ( \\mupOmega , \\mitS _ { \\mitg \\mitL } ( \\mitf \\mitphi ) \\mupOmega ) , \\end{equation*}", "\\begin{equation*} \\mitf ( \\mitx ) \\mitZ ( \\mitf ) = - \\mupDelta ( \\mitx ) \\cdot \\mitZ ( \\mitf ) , \\end{equation*}" ], "x_min": [ 0.3621000051498413, 0.35249999165534973, 0.47749999165534973, 0.25920000672340393, 0.30410000681877136, 0.2093999981880188, 0.2093999981880188, 0.37389999628067017, 0.532800018787384, 0.6212999820709229, 0.2888999879360199, 0.5203999876976013, 0.42289999127388, 0.25850000977516174, 0.257099986076355, 0.5307999849319458, 0.2953999936580658, 0.6047000288963318, 0.2093999981880188, 0.3393000066280365, 0.47269999980926514, 0.27230000495910645, 0.2190999984741211, 0.21490000188350677, 0.399399995803833, 0.4007999897003174 ], "y_min": [ 0.15719999372959137, 0.16699999570846558, 0.22509999573230743, 0.4302000105381012, 0.43070000410079956, 0.461899995803833, 0.5307999849319458, 0.5317000150680542, 0.5346999764442444, 0.5307999849319458, 0.6503999829292297, 0.649399995803833, 0.6654999852180481, 0.7139000296592712, 0.7699999809265137, 0.7714999914169312, 0.7827000021934509, 0.7832000255584717, 0.7991999983787537, 0.8515999913215637, 0.8521000146865845, 0.32179999351501465, 0.4779999852180481, 0.5619999766349792, 0.6826000213623047, 0.7455999851226807 ], "x_max": [ 0.42640000581741333, 0.5120999813079834, 0.48919999599456787, 0.2646999955177307, 0.3124000132083893, 0.22110000252723694, 0.31029999256134033, 0.4187999963760376, 0.5418000221252441, 0.7829999923706055, 0.3248000144958496, 0.7394999861717224, 0.43459999561309814, 0.27090001106262207, 0.29440000653266907, 0.5397999882698059, 0.33169999718666077, 0.8245000243186951, 0.36970001459121704, 0.349700003862381, 0.48030000925064087, 0.6917999982833862, 0.7505000233650208, 0.7850000262260437, 0.597100019454956, 0.5964000225067139 ], "y_max": [ 0.16500000655651093, 0.18019999563694, 0.23389999568462372, 0.4424000084400177, 0.44440001249313354, 0.4706999957561493, 0.5435000061988831, 0.5410000085830688, 0.5425000190734863, 0.5435000061988831, 0.663100004196167, 0.6639999747276306, 0.6743000149726868, 0.7226999998092651, 0.7821999788284302, 0.7792999744415283, 0.7979999780654907, 0.7978000044822693, 0.8144999742507935, 0.8589000105857849, 0.8589000105857849, 0.4226999878883362, 0.5091999769210815, 0.5932000279426575, 0.7055000066757202, 0.7612000107765198 ], "expr_type": [ "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "isolated", "isolated", "isolated", "isolated", "isolated" ] }
0001129_page21
{ "latex": [ "$R_{\\cal L}(g^{\\otimes n};f^{\\otimes m})$", "${\\cal L},g,f\\in {\\cal D}(\\RR ^4,{\\cal V})$", "$T$", "$\\bar T$", "$R$", "${\\cal L}_0,{\\cal L}_1\\in {\\cal V}$", "${\\cal D}(\\RR ^4,{\\cal V})$", "$m$", "${\\cal L}_1$", "${\\cal L}_1\\in {\\cal D}(\\RR ^4,{\\cal V})$", "$\\Theta _0({\\cal O})$", "$\\Theta ({\\cal O})$", "\\begin {equation} S_{{\\cal L}+g}(f)=S_{\\cal L}(g)^{-1}S_{\\cal L}(g+f)\\=d \\sum _{n,m=0}^\\infty \\frac {i^{n+m}}{n!m!}R_{\\cal L} (g^{\\otimes n};f^{\\otimes m}) \\label {Q2b} \\end {equation}", "\\begin {equation} R_{\\cal L}(g^{\\otimes n};f^{\\otimes m})= \\sum _{k=0}^{n}(-1)^k\\frac {n!}{k!(n-k)!} \\bar {T}_{\\cal L}(g^{\\otimes k}) T_{\\cal L}(g^{\\otimes (n-k)} \\otimes f^{\\otimes m}).\\label {R=Tww} \\end {equation}", "\\begin {equation} \\bar T_{\\cal L}(f^{\\otimes m})= \\frac {d^m}{(-i)^m d\\lambda ^m}\\vert _{\\lambda =0}S_{\\cal L} (\\lambda f)^{-1},\\label {Q2a} \\end {equation}", "\\begin {equation} {\\cal L}_0\\rightarrow {\\cal L}_0+\\epsilon {\\cal L}_1\\label {Q1} \\end {equation}", "\\begin {eqnarray} \\frac {d^m}{d\\epsilon ^m}\\vert _{\\epsilon =0} T_{\\theta ({\\cal L}_0+\\epsilon {\\cal L}_1)}(f^{\\otimes l})&=& \\frac {\\d ^m}{\\d \\epsilon ^m}\\vert _{\\epsilon =0}\\frac {\\d ^l}{i^l\\d \\lambda ^l} \\vert _{\\lambda =0}S_{\\theta ({\\cal L}_0+\\epsilon {\\cal L}_1)}(\\lambda f) \\\\ &=&i^m R_{\\theta {\\cal L}_0}((\\theta {\\cal L}_1)^{\\otimes m};f^{\\otimes l}). \\end {eqnarray}", "\\begin {equation} \\Theta _0({\\cal O})\\=d\\{\\theta \\in \\Theta ({\\cal O})\\quad |\\quad \\theta \\vert _{{\\rm supp}\\> {\\cal L}_1}\\equiv 1\\}. \\end {equation}", "\\begin {equation} \\frac {d^m}{d\\epsilon ^m}\\vert _{\\epsilon =0} T_{{\\cal L}_0+\\epsilon {\\cal L}_1}(f^{\\otimes l})= i^m R_{{\\cal L}_0}({\\cal L}_1^{\\otimes m};f^{\\otimes l}).\\label {Q2c} \\end {equation}" ], "latex_norm": [ "$ R _ { L } ( g ^ { \\otimes n } ; f ^ { \\otimes m } ) $", "$ L , g , f \\in D ( R ^ { 4 } , V ) $", "$ T $", "$ \\bar { T } $", "$ R $", "$ L _ { 0 } , L _ { 1 } \\in V $", "$ D ( R ^ { 4 } , V ) $", "$ m $", "$ L _ { 1 } $", "$ L _ { 1 } \\in D ( R ^ { 4 } , V ) $", "$ \\Theta _ { 0 } ( O ) $", "$ \\Theta ( O ) $", "\\begin{equation*} S _ { L + g } ( f ) = S _ { L } ( g ) ^ { - 1 } S _ { L } ( g + f ) \\, \\overset { d e f } { = } \\, \\sum _ { n , m = 0 } ^ { \\infty } \\frac { i ^ { n + m } } { n ! m ! } R _ { L } ( g ^ { \\otimes n } ; f ^ { \\otimes m } ) \\end{equation*}", "\\begin{equation*} R _ { L } ( g ^ { \\otimes n } ; f ^ { \\otimes m } ) = \\sum _ { k = 0 } ^ { n } ( - 1 ) ^ { k } \\frac { n ! } { k ! ( n - k ) ! } \\bar { T } _ { L } ( g ^ { \\otimes k } ) T _ { L } ( g ^ { \\otimes ( n - k ) } \\otimes f ^ { \\otimes m } ) . \\end{equation*}", "\\begin{equation*} \\bar { T } _ { L } ( f ^ { \\otimes m } ) = \\frac { d ^ { m } } { ( - i ) ^ { m } d \\lambda ^ { m } } \\vert _ { \\lambda = 0 } S _ { L } ( \\lambda f ) ^ { - 1 } , \\end{equation*}", "\\begin{equation*} L _ { 0 } \\rightarrow L _ { 0 } + \\epsilon L _ { 1 } \\end{equation*}", "\\begin{align*} \\frac { d ^ { m } } { d \\epsilon ^ { m } } \\vert _ { \\epsilon = 0 } T _ { \\theta ( L _ { 0 } + \\epsilon L _ { 1 } ) } ( f ^ { \\otimes l } ) & = & \\frac { \\partial ^ { m } } { \\partial \\epsilon ^ { m } } \\vert _ { \\epsilon = 0 } \\frac { \\partial ^ { l } } { i ^ { l } \\partial \\lambda ^ { l } } \\vert _ { \\lambda = 0 } S _ { \\theta ( L _ { 0 } + \\epsilon L _ { 1 } ) } ( \\lambda f ) \\\\ & = & i ^ { m } R _ { \\theta L _ { 0 } } ( ( \\theta L _ { 1 } ) ^ { \\otimes m } ; f ^ { \\otimes l } ) . \\end{align*}", "\\begin{equation*} \\Theta _ { 0 } ( O ) \\, \\overset { d e f } { = } \\, \\{ \\theta \\in \\Theta ( O ) \\quad \\vert \\quad \\theta \\vert _ { s u p p \\> L _ { 1 } } \\equiv 1 \\} . \\end{equation*}", "\\begin{equation*} \\frac { d ^ { m } } { d \\epsilon ^ { m } } \\vert _ { \\epsilon = 0 } T _ { L _ { 0 } + \\epsilon L _ { 1 } } ( f ^ { \\otimes l } ) = i ^ { m } R _ { L _ { 0 } } ( L _ { 1 } ^ { \\otimes m } ; f ^ { \\otimes l } ) . \\end{equation*}" ], "latex_expand": [ "$ \\mitR _ { \\mitL } ( \\mitg ^ { \\otimes \\mitn } ; \\mitf ^ { \\otimes \\mitm } ) $", "$ \\mitL , \\mitg , \\mitf \\in \\mitD ( \\BbbR ^ { 4 } , \\mitV ) $", "$ \\mitT $", "$ \\bar { \\mitT } $", "$ \\mitR $", "$ \\mitL _ { 0 } , \\mitL _ { 1 } \\in \\mitV $", "$ \\mitD ( \\BbbR ^ { 4 } , \\mitV ) $", "$ \\mitm $", "$ \\mitL _ { 1 } $", "$ \\mitL _ { 1 } \\in \\mitD ( \\BbbR ^ { 4 } , \\mitV ) $", "$ \\mupTheta _ { 0 } ( \\mitO ) $", "$ \\mupTheta ( \\mitO ) $", "\\begin{equation*} \\mitS _ { \\mitL + \\mitg } ( \\mitf ) = \\mitS _ { \\mitL } ( \\mitg ) ^ { - 1 } \\mitS _ { \\mitL } ( \\mitg + \\mitf ) \\, \\overset { \\mathrm { d e f } } { = } \\, \\sum _ { \\mitn , \\mitm = 0 } ^ { \\infty } \\frac { \\miti ^ { \\mitn + \\mitm } } { \\mitn ! \\mitm ! } \\mitR _ { \\mitL } ( \\mitg ^ { \\otimes \\mitn } ; \\mitf ^ { \\otimes \\mitm } ) \\end{equation*}", "\\begin{equation*} \\mitR _ { \\mitL } ( \\mitg ^ { \\otimes \\mitn } ; \\mitf ^ { \\otimes \\mitm } ) = \\sum _ { \\mitk = 0 } ^ { \\mitn } ( - 1 ) ^ { \\mitk } \\frac { \\mitn ! } { \\mitk ! ( \\mitn - \\mitk ) ! } \\bar { \\mitT } _ { \\mitL } ( \\mitg ^ { \\otimes \\mitk } ) \\mitT _ { \\mitL } ( \\mitg ^ { \\otimes ( \\mitn - \\mitk ) } \\otimes \\mitf ^ { \\otimes \\mitm } ) . \\end{equation*}", "\\begin{equation*} \\bar { \\mitT } _ { \\mitL } ( \\mitf ^ { \\otimes \\mitm } ) = \\frac { \\mitd ^ { \\mitm } } { ( - \\miti ) ^ { \\mitm } \\mitd \\mitlambda ^ { \\mitm } } \\vert _ { \\mitlambda = 0 } \\mitS _ { \\mitL } ( \\mitlambda \\mitf ) ^ { - 1 } , \\end{equation*}", "\\begin{equation*} \\mitL _ { 0 } \\rightarrow \\mitL _ { 0 } + \\mitepsilon \\mitL _ { 1 } \\end{equation*}", "\\begin{align*} \\frac { \\mitd ^ { \\mitm } } { \\mitd \\mitepsilon ^ { \\mitm } } \\vert _ { \\mitepsilon = 0 } \\mitT _ { \\mittheta ( \\mitL _ { 0 } + \\mitepsilon \\mitL _ { 1 } ) } ( \\mitf ^ { \\otimes \\mitl } ) & = & \\frac { \\mitpartial ^ { \\mitm } } { \\mitpartial \\mitepsilon ^ { \\mitm } } \\vert _ { \\mitepsilon = 0 } \\frac { \\mitpartial ^ { \\mitl } } { \\miti ^ { \\mitl } \\mitpartial \\mitlambda ^ { \\mitl } } \\vert _ { \\mitlambda = 0 } \\mitS _ { \\mittheta ( \\mitL _ { 0 } + \\mitepsilon \\mitL _ { 1 } ) } ( \\mitlambda \\mitf ) \\\\ & = & \\miti ^ { \\mitm } \\mitR _ { \\mittheta \\mitL _ { 0 } } ( ( \\mittheta \\mitL _ { 1 } ) ^ { \\otimes \\mitm } ; \\mitf ^ { \\otimes \\mitl } ) . \\end{align*}", "\\begin{equation*} \\mupTheta _ { 0 } ( \\mitO ) \\, \\overset { \\mathrm { d e f } } { = } \\, \\{ \\mittheta \\in \\mupTheta ( \\mitO ) \\quad \\vert \\quad \\mittheta \\vert _ { \\mathrm { s u p p } \\> \\mitL _ { 1 } } \\equiv 1 \\} . \\end{equation*}", "\\begin{equation*} \\frac { \\mitd ^ { \\mitm } } { \\mitd \\mitepsilon ^ { \\mitm } } \\vert _ { \\mitepsilon = 0 } \\mitT _ { \\mitL _ { 0 } + \\mitepsilon \\mitL _ { 1 } } ( \\mitf ^ { \\otimes \\mitl } ) = \\miti ^ { \\mitm } \\mitR _ { \\mitL _ { 0 } } ( \\mitL _ { 1 } ^ { \\otimes \\mitm } ; \\mitf ^ { \\otimes \\mitl } ) . \\end{equation*}" ], "x_min": [ 0.703499972820282, 0.259799987077713, 0.31380000710487366, 0.37040001153945923, 0.6075000166893005, 0.259799987077713, 0.3711000084877014, 0.5149000287055969, 0.274399995803833, 0.4921000003814697, 0.2093999981880188, 0.34619998931884766, 0.2827000021934509, 0.24459999799728394, 0.36010000109672546, 0.4429999887943268, 0.2653999924659729, 0.3531000018119812, 0.34209999442100525 ], "y_min": [ 0.1889999955892563, 0.2768999934196472, 0.4867999851703644, 0.48539999127388, 0.4867999851703644, 0.5814999938011169, 0.5800999999046326, 0.5845000147819519, 0.6934000253677368, 0.6919000148773193, 0.7627000212669373, 0.7627000212669373, 0.22460000216960907, 0.32760000228881836, 0.4140999913215637, 0.5522000193595886, 0.6166999936103821, 0.7143999934196472, 0.7842000126838684 ], "x_max": [ 0.8084999918937683, 0.3986999988555908, 0.32690000534057617, 0.38350000977516174, 0.6205999851226807, 0.3427000045776367, 0.4368000030517578, 0.5300999879837036, 0.29440000653266907, 0.597100019454956, 0.257099986076355, 0.3862999975681305, 0.7174000144004822, 0.7249000072479248, 0.6371999979019165, 0.5562999844551086, 0.7311999797821045, 0.6467999815940857, 0.6578999757766724 ], "y_max": [ 0.20170000195503235, 0.29010000824928284, 0.49559998512268066, 0.49570000171661377, 0.49559998512268066, 0.5927000045776367, 0.5932999849319458, 0.590399980545044, 0.7041000127792358, 0.7050999999046326, 0.7749000191688538, 0.7749000191688538, 0.26460000872612, 0.3666999936103821, 0.44530001282691956, 0.5659000277519226, 0.6699000000953674, 0.7354000210762024, 0.8125 ], "expr_type": [ "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "isolated", "isolated", "isolated", "isolated", "isolated", "isolated", "isolated" ] }
0001129_page22
{ "latex": [ "$m$", "$\\epsilon $", "$(\\theta {\\cal L}_1)^{\\otimes m}$", "$(\\theta {\\cal L}_1)^{\\otimes m}$", "${\\cal L}_0$", "${\\cal L}_1$", "${\\rm dim}({\\cal L}_j)=4$", "${\\rm dim}({\\cal L}_j)<4$", "${\\cal L}_j$", "${\\rm dim}({\\cal L}_j) =4$", "${\\rm sd}(t_0)\\leq {\\rm sd}(t)\\leq 4n-b$", "$b$", "${\\cal L}_j$", "$4$", "$m,l\\in \\NN _0$", "$\\frac {\\d ^m}{\\d \\epsilon ^m}$", "$\\frac {\\d ^l}{\\d \\lambda ^l}$", "$\\theta \\rightarrow 1$", "$P_\\Omega $", "$\\Omega $", "$P_\\Omega ^\\bot \\=d 1-P_\\Omega $", "$S(\\theta {\\cal L})^* =S(\\theta {\\cal L})^{-1}$", "$N_\\delta \\{\\prod _{j=1}^l\\varphi _{i_j\\> {\\cal L}}(x)\\},\\>\\delta \\geq d\\equiv \\sum _{j=1}^l d(\\varphi _{i_j\\>{\\cal L}})$", "$\\delta =d$", "$N_\\delta \\{\\prod _{j=1}^l\\varphi _{i_j\\>{\\cal L}}(x)\\}$", "$(:\\prod _{j=1}^l\\varphi _{i_j}(x):)_{g{\\cal L}}$", "\\begin {equation} i^m T_{\\theta {\\cal L}_0}((\\theta {\\cal L}_1)^{\\otimes m} \\otimes f^{\\otimes l})=\\frac {\\d ^m}{\\d \\epsilon ^m}\\vert _{\\epsilon =0} \\frac {\\d ^l}{i^l\\d \\lambda ^l}\\vert _{\\lambda =0}S_{\\theta {\\cal L}_0} (\\theta \\epsilon {\\cal L}_1+\\lambda f).\\label {Q3} \\end {equation}", "\\begin {equation} \\frac {d^m}{d\\epsilon ^m}\\vert _{\\epsilon =0}\\lim _{\\theta \\to 1} \\Bigl (\\Omega ,T_{\\theta ({\\cal L}_0+\\epsilon {\\cal L}_1)}(f^{\\otimes l}) \\Omega \\Bigr )=i^m\\lim _{\\theta \\to 1}\\Bigl (\\Omega ,T_{\\theta {\\cal L}_0} ((\\theta {\\cal L}_1)^{\\otimes m}\\otimes f^{\\otimes l})\\Omega \\Bigr )\\label {Q5} \\end {equation}", "\\begin {equation} \\lim _{\\theta \\to 1}\\Bigl (\\Omega ,S_{\\theta ({\\cal L}_0+\\epsilon {\\cal L}_1)} (\\lambda f)\\Omega \\Bigr )=\\lim _{\\theta \\to 1}\\Bigl (\\Omega ,S_{\\theta {\\cal L}_0} (\\theta \\epsilon {\\cal L}_1+\\lambda f)\\Omega \\Bigr ).\\label {Q6} \\end {equation}", "\\begin {equation} \\lim _{\\theta \\to 1}(\\Omega ,S_{\\theta {\\cal L}}(f)\\Omega )= \\lim _{\\theta \\to 1}\\frac {(\\Omega ,S(\\theta {\\cal L}+f)\\Omega )} {(\\Omega ,S(\\theta {\\cal L})\\Omega )},\\label {Q4} \\end {equation}", "\\begin {eqnarray} (\\Omega ,S_{\\theta {\\cal L}}(f)\\Omega )&=&(S(\\theta {\\cal L})\\Omega , (P_\\Omega +P_\\Omega ^\\bot )S(\\theta {\\cal L}+f)\\Omega )\\\\ &=&\\frac {(\\Omega ,S(\\theta {\\cal L}+f)\\Omega )}{(\\Omega ,S(\\theta {\\cal L})\\Omega )} \\cdot |(\\Omega ,S(\\theta {\\cal L})\\Omega )|^2\\\\ &+&(\\Omega ,S(\\theta {\\cal L})^{-1} P_\\Omega ^\\bot S(\\theta {\\cal L}+f)\\Omega )\\end {eqnarray}" ], "latex_norm": [ "$ m $", "$ \\epsilon $", "$ ( \\theta L _ { 1 } ) ^ { \\otimes m } $", "$ ( \\theta L _ { 1 } ) ^ { \\otimes m } $", "$ L _ { 0 } $", "$ L _ { 1 } $", "$ d i m ( L _ { j } ) = 4 $", "$ d i m ( L _ { j } ) < 4 $", "$ L _ { j } $", "$ d i m ( L _ { j } ) = 4 $", "$ s d ( t _ { 0 } ) \\leq s d ( t ) \\leq 4 n - b $", "$ b $", "$ L _ { j } $", "$ 4 $", "$ m , l \\in N _ { 0 } $", "$ \\frac { \\partial ^ { m } } { \\partial \\epsilon ^ { m } } $", "$ \\frac { \\partial ^ { l } } { \\partial \\lambda ^ { l } } $", "$ \\theta \\rightarrow 1 $", "$ P _ { \\Omega } $", "$ \\Omega $", "$ P _ { \\Omega } ^ { \\bot } \\, \\overset { d e f } { = } \\, 1 - P _ { \\Omega } $", "$ S ( \\theta L ) ^ { \\ast } = S ( \\theta L ) ^ { - 1 } $", "$ N _ { \\delta } \\{ \\prod _ { j = 1 } ^ { l } \\varphi _ { i _ { j } \\> L } ( x ) \\} , \\> \\delta \\geq d \\equiv \\sum _ { j = 1 } ^ { l } d ( \\varphi _ { i _ { j } \\> L } ) $", "$ \\delta = d $", "$ N _ { \\delta } \\{ \\prod _ { j = 1 } ^ { l } \\varphi _ { i _ { j } \\> L } ( x ) \\} $", "$ ( : \\prod _ { j = 1 } ^ { l } \\varphi _ { i _ { j } } ( x ) : ) _ { g L } $", "\\begin{equation*} i ^ { m } T _ { \\theta L _ { 0 } } ( ( \\theta L _ { 1 } ) ^ { \\otimes m } \\otimes f ^ { \\otimes l } ) = \\frac { \\partial ^ { m } } { \\partial \\epsilon ^ { m } } \\vert _ { \\epsilon = 0 } \\frac { \\partial ^ { l } } { i ^ { l } \\partial \\lambda ^ { l } } \\vert _ { \\lambda = 0 } S _ { \\theta L _ { 0 } } ( \\theta \\epsilon L _ { 1 } + \\lambda f ) . \\end{equation*}", "\\begin{equation*} \\frac { d ^ { m } } { d \\epsilon ^ { m } } \\vert _ { \\epsilon = 0 } \\underset { \\theta \\rightarrow 1 } { \\operatorname { l i m } } ( \\Omega , T _ { \\theta ( L _ { 0 } + \\epsilon L _ { 1 } ) } ( f ^ { \\otimes l } ) \\Omega ) = i ^ { m } \\underset { \\theta \\rightarrow 1 } { \\operatorname { l i m } } ( \\Omega , T _ { \\theta L _ { 0 } } ( ( \\theta L _ { 1 } ) ^ { \\otimes m } \\otimes f ^ { \\otimes l } ) \\Omega ) \\end{equation*}", "\\begin{equation*} \\underset { \\theta \\rightarrow 1 } { \\operatorname { l i m } } ( \\Omega , S _ { \\theta ( L _ { 0 } + \\epsilon L _ { 1 } ) } ( \\lambda f ) \\Omega ) = \\underset { \\theta \\rightarrow 1 } { \\operatorname { l i m } } ( \\Omega , S _ { \\theta L _ { 0 } } ( \\theta \\epsilon L _ { 1 } + \\lambda f ) \\Omega ) . \\end{equation*}", "\\begin{equation*} \\underset { \\theta \\rightarrow 1 } { \\operatorname { l i m } } ( \\Omega , S _ { \\theta L } ( f ) \\Omega ) = \\underset { \\theta \\rightarrow 1 } { \\operatorname { l i m } } \\frac { ( \\Omega , S ( \\theta L + f ) \\Omega ) } { ( \\Omega , S ( \\theta L ) \\Omega ) } , \\end{equation*}", "\\begin{align*} ( \\Omega , S _ { \\theta L } ( f ) \\Omega ) & = & ( S ( \\theta L ) \\Omega , ( P _ { \\Omega } + P _ { \\Omega } ^ { \\bot } ) S ( \\theta L + f ) \\Omega ) \\\\ & = & \\frac { ( \\Omega , S ( \\theta L + f ) \\Omega ) } { ( \\Omega , S ( \\theta L ) \\Omega ) } \\cdot \\vert ( \\Omega , S ( \\theta L ) \\Omega ) \\vert ^ { 2 } \\\\ & + & ( \\Omega , S ( \\theta L ) ^ { - 1 } P _ { \\Omega } ^ { \\bot } S ( \\theta L + f ) \\Omega ) \\end{align*}" ], "latex_expand": [ "$ \\mitm $", "$ \\mitepsilon $", "$ ( \\mittheta \\mitL _ { 1 } ) ^ { \\otimes \\mitm } $", "$ ( \\mittheta \\mitL _ { 1 } ) ^ { \\otimes \\mitm } $", "$ \\mitL _ { 0 } $", "$ \\mitL _ { 1 } $", "$ \\mathrm { d i m } ( \\mitL _ { \\mitj } ) = 4 $", "$ \\mathrm { d i m } ( \\mitL _ { \\mitj } ) < 4 $", "$ \\mitL _ { \\mitj } $", "$ \\mathrm { d i m } ( \\mitL _ { \\mitj } ) = 4 $", "$ \\mathrm { s d } ( \\mitt _ { 0 } ) \\leq \\mathrm { s d } ( \\mitt ) \\leq 4 \\mitn - \\mitb $", "$ \\mitb $", "$ \\mitL _ { \\mitj } $", "$ 4 $", "$ \\mitm , \\mitl \\in \\BbbN _ { 0 } $", "$ \\frac { \\mitpartial ^ { \\mitm } } { \\mitpartial \\mitepsilon ^ { \\mitm } } $", "$ \\frac { \\mitpartial ^ { \\mitl } } { \\mitpartial \\mitlambda ^ { \\mitl } } $", "$ \\mittheta \\rightarrow 1 $", "$ \\mitP _ { \\mupOmega } $", "$ \\mupOmega $", "$ \\mitP _ { \\mupOmega } ^ { \\bot } \\, \\overset { \\mathrm { d e f } } { = } \\, 1 - \\mitP _ { \\mupOmega } $", "$ \\mitS ( \\mittheta \\mitL ) ^ { \\ast } = \\mitS ( \\mittheta \\mitL ) ^ { - 1 } $", "$ \\mitN _ { \\mitdelta } \\{ \\prod _ { \\mitj = 1 } ^ { \\mitl } \\mitvarphi _ { \\miti _ { \\mitj } \\> \\mitL } ( \\mitx ) \\} , \\> \\mitdelta \\geq \\mitd \\equiv \\sum _ { \\mitj = 1 } ^ { \\mitl } \\mitd ( \\mitvarphi _ { \\miti _ { \\mitj } \\> \\mitL } ) $", "$ \\mitdelta = \\mitd $", "$ \\mitN _ { \\mitdelta } \\{ \\prod _ { \\mitj = 1 } ^ { \\mitl } \\mitvarphi _ { \\miti _ { \\mitj } \\> \\mitL } ( \\mitx ) \\} $", "$ ( : \\prod _ { \\mitj = 1 } ^ { \\mitl } \\mitvarphi _ { \\miti _ { \\mitj } } ( \\mitx ) : ) _ { \\mitg \\mitL } $", "\\begin{equation*} \\miti ^ { \\mitm } \\mitT _ { \\mittheta \\mitL _ { 0 } } ( ( \\mittheta \\mitL _ { 1 } ) ^ { \\otimes \\mitm } \\otimes \\mitf ^ { \\otimes \\mitl } ) = \\frac { \\mitpartial ^ { \\mitm } } { \\mitpartial \\mitepsilon ^ { \\mitm } } \\vert _ { \\mitepsilon = 0 } \\frac { \\mitpartial ^ { \\mitl } } { \\miti ^ { \\mitl } \\mitpartial \\mitlambda ^ { \\mitl } } \\vert _ { \\mitlambda = 0 } \\mitS _ { \\mittheta \\mitL _ { 0 } } ( \\mittheta \\mitepsilon \\mitL _ { 1 } + \\mitlambda \\mitf ) . \\end{equation*}", "\\begin{equation*} \\frac { \\mitd ^ { \\mitm } } { \\mitd \\mitepsilon ^ { \\mitm } } \\vert _ { \\mitepsilon = 0 } \\underset { \\mittheta \\rightarrow 1 } { \\operatorname { l i m } } \\Big ( \\mupOmega , \\mitT _ { \\mittheta ( \\mitL _ { 0 } + \\mitepsilon \\mitL _ { 1 } ) } ( \\mitf ^ { \\otimes \\mitl } ) \\mupOmega \\Big ) = \\miti ^ { \\mitm } \\underset { \\mittheta \\rightarrow 1 } { \\operatorname { l i m } } \\Big ( \\mupOmega , \\mitT _ { \\mittheta \\mitL _ { 0 } } ( ( \\mittheta \\mitL _ { 1 } ) ^ { \\otimes \\mitm } \\otimes \\mitf ^ { \\otimes \\mitl } ) \\mupOmega \\Big ) \\end{equation*}", "\\begin{equation*} \\underset { \\mittheta \\rightarrow 1 } { \\operatorname { l i m } } \\Big ( \\mupOmega , \\mitS _ { \\mittheta ( \\mitL _ { 0 } + \\mitepsilon \\mitL _ { 1 } ) } ( \\mitlambda \\mitf ) \\mupOmega \\Big ) = \\underset { \\mittheta \\rightarrow 1 } { \\operatorname { l i m } } \\Big ( \\mupOmega , \\mitS _ { \\mittheta \\mitL _ { 0 } } ( \\mittheta \\mitepsilon \\mitL _ { 1 } + \\mitlambda \\mitf ) \\mupOmega \\Big ) . \\end{equation*}", "\\begin{equation*} \\underset { \\mittheta \\rightarrow 1 } { \\operatorname { l i m } } ( \\mupOmega , \\mitS _ { \\mittheta \\mitL } ( \\mitf ) \\mupOmega ) = \\underset { \\mittheta \\rightarrow 1 } { \\operatorname { l i m } } \\frac { ( \\mupOmega , \\mitS ( \\mittheta \\mitL + \\mitf ) \\mupOmega ) } { ( \\mupOmega , \\mitS ( \\mittheta \\mitL ) \\mupOmega ) } , \\end{equation*}", "\\begin{align*} ( \\mupOmega , \\mitS _ { \\mittheta \\mitL } ( \\mitf ) \\mupOmega ) & = & ( \\mitS ( \\mittheta \\mitL ) \\mupOmega , ( \\mitP _ { \\mupOmega } + \\mitP _ { \\mupOmega } ^ { \\bot } ) \\mitS ( \\mittheta \\mitL + \\mitf ) \\mupOmega ) \\\\ & = & \\frac { ( \\mupOmega , \\mitS ( \\mittheta \\mitL + \\mitf ) \\mupOmega ) } { ( \\mupOmega , \\mitS ( \\mittheta \\mitL ) \\mupOmega ) } \\cdot \\vert ( \\mupOmega , \\mitS ( \\mittheta \\mitL ) \\mupOmega ) \\vert ^ { 2 } \\\\ & + & ( \\mupOmega , \\mitS ( \\mittheta \\mitL ) ^ { - 1 } \\mitP _ { \\mupOmega } ^ { \\bot } \\mitS ( \\mittheta \\mitL + \\mitf ) \\mupOmega ) \\end{align*}" ], "x_min": [ 0.5631999969482422, 0.24330000579357147, 0.49480000138282776, 0.7070000171661377, 0.4706000089645386, 0.5245000123977661, 0.6924999952316284, 0.25850000977516174, 0.47749999165534973, 0.4174000024795532, 0.600600004196167, 0.5895000100135803, 0.6371999979019165, 0.29789999127388, 0.25850000977516174, 0.44850000739097595, 0.51419997215271, 0.2093999981880188, 0.2750999927520752, 0.5825999975204468, 0.6337000131607056, 0.2093999981880188, 0.2093999981880188, 0.5569999814033508, 0.2093999981880188, 0.5002999901771545, 0.27160000801086426, 0.23149999976158142, 0.29030001163482666, 0.3449000120162964, 0.30410000681877136 ], "y_min": [ 0.17139999568462372, 0.18549999594688416, 0.18119999766349792, 0.18119999766349792, 0.26269999146461487, 0.26269999146461487, 0.2621999979019165, 0.27639999985694885, 0.2768999934196472, 0.2904999852180481, 0.30469998717308044, 0.31929999589920044, 0.33399999141693115, 0.34860000014305115, 0.447299987077713, 0.4961000084877014, 0.49459999799728394, 0.5127000212669373, 0.6958000063896179, 0.6958000063896179, 0.6898999810218811, 0.7080000042915344, 0.8105000257492065, 0.8130000233650208, 0.8252000212669373, 0.8252000212669373, 0.21140000224113464, 0.40230000019073486, 0.46140000224113464, 0.638700008392334, 0.7226999998092651 ], "x_max": [ 0.5784000158309937, 0.250900000333786, 0.5583999752998352, 0.7706000208854675, 0.49000000953674316, 0.5439000129699707, 0.7829999923706055, 0.35109999775886536, 0.49619999527931213, 0.5099999904632568, 0.763700008392334, 0.597100019454956, 0.6559000015258789, 0.3068999946117401, 0.326200008392334, 0.47749999165534973, 0.5390999913215637, 0.25290000438690186, 0.2971999943256378, 0.5950000286102295, 0.7332000136375427, 0.34619998931884766, 0.49000000953674316, 0.5935999751091003, 0.33169999718666077, 0.6219000220298767, 0.7283999919891357, 0.767799973487854, 0.7070000171661377, 0.6489999890327454, 0.6931999921798706 ], "y_max": [ 0.17730000615119934, 0.19140000641345978, 0.19439999759197235, 0.19439999759197235, 0.2734000086784363, 0.2734000086784363, 0.27489998936653137, 0.2890999913215637, 0.2890999913215637, 0.30320000648498535, 0.31690001487731934, 0.3280999958515167, 0.3456999957561493, 0.35690000653266907, 0.4580000042915344, 0.5116999745368958, 0.5116999745368958, 0.5214999914169312, 0.7060999870300293, 0.7045999765396118, 0.7074999809265137, 0.7211999893188477, 0.8246999979019165, 0.8202999830245972, 0.8393999934196472, 0.8393999934196472, 0.24120000004768372, 0.43160000443458557, 0.4878000020980835, 0.6704000234603882, 0.79339998960495 ], "expr_type": [ "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "isolated", "isolated", "isolated", "isolated", "isolated" ] }
0001129_page23
{ "latex": [ "$(\\Omega ,S(\\theta {\\cal L})^{-1}P_\\Omega ^\\bot S(\\theta {\\cal L}+f)\\Omega )$", "$S(\\theta {\\cal L})^{-1}$", "$S(\\theta {\\cal L}+f)$", "$(\\Omega ,S(\\theta {\\cal L})^{-1}\\Omega )\\break (\\Omega , S(\\theta {\\cal L}+f)\\Omega )$", "$(\\Omega ,S(\\theta {\\cal L})^{-1}\\Omega )\\break (\\Omega , S(\\theta {\\cal L}+f)\\Omega )$", "$f=0$", "${\\cal L}_0$", "${\\cal L}_1$", "${\\rm dim}({\\cal L}_j)\\leq 4$", "${\\rm dim}({\\cal L}_j)\\leq 4$", "$4$", "$\\quad \\w $", "${\\cal L}_0$", "${\\cal L}_1$", "$\\lambda _1,...,\\lambda _s$", "${\\cal L}(x)=\\sum _ia_i(\\lambda _1, ...,\\lambda _s){\\cal L}_i(x),\\>{\\cal L}_i\\in {\\cal V}$", "${\\cal D}(\\RR ^4,{\\cal V})$", "${\\cal L}$", "\\begin {eqnarray} 1&=&(\\Omega ,S(\\theta {\\cal L})^{-1}(P_\\Omega +P_\\Omega ^\\bot )S(\\theta {\\cal L}) \\Omega )\\\\ &=&|(\\Omega ,S(\\theta {\\cal L})\\Omega )|^2+ (\\Omega ,S(\\theta {\\cal L})^{-1}P_\\Omega ^\\bot S(\\theta {\\cal L})\\Omega ). \\end {eqnarray}", "\\begin {equation} \\lim _{\\theta \\to 1}(\\Omega ,S(\\theta {\\cal L})^{-1}P_\\Omega ^\\bot S(\\theta {\\cal L}+f)\\Omega )=0.\\label {gml3} \\end {equation}", "\\begin {equation} \\lim _{\\theta \\to 1}\\frac {(\\Omega ,S(\\theta ({\\cal L}_0+\\epsilon {\\cal L}_1) +\\lambda f)\\Omega )} {(\\Omega ,S(\\theta ({\\cal L}_0+\\epsilon {\\cal L}_1))\\Omega )} =\\lim _{\\theta \\to 1}\\frac {(\\Omega ,S(\\theta ({\\cal L}_0+\\epsilon {\\cal L}_1) +\\lambda f)\\Omega )} {(\\Omega ,S(\\theta {\\cal L}_0)\\Omega )}.\\label {gml4} \\end {equation}", "\\begin {equation} \\lim _{\\theta \\to 1}\\frac {(\\Omega ,S(\\theta ({\\cal L}_0+\\epsilon {\\cal L}_1)) \\Omega )}{(\\Omega ,S(\\theta {\\cal L}_0)\\Omega )}=1.\\label {gml5} \\end {equation}", "\\begin {equation} \\lim _{\\theta \\to 1}(\\Omega ,S(\\theta {\\cal L}_0)\\Omega )=1,\\quad \\quad \\lim _{\\theta \\to 1}(\\Omega ,S(\\theta ({\\cal L}_0+\\epsilon {\\cal L}_1))\\Omega )=1. \\end {equation}", "\\begin {equation} \\lim _{\\theta \\to 1}\\Bigl (\\Omega ,S_{\\theta ({\\cal L}_0+\\epsilon {\\cal L}_1)} (\\lambda f)\\Omega \\Bigr )=\\lim _{\\theta \\to 1}\\frac {\\Bigl (\\Omega ,S_{\\theta {\\cal L}_0}(\\theta \\epsilon {\\cal L}_1+\\lambda f) \\Omega \\Bigr )}{\\Bigl (\\Omega ,S_{\\theta {\\cal L}_0}(\\theta \\epsilon {\\cal L}_1) \\Omega \\Bigr )}\\label {Q7} \\end {equation}" ], "latex_norm": [ "$ ( \\Omega , S ( \\theta L ) ^ { - 1 } P _ { \\Omega } ^ { \\bot } S ( \\theta L + f ) \\Omega ) $", "$ S ( \\theta L ) ^ { - 1 } $", "$ S ( \\theta L + f ) $", "$ ( \\Omega , S ( \\theta L ) ^ { - 1 } \\Omega ) \\\\ ( \\Omega , S ( \\theta L + f ) \\Omega ) $", "$ ( \\Omega , S ( \\theta L ) ^ { - 1 } \\Omega ) \\\\ ( \\Omega , S ( \\theta L + f ) \\Omega ) $", "$ f = 0 $", "$ L _ { 0 } $", "$ L _ { 1 } $", "$ d i m ( L _ { j } ) \\leq 4 $", "$ d i m ( L _ { j } ) \\leq 4 $", "$ 4 $", "$ \\quad \\square $", "$ L _ { 0 } $", "$ L _ { 1 } $", "$ \\lambda _ { 1 } , . . . , \\lambda _ { s } $", "$ L ( x ) = \\sum _ { i } a _ { i } ( \\lambda _ { 1 } , . . . , \\lambda _ { s } ) L _ { i } ( x ) , \\> L _ { i } \\in V $", "$ D ( R ^ { 4 } , V ) $", "$ L $", "\\begin{align*} 1 & = & ( \\Omega , S ( \\theta L ) ^ { - 1 } ( P _ { \\Omega } + P _ { \\Omega } ^ { \\bot } ) S ( \\theta L ) \\Omega ) \\\\ & = & \\vert ( \\Omega , S ( \\theta L ) \\Omega ) \\vert ^ { 2 } + ( \\Omega , S ( \\theta L ) ^ { - 1 } P _ { \\Omega } ^ { \\bot } S ( \\theta L ) \\Omega ) . \\end{align*}", "\\begin{equation*} \\underset { \\theta \\rightarrow 1 } { \\operatorname { l i m } } ( \\Omega , S ( \\theta L ) ^ { - 1 } P _ { \\Omega } ^ { \\bot } S ( \\theta L + f ) \\Omega ) = 0 . \\end{equation*}", "\\begin{equation*} \\underset { \\theta \\rightarrow 1 } { \\operatorname { l i m } } \\frac { ( \\Omega , S ( \\theta ( L _ { 0 } + \\epsilon L _ { 1 } ) + \\lambda f ) \\Omega ) } { ( \\Omega , S ( \\theta ( L _ { 0 } + \\epsilon L _ { 1 } ) ) \\Omega ) } = \\underset { \\theta \\rightarrow 1 } { \\operatorname { l i m } } \\frac { ( \\Omega , S ( \\theta ( L _ { 0 } + \\epsilon L _ { 1 } ) + \\lambda f ) \\Omega ) } { ( \\Omega , S ( \\theta L _ { 0 } ) \\Omega ) } . \\end{equation*}", "\\begin{equation*} \\underset { \\theta \\rightarrow 1 } { \\operatorname { l i m } } \\frac { ( \\Omega , S ( \\theta ( L _ { 0 } + \\epsilon L _ { 1 } ) ) \\Omega ) } { ( \\Omega , S ( \\theta L _ { 0 } ) \\Omega ) } = 1 . \\end{equation*}", "\\begin{equation*} \\underset { \\theta \\rightarrow 1 } { \\operatorname { l i m } } ( \\Omega , S ( \\theta L _ { 0 } ) \\Omega ) = 1 , \\quad \\quad \\underset { \\theta \\rightarrow 1 } { \\operatorname { l i m } } ( \\Omega , S ( \\theta ( L _ { 0 } + \\epsilon L _ { 1 } ) ) \\Omega ) = 1 . \\end{equation*}", "\\begin{equation*} \\underset { \\theta \\rightarrow 1 } { \\operatorname { l i m } } ( \\Omega , S _ { \\theta ( L _ { 0 } + \\epsilon L _ { 1 } ) } ( \\lambda f ) \\Omega ) = \\underset { \\theta \\rightarrow 1 } { \\operatorname { l i m } } \\frac { ( \\Omega , S _ { \\theta L _ { 0 } } ( \\theta \\epsilon L _ { 1 } + \\lambda f ) \\Omega ) } { ( \\Omega , S _ { \\theta L _ { 0 } } ( \\theta \\epsilon L _ { 1 } ) \\Omega ) } \\end{equation*}" ], "latex_expand": [ "$ ( \\mupOmega , \\mitS ( \\mittheta \\mitL ) ^ { - 1 } \\mitP _ { \\mupOmega } ^ { \\bot } \\mitS ( \\mittheta \\mitL + \\mitf ) \\mupOmega ) $", "$ \\mitS ( \\mittheta \\mitL ) ^ { - 1 } $", "$ \\mitS ( \\mittheta \\mitL + \\mitf ) $", "$ ( \\mupOmega , \\mitS ( \\mittheta \\mitL ) ^ { - 1 } \\mupOmega ) \\\\ ( \\mupOmega , \\mitS ( \\mittheta \\mitL + \\mitf ) \\mupOmega ) $", "$ ( \\mupOmega , \\mitS ( \\mittheta \\mitL ) ^ { - 1 } \\mupOmega ) \\\\ ( \\mupOmega , \\mitS ( \\mittheta \\mitL + \\mitf ) \\mupOmega ) $", "$ \\mitf = 0 $", "$ \\mitL _ { 0 } $", "$ \\mitL _ { 1 } $", "$ \\mathrm { d i m } ( \\mitL _ { \\mitj } ) \\leq 4 $", "$ \\mathrm { d i m } ( \\mitL _ { \\mitj } ) \\leq 4 $", "$ 4 $", "$ \\quad \\square $", "$ \\mitL _ { 0 } $", "$ \\mitL _ { 1 } $", "$ \\mitlambda _ { 1 } , . . . , \\mitlambda _ { \\mits } $", "$ \\mitL ( \\mitx ) = \\sum _ { \\miti } \\mita _ { \\miti } ( \\mitlambda _ { 1 } , . . . , \\mitlambda _ { \\mits } ) \\mitL _ { \\miti } ( \\mitx ) , \\> \\mitL _ { \\miti } \\in \\mitV $", "$ \\mitD ( \\BbbR ^ { 4 } , \\mitV ) $", "$ \\mitL $", "\\begin{align*} 1 & = & ( \\mupOmega , \\mitS ( \\mittheta \\mitL ) ^ { - 1 } ( \\mitP _ { \\mupOmega } + \\mitP _ { \\mupOmega } ^ { \\bot } ) \\mitS ( \\mittheta \\mitL ) \\mupOmega ) \\\\ & = & \\vert ( \\mupOmega , \\mitS ( \\mittheta \\mitL ) \\mupOmega ) \\vert ^ { 2 } + ( \\mupOmega , \\mitS ( \\mittheta \\mitL ) ^ { - 1 } \\mitP _ { \\mupOmega } ^ { \\bot } \\mitS ( \\mittheta \\mitL ) \\mupOmega ) . \\end{align*}", "\\begin{equation*} \\underset { \\mittheta \\rightarrow 1 } { \\operatorname { l i m } } ( \\mupOmega , \\mitS ( \\mittheta \\mitL ) ^ { - 1 } \\mitP _ { \\mupOmega } ^ { \\bot } \\mitS ( \\mittheta \\mitL + \\mitf ) \\mupOmega ) = 0 . \\end{equation*}", "\\begin{equation*} \\underset { \\mittheta \\rightarrow 1 } { \\operatorname { l i m } } \\frac { ( \\mupOmega , \\mitS ( \\mittheta ( \\mitL _ { 0 } + \\mitepsilon \\mitL _ { 1 } ) + \\mitlambda \\mitf ) \\mupOmega ) } { ( \\mupOmega , \\mitS ( \\mittheta ( \\mitL _ { 0 } + \\mitepsilon \\mitL _ { 1 } ) ) \\mupOmega ) } = \\underset { \\mittheta \\rightarrow 1 } { \\operatorname { l i m } } \\frac { ( \\mupOmega , \\mitS ( \\mittheta ( \\mitL _ { 0 } + \\mitepsilon \\mitL _ { 1 } ) + \\mitlambda \\mitf ) \\mupOmega ) } { ( \\mupOmega , \\mitS ( \\mittheta \\mitL _ { 0 } ) \\mupOmega ) } . \\end{equation*}", "\\begin{equation*} \\underset { \\mittheta \\rightarrow 1 } { \\operatorname { l i m } } \\frac { ( \\mupOmega , \\mitS ( \\mittheta ( \\mitL _ { 0 } + \\mitepsilon \\mitL _ { 1 } ) ) \\mupOmega ) } { ( \\mupOmega , \\mitS ( \\mittheta \\mitL _ { 0 } ) \\mupOmega ) } = 1 . \\end{equation*}", "\\begin{equation*} \\underset { \\mittheta \\rightarrow 1 } { \\operatorname { l i m } } ( \\mupOmega , \\mitS ( \\mittheta \\mitL _ { 0 } ) \\mupOmega ) = 1 , \\quad \\quad \\underset { \\mittheta \\rightarrow 1 } { \\operatorname { l i m } } ( \\mupOmega , \\mitS ( \\mittheta ( \\mitL _ { 0 } + \\mitepsilon \\mitL _ { 1 } ) ) \\mupOmega ) = 1 . \\end{equation*}", "\\begin{equation*} \\underset { \\mittheta \\rightarrow 1 } { \\operatorname { l i m } } \\Big ( \\mupOmega , \\mitS _ { \\mittheta ( \\mitL _ { 0 } + \\mitepsilon \\mitL _ { 1 } ) } ( \\mitlambda \\mitf ) \\mupOmega \\Big ) = \\underset { \\mittheta \\rightarrow 1 } { \\operatorname { l i m } } \\frac { \\Big ( \\mupOmega , \\mitS _ { \\mittheta \\mitL _ { 0 } } ( \\mittheta \\mitepsilon \\mitL _ { 1 } + \\mitlambda \\mitf ) \\mupOmega \\Big ) } { \\Big ( \\mupOmega , \\mitS _ { \\mittheta \\mitL _ { 0 } } ( \\mittheta \\mitepsilon \\mitL _ { 1 } ) \\mupOmega \\Big ) } \\end{equation*}" ], "x_min": [ 0.22869999706745148, 0.7249000072479248, 0.2425999939441681, 0.6807000041007996, 0.2093999981880188, 0.46720001101493835, 0.4781999886035919, 0.5321000218391418, 0.7096999883651733, 0.2093999981880188, 0.43540000915527344, 0.5449000000953674, 0.5695000290870667, 0.626800000667572, 0.5085999965667725, 0.3109999895095825, 0.64410001039505, 0.5099999904632568, 0.3158000111579895, 0.3628000020980835, 0.23499999940395355, 0.3849000036716461, 0.29089999198913574, 0.2888999879360199 ], "y_min": [ 0.22220000624656677, 0.22269999980926514, 0.23729999363422394, 0.23680000007152557, 0.25099998712539673, 0.323199987411499, 0.4771000146865845, 0.4771000146865845, 0.47609999775886536, 0.490200012922287, 0.4916999936103821, 0.5882999897003174, 0.6025000214576721, 0.6025000214576721, 0.7426999807357788, 0.7562999725341797, 0.7554000020027161, 0.7714999914169312, 0.1729000061750412, 0.2865999937057495, 0.35839998722076416, 0.42289999127388, 0.5580999851226807, 0.6230000257492065 ], "x_max": [ 0.42910000681877136, 0.7878000140190125, 0.31790000200271606, 0.7906000018119812, 0.326200008392334, 0.5087000131607056, 0.498199999332428, 0.5521000027656555, 0.7918999791145325, 0.2184000015258789, 0.44440001249313354, 0.5566999912261963, 0.5889000296592712, 0.6462000012397766, 0.5722000002861023, 0.5929999947547913, 0.7098000049591064, 0.5224000215530396, 0.6814000010490417, 0.6337000131607056, 0.7235999703407288, 0.6122999787330627, 0.7062000036239624, 0.7077000141143799 ], "y_max": [ 0.23589999973773956, 0.23589999973773956, 0.25, 0.25, 0.26420000195503235, 0.3343999981880188, 0.48739999532699585, 0.48739999532699585, 0.4887999892234802, 0.5029000043869019, 0.5, 0.5965999960899353, 0.6128000020980835, 0.6128000020980835, 0.7538999915122986, 0.7695000171661377, 0.7685999870300293, 0.7803000211715698, 0.21040000021457672, 0.3100000023841858, 0.39010000228881836, 0.4546000063419342, 0.5795999765396118, 0.6728000044822693 ], "expr_type": [ "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "isolated", "isolated", "isolated", "isolated", "isolated", "isolated" ] }
0001129_page24
{ "latex": [ "$t\\in {\\cal D}'(\\RR ^d)$", "$x$", "$f\\in {\\cal D}(\\RR ^4)$", "$f(x)\\not = 0$", "$ft\\in {\\cal D}' (\\RR ^d)$", "$x$", "$ft$", "$\\widehat {ft}$", "${\\cal C}^\\infty $", "$\\widehat {ft}$", "$ft$", "$x$", "$g$", "$k\\in \\RR ^d\\setminus \\{0\\}$", "$C$", "$k\\in C$", "${\\rm sup}_{k'\\in C}\\> |k'|^N|g(k')|<\\infty $", "$N\\in {\\bf N}$", "${\\rm WF}(t)$", "$t\\in {\\cal D}'(\\RR ^d)$", "$(x,k)\\in \\RR ^d \\times \\RR ^d\\setminus \\{0\\}$", "$\\widehat {ft}$", "$k$", "$f\\in {\\cal D}(\\RR ^d)$", "$f(x)\\not = 0$", "$\\widehat {f\\delta }(k)=f(0)$", "${\\rm WF}(\\delta )=\\{0\\}\\times \\RR ^d\\setminus \\{0\\}$", "${\\rm WF}(\\delta )=\\{0\\}\\times \\RR ^d\\setminus \\{0\\}$", "$t$", "$t$", "$t$", "$s$", "$x$", "$f\\in {\\cal D}(\\RR ^d)$", "$f(x)\\not = 0$", "$(ft)$", "$(fs)$", "$x$", "$(ft)(y)(fs)(y)$", "$\\int dk\\,\\widehat {(ft)}(p-k)\\widehat {(fs)}(k)$", "$k_1+k_2\\not =0$", "$k_1,k_2$", "$(x,k_1)\\in {\\rm WF}(t)$", "$(x,k_2)\\in {\\rm WF}(s)$", "$t,s\\in {\\cal D}'(\\RR ^d)$", "$(ts)\\in {\\cal D}'(\\RR ^d)$", "$(\\varphi ^{\\otimes n})_\\hbar (t)$", "$(t\\otimes _{k, \\hbar } s)$", "\\begin {equation} t\\> {\\rm is\\> singular\\>at}\\>x\\quad \\Longleftrightarrow \\quad \\exists k\\in \\RR ^d\\setminus \\{0\\}\\>{\\rm with}\\>(x,k)\\in {\\rm WF}(t).\\nonumber \\end {equation}", "\\begin {equation} {\\rm WF}(\\Delta _+)=\\{(x,k)\\>|\\>x^2=0,\\,k^2=0,\\,x\\| k,\\,k_0>0\\}.\\label {A1} \\end {equation}", "\\begin {equation} \\{(x,k_1+k_2)\\>|\\>(x,k_1)\\in {\\rm WF}(t)\\wedge (x,k_2)\\in {\\rm WF}(s)\\}\\> \\cap \\>(\\RR ^d\\times \\{0\\})=\\emptyset .\\label {A2} \\end {equation}" ], "latex_norm": [ "$ t \\in D ^ { \\prime } ( R ^ { d } ) $", "$ x $", "$ f \\in D ( R ^ { 4 } ) $", "$ f ( x ) \\ne 0 $", "$ f t \\in D ^ { \\prime } ( R ^ { d } ) $", "$ x $", "$ f t $", "$ \\hat { f t } $", "$ C ^ { \\infty } $", "$ \\hat { f t } $", "$ f t $", "$ x $", "$ g $", "$ k \\in R ^ { d } \\setminus \\{ 0 \\} $", "$ C $", "$ k \\in C $", "$ { s u p } _ { k ^ { \\prime } \\in C } \\> \\vert k ^ { \\prime } \\vert ^ { N } \\vert g ( k ^ { \\prime } ) \\vert < \\infty $", "$ N \\in N $", "$ W F ( t ) $", "$ t \\in D ^ { \\prime } ( R ^ { d } ) $", "$ ( x , k ) \\in R ^ { d } \\times R ^ { d } \\setminus \\{ 0 \\} $", "$ \\hat { f t } $", "$ k $", "$ f \\in D ( R ^ { d } ) $", "$ f ( x ) \\ne 0 $", "$ \\hat { f \\delta } ( k ) = f ( 0 ) $", "$ W F ( \\delta ) = \\{ 0 \\} \\times R ^ { d } \\setminus \\{ 0 \\} $", "$ W F ( \\delta ) = \\{ 0 \\} \\times R ^ { d } \\setminus \\{ 0 \\} $", "$ t $", "$ t $", "$ t $", "$ s $", "$ x $", "$ f \\in D ( R ^ { d } ) $", "$ f ( x ) \\ne 0 $", "$ ( f t ) $", "$ ( f s ) $", "$ x $", "$ ( f t ) ( y ) ( f s ) ( y ) $", "$ \\int d k \\, \\hat { ( f t ) } ( p - k ) \\hat { ( f s ) } ( k ) $", "$ k _ { 1 } + k _ { 2 } \\ne 0 $", "$ k _ { 1 } , k _ { 2 } $", "$ ( x , k _ { 1 } ) \\in W F ( t ) $", "$ ( x , k _ { 2 } ) \\in W F ( s ) $", "$ t , s \\in D ^ { \\prime } ( R ^ { d } ) $", "$ ( t s ) \\in D ^ { \\prime } ( R ^ { d } ) $", "$ ( \\varphi ^ { \\otimes n } ) _ { \\hbar } ( t ) $", "$ ( t \\otimes _ { k , \\hbar } s ) $", "\\begin{equation*} t \\> i s \\> s i n g u l a r \\> a t \\> x \\quad \\Longleftrightarrow \\quad \\exists k \\in R ^ { d } \\setminus \\{ 0 \\} \\> w i t h \\> ( x , k ) \\in W F ( t ) . \\end{equation*}", "\\begin{equation*} W F ( \\Delta _ { + } ) = \\{ ( x , k ) \\> \\vert \\> x ^ { 2 } = 0 , \\, k ^ { 2 } = 0 , \\, x \\Vert k , \\, k _ { 0 } > 0 \\} . \\end{equation*}", "\\begin{equation*} \\{ ( x , k _ { 1 } + k _ { 2 } ) \\> \\vert \\> ( x , k _ { 1 } ) \\in W F ( t ) \\wedge ( x , k _ { 2 } ) \\in W F ( s ) \\} \\> \\cap \\> ( R ^ { d } \\times \\{ 0 \\} ) = \\emptyset . \\end{equation*}" ], "latex_expand": [ "$ \\mitt \\in \\mitD ^ { \\prime } ( \\BbbR ^ { \\mitd } ) $", "$ \\mitx $", "$ \\mitf \\in \\mitD ( \\BbbR ^ { 4 } ) $", "$ \\mitf ( \\mitx ) \\ne 0 $", "$ \\mitf \\mitt \\in \\mitD ^ { \\prime } ( \\BbbR ^ { \\mitd } ) $", "$ \\mitx $", "$ \\mitf \\mitt $", "$ \\widehat { \\mitf \\mitt } $", "$ \\mitC ^ { \\infty } $", "$ \\widehat { \\mitf \\mitt } $", "$ \\mitf \\mitt $", "$ \\mitx $", "$ \\mitg $", "$ \\mitk \\in \\BbbR ^ { \\mitd } \\setminus \\{ 0 \\} $", "$ \\mitC $", "$ \\mitk \\in \\mitC $", "$ { \\mathrm { s u p } } _ { \\mitk ^ { \\prime } \\in \\mitC } \\> \\vert \\mitk ^ { \\prime } \\vert ^ { \\mitN } \\vert \\mitg ( \\mitk ^ { \\prime } ) \\vert < \\infty $", "$ \\mitN \\in \\mitN $", "$ \\mathrm { W F } ( \\mitt ) $", "$ \\mitt \\in \\mitD ^ { \\prime } ( \\BbbR ^ { \\mitd } ) $", "$ ( \\mitx , \\mitk ) \\in \\BbbR ^ { \\mitd } \\times \\BbbR ^ { \\mitd } \\setminus \\{ 0 \\} $", "$ \\widehat { \\mitf \\mitt } $", "$ \\mitk $", "$ \\mitf \\in \\mitD ( \\BbbR ^ { \\mitd } ) $", "$ \\mitf ( \\mitx ) \\ne 0 $", "$ \\widehat { \\mitf \\mitdelta } ( \\mitk ) = \\mitf ( 0 ) $", "$ \\mathrm { W F } ( \\mitdelta ) = \\{ 0 \\} \\times \\BbbR ^ { \\mitd } \\setminus \\{ 0 \\} $", "$ \\mathrm { W F } ( \\mitdelta ) = \\{ 0 \\} \\times \\BbbR ^ { \\mitd } \\setminus \\{ 0 \\} $", "$ \\mitt $", "$ \\mitt $", "$ \\mitt $", "$ \\mits $", "$ \\mitx $", "$ \\mitf \\in \\mitD ( \\BbbR ^ { \\mitd } ) $", "$ \\mitf ( \\mitx ) \\ne 0 $", "$ ( \\mitf \\mitt ) $", "$ ( \\mitf \\mits ) $", "$ \\mitx $", "$ ( \\mitf \\mitt ) ( \\mity ) ( \\mitf \\mits ) ( \\mity ) $", "$ \\int \\nolimits \\mitd \\mitk \\, \\widehat { ( \\mitf \\mitt ) } ( \\mitp - \\mitk ) \\widehat { ( \\mitf \\mits ) } ( \\mitk ) $", "$ \\mitk _ { 1 } + \\mitk _ { 2 } \\ne 0 $", "$ \\mitk _ { 1 } , \\mitk _ { 2 } $", "$ ( \\mitx , \\mitk _ { 1 } ) \\in \\mathrm { W F } ( \\mitt ) $", "$ ( \\mitx , \\mitk _ { 2 } ) \\in \\mathrm { W F } ( \\mits ) $", "$ \\mitt , \\mits \\in \\mitD ^ { \\prime } ( \\BbbR ^ { \\mitd } ) $", "$ ( \\mitt \\mits ) \\in \\mitD ^ { \\prime } ( \\BbbR ^ { \\mitd } ) $", "$ ( \\mitvarphi ^ { \\otimes \\mitn } ) _ { \\hslash } ( \\mitt ) $", "$ ( \\mitt \\otimes _ { \\mitk , \\hslash } \\mits ) $", "\\begin{equation*} \\mitt \\> \\mathrm { i s \\> s i n g u l a r \\> a t } \\> \\mitx \\quad \\Longleftrightarrow \\quad \\exists \\mitk \\in \\BbbR ^ { \\mitd } \\setminus \\{ 0 \\} \\> \\mathrm { w i t h } \\> ( \\mitx , \\mitk ) \\in \\mathrm { W F } ( \\mitt ) . \\end{equation*}", "\\begin{equation*} \\mathrm { W F } ( \\mupDelta _ { + } ) = \\{ ( \\mitx , \\mitk ) \\> \\vert \\> \\mitx ^ { 2 } = 0 , \\, \\mitk ^ { 2 } = 0 , \\, \\mitx \\Vert \\mitk , \\, \\mitk _ { 0 } > 0 \\} . \\end{equation*}", "\\begin{equation*} \\{ ( \\mitx , \\mitk _ { 1 } + \\mitk _ { 2 } ) \\> \\vert \\> ( \\mitx , \\mitk _ { 1 } ) \\in \\mathrm { W F } ( \\mitt ) \\wedge ( \\mitx , \\mitk _ { 2 } ) \\in \\mathrm { W F } ( \\mits ) \\} \\> \\cap \\> ( \\BbbR ^ { \\mitd } \\times \\{ 0 \\} ) = \\varnothing . \\end{equation*}" ], "x_min": [ 0.2646999955177307, 0.5273000001907349, 0.5992000102996826, 0.7193999886512756, 0.25290000438690186, 0.48030000925064087, 0.5273000001907349, 0.34549999237060547, 0.4000999927520752, 0.6448000073432922, 0.4000999927520752, 0.6855999827384949, 0.2750999927520752, 0.5957000255584717, 0.2881999909877777, 0.3449000120162964, 0.42640000581741333, 0.6614000201225281, 0.4657999873161316, 0.6399000287055969, 0.2937000095844269, 0.7027999758720398, 0.4318999946117401, 0.49480000138282776, 0.6158000230789185, 0.5612000226974487, 0.7186999917030334, 0.2093999981880188, 0.7809000015258789, 0.6198999881744385, 0.2639999985694885, 0.3075000047683716, 0.7422000169754028, 0.46230000257492065, 0.5935999751091003, 0.2093999981880188, 0.2791999876499176, 0.6876000165939331, 0.3779999911785126, 0.5791000127792358, 0.399399995803833, 0.5479999780654907, 0.6344000101089478, 0.2093999981880188, 0.35249999165534973, 0.4187999963760376, 0.2791999876499176, 0.4235999882221222, 0.2784999907016754, 0.31790000200271606, 0.22939999401569366 ], "y_min": [ 0.2705000042915344, 0.2754000127315521, 0.2709999978542328, 0.27149999141693115, 0.2847000062465668, 0.2896000146865845, 0.2865999937057495, 0.298799991607666, 0.30219998955726624, 0.298799991607666, 0.3163999915122986, 0.3197999894618988, 0.33399999141693115, 0.32910001277923584, 0.3452000021934509, 0.34470000863075256, 0.3433000147342682, 0.3452000021934509, 0.35839998722076416, 0.35740000009536743, 0.37299999594688416, 0.3716000020503998, 0.38920000195503235, 0.3871999979019165, 0.388700008392334, 0.40139999985694885, 0.40380001068115234, 0.41749998927116394, 0.4203999936580658, 0.43459999561309814, 0.5386000275611877, 0.5410000085830688, 0.5410000085830688, 0.5503000020980835, 0.5512999892234802, 0.5654000043869019, 0.5654000043869019, 0.5692999958992004, 0.5795999765396118, 0.5928000211715698, 0.611299991607666, 0.611299991607666, 0.61080002784729, 0.625, 0.6381999850273132, 0.6898999810218811, 0.7192000150680542, 0.7196999788284302, 0.45410001277923584, 0.5062999725341797, 0.6601999998092651 ], "x_max": [ 0.34279999136924744, 0.5370000004768372, 0.6758999824523926, 0.7829999923706055, 0.34139999747276306, 0.49000000953674316, 0.5439000129699707, 0.3621000051498413, 0.4242999851703644, 0.6614000201225281, 0.41670000553131104, 0.6952999830245972, 0.2840999960899353, 0.6855000257492065, 0.3019999861717224, 0.38839998841285706, 0.6075000166893005, 0.7124999761581421, 0.5134999752044678, 0.7179999947547913, 0.45750001072883606, 0.7193999886512756, 0.4415999948978424, 0.5722000002861023, 0.6794000267982483, 0.6593000292778015, 0.7885000109672546, 0.31790000200271606, 0.7878000140190125, 0.626800000667572, 0.27090001106262207, 0.3158000111579895, 0.7526000142097473, 0.5396999716758728, 0.6578999757766724, 0.23909999430179596, 0.3109999895095825, 0.6973000168800354, 0.48240000009536743, 0.7476999759674072, 0.48989999294281006, 0.5888000130653381, 0.7540000081062317, 0.3255000114440918, 0.4458000063896179, 0.5175999999046326, 0.35040000081062317, 0.49059998989105225, 0.7214999794960022, 0.6820999979972839, 0.7325000166893005 ], "y_max": [ 0.2842000126838684, 0.28130000829696655, 0.2842000126838684, 0.2842000126838684, 0.29840001463890076, 0.2955000102519989, 0.2973000109195709, 0.313400000333786, 0.3109999895095825, 0.313400000333786, 0.32760000228881836, 0.32519999146461487, 0.3418000042438507, 0.34279999136924744, 0.35350000858306885, 0.3540000021457672, 0.35749998688697815, 0.3540000021457672, 0.3711000084877014, 0.3711000084877014, 0.38670000433921814, 0.3862000107765198, 0.39800000190734863, 0.4009000062942505, 0.4009000062942505, 0.4169999957084656, 0.4169999957084656, 0.4311999976634979, 0.42820000648498535, 0.4424000084400177, 0.5464000105857849, 0.5464000105857849, 0.5464000105857849, 0.5640000104904175, 0.5640000104904175, 0.5781000256538391, 0.5781000256538391, 0.5752000212669373, 0.5922999978065491, 0.6098999977111816, 0.6225000023841858, 0.6225000023841858, 0.6230000257492065, 0.6371999979019165, 0.6514000296592712, 0.7035999894142151, 0.7318999767303467, 0.7324000000953674, 0.47119998931884766, 0.5234000086784363, 0.6777999997138977 ], "expr_type": [ "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "isolated", "isolated", "isolated" ] }
0001129_page26
{ "latex": [ "$S$", "$YM_4$", "$S$", "$\\Phi ^4$" ], "latex_norm": [ "$ S $", "$ Y M _ { 4 } $", "$ S $", "$ \\Phi ^ { 4 } $" ], "latex_expand": [ "$ \\mitS $", "$ \\mitY \\mitM _ { 4 } $", "$ \\mitS $", "$ \\mupPhi ^ { 4 } $" ], "x_min": [ 0.691100001335144, 0.6834999918937683, 0.42570000886917114, 0.5175999999046326 ], "y_min": [ 0.22849999368190765, 0.4569999873638153, 0.5458999872207642, 0.5439000129699707 ], "x_max": [ 0.7027999758720398, 0.72079998254776, 0.4374000132083893, 0.5375999808311462 ], "y_max": [ 0.23729999363422394, 0.4677000045776367, 0.5541999936103821, 0.5541999936103821 ], "expr_type": [ "embedded", "embedded", "embedded", "embedded" ] }
0001133_page01
{ "latex": [ "$^1$", "$^2$", "$^3$", "$^1$", "$^2$", "$^3$" ], "latex_norm": [ "$ { } ^ { 1 } $", "$ { } ^ { 2 } $", "$ { } ^ { 3 } $", "$ { } ^ { 1 } $", "$ { } ^ { 2 } $", "$ { } ^ { 3 } $" ], "latex_expand": [ "$ { } ^ { 1 } $", "$ { } ^ { 2 } $", "$ { } ^ { 3 } $", "$ { } ^ { 1 } $", "$ { } ^ { 2 } $", "$ { } ^ { 3 } $" ], "x_min": [ 0.4147000014781952, 0.5701000094413757, 0.7554000020027161, 0.29159998893737793, 0.26809999346733093, 0.2646999955177307 ], "y_min": [ 0.30219998955726624, 0.30219998955726624, 0.30219998955726624, 0.3407999873161316, 0.38960000872612, 0.43849998712539673 ], "x_max": [ 0.4244000017642975, 0.579800009727478, 0.7651000022888184, 0.29989999532699585, 0.27639999985694885, 0.27300000190734863 ], "y_max": [ 0.31679999828338623, 0.31679999828338623, 0.31679999828338623, 0.3529999852180481, 0.40130001306533813, 0.45019999146461487 ], "expr_type": [ "embedded", "embedded", "embedded", "embedded", "embedded", "embedded" ] }
0001133_page02
{ "latex": [ "$D=11$", "$N=1$", "$S^{1}/Z_{2}$", "$D=10$", "$N=1$", "$E_{8}$", "$D=4$", "$D=11$", "$N=1$", "$D=5$", "$N=1$", "$N=1$", "$E_{8}$", "$E_{8}$" ], "latex_norm": [ "$ D = 1 1 $", "$ N = 1 $", "$ S ^ { 1 } \\slash Z _ { 2 } $", "$ D = 1 0 $", "$ N = 1 $", "$ E _ { 8 } $", "$ D = 4 $", "$ D = 1 1 $", "$ N = 1 $", "$ D = 5 $", "$ N = 1 $", "$ N = 1 $", "$ E _ { 8 } $", "$ E _ { 8 } $" ], "latex_expand": [ "$ \\mitD = 1 1 $", "$ \\mitN = 1 $", "$ \\mitS ^ { 1 } \\slash \\mitZ _ { 2 } $", "$ \\mitD = 1 0 $", "$ \\mitN = 1 $", "$ \\mitE _ { 8 } $", "$ \\mitD = 4 $", "$ \\mitD = 1 1 $", "$ \\mitN = 1 $", "$ \\mitD = 5 $", "$ \\mitN = 1 $", "$ \\mitN = 1 $", "$ \\mitE _ { 8 } $", "$ \\mitE _ { 8 } $" ], "x_min": [ 0.41260001063346863, 0.4934000074863434, 0.7304999828338623, 0.120899997651577, 0.20589999854564667, 0.27639999985694885, 0.39250001311302185, 0.259799987077713, 0.3434999883174896, 0.2556999921798706, 0.32339999079704285, 0.5950000286102295, 0.8845999836921692, 0.7200999855995178 ], "y_min": [ 0.17970000207424164, 0.17970000207424164, 0.17820000648498535, 0.26899999380111694, 0.26899999380111694, 0.26899999380111694, 0.31349998712539673, 0.38670000433921814, 0.38670000433921814, 0.4311999976634979, 0.4311999976634979, 0.6542999744415283, 0.6542999744415283, 0.7437000274658203 ], "x_max": [ 0.48030000925064087, 0.5521000027656555, 0.7822999954223633, 0.19140000641345978, 0.26809999346733093, 0.29919999837875366, 0.446399986743927, 0.3296000063419342, 0.4050000011920929, 0.3109999895095825, 0.37940001487731934, 0.6496000289916992, 0.9081000089645386, 0.742900013923645 ], "y_max": [ 0.1899999976158142, 0.1899999976158142, 0.19329999387264252, 0.2793000042438507, 0.2793000042438507, 0.28119999170303345, 0.3237999975681305, 0.3970000147819519, 0.3970000147819519, 0.44190001487731934, 0.44190001487731934, 0.6646000146865845, 0.6669999957084656, 0.7563999891281128 ], "expr_type": [ "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded" ] }
0001133_page04
{ "latex": [ "$SU(n)$", "$SU(n)$", "$SU(n)\\times SU(m)$", "$m$" ], "latex_norm": [ "$ S U ( n ) $", "$ S U ( n ) $", "$ S U ( n ) \\times S U ( m ) $", "$ m $" ], "latex_expand": [ "$ \\mitS \\mitU ( \\mitn ) $", "$ \\mitS \\mitU ( \\mitn ) $", "$ \\mitS \\mitU ( \\mitn ) \\times \\mitS \\mitU ( \\mitm ) $", "$ \\mitm $" ], "x_min": [ 0.3019999861717224, 0.3939000070095062, 0.4788999855518341, 0.8188999891281128 ], "y_min": [ 0.4081999957561493, 0.8314999938011169, 0.8314999938011169, 0.8363999724388123 ], "x_max": [ 0.3580000102519989, 0.4499000012874603, 0.6177999973297119, 0.8361999988555908 ], "y_max": [ 0.4228000044822693, 0.8465999960899353, 0.8465999960899353, 0.8432000279426575 ], "expr_type": [ "embedded", "embedded", "embedded", "embedded" ] }
0001133_page05
{ "latex": [ "$X$", "$B$", "$\\pi : X\\to B$", "$\\pi ^{-1}(b)$", "$E_b$", "$b \\in B$", "$\\sigma : B\\to X$", "$b$", "$B$", "$\\sigma (b) \\in E_b$", "$\\sigma (b)$", "$E_b$", "$\\cp {2}$", "$(x,y,z)$", "$\\cp {2}$", "$g_2$", "$g_3$", "$(x,y,z)=(0,1,0)$", "$z \\cong 4x^3$", "$x \\longrightarrow 0$", "$X$", "$g_2$", "$g_3$", "$B$", "$\\cp {2}$", "$\\cp {2}$", "$P \\to B$", "$g_2$", "$g_3$", "$\\sigma (B)$", "$\\cL $", "$P = {\\mathbb P}({\\mathcal O}_{B}\\oplus \\cL ^{2} \\oplus \\cL ^{3})$", "${\\mathbb P}(M)$", "$M$", "${\\mathcal O}_{P}(1)$", "$P$", "${\\mathbb P}(\\cL ^{2}\\oplus \\cL ^{3}) \\subset P$", "$x,y,z$", "$\\cO _{P}(1)\\otimes \\cL ^2, \\cO _{P}(1)\\otimes \\cL ^3$", "$\\cO _{P}(1)$", "$g_2$", "$g_3$", "$\\cL ^4$", "$ \\cL ^6$", "$\\bX $", "$\\bY $", "$\\bZ $", "$X$", "$x=\\bX \\bZ $", "$y=\\bY $", "$z=\\bZ ^3$", "$\\bX ,\\bY ,\\bZ $", "$z$", "$x \\to 0$", "${\\mathcal O}_{P}(1)$", "$X$", "$\\cO _{X}(3\\sigma )$", "$\\bZ $", "${\\mathcal O}(\\sigma )$", "$z = \\bZ ^{3}$", "\\begin {equation} zy^2=4x^3-g_2xz^2-g_3z^3 \\label {eq:1} \\end {equation}", "\\begin {equation} \\bX \\sim \\cO (2\\sigma )\\otimes \\cL ^2 , \\qquad \\bY \\sim \\cO (3\\sigma )\\otimes \\cL ^3 , \\qquad \\bZ \\sim \\cO (\\sigma ) \\label {eq:3} \\end {equation}" ], "latex_norm": [ "$ X $", "$ B $", "$ \\pi : X \\rightarrow B $", "$ \\pi ^ { - 1 } ( b ) $", "$ E _ { b } $", "$ b \\in B $", "$ \\sigma : B \\rightarrow X $", "$ b $", "$ B $", "$ \\sigma ( b ) \\in E _ { b } $", "$ \\sigma ( b ) $", "$ E _ { b } $", "$ C P ^ { 2 } $", "$ ( x , y , z ) $", "$ C P ^ { 2 } $", "$ g _ { 2 } $", "$ g _ { 3 } $", "$ ( x , y , z ) = ( 0 , 1 , 0 ) $", "$ z \\cong 4 x ^ { 3 } $", "$ x \\longrightarrow 0 $", "$ X $", "$ g _ { 2 } $", "$ g _ { 3 } $", "$ B $", "$ C P ^ { 2 } $", "$ C P ^ { 2 } $", "$ P \\rightarrow B $", "$ g _ { 2 } $", "$ g _ { 3 } $", "$ \\sigma ( B ) $", "$ L $", "$ P = P ( O _ { B } \\oplus L ^ { 2 } \\oplus L ^ { 3 } ) $", "$ P ( M ) $", "$ M $", "$ O _ { P } ( 1 ) $", "$ P $", "$ P ( L ^ { 2 } \\oplus L ^ { 3 } ) \\subset P $", "$ x , y , z $", "$ O _ { P } ( 1 ) \\otimes L ^ { 2 } , O _ { P } ( 1 ) \\otimes L ^ { 3 } $", "$ O _ { P } ( 1 ) $", "$ g _ { 2 } $", "$ g _ { 3 } $", "$ L ^ { 4 } $", "$ L ^ { 6 } $", "$ X $", "$ Y $", "$ Z $", "$ X $", "$ x = X Z $", "$ y = Y $", "$ z = Z ^ { 3 } $", "$ X , Y , Z $", "$ z $", "$ x \\rightarrow 0 $", "$ O _ { P } ( 1 ) $", "$ X $", "$ O _ { X } ( 3 \\sigma ) $", "$ Z $", "$ O ( \\sigma ) $", "$ z = Z ^ { 3 } $", "\\begin{equation*} z y ^ { 2 } = 4 x ^ { 3 } - g _ { 2 } x z ^ { 2 } - g _ { 3 } z ^ { 3 } \\end{equation*}", "\\begin{equation*} X \\sim O ( 2 \\sigma ) \\otimes L ^ { 2 } , \\qquad Y \\sim O ( 3 \\sigma ) \\otimes L ^ { 3 } , \\qquad Z \\sim O ( \\sigma ) \\end{equation*}" ], "latex_expand": [ "$ \\mitX $", "$ \\mitB $", "$ \\mitpi : \\mitX \\rightarrow \\mitB $", "$ \\mitpi ^ { - 1 } ( \\mitb ) $", "$ \\mitE _ { \\mitb } $", "$ \\mitb \\in \\mitB $", "$ \\mitsigma : \\mitB \\rightarrow \\mitX $", "$ \\mitb $", "$ \\mitB $", "$ \\mitsigma ( \\mitb ) \\in \\mitE _ { \\mitb } $", "$ \\mitsigma ( \\mitb ) $", "$ \\mitE _ { \\mitb } $", "$ \\BbbC \\BbbP ^ { 2 } $", "$ ( \\mitx , \\mity , \\mitz ) $", "$ \\BbbC \\BbbP ^ { 2 } $", "$ \\mitg _ { 2 } $", "$ \\mitg _ { 3 } $", "$ ( \\mitx , \\mity , \\mitz ) = ( 0 , 1 , 0 ) $", "$ \\mitz \\cong 4 \\mitx ^ { 3 } $", "$ \\mitx \\longrightarrow 0 $", "$ \\mitX $", "$ \\mitg _ { 2 } $", "$ \\mitg _ { 3 } $", "$ \\mitB $", "$ \\BbbC \\BbbP ^ { 2 } $", "$ \\BbbC \\BbbP ^ { 2 } $", "$ \\mitP \\rightarrow \\mitB $", "$ \\mitg _ { 2 } $", "$ \\mitg _ { 3 } $", "$ \\mitsigma ( \\mitB ) $", "$ \\mscrL $", "$ \\mitP = \\BbbP ( \\mscrO _ { \\mitB } \\oplus \\mscrL ^ { 2 } \\oplus \\mscrL ^ { 3 } ) $", "$ \\BbbP ( \\mitM ) $", "$ \\mitM $", "$ \\mscrO _ { \\mitP } ( 1 ) $", "$ \\mitP $", "$ \\BbbP ( \\mscrL ^ { 2 } \\oplus \\mscrL ^ { 3 } ) \\subset \\mitP $", "$ \\mitx , \\mity , \\mitz $", "$ \\mscrO _ { \\mitP } ( 1 ) \\otimes \\mscrL ^ { 2 } , \\mscrO _ { \\mitP } ( 1 ) \\otimes \\mscrL ^ { 3 } $", "$ \\mscrO _ { \\mitP } ( 1 ) $", "$ \\mitg _ { 2 } $", "$ \\mitg _ { 3 } $", "$ \\mscrL ^ { 4 } $", "$ \\mscrL ^ { 6 } $", "$ \\mbfX $", "$ \\mbfY $", "$ \\mbfZ $", "$ \\mitX $", "$ \\mitx = \\mbfX \\mbfZ $", "$ \\mity = \\mbfY $", "$ \\mitz = \\mbfZ ^ { 3 } $", "$ \\mbfX , \\mbfY , \\mbfZ $", "$ \\mitz $", "$ \\mitx \\rightarrow 0 $", "$ \\mscrO _ { \\mitP } ( 1 ) $", "$ \\mitX $", "$ \\mscrO _ { \\mitX } ( 3 \\mitsigma ) $", "$ \\mbfZ $", "$ \\mscrO ( \\mitsigma ) $", "$ \\mitz = \\mbfZ ^ { 3 } $", "\\begin{equation*} \\mitz \\mity ^ { 2 } = 4 \\mitx ^ { 3 } - \\mitg _ { 2 } \\mitx \\mitz ^ { 2 } - \\mitg _ { 3 } \\mitz ^ { 3 } \\end{equation*}", "\\begin{equation*} \\mbfX \\sim \\mscrO ( 2 \\mitsigma ) \\otimes \\mscrL ^ { 2 } , \\qquad \\mbfY \\sim \\mscrO ( 3 \\mitsigma ) \\otimes \\mscrL ^ { 3 } , \\qquad \\mbfZ \\sim \\mscrO ( \\mitsigma ) \\end{equation*}" ], "x_min": [ 0.6108999848365784, 0.4325999915599823, 0.7533000111579895, 0.16380000114440918, 0.3199999928474426, 0.48100000619888306, 0.6820999979972839, 0.24529999494552612, 0.28200000524520874, 0.4090999960899353, 0.5964000225067139, 0.3019999861717224, 0.8100000023841858, 0.17759999632835388, 0.5598000288009644, 0.6385999917984009, 0.6675999760627747, 0.42089998722076416, 0.8348000049591064, 0.4691999852657318, 0.27160000801086426, 0.4553999900817871, 0.48579999804496765, 0.2750999927520752, 0.17350000143051147, 0.259799987077713, 0.36559998989105225, 0.630299985408783, 0.6600000262260437, 0.8355000019073486, 0.120899997651577, 0.19699999690055847, 0.47679999470710754, 0.18520000576972961, 0.5175999999046326, 0.605400025844574, 0.120899997651577, 0.4332999885082245, 0.6129999756813049, 0.854200005531311, 0.6330000162124634, 0.6952000260353088, 0.8472999930381775, 0.120899997651577, 0.6690000295639038, 0.691100001335144, 0.7146000266075134, 0.7718999981880188, 0.8271999955177307, 0.120899997651577, 0.21979999542236328, 0.2791999876499176, 0.6323000192642212, 0.6647999882698059, 0.1388999968767166, 0.2093999981880188, 0.42570000886917114, 0.669700026512146, 0.1956000030040741, 0.42089998722076416, 0.40700000524520874, 0.2799000144004822 ], "y_min": [ 0.22609999775886536, 0.2485000044107437, 0.2485000044107437, 0.2694999873638153, 0.2709999978542328, 0.2705000042915344, 0.29350000619888306, 0.31540000438690186, 0.31540000438690186, 0.31450000405311584, 0.31450000405311584, 0.3379000127315521, 0.3594000041484833, 0.4375, 0.43700000643730164, 0.44190001487731934, 0.44190001487731934, 0.46000000834465027, 0.4595000147819519, 0.4839000105857849, 0.5054000020027161, 0.5092999935150146, 0.5092999935150146, 0.5278000235557556, 0.54830002784729, 0.54830002784729, 0.5503000020980835, 0.5536999702453613, 0.5536999702453613, 0.5713000297546387, 0.5946999788284302, 0.5932999849319458, 0.5938000082969666, 0.6166999936103821, 0.6161999702453613, 0.6166999936103821, 0.6377000212669373, 0.6431000232696533, 0.6377000212669373, 0.6381999850273132, 0.6650000214576721, 0.6650000214576721, 0.6601999998092651, 0.6826000213623047, 0.7064999938011169, 0.7064999938011169, 0.7064999938011169, 0.7064999938011169, 0.7064999938011169, 0.7289999723434448, 0.7275000214576721, 0.7519999742507935, 0.8227999806404114, 0.8202999830245972, 0.8374000191688538, 0.8384000062942505, 0.8374000191688538, 0.8384000062942505, 0.8560000061988831, 0.8550000190734863, 0.4009000062942505, 0.7842000126838684 ], "x_max": [ 0.6295999884605408, 0.44920000433921814, 0.8611000180244446, 0.2190999984741211, 0.34139999747276306, 0.532800018787384, 0.7760999798774719, 0.25360000133514404, 0.2985999882221222, 0.49129998683929443, 0.6323000192642212, 0.32339999079704285, 0.8452000021934509, 0.2425999939441681, 0.5950000286102295, 0.6565999984741211, 0.6855999827384949, 0.5812000036239624, 0.9081000089645386, 0.545199990272522, 0.29030001163482666, 0.4733999967575073, 0.5030999779701233, 0.29170000553131104, 0.2087000012397766, 0.29499998688697815, 0.42989999055862427, 0.6482999920845032, 0.6779999732971191, 0.8797000050544739, 0.13539999723434448, 0.40290001034736633, 0.5266000032424927, 0.20659999549388885, 0.5715000033378601, 0.6205999851226807, 0.2549999952316284, 0.4830999970436096, 0.8119999766349792, 0.9081000089645386, 0.6510000228881836, 0.7131999731063843, 0.8701000213623047, 0.14300000667572021, 0.6862999796867371, 0.7091000080108643, 0.7283999919891357, 0.789900004863739, 0.9024999737739563, 0.17550000548362732, 0.2784999907016754, 0.34549999237060547, 0.6413000226020813, 0.7096999883651733, 0.18520000576972961, 0.22529999911785126, 0.4837999939918518, 0.6820999979972839, 0.23360000550746918, 0.47130000591278076, 0.6247000098228455, 0.7519000172615051 ], "y_max": [ 0.23639999330043793, 0.2587999999523163, 0.2587999999523163, 0.28459998965263367, 0.2831999957561493, 0.2816999852657318, 0.30379998683929443, 0.3257000148296356, 0.3257000148296356, 0.3296000063419342, 0.3296000063419342, 0.350600004196167, 0.3711000084877014, 0.45210000872612, 0.4487000107765198, 0.45170000195503235, 0.45170000195503235, 0.4745999872684479, 0.4717000126838684, 0.4936999976634979, 0.5156999826431274, 0.5185999870300293, 0.5185999870300293, 0.538100004196167, 0.5605000257492065, 0.5605000257492065, 0.5605999827384949, 0.5630000233650208, 0.5630000233650208, 0.5863999724388123, 0.6050000190734863, 0.6083999872207642, 0.6083999872207642, 0.6273999810218811, 0.6308000087738037, 0.6273999810218811, 0.6532999873161316, 0.652400016784668, 0.6532999873161316, 0.6532999873161316, 0.6747999787330627, 0.6747999787330627, 0.6718999743461609, 0.6942999958992004, 0.7167999744415283, 0.717199981212616, 0.7167999744415283, 0.7167999744415283, 0.717199981212616, 0.7422000169754028, 0.7391999959945679, 0.7652000188827515, 0.8287000060081482, 0.8285999894142151, 0.8496000170707703, 0.8467000126838684, 0.8496000170707703, 0.8467000126838684, 0.8682000041007996, 0.8652999997138977, 0.41990000009536743, 0.8036999702453613 ], "expr_type": [ "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "isolated", "isolated" ] }
0001133_page07
{ "latex": [ "$\\bX $", "$\\bY $", "$\\bZ $", "$n$", "$a_{n}\\bX ^{\\frac {n-3}{2}}\\bY $", "$n$", "$s$", "$\\cO (\\cC )$", "$a_{i}$", "$s$", "$i=1,\\ldots ,n$", "$\\cC $", "$H_{4}(X,{\\mathbb Z})$", "$X$", "$\\cC $", "$\\cC $", "$a_{i} \\sim \\pi ^*K_{B}^{i}\\otimes \\cO (\\pi ^{*}\\eta )$", "$a_{i}$", "$D(a_{i})$", "$X$", "$\\cC $", "\\begin {equation} s=a_{0}\\bZ ^{n} + a_{2}\\bX \\bZ ^{n-2} + a_{3}\\bY \\bZ ^{n-3} + \\ldots + a_{n}\\bX ^{\\frac {n}{2}} \\label {eq:8} \\end {equation}", "\\begin {equation} s \\sim \\cO (n\\sigma + \\pi ^{*}\\eta ) \\label {eq:9} \\end {equation}", "\\begin {equation} a_{i} \\sim \\pi ^*K_{B}^{i} \\otimes \\cO (\\pi ^{*}\\eta ) \\label {eq:10} \\end {equation}", "\\begin {equation} \\cC \\subset X \\text { is effective } \\Longleftrightarrow \\eta \\text { is an effective class in } H_{2}(B, {\\mathbb Z}). \\label {eq:12} \\end {equation}", "\\begin {equation} D(a_{0}) \\text { is an irreducible divisor in } X \\label {eq:13} \\end {equation}", "\\begin {equation} D(a_{n}) \\text { is an effective class in } H_{4}(X, {\\mathbb Z}). \\label {eq:14} \\end {equation}" ], "latex_norm": [ "$ X $", "$ Y $", "$ Z $", "$ n $", "$ a _ { n } X ^ { \\frac { n - 3 } { 2 } } Y $", "$ n $", "$ s $", "$ O ( C ) $", "$ a _ { i } $", "$ s $", "$ i = 1 , \\ldots , n $", "$ C $", "$ H _ { 4 } ( X , Z ) $", "$ X $", "$ C $", "$ C $", "$ a _ { i } \\sim \\pi ^ { \\ast } K _ { B } ^ { i } \\otimes O ( \\pi ^ { \\ast } \\eta ) $", "$ a _ { i } $", "$ D ( a _ { i } ) $", "$ X $", "$ C $", "\\begin{equation*} s = a _ { 0 } Z ^ { n } + a _ { 2 } X Z ^ { n - 2 } + a _ { 3 } Y Z ^ { n - 3 } + \\ldots + a _ { n } X ^ { \\frac { n } { 2 } } \\end{equation*}", "\\begin{equation*} s \\sim O ( n \\sigma + \\pi ^ { \\ast } \\eta ) \\end{equation*}", "\\begin{equation*} a _ { i } \\sim \\pi ^ { \\ast } K _ { B } ^ { i } \\otimes O ( \\pi ^ { \\ast } \\eta ) \\end{equation*}", "\\begin{equation*} C \\subset X ~ i s ~ e f f e c t i v e ~ \\Longleftrightarrow \\eta ~ i s ~ a n ~ e f f e c t i v e ~ c l a s s ~ i n ~ H _ { 2 } ( B , Z ) . \\end{equation*}", "\\begin{equation*} D ( a _ { 0 } ) ~ i s ~ a n ~ i r r e d u c i b l e ~ d i v i s o r ~ i n ~ X \\end{equation*}", "\\begin{equation*} D ( a _ { n } ) ~ i s ~ a n ~ e f f e c t i v e ~ c l a s s ~ i n ~ H _ { 4 } ( X , Z ) . \\end{equation*}" ], "latex_expand": [ "$ \\mbfX $", "$ \\mbfY $", "$ \\mbfZ $", "$ \\mitn $", "$ \\mita _ { \\mitn } \\mbfX ^ { \\frac { \\mitn - 3 } { 2 } } \\mbfY $", "$ \\mitn $", "$ \\mits $", "$ \\mscrO ( \\mscrC ) $", "$ \\mita _ { \\miti } $", "$ \\mits $", "$ \\miti = 1 , \\ldots , \\mitn $", "$ \\mscrC $", "$ \\mitH _ { 4 } ( \\mitX , \\BbbZ ) $", "$ \\mitX $", "$ \\mscrC $", "$ \\mscrC $", "$ \\mita _ { \\miti } \\sim \\mitpi ^ { \\ast } \\mitK _ { \\mitB } ^ { \\miti } \\otimes \\mscrO ( \\mitpi ^ { \\ast } \\miteta ) $", "$ \\mita _ { \\miti } $", "$ \\mitD ( \\mita _ { \\miti } ) $", "$ \\mitX $", "$ \\mscrC $", "\\begin{equation*} \\mits = \\mita _ { 0 } \\mbfZ ^ { \\mitn } + \\mita _ { 2 } \\mbfX \\mbfZ ^ { \\mitn - 2 } + \\mita _ { 3 } \\mbfY \\mbfZ ^ { \\mitn - 3 } + \\ldots + \\mita _ { \\mitn } \\mbfX ^ { \\frac { \\mitn } { 2 } } \\end{equation*}", "\\begin{equation*} \\mits \\sim \\mscrO ( \\mitn \\mitsigma + \\mitpi ^ { \\ast } \\miteta ) \\end{equation*}", "\\begin{equation*} \\mita _ { \\miti } \\sim \\mitpi ^ { \\ast } \\mitK _ { \\mitB } ^ { \\miti } \\otimes \\mscrO ( \\mitpi ^ { \\ast } \\miteta ) \\end{equation*}", "\\begin{equation*} \\mscrC \\subset \\mitX ~ \\mathrm { i s } ~ \\mathrm { e f f e c t i v e } ~ \\Longleftrightarrow \\miteta ~ \\mathrm { i s } ~ \\mathrm { a n } ~ \\mathrm { e f f e c t i v e } ~ \\mathrm { c l a s s } ~ \\mathrm { i n } ~ \\mitH _ { 2 } ( \\mitB , \\BbbZ ) . \\end{equation*}", "\\begin{equation*} \\mitD ( \\mita _ { 0 } ) ~ \\mathrm { i s } ~ \\mathrm { a n } ~ \\mathrm { i r r e d u c i b l e } ~ \\mathrm { d i v i s o r } ~ \\mathrm { i n } ~ \\mitX \\end{equation*}", "\\begin{equation*} \\mitD ( \\mita _ { \\mitn } ) ~ \\mathrm { i s } ~ \\mathrm { a n } ~ \\mathrm { e f f e c t i v e } ~ \\mathrm { c l a s s } ~ \\mathrm { i n } ~ \\mitH _ { 4 } ( \\mitX , \\BbbZ ) . \\end{equation*}" ], "x_min": [ 0.38769999146461487, 0.41670000553131104, 0.4456999897956848, 0.15129999816417694, 0.3407000005245209, 0.44920000433921814, 0.29580000042915344, 0.120899997651577, 0.7325999736785889, 0.120899997651577, 0.15070000290870667, 0.17000000178813934, 0.4361000061035156, 0.1437000036239624, 0.17000000178813934, 0.1768999993801117, 0.72079998254776, 0.3779999911785126, 0.5092999935150146, 0.5942999720573425, 0.8472999930381775, 0.31380000710487366, 0.4408999979496002, 0.42500001192092896, 0.2646999955177307, 0.36070001125335693, 0.34689998626708984 ], "y_min": [ 0.10840000212192535, 0.10840000212192535, 0.10840000212192535, 0.2020999938249588, 0.19429999589920044, 0.2020999938249588, 0.22460000216960907, 0.24220000207424164, 0.29789999127388, 0.32030001282691956, 0.38530001044273376, 0.46140000224113464, 0.4603999853134155, 0.5156000256538391, 0.6157000064849854, 0.7148000001907349, 0.7354000210762024, 0.7631999850273132, 0.7583000063896179, 0.7592999935150146, 0.7592999935150146, 0.1581999957561493, 0.2612000107765198, 0.34470000863075256, 0.5454000234603882, 0.7997999787330627, 0.8511000275611877 ], "x_max": [ 0.4056999981403351, 0.43470001220703125, 0.4602000117301941, 0.16369999945163727, 0.4242999851703644, 0.46160000562667847, 0.30550000071525574, 0.16509999334812164, 0.7491999864578247, 0.1306000053882599, 0.2502000033855438, 0.18240000307559967, 0.5156000256538391, 0.1624000072479248, 0.18240000307559967, 0.18860000371932983, 0.9081000089645386, 0.3939000070095062, 0.5583999752998352, 0.6129999756813049, 0.859000027179718, 0.7174000144004822, 0.5902000069618225, 0.6061000227928162, 0.7663999795913696, 0.6703000068664551, 0.6840999722480774 ], "y_max": [ 0.11869999766349792, 0.11869999766349792, 0.11869999766349792, 0.20890000462532043, 0.21089999377727509, 0.20890000462532043, 0.23090000450611115, 0.25679999589920044, 0.3066999912261963, 0.32710000872612, 0.39800000190734863, 0.4717000126838684, 0.4749999940395355, 0.5259000062942505, 0.6259999871253967, 0.7250999808311462, 0.7509999871253967, 0.7720000147819519, 0.7734000086784363, 0.769599974155426, 0.769599974155426, 0.17720000445842743, 0.2793000042438507, 0.36469998955726624, 0.5634999871253967, 0.8179000020027161, 0.8691999912261963 ], "expr_type": [ "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "isolated", "isolated", "isolated", "isolated", "isolated", "isolated" ] }
0001133_page09
{ "latex": [ "$a=12$", "$b=15$", "$n=5$", "$r=1$", "$a=24$", "$b=36$", "$SU(n)$", "$\\cN $", "$\\cN $", "$\\cC $", "$SU(n)$", "$X$", "${\\mathcal N}$", "$c_{1}(\\cN )$", "$c_{1}(B)$", "$\\cN $", "$B$", "$\\lambda $", "$c_{1}(\\cN )$", "$m \\in {\\mathbb Z}$", "$n$", "\\begin {equation} \\cC =5\\sigma + \\pi ^{*}(12\\cS +15\\cE ) \\label {eq:23} \\end {equation}", "\\begin {equation} G=SU(5) \\label {eq:24} \\end {equation}", "\\begin {equation} \\eta = 24\\cS +36\\cE \\label {eq:25} \\end {equation}", "\\begin {equation} \\cC =5\\sigma + \\pi ^{*}(24\\cS +36\\cE ) \\label {eq:26} \\end {equation}", "\\begin {equation} c_{1}(\\cN )=n(\\frac {1}{2}+\\lambda )\\sigma +(\\frac {1}{2}-\\lambda ) \\pi ^{*}\\eta +(\\frac {1}{2}+n\\lambda )\\pi ^{*}c_{1}(B) \\label {eq:27} \\end {equation}", "\\begin {equation} n \\quad \\mbox {is odd}, \\qquad \\lambda =m+\\frac {1}{2} \\label {eq:28} \\end {equation}", "\\begin {equation} n \\quad \\mbox {is even}, \\qquad \\lambda =m, \\qquad \\eta =c_{1}(B) \\quad \\mod 2 \\label {eq:29} \\end {equation}" ], "latex_norm": [ "$ a = 1 2 $", "$ b = 1 5 $", "$ n = 5 $", "$ r = 1 $", "$ a = 2 4 $", "$ b = 3 6 $", "$ S U ( n ) $", "$ N $", "$ N $", "$ C $", "$ S U ( n ) $", "$ X $", "$ N $", "$ c _ { 1 } ( N ) $", "$ c _ { 1 } ( B ) $", "$ N $", "$ B $", "$ \\lambda $", "$ c _ { 1 } ( N ) $", "$ m \\in Z $", "$ n $", "\\begin{equation*} C = 5 \\sigma + \\pi ^ { \\ast } ( 1 2 S + 1 5 E ) \\end{equation*}", "\\begin{equation*} G = S U ( 5 ) \\end{equation*}", "\\begin{equation*} \\eta = 2 4 S + 3 6 E \\end{equation*}", "\\begin{equation*} C = 5 \\sigma + \\pi ^ { \\ast } ( 2 4 S + 3 6 E ) \\end{equation*}", "\\begin{equation*} c _ { 1 } ( N ) = n ( \\frac { 1 } { 2 } + \\lambda ) \\sigma + ( \\frac { 1 } { 2 } - \\lambda ) \\pi ^ { \\ast } \\eta + ( \\frac { 1 } { 2 } + n \\lambda ) \\pi ^ { \\ast } c _ { 1 } ( B ) \\end{equation*}", "\\begin{equation*} n \\quad i s ~ o d d , \\qquad \\lambda = m + \\frac { 1 } { 2 } \\end{equation*}", "\\begin{equation*} n \\quad i s ~ e v e n , \\qquad \\lambda = m , \\qquad \\eta = c _ { 1 } ( B ) \\quad m o d \\, \\, 2 \\end{equation*}" ], "latex_expand": [ "$ \\mita = 1 2 $", "$ \\mitb = 1 5 $", "$ \\mitn = 5 $", "$ \\mitr = 1 $", "$ \\mita = 2 4 $", "$ \\mitb = 3 6 $", "$ \\mitS \\mitU ( \\mitn ) $", "$ \\mscrN $", "$ \\mscrN $", "$ \\mscrC $", "$ \\mitS \\mitU ( \\mitn ) $", "$ \\mitX $", "$ \\mscrN $", "$ \\mitc _ { 1 } ( \\mscrN ) $", "$ \\mitc _ { 1 } ( \\mitB ) $", "$ \\mscrN $", "$ \\mitB $", "$ \\mitlambda $", "$ \\mitc _ { 1 } ( \\mscrN ) $", "$ \\mitm \\in \\BbbZ $", "$ \\mitn $", "\\begin{equation*} \\mscrC = 5 \\mitsigma + \\mitpi ^ { \\ast } ( 1 2 \\mscrS + 1 5 \\mscrE ) \\end{equation*}", "\\begin{equation*} \\mitG = \\mitS \\mitU ( 5 ) \\end{equation*}", "\\begin{equation*} \\miteta = 2 4 \\mscrS + 3 6 \\mscrE \\end{equation*}", "\\begin{equation*} \\mscrC = 5 \\mitsigma + \\mitpi ^ { \\ast } ( 2 4 \\mscrS + 3 6 \\mscrE ) \\end{equation*}", "\\begin{equation*} \\mitc _ { 1 } ( \\mscrN ) = \\mitn ( \\frac { 1 } { 2 } + \\mitlambda ) \\mitsigma + ( \\frac { 1 } { 2 } - \\mitlambda ) \\mitpi ^ { \\ast } \\miteta + ( \\frac { 1 } { 2 } + \\mitn \\mitlambda ) \\mitpi ^ { \\ast } \\mitc _ { 1 } ( \\mitB ) \\end{equation*}", "\\begin{equation*} \\mitn \\quad \\mathrm { i s } ~ \\mathrm { o d d } , \\qquad \\mitlambda = \\mitm + \\frac { 1 } { 2 } \\end{equation*}", "\\begin{equation*} \\mitn \\quad \\mathrm { i s } ~ \\mathrm { e v e n } , \\qquad \\mitlambda = \\mitm , \\qquad \\miteta = \\mitc _ { 1 } ( \\mitB ) \\quad \\mathrm { m o d } \\, \\, 2 \\end{equation*}" ], "x_min": [ 0.19419999420642853, 0.31380000710487366, 0.18449999392032623, 0.3779999911785126, 0.1859000027179718, 0.28540000319480896, 0.6233999729156494, 0.3296000063419342, 0.19210000336170197, 0.2687999904155731, 0.3352000117301941, 0.3075000047683716, 0.605400025844574, 0.17759999632835388, 0.24050000309944153, 0.5465999841690063, 0.6108999848365784, 0.7789000272750854, 0.3248000144958496, 0.17759999632835388, 0.8079000115394592, 0.4097999930381775, 0.46650001406669617, 0.4505999982357025, 0.4097999930381775, 0.28679999709129333, 0.40149998664855957, 0.30410000681877136 ], "y_min": [ 0.10890000313520432, 0.10790000110864639, 0.3075999915599823, 0.3075999915599823, 0.37209999561309814, 0.3711000084877014, 0.5268999934196472, 0.5727999806404114, 0.6288999915122986, 0.6288999915122986, 0.6279000043869019, 0.6509000062942505, 0.6509000062942505, 0.7157999873161316, 0.7157999873161316, 0.7167999744415283, 0.7167999744415283, 0.7163000106811523, 0.7378000020980835, 0.8550000190734863, 0.8589000105857849, 0.15870000422000885, 0.2705000042915344, 0.3359000086784363, 0.4219000041484833, 0.6723999977111816, 0.7602999806404114, 0.8227999806404114 ], "x_max": [ 0.26260000467300415, 0.37950000166893005, 0.23360000550746918, 0.4235999882221222, 0.2425999939441681, 0.3407000005245209, 0.6801000237464905, 0.3564000129699707, 0.21209999918937683, 0.28119999170303345, 0.3919000029563904, 0.326200008392334, 0.6291000247001648, 0.22939999401569366, 0.2888999879360199, 0.5666000247001648, 0.6274999976158142, 0.7906000018119812, 0.3765999972820282, 0.23360000550746918, 0.819599986076355, 0.621999979019165, 0.5645999908447266, 0.5805000066757202, 0.621999979019165, 0.7443000078201294, 0.6295999884605408, 0.7269999980926514 ], "y_max": [ 0.11869999766349792, 0.11860000342130661, 0.3174000084400177, 0.3174000084400177, 0.38190001249313354, 0.38179999589920044, 0.5419999957084656, 0.5855000019073486, 0.63919997215271, 0.63919997215271, 0.6424999833106995, 0.6611999869346619, 0.6611999869346619, 0.730400025844574, 0.730400025844574, 0.7271000146865845, 0.7271000146865845, 0.7269999980926514, 0.7529000043869019, 0.8661999702453613, 0.8651999831199646, 0.17679999768733978, 0.28859999775886536, 0.35199999809265137, 0.4399999976158142, 0.7045999765396118, 0.7925000190734863, 0.8409000039100647 ], "expr_type": [ "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "isolated", "isolated", "isolated", "isolated", "isolated", "isolated", "isolated" ] }
0001133_page11
{ "latex": [ "$G=SU(5)$", "$n=5$", "$r=1$", "$\\eta =12\\cS +15\\cE $", "$\\cN $", "$n=5$", "$F$", "$G=SU(5)$", "$n=5$", "$r=1$", "$\\eta = 24S+36\\cE $", "$\\cN $", "$SU(n)$", "$SU(n)$", "\\begin {equation} \\lambda =\\frac {1}{2} \\label {eq:37} \\end {equation}", "\\begin {equation} c_{2}(V)= (12\\cS +15\\cE )\\sigma -40F \\label {eq:38} \\end {equation}", "\\begin {equation} c_{3}(V)= 6 \\label {eq:39} \\end {equation}", "\\begin {equation} \\lambda =\\frac {1}{2} \\label {eq:40} \\end {equation}", "\\begin {equation} c_{2}(V)= (24\\cS +36\\cE )\\sigma -40F \\label {eq:41} \\end {equation}", "\\begin {equation} c_{3}(V)= 672 \\label {eq:42} \\end {equation}" ], "latex_norm": [ "$ G = S U ( 5 ) $", "$ n = 5 $", "$ r = 1 $", "$ \\eta = 1 2 S + 1 5 E $", "$ N $", "$ n = 5 $", "$ F $", "$ G = S U ( 5 ) $", "$ n = 5 $", "$ r = 1 $", "$ \\eta = 2 4 S + 3 6 E $", "$ N $", "$ S U ( n ) $", "$ S U ( n ) $", "\\begin{equation*} \\lambda = \\frac { 1 } { 2 } \\end{equation*}", "\\begin{equation*} c _ { 2 } ( V ) = ( 1 2 S + 1 5 E ) \\sigma - 4 0 F \\end{equation*}", "\\begin{equation*} c _ { 3 } ( V ) = 6 \\end{equation*}", "\\begin{equation*} \\lambda = \\frac { 1 } { 2 } \\end{equation*}", "\\begin{equation*} c _ { 2 } ( V ) = ( 2 4 S + 3 6 E ) \\sigma - 4 0 F \\end{equation*}", "\\begin{equation*} c _ { 3 } ( V ) = 6 7 2 \\end{equation*}" ], "latex_expand": [ "$ \\mitG = \\mitS \\mitU ( 5 ) $", "$ \\mitn = 5 $", "$ \\mitr = 1 $", "$ \\miteta = 1 2 \\mscrS + 1 5 \\mscrE $", "$ \\mscrN $", "$ \\mitn = 5 $", "$ \\mitF $", "$ \\mitG = \\mitS \\mitU ( 5 ) $", "$ \\mitn = 5 $", "$ \\mitr = 1 $", "$ \\miteta = 2 4 \\mitS + 3 6 \\mscrE $", "$ \\mscrN $", "$ \\mitS \\mitU ( \\mitn ) $", "$ \\mitS \\mitU ( \\mitn ) $", "\\begin{equation*} \\mitlambda = \\frac { 1 } { 2 } \\end{equation*}", "\\begin{equation*} \\mitc _ { 2 } ( \\mitV ) = ( 1 2 \\mscrS + 1 5 \\mscrE ) \\mitsigma - 4 0 \\mitF \\end{equation*}", "\\begin{equation*} \\mitc _ { 3 } ( \\mitV ) = 6 \\end{equation*}", "\\begin{equation*} \\mitlambda = \\frac { 1 } { 2 } \\end{equation*}", "\\begin{equation*} \\mitc _ { 2 } ( \\mitV ) = ( 2 4 \\mscrS + 3 6 \\mscrE ) \\mitsigma - 4 0 \\mitF \\end{equation*}", "\\begin{equation*} \\mitc _ { 3 } ( \\mitV ) = 6 7 2 \\end{equation*}" ], "x_min": [ 0.120899997651577, 0.32829999923706055, 0.5383999943733215, 0.6717000007629395, 0.32690000534057617, 0.7070000171661377, 0.17759999632835388, 0.5819000005722046, 0.6904000043869019, 0.7512000203132629, 0.120899997651577, 0.5389999747276306, 0.120899997651577, 0.6883000135421753, 0.4885999858379364, 0.38909998536109924, 0.47200000286102295, 0.4885999858379364, 0.38909998536109924, 0.46230000257492065 ], "y_min": [ 0.12939999997615814, 0.13089999556541443, 0.13089999556541443, 0.13040000200271606, 0.15279999375343323, 0.22750000655651093, 0.323199987411499, 0.42289999127388, 0.4242999851703644, 0.4242999851703644, 0.4462999999523163, 0.4462999999523163, 0.7163000106811523, 0.7387999892234802, 0.1776999980211258, 0.28220000863075256, 0.35600000619888306, 0.4706999957561493, 0.5532000064849854, 0.6273999810218811 ], "x_max": [ 0.21770000457763672, 0.3767000138759613, 0.5846999883651733, 0.7996000051498413, 0.34689998626708984, 0.7554000020027161, 0.19349999725818634, 0.6786999702453613, 0.7394999861717224, 0.7975000143051147, 0.24740000069141388, 0.5583999752998352, 0.1768999993801117, 0.7450000047683716, 0.5432000160217285, 0.6427000164985657, 0.5590999722480774, 0.5432000160217285, 0.6427000164985657, 0.5687000155448914 ], "y_max": [ 0.1445000022649765, 0.14069999754428864, 0.14069999754428864, 0.1436000019311905, 0.163100004196167, 0.23729999363422394, 0.3334999978542328, 0.43799999356269836, 0.4341000020503998, 0.4341000020503998, 0.4595000147819519, 0.45660001039505005, 0.7314000129699707, 0.7534000277519226, 0.20990000665187836, 0.3003000020980835, 0.37459999322891235, 0.5034000277519226, 0.5713000297546387, 0.6455000042915344 ], "expr_type": [ "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "isolated", "isolated", "isolated", "isolated", "isolated", "isolated" ] }
0001133_page14
{ "latex": [ "$c_{1}(\\cN )$", "$\\lambda $", "$\\lambda $", "$n$", "$W=0$", "$c_{2}(V)=c_{2}(TX)$", "$SU(n)$", "$G=SU(n)$", "$n=5$", "$B={\\mathbb F}_{1}$", "$\\eta =12\\cS +15\\cE $", "$\\lambda =\\frac {1}{2}$", "$G=SU(n)$", "$n=5$", "$B={\\mathbb F}_{1}$", "$\\eta =24\\cS +36\\cE $", "$\\lambda =\\frac {1}{2}$", "$W_{B} \\neq 0$", "$W_{B}=0$", "\\[ N_{gen}=\\frac {c_{3}(V)}{2} \\]", "\\begin {equation} N_{gen}=\\lambda \\sigma \\eta ( \\eta -nc_{1}(B)) \\label {eq:53} \\end {equation}", "\\begin {equation} N_{gen}=3 \\label {eq:54} \\end {equation}", "\\begin {equation} N_{gen}=336 \\label {eq:55} \\end {equation}" ], "latex_norm": [ "$ c _ { 1 } ( N ) $", "$ \\lambda $", "$ \\lambda $", "$ n $", "$ W = 0 $", "$ c _ { 2 } ( V ) = c _ { 2 } ( T X ) $", "$ S U ( n ) $", "$ G = S U ( n ) $", "$ n = 5 $", "$ B = F _ { 1 } $", "$ \\eta = 1 2 S + 1 5 E $", "$ \\lambda = \\frac { 1 } { 2 } $", "$ G = S U ( n ) $", "$ n = 5 $", "$ B = F _ { 1 } $", "$ \\eta = 2 4 S + 3 6 E $", "$ \\lambda = \\frac { 1 } { 2 } $", "$ W _ { B } \\ne 0 $", "$ W _ { B } = 0 $", "\\begin{equation*} N _ { g e n } = \\frac { c _ { 3 } ( V ) } { 2 } \\end{equation*}", "\\begin{equation*} N _ { g e n } = \\lambda \\sigma \\eta ( \\eta - n c _ { 1 } ( B ) ) \\end{equation*}", "\\begin{equation*} N _ { g e n } = 3 \\end{equation*}", "\\begin{equation*} N _ { g e n } = 3 3 6 \\end{equation*}" ], "latex_expand": [ "$ \\mitc _ { 1 } ( \\mscrN ) $", "$ \\mitlambda $", "$ \\mitlambda $", "$ \\mitn $", "$ \\mitW = 0 $", "$ \\mitc _ { 2 } ( \\mitV ) = \\mitc _ { 2 } ( \\mitT \\mitX ) $", "$ \\mitS \\mitU ( \\mitn ) $", "$ \\mitG = \\mitS \\mitU ( \\mitn ) $", "$ \\mitn = 5 $", "$ \\mitB = \\BbbF _ { 1 } $", "$ \\miteta = 1 2 \\mscrS + 1 5 \\mscrE $", "$ \\mitlambda = \\frac { 1 } { 2 } $", "$ \\mitG = \\mitS \\mitU ( \\mitn ) $", "$ \\mitn = 5 $", "$ \\mitB = \\BbbF _ { 1 } $", "$ \\miteta = 2 4 \\mscrS + 3 6 \\mscrE $", "$ \\mitlambda = \\frac { 1 } { 2 } $", "$ \\mitW _ { \\mitB } \\ne 0 $", "$ \\mitW _ { \\mitB } = 0 $", "\\begin{equation*} \\mitN _ { \\mitg \\mite \\mitn } = \\frac { \\mitc _ { 3 } ( \\mitV ) } { 2 } \\end{equation*}", "\\begin{equation*} \\mitN _ { \\mitg \\mite \\mitn } = \\mitlambda \\mitsigma \\miteta ( \\miteta - \\mitn \\mitc _ { 1 } ( \\mitB ) ) \\end{equation*}", "\\begin{equation*} \\mitN _ { \\mitg \\mite \\mitn } = 3 \\end{equation*}", "\\begin{equation*} \\mitN _ { \\mitg \\mite \\mitn } = 3 3 6 \\end{equation*}" ], "x_min": [ 0.24879999458789825, 0.6184999942779541, 0.120899997651577, 0.35519999265670776, 0.34139999747276306, 0.7642999887466431, 0.36559998989105225, 0.36970001459121704, 0.4796000123023987, 0.5389999747276306, 0.6136999726295471, 0.785099983215332, 0.40220001339912415, 0.51419997215271, 0.5763999819755554, 0.652400016784668, 0.8264999985694885, 0.6365000009536743, 0.16590000689029694, 0.4553999900817871, 0.4097999930381775, 0.47620001435279846, 0.46650001406669617 ], "y_min": [ 0.10740000009536743, 0.10790000110864639, 0.15279999375343323, 0.17870000004768372, 0.1973000019788742, 0.19629999995231628, 0.21879999339580536, 0.5332000255584717, 0.5346999764442444, 0.5342000126838684, 0.5342000126838684, 0.5321999788284302, 0.6601999998092651, 0.6615999937057495, 0.6610999703407288, 0.6610999703407288, 0.6592000126838684, 0.8105000257492065, 0.8324999809265137, 0.3555000126361847, 0.4253000020980835, 0.5913000106811523, 0.7188000082969666 ], "x_max": [ 0.30059999227523804, 0.6302000284194946, 0.13259999454021454, 0.3668999969959259, 0.4043000042438507, 0.9079999923706055, 0.42160001397132874, 0.46779999136924744, 0.527999997138977, 0.6025999784469604, 0.7408999800682068, 0.8342000246047974, 0.5023999810218811, 0.5640000104904175, 0.6406999826431274, 0.7815999984741211, 0.8776000142097473, 0.7077000141143799, 0.23360000550746918, 0.5728999972343445, 0.621999979019165, 0.5550000071525574, 0.5645999908447266 ], "y_max": [ 0.12200000137090683, 0.11860000342130661, 0.163100004196167, 0.18549999594688416, 0.20800000429153442, 0.21140000224113464, 0.23340000212192535, 0.5478000044822693, 0.5444999933242798, 0.5464000105857849, 0.5473999977111816, 0.5493000149726868, 0.6747999787330627, 0.6714000105857849, 0.67330002784729, 0.6743000149726868, 0.6762999892234802, 0.8237000107765198, 0.8452000021934509, 0.38670000433921814, 0.4438999891281128, 0.6093999743461609, 0.7364000082015991 ], "expr_type": [ "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "isolated", "isolated", "isolated", "isolated" ] }
0001133_page20
{ "latex": [ "$\\lambda = \\frac {1}{2}$", "$\\widehat {\\cN }$", "$\\widetilde {\\cN }$", "$\\cN $", "$\\lambda =\\frac {1}{2}$", "$L$", "$\\widetilde {V}$", "$SU(n)$", "$\\widehat {V}$", "$SU(n)$", "$V$", "$\\cN $", "$W_{B}$", "$z=12c_{1}(B)-\\eta $", "\\begin {equation} c_{1}(\\widehat {\\cN })=c_{1}(\\cN ) \\label {eq:88} \\end {equation}", "\\begin {equation} \\widehat {\\cN }=\\widetilde {\\cN }=\\cN \\label {eq:89} \\end {equation}", "\\begin {equation} c_{3}(\\widehat {V})=c_{3}(V)+ (2\\eta +z-nc_{1}(B))\\cdot z \\label {eq:90} \\end {equation}", "\\begin {equation} {\\cal {C}}= n\\sigma + \\pi ^{*}\\eta \\label {eq:91} \\end {equation}", "\\begin {equation} \\lambda =\\frac {1}{2} \\label {eq:92} \\end {equation}", "\\begin {equation} W=W_{B}\\sigma +a_{f}F \\label {eq:93} \\end {equation}", "\\begin {equation} W_{B}=\\pi ^{*}z \\label {eq:94} \\end {equation}" ], "latex_norm": [ "$ \\lambda = \\frac { 1 } { 2 } $", "$ \\hat { N } $", "$ \\widetilde { N } $", "$ N $", "$ \\lambda = \\frac { 1 } { 2 } $", "$ L $", "$ \\widetilde { V } $", "$ S U ( n ) $", "$ \\hat { V } $", "$ S U ( n ) $", "$ V $", "$ N $", "$ W _ { B } $", "$ z = 1 2 c _ { 1 } ( B ) - \\eta $", "\\begin{equation*} c _ { 1 } ( \\hat { N } ) = c _ { 1 } ( N ) \\end{equation*}", "\\begin{equation*} \\hat { N } = \\widetilde { N } = N \\end{equation*}", "\\begin{equation*} c _ { 3 } ( \\hat { V } ) = c _ { 3 } ( V ) + ( 2 \\eta + z - n c _ { 1 } ( B ) ) \\cdot z \\end{equation*}", "\\begin{equation*} C = n \\sigma + \\pi ^ { \\ast } \\eta \\end{equation*}", "\\begin{equation*} \\lambda = \\frac { 1 } { 2 } \\end{equation*}", "\\begin{equation*} W = W _ { B } \\sigma + a _ { f } F \\end{equation*}", "\\begin{equation*} W _ { B } = \\pi ^ { \\ast } z \\end{equation*}" ], "latex_expand": [ "$ \\mitlambda = \\frac { 1 } { 2 } $", "$ \\widehat { \\mscrN } $", "$ \\widetilde { \\mscrN } $", "$ \\mscrN $", "$ \\mitlambda = \\frac { 1 } { 2 } $", "$ \\mitL $", "$ \\widetilde { \\mitV } $", "$ \\mitS \\mitU ( \\mitn ) $", "$ \\widehat { \\mitV } $", "$ \\mitS \\mitU ( \\mitn ) $", "$ \\mitV $", "$ \\mscrN $", "$ \\mitW _ { \\mitB } $", "$ \\mitz = 1 2 \\mitc _ { 1 } ( \\mitB ) - \\miteta $", "\\begin{equation*} \\mitc _ { 1 } ( \\widehat { \\mscrN } ) = \\mitc _ { 1 } ( \\mscrN ) \\end{equation*}", "\\begin{equation*} \\widehat { \\mscrN } = \\widetilde { \\mscrN } = \\mscrN \\end{equation*}", "\\begin{equation*} \\mitc _ { 3 } ( \\widehat { \\mitV } ) = \\mitc _ { 3 } ( \\mitV ) + ( 2 \\miteta + \\mitz - \\mitn \\mitc _ { 1 } ( \\mitB ) ) \\cdot \\mitz \\end{equation*}", "\\begin{equation*} \\mitC = \\mitn \\mitsigma + \\mitpi ^ { \\ast } \\miteta \\end{equation*}", "\\begin{equation*} \\mitlambda = \\frac { 1 } { 2 } \\end{equation*}", "\\begin{equation*} \\mitW = \\mitW _ { \\mitB } \\mitsigma + \\mita _ { \\mitf } \\mitF \\end{equation*}", "\\begin{equation*} \\mitW _ { \\mitB } = \\mitpi ^ { \\ast } \\mitz \\end{equation*}" ], "x_min": [ 0.35659998655319214, 0.46650001406669617, 0.5307999849319458, 0.8568999767303467, 0.4596000015735626, 0.5583999752998352, 0.120899997651577, 0.42570000886917114, 0.6101999878883362, 0.6973000168800354, 0.8859999775886536, 0.31029999256134033, 0.22669999301433563, 0.22669999301433563, 0.4499000012874603, 0.45820000767707825, 0.35179999470710754, 0.48030000925064087, 0.5127999782562256, 0.46369999647140503, 0.49549999833106995 ], "y_min": [ 0.10639999806880951, 0.219200000166893, 0.219200000166893, 0.22310000658035278, 0.24459999799728394, 0.24660000205039978, 0.26460000872612, 0.26809999346733093, 0.26460000872612, 0.5199999809265137, 0.5210000276565552, 0.6205999851226807, 0.7768999934196472, 0.8539999723434448, 0.12549999356269836, 0.18310000002384186, 0.32280001044273376, 0.5781000256538391, 0.6478999853134155, 0.7348999977111816, 0.8119999766349792 ], "x_max": [ 0.40639999508857727, 0.48649999499320984, 0.5508000254631042, 0.8762999773025513, 0.5120999813079834, 0.5722000002861023, 0.13750000298023224, 0.48170000314712524, 0.626800000667572, 0.7533000111579895, 0.9025999903678894, 0.3296999931335449, 0.25850000977516174, 0.36629998683929443, 0.5778999924659729, 0.5728999972343445, 0.6794000267982483, 0.5999000072479248, 0.5673999786376953, 0.6164000034332275, 0.5853000283241272 ], "y_max": [ 0.12349999696016312, 0.2337999939918518, 0.2337999939918518, 0.2337999939918518, 0.26170000433921814, 0.25690001249313354, 0.2791999876499176, 0.2827000021934509, 0.2791999876499176, 0.534600019454956, 0.5313000082969666, 0.6312999725341797, 0.7896000146865845, 0.8690999746322632, 0.1469999998807907, 0.2011999934911728, 0.3443000018596649, 0.5952000021934509, 0.6801000237464905, 0.7524999976158142, 0.8285999894142151 ], "expr_type": [ "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "isolated", "isolated", "isolated", "isolated", "isolated", "isolated", "isolated" ] }
0001133_page23
{ "latex": [ "$n=5$", "$N_{gen}=\\frac {1}{2}c_{3}$", "$B={\\mathbb F}_{0}$", "$G=SU(3)$", "$\\cN $", "$\\lambda =\\frac {1}{2}$", "$W_{B} \\neq 0$", "$W_{B}$", "$B={\\mathbb F}_{0}$", "$G=SU(3)$", "\\begin {equation} \\hat {a}_{f}=132 \\label {eq:113} \\end {equation}", "\\begin {equation} \\hat {N}_{gen}=336 \\label {eq:114} \\end {equation}", "\\begin {equation} {\\cal {C}}=3\\sigma +\\pi ^{*}\\eta \\label {eq:115} \\end {equation}", "\\begin {equation} \\eta =6\\cS +6\\cE \\label {eq:116} \\end {equation}", "\\begin {equation} \\lambda =\\frac {1}{2} \\label {eq:117} \\end {equation}", "\\begin {equation} W_{B}=18\\cS +18\\cE , \\qquad a_{f}=100 \\label {eq:118} \\end {equation}", "\\begin {equation} N_{gen}=0 \\label {eq:119} \\end {equation}", "\\begin {equation} z=\\cE \\label {eq:120} \\end {equation}", "\\begin {equation} \\widehat {\\cC }=3\\sigma +\\pi ^{*}(\\eta + z) \\label {eq:121} \\end {equation}" ], "latex_norm": [ "$ n = 5 $", "$ N _ { g e n } = \\frac { 1 } { 2 } c _ { 3 } $", "$ B = F _ { 0 } $", "$ G = S U ( 3 ) $", "$ N $", "$ \\lambda = \\frac { 1 } { 2 } $", "$ W _ { B } \\ne 0 $", "$ W _ { B } $", "$ B = F _ { 0 } $", "$ G = S U ( 3 ) $", "\\begin{equation*} \\hat { a } _ { f } = 1 3 2 \\end{equation*}", "\\begin{equation*} \\hat { N } _ { g e n } = 3 3 6 \\end{equation*}", "\\begin{equation*} C = 3 \\sigma + \\pi ^ { \\ast } \\eta \\end{equation*}", "\\begin{equation*} \\eta = 6 S + 6 E \\end{equation*}", "\\begin{equation*} \\lambda = \\frac { 1 } { 2 } \\end{equation*}", "\\begin{equation*} W _ { B } = 1 8 S + 1 8 E , \\qquad a _ { f } = 1 0 0 \\end{equation*}", "\\begin{equation*} N _ { g e n } = 0 \\end{equation*}", "\\begin{equation*} z = E \\end{equation*}", "\\begin{equation*} \\hat { C } = 3 \\sigma + \\pi ^ { \\ast } ( \\eta + z ) \\end{equation*}" ], "latex_expand": [ "$ \\mitn = 5 $", "$ \\mitN _ { \\mitg \\mite \\mitn } = \\frac { 1 } { 2 } \\mitc _ { 3 } $", "$ \\mitB = \\BbbF _ { 0 } $", "$ \\mitG = \\mitS \\mitU ( 3 ) $", "$ \\mscrN $", "$ \\mitlambda = \\frac { 1 } { 2 } $", "$ \\mitW _ { \\mitB } \\ne 0 $", "$ \\mitW _ { \\mitB } $", "$ \\mitB = \\BbbF _ { 0 } $", "$ \\mitG = \\mitS \\mitU ( 3 ) $", "\\begin{equation*} \\hat { \\mita } _ { \\mitf } = 1 3 2 \\end{equation*}", "\\begin{equation*} \\hat { \\mitN } _ { \\mitg \\mite \\mitn } = 3 3 6 \\end{equation*}", "\\begin{equation*} \\mitC = 3 \\mitsigma + \\mitpi ^ { \\ast } \\miteta \\end{equation*}", "\\begin{equation*} \\miteta = 6 \\mscrS + 6 \\mscrE \\end{equation*}", "\\begin{equation*} \\mitlambda = \\frac { 1 } { 2 } \\end{equation*}", "\\begin{equation*} \\mitW _ { \\mitB } = 1 8 \\mscrS + 1 8 \\mscrE , \\qquad \\mita _ { \\mitf } = 1 0 0 \\end{equation*}", "\\begin{equation*} \\mitN _ { \\mitg \\mite \\mitn } = 0 \\end{equation*}", "\\begin{equation*} \\mitz = \\mscrE \\end{equation*}", "\\begin{equation*} \\widehat { \\mscrC } = 3 \\mitsigma + \\mitpi ^ { \\ast } ( \\miteta + \\mitz ) \\end{equation*}" ], "x_min": [ 0.6420000195503235, 0.34279999136924744, 0.120899997651577, 0.1956000030040741, 0.2605000138282776, 0.17350000143051147, 0.27570000290870667, 0.120899997651577, 0.14790000021457672, 0.2231999933719635, 0.47620001435279846, 0.46650001406669617, 0.45680001378059387, 0.460999995470047, 0.4885999858379364, 0.37869998812675476, 0.47620001435279846, 0.49000000953674316, 0.4318999946117401 ], "y_min": [ 0.20360000431537628, 0.22360000014305115, 0.39010000228881836, 0.38960000872612, 0.5048999786376953, 0.6679999828338623, 0.6693999767303467, 0.7143999934196472, 0.8227999806404114, 0.8223000168800354, 0.149399995803833, 0.25049999356269836, 0.41850000619888306, 0.47360000014305115, 0.5151000022888184, 0.5839999914169312, 0.6381999850273132, 0.7656000256538391, 0.8476999998092651 ], "x_max": [ 0.6904000043869019, 0.4368000030517578, 0.18379999697208405, 0.29170000553131104, 0.28049999475479126, 0.2281000018119812, 0.3483000099658966, 0.15199999511241913, 0.21150000393390656, 0.31929999589920044, 0.5550000071525574, 0.5645999908447266, 0.5742999911308289, 0.5702000260353088, 0.5432000160217285, 0.652400016784668, 0.5550000071525574, 0.5418000221252441, 0.5990999937057495 ], "y_max": [ 0.2134000062942505, 0.24070000648498535, 0.4027999937534332, 0.4041999876499176, 0.5152000188827515, 0.6851000189781189, 0.6830999851226807, 0.7271000146865845, 0.8355000019073486, 0.836899995803833, 0.16699999570846558, 0.2720000147819519, 0.43560001254081726, 0.48969998955726624, 0.5472999811172485, 0.6015999913215637, 0.6563000082969666, 0.7788000106811523, 0.8691999912261963 ], "expr_type": [ "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "isolated", "isolated", "isolated", "isolated", "isolated", "isolated", "isolated", "isolated", "isolated" ] }
0001133_page24
{ "latex": [ "$\\widehat {\\cN }=\\cN $", "$\\pi ^{*}z$", "$z=\\cE $", "$W_{B}$", "$W$", "$a_{f}F$", "$W$", "$a_{f}F$", "$SU(n)$", "$SU(n) \\times SU(m)$", "\\begin {equation} \\eta + z=6\\cS +7\\cE \\label {eq:122} \\end {equation}", "\\begin {equation} \\lambda =\\frac {1}{2} \\label {eq:123} \\end {equation}", "\\begin {equation} \\widehat {W}_{B}=18\\cS +17\\cE \\label {eq:124} \\end {equation}", "\\begin {equation} \\hat {a_{f}}=100 \\label {eq:125} \\end {equation}", "\\begin {equation} \\hat {N}_{gen}=3 \\label {eq:126} \\end {equation}" ], "latex_norm": [ "$ \\hat { N } = N $", "$ \\pi ^ { \\ast } z $", "$ z = E $", "$ W _ { B } $", "$ W $", "$ a _ { f } F $", "$ W $", "$ a _ { f } F $", "$ S U ( n ) $", "$ S U ( n ) \\times S U ( m ) $", "\\begin{equation*} \\eta + z = 6 S + 7 E \\end{equation*}", "\\begin{equation*} \\lambda = \\frac { 1 } { 2 } \\end{equation*}", "\\begin{equation*} \\hat { W } _ { B } = 1 8 S + 1 7 E \\end{equation*}", "\\begin{equation*} \\hat { a _ { f } } = 1 0 0 \\end{equation*}", "\\begin{equation*} \\hat { N } _ { g e n } = 3 \\end{equation*}" ], "latex_expand": [ "$ \\widehat { \\mscrN } = \\mscrN $", "$ \\mitpi ^ { \\ast } \\mitz $", "$ \\mitz = \\mscrE $", "$ \\mitW _ { \\mitB } $", "$ \\mitW $", "$ \\mita _ { \\mitf } \\mitF $", "$ \\mitW $", "$ \\mita _ { \\mitf } \\mitF $", "$ \\mitS \\mitU ( \\mitn ) $", "$ \\mitS \\mitU ( \\mitn ) \\times \\mitS \\mitU ( \\mitm ) $", "\\begin{equation*} \\miteta + \\mitz = 6 \\mscrS + 7 \\mscrE \\end{equation*}", "\\begin{equation*} \\mitlambda = \\frac { 1 } { 2 } \\end{equation*}", "\\begin{equation*} \\widehat { \\mitW } _ { \\mitB } = 1 8 \\mscrS + 1 7 \\mscrE \\end{equation*}", "\\begin{equation*} \\hat { \\mita _ { \\mitf } } = 1 0 0 \\end{equation*}", "\\begin{equation*} \\hat { \\mitN } _ { \\mitg \\mite \\mitn } = 3 \\end{equation*}" ], "x_min": [ 0.2605000138282776, 0.3303000032901764, 0.4235999882221222, 0.42160001397132874, 0.669700026512146, 0.41190001368522644, 0.4796000123023987, 0.23909999430179596, 0.3303000032901764, 0.7443000078201294, 0.44369998574256897, 0.4885999858379364, 0.4408999979496002, 0.47620001435279846, 0.47620001435279846 ], "y_min": [ 0.1665000021457672, 0.23340000212192535, 0.23340000212192535, 0.676800012588501, 0.676800012588501, 0.6991999745368958, 0.6991999745368958, 0.7437000274658203, 0.7871000170707703, 0.8095999956130981, 0.13179999589920044, 0.18549999594688416, 0.26660001277923584, 0.361299991607666, 0.4569999873638153 ], "x_max": [ 0.32679998874664307, 0.36070001125335693, 0.47269999980926514, 0.45339998602867126, 0.691100001335144, 0.44780001044273376, 0.5009999871253967, 0.2743000090122223, 0.3862999975681305, 0.8791000247001648, 0.5874000191688538, 0.5432000160217285, 0.5909000039100647, 0.5550000071525574, 0.5550000071525574 ], "y_max": [ 0.181099995970726, 0.24369999766349792, 0.24369999766349792, 0.6890000104904175, 0.6870999932289124, 0.7134000062942505, 0.7095000147819519, 0.7578999996185303, 0.8022000193595886, 0.8241999745368958, 0.14839999377727509, 0.21770000457763672, 0.2865999937057495, 0.37940001487731934, 0.47850000858306885 ], "expr_type": [ "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "isolated", "isolated", "isolated", "isolated", "isolated" ] }
0001133_page25
{ "latex": [ "$SU(n)$", "$\\overline {V}$", "$X$", "$\\overline {\\cN }$", "$\\bar {\\cal {C}}$", "$c_{1}(\\overline {\\cN })$", "$c_{i}(\\overline {V})$", "$i=1,2,3$", "$\\eta $", "$\\bar {\\eta }$", "$M$", "$SU(m)$", "$m\\geq 2$", "$X$", "$B$", "$M$", "$SU(m)$", "$\\pi ^{*}M$", "$X$", "$m\\sigma $", "$m$", "$m$", "$\\pi ^{*}M$", "$m$", "$B$", "$M$", "$m\\sigma $", "$\\pi ^{*}M$", "$\\overline {V}$", "$\\pi ^{*}M$", "$\\bV $", "$\\bV $", "$n+m$", "$X$", "$SU(n)\\times SU(m)$", "\\begin {equation} \\bar {\\cal {C}}=n\\sigma +\\pi ^{*}\\bar {\\eta } \\label {eq:127} \\end {equation}", "\\begin {equation} c_{1}(M)=0 \\label {eq:128} \\end {equation}", "\\begin {equation} c_{2}(M)=k, \\qquad k\\in {\\mathbb Z} \\label {eq:129} \\end {equation}", "\\begin {equation} c_{i}(M)=0, \\qquad i\\geq 3 \\label {eq:130} \\end {equation}", "\\begin {equation} \\pi ^{*}M \\longrightarrow (m\\sigma , M) \\label {eq:131} \\end {equation}", "\\begin {equation} c_{1}(\\pi ^{*}M)=0 \\label {eq:132} \\end {equation}", "\\begin {equation} c_{2}(\\pi ^{*}M)=kF, \\qquad k \\in {\\mathbb Z} \\label {eq:133} \\end {equation}", "\\begin {equation} c_{3}(\\pi ^{*}M)=0 \\label {eq:134} \\end {equation}", "\\begin {equation} \\bV = \\overline {V} \\oplus \\pi ^{*}M \\label {eq:135} \\end {equation}", "\\begin {equation} \\bV \\longrightarrow (\\bC , \\bN ) \\label {eq:136} \\end {equation}" ], "latex_norm": [ "$ S U ( n ) $", "$ \\overline { V } $", "$ X $", "$ \\overline { N } $", "$ \\bar { C } $", "$ c _ { 1 } ( \\overline { N } ) $", "$ c _ { i } ( \\overline { V } ) $", "$ i = 1 , 2 , 3 $", "$ \\eta $", "$ \\bar { \\eta } $", "$ M $", "$ S U ( m ) $", "$ m \\geq 2 $", "$ X $", "$ B $", "$ M $", "$ S U ( m ) $", "$ \\pi ^ { \\ast } M $", "$ X $", "$ m \\sigma $", "$ m $", "$ m $", "$ \\pi ^ { \\ast } M $", "$ m $", "$ B $", "$ M $", "$ m \\sigma $", "$ \\pi ^ { \\ast } M $", "$ \\overline { V } $", "$ \\pi ^ { \\ast } M $", "$ V $", "$ V $", "$ n + m $", "$ X $", "$ S U ( n ) \\times S U ( m ) $", "\\begin{equation*} \\bar { C } = n \\sigma + \\pi ^ { \\ast } \\bar { \\eta } \\end{equation*}", "\\begin{equation*} c _ { 1 } ( M ) = 0 \\end{equation*}", "\\begin{equation*} c _ { 2 } ( M ) = k , \\qquad k \\in Z \\end{equation*}", "\\begin{equation*} c _ { i } ( M ) = 0 , \\qquad i \\geq 3 \\end{equation*}", "\\begin{equation*} \\pi ^ { \\ast } M \\longrightarrow ( m \\sigma , M ) \\end{equation*}", "\\begin{equation*} c _ { 1 } ( \\pi ^ { \\ast } M ) = 0 \\end{equation*}", "\\begin{equation*} c _ { 2 } ( \\pi ^ { \\ast } M ) = k F , \\qquad k \\in Z \\end{equation*}", "\\begin{equation*} c _ { 3 } ( \\pi ^ { \\ast } M ) = 0 \\end{equation*}", "\\begin{equation*} V = \\overline { V } \\oplus \\pi ^ { \\ast } M \\end{equation*}", "\\begin{equation*} V \\longrightarrow ( C , N ) \\end{equation*}" ], "latex_expand": [ "$ \\mitS \\mitU ( \\mitn ) $", "$ \\overline { \\mitV } $", "$ \\mitX $", "$ \\overline { \\mscrN } $", "$ \\bar { \\mitC } $", "$ \\mitc _ { 1 } ( \\overline { \\mscrN } ) $", "$ \\mitc _ { \\miti } ( \\overline { \\mitV } ) $", "$ \\miti = 1 , 2 , 3 $", "$ \\miteta $", "$ \\bar { \\miteta } $", "$ \\mitM $", "$ \\mitS \\mitU ( \\mitm ) $", "$ \\mitm \\geq 2 $", "$ \\mitX $", "$ \\mitB $", "$ \\mitM $", "$ \\mitS \\mitU ( \\mitm ) $", "$ \\mitpi ^ { \\ast } \\mitM $", "$ \\mitX $", "$ \\mitm \\mitsigma $", "$ \\mitm $", "$ \\mitm $", "$ \\mitpi ^ { \\ast } \\mitM $", "$ \\mitm $", "$ \\mitB $", "$ \\mitM $", "$ \\mitm \\mitsigma $", "$ \\mitpi ^ { \\ast } \\mitM $", "$ \\overline { \\mitV } $", "$ \\mitpi ^ { \\ast } \\mitM $", "$ \\mbfV $", "$ \\mbfV $", "$ \\mitn + \\mitm $", "$ \\mitX $", "$ \\mitS \\mitU ( \\mitn ) \\times \\mitS \\mitU ( \\mitm ) $", "\\begin{equation*} \\bar { \\mitC } = \\mitn \\mitsigma + \\mitpi ^ { \\ast } \\bar { \\miteta } \\end{equation*}", "\\begin{equation*} \\mitc _ { 1 } ( \\mitM ) = 0 \\end{equation*}", "\\begin{equation*} \\mitc _ { 2 } ( \\mitM ) = \\mitk , \\qquad \\mitk \\in \\BbbZ \\end{equation*}", "\\begin{equation*} \\mitc _ { \\miti } ( \\mitM ) = 0 , \\qquad \\miti \\geq 3 \\end{equation*}", "\\begin{equation*} \\mitpi ^ { \\ast } \\mitM \\longrightarrow ( \\mitm \\mitsigma , \\mitM ) \\end{equation*}", "\\begin{equation*} \\mitc _ { 1 } ( \\mitpi ^ { \\ast } \\mitM ) = 0 \\end{equation*}", "\\begin{equation*} \\mitc _ { 2 } ( \\mitpi ^ { \\ast } \\mitM ) = \\mitk \\mitF , \\qquad \\mitk \\in \\BbbZ \\end{equation*}", "\\begin{equation*} \\mitc _ { 3 } ( \\mitpi ^ { \\ast } \\mitM ) = 0 \\end{equation*}", "\\begin{equation*} \\mbfV = \\overline { \\mitV } \\oplus \\mitpi ^ { \\ast } \\mitM \\end{equation*}", "\\begin{equation*} \\mbfV \\longrightarrow ( \\mbfC , \\mbfN ) \\end{equation*}" ], "x_min": [ 0.4187999963760376, 0.6144000291824341, 0.6876000165939331, 0.2639999985694885, 0.3345000147819519, 0.5300999879837036, 0.6281999945640564, 0.7124999761581421, 0.16590000689029694, 0.2874999940395355, 0.23080000281333923, 0.35589998960494995, 0.5895000100135803, 0.7304999828338623, 0.120899997651577, 0.3352000117301941, 0.47269999980926514, 0.6690000295639038, 0.7616000175476074, 0.33660000562667847, 0.46720001101493835, 0.3255000114440918, 0.35589998960494995, 0.6371999979019165, 0.32339999079704285, 0.42289999127388, 0.163100004196167, 0.390500009059906, 0.5543000102043152, 0.6115999817848206, 0.1906999945640564, 0.120899997651577, 0.536300003528595, 0.7609000205993652, 0.17829999327659607, 0.4560999870300293, 0.4691999852657318, 0.42089998722076416, 0.42500001192092896, 0.43540000915527344, 0.4596000015735626, 0.4043000042438507, 0.4596000015735626, 0.4512999951839447, 0.4546999931335449 ], "y_min": [ 0.1386999934911728, 0.13670000433921814, 0.1395999938249588, 0.20999999344348907, 0.21089999377727509, 0.20999999344348907, 0.20999999344348907, 0.2134000062942505, 0.23880000412464142, 0.23680000007152557, 0.2572999894618988, 0.2563000023365021, 0.25780001282691956, 0.2572999894618988, 0.2797999978065491, 0.2797999978065491, 0.40230000019073486, 0.4032999873161316, 0.4032999873161316, 0.5019999742507935, 0.5019999742507935, 0.524399995803833, 0.5210000276565552, 0.524399995803833, 0.5429999828338623, 0.5429999828338623, 0.5687999725341797, 0.5654000043869019, 0.6859999895095825, 0.6890000104904175, 0.7109000086784363, 0.7773000001907349, 0.7788000106811523, 0.7773000001907349, 0.798799991607666, 0.17919999361038208, 0.3086000084877014, 0.3418000042438507, 0.3700999915599823, 0.4657999873161316, 0.5942000150680542, 0.6273999810218811, 0.6561999917030334, 0.7383000254631042, 0.8511000275611877 ], "x_max": [ 0.4754999876022339, 0.6309999823570251, 0.7056000232696533, 0.2840000092983246, 0.34689998626708984, 0.5812000036239624, 0.673799991607666, 0.7975000143051147, 0.17630000412464142, 0.2985999882221222, 0.25290000438690186, 0.4180999994277954, 0.64410001039505, 0.7491999864578247, 0.13750000298023224, 0.3573000133037567, 0.5342000126838684, 0.7098000049591064, 0.7796000242233276, 0.36629998683929443, 0.4851999878883362, 0.3434999883174896, 0.39739999175071716, 0.6552000045776367, 0.3400000035762787, 0.44429999589920044, 0.19280000030994415, 0.4320000112056732, 0.5702000260353088, 0.6531000137329102, 0.2087000012397766, 0.1388999968767166, 0.5895000100135803, 0.7789000272750854, 0.32269999384880066, 0.574999988079071, 0.5618000030517578, 0.6108999848365784, 0.6061000227928162, 0.5957000255584717, 0.5716000199317932, 0.6274999976158142, 0.5716000199317932, 0.579800009727478, 0.5763000249862671 ], "y_max": [ 0.15330000221729279, 0.14990000426769257, 0.14990000426769257, 0.2231999933719635, 0.22310000658035278, 0.22660000622272491, 0.22660000622272491, 0.22609999775886536, 0.24809999763965607, 0.24799999594688416, 0.26759999990463257, 0.27140000462532043, 0.2694999873638153, 0.26759999990463257, 0.29010000824928284, 0.29010000824928284, 0.41690000891685486, 0.41359999775886536, 0.41359999775886536, 0.5088000297546387, 0.5088000297546387, 0.5311999917030334, 0.5313000082969666, 0.5311999917030334, 0.5533000230789185, 0.5533000230789185, 0.5756000280380249, 0.5756999850273132, 0.6980000138282776, 0.6992999911308289, 0.7215999960899353, 0.7875999808311462, 0.7890999913215637, 0.7875999808311462, 0.8133999705314636, 0.1973000019788742, 0.32670000195503235, 0.35989999771118164, 0.3882000148296356, 0.4839000105857849, 0.6122999787330627, 0.6455000042915344, 0.6743000149726868, 0.7559000253677368, 0.8691999912261963 ], "expr_type": [ "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "isolated", "isolated", "isolated", "isolated", "isolated", "isolated", "isolated", "isolated", "isolated", "isolated" ] }
0001133_page26
{ "latex": [ "$\\bV $", "$i=1,2,3$", "$SU(n)\\times SU(m)$", "$SU(n)$", "$V$", "$\\cN $", "${\\cal {C}}$", "$W=W_{B}\\sigma +a_{f}F$", "$V$", "$TX$", "$W_{B}$", "$kF$", "$k=a_{f}$", "$k< a_{f}$", "$B$", "$X$", "$m$", "$U$", "$B$", "\\begin {equation} \\bC =\\bar {\\cal {C}}\\cup m\\sigma , \\qquad \\bN =\\overline {\\cN }\\oplus \\sigma _{*}M \\label {eq:137} \\end {equation}", "\\begin {equation} c_{1}(\\overline {V})=c_{1}(\\pi ^{*}M)=0, \\label {eq:138} \\end {equation}", "\\begin {equation} c_{i}(\\bV )=c_{i}(\\overline {V}) +c_{i}(\\pi ^{*}M) \\label {eq:139} \\end {equation}", "\\begin {equation} c_{1}(\\bV )=0 \\label {eq:140} \\end {equation}", "\\begin {equation} c_{2}(\\bV )=c_{2}(\\overline {V}) +kF, \\qquad k\\in {\\mathbb Z} \\label {eq:141} \\end {equation}", "\\begin {equation} c_{3}(\\bV )=c_{3}(\\overline {V}) \\label {eq:142} \\end {equation}", "\\begin {equation} \\cC = n\\sigma + \\pi ^{*}\\eta \\label {eq:143} \\end {equation}", "\\begin {equation} a_{f}F \\neq 0 \\label {eq:144} \\end {equation}", "\\begin {equation} U= \\cO _{B} \\oplus \\dots \\oplus \\cO _{B} \\label {eq:145} \\end {equation}" ], "latex_norm": [ "$ V $", "$ i = 1 , 2 , 3 $", "$ S U ( n ) \\times S U ( m ) $", "$ S U ( n ) $", "$ V $", "$ N $", "$ C $", "$ W = W _ { B } \\sigma + a _ { f } F $", "$ V $", "$ T X $", "$ W _ { B } $", "$ k F $", "$ k = a _ { f } $", "$ k < a _ { f } $", "$ B $", "$ X $", "$ m $", "$ U $", "$ B $", "\\begin{equation*} C = \\bar { C } \\cup m \\sigma , \\qquad N = \\overline { N } \\oplus \\sigma _ { \\ast } M \\end{equation*}", "\\begin{equation*} c _ { 1 } ( \\overline { V } ) = c _ { 1 } ( \\pi ^ { \\ast } M ) = 0 , \\end{equation*}", "\\begin{equation*} c _ { i } ( V ) = c _ { i } ( \\overline { V } ) + c _ { i } ( \\pi ^ { \\ast } M ) \\end{equation*}", "\\begin{equation*} c _ { 1 } ( V ) = 0 \\end{equation*}", "\\begin{equation*} c _ { 2 } ( V ) = c _ { 2 } ( \\overline { V } ) + k F , \\qquad k \\in Z \\end{equation*}", "\\begin{equation*} c _ { 3 } ( V ) = c _ { 3 } ( \\overline { V } ) \\end{equation*}", "\\begin{equation*} C = n \\sigma + \\pi ^ { \\ast } \\eta \\end{equation*}", "\\begin{equation*} a _ { f } F \\ne 0 \\end{equation*}", "\\begin{equation*} U = O _ { B } \\oplus \\cdots \\oplus O _ { B } \\end{equation*}" ], "latex_expand": [ "$ \\mbfV $", "$ \\miti = 1 , 2 , 3 $", "$ \\mitS \\mitU ( \\mitn ) \\times \\mitS \\mitU ( \\mitm ) $", "$ \\mitS \\mitU ( \\mitn ) $", "$ \\mitV $", "$ \\mscrN $", "$ \\mitC $", "$ \\mitW = \\mitW _ { \\mitB } \\mitsigma + \\mita _ { \\mitf } \\mitF $", "$ \\mitV $", "$ \\mitT \\mitX $", "$ \\mitW _ { \\mitB } $", "$ \\mitk \\mitF $", "$ \\mitk = \\mita _ { \\mitf } $", "$ \\mitk < \\mita _ { \\mitf } $", "$ \\mitB $", "$ \\mitX $", "$ \\mitm $", "$ \\mitU $", "$ \\mitB $", "\\begin{equation*} \\mbfC = \\bar { \\mitC } \\cup \\mitm \\mitsigma , \\qquad \\mbfN = \\overline { \\mscrN } \\oplus \\mitsigma _ { \\ast } \\mitM \\end{equation*}", "\\begin{equation*} \\mitc _ { 1 } ( \\overline { \\mitV } ) = \\mitc _ { 1 } ( \\mitpi ^ { \\ast } \\mitM ) = 0 , \\end{equation*}", "\\begin{equation*} \\mitc _ { \\miti } ( \\mbfV ) = \\mitc _ { \\miti } ( \\overline { \\mitV } ) + \\mitc _ { \\miti } ( \\mitpi ^ { \\ast } \\mitM ) \\end{equation*}", "\\begin{equation*} \\mitc _ { 1 } ( \\mbfV ) = 0 \\end{equation*}", "\\begin{equation*} \\mitc _ { 2 } ( \\mbfV ) = \\mitc _ { 2 } ( \\overline { \\mitV } ) + \\mitk \\mitF , \\qquad \\mitk \\in \\BbbZ \\end{equation*}", "\\begin{equation*} \\mitc _ { 3 } ( \\mbfV ) = \\mitc _ { 3 } ( \\overline { \\mitV } ) \\end{equation*}", "\\begin{equation*} \\mscrC = \\mitn \\mitsigma + \\mitpi ^ { \\ast } \\miteta \\end{equation*}", "\\begin{equation*} \\mita _ { \\mitf } \\mitF \\ne 0 \\end{equation*}", "\\begin{equation*} \\mitU = \\mscrO _ { \\mitB } \\oplus \\cdots \\oplus \\mscrO _ { \\mitB } \\end{equation*}" ], "x_min": [ 0.2985000014305115, 0.15070000290870667, 0.4968999922275543, 0.7008000016212463, 0.8914999961853027, 0.30059999227523804, 0.3711000084877014, 0.583299994468689, 0.3869999945163727, 0.44780001044273376, 0.656499981880188, 0.23839999735355377, 0.4706000089645386, 0.15000000596046448, 0.7001000046730042, 0.120899997651577, 0.43950000405311584, 0.5985000133514404, 0.6682999730110168, 0.373199999332428, 0.4180999994277954, 0.40700000524520874, 0.47130000591278076, 0.3801000118255615, 0.4526999890804291, 0.4560999870300293, 0.4781999886035919, 0.4284999966621399 ], "y_min": [ 0.21389999985694885, 0.288100004196167, 0.4009000062942505, 0.46779999136924744, 0.46880000829696655, 0.5439000129699707, 0.5439000129699707, 0.5659000277519226, 0.5884000062942505, 0.5884000062942505, 0.6621000170707703, 0.7289999723434448, 0.7509999871253967, 0.7734000086784363, 0.7958999872207642, 0.8184000253677368, 0.8217999935150146, 0.8184000253677368, 0.8184000253677368, 0.12449999898672104, 0.1776999980211258, 0.24459999799728394, 0.3061999976634979, 0.3345000147819519, 0.365200012922287, 0.5098000168800354, 0.6220999956130981, 0.8515999913215637 ], "x_max": [ 0.3165000081062317, 0.23160000145435333, 0.6406000256538391, 0.7567999958992004, 0.9081000089645386, 0.3199999928474426, 0.38350000977516174, 0.7346000075340271, 0.4036000072956085, 0.48030000925064087, 0.6876000165939331, 0.2653999924659729, 0.5307000279426575, 0.20739999413490295, 0.7160000205039978, 0.1388999968767166, 0.45680001378059387, 0.6144000291824341, 0.6848999857902527, 0.6578999757766724, 0.609499990940094, 0.6233000159263611, 0.5598000288009644, 0.6517000198364258, 0.579200029373169, 0.5756999850273132, 0.5527999997138977, 0.6026999950408936 ], "y_max": [ 0.22419999539852142, 0.30079999566078186, 0.4154999852180481, 0.48240000009536743, 0.47909998893737793, 0.5541999936103821, 0.5541999936103821, 0.5805000066757202, 0.5990999937057495, 0.5990999937057495, 0.6747999787330627, 0.739300012588501, 0.7656000256538391, 0.7879999876022339, 0.8062000274658203, 0.8287000060081482, 0.8285999894142151, 0.8287000060081482, 0.8287000060081482, 0.14399999380111694, 0.19769999384880066, 0.26460000872612, 0.32429999113082886, 0.3544999957084656, 0.38519999384880066, 0.5268999934196472, 0.6396999955177307, 0.8676999807357788 ], "expr_type": [ "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "isolated", "isolated", "isolated", "isolated", "isolated", "isolated", "isolated", "isolated", "isolated" ] }
0001133_page27
{ "latex": [ "$m$", "$\\cO _{B}$", "$kF$", "$k$", "$k$", "$z_{i}$", "$i=1,\\ldots ,k$", "$\\widetilde {V}$", "$V$", "$V_{z}$", "$z_{i}$", "$U_{z_{i}}$", "$B_{z}=\\{ z_{1},\\ldots ,z_{k} \\}$", "$B_{z}$", "$\\widetilde {U}$", "$\\widetilde {U}$", "$\\widetilde {U}$", "$\\widetilde {U}$", "$B$", "$B=dP_{9}$", "\\begin {equation} U_{z}=U_{z_{1}}\\cup \\ldots \\cup U_{z_{k}} \\label {eq:147} \\end {equation}", "\\begin {equation} \\xi :U|_{z_{i}} \\rightarrow U_{z_{i}} \\label {eq:148} \\end {equation}", "\\begin {equation} 0 \\rightarrow \\widetilde {U} \\rightarrow U \\rightarrow U_{z} \\rightarrow 0 \\label {eq:149} \\end {equation}", "\\begin {equation} \\operatorname {codimension} B_{z}= 2 > 1, \\label {eq:150} \\end {equation}", "\\begin {equation} 2 \\leq m \\label {eq:150A} \\end {equation}", "\\begin {equation} c_{1}(\\widetilde {U})=0 \\label {eq:151} \\end {equation}", "\\begin {equation} c_{2}(\\widetilde {U})=k \\label {eq:152} \\end {equation}", "\\begin {equation} c_{i}(\\widetilde {U})=0, \\qquad i\\geq 3 \\label {eq:153} \\end {equation}" ], "latex_norm": [ "$ m $", "$ O _ { B } $", "$ k F $", "$ k $", "$ k $", "$ z _ { i } $", "$ i = 1 , \\ldots , k $", "$ \\widetilde { V } $", "$ V $", "$ V _ { z } $", "$ z _ { i } $", "$ U _ { z _ { i } } $", "$ B _ { z } = \\{ z _ { 1 } , \\ldots , z _ { k } \\} $", "$ B _ { z } $", "$ \\widetilde { U } $", "$ \\widetilde { U } $", "$ \\widetilde { U } $", "$ \\widetilde { U } $", "$ B $", "$ B = d P _ { 9 } $", "\\begin{equation*} U _ { z } = U _ { z _ { 1 } } \\cup \\ldots \\cup U _ { z _ { k } } \\end{equation*}", "\\begin{equation*} \\xi : U \\vert _ { z _ { i } } \\rightarrow U _ { z _ { i } } \\end{equation*}", "\\begin{equation*} 0 \\rightarrow \\widetilde { U } \\rightarrow U \\rightarrow U _ { z } \\rightarrow 0 \\end{equation*}", "\\begin{equation*} \\operatorname { c o d i m e n s i o n } B _ { z } = 2 > 1 , \\end{equation*}", "\\begin{equation*} 2 \\leq m \\end{equation*}", "\\begin{equation*} c _ { 1 } ( \\widetilde { U } ) = 0 \\end{equation*}", "\\begin{equation*} c _ { 2 } ( \\widetilde { U } ) = k \\end{equation*}", "\\begin{equation*} c _ { i } ( \\widetilde { U } ) = 0 , \\qquad i \\geq 3 \\end{equation*}" ], "latex_expand": [ "$ \\mitm $", "$ \\mscrO _ { \\mitB } $", "$ \\mitk \\mitF $", "$ \\mitk $", "$ \\mitk $", "$ \\mitz _ { \\miti } $", "$ \\miti = 1 , \\ldots , \\mitk $", "$ \\widetilde { \\mitV } $", "$ \\mitV $", "$ \\mitV _ { \\mitz } $", "$ \\mitz _ { \\miti } $", "$ \\mitU _ { \\mitz _ { \\miti } } $", "$ \\mitB _ { \\mitz } = \\{ \\mitz _ { 1 } , \\ldots , \\mitz _ { \\mitk } \\} $", "$ \\mitB _ { \\mitz } $", "$ \\widetilde { \\mitU } $", "$ \\widetilde { \\mitU } $", "$ \\widetilde { \\mitU } $", "$ \\widetilde { \\mitU } $", "$ \\mitB $", "$ \\mitB = \\mitd \\mitP _ { 9 } $", "\\begin{equation*} \\mitU _ { \\mitz } = \\mitU _ { \\mitz _ { 1 } } \\cup \\ldots \\cup \\mitU _ { \\mitz _ { \\mitk } } \\end{equation*}", "\\begin{equation*} \\mitxi : \\mitU \\vert _ { \\mitz _ { \\miti } } \\rightarrow \\mitU _ { \\mitz _ { \\miti } } \\end{equation*}", "\\begin{equation*} 0 \\rightarrow \\widetilde { \\mitU } \\rightarrow \\mitU \\rightarrow \\mitU _ { \\mitz } \\rightarrow 0 \\end{equation*}", "\\begin{equation*} \\operatorname { c o d i m e n s i o n } \\mitB _ { \\mitz } = 2 > 1 , \\end{equation*}", "\\begin{equation*} 2 \\leq \\mitm \\end{equation*}", "\\begin{equation*} \\mitc _ { 1 } ( \\widetilde { \\mitU } ) = 0 \\end{equation*}", "\\begin{equation*} \\mitc _ { 2 } ( \\widetilde { \\mitU } ) = \\mitk \\end{equation*}", "\\begin{equation*} \\mitc _ { \\miti } ( \\widetilde { \\mitU } ) = 0 , \\qquad \\miti \\geq 3 \\end{equation*}" ], "x_min": [ 0.1671999990940094, 0.4422999918460846, 0.6274999976158142, 0.8086000084877014, 0.5742999911308289, 0.7290999889373779, 0.802299976348877, 0.3379000127315521, 0.4050000011920929, 0.46369999647140503, 0.72079998254776, 0.2321999967098236, 0.4927000105381012, 0.3379000127315521, 0.2046000063419342, 0.16519999504089355, 0.6531000137329102, 0.2646999955177307, 0.399399995803833, 0.7339000105857849, 0.4284999966621399, 0.4553999900817871, 0.41600000858306885, 0.4056999981403351, 0.487199991941452, 0.47200000286102295, 0.47200000286102295, 0.4277999997138977 ], "y_min": [ 0.11180000007152557, 0.10840000212192535, 0.13040000200271606, 0.13040000200271606, 0.15279999375343323, 0.15620000660419464, 0.15279999375343323, 0.17090000212192535, 0.17479999363422394, 0.1753000020980835, 0.2011999934911728, 0.21969999372959137, 0.27149999141693115, 0.31690001487731934, 0.4081999957561493, 0.5547000169754028, 0.5770999789237976, 0.6729000210762024, 0.8550000190734863, 0.8550000190734863, 0.23880000412464142, 0.3490999937057495, 0.4413999915122986, 0.5189999938011169, 0.6151999831199646, 0.7060999870300293, 0.7426999807357788, 0.7728999853134155 ], "x_max": [ 0.18449999392032623, 0.4706000089645386, 0.6538000106811523, 0.8202999830245972, 0.5853999853134155, 0.7443000078201294, 0.9024999737739563, 0.3537999987602234, 0.42089998722076416, 0.4837000072002411, 0.7360000014305115, 0.25920000672340393, 0.6523000001907349, 0.3614000082015991, 0.22120000422000885, 0.181099995970726, 0.6690000295639038, 0.28060001134872437, 0.41600000858306885, 0.807200014591217, 0.6032999753952026, 0.5756000280380249, 0.6157000064849854, 0.6186000108718872, 0.5439000129699707, 0.5590999722480774, 0.5590999722480774, 0.6032999753952026 ], "y_max": [ 0.11860000342130661, 0.12060000002384186, 0.14069999754428864, 0.14069999754428864, 0.163100004196167, 0.1655000001192093, 0.16599999368190765, 0.18549999594688416, 0.18549999594688416, 0.1875, 0.20999999344348907, 0.23340000212192535, 0.28610000014305115, 0.3296000063419342, 0.4228000044822693, 0.5692999958992004, 0.5913000106811523, 0.6870999932289124, 0.8652999997138977, 0.8676999807357788, 0.2563999891281128, 0.3677000105381012, 0.46140000224113464, 0.5356000065803528, 0.629800021648407, 0.7271000146865845, 0.76419997215271, 0.7939000129699707 ], "expr_type": [ "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "isolated", "isolated", "isolated", "isolated", "isolated", "isolated", "isolated", "isolated" ] }
0001133_page29
{ "latex": [ "$m$", "$\\widehat {\\cN }_{B}$", "$\\widehat {\\cC }$", "$SU(m)$", "$\\widehat {U}$", "$\\widetilde {U}$", "$\\widetilde {U}$", "$\\widehat {U}$", "$\\widetilde {\\cC }$", "$\\widetilde {N}_{B}$", "$\\widetilde {U}$", "$SU(m)$", "$\\widehat {U}$", "$B$", "$X$", "$\\pi ^{*}\\widetilde {U}$", "$X$", "$\\pi ^{*}\\tilde {U}$", "$\\pi ^{*}\\tilde {U}$", "$X$", "$\\tilde {U}$", "\\begin {equation} 1 < m \\leq k \\label {eq:164} \\end {equation}", "\\begin {equation} c_{1}(\\widehat {\\cN }_{B})= \\frac {m}{2}(2k -1 -m) \\label {eq:165} \\end {equation}", "\\begin {equation} c_{1}(\\widehat {U})=0 \\label {eq:166} \\end {equation}", "\\begin {equation} c_{2}(\\widehat {U})=k \\label {eq:167} \\end {equation}", "\\begin {equation} c_{i}(\\widehat {U})=0, \\qquad i\\geq 3 \\label {eq:168} \\end {equation}", "\\begin {equation} c_{1}(\\widehat {\\cN }_{B})=c_{1}(\\widetilde {\\cN }_{B}) \\label {eq:169} \\end {equation}", "\\begin {equation} c_{1}(\\widetilde {\\cN }_{B})= \\frac {m}{2}(2k -1 -m) \\label {eq:170} \\end {equation}", "\\begin {equation} \\operatorname {codimension} kF= 2 > 1, \\label {eq:171} \\end {equation}", "\\begin {equation} c_{1}(\\pi ^{*}\\tilde {U})=0 \\label {eq:172} \\end {equation}" ], "latex_norm": [ "$ m $", "$ \\hat { N } _ { B } $", "$ \\hat { C } $", "$ S U ( m ) $", "$ \\hat { U } $", "$ \\widetilde { U } $", "$ \\widetilde { U } $", "$ \\hat { U } $", "$ \\widetilde { C } $", "$ \\widetilde { N } _ { B } $", "$ \\widetilde { U } $", "$ S U ( m ) $", "$ \\hat { U } $", "$ B $", "$ X $", "$ \\pi ^ { \\ast } \\widetilde { U } $", "$ X $", "$ \\pi ^ { \\ast } \\widetilde { U } $", "$ \\pi ^ { \\ast } \\widetilde { U } $", "$ X $", "$ \\widetilde { U } $", "\\begin{equation*} 1 < m \\leq k \\end{equation*}", "\\begin{equation*} c _ { 1 } ( \\hat { N } _ { B } ) = \\frac { m } { 2 } ( 2 k - 1 - m ) \\end{equation*}", "\\begin{equation*} c _ { 1 } ( \\hat { U } ) = 0 \\end{equation*}", "\\begin{equation*} c _ { 2 } ( \\hat { U } ) = k \\end{equation*}", "\\begin{equation*} c _ { i } ( \\hat { U } ) = 0 , \\qquad i \\geq 3 \\end{equation*}", "\\begin{equation*} c _ { 1 } ( \\hat { N } _ { B } ) = c _ { 1 } ( \\widetilde { N } _ { B } ) \\end{equation*}", "\\begin{equation*} c _ { 1 } ( \\widetilde { N } _ { B } ) = \\frac { m } { 2 } ( 2 k - 1 - m ) \\end{equation*}", "\\begin{equation*} \\operatorname { c o d i m e n s i o n } k F = 2 > 1 , \\end{equation*}", "\\begin{equation*} c _ { 1 } ( \\pi ^ { \\ast } \\widetilde { U } ) = 0 \\end{equation*}" ], "latex_expand": [ "$ \\mitm $", "$ \\widehat { \\mscrN } _ { \\mitB } $", "$ \\widehat { \\mscrC } $", "$ \\mitS \\mitU ( \\mitm ) $", "$ \\widehat { \\mitU } $", "$ \\widetilde { \\mitU } $", "$ \\widetilde { \\mitU } $", "$ \\widehat { \\mitU } $", "$ \\widetilde { \\mscrC } $", "$ \\widetilde { \\mitN } _ { \\mitB } $", "$ \\widetilde { \\mitU } $", "$ \\mitS \\mitU ( \\mitm ) $", "$ \\widehat { \\mitU } $", "$ \\mitB $", "$ \\mitX $", "$ \\mitpi ^ { \\ast } \\widetilde { \\mitU } $", "$ \\mitX $", "$ \\mitpi ^ { \\ast } \\tilde { \\mitU } $", "$ \\mitpi ^ { \\ast } \\tilde { \\mitU } $", "$ \\mitX $", "$ \\tilde { \\mitU } $", "\\begin{equation*} 1 < \\mitm \\leq \\mitk \\end{equation*}", "\\begin{equation*} \\mitc _ { 1 } ( \\widehat { \\mscrN } _ { \\mitB } ) = \\frac { \\mitm } { 2 } ( 2 \\mitk - 1 - \\mitm ) \\end{equation*}", "\\begin{equation*} \\mitc _ { 1 } ( \\widehat { \\mitU } ) = 0 \\end{equation*}", "\\begin{equation*} \\mitc _ { 2 } ( \\widehat { \\mitU } ) = \\mitk \\end{equation*}", "\\begin{equation*} \\mitc _ { \\miti } ( \\widehat { \\mitU } ) = 0 , \\qquad \\miti \\geq 3 \\end{equation*}", "\\begin{equation*} \\mitc _ { 1 } ( \\widehat { \\mscrN } _ { \\mitB } ) = \\mitc _ { 1 } ( \\widetilde { \\mscrN } _ { \\mitB } ) \\end{equation*}", "\\begin{equation*} \\mitc _ { 1 } ( \\widetilde { \\mscrN } _ { \\mitB } ) = \\frac { \\mitm } { 2 } ( 2 \\mitk - 1 - \\mitm ) \\end{equation*}", "\\begin{equation*} \\operatorname { c o d i m e n s i o n } \\mitk \\mitF = 2 > 1 , \\end{equation*}", "\\begin{equation*} \\mitc _ { 1 } ( \\mitpi ^ { \\ast } \\tilde { \\mitU } ) = 0 \\end{equation*}" ], "x_min": [ 0.5493999719619751, 0.6399000287055969, 0.7077000141143799, 0.3959999978542328, 0.5286999940872192, 0.6904000043869019, 0.120899997651577, 0.5957000255584717, 0.7103999853134155, 0.8169000148773193, 0.5728999972343445, 0.17759999632835388, 0.36899998784065247, 0.6136999726295471, 0.14509999752044678, 0.29789999127388, 0.4546999931335449, 0.24400000274181366, 0.7339000105857849, 0.7961000204086304, 0.44369998574256897, 0.46860000491142273, 0.4043000042438507, 0.47200000286102295, 0.47200000286102295, 0.4277999997138977, 0.44020000100135803, 0.4043000042438507, 0.4043000042438507, 0.46230000257492065 ], "y_min": [ 0.1860000044107437, 0.20020000636577606, 0.20020000636577606, 0.27639999985694885, 0.2728999853134155, 0.4018999934196472, 0.44679999351501465, 0.44679999351501465, 0.5615000128746033, 0.5615000128746033, 0.6561999917030334, 0.6820999979972839, 0.6786999702453613, 0.7050999999046326, 0.7275000214576721, 0.7235999703407288, 0.7275000214576721, 0.7943999767303467, 0.7943999767303467, 0.7973999977111816, 0.8169000148773193, 0.149399995803833, 0.2304999977350235, 0.30469998717308044, 0.33980000019073486, 0.36910000443458557, 0.5009999871253967, 0.6137999892234802, 0.7592999935150146, 0.8485999703407288 ], "x_max": [ 0.5673999786376953, 0.6689000129699707, 0.7200999855995178, 0.45820000767707825, 0.5446000099182129, 0.7063000202178955, 0.13680000603199005, 0.6115999817848206, 0.7228000164031982, 0.8458999991416931, 0.5888000130653381, 0.23909999430179596, 0.3849000036716461, 0.6295999884605408, 0.163100004196167, 0.33379998803138733, 0.47269999980926514, 0.2799000144004822, 0.7698000073432922, 0.8148000240325928, 0.4596000015735626, 0.5626000165939331, 0.6274999976158142, 0.5590999722480774, 0.5590999722480774, 0.6032999753952026, 0.5909000039100647, 0.6274999976158142, 0.6205999851226807, 0.5687000155448914 ], "y_max": [ 0.1923000067472458, 0.2168000042438507, 0.21480000019073486, 0.29100000858306885, 0.2874999940395355, 0.4165000021457672, 0.460999995470047, 0.460999995470047, 0.5756999850273132, 0.5781000256538391, 0.670799970626831, 0.6966999769210815, 0.6933000087738037, 0.715399980545044, 0.7378000020980835, 0.7378000020980835, 0.7378000020980835, 0.8080999851226807, 0.8080999851226807, 0.8080999851226807, 0.8306000232696533, 0.16500000655651093, 0.259799987077713, 0.326200008392334, 0.361299991607666, 0.3905999958515167, 0.5220000147819519, 0.6431000232696533, 0.7759000062942505, 0.8690999746322632 ], "expr_type": [ "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "isolated", "isolated", "isolated", "isolated", "isolated", "isolated", "isolated", "isolated", "isolated" ] }
0001133_page31
{ "latex": [ "$SU(n)$", "$V$", "$\\cN $", "$\\cC $", "$a_{f}F$", "$kF$", "$kF$", "$k=a_{f}$", "$k<a_{f}$", "$W_{B}$", "$\\pi ^{*}\\widetilde {U}$", "$X$", "$kF$", "$V$", "$\\pi ^{*}\\widetilde {U}$", "$SU(n) \\times SU(m)$", "$SU(n) \\times SU(m)$", "$m$", "$2 \\leq m \\leq k$", "$V$", "$\\widehat {\\bV }$", "\\begin {equation} {\\cal {C}}= n\\sigma + \\pi ^{*}\\eta \\label {eq:185} \\end {equation}", "\\begin {equation} W=W_{B}\\sigma +a_{f}F \\label {eq:186} \\end {equation}", "\\begin {equation} \\widetilde {\\bV }= V \\oplus \\pi ^{*}\\tilde {U} \\label {eq:187} \\end {equation}", "\\begin {equation} \\widehat {\\bV }= V \\oplus \\pi ^{*}\\hat {U} \\label {eq:188} \\end {equation}", "\\begin {equation} c_{1}(\\widehat {\\bV })=c_{1}(V)=0, \\label {eq:189} \\end {equation}", "\\begin {equation} c_{2}(\\widehat {\\bV })=c_{2}(V) +kF \\label {eq:190} \\end {equation}", "\\begin {equation} c_{3}(\\widehat {\\bV })=c_{3}(V) \\label {eq:191} \\end {equation}" ], "latex_norm": [ "$ S U ( n ) $", "$ V $", "$ N $", "$ C $", "$ a _ { f } F $", "$ k F $", "$ k F $", "$ k = a _ { f } $", "$ k < a _ { f } $", "$ W _ { B } $", "$ \\pi ^ { \\ast } \\widetilde { U } $", "$ X $", "$ k F $", "$ V $", "$ \\pi ^ { \\ast } \\widetilde { U } $", "$ S U ( n ) \\times S U ( m ) $", "$ S U ( n ) \\times S U ( m ) $", "$ m $", "$ 2 \\leq m \\leq k $", "$ V $", "$ \\hat { V } $", "\\begin{equation*} C = n \\sigma + \\pi ^ { \\ast } \\eta \\end{equation*}", "\\begin{equation*} W = W _ { B } \\sigma + a _ { f } F \\end{equation*}", "\\begin{equation*} \\widetilde { V } = V \\oplus \\pi ^ { \\ast } \\widetilde { U } \\end{equation*}", "\\begin{equation*} \\hat { V } = V \\oplus \\pi ^ { \\ast } \\hat { U } \\end{equation*}", "\\begin{equation*} c _ { 1 } ( \\hat { V } ) = c _ { 1 } ( V ) = 0 , \\end{equation*}", "\\begin{equation*} c _ { 2 } ( \\hat { V } ) = c _ { 2 } ( V ) + k F \\end{equation*}", "\\begin{equation*} c _ { 3 } ( \\hat { V } ) = c _ { 3 } ( V ) \\end{equation*}" ], "latex_expand": [ "$ \\mitS \\mitU ( \\mitn ) $", "$ \\mitV $", "$ \\mscrN $", "$ \\mscrC $", "$ \\mita _ { \\mitf } \\mitF $", "$ \\mitk \\mitF $", "$ \\mitk \\mitF $", "$ \\mitk = \\mita _ { \\mitf } $", "$ \\mitk < \\mita _ { \\mitf } $", "$ \\mitW _ { \\mitB } $", "$ \\mitpi ^ { \\ast } \\widetilde { \\mitU } $", "$ \\mitX $", "$ \\mitk \\mitF $", "$ \\mitV $", "$ \\mitpi ^ { \\ast } \\widetilde { \\mitU } $", "$ \\mitS \\mitU ( \\mitn ) \\times \\mitS \\mitU ( \\mitm ) $", "$ \\mitS \\mitU ( \\mitn ) \\times \\mitS \\mitU ( \\mitm ) $", "$ \\mitm $", "$ 2 \\leq \\mitm \\leq \\mitk $", "$ \\mitV $", "$ \\widehat { \\mbfV } $", "\\begin{equation*} \\mitC = \\mitn \\mitsigma + \\mitpi ^ { \\ast } \\miteta \\end{equation*}", "\\begin{equation*} \\mitW = \\mitW _ { \\mitB } \\mitsigma + \\mita _ { \\mitf } \\mitF \\end{equation*}", "\\begin{equation*} \\widetilde { \\mbfV } = \\mitV \\oplus \\mitpi ^ { \\ast } \\tilde { \\mitU } \\end{equation*}", "\\begin{equation*} \\widehat { \\mbfV } = \\mitV \\oplus \\mitpi ^ { \\ast } \\hat { \\mitU } \\end{equation*}", "\\begin{equation*} \\mitc _ { 1 } ( \\widehat { \\mbfV } ) = \\mitc _ { 1 } ( \\mitV ) = 0 , \\end{equation*}", "\\begin{equation*} \\mitc _ { 2 } ( \\widehat { \\mbfV } ) = \\mitc _ { 2 } ( \\mitV ) + \\mitk \\mitF \\end{equation*}", "\\begin{equation*} \\mitc _ { 3 } ( \\widehat { \\mbfV } ) = \\mitc _ { 3 } ( \\mitV ) \\end{equation*}" ], "x_min": [ 0.6973000168800354, 0.8859999775886536, 0.31380000710487366, 0.3849000036716461, 0.22669999301433563, 0.326200008392334, 0.42500001192092896, 0.7630000114440918, 0.3634999990463257, 0.738099992275238, 0.4706000089645386, 0.5548999905586243, 0.7179999947547913, 0.4104999899864197, 0.609499990940094, 0.8313999772071838, 0.17000000178813934, 0.22669999301433563, 0.6344000101089478, 0.5957000255584717, 0.8065000176429749, 0.48030000925064087, 0.46369999647140503, 0.4788999855518341, 0.4788999855518341, 0.4546999931335449, 0.4519999921321869, 0.47679999470710754 ], "y_min": [ 0.17430000007152557, 0.1753000020980835, 0.2671000063419342, 0.2671000063419342, 0.3407999873161316, 0.4189000129699707, 0.4189000129699707, 0.4189000129699707, 0.4408999979496002, 0.4413999915122986, 0.4814000129699707, 0.48579999804496765, 0.48579999804496765, 0.5195000171661377, 0.5151000022888184, 0.6259999871253967, 0.6484000086784363, 0.7041000127792358, 0.7002000212669373, 0.7343999743461609, 0.7300000190734863, 0.22849999368190765, 0.30809998512268066, 0.5565999746322632, 0.6640999913215637, 0.7836999893188477, 0.8184000253677368, 0.8476999998092651 ], "x_max": [ 0.7533000111579895, 0.9025999903678894, 0.33379998803138733, 0.39660000801086426, 0.26260000467300415, 0.3531999886035919, 0.4519999921321869, 0.8252000212669373, 0.42640000581741333, 0.7692000269889832, 0.5065000057220459, 0.5728999972343445, 0.7450000047683716, 0.4271000027656555, 0.6453999876976013, 0.9122999906539917, 0.23149999976158142, 0.24469999969005585, 0.7263000011444092, 0.6122999787330627, 0.8245000243186951, 0.5999000072479248, 0.6164000034332275, 0.6011999845504761, 0.6011999845504761, 0.6226000189781189, 0.6281999945640564, 0.6032999753952026 ], "y_max": [ 0.18889999389648438, 0.18559999763965607, 0.2773999869823456, 0.2773999869823456, 0.35499998927116394, 0.4291999936103821, 0.4291999936103821, 0.43309998512268066, 0.4555000066757202, 0.4535999894142151, 0.4959999918937683, 0.4961000084877014, 0.4961000084877014, 0.5297999978065491, 0.529699981212616, 0.6406000256538391, 0.6629999876022339, 0.7109000086784363, 0.7128999829292297, 0.744700014591217, 0.7445999979972839, 0.2451000064611435, 0.3257000148296356, 0.5756000280380249, 0.6830999851226807, 0.8051999807357788, 0.839900016784668, 0.8691999912261963 ], "expr_type": [ "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "isolated", "isolated", "isolated", "isolated", "isolated", "isolated", "isolated" ] }
0001133_page36
{ "latex": [ "$V$", "$\\widehat {V}$", "$\\eta $", "$n$", "$z$", "$c_{1}(B)$", "$\\lambda =\\frac {1}{2}$", "$E_{8}$", "\\begin {equation} N_{gen}(\\widehat {V})=N_{gen}(V) + \\frac {1}{2}(2\\eta + z- nc_{1}(B))\\cdot z \\label {eq:220} \\end {equation}" ], "latex_norm": [ "$ V $", "$ \\hat { V } $", "$ \\eta $", "$ n $", "$ z $", "$ c _ { 1 } ( B ) $", "$ \\lambda = \\frac { 1 } { 2 } $", "$ E _ { 8 } $", "\\begin{equation*} N _ { g e n } ( \\hat { V } ) = N _ { g e n } ( V ) + \\frac { 1 } { 2 } ( 2 \\eta + z - n c _ { 1 } ( B ) ) \\cdot z \\end{equation*}" ], "latex_expand": [ "$ \\mitV $", "$ \\widehat { \\mitV } $", "$ \\miteta $", "$ \\mitn $", "$ \\mitz $", "$ \\mitc _ { 1 } ( \\mitB ) $", "$ \\mitlambda = \\frac { 1 } { 2 } $", "$ \\mitE _ { 8 } $", "\\begin{equation*} \\mitN _ { \\mitg \\mite \\mitn } ( \\widehat { \\mitV } ) = \\mitN _ { \\mitg \\mite \\mitn } ( \\mitV ) + \\frac { 1 } { 2 } ( 2 \\miteta + \\mitz - \\mitn \\mitc _ { 1 } ( \\mitB ) ) \\cdot \\mitz \\end{equation*}" ], "x_min": [ 0.1768999993801117, 0.23499999940395355, 0.29580000042915344, 0.3531000018119812, 0.17550000548362732, 0.120899997651577, 0.3075000047683716, 0.673799991607666, 0.32269999384880066 ], "y_min": [ 0.538100004196167, 0.5342000126838684, 0.5640000104904175, 0.5640000104904175, 0.5863999724388123, 0.6039999723434448, 0.7368000149726868, 0.8550000190734863, 0.4765999913215637 ], "x_max": [ 0.19280000030994415, 0.2515999972820282, 0.3068999946117401, 0.36550000309944153, 0.1859000027179718, 0.16859999299049377, 0.36070001125335693, 0.6966000199317932, 0.7089999914169312 ], "y_max": [ 0.5483999848365784, 0.5483999848365784, 0.5733000040054321, 0.5708000063896179, 0.5932000279426575, 0.6186000108718872, 0.7538999915122986, 0.8676999807357788, 0.5088000297546387 ], "expr_type": [ "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "isolated" ] }
0001133_page40
{ "latex": [ "$S^{1}/Z_{2}$" ], "latex_norm": [ "$ S ^ { 1 } \\slash Z _ { 2 } $" ], "latex_expand": [ "$ \\mitS ^ { 1 } \\slash \\mitZ _ { 2 } $" ], "x_min": [ 0.18870000541210175 ], "y_min": [ 0.24459999799728394 ], "x_max": [ 0.24050000309944153 ], "y_max": [ 0.2597000002861023 ], "expr_type": [ "embedded" ] }
0001178_page01
{ "latex": [ "$^\\dagger $", "$^\\ddagger $", "$^\\dagger $", "$^\\ddagger $", "$U\\hskip -2pt Sp(2n)/[U(1)]^n$", "$n=1,2$", "$AdS_7/CFT_6$", "$AdS_7$", "$1/2$", "$1/4$" ], "latex_norm": [ "$ { } ^ { \\dagger } $", "$ { } ^ { \\ddagger } $", "$ { } ^ { \\dagger } $", "$ { } ^ { \\ddagger } $", "$ U \\hspace{-2.0pt} S p ( 2 n ) \\slash [ U ( 1 ) ] ^ { n } $", "$ n = 1 , 2 $", "$ A d S _ { 7 } \\slash C F T _ { 6 } $", "$ A d S _ { 7 } $", "$ 1 \\slash 2 $", "$ 1 \\slash 4 $" ], "latex_expand": [ "$ { } ^ { \\dagger } $", "$ { } ^ { \\ddagger } $", "$ { } ^ { \\dagger } $", "$ { } ^ { \\ddagger } $", "$ \\mitU \\hspace{-2.0pt} \\mitS \\mitp ( 2 \\mitn ) \\slash [ \\mitU ( 1 ) ] ^ { \\mitn } $", "$ \\mitn = 1 , 2 $", "$ \\mitA \\mitd \\mitS _ { 7 } \\slash \\mitC \\mitF \\mitT _ { 6 } $", "$ \\mitA \\mitd \\mitS _ { 7 } $", "$ 1 \\slash 2 $", "$ 1 \\slash 4 $" ], "x_min": [ 0.44780001044273376, 0.6890000104904175, 0.22599999606609344, 0.1768999993801117, 0.2556999921798706, 0.4007999897003174, 0.3345000147819519, 0.4271000027656555, 0.4456999897956848, 0.5182999968528748 ], "y_min": [ 0.399399995803833, 0.399399995803833, 0.510699987411499, 0.5351999998092651, 0.7534000277519226, 0.7538999915122986, 0.7705000042915344, 0.7886000275611877, 0.8047000169754028, 0.8047000169754028 ], "x_max": [ 0.45680001378059387, 0.6973000168800354, 0.23360000550746918, 0.18449999392032623, 0.3898000121116638, 0.46369999647140503, 0.4339999854564667, 0.4706000089645386, 0.4733000099658966, 0.5465999841690063 ], "y_max": [ 0.41449999809265137, 0.41449999809265137, 0.5228999853134155, 0.5473999977111816, 0.7670999765396118, 0.7651000022888184, 0.7842000126838684, 0.8003000020980835, 0.8184000253677368, 0.8184000253677368 ], "expr_type": [ "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded" ] }
0001178_page02
{ "latex": [ "$d\\leq 6$", "$(d-1)$", "$AdS_{d+1}$", "$D3$", "$d=4,6$", "$3$", "$AdS$", "$\\tilde M_d = \\partial AdS_{d+1}$", "$SU(2,2/N)$", "$N=1$", "$N>1$", "$G/H$", "$G$", "$H$", "$G$", "$G$", "$H$", "$H$", "$[U(1)]^{\\mbox {\\scriptsize rank }G}$", "$G$", "$G$", "$SU(2,2/N)$", "$SU(N)/[U(1)]^{N-1}$", "$N=(n,0)$", "$n=1,2$", "$n=1,2$", "$OSp(8^*/2n)$", "$U\\hskip -2pt Sp(2n)/[U(1)]^n$", "$x^\\mu $", "$\\mu =0,1,\\ldots ,5$", "$\\theta ^\\alpha _i$", "$SU^*(4)\\sim SO(5,1)$", "$U\\hskip -2pt Sp(2n)$", "$u^I_i$", "$N=(2,0)$" ], "latex_norm": [ "$ d \\leq 6 $", "$ ( d - 1 ) $", "$ A d S _ { d + 1 } $", "$ D 3 $", "$ d = 4 , 6 $", "$ 3 $", "$ A d S $", "$ \\widetilde { M } _ { d } = \\partial A d S _ { d + 1 } $", "$ S U ( 2 , 2 \\slash N ) $", "$ N = 1 $", "$ N > 1 $", "$ G \\slash H $", "$ G $", "$ H $", "$ G $", "$ G $", "$ H $", "$ H $", "$ [ U ( 1 ) ] ^ { r a n k ~ G } $", "$ G $", "$ G $", "$ S U ( 2 , 2 \\slash N ) $", "$ S U ( N ) \\slash [ U ( 1 ) ] ^ { N - 1 } $", "$ N = ( n , 0 ) $", "$ n = 1 , 2 $", "$ n = 1 , 2 $", "$ O S p ( 8 ^ { \\ast } \\slash 2 n ) $", "$ U \\hspace{-2.0pt} S p ( 2 n ) \\slash [ U ( 1 ) ] ^ { n } $", "$ x ^ { \\mu } $", "$ \\mu = 0 , 1 , \\ldots , 5 $", "$ \\theta _ { i } ^ { \\alpha } $", "$ S U ^ { \\ast } ( 4 ) \\sim S O ( 5 , 1 ) $", "$ U \\hspace{-2.0pt} S p ( 2 n ) $", "$ u _ { i } ^ { I } $", "$ N = ( 2 , 0 ) $" ], "latex_expand": [ "$ \\mitd \\leq 6 $", "$ ( \\mitd - 1 ) $", "$ \\mitA \\mitd \\mitS _ { \\mitd + 1 } $", "$ \\mitD 3 $", "$ \\mitd = 4 , 6 $", "$ 3 $", "$ \\mitA \\mitd \\mitS $", "$ \\tilde { \\mitM } _ { \\mitd } = \\mitpartial \\mitA \\mitd \\mitS _ { \\mitd + 1 } $", "$ \\mitS \\mitU ( 2 , 2 \\slash \\mitN ) $", "$ \\mitN = 1 $", "$ \\mitN > 1 $", "$ \\mitG \\slash \\mitH $", "$ \\mitG $", "$ \\mitH $", "$ \\mitG $", "$ \\mitG $", "$ \\mitH $", "$ \\mitH $", "$ [ \\mitU ( 1 ) ] ^ { \\mathrm { r a n k } ~ \\mitG } $", "$ \\mitG $", "$ \\mitG $", "$ \\mitS \\mitU ( 2 , 2 \\slash \\mitN ) $", "$ \\mitS \\mitU ( \\mitN ) \\slash [ \\mitU ( 1 ) ] ^ { \\mitN - 1 } $", "$ \\mitN = ( \\mitn , 0 ) $", "$ \\mitn = 1 , 2 $", "$ \\mitn = 1 , 2 $", "$ \\mitO \\mitS \\mitp ( 8 ^ { \\ast } \\slash 2 \\mitn ) $", "$ \\mitU \\hspace{-2.0pt} \\mitS \\mitp ( 2 \\mitn ) \\slash [ \\mitU ( 1 ) ] ^ { \\mitn } $", "$ \\mitx ^ { \\mitmu } $", "$ \\mitmu = 0 , 1 , \\ldots , 5 $", "$ \\mittheta _ { \\miti } ^ { \\mitalpha } $", "$ \\mitS \\mitU ^ { \\ast } ( 4 ) \\sim \\mitS \\mitO ( 5 , 1 ) $", "$ \\mitU \\hspace{-2.0pt} \\mitS \\mitp ( 2 \\mitn ) $", "$ \\mitu _ { \\miti } ^ { \\mitI } $", "$ \\mitN = ( 2 , 0 ) $" ], "x_min": [ 0.6545000076293945, 0.7070000171661377, 0.37529999017715454, 0.3614000082015991, 0.19699999690055847, 0.3068000078201294, 0.7878000140190125, 0.6897000074386597, 0.5073000192642212, 0.3034000098705292, 0.1956000030040741, 0.541100025177002, 0.6462000012397766, 0.2639999985694885, 0.5044999718666077, 0.6205999851226807, 0.7056000232696533, 0.42089998722076416, 0.4415999948978424, 0.5652999877929688, 0.19419999420642853, 0.5252000093460083, 0.22939999401569366, 0.6717000007629395, 0.7885000109672546, 0.1728000044822693, 0.1728000044822693, 0.677299976348877, 0.4242999851703644, 0.460999995470047, 0.7559999823570251, 0.3345000147819519, 0.6392999887466431, 0.2231999933719635, 0.7491000294685364 ], "y_min": [ 0.18950000405311584, 0.2061000019311905, 0.2240999937057495, 0.24120000004768372, 0.2583000063896179, 0.2587999999523163, 0.30959999561309814, 0.3237000107765198, 0.3944999873638153, 0.42969998717308044, 0.447299987077713, 0.4805000126361847, 0.4814000129699707, 0.4984999895095825, 0.4984999895095825, 0.4984999895095825, 0.4984999895095825, 0.5156000256538391, 0.5307999849319458, 0.5332000255584717, 0.5673999786376953, 0.5835000276565552, 0.5996000170707703, 0.7035999894142151, 0.7050999999046326, 0.7221999764442444, 0.7378000020980835, 0.7378000020980835, 0.7734000086784363, 0.7734000086784363, 0.7728999853134155, 0.7890999913215637, 0.7890999913215637, 0.8057000041007996, 0.8345000147819519 ], "x_max": [ 0.7042999863624573, 0.763700008392334, 0.4388999938964844, 0.38839998841285706, 0.26269999146461487, 0.3172000050544739, 0.8264999985694885, 0.8209999799728394, 0.6068000197410583, 0.36079999804496765, 0.2502000033855438, 0.5845999717712402, 0.6621000170707703, 0.2827000021934509, 0.5203999876976013, 0.6365000009536743, 0.7243000268936157, 0.4388999938964844, 0.5383999943733215, 0.5812000036239624, 0.210099995136261, 0.6247000098228455, 0.3849000036716461, 0.7712000012397766, 0.8264999985694885, 0.20180000364780426, 0.27649998664855957, 0.8209999799728394, 0.4456999897956848, 0.5881999731063843, 0.7760000228881836, 0.5004000067710876, 0.711899995803833, 0.24320000410079956, 0.8264999985694885 ], "y_max": [ 0.2021999955177307, 0.2206999957561493, 0.2378000020980835, 0.2515000104904175, 0.27149999141693115, 0.2685999870300293, 0.32030001282691956, 0.3402999937534332, 0.40959998965263367, 0.44040000438690186, 0.4580000042915344, 0.4950999915599823, 0.4916999936103821, 0.5088000297546387, 0.5088000297546387, 0.5088000297546387, 0.5088000297546387, 0.5259000062942505, 0.5468999743461609, 0.5435000061988831, 0.5777000188827515, 0.5981000065803528, 0.6151999831199646, 0.7182000279426575, 0.7178000211715698, 0.7348999977111816, 0.7523999810218811, 0.7529000043869019, 0.7836999893188477, 0.7860999703407288, 0.7871000170707703, 0.8041999936103821, 0.8041999936103821, 0.8213000297546387, 0.8471999764442444 ], "expr_type": [ "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded" ] }
0001178_page03
{ "latex": [ "$AdS$", "$\\square \\omega =0$", "$k=0$", "$\\partial ^{\\alpha \\beta } = \\partial _\\mu (\\gamma ^\\mu )^{\\alpha \\beta }$", "$\\omega $", "$(0,0,k)$", "$SU^*(4)$", "$U\\hskip -2pt Sp(2n)$", "$U\\hskip -2pt Sp(2n)$", "$1/2$", "$1/4$", "$1/2$", "$AdS_7\\times S_4$", "$(2,0)$", "$(1,0)$", "$N=(1,0)$", "$(2,0)$", "\\begin {equation}\\label {0} \\partial ^{\\alpha \\alpha _1} \\omega _{(\\alpha _1\\alpha _2\\ldots \\alpha _k)} = 0 \\end {equation}", "\\begin {equation}\\label {1} x^{\\alpha \\beta }=- x^{\\beta \\alpha } = x^\\mu \\gamma _\\mu ^{\\alpha \\beta } \\;, \\qquad \\theta ^\\alpha _i\\;. \\end {equation}" ], "latex_norm": [ "$ A d S $", "$ \\square \\omega = 0 $", "$ k = 0 $", "$ \\partial ^ { \\alpha \\beta } = \\partial _ { \\mu } ( \\gamma ^ { \\mu } ) ^ { \\alpha \\beta } $", "$ \\omega $", "$ ( 0 , 0 , k ) $", "$ S U ^ { \\ast } ( 4 ) $", "$ U \\hspace{-2.0pt} S p ( 2 n ) $", "$ U \\hspace{-2.0pt} S p ( 2 n ) $", "$ 1 \\slash 2 $", "$ 1 \\slash 4 $", "$ 1 \\slash 2 $", "$ A d S _ { 7 } \\times S _ { 4 } $", "$ ( 2 , 0 ) $", "$ ( 1 , 0 ) $", "$ N = ( 1 , 0 ) $", "$ ( 2 , 0 ) $", "\\begin{equation*} \\partial ^ { \\alpha \\alpha _ { 1 } } \\omega _ { ( \\alpha _ { 1 } \\alpha _ { 2 } \\ldots \\alpha _ { k } ) } = 0 \\end{equation*}", "\\begin{equation*} x ^ { \\alpha \\beta } = - x ^ { \\beta \\alpha } = x ^ { \\mu } \\gamma _ { \\mu } ^ { \\alpha \\beta } \\; , \\qquad \\theta _ { i } ^ { \\alpha } \\; . \\end{equation*}" ], "latex_expand": [ "$ \\mitA \\mitd \\mitS $", "$ \\square \\mitomega = 0 $", "$ \\mitk = 0 $", "$ \\mitpartial ^ { \\mitalpha \\mitbeta } = \\mitpartial _ { \\mitmu } ( \\mitgamma ^ { \\mitmu } ) ^ { \\mitalpha \\mitbeta } $", "$ \\mitomega $", "$ ( 0 , 0 , \\mitk ) $", "$ \\mitS \\mitU ^ { \\ast } ( 4 ) $", "$ \\mitU \\hspace{-2.0pt} \\mitS \\mitp ( 2 \\mitn ) $", "$ \\mitU \\hspace{-2.0pt} \\mitS \\mitp ( 2 \\mitn ) $", "$ 1 \\slash 2 $", "$ 1 \\slash 4 $", "$ 1 \\slash 2 $", "$ \\mitA \\mitd \\mitS _ { 7 } \\times \\mitS _ { 4 } $", "$ ( 2 , 0 ) $", "$ ( 1 , 0 ) $", "$ \\mitN = ( 1 , 0 ) $", "$ ( 2 , 0 ) $", "\\begin{equation*} \\mitpartial ^ { \\mitalpha \\mitalpha _ { 1 } } \\mitomega _ { ( \\mitalpha _ { 1 } \\mitalpha _ { 2 } \\ldots \\mitalpha _ { \\mitk } ) } = 0 \\end{equation*}", "\\begin{equation*} \\mitx ^ { \\mitalpha \\mitbeta } = - \\mitx ^ { \\mitbeta \\mitalpha } = \\mitx ^ { \\mitmu } \\mitgamma _ { \\mitmu } ^ { \\mitalpha \\mitbeta } \\; , \\qquad \\mittheta _ { \\miti } ^ { \\mitalpha } \\; . \\end{equation*}" ], "x_min": [ 0.20659999549388885, 0.2046000063419342, 0.29649999737739563, 0.4050000011920929, 0.5825999975204468, 0.4830999970436096, 0.704200029373169, 0.1728000044822693, 0.23569999635219574, 0.3019999861717224, 0.367000013589859, 0.4927000105381012, 0.5756999850273132, 0.5432000160217285, 0.7822999954223633, 0.574999988079071, 0.7070000171661377, 0.4194999933242798, 0.3677000105381012 ], "y_min": [ 0.1753000020980835, 0.23829999566078186, 0.23829999566078186, 0.2363000065088272, 0.24220000207424164, 0.2549000084400177, 0.2549000084400177, 0.3061999976634979, 0.3402999937534332, 0.3921000063419342, 0.3921000063419342, 0.4603999853134155, 0.47850000858306885, 0.49459999799728394, 0.5116999745368958, 0.6323000192642212, 0.6317999958992004, 0.20360000431537628, 0.7714999914169312 ], "x_max": [ 0.24529999494552612, 0.27160000801086426, 0.3456000089645386, 0.5376999974250793, 0.5964000225067139, 0.5467000007629395, 0.7663999795913696, 0.24539999663829803, 0.3082999885082245, 0.33169999718666077, 0.39739999175071716, 0.5231000185012817, 0.6668999791145325, 0.5874000191688538, 0.8264999985694885, 0.6635000109672546, 0.7512000203132629, 0.5819000005722046, 0.6338000297546387 ], "y_max": [ 0.1860000044107437, 0.24860000610351562, 0.24899999797344208, 0.2524000108242035, 0.2485000044107437, 0.2694999873638153, 0.2694999873638153, 0.3208000063896179, 0.3553999960422516, 0.4066999852657318, 0.4066999852657318, 0.4749999940395355, 0.4912000000476837, 0.5097000002861023, 0.5267999768257141, 0.6468999981880188, 0.6468999981880188, 0.22169999778270721, 0.7929999828338623 ], "expr_type": [ "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "isolated", "isolated" ] }
0001178_page06
{ "latex": [ "$n+1$", "$\\phi ^{\\{ij\\}}$", "$F_{(\\alpha \\beta )}$", "$\\psi ^i_\\alpha $", "$SU^*(4)$", "$U\\hskip -2pt Sp(4)$", "$N=(n,0)$", "$n=1,2$", "$W^i(x,\\theta )$", "$U\\hskip -2pt Sp(2n)$", "$N=(1,0)$", "$\\phi ^i$", "$\\psi _\\alpha $", "$N=(1,0)$", "$2+2$", "$W^i$", "$N=(2,0)$", "$W^i$", "$\\phi ^i$", "$U\\hskip -2pt Sp(4)$", "$\\psi ^{[ij]}_\\alpha $", "$U\\hskip -2pt Sp(4)$", "$F^i_{(\\alpha \\beta )}$", "$U\\hskip -2pt Sp(4)$", "$SU^*(4)$", "$\\chi _{(\\alpha \\beta \\gamma )}$", "$\\phi ^i$", "$F^i_{(\\alpha \\beta )}$", "$\\psi ^{[ij]}_\\alpha $", "$\\chi _{(\\alpha \\beta \\gamma )}$", "\\begin {equation}\\label {12} D^{(k}_\\alpha W^{i)}=0\\;. \\end {equation}", "\\begin {equation}\\label {13} N=(1,0):\\qquad W^i = \\phi ^i + \\theta ^{\\alpha i}\\psi _\\alpha + \\mbox {\\small derivative terms }\\;. \\end {equation}", "\\begin {equation}\\label {14} \\square \\phi ^{i} = 0\\;, \\quad \\partial ^{\\alpha \\beta }\\psi _\\beta = 0\\;. \\end {equation}", "\\begin {eqnarray} N=(2,0): \\qquad W^i &=& \\phi ^i + \\theta ^{\\alpha }_j\\psi ^{[ij]}_\\alpha + \\theta ^\\alpha _k \\theta ^\\beta _l \\epsilon ^{klij} F_{(\\alpha \\beta )j} \\\\ && + \\theta ^\\alpha _j \\theta ^\\beta _k \\theta ^\\gamma _l \\epsilon ^{ijkl}\\chi _{(\\alpha \\beta \\gamma )} + \\mbox {\\small d. t. } \\end {eqnarray}", "\\begin {equation}\\label {16} \\square \\phi ^{i} = 0\\;, \\quad \\partial ^{\\alpha \\beta }\\psi ^{[ij]}_\\beta = \\partial ^{\\alpha \\beta }F^i_{(\\beta \\gamma )} = \\partial ^{\\alpha \\beta }\\chi _{(\\beta \\gamma \\delta )} = 0 \\end {equation}" ], "latex_norm": [ "$ n + 1 $", "$ \\phi ^ { \\{ i j \\} } $", "$ F _ { ( \\alpha \\beta ) } $", "$ \\psi _ { \\alpha } ^ { i } $", "$ S U ^ { \\ast } ( 4 ) $", "$ U \\hspace{-2.0pt} S p ( 4 ) $", "$ N = ( n , 0 ) $", "$ n = 1 , 2 $", "$ W ^ { i } ( x , \\theta ) $", "$ U \\hspace{-2.0pt} S p ( 2 n ) $", "$ N = ( 1 , 0 ) $", "$ \\phi ^ { i } $", "$ \\psi _ { \\alpha } $", "$ N = ( 1 , 0 ) $", "$ 2 + 2 $", "$ W ^ { i } $", "$ N = ( 2 , 0 ) $", "$ W ^ { i } $", "$ \\phi ^ { i } $", "$ U \\hspace{-2.0pt} S p ( 4 ) $", "$ \\psi _ { \\alpha } ^ { [ i j ] } $", "$ U \\hspace{-2.0pt} S p ( 4 ) $", "$ F _ { ( \\alpha \\beta ) } ^ { i } $", "$ U \\hspace{-2.0pt} S p ( 4 ) $", "$ S U ^ { \\ast } ( 4 ) $", "$ \\chi _ { ( \\alpha \\beta \\gamma ) } $", "$ \\phi ^ { i } $", "$ F _ { ( \\alpha \\beta ) } ^ { i } $", "$ \\psi _ { \\alpha } ^ { [ i j ] } $", "$ \\chi _ { ( \\alpha \\beta \\gamma ) } $", "\\begin{equation*} D _ { \\alpha } ^ { ( k } W ^ { i ) } = 0 \\; . \\end{equation*}", "\\begin{equation*} N = ( 1 , 0 ) : \\qquad W ^ { i } = \\phi ^ { i } + \\theta ^ { \\alpha i } \\psi _ { \\alpha } + d e r i v a t i v e ~ t e r m s ~ \\; . \\end{equation*}", "\\begin{equation*} \\square \\phi ^ { i } = 0 \\; , \\quad \\partial ^ { \\alpha \\beta } \\psi _ { \\beta } = 0 \\; . \\end{equation*}", "\\begin{align*} N = ( 2 , 0 ) : \\qquad W ^ { i } & = & \\phi ^ { i } + \\theta _ { j } ^ { \\alpha } \\psi _ { \\alpha } ^ { [ i j ] } + \\theta _ { k } ^ { \\alpha } \\theta _ { l } ^ { \\beta } \\epsilon ^ { k l i j } F _ { ( \\alpha \\beta ) j } \\\\ & & + \\theta _ { j } ^ { \\alpha } \\theta _ { k } ^ { \\beta } \\theta _ { l } ^ { \\gamma } \\epsilon ^ { i j k l } \\chi _ { ( \\alpha \\beta \\gamma ) } + d . ~ t . ~ \\end{align*}", "\\begin{equation*} \\square \\phi ^ { i } = 0 \\; , \\quad \\partial ^ { \\alpha \\beta } \\psi _ { \\beta } ^ { [ i j ] } = \\partial ^ { \\alpha \\beta } F _ { ( \\beta \\gamma ) } ^ { i } = \\partial ^ { \\alpha \\beta } \\chi _ { ( \\beta \\gamma \\delta ) } = 0 \\end{equation*}" ], "latex_expand": [ "$ \\mitn + 1 $", "$ \\mitphi ^ { \\{ \\miti \\mitj \\} } $", "$ \\mitF _ { ( \\mitalpha \\mitbeta ) } $", "$ \\mitpsi _ { \\mitalpha } ^ { \\miti } $", "$ \\mitS \\mitU ^ { \\ast } ( 4 ) $", "$ \\mitU \\hspace{-2.0pt} \\mitS \\mitp ( 4 ) $", "$ \\mitN = ( \\mitn , 0 ) $", "$ \\mitn = 1 , 2 $", "$ \\mitW ^ { \\miti } ( \\mitx , \\mittheta ) $", "$ \\mitU \\hspace{-2.0pt} \\mitS \\mitp ( 2 \\mitn ) $", "$ \\mitN = ( 1 , 0 ) $", "$ \\mitphi ^ { \\miti } $", "$ \\mitpsi _ { \\mitalpha } $", "$ \\mitN = ( 1 , 0 ) $", "$ 2 + 2 $", "$ \\mitW ^ { \\miti } $", "$ \\mitN = ( 2 , 0 ) $", "$ \\mitW ^ { \\miti } $", "$ \\mitphi ^ { \\miti } $", "$ \\mitU \\hspace{-2.0pt} \\mitS \\mitp ( 4 ) $", "$ \\mitpsi _ { \\mitalpha } ^ { [ \\miti \\mitj ] } $", "$ \\mitU \\hspace{-2.0pt} \\mitS \\mitp ( 4 ) $", "$ \\mitF _ { ( \\mitalpha \\mitbeta ) } ^ { \\miti } $", "$ \\mitU \\hspace{-2.0pt} \\mitS \\mitp ( 4 ) $", "$ \\mitS \\mitU ^ { \\ast } ( 4 ) $", "$ \\mitchi _ { ( \\mitalpha \\mitbeta \\mitgamma ) } $", "$ \\mitphi ^ { \\miti } $", "$ \\mitF _ { ( \\mitalpha \\mitbeta ) } ^ { \\miti } $", "$ \\mitpsi _ { \\mitalpha } ^ { [ \\miti \\mitj ] } $", "$ \\mitchi _ { ( \\mitalpha \\mitbeta \\mitgamma ) } $", "\\begin{equation*} \\mitD _ { \\mitalpha } ^ { ( \\mitk } \\mitW ^ { \\miti ) } = 0 \\; . \\end{equation*}", "\\begin{equation*} \\mitN = ( 1 , 0 ) : \\qquad \\mitW ^ { \\miti } = \\mitphi ^ { \\miti } + \\mittheta ^ { \\mitalpha \\miti } \\mitpsi _ { \\mitalpha } + \\mathrm { d e r i v a t i v e ~ t e r m s } ~ \\; . \\end{equation*}", "\\begin{equation*} \\square \\mitphi ^ { \\miti } = 0 \\; , \\quad \\mitpartial ^ { \\mitalpha \\mitbeta } \\mitpsi _ { \\mitbeta } = 0 \\; . \\end{equation*}", "\\begin{align*} \\mitN = ( 2 , 0 ) : \\qquad \\mitW ^ { \\miti } & = & \\mitphi ^ { \\miti } + \\mittheta _ { \\mitj } ^ { \\mitalpha } \\mitpsi _ { \\mitalpha } ^ { [ \\miti \\mitj ] } + \\mittheta _ { \\mitk } ^ { \\mitalpha } \\mittheta _ { \\mitl } ^ { \\mitbeta } \\mitepsilon ^ { \\mitk \\mitl \\miti \\mitj } \\mitF _ { ( \\mitalpha \\mitbeta ) \\mitj } \\\\ & & + \\mittheta _ { \\mitj } ^ { \\mitalpha } \\mittheta _ { \\mitk } ^ { \\mitbeta } \\mittheta _ { \\mitl } ^ { \\mitgamma } \\mitepsilon ^ { \\miti \\mitj \\mitk \\mitl } \\mitchi _ { ( \\mitalpha \\mitbeta \\mitgamma ) } + \\mathrm { d } . ~ \\mathrm { t } . ~ \\end{align*}", "\\begin{equation*} \\square \\mitphi ^ { \\miti } = 0 \\; , \\quad \\mitpartial ^ { \\mitalpha \\mitbeta } \\mitpsi _ { \\mitbeta } ^ { [ \\miti \\mitj ] } = \\mitpartial ^ { \\mitalpha \\mitbeta } \\mitF _ { ( \\mitbeta \\mitgamma ) } ^ { \\miti } = \\mitpartial ^ { \\mitalpha \\mitbeta } \\mitchi _ { ( \\mitbeta \\mitgamma \\mitdelta ) } = 0 \\end{equation*}" ], "x_min": [ 0.527999997138977, 0.1728000044822693, 0.4077000021934509, 0.789900004863739, 0.7635999917984009, 0.21080000698566437, 0.7214999794960022, 0.1728000044822693, 0.6212999820709229, 0.35179999470710754, 0.27300000190734863, 0.37040001153945923, 0.5252000093460083, 0.2653999924659729, 0.7153000235557556, 0.32339999079704285, 0.302700012922287, 0.5446000099182129, 0.414000004529953, 0.487199991941452, 0.6323000192642212, 0.7526000142097473, 0.27570000290870667, 0.36629998683929443, 0.536300003528595, 0.6025999784469604, 0.49410000443458557, 0.630299985408783, 0.2281000018119812, 0.34279999136924744, 0.44369998574256897, 0.27090001106262207, 0.39809998869895935, 0.2694999873638153, 0.29649999737739563 ], "y_min": [ 0.15919999778270721, 0.20749999582767487, 0.20999999344348907, 0.2084999978542328, 0.260699987411499, 0.2777999937534332, 0.34619998931884766, 0.36469998955726624, 0.3799000084400177, 0.3978999853134155, 0.451200008392334, 0.5038999915122986, 0.5054000020027161, 0.5586000084877014, 0.5601000189781189, 0.5917999744415283, 0.6098999977111816, 0.6089000105857849, 0.6898999810218811, 0.6904000043869019, 0.6869999766349792, 0.6904000043869019, 0.7070000171661377, 0.7074999809265137, 0.7074999809265137, 0.7124000191688538, 0.7788000106811523, 0.7788000106811523, 0.79830002784729, 0.8062000274658203, 0.4189000129699707, 0.47360000014305115, 0.5264000296592712, 0.6284000277519226, 0.7445999979972839 ], "x_max": [ 0.5763999819755554, 0.21150000393390656, 0.451200008392334, 0.8126999735832214, 0.8264999985694885, 0.27160000801086426, 0.8209999799728394, 0.23980000615119934, 0.6938999891281128, 0.4244000017642975, 0.36149999499320984, 0.38839998841285706, 0.5486999750137329, 0.3538999855518341, 0.7512000203132629, 0.35040000081062317, 0.3912000060081482, 0.5722000002861023, 0.4320000112056732, 0.5479999780654907, 0.6661999821662903, 0.8133999705314636, 0.31850001215934753, 0.4271000027656555, 0.5985000133514404, 0.6536999940872192, 0.5120999813079834, 0.6730999946594238, 0.2619999945163727, 0.39320001006126404, 0.557699978351593, 0.7304999828338623, 0.6039999723434448, 0.7290999889373779, 0.7049000263214111 ], "y_max": [ 0.16990000009536743, 0.22310000658035278, 0.22509999573230743, 0.22360000014305115, 0.275299996137619, 0.2924000024795532, 0.361299991607666, 0.3774000108242035, 0.3955000042915344, 0.4124999940395355, 0.46630001068115234, 0.5189999938011169, 0.51910001039505, 0.573199987411499, 0.5708000063896179, 0.6039999723434448, 0.6244999766349792, 0.6211000084877014, 0.7045000195503235, 0.7055000066757202, 0.7045999765396118, 0.7055000066757202, 0.725600004196167, 0.722599983215332, 0.722599983215332, 0.7235999703407288, 0.79339998960495, 0.7973999977111816, 0.8159000277519226, 0.8179000020027161, 0.43939998745918274, 0.49309998750686646, 0.5468999743461609, 0.6815999746322632, 0.7684999704360962 ], "expr_type": [ "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "isolated", "isolated", "isolated", "isolated", "isolated" ] }
0001178_page10
{ "latex": [ "$D^{11}$", "$U\\hskip -2pt Sp(4)$", "$D^{11}$", "$D^{12}$", "$D^{13}$", "$D^{22}$", "$D^{11}=2[D^{12},D^{13}]$", "$D^{11}=2[D^{12},D^{13}]$", "$D^{12}=[D^{22},D^{13}]$", "$U\\hskip -2pt Sp(4)$", "$N=(2,0)$", "$D^{1,2}_\\alpha = D^i_\\alpha u^{1,2}_i$", "$W^{12}=W^{\\{ij\\}}u^1_i u^2_j$", "$W^{12}$", "$U\\hskip -2pt Sp(4)$", "$u^1_{[k} u^1_{i]} = u^2_{[k} u^2_{i]}=0$", "$\\Omega ^{ij}u^1_iu^2_j=0$", "$W^{12}$", "$\\theta ^3=-\\theta _2$", "$\\theta ^4=-\\theta _1$", "$N=(2,0)$", "$W^{12}$", "\\begin {eqnarray} U\\hskip -2pt Sp(2): &\\quad & D^{11}f^1(u) = 0 \\\\ &\\quad & \\Rightarrow \\ f^1(u) = f^iu^1_i \\;; \\\\ U\\hskip -2pt Sp(4): &\\quad & D^{11}f^1(u) = D^{12}f^1(u) = D^{13}f^1(u) = D^{22}f^1(u) = 0 \\\\ &\\quad & \\Rightarrow \\ f^1(u) = f^iu^1_i\\;; \\\\ &\\quad & D^{11}f^{12}(u) = D^{12}f^{12}(u) = D^{13}f^{12}(u) = D^{22}f^{12}(u) = 0 \\\\ &\\quad & \\Rightarrow \\ f^{12}(u) = f^{\\{ij\\}}u^1_iu^2_j\\;. \\end {eqnarray}", "\\begin {equation}\\label {34} D^{(k}_\\alpha W^{\\{i)j\\}}=0 \\ \\times \\left \\{\\begin {array}{lll} u^1_k u^1_i u^2_j & \\Rightarrow & D^1_\\alpha W^{12} =0 \\\\ u^2_k u^2_i u^1_j & \\Rightarrow & D^2_\\alpha W^{12} =0 \\end {array} \\right .\\;. \\end {equation}", "\\begin {equation}\\label {35} D^1_\\alpha W^{12} = D^2_\\alpha W^{12} =0\\;. \\end {equation}", "\\begin {equation}\\label {36} D^1_\\alpha W^{12} = D^2_\\alpha W^{12} =0 \\ \\Rightarrow \\^^MW^{12} = W^{12}(x_A,\\theta ^1,\\theta ^2,u) \\end {equation}", "\\begin {equation}\\label {37} x^{\\alpha \\beta }_A = x^{\\alpha \\beta } - i\\theta ^{\\alpha (i}\\theta ^{\\beta j)} (u^1_iu^4_j + u^2_iu^3_j)\\;, \\quad \\theta ^{1\\alpha } = \\theta ^\\alpha _4 = \\theta ^{\\alpha }_i u^i_4\\;, \\ \\theta ^{2\\alpha } = \\theta ^\\alpha _3 = \\theta ^{\\alpha }_i u^i_3\\;. \\end {equation}" ], "latex_norm": [ "$ D ^ { 1 1 } $", "$ U \\hspace{-2.0pt} S p ( 4 ) $", "$ D ^ { 1 1 } $", "$ D ^ { 1 2 } $", "$ D ^ { 1 3 } $", "$ D ^ { 2 2 } $", "$ D ^ { 1 1 } = 2 [ D ^ { 1 2 } , D ^ { 1 3 } ] $", "$ D ^ { 1 1 } = 2 [ D ^ { 1 2 } , D ^ { 1 3 } ] $", "$ D ^ { 1 2 } = [ D ^ { 2 2 } , D ^ { 1 3 } ] $", "$ U \\hspace{-2.0pt} S p ( 4 ) $", "$ N = ( 2 , 0 ) $", "$ D _ { \\alpha } ^ { 1 , 2 } = D _ { \\alpha } ^ { i } u _ { i } ^ { 1 , 2 } $", "$ W ^ { 1 2 } = W ^ { \\{ i j \\} } u _ { i } ^ { 1 } u _ { j } ^ { 2 } $", "$ W ^ { 1 2 } $", "$ U \\hspace{-2.0pt} S p ( 4 ) $", "$ u _ { [ k } ^ { 1 } u _ { i ] } ^ { 1 } = u _ { [ k } ^ { 2 } u _ { i ] } ^ { 2 } = 0 $", "$ \\Omega ^ { i j } u _ { i } ^ { 1 } u _ { j } ^ { 2 } = 0 $", "$ W ^ { 1 2 } $", "$ \\theta ^ { 3 } = - \\theta _ { 2 } $", "$ \\theta ^ { 4 } = - \\theta _ { 1 } $", "$ N = ( 2 , 0 ) $", "$ W ^ { 1 2 } $", "\\begin{align*} U \\hspace{-2.0pt} S p ( 2 ) : & & D ^ { 1 1 } f ^ { 1 } ( u ) = 0 \\\\ & & \\Rightarrow ~ f ^ { 1 } ( u ) = f ^ { i } u _ { i } ^ { 1 } \\; ; \\\\ U \\hspace{-2.0pt} S p ( 4 ) : & & D ^ { 1 1 } f ^ { 1 } ( u ) = D ^ { 1 2 } f ^ { 1 } ( u ) = D ^ { 1 3 } f ^ { 1 } ( u ) = D ^ { 2 2 } f ^ { 1 } ( u ) = 0 \\\\ & & \\Rightarrow ~ f ^ { 1 } ( u ) = f ^ { i } u _ { i } ^ { 1 } \\; ; \\\\ & & D ^ { 1 1 } f ^ { 1 2 } ( u ) = D ^ { 1 2 } f ^ { 1 2 } ( u ) = D ^ { 1 3 } f ^ { 1 2 } ( u ) = D ^ { 2 2 } f ^ { 1 2 } ( u ) = 0 \\\\ & & \\Rightarrow ~ f ^ { 1 2 } ( u ) = f ^ { \\{ i j \\} } u _ { i } ^ { 1 } u _ { j } ^ { 2 } \\; . \\end{align*}", "\\begin{align*} D _ { \\alpha } ^ { ( k } W ^ { \\{ i ) j \\} } = 0 ~ \\times \\{ \\begin{array}{ccc} u _ { k } ^ { 1 } u _ { i } ^ { 1 } u _ { j } ^ { 2 } & \\Rightarrow & D _ { \\alpha } ^ { 1 } W ^ { 1 2 } = 0 \\\\ u _ { k } ^ { 2 } u _ { i } ^ { 2 } u _ { j } ^ { 1 } & \\Rightarrow & D _ { \\alpha } ^ { 2 } W ^ { 1 2 } = 0 \\end{array} \\; . \\end{align*}", "\\begin{equation*} D _ { \\alpha } ^ { 1 } W ^ { 1 2 } = D _ { \\alpha } ^ { 2 } W ^ { 1 2 } = 0 \\; . \\end{equation*}", "\\begin{equation*} D _ { \\alpha } ^ { 1 } W ^ { 1 2 } = D _ { \\alpha } ^ { 2 } W ^ { 1 2 } = 0 ~ \\Rightarrow ~ W ^ { 1 2 } = W ^ { 1 2 } ( x _ { A } , \\theta ^ { 1 } , \\theta ^ { 2 } , u ) \\end{equation*}", "\\begin{equation*} x _ { A } ^ { \\alpha \\beta } = x ^ { \\alpha \\beta } - i \\theta ^ { \\alpha ( i } \\theta ^ { \\beta j ) } ( u _ { i } ^ { 1 } u _ { j } ^ { 4 } + u _ { i } ^ { 2 } u _ { j } ^ { 3 } ) \\; , \\quad \\theta ^ { 1 \\alpha } = \\theta _ { 4 } ^ { \\alpha } = \\theta _ { i } ^ { \\alpha } u _ { 4 } ^ { i } \\; , ~ \\theta ^ { 2 \\alpha } = \\theta _ { 3 } ^ { \\alpha } = \\theta _ { i } ^ { \\alpha } u _ { 3 } ^ { i } \\; . \\end{equation*}" ], "latex_expand": [ "$ \\mitD ^ { 1 1 } $", "$ \\mitU \\hspace{-2.0pt} \\mitS \\mitp ( 4 ) $", "$ \\mitD ^ { 1 1 } $", "$ \\mitD ^ { 1 2 } $", "$ \\mitD ^ { 1 3 } $", "$ \\mitD ^ { 2 2 } $", "$ \\mitD ^ { 1 1 } = 2 [ \\mitD ^ { 1 2 } , \\mitD ^ { 1 3 } ] $", "$ \\mitD ^ { 1 1 } = 2 [ \\mitD ^ { 1 2 } , \\mitD ^ { 1 3 } ] $", "$ \\mitD ^ { 1 2 } = [ \\mitD ^ { 2 2 } , \\mitD ^ { 1 3 } ] $", "$ \\mitU \\hspace{-2.0pt} \\mitS \\mitp ( 4 ) $", "$ \\mitN = ( 2 , 0 ) $", "$ \\mitD _ { \\mitalpha } ^ { 1 , 2 } = \\mitD _ { \\mitalpha } ^ { \\miti } \\mitu _ { \\miti } ^ { 1 , 2 } $", "$ \\mitW ^ { 1 2 } = \\mitW ^ { \\{ \\miti \\mitj \\} } \\mitu _ { \\miti } ^ { 1 } \\mitu _ { \\mitj } ^ { 2 } $", "$ \\mitW ^ { 1 2 } $", "$ \\mitU \\hspace{-2.0pt} \\mitS \\mitp ( 4 ) $", "$ \\mitu _ { [ \\mitk } ^ { 1 } \\mitu _ { \\miti ] } ^ { 1 } = \\mitu _ { [ \\mitk } ^ { 2 } \\mitu _ { \\miti ] } ^ { 2 } = 0 $", "$ \\mupOmega ^ { \\miti \\mitj } \\mitu _ { \\miti } ^ { 1 } \\mitu _ { \\mitj } ^ { 2 } = 0 $", "$ \\mitW ^ { 1 2 } $", "$ \\mittheta ^ { 3 } = - \\mittheta _ { 2 } $", "$ \\mittheta ^ { 4 } = - \\mittheta _ { 1 } $", "$ \\mitN = ( 2 , 0 ) $", "$ \\mitW ^ { 1 2 } $", "\\begin{align*} \\mitU \\hspace{-2.0pt} \\mitS \\mitp ( 2 ) : & & \\mitD ^ { 1 1 } \\mitf ^ { 1 } ( \\mitu ) = 0 \\\\ & & \\Rightarrow ~ \\mitf ^ { 1 } ( \\mitu ) = \\mitf ^ { \\miti } \\mitu _ { \\miti } ^ { 1 } \\; ; \\\\ \\mitU \\hspace{-2.0pt} \\mitS \\mitp ( 4 ) : & & \\mitD ^ { 1 1 } \\mitf ^ { 1 } ( \\mitu ) = \\mitD ^ { 1 2 } \\mitf ^ { 1 } ( \\mitu ) = \\mitD ^ { 1 3 } \\mitf ^ { 1 } ( \\mitu ) = \\mitD ^ { 2 2 } \\mitf ^ { 1 } ( \\mitu ) = 0 \\\\ & & \\Rightarrow ~ \\mitf ^ { 1 } ( \\mitu ) = \\mitf ^ { \\miti } \\mitu _ { \\miti } ^ { 1 } \\; ; \\\\ & & \\mitD ^ { 1 1 } \\mitf ^ { 1 2 } ( \\mitu ) = \\mitD ^ { 1 2 } \\mitf ^ { 1 2 } ( \\mitu ) = \\mitD ^ { 1 3 } \\mitf ^ { 1 2 } ( \\mitu ) = \\mitD ^ { 2 2 } \\mitf ^ { 1 2 } ( \\mitu ) = 0 \\\\ & & \\Rightarrow ~ \\mitf ^ { 1 2 } ( \\mitu ) = \\mitf ^ { \\{ \\miti \\mitj \\} } \\mitu _ { \\miti } ^ { 1 } \\mitu _ { \\mitj } ^ { 2 } \\; . \\end{align*}", "\\begin{align*} \\mitD _ { \\mitalpha } ^ { ( \\mitk } \\mitW ^ { \\{ \\miti ) \\mitj \\} } = 0 ~ \\times \\left\\{ \\begin{array}{ccc} \\mitu _ { \\mitk } ^ { 1 } \\mitu _ { \\miti } ^ { 1 } \\mitu _ { \\mitj } ^ { 2 } & \\Rightarrow & \\mitD _ { \\mitalpha } ^ { 1 } \\mitW ^ { 1 2 } = 0 \\\\ \\mitu _ { \\mitk } ^ { 2 } \\mitu _ { \\miti } ^ { 2 } \\mitu _ { \\mitj } ^ { 1 } & \\Rightarrow & \\mitD _ { \\mitalpha } ^ { 2 } \\mitW ^ { 1 2 } = 0 \\end{array} \\right. \\; . \\end{align*}", "\\begin{equation*} \\mitD _ { \\mitalpha } ^ { 1 } \\mitW ^ { 1 2 } = \\mitD _ { \\mitalpha } ^ { 2 } \\mitW ^ { 1 2 } = 0 \\; . \\end{equation*}", "\\begin{equation*} \\mitD _ { \\mitalpha } ^ { 1 } \\mitW ^ { 1 2 } = \\mitD _ { \\mitalpha } ^ { 2 } \\mitW ^ { 1 2 } = 0 ~ \\Rightarrow ~ \\mitW ^ { 1 2 } = \\mitW ^ { 1 2 } ( \\mitx _ { \\mitA } , \\mittheta ^ { 1 } , \\mittheta ^ { 2 } , \\mitu ) \\end{equation*}", "\\begin{equation*} \\mitx _ { \\mitA } ^ { \\mitalpha \\mitbeta } = \\mitx ^ { \\mitalpha \\mitbeta } - \\miti \\mittheta ^ { \\mitalpha ( \\miti } \\mittheta ^ { \\mitbeta \\mitj ) } ( \\mitu _ { \\miti } ^ { 1 } \\mitu _ { \\mitj } ^ { 4 } + \\mitu _ { \\miti } ^ { 2 } \\mitu _ { \\mitj } ^ { 3 } ) \\; , \\quad \\mittheta ^ { 1 \\mitalpha } = \\mittheta _ { 4 } ^ { \\mitalpha } = \\mittheta _ { \\miti } ^ { \\mitalpha } \\mitu _ { 4 } ^ { \\miti } \\; , ~ \\mittheta ^ { 2 \\mitalpha } = \\mittheta _ { 3 } ^ { \\mitalpha } = \\mittheta _ { \\miti } ^ { \\mitalpha } \\mitu _ { 3 } ^ { \\miti } \\; . \\end{equation*}" ], "x_min": [ 0.2612000107765198, 0.4291999936103821, 0.7885000109672546, 0.1728000044822693, 0.21629999577999115, 0.2605000138282776, 0.7692000269889832, 0.1728000044822693, 0.3109999895095825, 0.37529999017715454, 0.2702000141143799, 0.22050000727176666, 0.3912000060081482, 0.5009999871253967, 0.72079998254776, 0.1728000044822693, 0.36970001459121704, 0.399399995803833, 0.1728000044822693, 0.3012999892234802, 0.5888000130653381, 0.7179999947547913, 0.2087000012397766, 0.2937000095844269, 0.399399995803833, 0.2777999937534332, 0.18039999902248383 ], "y_min": [ 0.15719999372959137, 0.15770000219345093, 0.15719999372959137, 0.17430000007152557, 0.17430000007152557, 0.17430000007152557, 0.3402999937534332, 0.35740000009536743, 0.35740000009536743, 0.37549999356269836, 0.39259999990463257, 0.4722000062465668, 0.47269999980926514, 0.5536999702453613, 0.5541999936103821, 0.6050000190734863, 0.6050000190734863, 0.7689999938011169, 0.7860999703407288, 0.7860999703407288, 0.8041999936103821, 0.8378999829292297, 0.19779999554157257, 0.4189000129699707, 0.5181000232696533, 0.6679999828338623, 0.7294999957084656 ], "x_max": [ 0.2937000095844269, 0.49000000953674316, 0.8209999799728394, 0.2053000032901764, 0.24879999458789825, 0.2930000126361847, 0.8278999924659729, 0.2667999863624573, 0.45339998602867126, 0.4361000061035156, 0.35929998755455017, 0.3441999852657318, 0.5453000068664551, 0.5375999808311462, 0.7815999984741211, 0.3248000144958496, 0.4706000089645386, 0.4359999895095825, 0.25429999828338623, 0.38280001282691956, 0.677299976348877, 0.7545999884605408, 0.7906000018119812, 0.7077000141143799, 0.6018999814987183, 0.7235000133514404, 0.8209999799728394 ], "y_max": [ 0.1688999980688095, 0.17229999601840973, 0.1688999980688095, 0.1860000044107437, 0.1860000044107437, 0.1860000044107437, 0.35589998960494995, 0.37299999594688416, 0.37299999594688416, 0.39010000228881836, 0.40720000863075256, 0.489300012588501, 0.49079999327659607, 0.5654000043869019, 0.5692999958992004, 0.6236000061035156, 0.6226000189781189, 0.7807000279426575, 0.8003000020980835, 0.8003000020980835, 0.8187999725341797, 0.8496000170707703, 0.3310999870300293, 0.45750001072883606, 0.5375999808311462, 0.6875, 0.7519999742507935 ], "expr_type": [ "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "isolated", "isolated", "isolated", "isolated", "isolated" ] }
0001178_page12
{ "latex": [ "$N=(1,0)$", "$N=(2,0)$", "$U\\hskip -2pt Sp(2n)$", "$\\phi ^1=\\phi ^i(x)u^1_i$", "$\\psi _\\alpha =\\psi _\\alpha (x)$", "$\\psi ^{23}_\\alpha = \\psi ^{\\{ij\\}}_\\alpha (x) u^2_i u^3_j$", "$F^3_{(\\alpha \\beta )} = F^i_{(\\alpha \\beta )}(x)u^3_i$", "$u^I_iu^I_j$", "$I$", "$I=1,2$", "$N=(1,0)$", "$I=1,2,3,4$", "$N=(2,0)$", "$\\theta ^I$", "$W$", "$U\\hskip -2pt Sp(2n)$", "$W$", "$N=(1,0)$", "$W^{12}$", "$W^1$", "\\begin {equation}\\label {41} D^1_\\alpha W^1 = 0 \\quad \\Rightarrow \\quad \\left \\{ \\begin {array}{ll} W^1 = W^1(\\theta ^1)\\;, & N=(1,0) \\\\ W^1 = W^1(\\theta ^1,\\theta ^2,\\theta ^3)\\;, & N=(2,0) \\end {array} \\right . \\;. \\end {equation}", "\\begin {eqnarray} N=(1,0): &\\ & D^{11}W^1=0\\;;\\\\ N=(2,0): &\\ & D^{11}W^1=D^{12}W^1=D^{13}W^1=D^{22}W^1=0\\;.\\end {eqnarray}", "\\begin {equation}\\label {44} N=(1,0): \\quad W^1 = \\phi ^1 + \\theta ^{1\\alpha }\\psi _\\alpha + \\mbox {\\small d.t.} \\end {equation}", "\\begin {eqnarray} N=(2,0): && W^1 = \\phi ^1 + \\theta ^{1\\alpha }\\psi _\\alpha - (\\theta ^{1\\alpha }\\psi ^{23}_\\alpha + \\mbox {\\small cycle 123}) \\\\ && - (\\theta ^{1\\alpha }\\theta ^{2\\beta }F^3_{(\\alpha \\beta )} + \\mbox {\\small cycle 123}) + 6 \\theta ^{1\\alpha }\\theta ^{2\\beta } \\theta ^{3\\gamma }\\chi _{(\\alpha \\beta \\gamma )} + \\mbox {\\small d.t.} \\end {eqnarray}", "\\begin {equation}\\label {47} D^I_\\alpha D^I_\\beta W = 0 \\end {equation}", "\\begin {equation}\\label {47'} N=(1,0): \\qquad W = \\phi + {1\\over 2}(\\theta ^{1\\alpha }\\psi ^2_\\alpha - \\theta ^{2\\alpha }\\psi ^1_\\alpha ) + \\theta ^{1\\alpha }\\theta ^{2\\beta } F_{(\\alpha \\beta )} + \\mbox {\\small d.t.} \\end {equation}" ], "latex_norm": [ "$ N = ( 1 , 0 ) $", "$ N = ( 2 , 0 ) $", "$ U \\hspace{-2.0pt} S p ( 2 n ) $", "$ \\phi ^ { 1 } = \\phi ^ { i } ( x ) u _ { i } ^ { 1 } $", "$ \\psi _ { \\alpha } = \\psi _ { \\alpha } ( x ) $", "$ \\psi _ { \\alpha } ^ { 2 3 } = \\psi _ { \\alpha } ^ { \\{ i j \\} } ( x ) u _ { i } ^ { 2 } u _ { j } ^ { 3 } $", "$ F _ { ( \\alpha \\beta ) } ^ { 3 } = F _ { ( \\alpha \\beta ) } ^ { i } ( x ) u _ { i } ^ { 3 } $", "$ u _ { i } ^ { I } u _ { j } ^ { I } $", "$ I $", "$ I = 1 , 2 $", "$ N = ( 1 , 0 ) $", "$ I = 1 , 2 , 3 , 4 $", "$ N = ( 2 , 0 ) $", "$ \\theta ^ { I } $", "$ W $", "$ U \\hspace{-2.0pt} S p ( 2 n ) $", "$ W $", "$ N = ( 1 , 0 ) $", "$ W ^ { 1 2 } $", "$ W ^ { 1 } $", "\\begin{align*} D _ { \\alpha } ^ { 1 } W ^ { 1 } = 0 \\quad \\Rightarrow \\quad \\{ \\begin{array}{ll} W ^ { 1 } = W ^ { 1 } ( \\theta ^ { 1 } ) \\; , & N = ( 1 , 0 ) \\\\ W ^ { 1 } = W ^ { 1 } ( \\theta ^ { 1 } , \\theta ^ { 2 } , \\theta ^ { 3 } ) \\; , & N = ( 2 , 0 ) \\end{array} \\; . \\end{align*}", "\\begin{align*} N = ( 1 , 0 ) : & & D ^ { 1 1 } W ^ { 1 } = 0 \\; ; \\\\ N = ( 2 , 0 ) : & & D ^ { 1 1 } W ^ { 1 } = D ^ { 1 2 } W ^ { 1 } = D ^ { 1 3 } W ^ { 1 } = D ^ { 2 2 } W ^ { 1 } = 0 \\; . \\end{align*}", "\\begin{equation*} N = ( 1 , 0 ) : \\quad W ^ { 1 } = \\phi ^ { 1 } + \\theta ^ { 1 \\alpha } \\psi _ { \\alpha } + d . t . \\end{equation*}", "\\begin{align*} N = ( 2 , 0 ) : & & W ^ { 1 } = \\phi ^ { 1 } + \\theta ^ { 1 \\alpha } \\psi _ { \\alpha } - ( \\theta ^ { 1 \\alpha } \\psi _ { \\alpha } ^ { 2 3 } + c y c l e ~ 1 2 3 ) \\\\ & & - ( \\theta ^ { 1 \\alpha } \\theta ^ { 2 \\beta } F _ { ( \\alpha \\beta ) } ^ { 3 } + c y c l e ~ 1 2 3 ) + 6 \\theta ^ { 1 \\alpha } \\theta ^ { 2 \\beta } \\theta ^ { 3 \\gamma } \\chi _ { ( \\alpha \\beta \\gamma ) } + d . t . \\end{align*}", "\\begin{equation*} D _ { \\alpha } ^ { I } D _ { \\beta } ^ { I } W = 0 \\end{equation*}", "\\begin{equation*} N = ( 1 , 0 ) : \\qquad W = \\phi + \\frac { 1 } { 2 } ( \\theta ^ { 1 \\alpha } \\psi _ { \\alpha } ^ { 2 } - \\theta ^ { 2 \\alpha } \\psi _ { \\alpha } ^ { 1 } ) + \\theta ^ { 1 \\alpha } \\theta ^ { 2 \\beta } F _ { ( \\alpha \\beta ) } + d . t . \\end{equation*}" ], "latex_expand": [ "$ \\mitN = ( 1 , 0 ) $", "$ \\mitN = ( 2 , 0 ) $", "$ \\mitU \\hspace{-2.0pt} \\mitS \\mitp ( 2 \\mitn ) $", "$ \\mitphi ^ { 1 } = \\mitphi ^ { \\miti } ( \\mitx ) \\mitu _ { \\miti } ^ { 1 } $", "$ \\mitpsi _ { \\mitalpha } = \\mitpsi _ { \\mitalpha } ( \\mitx ) $", "$ \\mitpsi _ { \\mitalpha } ^ { 2 3 } = \\mitpsi _ { \\mitalpha } ^ { \\{ \\miti \\mitj \\} } ( \\mitx ) \\mitu _ { \\miti } ^ { 2 } \\mitu _ { \\mitj } ^ { 3 } $", "$ \\mitF _ { ( \\mitalpha \\mitbeta ) } ^ { 3 } = \\mitF _ { ( \\mitalpha \\mitbeta ) } ^ { \\miti } ( \\mitx ) \\mitu _ { \\miti } ^ { 3 } $", "$ \\mitu _ { \\miti } ^ { \\mitI } \\mitu _ { \\mitj } ^ { \\mitI } $", "$ \\mitI $", "$ \\mitI = 1 , 2 $", "$ \\mitN = ( 1 , 0 ) $", "$ \\mitI = 1 , 2 , 3 , 4 $", "$ \\mitN = ( 2 , 0 ) $", "$ \\mittheta ^ { \\mitI } $", "$ \\mitW $", "$ \\mitU \\hspace{-2.0pt} \\mitS \\mitp ( 2 \\mitn ) $", "$ \\mitW $", "$ \\mitN = ( 1 , 0 ) $", "$ \\mitW ^ { 1 2 } $", "$ \\mitW ^ { 1 } $", "\\begin{align*} \\mitD _ { \\mitalpha } ^ { 1 } \\mitW ^ { 1 } = 0 \\quad \\Rightarrow \\quad \\left\\{ \\begin{array}{ll} \\mitW ^ { 1 } = \\mitW ^ { 1 } ( \\mittheta ^ { 1 } ) \\; , & \\mitN = ( 1 , 0 ) \\\\ \\mitW ^ { 1 } = \\mitW ^ { 1 } ( \\mittheta ^ { 1 } , \\mittheta ^ { 2 } , \\mittheta ^ { 3 } ) \\; , & \\mitN = ( 2 , 0 ) \\end{array} \\right. \\; . \\end{align*}", "\\begin{align*} \\mitN = ( 1 , 0 ) : & & \\mitD ^ { 1 1 } \\mitW ^ { 1 } = 0 \\; ; \\\\ \\mitN = ( 2 , 0 ) : & & \\mitD ^ { 1 1 } \\mitW ^ { 1 } = \\mitD ^ { 1 2 } \\mitW ^ { 1 } = \\mitD ^ { 1 3 } \\mitW ^ { 1 } = \\mitD ^ { 2 2 } \\mitW ^ { 1 } = 0 \\; . \\end{align*}", "\\begin{equation*} \\mitN = ( 1 , 0 ) : \\quad \\mitW ^ { 1 } = \\mitphi ^ { 1 } + \\mittheta ^ { 1 \\mitalpha } \\mitpsi _ { \\mitalpha } + \\mathrm { d } . \\mathrm { t } . \\end{equation*}", "\\begin{align*} \\mitN = ( 2 , 0 ) : & & \\mitW ^ { 1 } = \\mitphi ^ { 1 } + \\mittheta ^ { 1 \\mitalpha } \\mitpsi _ { \\mitalpha } - ( \\mittheta ^ { 1 \\mitalpha } \\mitpsi _ { \\mitalpha } ^ { 2 3 } + \\mathrm { c y c l e } ~ 1 2 3 ) \\\\ & & - ( \\mittheta ^ { 1 \\mitalpha } \\mittheta ^ { 2 \\mitbeta } \\mitF _ { ( \\mitalpha \\mitbeta ) } ^ { 3 } + \\mathrm { c y c l e } ~ 1 2 3 ) + 6 \\mittheta ^ { 1 \\mitalpha } \\mittheta ^ { 2 \\mitbeta } \\mittheta ^ { 3 \\mitgamma } \\mitchi _ { ( \\mitalpha \\mitbeta \\mitgamma ) } + \\mathrm { d } . \\mathrm { t } . \\end{align*}", "\\begin{equation*} \\mitD _ { \\mitalpha } ^ { \\mitI } \\mitD _ { \\mitbeta } ^ { \\mitI } \\mitW = 0 \\end{equation*}", "\\begin{equation*} \\mitN = ( 1 , 0 ) : \\qquad \\mitW = \\mitphi + \\frac { 1 } { 2 } ( \\mittheta ^ { 1 \\mitalpha } \\mitpsi _ { \\mitalpha } ^ { 2 } - \\mittheta ^ { 2 \\mitalpha } \\mitpsi _ { \\mitalpha } ^ { 1 } ) + \\mittheta ^ { 1 \\mitalpha } \\mittheta ^ { 2 \\mitbeta } \\mitF _ { ( \\mitalpha \\mitbeta ) } + \\mathrm { d } . \\mathrm { t } . \\end{equation*}" ], "x_min": [ 0.1956000030040741, 0.31439998745918274, 0.579800009727478, 0.21770000457763672, 0.3711000084877014, 0.21770000457763672, 0.38909998536109924, 0.7533000111579895, 0.3165000081062317, 0.22869999706745148, 0.3959999978542328, 0.5273000001907349, 0.7318999767303467, 0.2281000018119812, 0.4657999873161316, 0.6371999979019165, 0.5812000036239624, 0.7077000141143799, 0.6261000037193298, 0.7091000080108643, 0.2502000033855438, 0.24400000274181366, 0.33660000562667847, 0.2093999981880188, 0.44440001249313354, 0.20589999854564667 ], "y_min": [ 0.17479999363422394, 0.17479999363422394, 0.2533999979496002, 0.4140999913215637, 0.4146000146865845, 0.49799999594688416, 0.5009999871253967, 0.5360999703407288, 0.5551999807357788, 0.6172000169754028, 0.6161999702453613, 0.6172000169754028, 0.6161999702453613, 0.649399995803833, 0.6514000296592712, 0.6503999829292297, 0.6685000061988831, 0.6675000190734863, 0.8432999849319458, 0.8432999849319458, 0.20069999992847443, 0.2969000041484833, 0.37940001487731934, 0.44200000166893005, 0.5806000232696533, 0.6934000253677368 ], "x_max": [ 0.2840999960899353, 0.40290001034736633, 0.652400016784668, 0.32690000534057617, 0.4699000120162964, 0.3779999911785126, 0.5467000007629395, 0.7919999957084656, 0.32760000228881836, 0.29440000653266907, 0.484499990940094, 0.630299985408783, 0.8209999799728394, 0.24609999358654022, 0.4878999888896942, 0.7098000049591064, 0.6032999753952026, 0.7961999773979187, 0.6626999974250793, 0.7387999892234802, 0.7512000203132629, 0.7554000020027161, 0.664900004863739, 0.789900004863739, 0.5569999814033508, 0.7608000040054321 ], "y_max": [ 0.18940000236034393, 0.18940000236034393, 0.2680000066757202, 0.42969998717308044, 0.42969998717308044, 0.5184999704360962, 0.519599974155426, 0.5536999702453613, 0.5659000277519226, 0.6304000020027161, 0.6312999725341797, 0.6304000020027161, 0.6312999725341797, 0.6615999937057495, 0.6617000102996826, 0.6654999852180481, 0.6791999936103821, 0.6826000213623047, 0.8550000190734863, 0.8550000190734863, 0.23880000412464142, 0.3377000093460083, 0.3984000086784363, 0.48330000042915344, 0.6021000146865845, 0.7261000275611877 ], "expr_type": [ "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "isolated", "isolated", "isolated", "isolated", "isolated", "isolated" ] }
0001178_page14
{ "latex": [ "$N=(1,0)$", "$(W)^2$", "$(W)^2$", "$W$", "$W$", "$W$", "$W^1$", "$W(W^1)^p$", "$\\theta ^2$", "$\\theta ^1$", "$\\theta ^{1\\alpha }\\theta ^{1\\beta }\\theta ^{2\\gamma } \\psi ^{(p-1)}_{[\\alpha \\beta ]\\gamma }$", "$(0,1,1)$", "$p$", "$U\\hskip -2pt Sp(2)$", "$p=1$", "$WW^1$", "$N=(2,0)$", "$W^{12}$", "$W^1$", "$W^{12}$", "$(0,0,2)$", "$(W^{12})^2$", "$\\theta ^{1,2}_\\alpha $", "$(0,2,0)$", "$N=(2,0)$", "$\\theta $", "$(W^{12})^p$", "$p\\geq 3$", "$(0,2,0)$", "$W^{12}$", "$OSp(8^*/4)$", "\\begin {equation}\\label {52} \\partial ^{\\alpha \\beta } A_{[\\alpha \\beta ][\\gamma \\delta ]}=0\\;, \\end {equation}", "\\begin {equation}\\label {53} D^1_\\alpha D^1_\\beta (W(W^1)^p) =0 \\end {equation}", "\\begin {equation}\\label {54} D^{11} (W(W^1)^p) =0\\;. \\end {equation}", "\\begin {equation}\\label {55} \\partial ^{\\alpha \\beta }\\psi _{[\\alpha \\beta ]\\gamma } = 0\\;. \\end {equation}", "\\begin {equation}\\label {56} (W^{12})^2 = \\phi ^{1122} + \\ldots + \\theta ^{1\\alpha }\\theta ^{1\\beta }\\theta ^{2\\gamma }\\theta ^{2\\delta } A_{[\\alpha \\beta ][\\gamma \\delta ]} + \\mbox {\\small d.t.} \\end {equation}", "\\begin {equation}\\label {series1} (W^{12})^p = \\phi ^{\\stackrel {\\underbrace {\\mbox {\\scriptsize 1\\ldots 1}}}{p} \\stackrel {\\underbrace {\\mbox {\\scriptsize 2\\ldots 2}}}{p}} + \\ldots + \\theta ^{1\\alpha }\\theta ^{1\\beta }\\theta ^{2\\gamma }\\theta ^{2\\delta } A^{\\stackrel {\\underbrace {\\mbox {\\scriptsize 1\\ldots 1}}}{p-2} \\stackrel {\\underbrace {\\mbox {\\scriptsize 2\\ldots 2}}}{p-2}}_{[\\alpha \\beta ][\\gamma \\delta ]} + \\mbox {\\small d.t.} \\end {equation}" ], "latex_norm": [ "$ N = ( 1 , 0 ) $", "$ ( W ) ^ { 2 } $", "$ ( W ) ^ { 2 } $", "$ W $", "$ W $", "$ W $", "$ W ^ { 1 } $", "$ W ( W ^ { 1 } ) ^ { p } $", "$ \\theta ^ { 2 } $", "$ \\theta ^ { 1 } $", "$ \\theta ^ { 1 \\alpha } \\theta ^ { 1 \\beta } \\theta ^ { 2 \\gamma } \\psi _ { [ \\alpha \\beta ] \\gamma } ^ { ( p - 1 ) } $", "$ ( 0 , 1 , 1 ) $", "$ p $", "$ U \\hspace{-2.0pt} S p ( 2 ) $", "$ p = 1 $", "$ W W ^ { 1 } $", "$ N = ( 2 , 0 ) $", "$ W ^ { 1 2 } $", "$ W ^ { 1 } $", "$ W ^ { 1 2 } $", "$ ( 0 , 0 , 2 ) $", "$ ( W ^ { 1 2 } ) ^ { 2 } $", "$ \\theta _ { \\alpha } ^ { 1 , 2 } $", "$ ( 0 , 2 , 0 ) $", "$ N = ( 2 , 0 ) $", "$ \\theta $", "$ ( W ^ { 1 2 } ) ^ { p } $", "$ p \\geq 3 $", "$ ( 0 , 2 , 0 ) $", "$ W ^ { 1 2 } $", "$ O S p ( 8 ^ { \\ast } \\slash 4 ) $", "\\begin{equation*} \\partial ^ { \\alpha \\beta } A _ { [ \\alpha \\beta ] [ \\gamma \\delta ] } = 0 \\; , \\end{equation*}", "\\begin{equation*} D _ { \\alpha } ^ { 1 } D _ { \\beta } ^ { 1 } ( W ( W ^ { 1 } ) ^ { p } ) = 0 \\end{equation*}", "\\begin{equation*} D ^ { 1 1 } ( W ( W ^ { 1 } ) ^ { p } ) = 0 \\; . \\end{equation*}", "\\begin{equation*} \\partial ^ { \\alpha \\beta } \\psi _ { [ \\alpha \\beta ] \\gamma } = 0 \\; . \\end{equation*}", "\\begin{equation*} ( W ^ { 1 2 } ) ^ { 2 } = \\phi ^ { 1 1 2 2 } + \\ldots + \\theta ^ { 1 \\alpha } \\theta ^ { 1 \\beta } \\theta ^ { 2 \\gamma } \\theta ^ { 2 \\delta } A _ { [ \\alpha \\beta ] [ \\gamma \\delta ] } + d . t . \\end{equation*}", "\\begin{equation*} ( W ^ { 1 2 } ) ^ { p } = \\phi ^ { \\overset { \\underbrace { 1 \\ldots 1 } } { p } \\overset { \\underbrace { 2 \\ldots 2 } } { p } } + \\ldots + \\theta ^ { 1 \\alpha } \\theta ^ { 1 \\beta } \\theta ^ { 2 \\gamma } \\theta ^ { 2 \\delta } A _ { [ \\alpha \\beta ] [ \\gamma \\delta ] } ^ { \\overset { \\underbrace { 1 \\ldots 1 } } { p - 2 } \\overset { \\underbrace { 2 \\ldots 2 } } { p - 2 } } + d . t . \\end{equation*}" ], "latex_expand": [ "$ \\mitN = ( 1 , 0 ) $", "$ ( \\mitW ) ^ { 2 } $", "$ ( \\mitW ) ^ { 2 } $", "$ \\mitW $", "$ \\mitW $", "$ \\mitW $", "$ \\mitW ^ { 1 } $", "$ \\mitW ( \\mitW ^ { 1 } ) ^ { \\mitp } $", "$ \\mittheta ^ { 2 } $", "$ \\mittheta ^ { 1 } $", "$ \\mittheta ^ { 1 \\mitalpha } \\mittheta ^ { 1 \\mitbeta } \\mittheta ^ { 2 \\mitgamma } \\mitpsi _ { [ \\mitalpha \\mitbeta ] \\mitgamma } ^ { ( \\mitp - 1 ) } $", "$ ( 0 , 1 , 1 ) $", "$ \\mitp $", "$ \\mitU \\hspace{-2.0pt} \\mitS \\mitp ( 2 ) $", "$ \\mitp = 1 $", "$ \\mitW \\mitW ^ { 1 } $", "$ \\mitN = ( 2 , 0 ) $", "$ \\mitW ^ { 1 2 } $", "$ \\mitW ^ { 1 } $", "$ \\mitW ^ { 1 2 } $", "$ ( 0 , 0 , 2 ) $", "$ ( \\mitW ^ { 1 2 } ) ^ { 2 } $", "$ \\mittheta _ { \\mitalpha } ^ { 1 , 2 } $", "$ ( 0 , 2 , 0 ) $", "$ \\mitN = ( 2 , 0 ) $", "$ \\mittheta $", "$ ( \\mitW ^ { 1 2 } ) ^ { \\mitp } $", "$ \\mitp \\geq 3 $", "$ ( 0 , 2 , 0 ) $", "$ \\mitW ^ { 1 2 } $", "$ \\mitO \\mitS \\mitp ( 8 ^ { \\ast } \\slash 4 ) $", "\\begin{equation*} \\mitpartial ^ { \\mitalpha \\mitbeta } \\mitA _ { [ \\mitalpha \\mitbeta ] [ \\mitgamma \\mitdelta ] } = 0 \\; , \\end{equation*}", "\\begin{equation*} \\mitD _ { \\mitalpha } ^ { 1 } \\mitD _ { \\mitbeta } ^ { 1 } ( \\mitW ( \\mitW ^ { 1 } ) ^ { \\mitp } ) = 0 \\end{equation*}", "\\begin{equation*} \\mitD ^ { 1 1 } ( \\mitW ( \\mitW ^ { 1 } ) ^ { \\mitp } ) = 0 \\; . \\end{equation*}", "\\begin{equation*} \\mitpartial ^ { \\mitalpha \\mitbeta } \\mitpsi _ { [ \\mitalpha \\mitbeta ] \\mitgamma } = 0 \\; . \\end{equation*}", "\\begin{equation*} ( \\mitW ^ { 1 2 } ) ^ { 2 } = \\mitphi ^ { 1 1 2 2 } + \\ldots + \\mittheta ^ { 1 \\mitalpha } \\mittheta ^ { 1 \\mitbeta } \\mittheta ^ { 2 \\mitgamma } \\mittheta ^ { 2 \\mitdelta } \\mitA _ { [ \\mitalpha \\mitbeta ] [ \\mitgamma \\mitdelta ] } + \\mathrm { d } . \\mathrm { t } . \\end{equation*}", "\\begin{equation*} ( \\mitW ^ { 1 2 } ) ^ { \\mitp } = \\mitphi ^ { \\overset { \\underbrace { 1 \\ldots 1 } } { \\mitp } \\overset { \\underbrace { 2 \\ldots 2 } } { \\mitp } } + \\ldots + \\mittheta ^ { 1 \\mitalpha } \\mittheta ^ { 1 \\mitbeta } \\mittheta ^ { 2 \\mitgamma } \\mittheta ^ { 2 \\mitdelta } \\mitA _ { [ \\mitalpha \\mitbeta ] [ \\mitgamma \\mitdelta ] } ^ { \\overset { \\underbrace { 1 \\ldots 1 } } { \\mitp - 2 } \\overset { \\underbrace { 2 \\ldots 2 } } { \\mitp - 2 } } + \\mathrm { d } . \\mathrm { t } . \\end{equation*}" ], "x_min": [ 0.669700026512146, 0.4036000072956085, 0.23770000040531158, 0.6122999787330627, 0.5728999972343445, 0.5680999755859375, 0.6427000164985657, 0.5203999876976013, 0.4375, 0.6600000262260437, 0.6151000261306763, 0.1728000044822693, 0.396699994802475, 0.4796000123023987, 0.6557999849319458, 0.3019999861717224, 0.3476000130176544, 0.28060001134872437, 0.367000013589859, 0.5529000163078308, 0.3345000147819519, 0.5189999938011169, 0.1996999979019165, 0.5985000133514404, 0.5231999754905701, 0.210099995136261, 0.1728000044822693, 0.24459999799728394, 0.5217999815940857, 0.4187999963760376, 0.1728000044822693, 0.42640000581741333, 0.4104999899864197, 0.41530001163482666, 0.4368000030517578, 0.29030001163482666, 0.2563999891281128 ], "y_min": [ 0.15770000219345093, 0.17430000007152557, 0.19140000641345978, 0.24369999766349792, 0.2612000107765198, 0.2953999936580658, 0.2939000129699707, 0.3109999895095825, 0.41850000619888306, 0.41850000619888306, 0.4325999915599823, 0.45509999990463257, 0.4595000147819519, 0.45509999990463257, 0.45649999380111694, 0.4717000126838684, 0.5669000148773193, 0.6118000149726868, 0.6118000149726868, 0.6118000149726868, 0.6298999786376953, 0.6294000148773193, 0.6636000275611877, 0.6640999913215637, 0.7148000001907349, 0.7329000234603882, 0.7660999894142151, 0.7681000232696533, 0.7666000127792358, 0.7832000255584717, 0.8008000254631042, 0.21240000426769257, 0.34130001068115234, 0.38920000195503235, 0.5015000104904175, 0.6845999956130981, 0.8213000297546387 ], "x_max": [ 0.7623000144958496, 0.44850000739097595, 0.2825999855995178, 0.6344000101089478, 0.5950000286102295, 0.5895000100135803, 0.6723999977111816, 0.5950000286102295, 0.4562000036239624, 0.6786999702453613, 0.7457000017166138, 0.23569999635219574, 0.40709999203681946, 0.5404000282287598, 0.7103999853134155, 0.3531000018119812, 0.45329999923706055, 0.31790000200271606, 0.396699994802475, 0.5895000100135803, 0.39739999175071716, 0.5791000127792358, 0.22939999401569366, 0.6614000201225281, 0.6136999726295471, 0.22050000727176666, 0.2328999936580658, 0.29159998893737793, 0.5846999883651733, 0.4560999870300293, 0.2646999955177307, 0.5715000033378601, 0.5909000039100647, 0.5867000222206116, 0.5647000074386597, 0.7111999988555908, 0.7450000047683716 ], "y_max": [ 0.17229999601840973, 0.18940000236034393, 0.2070000022649765, 0.2540000081062317, 0.27149999141693115, 0.30570000410079956, 0.30559998750686646, 0.3260999917984009, 0.4302000105381012, 0.43070000410079956, 0.4546000063419342, 0.46970000863075256, 0.4693000018596649, 0.46970000863075256, 0.4691999852657318, 0.48339998722076416, 0.5845000147819519, 0.6240000128746033, 0.6240000128746033, 0.6240000128746033, 0.6445000171661377, 0.6445000171661377, 0.6786999702453613, 0.6786999702453613, 0.7299000024795532, 0.7436000108718872, 0.7811999917030334, 0.7807999849319458, 0.7811999917030334, 0.7949000000953674, 0.8159000277519226, 0.23340000212192535, 0.36230000853538513, 0.40869998931884766, 0.5224999785423279, 0.7056000232696533, 0.8618000149726868 ], "expr_type": [ "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "isolated", "isolated", "isolated", "isolated", "isolated", "isolated" ] }
0001191_page01
{ "latex": [ "$2n$", "$n$", "$n$", "$n$", "$n$", "$2n$", "$n$", "$\\phi ^{m}$", "$m$", "$\\phi ^{m}$", "$\\phi $" ], "latex_norm": [ "$ 2 n $", "$ n $", "$ n $", "$ n $", "$ n $", "$ 2 n $", "$ n $", "$ \\phi ^ { m } $", "$ m $", "$ \\phi ^ { m } $", "$ \\phi $" ], "latex_expand": [ "$ 2 \\mitn $", "$ \\mitn $", "$ \\mitn $", "$ \\mitn $", "$ \\mitn $", "$ 2 \\mitn $", "$ \\mitn $", "$ \\mitphi ^ { \\mitm } $", "$ \\mitm $", "$ \\mitphi ^ { \\mitm } $", "$ \\mitphi $" ], "x_min": [ 0.35589998960494995, 0.6144000291824341, 0.3352000117301941, 0.5196999907493591, 0.5169000029563904, 0.2093999981880188, 0.5612000226974487, 0.3483000099658966, 0.5203999876976013, 0.4885999858379364, 0.6779999732971191 ], "y_min": [ 0.3393999934196472, 0.38089999556541443, 0.40720000863075256, 0.5708000063896179, 0.6273999810218811, 0.6538000106811523, 0.6561999917030334, 0.7099999785423279, 0.7128999829292297, 0.7383000254631042, 0.7523999810218811 ], "x_max": [ 0.37389999628067017, 0.6241000294685364, 0.3449000120162964, 0.5300999879837036, 0.5273000001907349, 0.2287999987602234, 0.5716000199317932, 0.3711000084877014, 0.5356000065803528, 0.5120999813079834, 0.6883999705314636 ], "y_max": [ 0.3472000062465668, 0.3862999975681305, 0.4120999872684479, 0.57669997215271, 0.6333000063896179, 0.6615999937057495, 0.6615999937057495, 0.7207000255584717, 0.7188000082969666, 0.7490000128746033, 0.7635999917984009 ], "expr_type": [ "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded" ] }
0001191_page02
{ "latex": [ "$n$", "$\\phi ,$", "$2n$", "$n$", "$O(n,2)$", "$n>2$", "$O(n,2)$", "$O(n,2)$", "$K^{AB}$", "$A,B=1\\ldots n$", "$O(n,2)$", "$2n$", "$r$", "$\\mathbf {U}$", "$\\mathbf {V}$", "$r$", "$^{\\ast }\\mathbf {V}$", "$2n-r$", "$\\mathbf {V} $", "$\\mathbf {U\\mathbf {\\wedge }^{\\ast }V=V\\wedge }^{\\ast }\\mathbf {U}$", "$\\mathbf {U}$", "$\\mathbf {V}$", "$\\mathbf {\\Phi }$", "$\\phi ^{m}$", "$m\\in \\mathbf {Z}$", "$2n$", "$\\mathbf {D}\\phi ^{m}$", "$m$", "$^{\\ast }\\mathbf {D}\\phi ^{-m}$", "$-m$", "$\\lambda $", "$D_{A}\\phi ^{m}$", "$\\mathbf {D}\\phi ^{m}$", "$S_{Matter}$", "$S_{Matter}$", "\\[ S_{Matter}=\\frac {1}{2}\\lambda \\sum _{m}\\mathbf {D}\\phi ^{m}\\wedge ^{\\ast }\\mathbf {D}\\phi ^{-m}=\\frac {1}{2}\\lambda \\frac {(-1)^{n}}{n!^{2}}\\sum _{m}K^{AB}D_{A}\\phi ^{m}D_{B}\\phi ^{-m}{\\Phi } \\]" ], "latex_norm": [ "$ n $", "$ \\phi , $", "$ 2 n $", "$ n $", "$ O ( n , 2 ) $", "$ n > 2 $", "$ O ( n , 2 ) $", "$ O ( n , 2 ) $", "$ K ^ { A B } $", "$ A , B = 1 \\ldots n $", "$ O ( n , 2 ) $", "$ 2 n $", "$ r $", "$ U $", "$ V $", "$ r $", "$ { } ^ { \\ast } V $", "$ 2 n - r $", "$ V $", "$ U \\wedge ^ { \\ast } V = V \\wedge ^ { \\ast } U $", "$ U $", "$ V $", "$ \\Phi $", "$ \\phi ^ { m } $", "$ m \\in Z $", "$ 2 n $", "$ D \\phi ^ { m } $", "$ m $", "$ { } ^ { \\ast } D \\phi ^ { - m } $", "$ - m $", "$ \\lambda $", "$ D _ { A } \\phi ^ { m } $", "$ D \\phi ^ { m } $", "$ S _ { M a t t e r } $", "$ S _ { M a t t e r } $", "\\begin{equation*} S _ { M a t t e r } = \\frac { 1 } { 2 } \\lambda \\sum _ { m } D \\phi ^ { m } \\wedge ^ { \\ast } D \\phi ^ { - m } = \\frac { 1 } { 2 } \\lambda \\frac { ( - 1 ) ^ { n } } { n ! ^ { 2 } } \\sum _ { m } K ^ { A B } D _ { A } \\phi ^ { m } D _ { B } \\phi ^ { - m } \\Phi \\end{equation*}" ], "latex_expand": [ "$ \\mitn $", "$ \\mitphi , $", "$ 2 \\mitn $", "$ \\mitn $", "$ \\mitO ( \\mitn , 2 ) $", "$ \\mitn > 2 $", "$ \\mitO ( \\mitn , 2 ) $", "$ \\mitO ( \\mitn , 2 ) $", "$ \\mitK ^ { \\mitA \\mitB } $", "$ \\mitA , \\mitB = 1 \\ldots \\mitn $", "$ \\mitO ( \\mitn , 2 ) $", "$ 2 \\mitn $", "$ \\mitr $", "$ \\mbfU $", "$ \\mbfV $", "$ \\mitr $", "$ { } ^ { \\ast } \\mbfV $", "$ 2 \\mitn - \\mitr $", "$ \\mbfV $", "$ \\mbfU \\wedge ^ { \\ast } \\mbfV = \\mbfV \\wedge ^ { \\ast } \\mbfU $", "$ \\mbfU $", "$ \\mbfV $", "$ \\mbfPhi $", "$ \\mitphi ^ { \\mitm } $", "$ \\mitm \\in \\mbfZ $", "$ 2 \\mitn $", "$ \\mbfD \\mitphi ^ { \\mitm } $", "$ \\mitm $", "$ { } ^ { \\ast } \\mbfD \\mitphi ^ { - \\mitm } $", "$ - \\mitm $", "$ \\mitlambda $", "$ \\mitD _ { \\mitA } \\mitphi ^ { \\mitm } $", "$ \\mbfD \\mitphi ^ { \\mitm } $", "$ \\mitS _ { \\mitM \\mita \\mitt \\mitt \\mite \\mitr } $", "$ \\mitS _ { \\mitM \\mita \\mitt \\mitt \\mite \\mitr } $", "\\begin{equation*} \\mitS _ { \\mitM \\mita \\mitt \\mitt \\mite \\mitr } = \\frac { 1 } { 2 } \\mitlambda \\sum _ { \\mitm } \\mbfD \\mitphi ^ { \\mitm } \\wedge ^ { \\ast } \\mbfD \\mitphi ^ { - \\mitm } = \\frac { 1 } { 2 } \\mitlambda \\frac { ( - 1 ) ^ { \\mitn } } { \\mitn ! ^ { 2 } } \\sum _ { \\mitm } \\mitK ^ { \\mitA \\mitB } \\mitD _ { \\mitA } \\mitphi ^ { \\mitm } \\mitD _ { \\mitB } \\mitphi ^ { - \\mitm } \\mupPhi \\end{equation*}" ], "x_min": [ 0.6177999973297119, 0.5092999935150146, 0.7684999704360962, 0.6392999887466431, 0.5978000164031982, 0.6585999727249146, 0.7353000044822693, 0.5238000154495239, 0.574999988079071, 0.6247000098228455, 0.5957000255584717, 0.2093999981880188, 0.30550000071525574, 0.36559998989105225, 0.4187999963760376, 0.7008000016212463, 0.760200023651123, 0.28540000319480896, 0.5314000248908997, 0.6682999730110168, 0.5432000160217285, 0.5978000164031982, 0.46720001101493835, 0.6862000226974487, 0.579800009727478, 0.23149999976158142, 0.3912000060081482, 0.7193999886512756, 0.6481999754905701, 0.26330000162124634, 0.34279999136924744, 0.40290001034736633, 0.6531000137329102, 0.5529000163078308, 0.695900022983551, 0.23909999430179596 ], "y_min": [ 0.18549999594688416, 0.21089999377727509, 0.21140000224113464, 0.2280000001192093, 0.36039999127388, 0.3617999851703644, 0.388700008392334, 0.41749998927116394, 0.4447999894618988, 0.4462999999523163, 0.46000000834465027, 0.475600004196167, 0.49219998717308044, 0.489300012588501, 0.489300012588501, 0.5062999725341797, 0.5029000043869019, 0.5181000232696533, 0.5175999999046326, 0.5166000127792358, 0.5317000150680542, 0.5317000150680542, 0.5458999872207642, 0.5601000189781189, 0.5741999745368958, 0.5889000296592712, 0.5884000062942505, 0.6060000061988831, 0.6151999831199646, 0.6323000192642212, 0.7134000062942505, 0.7134000062942505, 0.7134000062942505, 0.7275000214576721, 0.7416999936103821, 0.6675000190734863 ], "x_max": [ 0.6281999945640564, 0.5245000123977661, 0.7878999710083008, 0.6496999859809875, 0.6503000259399414, 0.7001000046730042, 0.7878000140190125, 0.5763000249862671, 0.6122999787330627, 0.7276999950408936, 0.6481999754905701, 0.2287999987602234, 0.31450000405311584, 0.3808000087738037, 0.4339999854564667, 0.7091000080108643, 0.7829999923706055, 0.328900009393692, 0.5465999841690063, 0.7878999710083008, 0.5583999752998352, 0.6136999726295471, 0.48100000619888306, 0.7089999914169312, 0.6288999915122986, 0.2502000033855438, 0.4291999936103821, 0.7346000075340271, 0.704200029373169, 0.29159998893737793, 0.3531999886035919, 0.4512999951839447, 0.691100001335144, 0.6089000105857849, 0.7519000172615051, 0.7580999732017517 ], "y_max": [ 0.19140000641345978, 0.22210000455379486, 0.21969999372959137, 0.23389999568462372, 0.37310001254081726, 0.37059998512268066, 0.40139999985694885, 0.42969998717308044, 0.45509999990463257, 0.45750001072883606, 0.4722000062465668, 0.48339998722076416, 0.49810001254081726, 0.49810001254081726, 0.49810001254081726, 0.5116999745368958, 0.5116999745368958, 0.527400016784668, 0.5264000296592712, 0.5264000296592712, 0.5404999852180481, 0.5404999852180481, 0.5547000169754028, 0.5713000297546387, 0.5835000276565552, 0.5971999764442444, 0.5996000170707703, 0.6114000082015991, 0.6279000043869019, 0.6406000256538391, 0.7221999764442444, 0.7246000170707703, 0.7246000170707703, 0.7382000088691711, 0.7523999810218811, 0.7006999850273132 ], "expr_type": [ "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "isolated" ] }
0001191_page03
{ "latex": [ "$2n$", "$S_{Gravity}$", "$\\phi ^{m}$", "$m$", "$\\phi ^{m}$", "$\\phi ^{m} $", "$\\phi ^{m}$", "$+m$", "$-m,$", "$\\phi ^{m}$", "$m=0.$", "$\\phi $", "\\[ S=S_{Matter}+S_{Gravity}. \\]" ], "latex_norm": [ "$ 2 n $", "$ S _ { G r a v i t y } $", "$ \\phi ^ { m } $", "$ m $", "$ \\phi ^ { m } $", "$ \\phi ^ { m } $", "$ \\phi ^ { m } $", "$ + m $", "$ - m , $", "$ \\phi ^ { m } $", "$ m = 0 . $", "$ \\phi $", "\\begin{equation*} S = S _ { M a t t e r } + S _ { G r a v i t y } . \\end{equation*}" ], "latex_expand": [ "$ 2 \\mitn $", "$ \\mitS _ { \\mitG \\mitr \\mita \\mitv \\miti \\mitt \\mity } $", "$ \\mitphi ^ { \\mitm } $", "$ \\mitm $", "$ \\mitphi ^ { \\mitm } $", "$ \\mitphi ^ { \\mitm } $", "$ \\mitphi ^ { \\mitm } $", "$ + \\mitm $", "$ - \\mitm , $", "$ \\mitphi ^ { \\mitm } $", "$ \\mitm = 0 . $", "$ \\mitphi $", "\\begin{equation*} \\mitS = \\mitS _ { \\mitM \\mita \\mitt \\mitt \\mite \\mitr } + \\mitS _ { \\mitG \\mitr \\mita \\mitv \\miti \\mitt \\mity } . \\end{equation*}" ], "x_min": [ 0.2502000033855438, 0.32760000228881836, 0.7457000017166138, 0.26260000467300415, 0.3075000047683716, 0.5839999914169312, 0.6917999982833862, 0.399399995803833, 0.4650999903678894, 0.5245000123977661, 0.24529999494552612, 0.37869998812675476, 0.41190001368522644 ], "y_min": [ 0.2020999938249588, 0.21580000221729279, 0.22949999570846558, 0.24709999561309814, 0.3100999891757965, 0.5127000212669373, 0.5410000085830688, 0.5708000063896179, 0.5708000063896179, 0.7113999724388123, 0.7401999831199646, 0.7538999915122986, 0.26899999380111694 ], "x_max": [ 0.2689000070095062, 0.3869999945163727, 0.7684999704360962, 0.2777999937534332, 0.3303000032901764, 0.6068000197410583, 0.7153000235557556, 0.4269999861717224, 0.4982999861240387, 0.5472999811172485, 0.2985000014305115, 0.38909998536109924, 0.5860999822616577 ], "y_max": [ 0.21040000021457672, 0.22750000655651093, 0.24070000648498535, 0.2529999911785126, 0.3212999999523163, 0.5234000086784363, 0.5522000193595886, 0.5791000127792358, 0.5806000232696533, 0.722599983215332, 0.7484999895095825, 0.7651000022888184, 0.28220000863075256 ], "expr_type": [ "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "isolated" ] }
0001191_page04
{ "latex": [ "$\\phi ,$", "$2n$", "$2n$", "$n$", "$\\mathbf {e}^{a}$", "$\\mathbf {e}^{a}$", "$n$", "$n$", "$\\mathbf {f}_{a}$", "$\\mathbf {f}_{a}$", "$\\mathbf {df}_{a}$", "$\\mathbf {df}_{a}$", "$\\mathbf {f}_{a},$", "$\\mathbf {f}_{a}$", "$\\mathbf {f}_{a}$", "$n$", "$x^{\\mu }$", "$\\mathbf {e}^{a}$", "$\\mathbf {f}_{a}=0$", "$x$", "$n$", "$n$", "$2n$", "$\\phi (x^{\\mu })$", "$2n$", "$n$", "$\\phi $", "$n $", "$r$", "$\\phi ^{m}$", "$n$", "$n$", "$2n$" ], "latex_norm": [ "$ \\phi , $", "$ 2 n $", "$ 2 n $", "$ n $", "$ e ^ { a } $", "$ e ^ { a } $", "$ n $", "$ n $", "$ f _ { a } $", "$ f _ { a } $", "$ d f _ { a } $", "$ d f _ { a } $", "$ f _ { a } , $", "$ f _ { a } $", "$ f _ { a } $", "$ n $", "$ x ^ { \\mu } $", "$ e ^ { a } $", "$ f _ { a } = 0 $", "$ x $", "$ n $", "$ n $", "$ 2 n $", "$ \\phi ( x ^ { \\mu } ) $", "$ 2 n $", "$ n $", "$ \\phi $", "$ n $", "$ r $", "$ \\phi ^ { m } $", "$ n $", "$ n $", "$ 2 n $" ], "latex_expand": [ "$ \\mitphi , $", "$ 2 \\mitn $", "$ 2 \\mitn $", "$ \\mitn $", "$ \\mbfe ^ { \\mita } $", "$ \\mbfe ^ { \\mita } $", "$ \\mitn $", "$ \\mitn $", "$ \\mbff _ { \\mita } $", "$ \\mbff _ { \\mita } $", "$ \\mbfd \\mbff _ { \\mita } $", "$ \\mbfd \\mbff _ { \\mita } $", "$ \\mbff _ { \\mita } , $", "$ \\mbff _ { \\mita } $", "$ \\mbff _ { \\mita } $", "$ \\mitn $", "$ \\mitx ^ { \\mitmu } $", "$ \\mbfe ^ { \\mita } $", "$ \\mbff _ { \\mita } = 0 $", "$ \\mitx $", "$ \\mitn $", "$ \\mitn $", "$ 2 \\mitn $", "$ \\mitphi ( \\mitx ^ { \\mitmu } ) $", "$ 2 \\mitn $", "$ \\mitn $", "$ \\mitphi $", "$ \\mitn $", "$ \\mitr $", "$ \\mitphi ^ { \\mitm } $", "$ \\mitn $", "$ \\mitn $", "$ 2 \\mitn $" ], "x_min": [ 0.5092999935150146, 0.7684999704360962, 0.6827999949455261, 0.7290999889373779, 0.2549999952316284, 0.6834999918937683, 0.36489999294281006, 0.43050000071525574, 0.5286999940872192, 0.2093999981880188, 0.3849000036716461, 0.6481999754905701, 0.27639999985694885, 0.3869999945163727, 0.695900022983551, 0.4235999882221222, 0.7635999917984009, 0.5044999718666077, 0.3939000070095062, 0.6945000290870667, 0.4982999861240387, 0.3628000020980835, 0.5425000190734863, 0.5356000065803528, 0.6765999794006348, 0.5162000060081482, 0.7774999737739563, 0.4000999927520752, 0.5196999907493591, 0.5210999846458435, 0.47130000591278076, 0.2985000014305115, 0.40639999508857727 ], "y_min": [ 0.15379999577999115, 0.15479999780654907, 0.1688999980688095, 0.20309999585151672, 0.21480000019073486, 0.21480000019073486, 0.23190000653266907, 0.26030001044273376, 0.25679999589920044, 0.2856000065803528, 0.2856000065803528, 0.29980000853538513, 0.3140000104904175, 0.3140000104904175, 0.3140000104904175, 0.3310999870300293, 0.3285999894142151, 0.34279999136924744, 0.37059998512268066, 0.3882000148296356, 0.40230000019073486, 0.4165000021457672, 0.42820000648498535, 0.48730000853538513, 0.48829999566078186, 0.5054000020027161, 0.5160999894142151, 0.5336999893188477, 0.6410999894142151, 0.6523000001907349, 0.6977999806404114, 0.7407000064849854, 0.7523999810218811 ], "x_max": [ 0.5238000154495239, 0.7878999710083008, 0.7014999985694885, 0.7394999861717224, 0.27300000190734863, 0.7008000016212463, 0.37529999017715454, 0.4415999948978424, 0.5432000160217285, 0.22390000522136688, 0.41190001368522644, 0.6751999855041504, 0.29510000348091125, 0.40149998664855957, 0.7103999853134155, 0.4339999854564667, 0.7829999923706055, 0.5217999815940857, 0.43880000710487366, 0.704200029373169, 0.5087000131607056, 0.373199999332428, 0.5612000226974487, 0.5777999758720398, 0.6959999799728394, 0.5266000032424927, 0.7878999710083008, 0.4104999899864197, 0.527999997138977, 0.5446000099182129, 0.48170000314712524, 0.30889999866485596, 0.4250999987125397 ], "y_max": [ 0.16500000655651093, 0.163100004196167, 0.17720000445842743, 0.20900000631809235, 0.22310000658035278, 0.22310000658035278, 0.23729999363422394, 0.2662000060081482, 0.26750001311302185, 0.29589998722076416, 0.29589998722076416, 0.3100999891757965, 0.32519999146461487, 0.3246999979019165, 0.32429999113082886, 0.3370000123977661, 0.336899995803833, 0.35109999775886536, 0.3813000023365021, 0.3935999870300293, 0.4077000021934509, 0.42239999771118164, 0.4359999895095825, 0.49950000643730164, 0.4966000020503998, 0.5108000040054321, 0.5273000001907349, 0.5390999913215637, 0.6470000147819519, 0.6635000109672546, 0.7037000060081482, 0.7461000084877014, 0.760699987411499 ], "expr_type": [ "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded" ] }
0001213_page01
{ "latex": [ "$(p-2)$", "$p$", "$2 \\le p \\le 6 $", "$p$", "$B$", "$N_p$", "$p$", "$B$", "$N_p$", "$p$", "$B$", "$N_{p-2}$", "$(p-2)$", "$B$", "$N_{p-2}/N_p= \\tilde {V}_2/[(2\\pi )^2 \\tilde {b}]$", "$\\tilde {V}_2$", "$\\tilde {b}$", "$U(N_p)$", "$p+1$", "$U(\\infty )$", "$p-1$", "$\\tilde {V}_2 \\to \\infty $", "$p$", "$B$", "$p$", "$B$", "$p$", "$p$", "$B$" ], "latex_norm": [ "$ ( p - 2 ) $", "$ p $", "$ 2 \\leq p \\leq 6 $", "$ p $", "$ B $", "$ N _ { p } $", "$ p $", "$ B $", "$ N _ { p } $", "$ p $", "$ B $", "$ N _ { p - 2 } $", "$ ( p - 2 ) $", "$ B $", "$ N _ { p - 2 } \\slash N _ { p } = \\widetilde { V } _ { 2 } \\slash [ ( 2 \\pi ) ^ { 2 } \\widetilde { b } ] $", "$ \\widetilde { V } _ { 2 } $", "$ \\widetilde { b } $", "$ U ( N _ { p } ) $", "$ p + 1 $", "$ U ( \\infty ) $", "$ p - 1 $", "$ \\widetilde { V } _ { 2 } \\rightarrow \\infty $", "$ p $", "$ B $", "$ p $", "$ B $", "$ p $", "$ p $", "$ B $" ], "latex_expand": [ "$ ( \\mitp - 2 ) $", "$ \\mitp $", "$ 2 \\leq \\mitp \\leq 6 $", "$ \\mitp $", "$ \\mitB $", "$ \\mitN _ { \\mitp } $", "$ \\mitp $", "$ \\mitB $", "$ \\mitN _ { \\mitp } $", "$ \\mitp $", "$ \\mitB $", "$ \\mitN _ { \\mitp - 2 } $", "$ ( \\mitp - 2 ) $", "$ \\mitB $", "$ \\mitN _ { \\mitp - 2 } \\slash \\mitN _ { \\mitp } = \\tilde { \\mitV } _ { 2 } \\slash [ ( 2 \\mitpi ) ^ { 2 } \\tilde { \\mitb } ] $", "$ \\tilde { \\mitV } _ { 2 } $", "$ \\tilde { \\mitb } $", "$ \\mitU ( \\mitN _ { \\mitp } ) $", "$ \\mitp + 1 $", "$ \\mitU ( \\infty ) $", "$ \\mitp - 1 $", "$ \\tilde { \\mitV } _ { 2 } \\rightarrow \\infty $", "$ \\mitp $", "$ \\mitB $", "$ \\mitp $", "$ \\mitB $", "$ \\mitp $", "$ \\mitp $", "$ \\mitB $" ], "x_min": [ 0.3772999942302704, 0.4650999903678894, 0.7325999736785889, 0.677299976348877, 0.15479999780654907, 0.15549999475479126, 0.29580000042915344, 0.42160001397132874, 0.7649999856948853, 0.13609999418258667, 0.2881999909877777, 0.5583999752998352, 0.7160000205039978, 0.39809998869895935, 0.49480000138282776, 0.738099992275238, 0.42089998722076416, 0.6468999981880188, 0.7360000014305115, 0.5735999941825867, 0.6654999852180481, 0.16930000483989716, 0.6226999759674072, 0.7982000112533569, 0.2971999943256378, 0.420199990272522, 0.7077000141143799, 0.2646999955177307, 0.41600000858306885 ], "y_min": [ 0.4595000147819519, 0.46389999985694885, 0.4609000086784363, 0.4878000020980835, 0.5083000063896179, 0.5321999788284302, 0.5360999703407288, 0.5321999788284302, 0.5321999788284302, 0.5601000189781189, 0.5562000274658203, 0.5562000274658203, 0.5551999807357788, 0.5806000232696533, 0.5770999789237976, 0.5770999789237976, 0.6011000275611877, 0.6514000296592712, 0.6528000235557556, 0.6758000254631042, 0.6772000193595886, 0.6973000168800354, 0.7041000127792358, 0.7002000212669373, 0.7279999852180481, 0.7246000170707703, 0.7279999852180481, 0.7519999742507935, 0.7484999895095825 ], "x_max": [ 0.43810001015663147, 0.4754999876022339, 0.8183000087738037, 0.6876999735832214, 0.17139999568462372, 0.17970000207424164, 0.3068999946117401, 0.4375, 0.7892000079154968, 0.14650000631809235, 0.30480000376701355, 0.6011999845504761, 0.7760999798774719, 0.4147000014781952, 0.6897000074386597, 0.7580999732017517, 0.42989999055862427, 0.7014999985694885, 0.7760999798774719, 0.6254000067710876, 0.7131999731063843, 0.2460000067949295, 0.6330999732017517, 0.8148000240325928, 0.3075999915599823, 0.4368000030517578, 0.7181000113487244, 0.2750999927520752, 0.4325999915599823 ], "y_max": [ 0.4740999937057495, 0.4731999933719635, 0.4731000065803528, 0.4975999891757965, 0.5185999870300293, 0.5464000105857849, 0.5454000234603882, 0.5425000190734863, 0.5464000105857849, 0.5694000124931335, 0.5669000148773193, 0.5708000063896179, 0.5702999830245972, 0.5909000039100647, 0.5946999788284302, 0.5927000045776367, 0.614799976348877, 0.6664999723434448, 0.6654999852180481, 0.6904000043869019, 0.6894000172615051, 0.7128999829292297, 0.7134000062942505, 0.7109000086784363, 0.7378000020980835, 0.7348999977111816, 0.7378000020980835, 0.7617999911308289, 0.7588000297546387 ], "expr_type": [ "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded" ] }
0001213_page02
{ "latex": [ "$(p-2)$", "$p$", "$p$", "$B$", "$p$", "$B$", "$B$", "$N$", "$N$", "$p$", "$B$", "$p$", "$B$", "$N$", "$(p-2)$", "$p$", "$2 \\le p \\le 6$", "$(p-2)$", "$p$", "$B$", "$p$", "$B$", "$(p-2)$", "$B$", "$(p+1)$", "$U(\\infty )$", "$(p-1)$" ], "latex_norm": [ "$ ( p - 2 ) $", "$ p $", "$ p $", "$ B $", "$ p $", "$ B $", "$ B $", "$ N $", "$ N $", "$ p $", "$ B $", "$ p $", "$ B $", "$ N $", "$ ( p - 2 ) $", "$ p $", "$ 2 \\leq p \\leq 6 $", "$ ( p - 2 ) $", "$ p $", "$ B $", "$ p $", "$ B $", "$ ( p - 2 ) $", "$ B $", "$ ( p + 1 ) $", "$ U ( \\infty ) $", "$ ( p - 1 ) $" ], "latex_expand": [ "$ ( \\mitp - 2 ) $", "$ \\mitp $", "$ \\mitp $", "$ \\mitB $", "$ \\mitp $", "$ \\mitB $", "$ \\mitB $", "$ \\mitN $", "$ \\mitN $", "$ \\mitp $", "$ \\mitB $", "$ \\mitp $", "$ \\mitB $", "$ \\mitN $", "$ ( \\mitp - 2 ) $", "$ \\mitp $", "$ 2 \\leq \\mitp \\leq 6 $", "$ ( \\mitp - 2 ) $", "$ \\mitp $", "$ \\mitB $", "$ \\mitp $", "$ \\mitB $", "$ ( \\mitp - 2 ) $", "$ \\mitB $", "$ ( \\mitp + 1 ) $", "$ \\mitU ( \\infty ) $", "$ ( \\mitp - 1 ) $" ], "x_min": [ 0.7767999768257141, 0.8658999800682068, 0.4471000134944916, 0.17069999873638153, 0.3172000050544739, 0.6144000291824341, 0.29159998893737793, 0.5460000038146973, 0.25360000133514404, 0.866599977016449, 0.39809998869895935, 0.13609999418258667, 0.29089999198913574, 0.7635999917984009, 0.7243000268936157, 0.8058000206947327, 0.18310000002384186, 0.33660000562667847, 0.8112999796867371, 0.227400004863739, 0.40639999508857727, 0.6274999976158142, 0.39879998564720154, 0.3862999975681305, 0.30480000376701355, 0.8093000054359436, 0.120899997651577 ], "y_min": [ 0.17190000414848328, 0.17679999768733978, 0.22460000216960907, 0.2451000064611435, 0.27250000834465027, 0.26899999380111694, 0.34130001068115234, 0.38920000195503235, 0.4609000086784363, 0.5371000170707703, 0.5570999979972839, 0.5849999785423279, 0.5810999870300293, 0.5810999870300293, 0.6523000001907349, 0.6571999788284302, 0.6776999831199646, 0.6991999745368958, 0.7050999999046326, 0.725600004196167, 0.7289999723434448, 0.725600004196167, 0.7484999895095825, 0.7734000086784363, 0.8202999830245972, 0.8202999830245972, 0.8446999788284302 ], "x_max": [ 0.8382999897003174, 0.8755999803543091, 0.45750001072883606, 0.18729999661445618, 0.32760000228881836, 0.630299985408783, 0.30820000171661377, 0.5647000074386597, 0.27160000801086426, 0.8769999742507935, 0.4147000014781952, 0.14650000631809235, 0.3075000047683716, 0.7815999984741211, 0.7803000211715698, 0.8162000179290771, 0.26669999957084656, 0.3953000009059906, 0.8216999769210815, 0.24400000274181366, 0.41679999232292175, 0.64410001039505, 0.4602999985218048, 0.40290001034736633, 0.36489999294281006, 0.8604000210762024, 0.1809999942779541 ], "y_max": [ 0.18700000643730164, 0.18610000610351562, 0.23389999568462372, 0.25540000200271606, 0.2822999954223633, 0.2793000042438507, 0.3515999913215637, 0.3995000123977661, 0.4715999960899353, 0.5464000105857849, 0.567799985408783, 0.5942999720573425, 0.5917999744415283, 0.5917999744415283, 0.6674000024795532, 0.6664999723434448, 0.6904000043869019, 0.7142999768257141, 0.7143999934196472, 0.7358999848365784, 0.7383000254631042, 0.7358999848365784, 0.7631000280380249, 0.7836999893188477, 0.8353999853134155, 0.8353999853134155, 0.8593000173568726 ], "expr_type": [ "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded" ] }
0001213_page03
{ "latex": [ "$(p-2)$", "$p$", "$(p-2)$", "$p$", "$p$", "$B$", "$p$", "$B$", "$p$", "$B$", "$(p-2)$", "$B$", "$p$", "$B$", "$(p-2)$", "$B$", "$p$", "$B$", "$U(N_p)$", "$p+1$", "$(p-2)$", "$B$", "$U(N_{p-2})$", "$p+1$", "$N$", "$U(\\infty )$", "$p-1$", "$N_p$", "$(p-2)$", "$p$", "$p$", "$B$", "$(p-2)$", "$B$", "$(p-2)$", "$p$", "$(p-2)$" ], "latex_norm": [ "$ ( p - 2 ) $", "$ p $", "$ ( p - 2 ) $", "$ p $", "$ p $", "$ B $", "$ p $", "$ B $", "$ p $", "$ B $", "$ ( p - 2 ) $", "$ B $", "$ p $", "$ B $", "$ ( p - 2 ) $", "$ B $", "$ p $", "$ B $", "$ U ( N _ { p } ) $", "$ p + 1 $", "$ ( p - 2 ) $", "$ B $", "$ U ( N _ { p - 2 } ) $", "$ p + 1 $", "$ N $", "$ U ( \\infty ) $", "$ p - 1 $", "$ N _ { p } $", "$ ( p - 2 ) $", "$ p $", "$ p $", "$ B $", "$ ( p - 2 ) $", "$ B $", "$ ( p - 2 ) $", "$ p $", "$ ( p - 2 ) $" ], "latex_expand": [ "$ ( \\mitp - 2 ) $", "$ \\mitp $", "$ ( \\mitp - 2 ) $", "$ \\mitp $", "$ \\mitp $", "$ \\mitB $", "$ \\mitp $", "$ \\mitB $", "$ \\mitp $", "$ \\mitB $", "$ ( \\mitp - 2 ) $", "$ \\mitB $", "$ \\mitp $", "$ \\mitB $", "$ ( \\mitp - 2 ) $", "$ \\mitB $", "$ \\mitp $", "$ \\mitB $", "$ \\mitU ( \\mitN _ { \\mitp } ) $", "$ \\mitp + 1 $", "$ ( \\mitp - 2 ) $", "$ \\mitB $", "$ \\mitU ( \\mitN _ { \\mitp - 2 } ) $", "$ \\mitp + 1 $", "$ \\mitN $", "$ \\mitU ( \\infty ) $", "$ \\mitp - 1 $", "$ \\mitN _ { \\mitp } $", "$ ( \\mitp - 2 ) $", "$ \\mitp $", "$ \\mitp $", "$ \\mitB $", "$ ( \\mitp - 2 ) $", "$ \\mitB $", "$ ( \\mitp - 2 ) $", "$ \\mitp $", "$ ( \\mitp - 2 ) $" ], "x_min": [ 0.3862999975681305, 0.4747999906539917, 0.5349000096321106, 0.6274999976158142, 0.39879998564720154, 0.5259000062942505, 0.8112999796867371, 0.19280000030994415, 0.6744999885559082, 0.8672999739646912, 0.5030999779701233, 0.19699999690055847, 0.8112999796867371, 0.16449999809265137, 0.31380000710487366, 0.5099999904632568, 0.37529999017715454, 0.5023999810218811, 0.3310000002384186, 0.42500001192092896, 0.34139999747276306, 0.8230999708175659, 0.557699978351593, 0.6682999730110168, 0.8651999831199646, 0.832099974155426, 0.2750999927520752, 0.5231999754905701, 0.6661999821662903, 0.7547000050544739, 0.274399995803833, 0.4007999897003174, 0.6614000201225281, 0.8672999739646912, 0.13609999418258667, 0.25290000438690186, 0.4975999891757965 ], "y_min": [ 0.15770000219345093, 0.16259999573230743, 0.2538999915122986, 0.2583000063896179, 0.30660000443458557, 0.30320000648498535, 0.30660000443458557, 0.32710000872612, 0.33059999346733093, 0.32710000872612, 0.35010001063346863, 0.375, 0.3788999915122986, 0.39890000224113464, 0.3978999853134155, 0.39890000224113464, 0.426800012588501, 0.42289999127388, 0.4462999999523163, 0.44780001044273376, 0.4702000021934509, 0.47119998931884766, 0.49410000443458557, 0.49559998512268066, 0.5189999938011169, 0.5425000190734863, 0.5679000020027161, 0.5673999786376953, 0.7343999743461609, 0.7387999892234802, 0.7631999850273132, 0.7592999935150146, 0.7583000063896179, 0.7592999935150146, 0.8065999746322632, 0.8109999895095825, 0.8065999746322632 ], "x_max": [ 0.4471000134944916, 0.4851999878883362, 0.5978000164031982, 0.6378999948501587, 0.4092000126838684, 0.5418000221252441, 0.8216999769210815, 0.2093999981880188, 0.6848999857902527, 0.8831999897956848, 0.5612000226974487, 0.21359999477863312, 0.8216999769210815, 0.181099995970726, 0.37049999833106995, 0.5266000032424927, 0.385699987411499, 0.5182999968528748, 0.3856000006198883, 0.47130000591278076, 0.40290001034736633, 0.8396999835968018, 0.6309999823570251, 0.7131999731063843, 0.883899986743927, 0.8831999897956848, 0.32280001044273376, 0.5473999977111816, 0.7269999980926514, 0.7651000022888184, 0.2847999930381775, 0.41670000553131104, 0.7235999703407288, 0.8831999897956848, 0.1899999976158142, 0.26330000162124634, 0.5515000224113464 ], "y_max": [ 0.1728000044822693, 0.17190000414848328, 0.26899999380111694, 0.26809999346733093, 0.3163999915122986, 0.31349998712539673, 0.3163999915122986, 0.33739998936653137, 0.34040001034736633, 0.33739998936653137, 0.36469998955726624, 0.38530001044273376, 0.3882000148296356, 0.40959998965263367, 0.4129999876022339, 0.40959998965263367, 0.4361000061035156, 0.4336000084877014, 0.46140000224113464, 0.46050000190734863, 0.4848000109195709, 0.4814999997615814, 0.5091999769210815, 0.5083000063896179, 0.5292999744415283, 0.5570999979972839, 0.5800999999046326, 0.58160001039505, 0.7494999766349792, 0.7486000061035156, 0.7724999785423279, 0.7699999809265137, 0.7734000086784363, 0.7699999809265137, 0.8212000131607056, 0.8208000063896179, 0.8212000131607056 ], "expr_type": [ "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded" ] }
0001213_page04
{ "latex": [ "$(p-2)$", "$p$", "$(p-2)$", "$p$", "$2 \\le p \\le 6$", "$(p-2)$", "$p$", "$g$", "$r_0$", "$\\alpha $", "$(p-2)$", "$x_{p-1}$", "$x_p$", "$\\theta =\\pi /2$", "$p$", "$B$", "$\\theta =0$", "$B$", "$B_{p-1,p}$", "$\\theta $", "$x_{p-1}$", "$x_p$", "$(p-2)$", "$x_{p-1}$", "$x_p$", "$V_2$", "$(p-2)$", "$(t, x_1, \\cdots , x_{p-2})$", "$V_{p-2}$", "$p$", "$(t, x_1, \\cdots , x_p)$", "$V_p=V_{p-2}V_2$", "$p$", "\\begin {eqnarray} && ds^2 = H^{-1/2}[-f dt^2 +dx_1^2 +\\cdots +dx_{p-2}^2 +h(dx_{p-1}^2 +dx_p^2)] +H^{1/2}(f^{-1}dr^2 +r^2 d\\Omega _{8-p}^2), \\\\ && e^{2\\phi } = g^2 H^{\\frac {3-p}{2}}h, \\ \\ \\ B_{p-1,p}=\\tan \\theta H^{-1}h, \\\\ && A^{p}_{012\\cdots p} = g^{-1}(H^{-1}-1)h\\cos \\theta \\coth \\alpha ,\\ \\ \\^^MA^{p-2}_{012\\cdots (p-2)}=g^{-1}(H^{-1}-1)\\sin \\theta \\coth \\alpha , \\end {eqnarray}", "\\begin {equation} \\label {2e2} H=1+\\frac {r_0^{7-p}\\sinh ^2\\alpha }{r^{7-p}}, \\ \\ \\ f=1-\\left (\\frac {r_0} {r}\\right )^{7-p}, \\ \\ \\ h^{-1}=\\cos ^2\\theta +H^{-1}\\sin ^2\\theta . \\end {equation}", "\\begin {equation} \\label {2e3} Q_p =\\frac {1}{2\\kappa ^2}\\int _{\\Omega _{8-p}}*F_{p+2} =\\frac {(7-p)\\Omega _{8-p} \\cos \\theta }{2\\kappa ^2 g}r_0^{7-p} \\sinh \\alpha \\cosh \\alpha , \\end {equation}" ], "latex_norm": [ "$ ( p - 2 ) $", "$ p $", "$ ( p - 2 ) $", "$ p $", "$ 2 \\leq p \\leq 6 $", "$ ( p - 2 ) $", "$ p $", "$ g $", "$ r _ { 0 } $", "$ \\alpha $", "$ ( p - 2 ) $", "$ x _ { p - 1 } $", "$ x _ { p } $", "$ \\theta = \\pi \\slash 2 $", "$ p $", "$ B $", "$ \\theta = 0 $", "$ B $", "$ B _ { p - 1 , p } $", "$ \\theta $", "$ x _ { p - 1 } $", "$ x _ { p } $", "$ ( p - 2 ) $", "$ x _ { p - 1 } $", "$ x _ { p } $", "$ V _ { 2 } $", "$ ( p - 2 ) $", "$ ( t , x _ { 1 } , \\cdots , x _ { p - 2 } ) $", "$ V _ { p - 2 } $", "$ p $", "$ ( t , x _ { 1 } , \\cdots , x _ { p } ) $", "$ V _ { p } = V _ { p - 2 } V _ { 2 } $", "$ p $", "\\begin{align*} & & d s ^ { 2 } = H ^ { - 1 \\slash 2 } [ - f d t ^ { 2 } + d x _ { 1 } ^ { 2 } + \\cdots + d x _ { p - 2 } ^ { 2 } + h ( d x _ { p - 1 } ^ { 2 } + d x _ { p } ^ { 2 } ) ] + H ^ { 1 \\slash 2 } ( f ^ { - 1 } d r ^ { 2 } + r ^ { 2 } d \\Omega _ { 8 - p } ^ { 2 } ) , \\\\ & & e ^ { 2 \\phi } = g ^ { 2 } H ^ { \\frac { 3 - p } { 2 } } h , ~ ~ ~ B _ { p - 1 , p } = \\operatorname { t a n } \\theta H ^ { - 1 } h , \\\\ & & A _ { 0 1 2 \\cdots p } ^ { p } = g ^ { - 1 } ( H ^ { - 1 } - 1 ) h \\operatorname { c o s } \\theta \\operatorname { c o t h } \\alpha , ~ ~ ~ A _ { 0 1 2 \\cdots ( p - 2 ) } ^ { p - 2 } = g ^ { - 1 } ( H ^ { - 1 } - 1 ) \\operatorname { s i n } \\theta \\operatorname { c o t h } \\alpha , \\end{align*}", "\\begin{equation*} H = 1 + \\frac { r _ { 0 } ^ { 7 - p } { \\operatorname { s i n h } } ^ { 2 } \\alpha } { r ^ { 7 - p } } , ~ ~ ~ f = 1 - { ( \\frac { r _ { 0 } } { r } ) } ^ { 7 - p } , ~ ~ ~ h ^ { - 1 } = { \\operatorname { c o s } } ^ { 2 } \\theta + H ^ { - 1 } { \\operatorname { s i n } } ^ { 2 } \\theta . \\end{equation*}", "\\begin{equation*} Q _ { p } = \\frac { 1 } { 2 \\kappa ^ { 2 } } \\int _ { \\Omega _ { 8 - p } } \\ast F _ { p + 2 } = \\frac { ( 7 - p ) \\Omega _ { 8 - p } \\operatorname { c o s } \\theta } { 2 \\kappa ^ { 2 } g } r _ { 0 } ^ { 7 - p } \\operatorname { s i n h } \\alpha \\operatorname { c o s h } \\alpha , \\end{equation*}" ], "latex_expand": [ "$ ( \\mitp - 2 ) $", "$ \\mitp $", "$ ( \\mitp - 2 ) $", "$ \\mitp $", "$ 2 \\leq \\mitp \\leq 6 $", "$ ( \\mitp - 2 ) $", "$ \\mitp $", "$ \\mitg $", "$ \\mitr _ { 0 } $", "$ \\mitalpha $", "$ ( \\mitp - 2 ) $", "$ \\mitx _ { \\mitp - 1 } $", "$ \\mitx _ { \\mitp } $", "$ \\mittheta = \\mitpi \\slash 2 $", "$ \\mitp $", "$ \\mitB $", "$ \\mittheta = 0 $", "$ \\mitB $", "$ \\mitB _ { \\mitp - 1 , \\mitp } $", "$ \\mittheta $", "$ \\mitx _ { \\mitp - 1 } $", "$ \\mitx _ { \\mitp } $", "$ ( \\mitp - 2 ) $", "$ \\mitx _ { \\mitp - 1 } $", "$ \\mitx _ { \\mitp } $", "$ \\mitV _ { 2 } $", "$ ( \\mitp - 2 ) $", "$ ( \\mitt , \\mitx _ { 1 } , \\cdots , \\mitx _ { \\mitp - 2 } ) $", "$ \\mitV _ { \\mitp - 2 } $", "$ \\mitp $", "$ ( \\mitt , \\mitx _ { 1 } , \\cdots , \\mitx _ { \\mitp } ) $", "$ \\mitV _ { \\mitp } = \\mitV _ { \\mitp - 2 } \\mitV _ { 2 } $", "$ \\mitp $", "\\begin{align*} & & \\mitd \\mits ^ { 2 } = \\mitH ^ { - 1 \\slash 2 } [ - \\mitf \\mitd \\mitt ^ { 2 } + \\mitd \\mitx _ { 1 } ^ { 2 } + \\cdots + \\mitd \\mitx _ { \\mitp - 2 } ^ { 2 } + \\Planckconst ( \\mitd \\mitx _ { \\mitp - 1 } ^ { 2 } + \\mitd \\mitx _ { \\mitp } ^ { 2 } ) ] + \\mitH ^ { 1 \\slash 2 } ( \\mitf ^ { - 1 } \\mitd \\mitr ^ { 2 } + \\mitr ^ { 2 } \\mitd \\mupOmega _ { 8 - \\mitp } ^ { 2 } ) , \\\\ & & \\mite ^ { 2 \\mitphi } = \\mitg ^ { 2 } \\mitH ^ { \\frac { 3 - \\mitp } { 2 } } \\Planckconst , ~ ~ ~ \\mitB _ { \\mitp - 1 , \\mitp } = \\operatorname { t a n } \\mittheta \\mitH ^ { - 1 } \\Planckconst , \\\\ & & \\mitA _ { 0 1 2 \\cdots \\mitp } ^ { \\mitp } = \\mitg ^ { - 1 } ( \\mitH ^ { - 1 } - 1 ) \\Planckconst \\operatorname { c o s } \\mittheta \\operatorname { c o t h } \\mitalpha , ~ ~ ~ \\mitA _ { 0 1 2 \\cdots ( \\mitp - 2 ) } ^ { \\mitp - 2 } = \\mitg ^ { - 1 } ( \\mitH ^ { - 1 } - 1 ) \\operatorname { s i n } \\mittheta \\operatorname { c o t h } \\mitalpha , \\end{align*}", "\\begin{equation*} \\mitH = 1 + \\frac { \\mitr _ { 0 } ^ { 7 - \\mitp } { \\operatorname { s i n h } } ^ { 2 } \\mitalpha } { \\mitr ^ { 7 - \\mitp } } , ~ ~ ~ \\mitf = 1 - { \\left( \\frac { \\mitr _ { 0 } } { \\mitr } \\right) } ^ { 7 - \\mitp } , ~ ~ ~ \\Planckconst ^ { - 1 } = { \\operatorname { c o s } } ^ { 2 } \\mittheta + \\mitH ^ { - 1 } { \\operatorname { s i n } } ^ { 2 } \\mittheta . \\end{equation*}", "\\begin{equation*} \\mitQ _ { \\mitp } = \\frac { 1 } { 2 \\mitkappa ^ { 2 } } \\int _ { \\mupOmega _ { 8 - \\mitp } } \\ast \\mitF _ { \\mitp + 2 } = \\frac { ( 7 - \\mitp ) \\mupOmega _ { 8 - \\mitp } \\operatorname { c o s } \\mittheta } { 2 \\mitkappa ^ { 2 } \\mitg } \\mitr _ { 0 } ^ { 7 - \\mitp } \\operatorname { s i n h } \\mitalpha \\operatorname { c o s h } \\mitalpha , \\end{equation*}" ], "x_min": [ 0.27570000290870667, 0.4090999960899353, 0.4415999948978424, 0.5321000218391418, 0.6841999888420105, 0.3959999978542328, 0.4837999939918518, 0.16660000383853912, 0.4546999931335449, 0.20250000059604645, 0.13609999418258667, 0.6032999753952026, 0.6883000135421753, 0.7228999733924866, 0.18799999356269836, 0.3483000099658966, 0.4223000109195709, 0.7871000170707703, 0.5389999747276306, 0.120899997651577, 0.574999988079071, 0.6614000201225281, 0.2896000146865845, 0.5231999754905701, 0.6061000227928162, 0.6593000292778015, 0.1906999945640564, 0.5701000094413757, 0.7346000075340271, 0.25850000977516174, 0.5916000008583069, 0.7746999859809875, 0.3621000051498413, 0.1509000062942505, 0.17970000207424164, 0.2467000037431717 ], "y_min": [ 0.21040000021457672, 0.21729999780654907, 0.2896000146865845, 0.29440000653266907, 0.29100000858306885, 0.3379000127315521, 0.3422999978065491, 0.5845000147819519, 0.5845000147819519, 0.6083999872207642, 0.6279000043869019, 0.6323000192642212, 0.6323000192642212, 0.6279000043869019, 0.6561999917030334, 0.6528000235557556, 0.6523000001907349, 0.6528000235557556, 0.676800012588501, 0.7006999850273132, 0.7045999765396118, 0.7045999765396118, 0.7240999937057495, 0.7523999810218811, 0.7523999810218811, 0.7490000128746033, 0.7720000147819519, 0.7720000147819519, 0.7728999853134155, 0.8008000254631042, 0.7958999872207642, 0.7968999743461609, 0.8246999979019165, 0.41370001435279846, 0.5297999978065491, 0.8417999744415283 ], "x_max": [ 0.3621000051498413, 0.4242999851703644, 0.5037999749183655, 0.5425000190734863, 0.7760999798774719, 0.4560999870300293, 0.4934999942779541, 0.1776999980211258, 0.47200000286102295, 0.21559999883174896, 0.19760000705718994, 0.6413000226020813, 0.7077000141143799, 0.7954999804496765, 0.19840000569820404, 0.36489999294281006, 0.47209998965263367, 0.8029999732971191, 0.5914999842643738, 0.13130000233650208, 0.6129999756813049, 0.6808000206947327, 0.349700003862381, 0.5612000226974487, 0.6255000233650208, 0.6793000102043152, 0.24809999763965607, 0.7027999758720398, 0.772599995136261, 0.2689000070095062, 0.7056000232696533, 0.8784000277519226, 0.3725000023841858, 0.8845000267028809, 0.7871999740600586, 0.7573999762535095 ], "y_max": [ 0.2313999980688095, 0.2304999977350235, 0.30469998717308044, 0.3037000000476837, 0.3037000000476837, 0.35249999165534973, 0.3521000146865845, 0.5938000082969666, 0.5932999849319458, 0.6147000193595886, 0.6424999833106995, 0.6430000066757202, 0.6430000066757202, 0.6424999833106995, 0.6654999852180481, 0.663100004196167, 0.6629999876022339, 0.663100004196167, 0.6909999847412109, 0.7110000252723694, 0.714900016784668, 0.714900016784668, 0.7386999726295471, 0.7631000280380249, 0.7631000280380249, 0.7612000107765198, 0.7865999937057495, 0.7871000170707703, 0.7871000170707703, 0.8101000189781189, 0.8109999895095825, 0.8111000061035156, 0.8339999914169312, 0.4945000112056732, 0.5669000148773193, 0.8788999915122986 ], "expr_type": [ "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "isolated", "isolated", "isolated" ] }
0001213_page05
{ "latex": [ "$2\\kappa ^2 =(2\\pi )^7 \\alpha '^4$", "$\\Omega _{8-p}$", "$(8-p)$", "$(p-2)$", "$(p-2)$", "$p$", "$Q_p=T_pN_p$", "$p$", "$N_p$", "$p$", "$N_{p-2}$", "$(p-2)$", "$\\tilde {R}^{7-p}=r_0^{7-p}\\sinh \\alpha \\cosh \\alpha $", "$N_p$", "$p$", "$N_{p-2}$", "$(p-2)$", "$T_p$", "$T_{p-2}$", "$T_p=(2\\pi )^{-p}(\\alpha ')^{-(p+1)/2}$", "$\\tan \\theta $", "$B$", "$p$", "$(p-2)$", "$r=r_0$", "$M$", "$T$", "$S$", "$p$", "$B$", "\\begin {equation} \\Omega _{8-p}=\\frac {2\\pi ^{(9-p)/2}}{\\Gamma [(9-p)/2]}=\\frac {4\\pi \\cdot \\pi ^{(7-p)/2}}{(7-p)\\Gamma [(7-p)/2]}. \\end {equation}", "\\begin {equation} Q_{p-2}=\\frac {1}{2\\kappa ^2}\\int _{V_2\\times \\Omega _{8-p}}*F_p =\\frac {(7-p)\\Omega _{8-p}V_2 \\sin \\theta }{2\\kappa ^2 g} r_0^{7-p}\\sinh \\alpha \\cosh \\alpha . \\label {2e5} \\end {equation}", "\\begin {equation} \\tilde {Q}_{p-2}=\\frac {Q_{p-2}}{V_2}. \\end {equation}", "\\begin {equation} \\tilde {R}^{7-p} = N_p\\frac {2\\kappa ^2 gT_p}{(7-p)\\Omega _{8-p}\\cos \\theta } =N_{p-2}\\frac {2\\kappa ^2 gT_{p-2}}{(7-p)\\Omega _{8-p}V_2\\sin \\theta }, \\end {equation}", "\\begin {equation} \\label {2e7} \\tan \\theta =\\frac {\\tilde {Q}_{p-2}}{Q_p}=\\frac {1}{V_2}\\frac {Q_{p-2}}{Q_p} =\\frac {1}{V_2}\\frac {T_{p-2}}{T_p}\\frac {N_{p-2}}{N_p}. \\end {equation}", "\\begin {eqnarray} && M=\\frac {(8-p)\\Omega _{8-p}V_p r_0^{7-p}}{2\\kappa ^2g^2}\\left (1 +\\frac {7-p}{8-p}\\sinh ^2\\alpha \\right ), \\\\ && T=\\frac {7-p}{4\\pi r_0\\cosh \\alpha }, \\\\ && S=\\frac {4\\pi \\Omega _{8-p}V_p}{2\\kappa ^2g^2}r_0^{8-p}\\cosh \\alpha . \\end {eqnarray}" ], "latex_norm": [ "$ 2 \\kappa ^ { 2 } = ( 2 \\pi ) ^ { 7 } \\alpha ^ { \\prime 4 } $", "$ \\Omega _ { 8 - p } $", "$ ( 8 - p ) $", "$ ( p - 2 ) $", "$ ( p - 2 ) $", "$ p $", "$ Q _ { p } = T _ { p } N _ { p } $", "$ p $", "$ N _ { p } $", "$ p $", "$ N _ { p - 2 } $", "$ ( p - 2 ) $", "$ \\widetilde { R } ^ { 7 - p } = r _ { 0 } ^ { 7 - p } s i n h \\alpha \\operatorname { c o s h } \\alpha $", "$ N _ { p } $", "$ p $", "$ N _ { p - 2 } $", "$ ( p - 2 ) $", "$ T _ { p } $", "$ T _ { p - 2 } $", "$ T _ { p } = ( 2 \\pi ) ^ { - p } ( \\alpha ^ { \\prime } ) ^ { - ( p + 1 ) \\slash 2 } $", "$ t a n \\theta $", "$ B $", "$ p $", "$ ( p - 2 ) $", "$ r = r _ { 0 } $", "$ M $", "$ T $", "$ S $", "$ p $", "$ B $", "\\begin{equation*} \\Omega _ { 8 - p } = \\frac { 2 \\pi ^ { ( 9 - p ) \\slash 2 } } { \\Gamma [ ( 9 - p ) \\slash 2 ] } = \\frac { 4 \\pi \\cdot \\pi ^ { ( 7 - p ) \\slash 2 } } { ( 7 - p ) \\Gamma [ ( 7 - p ) \\slash 2 ] } . \\end{equation*}", "\\begin{equation*} Q _ { p - 2 } = \\frac { 1 } { 2 \\kappa ^ { 2 } } \\int _ { V _ { 2 } \\times \\Omega _ { 8 - p } } \\ast F _ { p } = \\frac { ( 7 - p ) \\Omega _ { 8 - p } V _ { 2 } \\operatorname { s i n } \\theta } { 2 \\kappa ^ { 2 } g } r _ { 0 } ^ { 7 - p } \\operatorname { s i n h } \\alpha \\operatorname { c o s h } \\alpha . \\end{equation*}", "\\begin{equation*} \\widetilde { Q } _ { p - 2 } = \\frac { Q _ { p - 2 } } { V _ { 2 } } . \\end{equation*}", "\\begin{equation*} \\widetilde { R } ^ { 7 - p } = N _ { p } \\frac { 2 \\kappa ^ { 2 } g T _ { p } } { ( 7 - p ) \\Omega _ { 8 - p } \\operatorname { c o s } \\theta } = N _ { p - 2 } \\frac { 2 \\kappa ^ { 2 } g T _ { p - 2 } } { ( 7 - p ) \\Omega _ { 8 - p } V _ { 2 } \\operatorname { s i n } \\theta } , \\end{equation*}", "\\begin{equation*} \\operatorname { t a n } \\theta = \\frac { \\widetilde { Q } _ { p - 2 } } { Q _ { p } } = \\frac { 1 } { V _ { 2 } } \\frac { Q _ { p - 2 } } { Q _ { p } } = \\frac { 1 } { V _ { 2 } } \\frac { T _ { p - 2 } } { T _ { p } } \\frac { N _ { p - 2 } } { N _ { p } } . \\end{equation*}", "\\begin{align*} & & M = \\frac { ( 8 - p ) \\Omega _ { 8 - p } V _ { p } r _ { 0 } ^ { 7 - p } } { 2 \\kappa ^ { 2 } g ^ { 2 } } ( 1 + \\frac { 7 - p } { 8 - p } { \\operatorname { s i n h } } ^ { 2 } \\alpha ) , \\\\ & & T = \\frac { 7 - p } { 4 \\pi r _ { 0 } \\operatorname { c o s h } \\alpha } , \\\\ & & S = \\frac { 4 \\pi \\Omega _ { 8 - p } V _ { p } } { 2 \\kappa ^ { 2 } g ^ { 2 } } r _ { 0 } ^ { 8 - p } \\operatorname { c o s h } \\alpha . \\end{align*}" ], "latex_expand": [ "$ 2 \\mitkappa ^ { 2 } = ( 2 \\mitpi ) ^ { 7 } \\mitalpha ^ { \\prime 4 } $", "$ \\mupOmega _ { 8 - \\mitp } $", "$ ( 8 - \\mitp ) $", "$ ( \\mitp - 2 ) $", "$ ( \\mitp - 2 ) $", "$ \\mitp $", "$ \\mitQ _ { \\mitp } = \\mitT _ { \\mitp } \\mitN _ { \\mitp } $", "$ \\mitp $", "$ \\mitN _ { \\mitp } $", "$ \\mitp $", "$ \\mitN _ { \\mitp - 2 } $", "$ ( \\mitp - 2 ) $", "$ \\tilde { \\mitR } ^ { 7 - \\mitp } = \\mitr _ { 0 } ^ { 7 - \\mitp } \\mathrm { s i n h } \\mitalpha \\operatorname { c o s h } \\mitalpha $", "$ \\mitN _ { \\mitp } $", "$ \\mitp $", "$ \\mitN _ { \\mitp - 2 } $", "$ ( \\mitp - 2 ) $", "$ \\mitT _ { \\mitp } $", "$ \\mitT _ { \\mitp - 2 } $", "$ \\mitT _ { \\mitp } = ( 2 \\mitpi ) ^ { - \\mitp } ( \\mitalpha ^ { \\prime } ) ^ { - ( \\mitp + 1 ) \\slash 2 } $", "$ \\mathrm { t a n } \\mittheta $", "$ \\mitB $", "$ \\mitp $", "$ ( \\mitp - 2 ) $", "$ \\mitr = \\mitr _ { 0 } $", "$ \\mitM $", "$ \\mitT $", "$ \\mitS $", "$ \\mitp $", "$ \\mitB $", "\\begin{equation*} \\mupOmega _ { 8 - \\mitp } = \\frac { 2 \\mitpi ^ { ( 9 - \\mitp ) \\slash 2 } } { \\mupGamma [ ( 9 - \\mitp ) \\slash 2 ] } = \\frac { 4 \\mitpi \\cdot \\mitpi ^ { ( 7 - \\mitp ) \\slash 2 } } { ( 7 - \\mitp ) \\mupGamma [ ( 7 - \\mitp ) \\slash 2 ] } . \\end{equation*}", "\\begin{equation*} \\mitQ _ { \\mitp - 2 } = \\frac { 1 } { 2 \\mitkappa ^ { 2 } } \\int _ { \\mitV _ { 2 } \\times \\mupOmega _ { 8 - \\mitp } } \\ast \\mitF _ { \\mitp } = \\frac { ( 7 - \\mitp ) \\mupOmega _ { 8 - \\mitp } \\mitV _ { 2 } \\operatorname { s i n } \\mittheta } { 2 \\mitkappa ^ { 2 } \\mitg } \\mitr _ { 0 } ^ { 7 - \\mitp } \\operatorname { s i n h } \\mitalpha \\operatorname { c o s h } \\mitalpha . \\end{equation*}", "\\begin{equation*} \\tilde { \\mitQ } _ { \\mitp - 2 } = \\frac { \\mitQ _ { \\mitp - 2 } } { \\mitV _ { 2 } } . \\end{equation*}", "\\begin{equation*} \\tilde { \\mitR } ^ { 7 - \\mitp } = \\mitN _ { \\mitp } \\frac { 2 \\mitkappa ^ { 2 } \\mitg \\mitT _ { \\mitp } } { ( 7 - \\mitp ) \\mupOmega _ { 8 - \\mitp } \\operatorname { c o s } \\mittheta } = \\mitN _ { \\mitp - 2 } \\frac { 2 \\mitkappa ^ { 2 } \\mitg \\mitT _ { \\mitp - 2 } } { ( 7 - \\mitp ) \\mupOmega _ { 8 - \\mitp } \\mitV _ { 2 } \\operatorname { s i n } \\mittheta } , \\end{equation*}", "\\begin{equation*} \\operatorname { t a n } \\mittheta = \\frac { \\tilde { \\mitQ } _ { \\mitp - 2 } } { \\mitQ _ { \\mitp } } = \\frac { 1 } { \\mitV _ { 2 } } \\frac { \\mitQ _ { \\mitp - 2 } } { \\mitQ _ { \\mitp } } = \\frac { 1 } { \\mitV _ { 2 } } \\frac { \\mitT _ { \\mitp - 2 } } { \\mitT _ { \\mitp } } \\frac { \\mitN _ { \\mitp - 2 } } { \\mitN _ { \\mitp } } . \\end{equation*}", "\\begin{align*} & & \\mitM = \\frac { ( 8 - \\mitp ) \\mupOmega _ { 8 - \\mitp } \\mitV _ { \\mitp } \\mitr _ { 0 } ^ { 7 - \\mitp } } { 2 \\mitkappa ^ { 2 } \\mitg ^ { 2 } } \\left( 1 + \\frac { 7 - \\mitp } { 8 - \\mitp } { \\operatorname { s i n h } } ^ { 2 } \\mitalpha \\right) , \\\\ & & \\mitT = \\frac { 7 - \\mitp } { 4 \\mitpi \\mitr _ { 0 } \\operatorname { c o s h } \\mitalpha } , \\\\ & & \\mitS = \\frac { 4 \\mitpi \\mupOmega _ { 8 - \\mitp } \\mitV _ { \\mitp } } { 2 \\mitkappa ^ { 2 } \\mitg ^ { 2 } } \\mitr _ { 0 } ^ { 8 - \\mitp } \\operatorname { c o s h } \\mitalpha . \\end{align*}" ], "x_min": [ 0.17759999632835388, 0.7008000016212463, 0.17900000512599945, 0.1762000024318695, 0.2328999936580658, 0.6973000168800354, 0.489300012588501, 0.866599977016449, 0.42160001397132874, 0.5231999754905701, 0.6406000256538391, 0.7609000205993652, 0.3772999942302704, 0.19210000336170197, 0.259799987077713, 0.3772999942302704, 0.46299999952316284, 0.2874999940395355, 0.35179999470710754, 0.6406000256538391, 0.6557999849319458, 0.7580999732017517, 0.4747999906539917, 0.5515000224113464, 0.5266000032424927, 0.6621000170707703, 0.120899997651577, 0.2515999972820282, 0.2702000141143799, 0.420199990272522, 0.3165000081062317, 0.22599999606609344, 0.4422999918460846, 0.26190000772476196, 0.32409998774528503, 0.3181999921798706 ], "y_min": [ 0.13330000638961792, 0.1348000019788742, 0.15770000219345093, 0.23100000619888306, 0.3012999892234802, 0.30570000410079956, 0.3725999891757965, 0.37599998712539673, 0.39649999141693115, 0.39989998936653137, 0.39649999141693115, 0.3955000042915344, 0.4169999957084656, 0.44429999589920044, 0.448199987411499, 0.44429999589920044, 0.44339999556541443, 0.5199999809265137, 0.5199999809265137, 0.5175999999046326, 0.5435000061988831, 0.5439000129699707, 0.5717999935150146, 0.5669000148773193, 0.6464999914169312, 0.6669999957084656, 0.6909000277519226, 0.6909000277519226, 0.8647000193595886, 0.861299991607666, 0.18119999766349792, 0.25290000438690186, 0.32420000433921814, 0.4672999978065491, 0.5903000235557556, 0.7134000062942505 ], "x_max": [ 0.302700012922287, 0.741599977016449, 0.23909999430179596, 0.2363000065088272, 0.2930000126361847, 0.7084000110626221, 0.5846999883651733, 0.8769999742507935, 0.4458000063896179, 0.5343000292778015, 0.6827999949455261, 0.8216999769210815, 0.592199981212616, 0.21629999577999115, 0.2702000141143799, 0.4194999933242798, 0.5231000185012817, 0.3068999946117401, 0.3898000121116638, 0.8389000296592712, 0.6980000138282776, 0.7746999859809875, 0.4851999878883362, 0.6115999817848206, 0.579800009727478, 0.6834999918937683, 0.13539999723434448, 0.2653999924659729, 0.28060001134872437, 0.4361000061035156, 0.6904000043869019, 0.7809000015258789, 0.5645999908447266, 0.7415000200271606, 0.6793000102043152, 0.7124999761581421 ], "y_max": [ 0.14890000224113464, 0.149399995803833, 0.1728000044822693, 0.24560000002384186, 0.3158999979496002, 0.3149999976158142, 0.38679999113082886, 0.38530001044273376, 0.4106999933719635, 0.4097000062465668, 0.4106999933719635, 0.4101000130176544, 0.4336000084877014, 0.45890000462532043, 0.45750001072883606, 0.45890000462532043, 0.4584999978542328, 0.5342000126838684, 0.5342000126838684, 0.5342000126838684, 0.5541999936103821, 0.5541999936103821, 0.5810999870300293, 0.5820000171661377, 0.6553000211715698, 0.677299976348877, 0.701200008392334, 0.7016000151634216, 0.8744999766349792, 0.8715999722480774, 0.22030000388622284, 0.28999999165534973, 0.3594000041484833, 0.5054000020027161, 0.630299985408783, 0.8260999917984009 ], "expr_type": [ "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "isolated", "isolated", "isolated", "isolated", "isolated", "isolated" ] }
0001213_page06
{ "latex": [ "$\\theta $", "$\\theta $", "$p$", "$B$", "$(p-2)$", "$B$", "$B$", "$(p-2)$", "$(p-2)$", "$B$", "$p$", "$B$", "$B$", "$p$", "$B$", "$(p-2)$", "$B$", "$\\mu _p$", "$\\mu _{p-2}$", "$q_p= Q_pV_p$", "$q_p= Q_pV_p$", "$q_{p-2}=V_{p-2}Q_{p-2}$", "$r_0 \\rightarrow 0$", "$\\alpha \\rightarrow \\infty $", "$\\tilde {R}^{7-p}$", "$(p-2)$", "$p$", "$p$", "\\begin {eqnarray} dM &=& TdS + \\mu _pdq_p +\\mu _{p-2}dq_{p-2} \\\\ &=& TdS +\\mu _pV_pT_pdN_p +\\mu _{p-2}V_{p-2}T_{p-2}dN_{p-2}, \\end {eqnarray}", "\\begin {equation} \\mu _p= \\cos \\theta \\tanh \\alpha /g, \\ \\ \\ \\mu _{p-2}=\\sin \\theta \\tanh \\alpha /g. \\end {equation}", "\\begin {equation} M^2_{\\rm ext.}= q_p^2 +q_{p-2}^2, \\end {equation}", "\\begin {eqnarray} \\alpha ' \\rightarrow 0:&& \\tan \\theta =\\frac {\\tilde {b}}{\\alpha '}, \\ \\ \\ r=\\alpha ' u, \\ \\ \\ r_0=\\alpha 'u_0, \\\\ && g=\\tilde {g}\\alpha '^{(5-p)/2},\\ \\ \\ x_{0,1,\\cdots ,p-2} =\\tilde {x}_{0,1,\\cdots ,p-2},\\ \\ \\^^Mx_{p-1,p}= \\frac {\\alpha '}{\\tilde {b}}\\tilde {x}_{p-1,p}, \\end {eqnarray}" ], "latex_norm": [ "$ \\theta $", "$ \\theta $", "$ p $", "$ B $", "$ ( p - 2 ) $", "$ B $", "$ B $", "$ ( p - 2 ) $", "$ ( p - 2 ) $", "$ B $", "$ p $", "$ B $", "$ B $", "$ p $", "$ B $", "$ ( p - 2 ) $", "$ B $", "$ \\mu _ { p } $", "$ \\mu _ { p - 2 } $", "$ q _ { p } = Q _ { p } V _ { p } $", "$ q _ { p } = Q _ { p } V _ { p } $", "$ q _ { p - 2 } = V _ { p - 2 } Q _ { p - 2 } $", "$ r _ { 0 } \\rightarrow 0 $", "$ \\alpha \\rightarrow \\infty $", "$ \\widetilde { R } ^ { 7 - p } $", "$ ( p - 2 ) $", "$ p $", "$ p $", "\\begin{align*} d M & = & T d S + \\mu _ { p } d q _ { p } + \\mu _ { p - 2 } d q _ { p - 2 } \\\\ & = & T d S + \\mu _ { p } V _ { p } T _ { p } d N _ { p } + \\mu _ { p - 2 } V _ { p - 2 } T _ { p - 2 } d N _ { p - 2 } , \\end{align*}", "\\begin{equation*} \\mu _ { p } = \\operatorname { c o s } \\theta \\operatorname { t a n h } \\alpha \\slash g , ~ ~ ~ \\mu _ { p - 2 } = \\operatorname { s i n } \\theta \\operatorname { t a n h } \\alpha \\slash g . \\end{equation*}", "\\begin{equation*} M _ { e x t . } ^ { 2 } = q _ { p } ^ { 2 } + q _ { p - 2 } ^ { 2 } , \\end{equation*}", "\\begin{align*} \\alpha ^ { \\prime } \\rightarrow 0 : & & \\operatorname { t a n } \\theta = \\frac { \\widetilde { b } } { \\alpha ^ { \\prime } } , ~ ~ ~ r = \\alpha ^ { \\prime } u , ~ ~ ~ r _ { 0 } = \\alpha ^ { \\prime } u _ { 0 } , \\\\ & & g = \\widetilde { g } \\alpha ^ { \\prime ( 5 - p ) \\slash 2 } , ~ ~ ~ x _ { 0 , 1 , \\cdots , p - 2 } = \\widetilde { x } _ { 0 , 1 , \\cdots , p - 2 } , ~ ~ ~ x _ { p - 1 , p } = \\frac { \\alpha ^ { \\prime } } { \\widetilde { b } } \\widetilde { x } _ { p - 1 , p } , \\end{align*}" ], "latex_expand": [ "$ \\mittheta $", "$ \\mittheta $", "$ \\mitp $", "$ \\mitB $", "$ ( \\mitp - 2 ) $", "$ \\mitB $", "$ \\mitB $", "$ ( \\mitp - 2 ) $", "$ ( \\mitp - 2 ) $", "$ \\mitB $", "$ \\mitp $", "$ \\mitB $", "$ \\mitB $", "$ \\mitp $", "$ \\mitB $", "$ ( \\mitp - 2 ) $", "$ \\mitB $", "$ \\mitmu _ { \\mitp } $", "$ \\mitmu _ { \\mitp - 2 } $", "$ \\mitq _ { \\mitp } = \\mitQ _ { \\mitp } \\mitV _ { \\mitp } $", "$ \\mitq _ { \\mitp } = \\mitQ _ { \\mitp } \\mitV _ { \\mitp } $", "$ \\mitq _ { \\mitp - 2 } = \\mitV _ { \\mitp - 2 } \\mitQ _ { \\mitp - 2 } $", "$ \\mitr _ { 0 } \\rightarrow 0 $", "$ \\mitalpha \\rightarrow \\infty $", "$ \\tilde { \\mitR } ^ { 7 - \\mitp } $", "$ ( \\mitp - 2 ) $", "$ \\mitp $", "$ \\mitp $", "\\begin{align*} \\mitd \\mitM & = & \\mitT \\mitd \\mitS + \\mitmu _ { \\mitp } \\mitd \\mitq _ { \\mitp } + \\mitmu _ { \\mitp - 2 } \\mitd \\mitq _ { \\mitp - 2 } \\\\ & = & \\mitT \\mitd \\mitS + \\mitmu _ { \\mitp } \\mitV _ { \\mitp } \\mitT _ { \\mitp } \\mitd \\mitN _ { \\mitp } + \\mitmu _ { \\mitp - 2 } \\mitV _ { \\mitp - 2 } \\mitT _ { \\mitp - 2 } \\mitd \\mitN _ { \\mitp - 2 } , \\end{align*}", "\\begin{equation*} \\mitmu _ { \\mitp } = \\operatorname { c o s } \\mittheta \\operatorname { t a n h } \\mitalpha \\slash \\mitg , ~ ~ ~ \\mitmu _ { \\mitp - 2 } = \\operatorname { s i n } \\mittheta \\operatorname { t a n h } \\mitalpha \\slash \\mitg . \\end{equation*}", "\\begin{equation*} \\mitM _ { \\mathrm { e x t } . } ^ { 2 } = \\mitq _ { \\mitp } ^ { 2 } + \\mitq _ { \\mitp - 2 } ^ { 2 } , \\end{equation*}", "\\begin{align*} \\mitalpha ^ { \\prime } \\rightarrow 0 : & & \\operatorname { t a n } \\mittheta = \\frac { \\tilde { \\mitb } } { \\mitalpha ^ { \\prime } } , ~ ~ ~ \\mitr = \\mitalpha ^ { \\prime } \\mitu , ~ ~ ~ \\mitr _ { 0 } = \\mitalpha ^ { \\prime } \\mitu _ { 0 } , \\\\ & & \\mitg = \\tilde { \\mitg } \\mitalpha ^ { \\prime ( 5 - \\mitp ) \\slash 2 } , ~ ~ ~ \\mitx _ { 0 , 1 , \\cdots , \\mitp - 2 } = \\tilde { \\mitx } _ { 0 , 1 , \\cdots , \\mitp - 2 } , ~ ~ ~ \\mitx _ { \\mitp - 1 , \\mitp } = \\frac { \\mitalpha ^ { \\prime } } { \\tilde { \\mitb } } \\tilde { \\mitx } _ { \\mitp - 1 , \\mitp } , \\end{align*}" ], "x_min": [ 0.44780001044273376, 0.8044000267982483, 0.6413000226020813, 0.7857999801635742, 0.22110000252723694, 0.6827999949455261, 0.20180000364780426, 0.6240000128746033, 0.7623000144958496, 0.46369999647140503, 0.45399999618530273, 0.5805000066757202, 0.8176000118255615, 0.3772999942302704, 0.5023999810218811, 0.6765999794006348, 0.3677000105381012, 0.17900000512599945, 0.2467000037431717, 0.8431000113487244, 0.120899997651577, 0.2087000012397766, 0.6578999757766724, 0.7699000239372253, 0.19210000336170197, 0.46720001101493835, 0.5543000102043152, 0.866599977016449, 0.2827000021934509, 0.3124000132083893, 0.4242999851703644, 0.19900000095367432 ], "y_min": [ 0.1826000064611435, 0.1826000064611435, 0.21040000021457672, 0.2070000022649765, 0.23000000417232513, 0.23100000619888306, 0.2549000084400177, 0.2538999915122986, 0.2777999937534332, 0.30320000648498535, 0.33059999346733093, 0.32710000872612, 0.32710000872612, 0.3544999957084656, 0.35109999775886536, 0.35010001063346863, 0.375, 0.5307999849319458, 0.5307999849319458, 0.5273000001907349, 0.5512999892234802, 0.5512999892234802, 0.6284000277519226, 0.6312999725341797, 0.6484000086784363, 0.7064999938011169, 0.7109000086784363, 0.7588000297546387, 0.4551999866962433, 0.5853999853134155, 0.6699000000953674, 0.8080999851226807 ], "x_max": [ 0.45820000767707825, 0.8141000270843506, 0.6517000198364258, 0.8023999929428101, 0.28049999475479126, 0.699400007724762, 0.2184000015258789, 0.6862000226974487, 0.8216999769210815, 0.48030000925064087, 0.4643999934196472, 0.597100019454956, 0.8342000246047974, 0.38769999146461487, 0.5189999938011169, 0.7373999953269958, 0.38429999351501465, 0.19900000095367432, 0.2847000062465668, 0.8866000175476074, 0.16439999639987946, 0.35040000081062317, 0.7221999764442444, 0.8396999835968018, 0.23360000550746918, 0.5273000001907349, 0.5647000074386597, 0.8769999742507935, 0.7221999764442444, 0.694599986076355, 0.5791000127792358, 0.8051000237464905 ], "y_max": [ 0.19329999387264252, 0.19329999387264252, 0.21969999372959137, 0.21729999780654907, 0.24459999799728394, 0.24130000174045563, 0.2651999890804291, 0.26899999380111694, 0.2928999960422516, 0.31349998712539673, 0.34040001034736633, 0.33739998936653137, 0.33739998936653137, 0.364300012588501, 0.3614000082015991, 0.36469998955726624, 0.38530001044273376, 0.5414999723434448, 0.5414999723434448, 0.5414999723434448, 0.565500020980835, 0.565500020980835, 0.6401000022888184, 0.6381000280380249, 0.6621000170707703, 0.7210999727249146, 0.7202000021934509, 0.7685999870300293, 0.5056999921798706, 0.6035000085830688, 0.6913999915122986, 0.8791999816894531 ], "expr_type": [ "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "isolated", "isolated", "isolated", "isolated" ] }
0001213_page07
{ "latex": [ "$\\tilde {b}$", "$\\tilde {g}$", "$u$", "$u_0$", "$\\tilde {x}_{\\mu }$", "$U(N_p)$", "$p+1)$", "$a=0$", "$p$", "$B$", "$au<<1$", "$E$", "$T$", "$S$", "$\\tilde {V}_p=V_{p-2}\\tilde {V_2}$", "$p$", "$\\tilde {V}_2 = V_2 \\tilde {b}^2/\\alpha '^2$", "$F=E-TS$", "\\begin {eqnarray} && ds^2=\\alpha '\\left [\\left (\\frac {u}{R}\\right )^{(7-p)/2}\\left (-\\tilde {f} dt^2 +d\\tilde {x}_1^2 +\\cdots +d\\tilde {x}_{p-2}^2 +\\tilde {h}(d\\tilde {x}_{p-1}^2 +d\\tilde {x}_p^2)\\right ) \\right . \\\\ &&~~~~~~~~\\left . +\\left (\\frac {R}{u}\\right )^{(7-p)/2} \\left (\\tilde {f}^{-1}du^2 +u^2 d\\Omega ^2_{8-p}\\right )\\right ], \\\\ && e^{2\\phi } = \\tilde {g}^2\\tilde {b}^2 \\tilde {h}\\left (\\frac {R}{u} \\right )^{(7-p)(3-p)/2}, \\ \\ \\ B_{p-1,p} = \\frac {\\alpha '}{\\tilde {b}}\\frac {(au)^{7-p}}{1+(au)^{7-p}}, \\end {eqnarray}", "\\begin {equation} \\tilde {f} = 1 - \\left (\\frac {u_0}{u}\\right )^{7-p},\\ \\ \\tilde {h} = \\frac {1} {1+(au)^{7-p}}, \\ \\ \\ a^{7-p} = \\tilde {b}^2/R^{7-p}, \\label {fha} \\end {equation}", "\\begin {equation} \\label {R} R^{7-p} = \\frac {1}{2}(2\\pi )^{6-p}\\pi ^{-(7-p)/2}\\Gamma [(7-p)/2]\\tilde {g} \\tilde {b} N_p. \\end {equation}", "\\begin {eqnarray} && E = \\frac {(9-p)\\Omega _{8-p}\\tilde {V}_p}{2(2\\pi )^7 (\\tilde {g}\\tilde {b})^2} u_0^{7-p}, \\\\ && T = \\frac {7-p}{4\\pi }R^{-\\frac {7-p}{2}}u_0^{\\frac {5-p}{2}}, \\\\ && S = \\frac {2\\Omega _{8-p}\\tilde {V}_p}{(2\\pi )^6(\\tilde {g}\\tilde {b})^2} R^{\\frac {7-p}{2}}u_0^{(9-p)/2}. \\end {eqnarray}", "\\begin {eqnarray} F &=& - \\frac {(5-p)\\Omega _{8-p}\\tilde {V}_p}{2(2\\pi )^7(\\tilde {g}\\tilde {b})^2} u_0^{7-p} \\\\ &=& -\\frac {\\Omega _{8-p}V_{p-2}\\tilde {V}_2}{(2\\pi )^7 \\tilde {g}^2 \\tilde {b}^2} \\frac {5-p}{2}\\left (\\frac {4\\pi }{7-p}\\right )^{\\frac {2(7-p)} {5-p}} R^{\\frac {(7-p)^2}{5-p}}T^{\\frac {2(7-p)}{5-p}}, \\end {eqnarray}" ], "latex_norm": [ "$ \\widetilde { b } $", "$ \\widetilde { g } $", "$ u $", "$ u _ { 0 } $", "$ \\widetilde { x } _ { \\mu } $", "$ U ( N _ { p } ) $", "$ p + 1 ) $", "$ a = 0 $", "$ p $", "$ B $", "$ a u < < 1 $", "$ E $", "$ T $", "$ S $", "$ \\widetilde { V } _ { p } = V _ { p - 2 } \\widetilde { V _ { 2 } } $", "$ p $", "$ \\widetilde { V } _ { 2 } = V _ { 2 } \\widetilde { b } ^ { 2 } \\slash \\alpha ^ { \\prime 2 } $", "$ F = E - T S $", "\\begin{align*} & & d s ^ { 2 } = \\alpha ^ { \\prime } [ { ( \\frac { u } { R } ) } ^ { ( 7 - p ) \\slash 2 } ( - \\widetilde { f } d t ^ { 2 } + d \\widetilde { x } _ { 1 } ^ { 2 } + \\cdots + d \\widetilde { x } _ { p - 2 } ^ { 2 } + \\widetilde { h } ( d \\widetilde { x } _ { p - 1 } ^ { 2 } + d \\widetilde { x } _ { p } ^ { 2 } ) ) \\\\ & & ~ ~ ~ ~ ~ ~ ~ ~ + { ( \\frac { R } { u } ) } ^ { ( 7 - p ) \\slash 2 } ( \\widetilde { f } ^ { - 1 } d u ^ { 2 } + u ^ { 2 } d \\Omega _ { 8 - p } ^ { 2 } ) ] , \\\\ & & e ^ { 2 \\phi } = \\widetilde { g } ^ { 2 } \\widetilde { b } ^ { 2 } \\widetilde { h } { ( \\frac { R } { u } ) } ^ { ( 7 - p ) ( 3 - p ) \\slash 2 } , ~ ~ ~ B _ { p - 1 , p } = \\frac { \\alpha ^ { \\prime } } { \\widetilde { b } } \\frac { ( a u ) ^ { 7 - p } } { 1 + ( a u ) ^ { 7 - p } } , \\end{align*}", "\\begin{equation*} \\widetilde { f } = 1 - { ( \\frac { u _ { 0 } } { u } ) } ^ { 7 - p } , ~ ~ \\widetilde { h } = \\frac { 1 } { 1 + ( a u ) ^ { 7 - p } } , ~ ~ ~ a ^ { 7 - p } = \\widetilde { b } ^ { 2 } \\slash R ^ { 7 - p } , \\end{equation*}", "\\begin{equation*} R ^ { 7 - p } = \\frac { 1 } { 2 } ( 2 \\pi ) ^ { 6 - p } \\pi ^ { - ( 7 - p ) \\slash 2 } \\Gamma [ ( 7 - p ) \\slash 2 ] \\widetilde { g } \\widetilde { b } N _ { p } . \\end{equation*}", "\\begin{align*} & & E = \\frac { ( 9 - p ) \\Omega _ { 8 - p } \\widetilde { V } _ { p } } { 2 ( 2 \\pi ) ^ { 7 } ( \\widetilde { g } \\widetilde { b } ) ^ { 2 } } u _ { 0 } ^ { 7 - p } , \\\\ & & T = \\frac { 7 - p } { 4 \\pi } R ^ { - \\frac { 7 - p } { 2 } } u _ { 0 } ^ { \\frac { 5 - p } { 2 } } , \\\\ & & S = \\frac { 2 \\Omega _ { 8 - p } \\widetilde { V } _ { p } } { ( 2 \\pi ) ^ { 6 } ( \\widetilde { g } \\widetilde { b } ) ^ { 2 } } R ^ { \\frac { 7 - p } { 2 } } u _ { 0 } ^ { ( 9 - p ) \\slash 2 } . \\end{align*}", "\\begin{align*} F & = & - \\frac { ( 5 - p ) \\Omega _ { 8 - p } \\widetilde { V } _ { p } } { 2 ( 2 \\pi ) ^ { 7 } ( \\widetilde { g } \\widetilde { b } ) ^ { 2 } } u _ { 0 } ^ { 7 - p } \\\\ & = & - \\frac { \\Omega _ { 8 - p } V _ { p - 2 } \\widetilde { V } _ { 2 } } { ( 2 \\pi ) ^ { 7 } \\widetilde { g } ^ { 2 } \\widetilde { b } ^ { 2 } } \\frac { 5 - p } { 2 } { ( \\frac { 4 \\pi } { 7 - p } ) } ^ { \\frac { 2 ( 7 - p ) } { 5 - p } } R ^ { \\frac { ( 7 - p ) ^ { 2 } } { 5 - p } } T ^ { \\frac { 2 ( 7 - p ) } { 5 - p } } , \\end{align*}" ], "latex_expand": [ "$ \\tilde { \\mitb } $", "$ \\tilde { \\mitg } $", "$ \\mitu $", "$ \\mitu _ { 0 } $", "$ \\tilde { \\mitx } _ { \\mitmu } $", "$ \\mitU ( \\mitN _ { \\mitp } ) $", "$ \\mitp + 1 ) $", "$ \\mita = 0 $", "$ \\mitp $", "$ \\mitB $", "$ \\mita \\mitu < < 1 $", "$ \\mitE $", "$ \\mitT $", "$ \\mitS $", "$ \\tilde { \\mitV } _ { \\mitp } = \\mitV _ { \\mitp - 2 } \\tilde { \\mitV _ { 2 } } $", "$ \\mitp $", "$ \\tilde { \\mitV } _ { 2 } = \\mitV _ { 2 } \\tilde { \\mitb } ^ { 2 } \\slash \\mitalpha ^ { \\prime 2 } $", "$ \\mitF = \\mitE - \\mitT \\mitS $", "\\begin{align*} & & \\mitd \\mits ^ { 2 } = \\mitalpha ^ { \\prime } \\left[ { \\left( \\frac { \\mitu } { \\mitR } \\right) } ^ { ( 7 - \\mitp ) \\slash 2 } \\left( - \\tilde { \\mitf } \\mitd \\mitt ^ { 2 } + \\mitd \\tilde { \\mitx } _ { 1 } ^ { 2 } + \\cdots + \\mitd \\tilde { \\mitx } _ { \\mitp - 2 } ^ { 2 } + \\tilde { \\Planckconst } ( \\mitd \\tilde { \\mitx } _ { \\mitp - 1 } ^ { 2 } + \\mitd \\tilde { \\mitx } _ { \\mitp } ^ { 2 } ) \\right) \\right. \\\\ & & ~ ~ ~ ~ ~ ~ ~ ~ \\left. + { \\left( \\frac { \\mitR } { \\mitu } \\right) } ^ { ( 7 - \\mitp ) \\slash 2 } \\left( \\tilde { \\mitf } ^ { - 1 } \\mitd \\mitu ^ { 2 } + \\mitu ^ { 2 } \\mitd \\mupOmega _ { 8 - \\mitp } ^ { 2 } \\right) \\right] , \\\\ & & \\mite ^ { 2 \\mitphi } = \\tilde { \\mitg } ^ { 2 } \\tilde { \\mitb } ^ { 2 } \\tilde { \\Planckconst } { \\left( \\frac { \\mitR } { \\mitu } \\right) } ^ { ( 7 - \\mitp ) ( 3 - \\mitp ) \\slash 2 } , ~ ~ ~ \\mitB _ { \\mitp - 1 , \\mitp } = \\frac { \\mitalpha ^ { \\prime } } { \\tilde { \\mitb } } \\frac { ( \\mita \\mitu ) ^ { 7 - \\mitp } } { 1 + ( \\mita \\mitu ) ^ { 7 - \\mitp } } , \\end{align*}", "\\begin{equation*} \\tilde { \\mitf } = 1 - { \\left( \\frac { \\mitu _ { 0 } } { \\mitu } \\right) } ^ { 7 - \\mitp } , ~ ~ \\tilde { \\Planckconst } = \\frac { 1 } { 1 + ( \\mita \\mitu ) ^ { 7 - \\mitp } } , ~ ~ ~ \\mita ^ { 7 - \\mitp } = \\tilde { \\mitb } ^ { 2 } \\slash \\mitR ^ { 7 - \\mitp } , \\end{equation*}", "\\begin{equation*} \\mitR ^ { 7 - \\mitp } = \\frac { 1 } { 2 } ( 2 \\mitpi ) ^ { 6 - \\mitp } \\mitpi ^ { - ( 7 - \\mitp ) \\slash 2 } \\mupGamma [ ( 7 - \\mitp ) \\slash 2 ] \\tilde { \\mitg } \\tilde { \\mitb } \\mitN _ { \\mitp } . \\end{equation*}", "\\begin{align*} & & \\mitE = \\frac { ( 9 - \\mitp ) \\mupOmega _ { 8 - \\mitp } \\tilde { \\mitV } _ { \\mitp } } { 2 ( 2 \\mitpi ) ^ { 7 } ( \\tilde { \\mitg } \\tilde { \\mitb } ) ^ { 2 } } \\mitu _ { 0 } ^ { 7 - \\mitp } , \\\\ & & \\mitT = \\frac { 7 - \\mitp } { 4 \\mitpi } \\mitR ^ { - \\frac { 7 - \\mitp } { 2 } } \\mitu _ { 0 } ^ { \\frac { 5 - \\mitp } { 2 } } , \\\\ & & \\mitS = \\frac { 2 \\mupOmega _ { 8 - \\mitp } \\tilde { \\mitV } _ { \\mitp } } { ( 2 \\mitpi ) ^ { 6 } ( \\tilde { \\mitg } \\tilde { \\mitb } ) ^ { 2 } } \\mitR ^ { \\frac { 7 - \\mitp } { 2 } } \\mitu _ { 0 } ^ { ( 9 - \\mitp ) \\slash 2 } . \\end{align*}", "\\begin{align*} \\mitF & = & - \\frac { ( 5 - \\mitp ) \\mupOmega _ { 8 - \\mitp } \\tilde { \\mitV } _ { \\mitp } } { 2 ( 2 \\mitpi ) ^ { 7 } ( \\tilde { \\mitg } \\tilde { \\mitb } ) ^ { 2 } } \\mitu _ { 0 } ^ { 7 - \\mitp } \\\\ & = & - \\frac { \\mupOmega _ { 8 - \\mitp } \\mitV _ { \\mitp - 2 } \\tilde { \\mitV } _ { 2 } } { ( 2 \\mitpi ) ^ { 7 } \\tilde { \\mitg } ^ { 2 } \\tilde { \\mitb } ^ { 2 } } \\frac { 5 - \\mitp } { 2 } { \\left( \\frac { 4 \\mitpi } { 7 - \\mitp } \\right) } ^ { \\frac { 2 ( 7 - \\mitp ) } { 5 - \\mitp } } \\mitR ^ { \\frac { ( 7 - \\mitp ) ^ { 2 } } { 5 - \\mitp } } \\mitT ^ { \\frac { 2 ( 7 - \\mitp ) } { 5 - \\mitp } } , \\end{align*}" ], "x_min": [ 0.15889999270439148, 0.17970000207424164, 0.20180000364780426, 0.22460000216960907, 0.29440000653266907, 0.8285999894142151, 0.1534000039100647, 0.5169000029563904, 0.4325999915599823, 0.5860000252723694, 0.574999988079071, 0.120899997651577, 0.2605000138282776, 0.3912000060081482, 0.1671999990940094, 0.532800018787384, 0.22110000252723694, 0.21289999783039093, 0.22210000455379486, 0.26260000467300415, 0.3172000050544739, 0.39489999413490295, 0.26669999957084656 ], "y_min": [ 0.13130000233650208, 0.13529999554157257, 0.1386999934911728, 0.1386999934911728, 0.13529999554157257, 0.44339999556541443, 0.4672999978065491, 0.46880000829696655, 0.49559998512268066, 0.49219998717308044, 0.5166000127792358, 0.5640000104904175, 0.5640000104904175, 0.5640000104904175, 0.7163000106811523, 0.7231000065803528, 0.7401999831199646, 0.7675999999046326, 0.15870000422000885, 0.31540000438690186, 0.37700000405311584, 0.5874000191688538, 0.7904999852180481 ], "x_max": [ 0.1678999960422516, 0.19009999930858612, 0.2134999930858612, 0.24459999799728394, 0.3151000142097473, 0.883899986743927, 0.2087000012397766, 0.5715000033378601, 0.4429999887943268, 0.6025999784469604, 0.6482999920845032, 0.13680000603199005, 0.2750000059604645, 0.4050000011920929, 0.27090001106262207, 0.5432000160217285, 0.33719998598098755, 0.32280001044273376, 0.8084999918937683, 0.7408000230789185, 0.6897000074386597, 0.6399999856948853, 0.7473999857902527 ], "y_max": [ 0.14499999582767487, 0.14800000190734863, 0.14499999582767487, 0.14749999344348907, 0.14949999749660492, 0.4584999978542328, 0.48190000653266907, 0.47859999537467957, 0.5054000020027161, 0.5024999976158142, 0.5268999934196472, 0.5746999979019165, 0.5746999979019165, 0.5746999979019165, 0.7339000105857849, 0.7329000234603882, 0.7573000192642212, 0.7788000106811523, 0.28060001134872437, 0.35249999165534973, 0.4092000126838684, 0.7039999961853027, 0.8783000111579895 ], "expr_type": [ "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "isolated", "isolated", "isolated", "isolated", "isolated" ] }
0001213_page08
{ "latex": [ "$T$", "$N$", "$\\tilde {g}\\tilde {b}=\\hat {g}$", "$p$", "$B$", "$N$", "$(p+1)$", "$p$", "$B$", "$(p-2)$", "$B$", "$p$", "$R^{7-p}$", "$N_p$", "$p$", "$R$", "$(p-2)$", "$p$", "$(p-2)$", "$\\tilde {V}_2$", "$\\tilde {b}$", "$p$", "$B$", "$(p-2)$", "\\begin {equation} dE = TdS, \\ \\ \\ {\\rm and}\\ \\ \\ dF = - SdT. \\end {equation}", "\\begin {equation} \\label {R2} R^{7-p} = \\frac {1}{2}(2\\pi )^{6-p}\\pi ^{-(7-p)/2}\\Gamma [(7-p)/2] \\tilde {g}\\tilde {b}N_{p-2}\\times \\frac {(2\\pi )^2\\tilde {b}}{\\tilde {V_2}}. \\end {equation}", "\\begin {equation} \\label {number} \\tan \\theta = \\frac {\\tilde {b}}{\\alpha '} = \\frac {(2\\pi )^2\\tilde {b}^2} {\\alpha '\\tilde {V}_2}\\frac {N_{p-2}}{N_p}\\ \\ \\ \\^^M\\Longrightarrow \\ \\ \\frac {N_{p-2}}{N_p} = \\frac {\\tilde {V}_2}{(2\\pi )^2\\tilde {b}}. \\end {equation}" ], "latex_norm": [ "$ T $", "$ N $", "$ \\widetilde { g } \\widetilde { b } = \\hat { g } $", "$ p $", "$ B $", "$ N $", "$ ( p + 1 ) $", "$ p $", "$ B $", "$ ( p - 2 ) $", "$ B $", "$ p $", "$ R ^ { 7 - p } $", "$ N _ { p } $", "$ p $", "$ R $", "$ ( p - 2 ) $", "$ p $", "$ ( p - 2 ) $", "$ \\widetilde { V } _ { 2 } $", "$ \\widetilde { b } $", "$ p $", "$ B $", "$ ( p - 2 ) $", "\\begin{equation*} d E = T d S , ~ ~ ~ a n d ~ ~ ~ d F = - S d T . \\end{equation*}", "\\begin{equation*} R ^ { 7 - p } = \\frac { 1 } { 2 } ( 2 \\pi ) ^ { 6 - p } \\pi ^ { - ( 7 - p ) \\slash 2 } \\Gamma [ ( 7 - p ) \\slash 2 ] \\widetilde { g } \\widetilde { b } N _ { p - 2 } \\times \\frac { ( 2 \\pi ) ^ { 2 } \\widetilde { b } } { \\widetilde { V _ { 2 } } } . \\end{equation*}", "\\begin{equation*} \\operatorname { t a n } \\theta = \\frac { \\widetilde { b } } { \\alpha ^ { \\prime } } = \\frac { ( 2 \\pi ) ^ { 2 } \\widetilde { b } ^ { 2 } } { \\alpha ^ { \\prime } \\widetilde { V } _ { 2 } } \\frac { N _ { p - 2 } } { N _ { p } } ~ ~ ~ ~ \\Longrightarrow ~ ~ \\frac { N _ { p - 2 } } { N _ { p } } = \\frac { \\widetilde { V } _ { 2 } } { ( 2 \\pi ) ^ { 2 } \\widetilde { b } } . \\end{equation*}" ], "latex_expand": [ "$ \\mitT $", "$ \\mitN $", "$ \\tilde { \\mitg } \\tilde { \\mitb } = \\hat { \\mitg } $", "$ \\mitp $", "$ \\mitB $", "$ \\mitN $", "$ ( \\mitp + 1 ) $", "$ \\mitp $", "$ \\mitB $", "$ ( \\mitp - 2 ) $", "$ \\mitB $", "$ \\mitp $", "$ \\mitR ^ { 7 - \\mitp } $", "$ \\mitN _ { \\mitp } $", "$ \\mitp $", "$ \\mitR $", "$ ( \\mitp - 2 ) $", "$ \\mitp $", "$ ( \\mitp - 2 ) $", "$ \\tilde { \\mitV } _ { 2 } $", "$ \\tilde { \\mitb } $", "$ \\mitp $", "$ \\mitB $", "$ ( \\mitp - 2 ) $", "\\begin{equation*} \\mitd \\mitE = \\mitT \\mitd \\mitS , ~ ~ ~ \\mathrm { a n d } ~ ~ ~ \\mitd \\mitF = - \\mitS \\mitd \\mitT . \\end{equation*}", "\\begin{equation*} \\mitR ^ { 7 - \\mitp } = \\frac { 1 } { 2 } ( 2 \\mitpi ) ^ { 6 - \\mitp } \\mitpi ^ { - ( 7 - \\mitp ) \\slash 2 } \\mupGamma [ ( 7 - \\mitp ) \\slash 2 ] \\tilde { \\mitg } \\tilde { \\mitb } \\mitN _ { \\mitp - 2 } \\times \\frac { ( 2 \\mitpi ) ^ { 2 } \\tilde { \\mitb } } { \\tilde { \\mitV _ { 2 } } } . \\end{equation*}", "\\begin{equation*} \\operatorname { t a n } \\mittheta = \\frac { \\tilde { \\mitb } } { \\mitalpha ^ { \\prime } } = \\frac { ( 2 \\mitpi ) ^ { 2 } \\tilde { \\mitb } ^ { 2 } } { \\mitalpha ^ { \\prime } \\tilde { \\mitV } _ { 2 } } \\frac { \\mitN _ { \\mitp - 2 } } { \\mitN _ { \\mitp } } ~ ~ ~ ~ \\Longrightarrow ~ ~ \\frac { \\mitN _ { \\mitp - 2 } } { \\mitN _ { \\mitp } } = \\frac { \\tilde { \\mitV } _ { 2 } } { ( 2 \\mitpi ) ^ { 2 } \\tilde { \\mitb } } . \\end{equation*}" ], "x_min": [ 0.4083999991416931, 0.5307999849319458, 0.14579999446868896, 0.6101999878883362, 0.7642999887466431, 0.29089999198913574, 0.8238000273704529, 0.8112999796867371, 0.23980000615119934, 0.6011999845504761, 0.29919999837875366, 0.31310001015663147, 0.5210999846458435, 0.8361999988555908, 0.2660999894142151, 0.6420000195503235, 0.24879999458789825, 0.8278999924659729, 0.13609999418258667, 0.1956000030040741, 0.259799987077713, 0.16859999299049377, 0.3206999897956848, 0.5619000196456909, 0.3628000020980835, 0.26739999651908875, 0.2777999937534332 ], "y_min": [ 0.2831999957561493, 0.2831999957561493, 0.3280999958515167, 0.33500000834465027, 0.33149999380111694, 0.37940001487731934, 0.3783999979496002, 0.5034000277519226, 0.5234000086784363, 0.5224999785423279, 0.5479000210762024, 0.5752000212669373, 0.5702999830245972, 0.5717999935150146, 0.5990999937057495, 0.5957000255584717, 0.6187000274658203, 0.7031000256538391, 0.7226999998092651, 0.8057000041007996, 0.8051999807357788, 0.8363999724388123, 0.8324999809265137, 0.8314999938011169, 0.19380000233650208, 0.6449999809265137, 0.7490000128746033 ], "x_max": [ 0.4235999882221222, 0.548799991607666, 0.20520000159740448, 0.6205999851226807, 0.7809000015258789, 0.30959999561309814, 0.8831999897956848, 0.8216999769210815, 0.2563999891281128, 0.6620000004768372, 0.3158000111579895, 0.32350000739097595, 0.5633000135421753, 0.8604000210762024, 0.27649998664855957, 0.6578999757766724, 0.30959999561309814, 0.8382999897003174, 0.19619999825954437, 0.21559999883174896, 0.26809999346733093, 0.17900000512599945, 0.33730000257492065, 0.6172000169754028, 0.64410001039505, 0.7401000261306763, 0.725600004196167 ], "y_max": [ 0.2939000129699707, 0.2939000129699707, 0.34470000863075256, 0.3447999954223633, 0.3418000042438507, 0.3896999955177307, 0.3935000002384186, 0.5127000212669373, 0.5336999893188477, 0.5375999808311462, 0.5582000017166138, 0.5849999785423279, 0.5820000171661377, 0.5860000252723694, 0.6089000105857849, 0.6060000061988831, 0.6333000063896179, 0.7128999829292297, 0.7378000020980835, 0.8213000297546387, 0.8194000124931335, 0.8457000255584717, 0.8432000279426575, 0.8465999960899353, 0.21040000021457672, 0.6850000023841858, 0.7904999852180481 ], "expr_type": [ "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "isolated", "isolated", "isolated" ] }
0001213_page09
{ "latex": [ "$(p-2)$", "$\\tilde {x}_{p-1}$", "$\\tilde {x}_p$", "$\\tilde {V}_2 \\rightarrow \\infty $", "$N_{p-2}/\\tilde {V}_2 = N_p/(2\\pi )^2\\tilde {b}$", "$\\tan \\theta \\to \\infty $", "$\\alpha ' \\to 0$", "$\\theta = \\pi /2$", "$(p-2)$", "$B$", "$B$", "$N$", "$p$", "$B$", "$(p-2)$", "$B$", "$(p-2)$", "$H$", "$f$", "$x_{p-1}$", "$x_p$", "$(p-2)$", "$\\tilde {f}$", "$R^{7-p}$", "$\\tilde {f}=1$", "$au >>1$", "$p$", "$B$", "$(p-2)$", "$B$", "$u$", "$au$", "$(p-2)$", "$B$", "\\begin {eqnarray} && ds^2 =H^{-1/2}[-fdt^2 +dx_1^2 +\\cdots +dx_{p-2}^2 +H (dx_{p-1}^2 +dx_p^2)] +H^{1/2}(f^{-1}dr^2 +r^2d\\Omega _{8-p}), \\\\ && e^{2\\phi }=g^2H^{(5-p)/2}, \\ \\ \\ \\^^MA^{p-2}_{01\\cdots (p-2)} =g^{-1}(H^{-1}-1)\\coth \\alpha ,\\ \\ \\ \\^^MB_{p-1,p}=0, \\end {eqnarray}", "\\begin {eqnarray} && ds^2=\\alpha '\\left [\\left (\\frac {u}{R}\\right )^{(7-p)/2}\\left (-\\tilde {f} dt^2 + d\\tilde {x}_1^2 +\\cdots +d\\tilde {x}_{p-2}^2 + \\frac {1}{(au)^{7-p}}(d\\tilde {x}_{p-1}^2 + d\\tilde {x}_p^2)\\right ) \\right . \\\\ &&~~~~~~~~\\left . + \\left (\\frac {R}{u}\\right )^{(7-p)/2} \\left (\\tilde {f}^{-1}du^2 + u^2 d\\Omega ^2_{8-p}\\right )\\right ], \\\\ && e^{2\\phi } = \\tilde {g}^2 \\tilde {b}^{5-p}(au)^{(7-p)(p-5)/2}, \\ \\ \\ B_{p-1,p}=0, \\end {eqnarray}" ], "latex_norm": [ "$ ( p - 2 ) $", "$ \\widetilde { x } _ { p - 1 } $", "$ \\widetilde { x } _ { p } $", "$ \\widetilde { V } _ { 2 } \\rightarrow \\infty $", "$ N _ { p - 2 } \\slash \\widetilde { V } _ { 2 } = N _ { p } \\slash ( 2 \\pi ) ^ { 2 } \\widetilde { b } $", "$ t a n \\theta \\rightarrow \\infty $", "$ \\alpha ^ { \\prime } \\rightarrow 0 $", "$ \\theta = \\pi \\slash 2 $", "$ ( p - 2 ) $", "$ B $", "$ B $", "$ N $", "$ p $", "$ B $", "$ ( p - 2 ) $", "$ B $", "$ ( p - 2 ) $", "$ H $", "$ f $", "$ x _ { p - 1 } $", "$ x _ { p } $", "$ ( p - 2 ) $", "$ \\widetilde { f } $", "$ R ^ { 7 - p } $", "$ \\widetilde { f } = 1 $", "$ a u > > 1 $", "$ p $", "$ B $", "$ ( p - 2 ) $", "$ B $", "$ u $", "$ a u $", "$ ( p - 2 ) $", "$ B $", "\\begin{align*} & & d s ^ { 2 } = H ^ { - 1 \\slash 2 } [ - f d t ^ { 2 } + d x _ { 1 } ^ { 2 } + \\cdots + d x _ { p - 2 } ^ { 2 } + H ( d x _ { p - 1 } ^ { 2 } + d x _ { p } ^ { 2 } ) ] + H ^ { 1 \\slash 2 } ( f ^ { - 1 } d r ^ { 2 } + r ^ { 2 } d \\Omega _ { 8 - p } ) , \\\\ & & e ^ { 2 \\phi } = g ^ { 2 } H ^ { ( 5 - p ) \\slash 2 } , ~ ~ ~ ~ A _ { 0 1 \\cdots ( p - 2 ) } ^ { p - 2 } = g ^ { - 1 } ( H ^ { - 1 } - 1 ) \\operatorname { c o t h } \\alpha , ~ ~ ~ ~ B _ { p - 1 , p } = 0 , \\end{align*}", "\\begin{align*} & & d s ^ { 2 } = \\alpha ^ { \\prime } [ { ( \\frac { u } { R } ) } ^ { ( 7 - p ) \\slash 2 } ( - \\widetilde { f } d t ^ { 2 } + d \\widetilde { x } _ { 1 } ^ { 2 } + \\cdots + d \\widetilde { x } _ { p - 2 } ^ { 2 } + \\frac { 1 } { ( a u ) ^ { 7 - p } } ( d \\widetilde { x } _ { p - 1 } ^ { 2 } + d \\widetilde { x } _ { p } ^ { 2 } ) ) \\\\ & & ~ ~ ~ ~ ~ ~ ~ ~ + { ( \\frac { R } { u } ) } ^ { ( 7 - p ) \\slash 2 } ( \\widetilde { f } ^ { - 1 } d u ^ { 2 } + u ^ { 2 } d \\Omega _ { 8 - p } ^ { 2 } ) ] , \\\\ & & e ^ { 2 \\phi } = \\widetilde { g } ^ { 2 } \\widetilde { b } ^ { 5 - p } ( a u ) ^ { ( 7 - p ) ( p - 5 ) \\slash 2 } , ~ ~ ~ B _ { p - 1 , p } = 0 , \\end{align*}" ], "latex_expand": [ "$ ( \\mitp - 2 ) $", "$ \\tilde { \\mitx } _ { \\mitp - 1 } $", "$ \\tilde { \\mitx } _ { \\mitp } $", "$ \\tilde { \\mitV } _ { 2 } \\rightarrow \\infty $", "$ \\mitN _ { \\mitp - 2 } \\slash \\tilde { \\mitV } _ { 2 } = \\mitN _ { \\mitp } \\slash ( 2 \\mitpi ) ^ { 2 } \\tilde { \\mitb } $", "$ \\mathrm { t a n } \\mittheta \\rightarrow \\infty $", "$ \\mitalpha ^ { \\prime } \\rightarrow 0 $", "$ \\mittheta = \\mitpi \\slash 2 $", "$ ( \\mitp - 2 ) $", "$ \\mitB $", "$ \\mitB $", "$ \\mitN $", "$ \\mitp $", "$ \\mitB $", "$ ( \\mitp - 2 ) $", "$ \\mitB $", "$ ( \\mitp - 2 ) $", "$ \\mitH $", "$ \\mitf $", "$ \\mitx _ { \\mitp - 1 } $", "$ \\mitx _ { \\mitp } $", "$ ( \\mitp - 2 ) $", "$ \\tilde { \\mitf } $", "$ \\mitR ^ { 7 - \\mitp } $", "$ \\tilde { \\mitf } = 1 $", "$ \\mita \\mitu > > 1 $", "$ \\mitp $", "$ \\mitB $", "$ ( \\mitp - 2 ) $", "$ \\mitB $", "$ \\mitu $", "$ \\mita \\mitu $", "$ ( \\mitp - 2 ) $", "$ \\mitB $", "\\begin{align*} & & \\mitd \\mits ^ { 2 } = \\mitH ^ { - 1 \\slash 2 } [ - \\mitf \\mitd \\mitt ^ { 2 } + \\mitd \\mitx _ { 1 } ^ { 2 } + \\cdots + \\mitd \\mitx _ { \\mitp - 2 } ^ { 2 } + \\mitH ( \\mitd \\mitx _ { \\mitp - 1 } ^ { 2 } + \\mitd \\mitx _ { \\mitp } ^ { 2 } ) ] + \\mitH ^ { 1 \\slash 2 } ( \\mitf ^ { - 1 } \\mitd \\mitr ^ { 2 } + \\mitr ^ { 2 } \\mitd \\mupOmega _ { 8 - \\mitp } ) , \\\\ & & \\mite ^ { 2 \\mitphi } = \\mitg ^ { 2 } \\mitH ^ { ( 5 - \\mitp ) \\slash 2 } , ~ ~ ~ ~ \\mitA _ { 0 1 \\cdots ( \\mitp - 2 ) } ^ { \\mitp - 2 } = \\mitg ^ { - 1 } ( \\mitH ^ { - 1 } - 1 ) \\operatorname { c o t h } \\mitalpha , ~ ~ ~ ~ \\mitB _ { \\mitp - 1 , \\mitp } = 0 , \\end{align*}", "\\begin{align*} & & \\mitd \\mits ^ { 2 } = \\mitalpha ^ { \\prime } \\left[ { \\left( \\frac { \\mitu } { \\mitR } \\right) } ^ { ( 7 - \\mitp ) \\slash 2 } \\left( - \\tilde { \\mitf } \\mitd \\mitt ^ { 2 } + \\mitd \\tilde { \\mitx } _ { 1 } ^ { 2 } + \\cdots + \\mitd \\tilde { \\mitx } _ { \\mitp - 2 } ^ { 2 } + \\frac { 1 } { ( \\mita \\mitu ) ^ { 7 - \\mitp } } ( \\mitd \\tilde { \\mitx } _ { \\mitp - 1 } ^ { 2 } + \\mitd \\tilde { \\mitx } _ { \\mitp } ^ { 2 } ) \\right) \\right. \\\\ & & ~ ~ ~ ~ ~ ~ ~ ~ \\left. + { \\left( \\frac { \\mitR } { \\mitu } \\right) } ^ { ( 7 - \\mitp ) \\slash 2 } \\left( \\tilde { \\mitf } ^ { - 1 } \\mitd \\mitu ^ { 2 } + \\mitu ^ { 2 } \\mitd \\mupOmega _ { 8 - \\mitp } ^ { 2 } \\right) \\right] , \\\\ & & \\mite ^ { 2 \\mitphi } = \\tilde { \\mitg } ^ { 2 } \\tilde { \\mitb } ^ { 5 - \\mitp } ( \\mita \\mitu ) ^ { ( 7 - \\mitp ) ( \\mitp - 5 ) \\slash 2 } , ~ ~ ~ \\mitB _ { \\mitp - 1 , \\mitp } = 0 , \\end{align*}" ], "x_min": [ 0.19280000030994415, 0.5625, 0.6503000259399414, 0.7746999859809875, 0.19210000336170197, 0.4235999882221222, 0.5548999905586243, 0.72079998254776, 0.40290001034736633, 0.8672999739646912, 0.7228999733924866, 0.16930000483989716, 0.7415000200271606, 0.120899997651577, 0.6876000165939331, 0.3711000084877014, 0.3172000050544739, 0.1762000024318695, 0.23639999330043793, 0.6420000195503235, 0.7214999794960022, 0.39739999175071716, 0.17759999632835388, 0.23499999940395355, 0.7200999855995178, 0.5092999935150146, 0.16930000483989716, 0.3172000050544739, 0.2425999939441681, 0.7269999980926514, 0.4174000024795532, 0.3621000051498413, 0.4837999939918518, 0.7366999983787537, 0.15410000085830688, 0.19099999964237213 ], "y_min": [ 0.13379999995231628, 0.15919999778270721, 0.15919999778270721, 0.17970000207424164, 0.20360000431537628, 0.23100000619888306, 0.2304999977350235, 0.23000000417232513, 0.2538999915122986, 0.2549000084400177, 0.27880001068115234, 0.30320000648498535, 0.30660000443458557, 0.32710000872612, 0.326200008392334, 0.35109999775886536, 0.37400001287460327, 0.4790000021457672, 0.4790000021457672, 0.4828999936580658, 0.4828999936580658, 0.5019999742507935, 0.6518999934196472, 0.6538000106811523, 0.6518999934196472, 0.6797000169754028, 0.7070000171661377, 0.7031000256538391, 0.7265999913215637, 0.7275000214576721, 0.7788000106811523, 0.8026999831199646, 0.850600004196167, 0.8511000275611877, 0.3984000086784363, 0.5273000001907349 ], "x_max": [ 0.25360000133514404, 0.5997999906539917, 0.6703000068664551, 0.8472999930381775, 0.3765999972820282, 0.5217000246047974, 0.6191999912261963, 0.7940999865531921, 0.46369999647140503, 0.8831999897956848, 0.7394999861717224, 0.18729999661445618, 0.7519000172615051, 0.13750000298023224, 0.746999979019165, 0.38769999146461487, 0.3772999942302704, 0.1949000060558319, 0.24879999458789825, 0.6800000071525574, 0.7408999800682068, 0.45750001072883606, 0.1899999976158142, 0.27649998664855957, 0.7692000269889832, 0.5867000222206116, 0.18039999902248383, 0.33309999108314514, 0.3012999892234802, 0.7436000108718872, 0.42910000681877136, 0.38420000672340393, 0.5342000126838684, 0.7512000203132629, 0.8907999992370605, 0.8403000235557556 ], "y_max": [ 0.14890000224113464, 0.17339999973773956, 0.17339999973773956, 0.19529999792575836, 0.22120000422000885, 0.24130000174045563, 0.24120000004768372, 0.24459999799728394, 0.2685000002384186, 0.2651999890804291, 0.28949999809265137, 0.31349998712539673, 0.3163999915122986, 0.33739998936653137, 0.3407999873161316, 0.3614000082015991, 0.38909998536109924, 0.489300012588501, 0.49219998717308044, 0.4936000108718872, 0.4936000108718872, 0.5170999765396118, 0.6685000061988831, 0.6654999852180481, 0.6685000061988831, 0.6899999976158142, 0.7163000106811523, 0.7138000130653381, 0.7411999702453613, 0.7378000020980835, 0.7856000065803528, 0.809499979019165, 0.8628000020980835, 0.8598999977111816, 0.46380001306533813, 0.6362000107765198 ], "expr_type": [ "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "isolated", "isolated" ] }
0001213_page10
{ "latex": [ "$au>>1$", "$N_p$", "$U(N_p)$", "$p+1)$", "$au$", "$au$", "$\\tilde {x}_{p-1}$", "$\\tilde {x}_p$", "$N_{p-2}$", "$p$", "$B$", "$p+1$", "$U(N_{p-2})$", "$\\hat {V}_2= (2\\pi )^4\\tilde {b}^2/\\tilde {V}_2$", "$x_{p-1,p} \\sim x_{p-1,p} + \\sqrt {\\hat {V}_2}$", "$\\tilde {V}_2 \\to \\infty $", "$p+1$", "$p-1$", "$\\tilde {V}_2 \\to \\infty $", "$p-1)$", "$U(\\infty )$", "$p-1$", "$(p+1)$", "$g^2_{\\rm YM}=(2\\pi )^{p-2}\\tilde {g}\\tilde {b}$", "$p+1)$", "$U(\\infty )$", "$p-1$", "$p$", "$B$", "\\begin {eqnarray} ds^2 &=&\\alpha ' \\left [\\left (\\frac {u}{R}\\right )^{(7-p)/2}\\left (-\\tilde {f}dt^2 +d\\tilde {x}_1^2 +\\cdots +d\\tilde {x}_{p-2}^2 +dx_{p-1}^2 +dx_p^2\\right ) \\right . \\\\ && ~~~ \\left . +\\left (\\frac {R}{u}\\right )^{(7-p)/2}\\left (\\tilde {f}^{-1}du^2 + u^2d\\Omega ^2_{8-p}\\right ) \\right ], \\\\ e^{2\\phi } &=& \\frac {(2\\pi )^4\\tilde {g}^2 \\tilde {b}^4}{\\tilde {V}_2^2} \\left (\\frac {u}{R}\\right )^{(7-p)(p-3)/2}, \\ \\ \\ \\tilde {B}_{p-1,p}=0. \\end {eqnarray}", "\\begin {equation} \\label {const1} g^2_{\\rm YM}=(2\\pi )^{p-4}\\tilde {g}, \\end {equation}" ], "latex_norm": [ "$ a u > > 1 $", "$ N _ { p } $", "$ U ( N _ { p } ) $", "$ p + 1 ) $", "$ a u $", "$ a u $", "$ \\widetilde { x } _ { p - 1 } $", "$ \\widetilde { x } _ { p } $", "$ N _ { p - 2 } $", "$ p $", "$ B $", "$ p + 1 $", "$ U ( N _ { p - 2 } ) $", "$ \\hat { V } _ { 2 } = ( 2 \\pi ) ^ { 4 } \\widetilde { b } ^ { 2 } \\slash \\widetilde { V } _ { 2 } $", "$ x _ { p - 1 , p } \\sim x _ { p - 1 , p } + \\sqrt { \\hat { V } _ { 2 } } $", "$ \\widetilde { V } _ { 2 } \\rightarrow \\infty $", "$ p + 1 $", "$ p - 1 $", "$ \\widetilde { V } _ { 2 } \\rightarrow \\infty $", "$ p - 1 ) $", "$ U ( \\infty ) $", "$ p - 1 $", "$ ( p + 1 ) $", "$ g _ { Y M } ^ { 2 } = ( 2 \\pi ) ^ { p - 2 } \\widetilde { g } \\widetilde { b } $", "$ p + 1 ) $", "$ U ( \\infty ) $", "$ p - 1 $", "$ p $", "$ B $", "\\begin{align*} d s ^ { 2 } & = & \\alpha ^ { \\prime } [ { ( \\frac { u } { R } ) } ^ { ( 7 - p ) \\slash 2 } ( - \\widetilde { f } d t ^ { 2 } + d \\widetilde { x } _ { 1 } ^ { 2 } + \\cdots + d \\widetilde { x } _ { p - 2 } ^ { 2 } + d x _ { p - 1 } ^ { 2 } + d x _ { p } ^ { 2 } ) \\\\ & & ~ ~ ~ + { ( \\frac { R } { u } ) } ^ { ( 7 - p ) \\slash 2 } ( \\widetilde { f } ^ { - 1 } d u ^ { 2 } + u ^ { 2 } d \\Omega _ { 8 - p } ^ { 2 } ) ] , \\\\ e ^ { 2 \\phi } & = & \\frac { ( 2 \\pi ) ^ { 4 } \\widetilde { g } ^ { 2 } \\widetilde { b } ^ { 4 } } { \\widetilde { V } _ { 2 } ^ { 2 } } { ( \\frac { u } { R } ) } ^ { ( 7 - p ) ( p - 3 ) \\slash 2 } , ~ ~ ~ \\widetilde { B } _ { p - 1 , p } = 0 . \\end{align*}", "\\begin{equation*} g _ { Y M } ^ { 2 } = ( 2 \\pi ) ^ { p - 4 } \\widetilde { g } , \\end{equation*}" ], "latex_expand": [ "$ \\mita \\mitu > > 1 $", "$ \\mitN _ { \\mitp } $", "$ \\mitU ( \\mitN _ { \\mitp } ) $", "$ \\mitp + 1 ) $", "$ \\mita \\mitu $", "$ \\mita \\mitu $", "$ \\tilde { \\mitx } _ { \\mitp - 1 } $", "$ \\tilde { \\mitx } _ { \\mitp } $", "$ \\mitN _ { \\mitp - 2 } $", "$ \\mitp $", "$ \\mitB $", "$ \\mitp + 1 $", "$ \\mitU ( \\mitN _ { \\mitp - 2 } ) $", "$ \\hat { \\mitV } _ { 2 } = ( 2 \\mitpi ) ^ { 4 } \\tilde { \\mitb } ^ { 2 } \\slash \\tilde { \\mitV } _ { 2 } $", "$ \\mitx _ { \\mitp - 1 , \\mitp } \\sim \\mitx _ { \\mitp - 1 , \\mitp } + \\sqrt { \\hat { \\mitV } _ { 2 } } $", "$ \\tilde { \\mitV } _ { 2 } \\rightarrow \\infty $", "$ \\mitp + 1 $", "$ \\mitp - 1 $", "$ \\tilde { \\mitV } _ { 2 } \\rightarrow \\infty $", "$ \\mitp - 1 ) $", "$ \\mitU ( \\infty ) $", "$ \\mitp - 1 $", "$ ( \\mitp + 1 ) $", "$ \\mitg _ { \\mathrm { Y M } } ^ { 2 } = ( 2 \\mitpi ) ^ { \\mitp - 2 } \\tilde { \\mitg } \\tilde { \\mitb } $", "$ \\mitp + 1 ) $", "$ \\mitU ( \\infty ) $", "$ \\mitp - 1 $", "$ \\mitp $", "$ \\mitB $", "\\begin{align*} \\mitd \\mits ^ { 2 } & = & \\mitalpha ^ { \\prime } \\left[ { \\left( \\frac { \\mitu } { \\mitR } \\right) } ^ { ( 7 - \\mitp ) \\slash 2 } \\left( - \\tilde { \\mitf } \\mitd \\mitt ^ { 2 } + \\mitd \\tilde { \\mitx } _ { 1 } ^ { 2 } + \\cdots + \\mitd \\tilde { \\mitx } _ { \\mitp - 2 } ^ { 2 } + \\mitd \\mitx _ { \\mitp - 1 } ^ { 2 } + \\mitd \\mitx _ { \\mitp } ^ { 2 } \\right) \\right. \\\\ & & ~ ~ ~ \\left. + { \\left( \\frac { \\mitR } { \\mitu } \\right) } ^ { ( 7 - \\mitp ) \\slash 2 } \\left( \\tilde { \\mitf } ^ { - 1 } \\mitd \\mitu ^ { 2 } + \\mitu ^ { 2 } \\mitd \\mupOmega _ { 8 - \\mitp } ^ { 2 } \\right) \\right] , \\\\ \\mite ^ { 2 \\mitphi } & = & \\frac { ( 2 \\mitpi ) ^ { 4 } \\tilde { \\mitg } ^ { 2 } \\tilde { \\mitb } ^ { 4 } } { \\tilde { \\mitV } _ { 2 } ^ { 2 } } { \\left( \\frac { \\mitu } { \\mitR } \\right) } ^ { ( 7 - \\mitp ) ( \\mitp - 3 ) \\slash 2 } , ~ ~ ~ \\tilde { \\mitB } _ { \\mitp - 1 , \\mitp } = 0 . \\end{align*}", "\\begin{equation*} \\mitg _ { \\mathrm { Y M } } ^ { 2 } = ( 2 \\mitpi ) ^ { \\mitp - 4 } \\tilde { \\mitg } , \\end{equation*}" ], "x_min": [ 0.27570000290870667, 0.7063000202178955, 0.48649999499320984, 0.5770999789237976, 0.691100001335144, 0.703499972820282, 0.8458999991416931, 0.15960000455379486, 0.652400016784668, 0.8112999796867371, 0.19419999420642853, 0.34279999136924744, 0.17900000512599945, 0.5162000060081482, 0.4090999960899353, 0.2184000015258789, 0.3808000087738037, 0.23909999430179596, 0.12849999964237213, 0.6406000256538391, 0.48579999804496765, 0.5978000164031982, 0.43540000915527344, 0.120899997651577, 0.5092999935150146, 0.2321999967098236, 0.3199999928474426, 0.33239999413490295, 0.45680001378059387, 0.21080000698566437, 0.43050000071525574 ], "y_min": [ 0.13529999554157257, 0.1348000019788742, 0.2061000019311905, 0.2061000019311905, 0.23440000414848328, 0.2583000063896179, 0.2793000042438507, 0.30320000648498535, 0.30320000648498535, 0.30660000443458557, 0.32710000872612, 0.4912000000476837, 0.513700008392334, 0.5112000107765198, 0.5311999917030334, 0.5595999956130981, 0.5634999871253967, 0.5874000191688538, 0.6074000000953674, 0.6098999977111816, 0.6338000297546387, 0.6352999806404114, 0.7139000296592712, 0.7354000210762024, 0.7616999745368958, 0.7860999703407288, 0.7875999808311462, 0.8384000062942505, 0.8349999785423279, 0.3515999913215637, 0.6776999831199646 ], "x_max": [ 0.3495999872684479, 0.7304999828338623, 0.5418000221252441, 0.6269000172615051, 0.7124999761581421, 0.725600004196167, 0.8831999897956848, 0.17960000038146973, 0.694599986076355, 0.8216999769210815, 0.21080000698566437, 0.3822000026702881, 0.2522999942302704, 0.661300003528595, 0.6047000288963318, 0.2922999858856201, 0.42570000886917114, 0.2833000123500824, 0.2045000046491623, 0.6945000290870667, 0.5375999808311462, 0.6392999887466431, 0.4982999861240387, 0.26330000162124634, 0.5569999814033508, 0.2840000092983246, 0.36489999294281006, 0.34279999136924744, 0.4733999967575073, 0.789900004863739, 0.5728999972343445 ], "y_max": [ 0.14560000598430634, 0.149399995803833, 0.22120000422000885, 0.2206999957561493, 0.24120000004768372, 0.26510000228881836, 0.29350000619888306, 0.3174000084400177, 0.3174000084400177, 0.3163999915122986, 0.33739998936653137, 0.5038999915122986, 0.5292999744415283, 0.5288000106811523, 0.5536999702453613, 0.5752000212669373, 0.576200008392334, 0.6000999808311462, 0.6234999895095825, 0.625, 0.6488999724388123, 0.6480000019073486, 0.7285000085830688, 0.753000020980835, 0.7767999768257141, 0.8007000088691711, 0.7997999787330627, 0.8482000231742859, 0.845300018787384, 0.4749999940395355, 0.6966999769210815 ], "expr_type": [ "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "isolated", "isolated" ] }
0001213_page11
{ "latex": [ "$B$", "$SL(2,{\\bf Z})$", "$c=-1$", "$d=\\tilde {V}_2/(2\\pi )^2 \\tilde {b}$", "$d=N_{p-2}/N_p$", "$d=N_{p-2}/N_p$", "$p=3$", "$\\tilde {f}=1$", "$B$", "$B$", "$U(N_{p-2})$", "$(p+1)$", "$\\hat {V}_2 = (2\\pi )^4\\tilde {b}^2/\\tilde {V}_2$", "$\\tilde {V}_2 \\to \\infty $", "$p-1$", "$p+1$", "$U(\\infty )$", "$p-1$", "$\\tilde {V}_2 \\to \\infty $", "$(p-2)$", "$(p-2)$", "$p$", "$N_p$", "$p$", "$B$", "$U(N_p)$", "$(p+1)$", "$U(N_p)$", "$B$", "\\begin {equation} \\rho \\to \\frac {a\\rho +b}{c\\rho +d}, \\;\\; \\rho \\equiv \\frac {{\\tilde V}_2}{(2\\pi )^2 \\alpha '}\\left ( B_{p-1,p} +i \\sqrt {G_{(p-1)(p-1)}G_{pp}}\\right ), \\end {equation}", "\\begin {eqnarray} && ds^2 = \\alpha ' \\left [ \\left (\\frac {u}{R}\\right )^{(7-p)/2} \\left ( -\\tilde {f} dt^2 + d\\tilde {x}_1^2 +\\cdots +d\\tilde {x}^2_{p-2}+ dx_{p-1}^2 +dx_p^2 \\right ) \\right . \\\\ &&~~~~~~ \\left . +\\left (\\frac {R}{u}\\right )^{(7-p)/2}\\left ({\\tilde f}^{-1} du^2 +u^2 d\\Omega _{8-p}^2 \\right ) \\right ], \\\\ && e^{2\\phi } = \\frac {(2\\pi )^4\\tilde {g}^2 \\tilde {b}^4}{\\tilde {V}_2^2} \\left (\\frac {u}{R}\\right )^{(7-p)(p-3)/2}, \\ \\ \\ \\tilde {B}_{p-1,p}= \\frac {\\alpha '}{\\tilde {b}}, \\end {eqnarray}" ], "latex_norm": [ "$ B $", "$ S L ( 2 , Z ) $", "$ c = - 1 $", "$ d = \\widetilde { V } _ { 2 } \\slash ( 2 \\pi ) ^ { 2 } \\widetilde { b } $", "$ d = N _ { p - 2 } \\slash N _ { p } $", "$ d = N _ { p - 2 } \\slash N _ { p } $", "$ p = 3 $", "$ \\widetilde { f } = 1 $", "$ B $", "$ B $", "$ U ( N _ { p - 2 } ) $", "$ ( p + 1 ) $", "$ \\hat { V } _ { 2 } = ( 2 \\pi ) ^ { 4 } \\widetilde { b } ^ { 2 } \\slash \\widetilde { V } _ { 2 } $", "$ \\widetilde { V } _ { 2 } \\rightarrow \\infty $", "$ p - 1 $", "$ p + 1 $", "$ U ( \\infty ) $", "$ p - 1 $", "$ \\widetilde { V } _ { 2 } \\rightarrow \\infty $", "$ ( p - 2 ) $", "$ ( p - 2 ) $", "$ p $", "$ N _ { p } $", "$ p $", "$ B $", "$ U ( N _ { p } ) $", "$ ( p + 1 ) $", "$ U ( N _ { p } ) $", "$ B $", "\\begin{equation*} \\rho \\rightarrow \\frac { a \\rho + b } { c \\rho + d } , \\; \\; \\rho \\equiv \\frac { \\widetilde { V } _ { 2 } } { ( 2 \\pi ) ^ { 2 } \\alpha ^ { \\prime } } ( B _ { p - 1 , p } + i \\sqrt { G _ { ( p - 1 ) ( p - 1 ) } G _ { p p } } ) , \\end{equation*}", "\\begin{align*} & & d s ^ { 2 } = \\alpha ^ { \\prime } [ { ( \\frac { u } { R } ) } ^ { ( 7 - p ) \\slash 2 } ( - \\widetilde { f } d t ^ { 2 } + d \\widetilde { x } _ { 1 } ^ { 2 } + \\cdots + d \\widetilde { x } _ { p - 2 } ^ { 2 } + d x _ { p - 1 } ^ { 2 } + d x _ { p } ^ { 2 } ) \\\\ & & ~ ~ ~ ~ ~ ~ + { ( \\frac { R } { u } ) } ^ { ( 7 - p ) \\slash 2 } ( \\widetilde { f } ^ { - 1 } d u ^ { 2 } + u ^ { 2 } d \\Omega _ { 8 - p } ^ { 2 } ) ] , \\\\ & & e ^ { 2 \\phi } = \\frac { ( 2 \\pi ) ^ { 4 } \\widetilde { g } ^ { 2 } \\widetilde { b } ^ { 4 } } { \\widetilde { V } _ { 2 } ^ { 2 } } { ( \\frac { u } { R } ) } ^ { ( 7 - p ) ( p - 3 ) \\slash 2 } , ~ ~ ~ \\widetilde { B } _ { p - 1 , p } = \\frac { \\alpha ^ { \\prime } } { \\widetilde { b } } , \\end{align*}" ], "latex_expand": [ "$ \\mitB $", "$ \\mitS \\mitL ( 2 , \\mitZ ) $", "$ \\mitc = - 1 $", "$ \\mitd = \\tilde { \\mitV } _ { 2 } \\slash ( 2 \\mitpi ) ^ { 2 } \\tilde { \\mitb } $", "$ \\mitd = \\mitN _ { \\mitp - 2 } \\slash \\mitN _ { \\mitp } $", "$ \\mitd = \\mitN _ { \\mitp - 2 } \\slash \\mitN _ { \\mitp } $", "$ \\mitp = 3 $", "$ \\tilde { \\mitf } = 1 $", "$ \\mitB $", "$ \\mitB $", "$ \\mitU ( \\mitN _ { \\mitp - 2 } ) $", "$ ( \\mitp + 1 ) $", "$ \\hat { \\mitV } _ { 2 } = ( 2 \\mitpi ) ^ { 4 } \\tilde { \\mitb } ^ { 2 } \\slash \\tilde { \\mitV } _ { 2 } $", "$ \\tilde { \\mitV } _ { 2 } \\rightarrow \\infty $", "$ \\mitp - 1 $", "$ \\mitp + 1 $", "$ \\mitU ( \\infty ) $", "$ \\mitp - 1 $", "$ \\tilde { \\mitV } _ { 2 } \\rightarrow \\infty $", "$ ( \\mitp - 2 ) $", "$ ( \\mitp - 2 ) $", "$ \\mitp $", "$ \\mitN _ { \\mitp } $", "$ \\mitp $", "$ \\mitB $", "$ \\mitU ( \\mitN _ { \\mitp } ) $", "$ ( \\mitp + 1 ) $", "$ \\mitU ( \\mitN _ { \\mitp } ) $", "$ \\mitB $", "\\begin{equation*} \\mitrho \\rightarrow \\frac { \\mita \\mitrho + \\mitb } { \\mitc \\mitrho + \\mitd } , \\; \\; \\mitrho \\equiv \\frac { \\tilde { \\mitV } _ { 2 } } { ( 2 \\mitpi ) ^ { 2 } \\mitalpha ^ { \\prime } } \\left( \\mitB _ { \\mitp - 1 , \\mitp } + \\miti \\sqrt { \\mitG _ { ( \\mitp - 1 ) ( \\mitp - 1 ) } \\mitG _ { \\mitp \\mitp } } \\right) , \\end{equation*}", "\\begin{align*} & & \\mitd \\mits ^ { 2 } = \\mitalpha ^ { \\prime } \\left[ { \\left( \\frac { \\mitu } { \\mitR } \\right) } ^ { ( 7 - \\mitp ) \\slash 2 } \\left( - \\tilde { \\mitf } \\mitd \\mitt ^ { 2 } + \\mitd \\tilde { \\mitx } _ { 1 } ^ { 2 } + \\cdots + \\mitd \\tilde { \\mitx } _ { \\mitp - 2 } ^ { 2 } + \\mitd \\mitx _ { \\mitp - 1 } ^ { 2 } + \\mitd \\mitx _ { \\mitp } ^ { 2 } \\right) \\right. \\\\ & & ~ ~ ~ ~ ~ ~ \\left. + { \\left( \\frac { \\mitR } { \\mitu } \\right) } ^ { ( 7 - \\mitp ) \\slash 2 } \\left( \\tilde { \\mitf } ^ { - 1 } \\mitd \\mitu ^ { 2 } + \\mitu ^ { 2 } \\mitd \\mupOmega _ { 8 - \\mitp } ^ { 2 } \\right) \\right] , \\\\ & & \\mite ^ { 2 \\mitphi } = \\frac { ( 2 \\mitpi ) ^ { 4 } \\tilde { \\mitg } ^ { 2 } \\tilde { \\mitb } ^ { 4 } } { \\tilde { \\mitV } _ { 2 } ^ { 2 } } { \\left( \\frac { \\mitu } { \\mitR } \\right) } ^ { ( 7 - \\mitp ) ( \\mitp - 3 ) \\slash 2 } , ~ ~ ~ \\tilde { \\mitB } _ { \\mitp - 1 , \\mitp } = \\frac { \\mitalpha ^ { \\prime } } { \\tilde { \\mitb } } , \\end{align*}" ], "x_min": [ 0.49619999527931213, 0.41260001063346863, 0.23149999976158142, 0.34689998626708984, 0.8486999869346619, 0.12020000070333481, 0.8348000049591064, 0.16099999845027924, 0.120899997651577, 0.399399995803833, 0.49480000138282776, 0.5985000133514404, 0.30820000171661377, 0.5052000284194946, 0.12849999964237213, 0.3034000098705292, 0.4526999890804291, 0.5404000282287598, 0.7269999980926514, 0.33169999718666077, 0.37459999322891235, 0.45750001072883606, 0.673799991607666, 0.8112999796867371, 0.16590000689029694, 0.7401999831199646, 0.8238000273704529, 0.6550999879837036, 0.8036999702453613, 0.26330000162124634, 0.23389999568462372 ], "y_min": [ 0.1348000019788742, 0.15770000219345093, 0.4253000020980835, 0.4214000105857849, 0.423799991607666, 0.448199987411499, 0.47360000014305115, 0.4936999976634979, 0.5449000000953674, 0.5449000000953674, 0.5679000020027161, 0.5679000020027161, 0.5893999934196472, 0.5898000001907349, 0.6176999807357788, 0.6416000127792358, 0.6640999913215637, 0.6654999852180481, 0.6615999937057495, 0.7602999806404114, 0.7842000126838684, 0.7890999913215637, 0.7851999998092651, 0.7890999913215637, 0.8090999722480774, 0.8080999851226807, 0.8080999851226807, 0.8564000129699707, 0.8574000000953674, 0.20509999990463257, 0.28369998931884766 ], "x_max": [ 0.5127999782562256, 0.487199991941452, 0.29919999837875366, 0.4733999967575073, 0.8859999775886536, 0.19550000131130219, 0.883899986743927, 0.21559999883174896, 0.13750000298023224, 0.41600000858306885, 0.5680999755859375, 0.6593000292778015, 0.4505999982357025, 0.5812000036239624, 0.17409999668598175, 0.3490000069141388, 0.5044999718666077, 0.5831999778747559, 0.7982000112533569, 0.3946000039577484, 0.4320000112056732, 0.46790000796318054, 0.6980000138282776, 0.8216999769210815, 0.1817999929189682, 0.7947999835014343, 0.8831999897956848, 0.7096999883651733, 0.819599986076355, 0.7401000261306763, 0.7975000143051147 ], "y_max": [ 0.14509999752044678, 0.1728000044822693, 0.43650001287460327, 0.4390000104904175, 0.43939998745918274, 0.4632999897003174, 0.48579999804496765, 0.5102999806404114, 0.5551999807357788, 0.5551999807357788, 0.5835000276565552, 0.5830000042915344, 0.6069999933242798, 0.605400025844574, 0.6304000020027161, 0.6542999744415283, 0.6791999936103821, 0.6782000064849854, 0.6776999831199646, 0.7749000191688538, 0.7993000149726868, 0.7983999848365784, 0.7997999787330627, 0.7983999848365784, 0.8194000124931335, 0.8237000107765198, 0.823199987411499, 0.8715000152587891, 0.8676999807357788, 0.24469999969005585, 0.41260001063346863 ], "expr_type": [ "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "isolated", "isolated" ] }
0001213_page12
{ "latex": [ "$(p-2)$", "$p$", "$(p+1)$", "$(p+1)$", "$U(N_p)$", "$(p-1)$", "$U(\\infty )$", "${\\tilde V}_2 \\to \\infty $", "$(p+1)$", "$U(N_p)$", "$U(N_{p-2})$", "$(p+1)$", "$(p-2)$", "$p$", "$(p-2)$", "$p$", "$p$", "$B$", "$p$", "$(p-2)$", "$p$", "$p$", "$B$", "$p$", "\\begin {equation} \\label {const2} g^2_{\\rm YM}=\\frac {(2\\pi )^p \\tilde {g}\\tilde {b}^2}{\\tilde {V}_2}, \\end {equation}", "\\begin {equation} \\label {3e1} S_p= -T_p\\int d^{p+1}x e^{-\\phi }\\sqrt {-\\det (G_{ab} +{\\cal F}_{ab})} +T_p\\int A^{p} +T_p \\int A^{p-2}\\wedge {\\cal F}, \\end {equation}" ], "latex_norm": [ "$ ( p - 2 ) $", "$ p $", "$ ( p + 1 ) $", "$ ( p + 1 ) $", "$ U ( N _ { p } ) $", "$ ( p - 1 ) $", "$ U ( \\infty ) $", "$ \\widetilde { V } _ { 2 } \\rightarrow \\infty $", "$ ( p + 1 ) $", "$ U ( N _ { p } ) $", "$ U ( N _ { p - 2 } ) $", "$ ( p + 1 ) $", "$ ( p - 2 ) $", "$ p $", "$ ( p - 2 ) $", "$ p $", "$ p $", "$ B $", "$ p $", "$ ( p - 2 ) $", "$ p $", "$ p $", "$ B $", "$ p $", "\\begin{equation*} g _ { Y M } ^ { 2 } = \\frac { ( 2 \\pi ) ^ { p } \\widetilde { g } \\widetilde { b } ^ { 2 } } { \\widetilde { V } _ { 2 } } , \\end{equation*}", "\\begin{equation*} S _ { p } = - T _ { p } \\int d ^ { p + 1 } x e ^ { - \\phi } \\sqrt { - \\operatorname { d e t } ( G _ { a b } + F _ { a b } ) } + T _ { p } \\int A ^ { p } + T _ { p } \\int A ^ { p - 2 } \\wedge F , \\end{equation*}" ], "latex_expand": [ "$ ( \\mitp - 2 ) $", "$ \\mitp $", "$ ( \\mitp + 1 ) $", "$ ( \\mitp + 1 ) $", "$ \\mitU ( \\mitN _ { \\mitp } ) $", "$ ( \\mitp - 1 ) $", "$ \\mitU ( \\infty ) $", "$ \\tilde { \\mitV } _ { 2 } \\rightarrow \\infty $", "$ ( \\mitp + 1 ) $", "$ \\mitU ( \\mitN _ { \\mitp } ) $", "$ \\mitU ( \\mitN _ { \\mitp - 2 } ) $", "$ ( \\mitp + 1 ) $", "$ ( \\mitp - 2 ) $", "$ \\mitp $", "$ ( \\mitp - 2 ) $", "$ \\mitp $", "$ \\mitp $", "$ \\mitB $", "$ \\mitp $", "$ ( \\mitp - 2 ) $", "$ \\mitp $", "$ \\mitp $", "$ \\mitB $", "$ \\mitp $", "\\begin{equation*} \\mitg _ { \\mathrm { Y M } } ^ { 2 } = \\frac { ( 2 \\mitpi ) ^ { \\mitp } \\tilde { \\mitg } \\tilde { \\mitb } ^ { 2 } } { \\tilde { \\mitV } _ { 2 } } , \\end{equation*}", "\\begin{equation*} \\mitS _ { \\mitp } = - \\mitT _ { \\mitp } \\int \\mitd ^ { \\mitp + 1 } \\mitx \\mite ^ { - \\mitphi } \\sqrt { - \\operatorname { d e t } ( \\mitG _ { \\mita \\mitb } + \\mitF _ { \\mita \\mitb } ) } + \\mitT _ { \\mitp } \\int \\mitA ^ { \\mitp } + \\mitT _ { \\mitp } \\int \\mitA ^ { \\mitp - 2 } \\wedge \\mitF , \\end{equation*}" ], "x_min": [ 0.6545000076293945, 0.7457000017166138, 0.120899997651577, 0.7214999794960022, 0.27300000190734863, 0.4788999855518341, 0.6600000262260437, 0.20589999854564667, 0.2549999952316284, 0.5839999914169312, 0.20110000669956207, 0.1859000027179718, 0.2694999873638153, 0.349700003862381, 0.16030000150203705, 0.29089999198913574, 0.4180999994277954, 0.5935999751091003, 0.866599977016449, 0.367000013589859, 0.13609999418258667, 0.43810001015663147, 0.5217999815940857, 0.8188999891281128, 0.42989999055862427, 0.20730000734329224 ], "y_min": [ 0.13379999995231628, 0.1386999934911728, 0.18209999799728394, 0.18209999799728394, 0.2061000019311905, 0.2061000019311905, 0.2061000019311905, 0.22750000655651093, 0.2538999915122986, 0.2538999915122986, 0.2777999937534332, 0.3783999979496002, 0.6425999999046326, 0.6470000147819519, 0.6664999723434448, 0.6708999872207642, 0.6708999872207642, 0.6675000190734863, 0.6708999872207642, 0.6904000043869019, 0.7188000082969666, 0.7670999765396118, 0.7979000210762024, 0.801800012588501, 0.326200008392334, 0.8485999703407288 ], "x_max": [ 0.71670001745224, 0.7560999989509583, 0.17409999668598175, 0.7753999829292297, 0.32760000228881836, 0.5425000190734863, 0.7110999822616577, 0.2847000062465668, 0.3172000050544739, 0.6385999917984009, 0.274399995803833, 0.2460000067949295, 0.32409998774528503, 0.36010000109672546, 0.22179999947547913, 0.3012999892234802, 0.4284999966621399, 0.6101999878883362, 0.8769999742507935, 0.4230000078678131, 0.14650000631809235, 0.4505000114440918, 0.5383999943733215, 0.8292999863624573, 0.5735999941825867, 0.7961000204086304 ], "y_max": [ 0.14890000224113464, 0.14800000190734863, 0.19670000672340393, 0.19670000672340393, 0.22120000422000885, 0.2206999957561493, 0.2206999957561493, 0.243599995970726, 0.26899999380111694, 0.26899999380111694, 0.29339998960494995, 0.3930000066757202, 0.6571999788284302, 0.6563000082969666, 0.6811000108718872, 0.6801999807357788, 0.6801999807357788, 0.6777999997138977, 0.6801999807357788, 0.7049999833106995, 0.728600025177002, 0.7782999873161316, 0.8082000017166138, 0.8111000061035156, 0.3662000000476837, 0.8788999915122986 ], "expr_type": [ "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "isolated", "isolated" ] }
0001213_page13
{ "latex": [ "${\\cal F}_{ab} = (2\\pi \\alpha ')F_{ab} +B_{ab}$", "$F_{ab}$", "$p$", "$B_{ab}$", "$B$", "$F_{ab}=0$", "$B$", "$p$", "$(p-2)$", "$(p-2)$", "$p$", "$(p-2)$", "$p$", "$T_p\\sqrt {1+\\tan ^2\\theta }$", "$(p-2)$", "$p$", "$(p-2)$", "$p$", "$A^{p}$", "$p$", "$A^{p-2}$", "$(p-2)$", "$B$", "$p$", "$f=1$", "$(p-2)$", "$p$", "$(p-2)$", "$p$", "$T_p\\sqrt {1+\\tan ^2\\theta }$", "\\begin {equation} \\label {3e2} S_p=-\\frac {T_pV_p}{g\\cos \\theta }\\int d\\tau H^{-1}[\\sqrt {f}-1+H_0-H], \\end {equation}", "\\begin {equation} H_0= 1+\\left (\\frac {\\tilde {R}}{r}\\right )^{7-p}=1+\\frac {r_0^{7-p} \\sinh \\alpha \\cosh \\alpha }{r^{7-p}}. \\end {equation}", "\\begin {equation} \\label {3e4} U_p|_{r=r_0}= \\frac {T_p V_p}{g\\cos \\theta }\\left (1-\\tanh \\alpha \\right ). \\end {equation}", "\\begin {equation} m_p=\\frac {T_pV_p}{g}\\sqrt {1+\\tan ^2\\theta }=\\frac {T_pV_p}{g\\cos \\theta }. \\end {equation}" ], "latex_norm": [ "$ F _ { a b } = ( 2 \\pi \\alpha ^ { \\prime } ) F _ { a b } + B _ { a b } $", "$ F _ { a b } $", "$ p $", "$ B _ { a b } $", "$ B $", "$ F _ { a b } = 0 $", "$ B $", "$ p $", "$ ( p - 2 ) $", "$ ( p - 2 ) $", "$ p $", "$ ( p - 2 ) $", "$ p $", "$ T _ { p } \\sqrt { 1 + { t a n } ^ { 2 } \\theta } $", "$ ( p - 2 ) $", "$ p $", "$ ( p - 2 ) $", "$ p $", "$ A ^ { p } $", "$ p $", "$ A ^ { p - 2 } $", "$ ( p - 2 ) $", "$ B $", "$ p $", "$ f = 1 $", "$ ( p - 2 ) $", "$ p $", "$ ( p - 2 ) $", "$ p $", "$ T _ { p } \\sqrt { 1 + { t a n } ^ { 2 } \\theta } $", "\\begin{equation*} S _ { p } = - \\frac { T _ { p } V _ { p } } { g \\operatorname { c o s } \\theta } \\int d \\tau H ^ { - 1 } [ \\sqrt { f } - 1 + H _ { 0 } - H ] , \\end{equation*}", "\\begin{equation*} H _ { 0 } = 1 + { ( \\frac { \\widetilde { R } } { r } ) } ^ { 7 - p } = 1 + \\frac { r _ { 0 } ^ { 7 - p } \\operatorname { s i n h } \\alpha \\operatorname { c o s h } \\alpha } { r ^ { 7 - p } } . \\end{equation*}", "\\begin{equation*} U _ { p } \\vert _ { r = r _ { 0 } } = \\frac { T _ { p } V _ { p } } { g \\operatorname { c o s } \\theta } ( 1 - \\operatorname { t a n h } \\alpha ) . \\end{equation*}", "\\begin{equation*} m _ { p } = \\frac { T _ { p } V _ { p } } { g } \\sqrt { 1 + { \\operatorname { t a n } } ^ { 2 } \\theta } = \\frac { T _ { p } V _ { p } } { g \\operatorname { c o s } \\theta } . \\end{equation*}" ], "latex_expand": [ "$ \\mitF _ { \\mita \\mitb } = ( 2 \\mitpi \\mitalpha ^ { \\prime } ) \\mitF _ { \\mita \\mitb } + \\mitB _ { \\mita \\mitb } $", "$ \\mitF _ { \\mita \\mitb } $", "$ \\mitp $", "$ \\mitB _ { \\mita \\mitb } $", "$ \\mitB $", "$ \\mitF _ { \\mita \\mitb } = 0 $", "$ \\mitB $", "$ \\mitp $", "$ ( \\mitp - 2 ) $", "$ ( \\mitp - 2 ) $", "$ \\mitp $", "$ ( \\mitp - 2 ) $", "$ \\mitp $", "$ \\mitT _ { \\mitp } \\sqrt { 1 + { \\mathrm { t a n } } ^ { 2 } \\mittheta } $", "$ ( \\mitp - 2 ) $", "$ \\mitp $", "$ ( \\mitp - 2 ) $", "$ \\mitp $", "$ \\mitA ^ { \\mitp } $", "$ \\mitp $", "$ \\mitA ^ { \\mitp - 2 } $", "$ ( \\mitp - 2 ) $", "$ \\mitB $", "$ \\mitp $", "$ \\mitf = 1 $", "$ ( \\mitp - 2 ) $", "$ \\mitp $", "$ ( \\mitp - 2 ) $", "$ \\mitp $", "$ \\mitT _ { \\mitp } \\sqrt { 1 + { \\mathrm { t a n } } ^ { 2 } \\mittheta } $", "\\begin{equation*} \\mitS _ { \\mitp } = - \\frac { \\mitT _ { \\mitp } \\mitV _ { \\mitp } } { \\mitg \\operatorname { c o s } \\mittheta } \\int \\mitd \\mittau \\mitH ^ { - 1 } [ \\sqrt { \\mitf } - 1 + \\mitH _ { 0 } - \\mitH ] , \\end{equation*}", "\\begin{equation*} \\mitH _ { 0 } = 1 + { \\left( \\frac { \\tilde { \\mitR } } { \\mitr } \\right) } ^ { 7 - \\mitp } = 1 + \\frac { \\mitr _ { 0 } ^ { 7 - \\mitp } \\operatorname { s i n h } \\mitalpha \\operatorname { c o s h } \\mitalpha } { \\mitr ^ { 7 - \\mitp } } . \\end{equation*}", "\\begin{equation*} \\mitU _ { \\mitp } \\vert _ { \\mitr = \\mitr _ { 0 } } = \\frac { \\mitT _ { \\mitp } \\mitV _ { \\mitp } } { \\mitg \\operatorname { c o s } \\mittheta } \\left( 1 - \\operatorname { t a n h } \\mitalpha \\right) . \\end{equation*}", "\\begin{equation*} \\mitm _ { \\mitp } = \\frac { \\mitT _ { \\mitp } \\mitV _ { \\mitp } } { \\mitg } \\sqrt { 1 + { \\operatorname { t a n } } ^ { 2 } \\mittheta } = \\frac { \\mitT _ { \\mitp } \\mitV _ { \\mitp } } { \\mitg \\operatorname { c o s } \\mittheta } . \\end{equation*}" ], "x_min": [ 0.17829999327659607, 0.3856000006198883, 0.13609999418258667, 0.24529999494552612, 0.3682999908924103, 0.5479999780654907, 0.3075000047683716, 0.4456999897956848, 0.15760000050067902, 0.5030999779701233, 0.5867000222206116, 0.536300003528595, 0.6633999943733215, 0.47269999980926514, 0.7753999829292297, 0.8658999800682068, 0.5583999752998352, 0.6448000073432922, 0.24879999458789825, 0.35249999165534973, 0.5349000096321106, 0.6571999788284302, 0.5543000102043152, 0.3012999892234802, 0.32409998774528503, 0.43880000710487366, 0.6226999759674072, 0.3898000121116638, 0.510699987411499, 0.4104999899864197, 0.3151000142097473, 0.3151000142097473, 0.3725000023841858, 0.36010000109672546 ], "y_min": [ 0.13379999995231628, 0.1348000019788742, 0.16259999573230743, 0.15870000422000885, 0.15870000422000885, 0.15870000422000885, 0.18310000002384186, 0.18649999797344208, 0.2061000019311905, 0.2061000019311905, 0.21040000021457672, 0.23000000417232513, 0.23440000414848328, 0.2515000104904175, 0.2538999915122986, 0.2583000063896179, 0.30219998955726624, 0.30660000443458557, 0.32710000872612, 0.33059999346733093, 0.3257000148296356, 0.326200008392334, 0.375, 0.4027999937534332, 0.5615000128746033, 0.5849999785423279, 0.5898000001907349, 0.6089000105857849, 0.6137999892234802, 0.7954000234603882, 0.44339999556541443, 0.5083000063896179, 0.75, 0.8432999849319458 ], "x_max": [ 0.373199999332428, 0.4131999909877777, 0.14650000631809235, 0.2750000059604645, 0.38420000672340393, 0.6129999756813049, 0.32409998774528503, 0.4560999870300293, 0.2150000035762787, 0.5605000257492065, 0.597100019454956, 0.597100019454956, 0.673799991607666, 0.5928999781608582, 0.8375999927520752, 0.8755999803543091, 0.6184999942779541, 0.6552000045776367, 0.27160000801086426, 0.3628999888896942, 0.5763999819755554, 0.7186999917030334, 0.570900022983551, 0.3124000132083893, 0.3801000118255615, 0.49959999322891235, 0.6330999732017517, 0.4465000033378601, 0.5210999846458435, 0.5307000279426575, 0.6883000135421753, 0.6916999816894531, 0.6344000101089478, 0.6468999981880188 ], "y_max": [ 0.14890000224113464, 0.14749999344348907, 0.17190000414848328, 0.17139999568462372, 0.16940000653266907, 0.17139999568462372, 0.19339999556541443, 0.19580000638961792, 0.2206999957561493, 0.2206999957561493, 0.21969999372959137, 0.24459999799728394, 0.24420000612735748, 0.26910001039505005, 0.26899999380111694, 0.26809999346733093, 0.31679999828338623, 0.3163999915122986, 0.33739998936653137, 0.34040001034736633, 0.33739998936653137, 0.3407999873161316, 0.38530001044273376, 0.4120999872684479, 0.5752000212669373, 0.6000999808311462, 0.5990999937057495, 0.6240000128746033, 0.6230999827384949, 0.8134999871253967, 0.4790000021457672, 0.5512999892234802, 0.7860999703407288, 0.8788999915122986 ], "expr_type": [ "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "isolated", "isolated", "isolated", "isolated" ] }
0001213_page14
{ "latex": [ "$p$", "$(p-2)$", "$\\delta N_p$", "$\\delta N_{p-2}$", "$\\delta N_{p-2}/\\delta N_p=\\tan \\theta V_pT_p/(V_{p-2}T_{p-2})$", "$\\delta N_p=1$", "$dM=m_p$", "$U_p|_{r=r_0}= TdS$", "$(p-2)$", "$p$", "$T$", "$U(N_p)$", "$N$", "\\begin {eqnarray} \\mu _p V_pT_p \\delta N_p &+& \\mu _{p-2}V_{p-2}T_{p-2}\\delta N_{p-2} \\\\ &&~~~~~~~~~~= \\frac {T_p V_p}{g\\cos \\theta }\\left [\\cos ^2\\theta + \\sin \\theta \\cos \\theta \\frac {V_{p-2}T_{p-2}}{V_pT_p} \\frac {\\delta N_{p-2}}{\\delta N_p}\\right ] \\delta N_p, \\\\ &&~~~~~~~~~~= \\frac {T_pV_p}{g\\cos \\theta }\\tanh \\alpha ~\\delta N_p, \\end {eqnarray}", "\\begin {equation} \\label {3e7} S_p=-\\frac {V_{p-2}\\tilde {V}_2}{(2\\pi )^p\\tilde {g}\\tilde {b}}\\int d\\tau \\left (\\frac {u}{R}\\right )^{7-p}\\left [\\sqrt {\\tilde {f}}-1+ \\frac {u_0^{7-p}}{2u^{7-p}}\\right ]. \\end {equation}", "\\begin {equation} \\label {3e8} F_p=\\frac {V_{p-2}\\tilde {V}_2}{(2\\pi )^p\\tilde {g}\\tilde {b}} \\left (\\frac {u}{R}\\right )^{7-p}\\left [\\sqrt {\\tilde {f}}-1+ \\frac {u_0^{7-p}}{2u^{7-p}}\\right ]. \\end {equation}" ], "latex_norm": [ "$ p $", "$ ( p - 2 ) $", "$ \\delta N _ { p } $", "$ \\delta N _ { p - 2 } $", "$ \\delta N _ { p - 2 } \\slash \\delta N _ { p } = t a n \\theta V _ { p } T _ { p } \\slash ( V _ { p - 2 } T _ { p - 2 } ) $", "$ \\delta N _ { p } = 1 $", "$ d M = m _ { p } $", "$ U _ { p } \\vert _ { r = r _ { 0 } } = T d S $", "$ ( p - 2 ) $", "$ p $", "$ T $", "$ U ( N _ { p } ) $", "$ N $", "\\begin{align*} \\mu _ { p } V _ { p } T _ { p } \\delta N _ { p } & + & \\mu _ { p - 2 } V _ { p - 2 } T _ { p - 2 } \\delta N _ { p - 2 } \\\\ & & ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ = \\frac { T _ { p } V _ { p } } { g \\operatorname { c o s } \\theta } [ { \\operatorname { c o s } } ^ { 2 } \\theta + \\operatorname { s i n } \\theta \\operatorname { c o s } \\theta \\frac { V _ { p - 2 } T _ { p - 2 } } { V _ { p } T _ { p } } \\frac { \\delta N _ { p - 2 } } { \\delta N _ { p } } ] \\delta N _ { p } , \\\\ & & ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ = \\frac { T _ { p } V _ { p } } { g \\operatorname { c o s } \\theta } \\operatorname { t a n h } \\alpha ~ \\delta N _ { p } , \\end{align*}", "\\begin{equation*} S _ { p } = - \\frac { V _ { p - 2 } \\widetilde { V } _ { 2 } } { ( 2 \\pi ) ^ { p } \\widetilde { g } \\widetilde { b } } \\int d \\tau { ( \\frac { u } { R } ) } ^ { 7 - p } [ \\sqrt { \\widetilde { f } } - 1 + \\frac { u _ { 0 } ^ { 7 - p } } { 2 u ^ { 7 - p } } ] . \\end{equation*}", "\\begin{equation*} F _ { p } = \\frac { V _ { p - 2 } \\widetilde { V } _ { 2 } } { ( 2 \\pi ) ^ { p } \\widetilde { g } \\widetilde { b } } { ( \\frac { u } { R } ) } ^ { 7 - p } [ \\sqrt { \\widetilde { f } } - 1 + \\frac { u _ { 0 } ^ { 7 - p } } { 2 u ^ { 7 - p } } ] . \\end{equation*}" ], "latex_expand": [ "$ \\mitp $", "$ ( \\mitp - 2 ) $", "$ \\mitdelta \\mitN _ { \\mitp } $", "$ \\mitdelta \\mitN _ { \\mitp - 2 } $", "$ \\mitdelta \\mitN _ { \\mitp - 2 } \\slash \\mitdelta \\mitN _ { \\mitp } = \\mathrm { t a n } \\mittheta \\mitV _ { \\mitp } \\mitT _ { \\mitp } \\slash ( \\mitV _ { \\mitp - 2 } \\mitT _ { \\mitp - 2 } ) $", "$ \\mitdelta \\mitN _ { \\mitp } = 1 $", "$ \\mitd \\mitM = \\mitm _ { \\mitp } $", "$ \\mitU _ { \\mitp } \\vert _ { \\mitr = \\mitr _ { 0 } } = \\mitT \\mitd \\mitS $", "$ ( \\mitp - 2 ) $", "$ \\mitp $", "$ \\mitT $", "$ \\mitU ( \\mitN _ { \\mitp } ) $", "$ \\mitN $", "\\begin{align*} \\mitmu _ { \\mitp } \\mitV _ { \\mitp } \\mitT _ { \\mitp } \\mitdelta \\mitN _ { \\mitp } & + & \\mitmu _ { \\mitp - 2 } \\mitV _ { \\mitp - 2 } \\mitT _ { \\mitp - 2 } \\mitdelta \\mitN _ { \\mitp - 2 } \\\\ & & ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ = \\frac { \\mitT _ { \\mitp } \\mitV _ { \\mitp } } { \\mitg \\operatorname { c o s } \\mittheta } \\left[ { \\operatorname { c o s } } ^ { 2 } \\mittheta + \\operatorname { s i n } \\mittheta \\operatorname { c o s } \\mittheta \\frac { \\mitV _ { \\mitp - 2 } \\mitT _ { \\mitp - 2 } } { \\mitV _ { \\mitp } \\mitT _ { \\mitp } } \\frac { \\mitdelta \\mitN _ { \\mitp - 2 } } { \\mitdelta \\mitN _ { \\mitp } } \\right] \\mitdelta \\mitN _ { \\mitp } , \\\\ & & ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ = \\frac { \\mitT _ { \\mitp } \\mitV _ { \\mitp } } { \\mitg \\operatorname { c o s } \\mittheta } \\operatorname { t a n h } \\mitalpha ~ \\mitdelta \\mitN _ { \\mitp } , \\end{align*}", "\\begin{equation*} \\mitS _ { \\mitp } = - \\frac { \\mitV _ { \\mitp - 2 } \\tilde { \\mitV } _ { 2 } } { ( 2 \\mitpi ) ^ { \\mitp } \\tilde { \\mitg } \\tilde { \\mitb } } \\int \\mitd \\mittau { \\left( \\frac { \\mitu } { \\mitR } \\right) } ^ { 7 - \\mitp } \\left[ \\sqrt { \\tilde { \\mitf } } - 1 + \\frac { \\mitu _ { 0 } ^ { 7 - \\mitp } } { 2 \\mitu ^ { 7 - \\mitp } } \\right] . \\end{equation*}", "\\begin{equation*} \\mitF _ { \\mitp } = \\frac { \\mitV _ { \\mitp - 2 } \\tilde { \\mitV } _ { 2 } } { ( 2 \\mitpi ) ^ { \\mitp } \\tilde { \\mitg } \\tilde { \\mitb } } { \\left( \\frac { \\mitu } { \\mitR } \\right) } ^ { 7 - \\mitp } \\left[ \\sqrt { \\tilde { \\mitf } } - 1 + \\frac { \\mitu _ { 0 } ^ { 7 - \\mitp } } { 2 \\mitu ^ { 7 - \\mitp } } \\right] . \\end{equation*}" ], "x_min": [ 0.13609999418258667, 0.27090001106262207, 0.5465999841690063, 0.6274999976158142, 0.5701000094413757, 0.17829999327659607, 0.794700026512146, 0.120899997651577, 0.7739999890327454, 0.13609999418258667, 0.8632000088691711, 0.7706000208854675, 0.17000000178813934, 0.17970000207424164, 0.2930000126361847, 0.32269999384880066 ], "y_min": [ 0.16259999573230743, 0.15770000219345093, 0.15870000422000885, 0.15870000422000885, 0.3441999852657318, 0.3686999976634979, 0.39259999990463257, 0.41600000858306885, 0.4643999934196472, 0.4927000105381012, 0.5932999849319458, 0.7163000106811523, 0.7411999702453613, 0.21160000562667847, 0.5449000000953674, 0.6395999789237976 ], "x_max": [ 0.14650000631809235, 0.33239999413490295, 0.5805000066757202, 0.6793000102043152, 0.8783000111579895, 0.250900000333786, 0.8783000111579895, 0.24459999799728394, 0.836899995803833, 0.14650000631809235, 0.8784000277519226, 0.8252000212669373, 0.18799999356269836, 0.8209999799728394, 0.7139000296592712, 0.6840999722480774 ], "y_max": [ 0.17190000414848328, 0.1728000044822693, 0.17329999804496765, 0.17329999804496765, 0.35929998755455017, 0.3833000063896179, 0.40720000863075256, 0.4311000108718872, 0.4790000021457672, 0.5024999976158142, 0.603600025177002, 0.7314000129699707, 0.7515000104904175, 0.3109000027179718, 0.5863999724388123, 0.6805999875068665 ], "expr_type": [ "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "isolated", "isolated", "isolated" ] }
0001213_page15
{ "latex": [ "$u$", "$\\hat {g}=\\tilde {g}\\tilde {b}$", "$p$", "$p$", "$(p-2)$", "$p$", "$p$", "$p$", "$B$", "$N$", "$u \\to \\infty $", "$u_0$", "$\\delta N_p=1$", "$p$", "$B$", "$N_p$", "$p$", "$N_p$", "$N_p>>1$", "$p$", "\\begin {eqnarray} F_p|_{u=u_0} &=&- \\frac {V_{p-2}\\tilde {V}_2}{2(2\\pi )^p\\tilde {g}\\tilde {b}} \\left ( \\frac {u_0}{R}\\right )^{7-p} \\\\ &=& - \\frac {V_{p-2}\\tilde {V}_2}{2(2\\pi )^{p}\\tilde {g}\\tilde {b}} \\left (\\frac {4\\pi RT}{7-p}\\right )^{\\frac {2(7-p)}{5-p}}. \\end {eqnarray}", "\\begin {equation} F_p|_{u=u_0}=\\frac {dF}{dN_p}\\delta N_p, \\label {fe} \\end {equation}", "\\begin {equation} F_p|_{u=u_0} \\approx F(N_p+1)-F(N_p), \\end {equation}" ], "latex_norm": [ "$ u $", "$ \\hat { g } = \\widetilde { g } \\widetilde { b } $", "$ p $", "$ p $", "$ ( p - 2 ) $", "$ p $", "$ p $", "$ p $", "$ B $", "$ N $", "$ u \\rightarrow \\infty $", "$ u _ { 0 } $", "$ \\delta N _ { p } = 1 $", "$ p $", "$ B $", "$ N _ { p } $", "$ p $", "$ N _ { p } $", "$ N _ { p } > > 1 $", "$ p $", "\\begin{align*} F _ { p } \\vert _ { u = u _ { 0 } } & = & - \\frac { V _ { p - 2 } \\widetilde { V } _ { 2 } } { 2 ( 2 \\pi ) ^ { p } \\widetilde { g } \\widetilde { b } } { ( \\frac { u _ { 0 } } { R } ) } ^ { 7 - p } \\\\ & = & - \\frac { V _ { p - 2 } \\widetilde { V } _ { 2 } } { 2 ( 2 \\pi ) ^ { p } \\widetilde { g } \\widetilde { b } } { ( \\frac { 4 \\pi R T } { 7 - p } ) } ^ { \\frac { 2 ( 7 - p ) } { 5 - p } } . \\end{align*}", "\\begin{equation*} F _ { p } \\vert _ { u = u _ { 0 } } = \\frac { d F } { d N _ { p } } \\delta N _ { p } , \\end{equation*}", "\\begin{equation*} F _ { p } \\vert _ { u = u _ { 0 } } \\approx F ( N _ { p } + 1 ) - F ( N _ { p } ) , \\end{equation*}" ], "latex_expand": [ "$ \\mitu $", "$ \\hat { \\mitg } = \\tilde { \\mitg } \\tilde { \\mitb } $", "$ \\mitp $", "$ \\mitp $", "$ ( \\mitp - 2 ) $", "$ \\mitp $", "$ \\mitp $", "$ \\mitp $", "$ \\mitB $", "$ \\mitN $", "$ \\mitu \\rightarrow \\infty $", "$ \\mitu _ { 0 } $", "$ \\mitdelta \\mitN _ { \\mitp } = 1 $", "$ \\mitp $", "$ \\mitB $", "$ \\mitN _ { \\mitp } $", "$ \\mitp $", "$ \\mitN _ { \\mitp } $", "$ \\mitN _ { \\mitp } > > 1 $", "$ \\mitp $", "\\begin{align*} \\mitF _ { \\mitp } \\vert _ { \\mitu = \\mitu _ { 0 } } & = & - \\frac { \\mitV _ { \\mitp - 2 } \\tilde { \\mitV } _ { 2 } } { 2 ( 2 \\mitpi ) ^ { \\mitp } \\tilde { \\mitg } \\tilde { \\mitb } } { \\left( \\frac { \\mitu _ { 0 } } { \\mitR } \\right) } ^ { 7 - \\mitp } \\\\ & = & - \\frac { \\mitV _ { \\mitp - 2 } \\tilde { \\mitV } _ { 2 } } { 2 ( 2 \\mitpi ) ^ { \\mitp } \\tilde { \\mitg } \\tilde { \\mitb } } { \\left( \\frac { 4 \\mitpi \\mitR \\mitT } { 7 - \\mitp } \\right) } ^ { \\frac { 2 ( 7 - \\mitp ) } { 5 - \\mitp } } . \\end{align*}", "\\begin{equation*} \\mitF _ { \\mitp } \\vert _ { \\mitu = \\mitu _ { 0 } } = \\frac { \\mitd \\mitF } { \\mitd \\mitN _ { \\mitp } } \\mitdelta \\mitN _ { \\mitp } , \\end{equation*}", "\\begin{equation*} \\mitF _ { \\mitp } \\vert _ { \\mitu = \\mitu _ { 0 } } \\approx \\mitF ( \\mitN _ { \\mitp } + 1 ) - \\mitF ( \\mitN _ { \\mitp } ) , \\end{equation*}" ], "x_min": [ 0.44780001044273376, 0.47620001435279846, 0.5583999752998352, 0.13609999418258667, 0.34689998626708984, 0.4375, 0.21699999272823334, 0.4235999882221222, 0.7153000235557556, 0.8119999766349792, 0.2556999921798706, 0.553600013256073, 0.16590000689029694, 0.5425000190734863, 0.6593000292778015, 0.14239999651908875, 0.18729999661445618, 0.46369999647140503, 0.6082000136375427, 0.866599977016449, 0.32899999618530273, 0.4180999994277954, 0.36970001459121704 ], "y_min": [ 0.16259999573230743, 0.22750000655651093, 0.2583000063896179, 0.2827000021934509, 0.2777999937534332, 0.2827000021934509, 0.30660000443458557, 0.30660000443458557, 0.30320000648498535, 0.375, 0.5228999853134155, 0.5468999743461609, 0.736299991607666, 0.7397000193595886, 0.736299991607666, 0.7602999806404114, 0.76419997215271, 0.7602999806404114, 0.7602999806404114, 0.8407999873161316, 0.5619999766349792, 0.6942999958992004, 0.8041999936103821 ], "x_max": [ 0.4595000147819519, 0.5383999943733215, 0.5687999725341797, 0.14650000631809235, 0.4090999960899353, 0.4478999972343445, 0.227400004863739, 0.4339999854564667, 0.7311999797821045, 0.8299999833106995, 0.3206999897956848, 0.5730000138282776, 0.2378000020980835, 0.5529000163078308, 0.6758999824523926, 0.16660000383853912, 0.19769999384880066, 0.4878999888896942, 0.6841999888420105, 0.8769999742507935, 0.6751999855041504, 0.5860000252723694, 0.6344000101089478 ], "y_max": [ 0.1688999980688095, 0.24410000443458557, 0.26809999346733093, 0.2919999957084656, 0.2928999960422516, 0.2919999957084656, 0.3163999915122986, 0.3163999915122986, 0.31349998712539673, 0.38530001044273376, 0.52920001745224, 0.5557000041007996, 0.7505000233650208, 0.7494999766349792, 0.7465999722480774, 0.7745000123977661, 0.7735000252723694, 0.7745000123977661, 0.7745000123977661, 0.850600004196167, 0.6503000259399414, 0.7314000129699707, 0.8227999806404114 ], "expr_type": [ "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "isolated", "isolated", "isolated" ] }
0001213_page16
{ "latex": [ "$p$", "$(p-2)$", "$(p-2)$", "$(p-2)$", "$(p-2)$", "$p$", "$p$", "$(p-2)$", "$p$", "$p$", "$m_{p-2}=T_{p-2}V_{p-2}/g$", "$\\mu _{p-2}V_{p-2}T_{p-2}\\delta N_{p-2}$", "$\\delta N_{p-2}=1$", "$(p-2)$", "$(p-2)$", "$dM=m_{p-2}$", "$\\delta N_{p-2}=1$", "$\\delta N_p=0$", "$(p-2)$", "\\begin {equation} \\label {dp-2action} S_{p-2}=-T_{p-2}\\int d^{p-1}x e^{-\\phi }\\sqrt {-\\det G_{ab}}+T_{p-2} \\int A^{p-2}. \\end {equation}", "\\begin {equation} \\label {3e13} S_{p-2}=-\\frac {T_{p-2}V_{p-2}}{g}\\int d\\tau H^{-1}\\left [H^{1/2}h^{-1/2} \\sqrt {f} -(1-H_0)\\sin \\theta -H \\right ], \\end {equation}", "\\begin {equation} \\label {3e14} U_{p-2}|_{r=r_0} =\\frac {V_{p-2}T_{p-2}}{g}\\left (1 -\\sin \\theta \\tanh \\alpha \\right ). \\end {equation}" ], "latex_norm": [ "$ p $", "$ ( p - 2 ) $", "$ ( p - 2 ) $", "$ ( p - 2 ) $", "$ ( p - 2 ) $", "$ p $", "$ p $", "$ ( p - 2 ) $", "$ p $", "$ p $", "$ m _ { p - 2 } = T _ { p - 2 } V _ { p - 2 } \\slash g $", "$ \\mu _ { p - 2 } V _ { p - 2 } T _ { p - 2 } \\delta N _ { p - 2 } $", "$ \\delta N _ { p - 2 } = 1 $", "$ ( p - 2 ) $", "$ ( p - 2 ) $", "$ d M = m _ { p - 2 } $", "$ \\delta N _ { p - 2 } = 1 $", "$ \\delta N _ { p } = 0 $", "$ ( p - 2 ) $", "\\begin{equation*} S _ { p - 2 } = - T _ { p - 2 } \\int d ^ { p - 1 } x e ^ { - \\phi } \\sqrt { - \\operatorname { d e t } G _ { a b } } + T _ { p - 2 } \\int A ^ { p - 2 } . \\end{equation*}", "\\begin{equation*} S _ { p - 2 } = - \\frac { T _ { p - 2 } V _ { p - 2 } } { g } \\int d \\tau H ^ { - 1 } [ H ^ { 1 \\slash 2 } h ^ { - 1 \\slash 2 } \\sqrt { f } - ( 1 - H _ { 0 } ) \\operatorname { s i n } \\theta - H ] , \\end{equation*}", "\\begin{equation*} U _ { p - 2 } \\vert _ { r = r _ { 0 } } = \\frac { V _ { p - 2 } T _ { p - 2 } } { g } ( 1 - \\operatorname { s i n } \\theta \\operatorname { t a n h } \\alpha ) . \\end{equation*}" ], "latex_expand": [ "$ \\mitp $", "$ ( \\mitp - 2 ) $", "$ ( \\mitp - 2 ) $", "$ ( \\mitp - 2 ) $", "$ ( \\mitp - 2 ) $", "$ \\mitp $", "$ \\mitp $", "$ ( \\mitp - 2 ) $", "$ \\mitp $", "$ \\mitp $", "$ \\mitm _ { \\mitp - 2 } = \\mitT _ { \\mitp - 2 } \\mitV _ { \\mitp - 2 } \\slash \\mitg $", "$ \\mitmu _ { \\mitp - 2 } \\mitV _ { \\mitp - 2 } \\mitT _ { \\mitp - 2 } \\mitdelta \\mitN _ { \\mitp - 2 } $", "$ \\mitdelta \\mitN _ { \\mitp - 2 } = 1 $", "$ ( \\mitp - 2 ) $", "$ ( \\mitp - 2 ) $", "$ \\mitd \\mitM = \\mitm _ { \\mitp - 2 } $", "$ \\mitdelta \\mitN _ { \\mitp - 2 } = 1 $", "$ \\mitdelta \\mitN _ { \\mitp } = 0 $", "$ ( \\mitp - 2 ) $", "\\begin{equation*} \\mitS _ { \\mitp - 2 } = - \\mitT _ { \\mitp - 2 } \\int \\mitd ^ { \\mitp - 1 } \\mitx \\mite ^ { - \\mitphi } \\sqrt { - \\operatorname { d e t } \\mitG _ { \\mita \\mitb } } + \\mitT _ { \\mitp - 2 } \\int \\mitA ^ { \\mitp - 2 } . \\end{equation*}", "\\begin{equation*} \\mitS _ { \\mitp - 2 } = - \\frac { \\mitT _ { \\mitp - 2 } \\mitV _ { \\mitp - 2 } } { \\mitg } \\int \\mitd \\mittau \\mitH ^ { - 1 } \\left[ \\mitH ^ { 1 \\slash 2 } \\Planckconst ^ { - 1 \\slash 2 } \\sqrt { \\mitf } - ( 1 - \\mitH _ { 0 } ) \\operatorname { s i n } \\mittheta - \\mitH \\right] , \\end{equation*}", "\\begin{equation*} \\mitU _ { \\mitp - 2 } \\vert _ { \\mitr = \\mitr _ { 0 } } = \\frac { \\mitV _ { \\mitp - 2 } \\mitT _ { \\mitp - 2 } } { \\mitg } \\left( 1 - \\operatorname { s i n } \\mittheta \\operatorname { t a n h } \\mitalpha \\right) . \\end{equation*}" ], "x_min": [ 0.13609999418258667, 0.2328999936580658, 0.34549999237060547, 0.704200029373169, 0.3061999976634979, 0.39250001311302185, 0.4311999976634979, 0.3580000102519989, 0.4837999939918518, 0.3953000009059906, 0.4519999921321869, 0.14509999752044678, 0.3628000020980835, 0.7630000114440918, 0.257099986076355, 0.396699994802475, 0.5189999938011169, 0.6682999730110168, 0.2827000021934509, 0.2784999907016754, 0.19210000336170197, 0.33169999718666077 ], "y_min": [ 0.1386999934911728, 0.2533999979496002, 0.2890999913215637, 0.2890999913215637, 0.31299999356269836, 0.3174000084400177, 0.5185999870300293, 0.5859000086784363, 0.5903000235557556, 0.614300012588501, 0.7343999743461609, 0.7592999935150146, 0.7592999935150146, 0.7583000063896179, 0.7827000021934509, 0.8070999979972839, 0.8070999979972839, 0.8070999979972839, 0.8306000232696533, 0.3418000042438507, 0.4154999852180481, 0.6840999722480774 ], "x_max": [ 0.14650000631809235, 0.30480000376701355, 0.4090999960899353, 0.767799973487854, 0.36629998683929443, 0.40290001034736633, 0.4415999948978424, 0.4180999994277954, 0.4948999881744385, 0.4056999981403351, 0.617900013923645, 0.3109999895095825, 0.45329999923706055, 0.8238000273704529, 0.3124000132083893, 0.5044999718666077, 0.6136999726295471, 0.7450000047683716, 0.3441999852657318, 0.7283999919891357, 0.7609000205993652, 0.6751999855041504 ], "y_max": [ 0.14800000190734863, 0.2709999978542328, 0.3037000000476837, 0.3037000000476837, 0.32760000228881836, 0.32670000195503235, 0.527899980545044, 0.6004999876022339, 0.6000999808311462, 0.6241000294685364, 0.7494999766349792, 0.7735000252723694, 0.7735000252723694, 0.7734000086784363, 0.7972999811172485, 0.8216999769210815, 0.8216999769210815, 0.8216999769210815, 0.8452000021934509, 0.37209999561309814, 0.4510999917984009, 0.7196999788284302 ], "expr_type": [ "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "embedded", "isolated", "isolated", "isolated" ] }