|
--- |
|
configs: |
|
- config_name: 20k |
|
data_files: |
|
- split: train |
|
path: 20k/train/*.tar |
|
- split: test |
|
path: 20k/test/*.tar |
|
- config_name: 500k |
|
data_files: |
|
- split: train |
|
path: 500k/train/*.tar |
|
- split: test |
|
path: 500k/test/*.tar |
|
- config_name: 2m |
|
data_files: |
|
- split: train |
|
path: 2m/train/*.tar |
|
- split: test |
|
path: 2m/test/*.tar |
|
task_categories: |
|
- audio-classification |
|
tags: |
|
- audio |
|
- multi-label |
|
- webdataset |
|
size_categories: |
|
- 1M<n<10M |
|
--- |
|
|
|
# AudioSet |
|
|
|
AudioSet<sup>[1]</sup> is a large-scale dataset comprising approximately 2 million 10-second YouTube audio clips, categorised into 527 sound classes. |
|
We have pre-processed all audio files to a 16 kHz sampling rate and stored them in the WebDataset format for efficient large-scale training and retrieval. |
|
|
|
## Download |
|
|
|
We recommend using the following commands to download the `confit/audioset-16khz-wds` dataset from HuggingFace. |
|
The dataset is available in two versions: |
|
|
|
- train: |
|
- 20k: A smaller balanced version with 20,550 clips for quick experimentation. |
|
- 500k<sup>[2]</sup>: A (slightly more) balanced version with 497,982 clips for quick experimentation. |
|
- 2m: The complete unbalanced dataset with 1,912,024 clips. |
|
- test: The eval set with 18,886 clips. |
|
|
|
> **_NOTE:_** All versions of train sets share the same test set. |
|
|
|
```bash |
|
# For the 20k version |
|
huggingface-cli download confit/audioset-16khz-wds --include 20k/train/*.tar --repo-type=dataset --local-dir /path/to/store |
|
huggingface-cli download confit/audioset-16khz-wds --include 20k/test/*.tar --repo-type=dataset --local-dir /path/to/store |
|
|
|
# For the 2m version |
|
huggingface-cli download confit/audioset-16khz-wds --include 2m/train/*.tar --repo-type=dataset --local-dir /path/to/store |
|
huggingface-cli download confit/audioset-16khz-wds --include 2m/test/*.tar --repo-type=dataset --local-dir /path/to/store |
|
``` |
|
|
|
> **_NOTE:_** The `--local-dir /path/to/store` argument specifies the root directory where the dataset will be stored. You do not need to manually create subdirectories (e.g., `/path/to/store/20k/train`). The command will automatically create the required folder structure. |
|
|
|
## Format and Usage |
|
|
|
The dataset is stored in the WebDataset (WDS) format, which is optimised for distributed training and streaming. |
|
Each `.tar` archive contains audio files and corresponding metadata. |
|
|
|
To load the dataset in Python using webdataset: |
|
|
|
```python |
|
train_base_url = '/path/to/20k/train/shard-{i:05d}.tar' |
|
train_urls = [train_base_url.format(i=i) for i in range(7)] |
|
|
|
test_base_url = '/path/to/20k/test/shard-{i:05d}.tar' |
|
test_urls = [test_base_url.format(i=i) for i in range(6)] |
|
|
|
raw_datasets = load_dataset( |
|
"webdataset", |
|
data_files={"train": train_urls, "test": test_urls}, |
|
streaming=False |
|
) |
|
``` |
|
|
|
Each sample in the dataset follows the WebDataset format, which includes the following fields: |
|
|
|
```plain |
|
{ |
|
'__key__': 'sample-000000000', |
|
'__url__': '/path/to/20k/train/shard-00000.tar', |
|
'wav': { |
|
'path': 'sample-000000000.wav', |
|
'array': array([ 0., ..., -0.00256348]), |
|
'sampling_rate': 16000 |
|
}, |
|
'json': { |
|
'id': 'YUJxAKoY0gRM', |
|
'label': ['Clarinet'], |
|
'label_id': [198] |
|
} |
|
} |
|
``` |
|
|
|
## References |
|
|
|
[1] Gemmeke, J. F., Ellis, D. P., Freedman, D., Jansen, A., Lawrence, W., Moore, R. C., ... & Ritter, M. (2017, March). Audio set: An ontology and human-labeled dataset for audio events. In 2017 IEEE international conference on acoustics, speech and signal processing (ICASSP) (pp. 776-780). IEEE. |
|
|
|
[2] Nagrani, A., Yang, S., Arnab, A., Jansen, A., Schmid, C., & Sun, C. (2021). Attention bottlenecks for multimodal fusion. Advances in neural information processing systems, 34, 14200-14213. |
|
|
|
## License and Usage Restrictions |
|
|
|
We downloaded the dataset from qiuqiangkong's [GitHub](https://github.com/qiuqiangkong/audioset_tagging_cnn) and pre-processed it into WebDataset format. |
|
Please ensure compliance with YouTube's terms of service when using this dataset. |
|
Some clips may no longer be available if the original videos have been removed or made private. |