question_id
stringlengths
36
36
subject
stringclasses
1 value
chapter
stringclasses
1 value
topic
stringclasses
8 values
question
stringlengths
54
505
options
stringlengths
2
538
correct_option
stringclasses
41 values
answer
float64
explanation
float64
6a784d07-5204-4c1c-878d-1b5058eb9c9c
maths
3d-geometry
sequences-and-series
Let \( A = \begin{bmatrix} \frac{1}{\sqrt{2}} & -2 \\ 0 & 1 \end{bmatrix} \) and \( P = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}, \theta \geq 0. \) If \( B = PAP^T, C = P^TB^TP \) and the sum of the diagonal elements of \( C \) is \( \frac{m}{n} \), where \( \gcd(m, n) = 1 \), then \( m + n \) is:
[{"identifier": "A", "content": "127"}, {"identifier": "B", "content": "258"}, {"identifier": "C", "content": "65"}, {"identifier": "D", "content": "2049"}]
["C"]
null
null
f165565c-7d21-4031-8cec-9f41449f2a39
maths
3d-geometry
differential-equations
If the components of \( \vec{a} = \alpha \hat{i} + \beta \hat{j} + \gamma \hat{k} \) along and perpendicular to \( \vec{b} = 3\hat{i} + \hat{j} - \hat{k} \) respectively, are \( \frac{16}{10}(3\hat{i} + \hat{j} - \hat{k}) \) and \( \frac{1}{10}(-4\hat{i} - 5\hat{j} - 17\hat{k}) \), then \( \alpha^2 + \beta^2 + \gamma^2 \) is equal to:
[{"identifier": "A", "content": "26"}, {"identifier": "B", "content": "18"}, {"identifier": "C", "content": "23"}, {"identifier": "D", "content": "16"}]
["A"]
null
null
843fe6c2-b6ac-477f-b561-a71dd5df3469
maths
3d-geometry
probability
Let \( A, B, C \) be three points in \( xy \)-plane, whose position vectors are given by \( \sqrt{3}\hat{i} + \hat{j} + \sqrt{3}\hat{j} \) and \( \hat{i} + (1 - a)\hat{j} \) respectively with respect to the origin \( O \). If the distance of the point \( C \) from the line bisecting the angle between the vectors \( \overrightarrow{OA} \) and \( \overrightarrow{OB} \) is \( \frac{a}{\sqrt{2}} \), then the sum of all the possible values of \( a \) is:
[{"identifier": "A", "content": "2"}, {"identifier": "B", "content": "9/2"}, {"identifier": "C", "content": "1"}, {"identifier": "D", "content": "0"}]
["C"]
null
null
3f46fd12-9c19-49e9-aebd-3fc5ecc67139
maths
3d-geometry
exponential-and-logarithm
Let the coefficients of three consecutive terms \( T_r, T_{r+1}, \) and \( T_{r+2} \) in the binomial expansion of \( (a + b)^{\frac{1}{2}} \) be in a G.P. and let \( p \) be the number of all possible values of \( r \). Let \( q \) be the sum of all rational terms in the binomial expansion of \( (\sqrt{3} + \sqrt{4})^{\frac{1}{2}} \). Then \( p + q \) is equal to:
[{"identifier": "A", "content": "283"}, {"identifier": "B", "content": "287"}, {"identifier": "C", "content": "295"}, {"identifier": "D", "content": "299"}]
["A"]
null
null
56cce03c-cae5-4480-ae4e-2ca17508e9aa
maths
3d-geometry
coordinate-geometry
Let \( [x] \) denote the greatest integer less than or equal to \( x \). Then the domain of \( f(x) = \sec^{-1}(2[x] + 1) \) is:
[{"identifier": "A", "content": "\\( (-\\infty, -1] \\cup [0, \\infty) \\)"}, {"identifier": "B", "content": "\\( (-\\infty, -1] \\cup [1, \\infty) \\)"}, {"identifier": "C", "content": "\\( (-\\infty, \\infty) \\)"}, {"identifier": "D", "content": "\\( (-\\infty, \\infty) \\) \\( \\setminus \\{0\\} \\)"}]
["C"]
null
null
2470b736-8780-4e71-8c6a-ca9e0fcd4a1f
maths
3d-geometry
calculus-integration
Let \( S \) be the set of all the words that can be formed by arranging all the letters of the word GARDEN. From the set \( S \), one word is selected at random. The probability that the selected word will NOT have vowels in alphabetical order is:
[{"identifier": "A", "content": "\\( \\frac{1}{2} \\)"}, {"identifier": "B", "content": "\\( \\frac{1}{4} \\)"}, {"identifier": "C", "content": "\\( \\frac{3}{5} \\)"}, {"identifier": "D", "content": "\\( \\frac{1}{5} \\)"}]
["A"]
null
null
2459077d-12c1-45e7-83ae-c1d6ea3ab06e
maths
3d-geometry
conic-sections
If \( \sum_{r=1}^{15} \frac{1}{\sin\left(\frac{r}{2} + \frac{1}{2}\right) \sin\left(\frac{r}{2} + \frac{3}{2}\right)} \) = \( a\sqrt{3} + b \), \( a, b \in \mathbb{Z} \), then \( a^2 + b^2 \) is equal to:
[{"identifier": "A", "content": "10"}, {"identifier": "B", "content": "4"}, {"identifier": "C", "content": "2"}, {"identifier": "D", "content": "8"}]
["D"]
null
null
948355f4-6765-49f3-86c3-51028dee123e
maths
3d-geometry
jee-mathematics
Let \( f \) be a real valued continuous function defined on the positive real axis such that \( g(x) = \int_0^x t f(t) \, dt \). If \( g(x^2) = x^6 + x^7 \), then value of \( \sum_{r=1}^{15} f(x^3) \) is:
[{"identifier": "A", "content": "270"}, {"identifier": "B", "content": "340"}, {"identifier": "C", "content": "320"}, {"identifier": "D", "content": "310"}]
["D"]
null
null
98f67cfb-1e05-4e92-bb4c-49fdebf46689
maths
3d-geometry
jee-mathematics
Let \( f : [0, 3] \rightarrow A \) be defined by \( f(x) = 2x^3 - 15x^2 + 36x + 7 \) and \( g : [0, \infty) \rightarrow B \) be defined by \( g(x) = \frac{x^{2025}}{x^{2025} + 1} \). If both the functions are onto and \( S = \{ x \in \mathbb{Z} : x \in A \text{ or } x \in B \} \), then \( n(S) \) is equal to:
[]
["B"]
null
null
7af307a7-d2ac-4ef8-b48f-a2e6059c95d4
maths
3d-geometry
jee-mathematics
Bag $B_1$ contains 6 white and 4 blue balls, Bag $B_2$ contains 4 white and 6 blue balls, and Bag $B_3$ contains 5 white and 5 blue balls. One of the bags is selected at random and a ball is drawn from it. If the ball is white, then the probability, that the ball is drawn from Bag $B_2$, is:
[{"identifier": "A", "content": "$\\frac{4}{15}$"}, {"identifier": "B", "content": "$\\frac{1}{3}$"}, {"identifier": "C", "content": "$\\frac{2}{5}$"}, {"identifier": "D", "content": "$\\frac{4}{5}$"}]
["A"]
null
null
8b5b6bb0-7a08-49a4-af8b-3fea283b05bd
maths
3d-geometry
jee-mathematics
Let $f : \mathbb{R} \to \mathbb{R}$ be a twice differentiable function such that $f
[{"identifier": "B", "content": "= 1$. If $F(x) = xf(x)$ for all $x \\in \\mathbb{R}$, $\\int_{x}^{2} x F'(x)\\,dx = 6$ and $\\int_{x}^{2} x^2 F''(x)\\,dx = 40$, then $F'"}, {"identifier": "B", "content": "+ \\int_{x}^{2} F(x)\\,dx$ is equal to:"}, {"identifier": "A", "content": "11"}, {"identifier": "B", "content": "13"}, {"identifier": "C", "content": "15"}, {"identifier": "D", "content": "9"}]
["A"]
null
null
33f5a9c1-f95c-4b38-b86d-9636f14834e2
maths
3d-geometry
jee-mathematics
For positive integers $n$, if $4a_n = (n^2 + 5n + 6)$ and $S_n = \sum_{k=1}^{n} \left( \frac{1}{ak} \right)$, then the value of $507S_{2025}$ is:
[{"identifier": "A", "content": "540"}, {"identifier": "B", "content": "675"}, {"identifier": "C", "content": "1350"}, {"identifier": "D", "content": "135"}]
["B"]
null
null
6a8fac3c-20ca-4da7-be4b-00fdf3d812a1
maths
3d-geometry
jee-mathematics
Let $f : \mathbb{R} \setminus \{0\} \to (-\infty, 1)$ be a polynomial of degree 2, satisfying $f(x) f\left( \frac{1}{x} \right) = f(x) + f\left( \frac{1}{x} \right)$. If $f(K) = -2K$, then the sum of squares of all possible values of $K$ is:
[{"identifier": "A", "content": "7"}, {"identifier": "B", "content": "6"}, {"identifier": "C", "content": "1"}, {"identifier": "D", "content": "9"}]
["B"]
null
null
a1f3abd3-97f9-4a96-8965-6bddf9ac8b33
maths
3d-geometry
jee-mathematics
If $A$ and $B$ are the points of intersection of the circle $x^2 + y^2 - 8x = 0$ and the hyperbola $\frac{x^2}{y^2} - \frac{y^2}{x^2} = 1$ and a point $P$ moves on the line $2x - 3y + 4 = 0$, then the centroid of $\triangle PAB$ lies on the line:
[{"identifier": "A", "content": "$x + 9y = 36$"}, {"identifier": "B", "content": "$4x - 9y = 12$"}, {"identifier": "C", "content": "$6x - 9y = 20$"}, {"identifier": "D", "content": "$9x - 9y = 32$"}]
["C"]
null
null
b9a37e33-f873-4d50-b919-9864d6fcfec7
maths
3d-geometry
jee-mathematics
If $f(x) = \int_{\frac{1}{x}}^{x^{1/4}(1+x^{1/4})} \frac{1}{dx}$, $f
[{"identifier": "@", "content": "= -6$, then $f"}, {"identifier": "A", "content": "$ is equal to:"}, {"identifier": "A", "content": "$4 \\log_e 2 - 2$"}, {"identifier": "B", "content": "$2 - \\log_e x$"}, {"identifier": "C", "content": "$\\log_e 2 + 2$"}, {"identifier": "D", "content": "$4 \\log_e 2 + 2$"}]
["A"]
null
null
3b235e61-18ba-47aa-a627-bf5a37bdb464
maths
3d-geometry
jee-mathematics
The area of the region bounded by the curves $x \left( 1 + y^2 \right) = 1$ and $y^2 = 2x$ is:
[{"identifier": "A", "content": "$2 \\left( \\frac{\\pi}{2} - \\frac{1}{3} \\right)$"}, {"identifier": "B", "content": "$\\frac{\\pi}{2} - \\frac{1}{3}$"}, {"identifier": "C", "content": "$\\frac{\\pi}{2} - \\frac{1}{3}$"}, {"identifier": "D", "content": "$\\frac{1}{3} \\left( \\frac{\\pi}{2} - \\frac{1}{3} \\right)$"}]
["B"]
null
null
a94bc062-64c8-4846-a7f8-6ceb620ae4ee
maths
3d-geometry
jee-mathematics
The square of the distance of the point $\left( \frac{15}{7}, \frac{22}{7}, 7 \right)$ from the line $\frac{x+1}{3} = \frac{y+3}{5} = \frac{z+5}{7}$ in the direction of the vector $\hat{i} + 4\hat{j} + 7\hat{k}$ is:
[{"identifier": "A", "content": "54"}, {"identifier": "B", "content": "44"}, {"identifier": "C", "content": "41"}, {"identifier": "D", "content": "66"}]
["D"]
null
null
47c8b9a2-16cc-4302-be4c-ae7c30ea8d6c
maths
3d-geometry
jee-mathematics
If the midpoint of a chord of the ellipse $\frac{x^2}{9} + \frac{y^2}{4} = 1$ is $(\sqrt{2}, 4/3)$, and the length of the chord is $\frac{2\sqrt{5}}{3}$, then $\alpha$ is:
[{"identifier": "A", "content": "20"}, {"identifier": "B", "content": "22"}, {"identifier": "C", "content": "18"}, {"identifier": "D", "content": "26"}]
["B"]
null
null
911e6993-1f84-423b-9702-25e971cbe392
maths
3d-geometry
jee-mathematics
If $\alpha + i\beta$ and $\gamma + i\delta$ are the roots of $x^2 - (3 - 2i)x - (2i - 2) = 0$, $i = \sqrt{-1}$, then $\alpha\gamma + \beta\delta$ is equal to:
[{"identifier": "A", "content": "$-2$"}, {"identifier": "B", "content": "$6$"}, {"identifier": "C", "content": "$-6$"}, {"identifier": "D", "content": "$2$"}]
["D"]
null
null
1f39939e-71c6-4a74-8bea-f6c2d235d37d
maths
3d-geometry
jee-mathematics
Two equal sides of an isosceles triangle are along $-x + 2y = 4$ and $x + y = 4$. If $m$ is the slope of its third side, then the sum, of all possible distinct values of $m$, is:
[{"identifier": "A", "content": "$-2\\sqrt{10}$"}, {"identifier": "B", "content": "$12$"}, {"identifier": "C", "content": "$6$"}, {"identifier": "D", "content": "$-6$"}]
["C"]
null
null
9e5b117e-fb2e-45ad-8e64-5c166daba7ad
maths
3d-geometry
jee-mathematics
Let $A$ and $B$ be the two points of intersection of the line $y = 5 = 0$ and the mirror image of the parabola $y^2 = 4x$ with respect to the line $x + y + 4 = 0$. If $d$ denotes the distance between $A$ and $B$, and $a$ denotes the area of $\triangle SAB$, where $S$ is the focus of the parabola $y^2 = 4x$, then the value of $(a + d)$ is
[]
["N"]
null
null
1957dd69-b21f-4609-ac4b-d610195a1745
maths
3d-geometry
jee-mathematics
The number of natural numbers, between 212 and 999, such that the sum of their digits is 15, is
[]
["€"]
null
null
7e9ca87b-0353-425d-b767-83cf4cff50f1
maths
3d-geometry
jee-mathematics
If $y = y(x)$ is the solution of the differential equation, $\sqrt{4 - x^2} \frac{dy}{dx} = \left(\sin^{-1}\left(\frac{x}{2}\right)\right)^2 - y \sin^{-1}\left(\frac{x}{2}\right)$, $-2 \leq x \leq 2$, $y
[{"identifier": "B", "content": "= \\frac{x^2 - 8}{4}$, then $y"}, {"identifier": "@", "content": "$ is equal to"}]
["D"]
null
null
e8d84166-bcf8-4796-855c-8b642125ce9b
maths
3d-geometry
jee-mathematics
The interior angles of a polygon with $n$ sides, are in an A.P. with common difference $6^\circ$. If the largest interior angle of the polygon is $219^\circ$, then $n$ is equal to
[]
["T"]
null
null
45a8920f-53e0-4308-ba55-52e6797819cf
maths
3d-geometry
jee-mathematics
Let $f(x) = \lim_{x \to \infty} \sum_{r=0}^{n} \left(\frac{\tan(x/2^{r+1}) + \tan^2(x/2^{r+1})}{1 - \tan^2(x/2^{r+1})}\right)$. Then $\lim_{x \to 0} \frac{x - e^{-f(x)}}{x - f(x)}$ is equal to
[]
["A"]
null
null
87886fd7-10e5-4ed6-acb0-e2f288266f84
maths
3d-geometry
sequences-and-series
Let \( x_1, x_2, \ldots, x_{10} \) be ten observations such that \( \sum_{i=1}^{10} (x_i - 2) = 30, \) \( \sum_{i=1}^{10} (x_i - \beta)^2 = 98, \beta > 2, \) and their variance is \( \frac{4}{5}. \) If \( \mu \) and \( \sigma^2 \) are respectively the mean and the variance of \( 2(x_1 - 1) + 4\beta, \) \( 2(x_2 - 1) + 4\beta, \ldots, 2(x_{10} - 1) + 4\beta, \) then \( \frac{\partial \mu}{\partial \beta} \) is equal to:
[{"identifier": "A", "content": "100"}, {"identifier": "B", "content": "120"}, {"identifier": "C", "content": "110"}, {"identifier": "D", "content": "90"}]
["A"]
null
null
4a3af956-2936-4814-a7c5-ad78d38791b4
maths
3d-geometry
differential-equations
Consider an A. P. of positive integers, whose sum of the first three terms is 54 and the sum of the first twenty terms lies between 1600 and 1800. Then its 11th term is:
[{"identifier": "A", "content": "90"}, {"identifier": "B", "content": "84"}, {"identifier": "C", "content": "122"}, {"identifier": "D", "content": "108"}]
["A"]
null
null
842577b9-21fa-44e9-8071-82c1a6bb6254
maths
3d-geometry
probability
The number of solutions of the equation \( \left( \frac{9}{\sqrt{x}} - \frac{9}{\sqrt{x}} + 2 \right) \left( \frac{2}{\sqrt{x}} - \frac{7}{\sqrt{x}} + 3 \right) = 0 \) is:
[{"identifier": "A", "content": "2"}, {"identifier": "B", "content": "3"}, {"identifier": "C", "content": "1"}, {"identifier": "D", "content": "4"}]
["D"]
null
null
22a47813-1150-4bfb-8c1e-7779eb2311f2
maths
3d-geometry
exponential-and-logarithm
Define a relation \( R \) on the interval \( [0, \frac{\pi}{4}] \) by \( xRy \) if and only if \( \sec^2 x - \tan^2 y = 1. \) Then \( R \) is:
[{"identifier": "A", "content": "both reflexive and transitive but not symmetric"}, {"identifier": "B", "content": "an equivalence relation"}, {"identifier": "C", "content": "reflexive but neither symmetric nor transitive"}, {"identifier": "D", "content": "both reflexive and symmetric but not transitive"}]
["B"]
null
null
9abb4939-e62b-4c95-b6ae-baa8b0f237b8
maths
3d-geometry
coordinate-geometry
Two parabolas have the same focus \( (4, 3) \) and their directrices are the \( x \)-axis and the \( y \)-axis, respectively. If these parabolas intersect at the points \( A \) and \( B, \) then \( (AB)^2 \) is equal to:
[{"identifier": "A", "content": "392"}, {"identifier": "B", "content": "384"}, {"identifier": "C", "content": "192"}, {"identifier": "D", "content": "96"}]
["C"]
null
null
d70df5b1-fbd0-4589-b004-9693965e1ff7
maths
3d-geometry
calculus-integration
Let \( P \) be the set of seven digit numbers with sum of their digits equal to 11. If the numbers in \( P \) are formed by using the digits 1, 2 and 3 only, then the number of elements in the set \( P \) is:
[{"identifier": "A", "content": "173"}, {"identifier": "B", "content": "164"}, {"identifier": "C", "content": "158"}, {"identifier": "D", "content": "161"}]
["D"]
null
null
421fc75d-2e8a-492d-804b-2cb033503d1a
maths
3d-geometry
conic-sections
Let \( \vec{a} = \hat{i} + 2\hat{j} + \hat{k} \) and \( \vec{b} = 2\hat{i} + 7\hat{j} + 3\hat{k}. \) Let \( L_1 : \vec{r} = (-\hat{i} + 2\hat{j} + \hat{k}) + \lambda \vec{a}, \lambda \in \mathbb{R} \) and \( L_2 : \vec{r} = (\hat{i} + \hat{k}) + \mu \vec{b}, \mu \in \mathbb{R} \) be two lines. If the line \( L_3 \) passes through the point of intersection of \( L_1 \) and \( L_2, \) and is parallel to \( \vec{a} + \vec{b}, \) then \( L_3 \) passes through the point:
[{"identifier": "A", "content": "(5, 17, 4)"}, {"identifier": "B", "content": "(2, 8, 5)"}, {"identifier": "C", "content": "(8, 26, 12)"}, {"identifier": "D", "content": "(-1, -1, 1)"}]
["C"]
null
null
b858d9a3-549d-424b-a0f5-3f33c1789778
maths
3d-geometry
jee-mathematics
Let \( \vec{a} = 2\hat{i} - \hat{j} + 3\hat{k}, \vec{b} = 3\hat{i} - 5\hat{j} + \hat{k} \) and \( \vec{c} \) be a vector such that \( \vec{a} \times \vec{c} = \vec{c} \times \vec{b} \) and \( (\vec{a} + \vec{c}) \cdot (\vec{b} + \vec{c}) = 168. \) Then the maximum value of \( |\vec{c}|^2 \) is:
[{"identifier": "A", "content": "462"}, {"identifier": "B", "content": "77"}, {"identifier": "C", "content": "154"}, {"identifier": "D", "content": "308"}]
["D"]
null
null
a7ad8cd4-2aac-4155-9246-182dfb07b87d
maths
3d-geometry
jee-mathematics
The integral \( 80 \int_0^\pi \left( \frac{\sin \theta + \cos \theta}{9 + 16 \sin 2\theta} \right) d\theta \) is equal to:
[{"identifier": "A", "content": "3 \\log_e 4"}, {"identifier": "B", "content": "4 \\log_e 3"}, {"identifier": "C", "content": "6 \\log_e 4"}, {"identifier": "D", "content": "2 \\log_e 3"}]
["B"]
null
null
9f3f478f-3e56-42e5-9b3e-6ad35534d3e1
maths
3d-geometry
jee-mathematics
Let the ellipse \( E_1 : \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1, a > b \) and \( E_2 : \frac{x^2}{A^2} + \frac{y^2}{B^2} = 1, A < B \) have same eccentricity \( \frac{1}{\sqrt{3}} \). Let the product of their lengths of latus rectums be \( \frac{32}{\sqrt{3}} \), and the distance between the foci of \( E_1 \) be 4. If \( E_1 \) and \( E_2 \) meet at \( A, B, C \) and \( D \), then the area of the quadrilateral \( ABCD \) equals: \[ \begin{align*}
[{"identifier": "A", "content": "& \\quad 4\\sqrt{6} \\\\"}, {"identifier": "B", "content": "& \\quad 6\\sqrt{6} \\\\"}, {"identifier": "C", "content": "& \\quad 18\\sqrt{6}/5 \\\\"}, {"identifier": "D", "content": "& \\quad 24\\sqrt{6}/5 \\\\\n\\end{align*}\n\\]"}]
["D"]
null
null
b1f11888-ceb0-442f-810a-0a51a834e287
maths
3d-geometry
jee-mathematics
Let \( A = [a_{ij}] = \begin{bmatrix} \log_5 128 & \log_4 5 \\ \log_5 8 & \log_4 25 \end{bmatrix} \). If \( A_{ij} \) is the cofactor of \( a_{ij} \), \( C_{ij} = \sum_{k=1}^{2} a_{ik}A_{jk}, 1 \leq i, j \leq 2 \), and \( C = [C_{ij}] \), then \( 8|C| \) is equal to: \[ \begin{align*}
[{"identifier": "A", "content": "& \\quad 288 \\\\"}, {"identifier": "B", "content": "& \\quad 222 \\\\"}, {"identifier": "C", "content": "& \\quad 242 \\\\"}, {"identifier": "D", "content": "& \\quad 262 \\\\\n\\end{align*}\n\\]"}]
["C"]
null
null
3dd9de4c-0aa8-46af-be7b-f79cd0ee13e2
maths
3d-geometry
jee-mathematics
Let \( |z_1 - 8 - 2i| \leq 1 \) and \( |z_2 - 2 + 6i| \leq 2, z_1, z_2 \in \mathbb{C} \). Then the minimum value of \( |z_1 - z_2| \) is: \[ \begin{align*}
[{"identifier": "A", "content": "& \\quad 13 \\\\"}, {"identifier": "B", "content": "& \\quad 10 \\\\"}, {"identifier": "C", "content": "& \\quad 3 \\\\"}, {"identifier": "D", "content": "& \\quad 7 \\\\\n\\end{align*}\n\\]"}]
["D"]
null
null
87d55516-470a-4c57-9713-3f320ed53247
maths
3d-geometry
jee-mathematics
Let \( L_1 : \frac{x-1}{2} = \frac{y-1}{3} = \frac{z-1}{4} \) and \( L_2 : \frac{x+1}{2} = \frac{y-2}{3} = \frac{z}{1} \) be two lines. Let \( L_3 \) be a line passing through the point \((\alpha, \beta, \gamma)\) and be perpendicular to both \( L_1 \) and \( L_2 \). If \( L_3 \) intersects \( L_1 \), then \( |5\alpha - 11\beta - 8\gamma| \) equals: \[ \begin{align*}
[{"identifier": "A", "content": "& \\quad 20 \\\\"}, {"identifier": "B", "content": "& \\quad 18 \\\\"}, {"identifier": "C", "content": "& \\quad 25 \\\\"}, {"identifier": "D", "content": "& \\quad 16 \\\\\n\\end{align*}\n\\]"}]
["C"]
null
null
f131eebf-78ee-4273-b473-b776fb3280b4
maths
3d-geometry
jee-mathematics
Let \( M \) and \( m \) respectively be the maximum and the minimum values of \[ f(x) = \begin{bmatrix} 1 + \sin^2 x & \cos^2 x & 4\sin 4x \\ \sin^2 x & 1 + \cos^2 x & 4\sin 4x \\ \sin^2 x & \cos^2 x & 1 + 4\sin 4x \end{bmatrix}, x \in \mathbb{R} \] Then \( M^4 - m^4 \) is equal to: \[ \begin{align*}
[{"identifier": "A", "content": "& \\quad 1280 \\\\"}, {"identifier": "B", "content": "& \\quad 1295 \\\\"}, {"identifier": "C", "content": "& \\quad 1215 \\\\"}, {"identifier": "D", "content": "& \\quad 1040 \\\\\n\\end{align*}\n\\]"}]
["A"]
null
null
cbc72177-b566-4494-87df-ab52acb84bfc
maths
3d-geometry
jee-mathematics
Let \( ABC \) be a triangle formed by the lines \( 7x - 6y + 3 = 0, x + 2y - 31 = 0 \) and \( 9x - 2y - 19 = 0 \). Let the point \((h, k)\) be the image of the centroid of \( \Delta ABC \) in the line \( 3x + 6y - 53 = 0 \). Then \( h^2 + k^2 + hk \) is equal to: \[ \begin{align*}
[{"identifier": "A", "content": "& \\quad 47 \\\\"}, {"identifier": "B", "content": "& \\quad 36 \\\\"}, {"identifier": "C", "content": "& \\quad 47 \\\\"}, {"identifier": "D", "content": "& \\quad 40 \\\\\n\\end{align*}\n\\]"}]
["B"]
null
null
68edd102-6049-4277-a9d4-e831373e20f9
maths
3d-geometry
jee-mathematics
The value of \( \lim_{n \to \infty} \left( \sum_{k=1}^{n} \frac{k^4 + 4k^2 + 11k + 5}{(k+3)!} \right) \) is: \[ \begin{align*}
[{"identifier": "A", "content": "& \\quad 4/3 \\\\"}, {"identifier": "B", "content": "& \\quad 2 \\\\"}, {"identifier": "C", "content": "& \\quad 7/3 \\\\"}, {"identifier": "D", "content": "& \\quad 5/3 \\\\\n\\end{align*}\n\\]"}]
["D"]
null
null
284e0696-65cb-4558-a145-131420581840
maths
3d-geometry
jee-mathematics
The least value of \( n \) for which the number of integral terms in the Binomial expansion of \( (\sqrt{7} + \sqrt{11})^n \) is 183, is: \[ \begin{align*}
[{"identifier": "A", "content": "& \\quad 2184 \\\\"}, {"identifier": "B", "content": "& \\quad 2196 \\\\"}, {"identifier": "C", "content": "& \\quad 2148 \\\\"}, {"identifier": "D", "content": "& \\quad 2172 \\\\\n\\end{align*}\n\\]"}]
["A"]
null
null
7547e409-5d97-4179-9041-5f85e5a66c5e
maths
3d-geometry
jee-mathematics
Let \( y = y(x) \) be the solution of the differential equation \[ \cos x \left( \log_e (\cos x) \right)^2 dy + (\sin x - 3y \sin x \log_e (\cos x)) dx = 0, \quad x \in \left( 0, \frac{\pi}{2} \right).\] If \( y \left( \frac{\pi}{6} \right) = \frac{-1}{\log_2 2} \), then \( y \left( \frac{\pi}{8} \right) \) is equal to: \[ \begin{align*}
[{"identifier": "A", "content": "& \\frac{1}{\\log_2"}, {"identifier": "E", "content": "- \\log_2"}, {"identifier": "D", "content": "} \\\\"}, {"identifier": "B", "content": "& \\frac{2}{\\log_2"}, {"identifier": "C", "content": "- \\log_2"}, {"identifier": "D", "content": "} \\\\"}, {"identifier": "C", "content": "& \\frac{1}{\\log_2"}, {"identifier": "D", "content": "- \\log_2"}, {"identifier": "C", "content": "} \\\\"}, {"identifier": "D", "content": "& \\frac{1}{\\log_2"}, {"identifier": "D", "content": "}\n\\end{align*}\n\\]"}]
["A"]
null
null
d87ae9e7-3636-4854-a874-65795666e575
maths
3d-geometry
jee-mathematics
Let the line \( x + y = 1 \) meet the circle \( x^2 + y^2 = 4 \) at the points A and B. If the line perpendicular to AB and passing through the mid point of the chord AB intersects the circle at C and D, then the area of the quadrilateral ADBC is equal to: \[ \begin{align*}
[{"identifier": "A", "content": "& \\sqrt{14} \\\\"}, {"identifier": "B", "content": "& 3\\sqrt{7} \\\\"}, {"identifier": "C", "content": "& 2\\sqrt{14} \\\\"}, {"identifier": "D", "content": "& 5\\sqrt{7}\n\\end{align*}\n\\]"}]
["C"]
null
null
dd7bf750-08ca-4eee-8b1b-3aa7880e708f
maths
3d-geometry
jee-mathematics
Let the area of the region \( \{(x, y) : 2y \leq x^2 + 3, \quad y \geq |x|, \quad |y| \leq |x - 1|\} \) be A. Then \( 6A \) is equal to: \[ \begin{align*}
[{"identifier": "A", "content": "& 16 \\\\"}, {"identifier": "B", "content": "& 12 \\\\"}, {"identifier": "C", "content": "& 14 \\\\"}, {"identifier": "D", "content": "& 18\n\\end{align*}\n\\]"}]
["C"]
null
null
1c2e865d-ac5b-42e3-bca5-9a6f1c08d311
maths
3d-geometry
jee-mathematics
Let \( S = \{ x : \cos^{-1} x = \pi + \sin^{-1} x + \sin^{-1}(2x + 1) \} \). Then \( \sum_{x \in S} (2x - 1)^2 \) is equal to ______.
[]
["E"]
null
null
162f99d2-c3c1-40b7-9898-27bf925f81b1
maths
3d-geometry
jee-mathematics
Let \( f : (0, \infty) \rightarrow \mathbb{R} \) be a twice differentiable function. If for some \( a \neq 0, \int_0^1 f(\lambda x) d\lambda = a f(x) \), \( f
[{"identifier": "A", "content": "= 1 \\) and \\( f"}, {"identifier": "P", "content": "= \\frac{1}{8} \\), then \\( 16 - f' \\left( \\frac{1}{16} \\right) \\) is equal to ______."}]
["°"]
null
null
0b67c9d8-fb39-44a3-b259-978ebd5b5085
maths
3d-geometry
jee-mathematics
The number of 6-letter words, with or without meaning, that can be formed using the letters of the word MATHS such that any letter that appears in the word must appear at least twice, is ______.
[]
["ֽ"]
null
null
92a4b8da-f6bb-4de1-b0cb-e42c14b3dcd6
maths
3d-geometry
jee-mathematics
Let \( S = \{ m \in \mathbb{Z} : A^m + A^m = 3I - A^{-6} \} \), where \( A = \begin{bmatrix} 2 & -1 \\ 1 & 0 \end{bmatrix} \). Then \( n(S) \) is equal to ______.
[]
["B"]
null
null
a9460d26-8af6-4c4c-9ce8-487a3c0312f2
maths
3d-geometry
jee-mathematics
Let \([t]\) be the greatest integer less than or equal to \( t \). Then the least value of \( p \in \mathbb{N} \) for which \[ \lim_{x \to \infty} \left( x \left( \left\lfloor \frac{1}{x} \right\rfloor + \left\lfloor \frac{2}{x} \right\rfloor + \cdots + \left\lfloor \frac{p}{x} \right\rfloor \right) - x^2 \left( \left\lfloor \frac{1}{x^2} \right\rfloor + \left\lfloor \frac{2}{x^2} \right\rfloor + \cdots + \left\lfloor \frac{p}{x^2} \right\rfloor \right) \right) \geq 1 \] is equal to ______.
[]
["X"]
null
null