Datasets:
configs:
- config_name: 20k
data_files:
- split: train
path: 20k/train/*.tar
- split: test
path: 20k/test/*.tar
- config_name: 500k
data_files:
- split: train
path: 500k/train/*.tar
- split: test
path: 500k/test/*.tar
- config_name: 2m
data_files:
- split: train
path: 2m/train/*.tar
- split: test
path: 2m/test/*.tar
task_categories:
- audio-classification
tags:
- audio
- multi-label
- webdataset
size_categories:
- 1M<n<10M
AudioSet
AudioSet[1] is a large-scale dataset comprising approximately 2 million 10-second YouTube audio clips, categorised into 527 sound classes. We have pre-processed all audio files to a 16 kHz sampling rate and stored them in the WebDataset format for efficient large-scale training and retrieval.
Download
We recommend using the following commands to download the confit/audioset-16khz-wds
dataset from HuggingFace.
The dataset is available in two versions:
- train:
- 20k: A smaller balanced version with 20,550 clips for quick experimentation.
- 500k[2]: A (slightly more) balanced version with 497,982 clips for quick experimentation.
- 2m: The complete unbalanced dataset with 1,912,024 clips.
- test: The eval set with 18,886 clips.
NOTE: All versions of train sets share the same test set.
# For the 20k version
huggingface-cli download confit/audioset-16khz-wds --include 20k/train/*.tar --repo-type=dataset --local-dir /path/to/store
huggingface-cli download confit/audioset-16khz-wds --include 20k/test/*.tar --repo-type=dataset --local-dir /path/to/store
# For the 2m version
huggingface-cli download confit/audioset-16khz-wds --include 2m/train/*.tar --repo-type=dataset --local-dir /path/to/store
huggingface-cli download confit/audioset-16khz-wds --include 2m/test/*.tar --repo-type=dataset --local-dir /path/to/store
NOTE: The
--local-dir /path/to/store
argument specifies the root directory where the dataset will be stored. You do not need to manually create subdirectories (e.g.,/path/to/store/20k/train
). The command will automatically create the required folder structure.
Format and Usage
The dataset is stored in the WebDataset (WDS) format, which is optimised for distributed training and streaming.
Each .tar
archive contains audio files and corresponding metadata.
To load the dataset in Python using webdataset:
train_base_url = '/path/to/20k/train/shard-{i:05d}.tar'
train_urls = [train_base_url.format(i=i) for i in range(7)]
test_base_url = '/path/to/20k/test/shard-{i:05d}.tar'
test_urls = [test_base_url.format(i=i) for i in range(6)]
raw_datasets = load_dataset(
"webdataset",
data_files={"train": train_urls, "test": test_urls},
streaming=False
)
Each sample in the dataset follows the WebDataset format, which includes the following fields:
{
'__key__': 'sample-000000000',
'__url__': '/path/to/20k/train/shard-00000.tar',
'wav': {
'path': 'sample-000000000.wav',
'array': array([ 0., ..., -0.00256348]),
'sampling_rate': 16000
},
'json': {
'id': 'YUJxAKoY0gRM',
'label': ['Clarinet'],
'label_id': [198]
}
}
References
[1] Gemmeke, J. F., Ellis, D. P., Freedman, D., Jansen, A., Lawrence, W., Moore, R. C., ... & Ritter, M. (2017, March). Audio set: An ontology and human-labeled dataset for audio events. In 2017 IEEE international conference on acoustics, speech and signal processing (ICASSP) (pp. 776-780). IEEE.
[2] Nagrani, A., Yang, S., Arnab, A., Jansen, A., Schmid, C., & Sun, C. (2021). Attention bottlenecks for multimodal fusion. Advances in neural information processing systems, 34, 14200-14213.
License and Usage Restrictions
We downloaded the dataset from qiuqiangkong's GitHub and pre-processed it into WebDataset format. Please ensure compliance with YouTube's terms of service when using this dataset. Some clips may no longer be available if the original videos have been removed or made private.