question_id
stringlengths
36
36
subject
stringclasses
1 value
chapter
stringclasses
1 value
topic
stringclasses
8 values
question
stringlengths
54
505
options
stringlengths
2
538
correct_option
stringclasses
41 values
answer
float64
explanation
float64
4bb09cfb-2ab1-444e-bea8-964f5d829710
maths
3d-geometry
sequences-and-series
The distance of the line \( \frac{x^2}{2} = \frac{y^6}{3} = \frac{z^3}{4} \) from the point \((1, 4, 0)\) along the line \( \frac{x}{4} = \frac{y^2}{2} = \frac{z^3}{3} \) is:
[{"identifier": "A", "content": "\\( \\sqrt{17} \\)"}, {"identifier": "B", "content": "\\( \\sqrt{15} \\)"}, {"identifier": "C", "content": "\\( \\sqrt{14} \\)"}, {"identifier": "D", "content": "\\( \\sqrt{13} \\)"}]
["C"]
null
null
e7f78510-f04f-4edc-ae36-a36fa1560105
maths
3d-geometry
differential-equations
Let \( A = \{(x, y) \in \mathbb{R} \times \mathbb{R} : |x + y| \geq 3\} \) and \( B = \{(x, y) \in \mathbb{R} \times \mathbb{R} : |x| + |y| \leq 3\} \). If \( C = \{(x, y) \in A \cap B : x = 0 \text{ or } y = 0\} \), then \( \sum_{(x, y) \in C} |x + y| \) is:
[{"identifier": "A", "content": "15"}, {"identifier": "B", "content": "24"}, {"identifier": "C", "content": "18"}, {"identifier": "D", "content": "12"}]
["D"]
null
null
99dc6eaa-8767-4188-ba6c-259aa4554208
maths
3d-geometry
probability
Let \( X = \mathbb{R} \times \mathbb{R} \). Define a relation \( R \) on \( X \) as: \((a_1, b_1)R(a_2, b_2) \iff b_1 = b_2 \) Statement I : \( R \) is an equivalence relation. Statement II : For some \((a, b) \in X\), the set \( S = \{(x, y) \in X : (x, y)R(a, b)\} \) represents a line parallel to \( y = x \). In the light of the above statements, choose the correct answer from the options given below:
[{"identifier": "A", "content": "Both Statement I and Statement II are false"}, {"identifier": "B", "content": "Statement I is true but Statement II is false"}, {"identifier": "C", "content": "Both Statement I and Statement II are true"}, {"identifier": "D", "content": "Statement I is false but Statement II is true"}]
["B"]
null
null
9d8b65c8-f334-4258-9396-87e8b05c040f
maths
3d-geometry
exponential-and-logarithm
Let \( \int x^3 \sin x \, dx = g(x) + C \), where \( C \) is the constant of integration. If \( 8 \left( g\left(\frac{\pi}{2}\right) + g'\left(\frac{\pi}{2}\right)\right) = \alpha \pi^3 + \beta \pi^2 + \gamma, \alpha, \beta, \gamma \in \mathbb{Z} \), then \( \alpha + \beta - \gamma \) equals:
[{"identifier": "A", "content": "48"}, {"identifier": "B", "content": "55"}, {"identifier": "C", "content": "62"}, {"identifier": "D", "content": "47"}]
["B"]
null
null
fd4b9955-e499-42a7-b307-dc01f26961e7
maths
3d-geometry
coordinate-geometry
A rod of length eight units moves such that its ends \( A \) and \( B \) always lie on the lines \( x - y + 2 = 0 \) and \( y + 2 = 0 \), respectively. If the locus of the point \( P \), that divides the rod \( AB \) internally in the ratio \( 2 : 1 \) is \( 9 \left( x^2 + \alpha y^2 + \beta xy + \gamma x + 28y\right) - 76 = 0 \), then \( \alpha - \beta - \gamma \) is equal to:
[{"identifier": "A", "content": "22"}, {"identifier": "B", "content": "21"}, {"identifier": "C", "content": "23"}, {"identifier": "D", "content": "24"}]
["C"]
null
null
c1114f31-44a0-417b-bb0d-4021c582e91c
maths
3d-geometry
calculus-integration
If the square of the shortest distance between the lines \( \frac{x^2}{m} = \frac{y^6}{n} = \frac{z^3}{3} \) and \( \frac{x^3}{m} = \frac{y^3}{n} = \frac{z^3}{3} \) is \( \frac{m}{n} \), where \( m, n \) are coprime numbers, then \( m + n \) is equal to:
[{"identifier": "A", "content": "21"}, {"identifier": "B", "content": "9"}, {"identifier": "C", "content": "14"}, {"identifier": "D", "content": "6"}]
["B"]
null
null
baf77833-80a8-4e67-be37-d8b8e6ea1c76
maths
3d-geometry
conic-sections
\( \lim_{x \to \infty} \frac{(2x^2-3x+5)(3x-1)^{\frac{2}{3}}}{(3x^2+5x+4)\sqrt{(3x+2)^3}} \) is equal to:
[{"identifier": "A", "content": "\\( \\frac{2}{3} \\sqrt{e} \\)"}, {"identifier": "B", "content": "\\( \\frac{3e}{5} \\)"}, {"identifier": "C", "content": "\\( \\frac{2e}{3} \\)"}, {"identifier": "D", "content": "\\( \\frac{3e}{5} \\)"}]
["C"]
null
null
0e467008-3d2e-4985-a888-c4c4c61ef89a
maths
3d-geometry
jee-mathematics
Let the point \( A \) divide the line segment joining the points \( P(-1,-1,2) \) and \( Q(5,5,10) \) internally in the ratio \( r : 1(r > 0) \). If \( O \) is the origin and \( \overrightarrow{OQ} \cdot \overrightarrow{OA} = \frac{1}{5} |\overrightarrow{OP} \times \overrightarrow{OA}|^2 \) = 10, then the value of \( r \) is:
[{"identifier": "A", "content": "\\( \\sqrt{7} \\)"}, {"identifier": "B", "content": "14"}, {"identifier": "C", "content": "3"}, {"identifier": "D", "content": "7"}]
["D"]
null
null
1e9fd5df-4e15-472f-8b30-eb508b1cd5d0
maths
3d-geometry
jee-mathematics
The length of the chord of the ellipse \( \frac{x^2}{4} + \frac{y^2}{3} = 1 \), whose mid-point is \((1, \frac{1}{2})\), is:
[{"identifier": "A", "content": "\\( \\frac{5}{3} \\sqrt{15} \\)"}, {"identifier": "B", "content": "\\( \\frac{1}{3} \\sqrt{15} \\)"}, {"identifier": "C", "content": "\\( \\frac{2}{3} \\sqrt{15} \\)"}, {"identifier": "D", "content": "\\( \\sqrt{15} \\)"}]
["C"]
null
null
f72094ad-9378-463a-8afe-101e4c1feb7c
maths
3d-geometry
jee-mathematics
The system of equations \( x + 2y + 5z = 9 \), has no solution if: (x) \( x + 5y + \lambda z = \mu \),
[{"identifier": "A", "content": "\\( \\lambda = 15, \\mu \\neq 17 \\)"}, {"identifier": "B", "content": "\\( \\lambda \\neq 17, \\mu = 18 \\)"}, {"identifier": "C", "content": "\\( \\lambda = 17, \\mu \\neq 18 \\)"}, {"identifier": "D", "content": "\\( \\lambda = 17, \\mu = 18 \\)"}]
["C"]
null
null
8767ea4d-8340-48c8-855d-b38999732170
maths
3d-geometry
jee-mathematics
Let the range of the function \[ f(x) = 6 + 16 \cos x \cdot \cos \left( \frac{x}{3} - x \right) \cdot \cos \left( \frac{x}{3} + x \right) \cdot \sin 3x \cdot \cos 6x, x \in \mathbb{R} \] be \([\alpha, \beta] \). Then the distance of the point \((\alpha, \beta)\) from the line \(3x + 4y + 12 = 0\) is:
[{"identifier": "A", "content": "11"}, {"identifier": "B", "content": "8"}, {"identifier": "C", "content": "10"}, {"identifier": "D", "content": "9"}]
["A"]
null
null
1c0b8f27-c697-4c95-8608-edc4eac9c44f
maths
3d-geometry
jee-mathematics
Let \( x = x(y) \) be the solution of the differential equation \[ y = \left( x - y \frac{dy}{dx} \right) \sin \left( \frac{x}{y} \right), y > 0 \text{ and } x
[{"identifier": "A", "content": "= \\frac{\\pi}{2} \\]. Then\n\\[ \\cos(x"}, {"identifier": "B", "content": ") \\] is equal to:"}, {"identifier": "A", "content": "\\( 1 - 2(\\log_2 2)^2 \\)"}, {"identifier": "B", "content": "\\( 1 - 2(\\log_2 2) \\)"}, {"identifier": "C", "content": "\\( 2(\\log_2 2)^2 - 1 \\)"}, {"identifier": "D", "content": "\\( 2(\\log_2 2)^2 - 1 \\)"}]
["D"]
null
null
b99eecd0-86cd-4151-9d7a-05d422815525
maths
3d-geometry
jee-mathematics
A spherical chocolate ball has a layer of ice-cream of uniform thickness around it. When the thickness of the ice-cream layer is 1 cm, the ice-cream melts at the rate of 81 cm³/min and the thickness of the ice-cream layer decreases at the rate of \( \frac{1}{4} \) cm/min. The surface area (in cm²) of the chocolate ball (without the ice-cream layer) is:
[{"identifier": "A", "content": "196\u03c0"}, {"identifier": "B", "content": "256\u03c0"}, {"identifier": "C", "content": "225\u03c0"}, {"identifier": "D", "content": "128\u03c0"}]
["B"]
null
null
fc5d4114-d3a7-440c-ab06-28e802c7e40f
maths
3d-geometry
jee-mathematics
The number of complex numbers \( z \), satisfying \(|z| = 1\) and \( |\frac{z}{2} + \frac{\bar{z}}{2}| = 1\), is:
[{"identifier": "A", "content": "4"}, {"identifier": "B", "content": "8"}, {"identifier": "C", "content": "10"}, {"identifier": "D", "content": "6"}]
["B"]
null
null
0c203c20-5dc4-4021-aaa0-252c32704f27
maths
3d-geometry
jee-mathematics
Let \( A = [a_{ij}] \) be a \( 3 \times 3 \) matrix such that \[ A \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}, A \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} \text{ and } A \begin{bmatrix} 2 \\ 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} \], then \( a_{23} \) equals:
[{"identifier": "A", "content": "-1"}, {"identifier": "B", "content": "2"}, {"identifier": "C", "content": "1"}, {"identifier": "D", "content": "0"}]
["A"]
null
null
2760158c-5cbb-4b11-b37f-f567861c194e
maths
3d-geometry
jee-mathematics
If \( I = \int_{0}^{\pi} \frac{\sin \frac{x}{2}}{\sin \frac{x}{2} \cos \frac{x}{2}} \, dx \), then \[ I = \int_{0}^{21} \frac{x \sin x \cos x}{\sin^4 x + \cos^4 x} \, dx \] equals:
[{"identifier": "A", "content": "\\( \\frac{x^2}{12} \\)"}, {"identifier": "B", "content": "\\( \\frac{x^2}{4} \\)"}, {"identifier": "C", "content": "\\( \\frac{x^2}{16} \\)"}, {"identifier": "D", "content": "\\( \\frac{x^2}{8} \\)"}]
["C"]
null
null
c2ee8f45-0547-4c65-a11b-0105f122e588
maths
3d-geometry
jee-mathematics
A board has 16 squares as shown in the figure: Out of these 16 squares, two squares are chosen at random. The probability that they have no side in common is:
[{"identifier": "A", "content": "\\(7/10\\)"}, {"identifier": "B", "content": "\\(4/5\\)"}, {"identifier": "C", "content": "\\(23/30\\)"}, {"identifier": "D", "content": "\\(3/5\\)"}]
["B"]
null
null
d128d6b6-a0f1-4ff4-b83f-13c828d9b444
maths
3d-geometry
jee-mathematics
Let the shortest distance from \((a, 0), a > 0\) to the parabola \(y^2 = 4x\) be 4. Then the equation of the circle passing through the point \((a, 0)\) and the focus of the parabola, and having its centre on the axis of the parabola is:
[{"identifier": "A", "content": "\\(x^2 + y^2 - 10x + 9 = 0\\)"}, {"identifier": "B", "content": "\\(x^2 + y^2 - 6x + 5 = 0\\)"}, {"identifier": "C", "content": "\\(x^2 + y^2 - 4x + 3 = 0\\)"}, {"identifier": "D", "content": "\\(x^2 + y^2 - 8x + 7 = 0\\)"}]
["B"]
null
null
4a48d53e-0787-43ac-aa0c-e9efba9739d7
maths
3d-geometry
jee-mathematics
If in the expansion of \((1 + x)^p(1 - x)^q\), the coefficients of \(x\) and \(x^2\) are 1 and -2, respectively, then \(p^2 + q^2\) is equal to:
[{"identifier": "A", "content": "18"}, {"identifier": "B", "content": "13"}, {"identifier": "C", "content": "8"}, {"identifier": "D", "content": "20"}]
["B"]
null
null
31fb90ca-bd84-4ca9-9b71-f32add59351d
maths
3d-geometry
jee-mathematics
If the area of the region \(\{(x, y) : -1 \leq x \leq 1, 0 \leq y \leq a + e^{x+1} - e^{-x}, a > 0\}\) is \(\frac{e^{x+1} e^{x+1}}{e}\), then the value of \(a\) is:
[{"identifier": "A", "content": "8"}, {"identifier": "B", "content": "7"}, {"identifier": "C", "content": "5"}, {"identifier": "D", "content": "6"}]
["C"]
null
null
f3c8fe19-bd8c-4f37-9e11-2b5930e3c8c6
maths
3d-geometry
jee-mathematics
The variance of the numbers 8, 21, 34, 47, \ldots, 320 is
[]
["C"]
null
null
0fb44c34-5e78-4474-a9c9-44ee4d1a0246
maths
3d-geometry
jee-mathematics
The roots of the quadratic equation \(3x^2 - px + q = 0\) are 10th and 11th terms of an arithmetic progression with common difference \(\frac{\alpha}{2}\). If the sum of the first 11 terms of this arithmetic progression is 88, then \(q - 2p\) is equal to
[]
["Ț"]
null
null
c355123b-d38e-40f8-942f-38ad395686a8
maths
3d-geometry
jee-mathematics
The number of ways, 5 boys and 4 girls can sit in a row so that either all the boys sit together or no two boys sit together, is
[]
["䏀"]
null
null
9c014fa2-7f21-45b7-9d92-468f1b26fbdc
maths
3d-geometry
jee-mathematics
The focus of the parabola \(y^2 = 4x + 16\) is the centre of the circle \(C\) of radius 5. If the values of \(\lambda\), for which \(C\) passes through the point of intersection of the lines \(3x - y = 0\) and \(x + \lambda y = 4\), are \(\lambda_1\) and \(\lambda_2\), then \(12\lambda_1 + 29\lambda_2\) is equal to
[]
["O"]
null
null
25c19494-d9a2-408c-ade3-38e0a55aa8f2
maths
3d-geometry
jee-mathematics
Let \(\alpha, \beta\) be the roots of the equation \(x^2 - ax - b = 0\) with \(\text{Im}(\alpha) < \text{Im}(\beta)\). Let \(P_n = \alpha^n - \beta^n\). If \(P_3 = -5\sqrt{7}i, P_4 = -3\sqrt{7}i, P_5 = 11\sqrt{7}i\) and \(P_6 = 45\sqrt{7}i\), then \(|\alpha^4 + \beta^4|\) is equal to
[]
["_"]
null
null
716dfedd-e03b-472b-b096-06aa266e154c
maths
3d-geometry
sequences-and-series
Let circle $C$ be the image of $x^2 + y^2 - 2x + 4y - 4 = 0$ in the line $2x - 3y + 5 = 0$ and $A$ be the point on $C$ such that $OA$ is parallel to $x$-axis and $A$ lies on the right hand side of the centre $O$ of $C$. If $B(\alpha, \beta)$, with $\beta < 4$, lies on $C$ such that the length of the arc $AB$ is $(1/6)^{th}$ of the perimeter of $C$, then $\beta - \sqrt{3}\alpha$ is equal to
[{"identifier": "A", "content": "$3 + \\sqrt{3}$"}, {"identifier": "B", "content": "$4$"}, {"identifier": "C", "content": "$4 - \\sqrt{3}$"}, {"identifier": "D", "content": "$3$"}]
["B"]
null
null
8ea3fe25-f9be-4a1f-bda3-27f56bb14b73
maths
3d-geometry
differential-equations
Let in a $\triangle ABC$, the length of the side $AC$ be $6$, the vertex $B$ be $(1, 2, 3)$ and the vertices $A, C$ lie on the line $\frac{x-3}{2} = \frac{y-7}{2} = \frac{z-7}{2}$. Then the area (in sq. units) of $\triangle ABC$ is:
[{"identifier": "A", "content": "$17$"}, {"identifier": "B", "content": "$21$"}, {"identifier": "C", "content": "$56$"}, {"identifier": "D", "content": "$42$"}]
["B"]
null
null
2a299a1a-0c06-4a60-ac2f-6bdaa40b0fc8
maths
3d-geometry
probability
Let the product of the focal distances of the point $\left(\sqrt{3}, \frac{1}{3}\right)$ on the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$, $(a > b)$, be $\frac{7}{4}$. Then the absolute difference of the eccentricities of two such ellipses is
[{"identifier": "A", "content": "$\\frac{1 - \\sqrt{3}}{\\sqrt{2}}$"}, {"identifier": "B", "content": "$\\frac{3 - 2\\sqrt{2}}{2\\sqrt{3}}$"}, {"identifier": "C", "content": "$\\frac{3 - 2\\sqrt{2}}{3\\sqrt{2}}$"}, {"identifier": "D", "content": "$\\frac{1 - 2\\sqrt{2}}{\\sqrt{3}}$"}]
["B"]
null
null
ba619dfa-a9be-4aef-8a40-71019abd7612
maths
3d-geometry
exponential-and-logarithm
If the system of equations $5x + \lambda y + 3z = 12$ and $100x - 47y + \mu z = 212$ has infinitely many solutions, then $\mu - 2\lambda$ is equal to
[{"identifier": "A", "content": "$57$"}, {"identifier": "B", "content": "$59$"}, {"identifier": "C", "content": "$55$"}, {"identifier": "D", "content": "$56$"}]
["A"]
null
null
d46a273c-4f2e-406e-8349-7ebd51134569
maths
3d-geometry
coordinate-geometry
For some $n \neq 10$, let the coefficients of the $5$th, $6$th and $7$th terms in the binomial expansion of $(1 + x)^{n+4}$ be in A.P. Then the largest coefficient in the expansion of $(1 + x)^{n+4}$ is:
[{"identifier": "A", "content": "$20$"}, {"identifier": "B", "content": "$10$"}, {"identifier": "C", "content": "$35$"}, {"identifier": "D", "content": "$70$"}]
["C"]
null
null
1df5bc52-fb7d-4f2b-85ce-28e0f668fd1e
maths
3d-geometry
calculus-integration
The product of all the rational roots of the equation $\left(x^2 - 9x + 11\right)^2 - (x - 4)(x - 5) = 3$, is equal to
[{"identifier": "A", "content": "$14$"}, {"identifier": "B", "content": "$21$"}, {"identifier": "C", "content": "$28$"}, {"identifier": "D", "content": "$7$"}]
["A"]
null
null
36122fa4-0d5f-4c76-bd83-d0725f7934a9
maths
3d-geometry
conic-sections
Let the line passing through the points $(-1, 2, 1)$ and parallel to the line $\frac{x+1}{2} = \frac{y+1}{3} = \frac{z-1}{3}$ intersect the line $\frac{x+2}{3} = \frac{y-3}{2} = \frac{z+4}{1}$ at the point $P$. Then the distance of $P$ from the point $Q(4, -5, 1)$ is
[{"identifier": "A", "content": "$5$"}, {"identifier": "B", "content": "$5\\sqrt{5}$"}, {"identifier": "C", "content": "$5\\sqrt{6}$"}, {"identifier": "D", "content": "$10$"}]
["B"]
null
null
9fb4b7b3-0406-4aa9-b10b-3911e5b9f686
maths
3d-geometry
jee-mathematics
Let the lines $3x - 4y - \alpha = 0$, $8x - 11y - 33 = 0$, and $2x - 3y + \lambda = 0$ be concurrent. If the image of the point $(1, 2)$ in the line $2x - 3y + \lambda = 0$ is $\left(\frac{57}{13}, \frac{-40}{13}\right)$, then $|\alpha\lambda|$ is equal to
[{"identifier": "A", "content": "$84$"}, {"identifier": "B", "content": "$113$"}, {"identifier": "C", "content": "$91$"}, {"identifier": "D", "content": "$101$"}]
["C"]
null
null
fe6d35b5-ea23-494d-b95f-7df08f41b8a3
maths
3d-geometry
jee-mathematics
If $\alpha$ and $\beta$ are the roots of the equation $2x^2 - 3x - 2i = 0$, where $i = \sqrt{-1}$, then $16 \cdot \text{Re} \left(\frac{\alpha^{19} + \beta^{19} + \alpha^{11} + \beta^{11}}{\alpha^{5} + \beta^{5}}\right) \cdot \text{Im} \left(\frac{\alpha^{19} + \beta^{19} + \alpha^{11} + \beta^{11}}{\alpha^{5} + \beta^{5}}\right)$ is equal to
[]
["A"]
null
null
70403eb0-a5a1-4b96-aa65-89a15344632f
maths
3d-geometry
jee-mathematics
For a statistical data \(x_1, x_2, \ldots, x_{10}\) of 10 values, a student obtained the mean as 5.5 and \(\sum_{i=1}^{10} x_i^2 = 371\). He later found that he had noted two values in the data incorrectly as 4 and 5, instead of the correct values 6 and 8, respectively. The variance of the corrected data is
[{"identifier": "A", "content": "9"}, {"identifier": "B", "content": "5"}, {"identifier": "C", "content": "7"}, {"identifier": "D", "content": "4"}]
["C"]
null
null
c826c0a1-6d4c-48c3-8879-78bd54e24c1d
maths
3d-geometry
jee-mathematics
The area of the region \(\{(x, y) : x^2 + 4x + 2 \leq y \leq |x + 2|\}\) is equal to
[{"identifier": "A", "content": "7"}, {"identifier": "B", "content": "5"}, {"identifier": "C", "content": "24/5"}, {"identifier": "D", "content": "20/3"}]
["D"]
null
null
0b48edf8-5c2a-437c-9ccd-a97230a90e3d
maths
3d-geometry
jee-mathematics
Let \(S_n = \frac{1}{2} + \frac{1}{9} + \frac{1}{12} + \frac{1}{21} + \ldots \) upto \(n\) terms. If the sum of the first six terms of an A.P. with first term \(-p\) and common difference \(p\) is \(\sqrt{2025} S_{2025}\), then the absolute difference between 20th and 15th terms of the A.P. is
[{"identifier": "A", "content": "20"}, {"identifier": "B", "content": "90"}, {"identifier": "C", "content": "45"}, {"identifier": "D", "content": "25"}]
["D"]
null
null
0eb94d01-6c3e-47e4-84b4-ea1767364fb9
maths
3d-geometry
jee-mathematics
Let \(f : R \to \{0\} \to R\) be a function such that \(f(x) = 6f\left(\frac{1}{x}\right) = \frac{35}{3x} - \frac{5}{2}\). If the limit as \(x \to 0\) \(\left(x^{\frac{1}{x}} + f(x)\right) = \beta; \alpha, \beta \in R\), then \(\alpha + 2\beta\) is equal to
[{"identifier": "A", "content": "5"}, {"identifier": "B", "content": "3"}, {"identifier": "C", "content": "4"}, {"identifier": "D", "content": "6"}]
["C"]
null
null
1eced83e-3ea5-474f-9a8a-033ba116a923
maths
3d-geometry
jee-mathematics
If \(I(m, n) = \int_0^1 x^{m-1}(1-x)^{n-1} \, dx, m, n > 0\), then \(I(9, 14) + I(10, 13)\) is
[{"identifier": "A", "content": "\\(I(19, 27)\\)"}, {"identifier": "B", "content": "\\(I(9, 1)\\)"}, {"identifier": "C", "content": "\\(I(1, 13)\\)"}, {"identifier": "D", "content": "\\(I(9, 13)\\)"}]
["D"]
null
null
4a14b483-58b6-4bca-9bf7-426433b14c59
maths
3d-geometry
jee-mathematics
\(A\) and \(B\) alternately throw a pair of dice. \(A\) wins if he throws a sum of 5 before \(B\) throws a sum of 8, and \(B\) wins if he throws a sum of 8 before \(A\) throws a sum of 5. The probability, that \(A\) wins if \(A\) makes the first throw, is
[{"identifier": "A", "content": "\\(\\frac{9}{17}\\)"}, {"identifier": "B", "content": "\\(\\frac{9}{17}\\)"}, {"identifier": "C", "content": "\\(\\frac{9}{17}\\)"}, {"identifier": "D", "content": "\\(\\frac{8}{17}\\)"}]
["B"]
null
null
0c6f607d-54d7-466d-be1c-db64fc917a2e
maths
3d-geometry
jee-mathematics
Let \(f(x) = \frac{2x^2 + 16}{2x^3 + 2x^2 + 4 + 32}\). Then the value of \(8 \left(f\left(\frac{1}{15}\right) + f\left(\frac{2}{15}\right) + \ldots + f\left(\frac{59}{15}\right)\right)\) is equal to
[{"identifier": "A", "content": "92"}, {"identifier": "B", "content": "118"}, {"identifier": "C", "content": "102"}, {"identifier": "D", "content": "108"}]
["B"]
null
null
a857fdf6-b070-4f2d-a94c-7f592eeb3779
maths
3d-geometry
jee-mathematics
Let \(y = y(x)\) be the solution of the differential equation \((xy - 5x^2 \sqrt{1 + x^2}) \, dx + (1 + x^2) \, dy = 0, y
[{"identifier": "@", "content": "= 0\\). Then \\(y(\\sqrt{3})\\) is equal to"}, {"identifier": "A", "content": "\\(\\sqrt{15} \\div 2\\)"}, {"identifier": "B", "content": "\\(\\frac{1}{2} \\sqrt{\\frac{3}{2}}\\)"}, {"identifier": "C", "content": "\\(2\\sqrt{2}\\)"}, {"identifier": "D", "content": "\\(\\sqrt{\\frac{14}{3}}\\)"}]
["B"]
null
null
74a5b313-5de1-4b42-afac-e4b11c1d75e0
maths
3d-geometry
jee-mathematics
\(\lim_{x \to 0} \csc x \left(\sqrt{2 \cos^2 x + 3 \cos x} - \sqrt{\cos^2 x + \sin x + 4}\right)\) is:
[]
["D"]
null
null
4eabea93-8e5f-433c-914f-3757e0201d82
maths
3d-geometry
jee-mathematics
Consider the region \( R = \{ (x, y) : x \leq y \leq 9 - \frac{1}{11}x^2, x \geq 0 \} \). The area, of the largest rectangle of sides parallel to the coordinate axes and inscribed in \( R \), is:
[{"identifier": "A", "content": "\\( \\frac{90}{11} \\)"}, {"identifier": "B", "content": "\\( \\frac{85}{11} \\)"}, {"identifier": "C", "content": "\\( \\frac{61}{12} \\)"}, {"identifier": "D", "content": "\\( \\frac{567}{121} \\)"}]
["D"]
null
null
a093afec-18f3-4da4-ae18-f21d8f60edb8
maths
3d-geometry
jee-mathematics
Let \( \vec{a} = \hat{i} + 2\hat{j} + 3\hat{k}, \vec{b} = 3\hat{i} + \hat{j} - \hat{k} \) and \( \vec{c} \) be three vectors such that \( \vec{c} \) is coplanar with \( \vec{a} \) and \( \vec{b} \). If the vector \( \vec{C} \) is perpendicular to \( \vec{b} \) and \( \vec{a} \cdot \vec{c} = 5 \), then \( |\vec{c}| \) is equal to
[{"identifier": "A", "content": "\\( \\sqrt{\\frac{11}{6}} \\)"}, {"identifier": "B", "content": "\\( \\frac{1}{3\\sqrt{2}} \\)"}, {"identifier": "C", "content": "\\( 16 \\)"}, {"identifier": "D", "content": "\\( 18 \\)"}]
["A"]
null
null
aa607395-f954-4395-99bd-bf683bb6e0f6
maths
3d-geometry
jee-mathematics
Let \( S = \{ p_1, p_2, \ldots, p_{10} \} \) be the set of first ten prime numbers. Let \( A = S \cup P \), where \( P \) is the set of all possible products of distinct elements of \( S \). Then the number of all ordered pairs \( (x, y), x \in S, y \in A \), such that \( x \) divides \( y \), is ______.
[]
["ᑀ"]
null
null
f5866438-d51e-4568-989c-3d999deac59e
maths
3d-geometry
jee-mathematics
If for some \( \alpha, \beta, \alpha \leq \beta, \alpha + \beta = 8 \) and \( \sec^{-2} (\tan^{-1} \alpha) + \cosec^{-2} (\cot^{-1} \beta) = 36 \), then \( \alpha^2 + \beta^2 \) is ______.
[]
["N"]
null
null
d29e5e0c-48f5-4303-b50d-3a8ff8eb8710
maths
3d-geometry
jee-mathematics
Let \( A \) be a \( 3 \times 3 \) matrix such that \( X^TAX = O \) for all nonzero \( 3 \times 1 \) matrices \( X = \begin{bmatrix} x \\ y \\ z \end{bmatrix} \). If \[ A = \begin{bmatrix} 1 & 4 \\ 1 & -5 \\ 4 & 1 \end{bmatrix}, \quad A = \begin{bmatrix} 0 \\ 4 \\ -8 \end{bmatrix} \] and \( \det(\text{adj}(2(A + 1))) = 2^\alpha 3^\beta 5^\gamma \), \( \alpha, \beta, \gamma \in N \), then \( \alpha^2 + \beta^2 + \gamma^2 \) is______.
[]
["l"]
null
null
7fca30a7-2f14-4248-8bf0-1b687fba8e51
maths
3d-geometry
jee-mathematics
Let \( f \) be a differentiable function such that \( 2(x + 2)^2 f(x) - 3(x + 2)^2 = 10 \int_0^x (t + 2) f(t) dt, x \geq 0. \) Then \( f
[{"identifier": "B", "content": "\\) is equal to ______."}]
["S"]
null
null
599bb4f3-4909-4595-9cd4-3822f2ceae1c
maths
3d-geometry
jee-mathematics
The number of 3-digit numbers, that are divisible by 2 and 3, but not divisible by 4 and 9, is______.
[]
["½"]
null
null
ef0e84d8-2585-4467-b206-30704260a218
maths
3d-geometry
sequences-and-series
Group A consists of 7 boys and 3 girls, while group B consists of 6 boys and 5 girls. The number of ways, 4 boys and 4 girls can be invited for a picnic if 5 of them must be from group A and the remaining 3 from group B, is equal to:
[{"identifier": "A", "content": "8750"}, {"identifier": "B", "content": "9100"}, {"identifier": "C", "content": "8925"}, {"identifier": "D", "content": "8575"}]
["C"]
null
null
42221b8f-55a0-4bd7-a037-6e5173757fe9
maths
3d-geometry
differential-equations
If the system of equations $2x + \lambda y + 5z = 5$ has infinitely many solutions, then $\lambda + \mu$ is equal to: $14x + 3y + \mu z = 33$
[{"identifier": "A", "content": "13"}, {"identifier": "B", "content": "10"}, {"identifier": "C", "content": "12"}, {"identifier": "D", "content": "11"}]
["C"]
null
null
6d3d3618-c7da-4b3a-8383-66b5b182ab6b
maths
3d-geometry
probability
Let $A = \left\{ x \in (0, \pi) - \left\{ \frac{\pi}{2} \right\} : \log_{2/\pi} |\sin x| + \log_{2/\pi} |\cos x| = 2 \right\}$ and $B = \{ x \geq 0 : \sqrt{\sqrt{x} - 4} - 3\sqrt{\sqrt{x} - 2} + 6 = 0 \}$. Then $n(A \cup B)$ is equal to:
[{"identifier": "A", "content": "4"}, {"identifier": "B", "content": "8"}, {"identifier": "C", "content": "6"}, {"identifier": "D", "content": "2"}]
["B"]
null
null
c8897713-8999-444b-84d6-3a54ba0b823d
maths
3d-geometry
exponential-and-logarithm
The area of the region enclosed by the curves $y = e^x$, $y = |e^x - 1|$ and y-axis is:
[{"identifier": "A", "content": "$1 - \\log_e 2$"}, {"identifier": "B", "content": "$\\log_e 2$"}, {"identifier": "C", "content": "$1 + \\log_e 2$"}, {"identifier": "D", "content": "$2 \\log_e 2 - 1$"}]
["A"]
null
null
35b0bdd6-4e7e-4ed5-86e3-484752574845
maths
3d-geometry
coordinate-geometry
The equation of the chord, of the ellipse $\frac{x^2}{25} + \frac{y^2}{16} = 1$, whose mid-point is $(3, 1)$, is: $25x + 101y = 176$
[{"identifier": "A", "content": "$48x + 25y = 169$"}, {"identifier": "B", "content": "$5x + 16y = 31$"}, {"identifier": "C", "content": "$4x + 122y = 134$"}, {"identifier": "D", "content": "$4x + 122y = 134$"}]
["A"]
null
null
f602ed0f-1b06-458b-8ca3-2bf6c12b4f42
maths
3d-geometry
calculus-integration
Let the points $(\frac{11}{2}, \alpha)$ lie on or inside the triangle with sides $x + y = 11$, $x + 2y = 16$ and $2x + 3y = 29$. Then the product of the smallest and the largest values of $\alpha$ is equal to:
[{"identifier": "A", "content": "44"}, {"identifier": "B", "content": "22"}, {"identifier": "C", "content": "33"}, {"identifier": "D", "content": "55"}]
["C"]
null
null
9e392e8e-9769-4730-8c3c-be055a34abcb
maths
3d-geometry
conic-sections
Let $f : (0, \infty) \rightarrow \mathbb{R}$ be a function which is differentiable at all points of its domain and satisfies the condition $x^2 f'(x) = 2x f(x) + 3$, with $f
[{"identifier": "A", "content": "= 4$. Then $2f"}, {"identifier": "B", "content": "$ is equal to:"}, {"identifier": "A", "content": "39"}, {"identifier": "B", "content": "19"}, {"identifier": "C", "content": "29"}, {"identifier": "D", "content": "23"}]
["A"]
null
null
9ea00ba8-51c4-4d92-b9fa-4f615e9937b2
maths
3d-geometry
jee-mathematics
If $7 = 5 \times 1 + \frac{1}{7} (5 + \alpha) + \frac{1}{7^2} (5 + 2\alpha) + \frac{1}{7^3} (5 + 3\alpha) + \cdots \infty$, then the value of $\alpha$ is:
[{"identifier": "A", "content": "$\\frac{6}{7}$"}, {"identifier": "B", "content": "6"}, {"identifier": "C", "content": "$\\frac{1}{7}$"}, {"identifier": "D", "content": "1"}]
["B"]
null
null
9f7ee42f-a422-42c0-a0cd-ff4f14da835a
maths
3d-geometry
jee-mathematics
Let $[x]$ denote the greatest integer function, and let m and n respectively be the numbers of the points, where the function $f(x) = [x] + [x - 2]$, $-2 < x < 3$, is not continuous and not differentiable. Then $m + n$ is equal to:
[{"identifier": "A", "content": "6"}, {"identifier": "B", "content": "8"}, {"identifier": "C", "content": "9"}, {"identifier": "D", "content": "7"}]
["B"]
null
null
ff241288-2eaf-4e9a-8c75-5e9c5bbf48ec
maths
3d-geometry
jee-mathematics
Let $A = [a_{ij}]$ be a square matrix of order 2 with entries either 0 or 1. Let $E$ be the event that $A$ is an invertible matrix. Then the probability $P(E)$ is:
[]
["C"]
null
null
01a34c0e-d55e-41c9-881a-c5007a131d39
maths
3d-geometry
jee-mathematics
Let the position vectors of three vertices of a triangle be \(4\mathbf{p} + \mathbf{q} - 3\mathbf{r}, -5\mathbf{p} + \mathbf{q} + 2\mathbf{r}\) and \(2\mathbf{p} - \mathbf{q} + 2\mathbf{r}\). If the position vectors of the orthocenter and the circumcenter of the triangle are \(\frac{5\mathbf{p} + 2\mathbf{q} + 3\mathbf{r}}{14}\) and \(\alpha\mathbf{p} + \beta\mathbf{q} + \gamma\mathbf{r}\) respectively, then \(\alpha + 2\beta + 5\gamma\) is equal to:
[{"identifier": "A", "content": "3"}, {"identifier": "B", "content": "4"}, {"identifier": "C", "content": "1"}, {"identifier": "D", "content": "6"}]
["A"]
null
null
b8677182-5ae1-4aed-ba9a-f5b13c00f01a
maths
3d-geometry
jee-mathematics
Let \(\mathbf{a} = 3\mathbf{i} - \mathbf{j} + 2\mathbf{k}, \mathbf{b} = \mathbf{a} \times (\mathbf{i} - 2\mathbf{k})\) and \(\mathbf{c} = \mathbf{b} \times \mathbf{k}\). Then the projection of \(\mathbf{c} - 2\mathbf{j}\) on \(\mathbf{a}\) is:
[{"identifier": "A", "content": "\\(2\\sqrt{14}\\)"}, {"identifier": "B", "content": "\\(\\mathbf{v}\\)"}, {"identifier": "C", "content": "\\(\\sqrt{7}\\)"}, {"identifier": "D", "content": "\\(2\\sqrt{7}\\)"}]
["A"]
null
null
92212052-fd2a-4fdb-9567-d15d7e04b3e2
maths
3d-geometry
jee-mathematics
The number of real solution(s) of the equation \(x^2 + 3x + 2 = \min\{\vert x - 3\vert, \vert x + 2\vert\}\) is:
[{"identifier": "A", "content": "1"}, {"identifier": "B", "content": "0"}, {"identifier": "C", "content": "2"}, {"identifier": "D", "content": "3"}]
["C"]
null
null
66422792-577f-48e3-8577-6ce01f4feeb0
maths
3d-geometry
jee-mathematics
The function \(f : (-\infty, \infty) \rightarrow (-\infty, 1), \text{ defined by } f(x) = \frac{x^2 - 2x}{x^2 + 2}\) is:
[{"identifier": "A", "content": "Neither one-one nor onto"}, {"identifier": "B", "content": "Onto but not one-one"}, {"identifier": "C", "content": "Both one-one and onto"}, {"identifier": "D", "content": "One-one but not onto"}]
["D"]
null
null
8b3060d6-97c3-427e-802a-831bef7af864
maths
3d-geometry
jee-mathematics
In an arithmetic progression, if \(S_{10} = 1030\) and \(S_{12} = 57\), then \(S_{30} - S_{10}\) is equal to:
[{"identifier": "A", "content": "525"}, {"identifier": "B", "content": "510"}, {"identifier": "C", "content": "515"}, {"identifier": "D", "content": "505"}]
["C"]
null
null
37be8789-ed18-4591-910c-57c0774c29c8
maths
3d-geometry
jee-mathematics
Suppose \(A\) and \(B\) are the coefficients of 30th and 12th terms respectively in the binomial expansion of \((1 + x)^{2n-1}\). If \(2A = 5B\), then \(n\) is equal to:
[{"identifier": "A", "content": "22"}, {"identifier": "B", "content": "20"}, {"identifier": "C", "content": "21"}, {"identifier": "D", "content": "19"}]
["C"]
null
null
8999ad58-5192-4896-bbd5-131e2f36c4a7
maths
3d-geometry
jee-mathematics
Let \((2, 3)\) be the largest open interval in which the function \(f(x) = 2\log_e(x - 2) - x^2 + ax + 1\) is strictly increasing and \((b, c)\) be the largest open interval, in which the function \(g(x) = (x - 1)^3(x + 2 - a)^2\) is strictly decreasing. Then \(100(a + b - c)\) is equal to:
[{"identifier": "A", "content": "420"}, {"identifier": "B", "content": "360"}, {"identifier": "C", "content": "160"}, {"identifier": "D", "content": "280"}]
["B"]
null
null
5dc239df-f2e9-4f64-956d-7cf33138be50
maths
3d-geometry
jee-mathematics
For some \(a, b\), let \(f(x) = \frac{a + \sin x}{x} \begin{vmatrix} 1 & 1 & b \\ a & 1 + \sin x & b \\ a & 1 & b + \sin x \end{vmatrix}, x \neq 0, \lim_{x \to 0} f(x) = \lambda + \mu a + \nu b\). Then \((\lambda + \mu + \nu)^2\) is equal to:
[{"identifier": "A", "content": "16"}, {"identifier": "B", "content": "25"}, {"identifier": "C", "content": "9"}, {"identifier": "D", "content": "36"}]
["A"]
null
null
3df5204a-ffbf-4d19-980a-8e2fb65f7d87
maths
3d-geometry
jee-mathematics
If the equation of the parabola with vertex \(V\left(\frac{3}{2}, 3\right)\) and the directrix \(x + 2y = 0\) is \(\alpha x^2 + \beta y^2 - \gamma xy - 30x - 60y + 225 = 0\), then \(\alpha + \beta + \gamma\) is equal to: \(\alpha x^2 + \beta y^2 - \gamma xy - 30x - 60y + 225 = 0\)
[]
["B"]
null
null
fb786c03-50bb-45a1-8a07-5ba97cb76d37
maths
3d-geometry
jee-mathematics
If $\alpha > \beta > \gamma > 0$, then the expression $\cot^{-1} \left\{ \beta + \frac{(1+\beta^2)}{(\alpha-\beta)} \right\} + \cot^{-1} \left\{ \gamma + \frac{(1+\gamma^2)}{(\beta-\gamma)} \right\} + \cot^{-1} \left\{ \alpha + \frac{(1+\alpha^2)}{(\gamma-\alpha)} \right\}$ is equal to:
[{"identifier": "A", "content": "$\\pi$"}, {"identifier": "B", "content": "0"}, {"identifier": "C", "content": "$\\pi - (\\alpha + \\beta + \\gamma)$"}, {"identifier": "D", "content": "$3\\pi$"}]
["A"]
null
null
9b4a5341-8d99-48ab-9a32-ddf854a5b148
maths
3d-geometry
jee-mathematics
Let $P$ be the image of the point $Q(7, -2, 5)$ in the line $L : \frac{x-1}{2} = \frac{y+1}{3} = \frac{z}{4}$ and $R(5, p, q)$ be a point on $L$. Then the square of the area of $\triangle PQR$ is ________.
[]
["Ͻ"]
null
null
d4ee3e0f-52dd-4c48-802d-7ebfc9b8846e
maths
3d-geometry
jee-mathematics
If $\int \frac{2x^2 + 5x + 9}{\sqrt{x^2 + x + 1}} \, dx = x\sqrt{x^2 + x + 1} + \alpha \sqrt{x^2 + x + 1} + \beta \log_e |x + \frac{1}{2} + \sqrt{x^2 + x + 1}| + C$, where $C$ is the constant of integration, then $\alpha + 2\beta$ is equal to ________.
[]
["P"]
null
null
46d3b2e8-b00d-42e1-ac03-81431e08fd4a
maths
3d-geometry
jee-mathematics
Let $y = y(x)$ be the solution of the differential equation $2 \cos x \frac{dy}{dx} = \sin 2x - 4y \sin x$, $x \in (0, \frac{\pi}{2})$. If $y \left( \frac{\pi}{4} \right) = 0$, then $y' \left( \frac{\pi}{4} \right) + y \left( \frac{\pi}{4} \right)$ is equal to ________.
[]
["A"]
null
null
e9b2988b-7ac7-4528-a0e5-fa70df795c0b
maths
3d-geometry
jee-mathematics
Number of functions $f : \{1, 2, \ldots, 100\} \rightarrow \{0, 1\}$, that assign 1 to exactly one of the positive integers less than or equal to 98, is equal to ________.
[]
["Lj"]
null
null
984ecf93-7530-44c2-b9fc-40badc1010a5
maths
3d-geometry
jee-mathematics
Let $H_1 : \frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ and $H_2 : -\frac{x^2}{A^2} + \frac{y^2}{B^2} = 1$ be two hyperbolas having length of latus rectums $15\sqrt{2}$ and $12\sqrt{5}$ respectively. Let their eccentricities be $e_1 = \sqrt{\frac{5}{2}}$ and $e_2$ respectively. If the product of the lengths of their transverse axes is $100\sqrt{10}$, then $25e_2^2$ is equal to ________.
[]
["w"]
null
null
f0c34e35-de11-40b6-b844-4aceda9c9c64
maths
3d-geometry
sequences-and-series
Let \( O \) be the origin, the point \( A \) be \( z_1 = \sqrt{3} + 2\sqrt{2}i \), the point \( B(z_2) \) be such that \( \sqrt{3} |z_2| = |z_1| \) and \( \arg(z_2) = \arg(z_1) + \frac{\pi}{6} \). Then
[{"identifier": "A", "content": "area of triangle ABO is \\( \\frac{11}{3} \\)"}, {"identifier": "B", "content": "ABO is an obtuse angled isosceles triangle"}, {"identifier": "C", "content": "area of triangle ABO is \\( \\frac{11}{4} \\)"}, {"identifier": "D", "content": "ABO is a scalene triangle"}]
["B"]
null
null
386008a7-9f2d-417a-bc5e-9da6c7c9c48a
maths
3d-geometry
differential-equations
Let \( f : \mathbb{R} \to \mathbb{R} \) be a function defined by \( f(x) = (2 + 3a)x^2 + \left( \frac{2a+7}{2} \right)x + b, a \neq 1. \) If \( f(x + y) = f(x) + f(y) + 1 - \frac{1}{2}xy \), then the value of \( 28 \sum_{i=1}^{5} |f(i)| \) is
[{"identifier": "A", "content": "545"}, {"identifier": "B", "content": "715"}, {"identifier": "C", "content": "735"}, {"identifier": "D", "content": "675"}]
["D"]
null
null
3abb0ea3-69b6-4fe5-bc92-c24c1341f8de
maths
3d-geometry
probability
Let \( ABCD \) be a trapezium whose vertices lie on the parabola \( y^2 = 4x \). Let the sides \( AD \) and \( BC \) of the trapezium be parallel to \( y \)-axis. If the diagonal \( AC \) is of length \( \frac{25}{4} \) and it passes through the point \( (1, 0) \), then the area of \( ABCD \) is
[{"identifier": "A", "content": "\\( \\frac{73}{8} \\)"}, {"identifier": "B", "content": "\\( \\frac{25}{9} \\)"}, {"identifier": "C", "content": "\\( \\frac{16}{8} \\)"}, {"identifier": "D", "content": "\\( \\frac{75}{8} \\)"}]
["A"]
null
null
ce69f97f-67ad-4564-96b5-d19b006f6e1b
maths
3d-geometry
exponential-and-logarithm
The sum of all local minimum values of the function \[ f(x) = \begin{cases} 1 - 2x, & x < -1 \\ \frac{1}{3}(7 + 2|x|), & -1 \leq x \leq 2 \\ \frac{1}{12}(x - 4)(x - 5), & x > 2 \end{cases} \] is
[{"identifier": "A", "content": "\\( \\frac{137}{72} \\)"}, {"identifier": "B", "content": "\\( \\frac{131}{72} \\)"}, {"identifier": "C", "content": "\\( \\frac{137}{72} \\)"}, {"identifier": "D", "content": "\\( \\frac{167}{72} \\)"}]
["A"]
null
null
7a54308e-bc39-4255-b8dc-4b50afb12022
maths
3d-geometry
coordinate-geometry
Let \( ^nC_{r-1} = 28, ^nC_r = 56 \) and \( ^nC_{r+1} = 70 \). Let \( A(4 \cos t, 4 \sin t), B(2 \sin t, -2 \cos t) \) and \( C(3r - n, r^2 - n - 1) \) be the vertices of a triangle \( ABC \), where \( t \) is a parameter. If \( (3x - 1)^2 + (3y)^2 = \alpha \), is the locus of the centroid of triangle \( ABC \), then \( \alpha \) equals
[{"identifier": "A", "content": "6"}, {"identifier": "B", "content": "18"}, {"identifier": "C", "content": "8"}, {"identifier": "D", "content": "20"}]
["D"]
null
null
bf5f71d9-d0bb-4ce3-b1a3-bf2218c08673
maths
3d-geometry
calculus-integration
Let the equation of the circle, which touches \( x \)-axis at the point \( (a, 0) \), \( a > 0 \) and cuts off an intercept of length \( b \) on \( y \)-axis be \( x^2 + y^2 - \alpha x + \beta y + \gamma = 0 \). If the circle lies below \( x \)-axis, then the ordered pair \((2a, b^2)\) is equal to
[{"identifier": "A", "content": "\\( (\\gamma, \\beta^2 - 4\\alpha) \\)"}, {"identifier": "B", "content": "\\( (\\alpha, \\beta^2 + 4\\gamma) \\)"}, {"identifier": "C", "content": "\\( (\\gamma, \\beta^2 + 4\\alpha) \\)"}, {"identifier": "D", "content": "\\( (\\alpha, \\beta^2 - 4\\gamma) \\)"}]
["D"]
null
null
fcb2d563-8ac4-452f-be89-ce259c8146c1
maths
3d-geometry
conic-sections
If \( f(x) = \frac{x^2}{2x^2 + \sqrt{2}}, x \in \mathbb{R}, \) then \( \sum_{k=1}^{81} f \left( \frac{k}{82} \right) \) is equal to
[{"identifier": "A", "content": "\\( 1.81\\sqrt{2} \\)"}, {"identifier": "B", "content": "\\( 41 \\)"}, {"identifier": "C", "content": "\\( 82 \\)"}, {"identifier": "D", "content": "\\( \\frac{81}{2} \\)"}]
["D"]
null
null
d323f007-a281-4f15-8c52-e3b78f1b9fb8
maths
3d-geometry
jee-mathematics
Two number \( k_1 \) and \( k_2 \) are randomly chosen from the set of natural numbers. Then, the probability that the value of \( i^{k_1} + j^{k_2}, (i = \sqrt{-1}) \) is non-zero, equals
[]
["B"]
null
null
2400477c-a743-4733-95d2-a4f76884f8f5
maths
3d-geometry
jee-mathematics
If the image of the point \((4, 4, 3)\) in the line \(\frac{x-1}{2} = \frac{y-2}{3} = \frac{z-1}{3}\) is \((\alpha, \beta, \gamma)\), then \(\alpha + \beta + \gamma\) is equal to \[
[{"identifier": "A", "content": "\\ 9 \\quad"}, {"identifier": "B", "content": "\\ 12 \\quad"}, {"identifier": "C", "content": "\\ 7 \\quad"}, {"identifier": "D", "content": "\\ 8.\n\\]"}]
["A"]
null
null
13d54bd0-0372-4112-a983-0f35933d161b
maths
3d-geometry
jee-mathematics
\(\cos \left( \sin^{-1} \frac{3}{5} + \sin^{-1} \frac{5}{13} + \sin^{-1} \frac{33}{65} \right)\) is equal to: \[
[{"identifier": "A", "content": "\\ 1 \\quad"}, {"identifier": "B", "content": "\\ 0 \\quad"}, {"identifier": "C", "content": "\\ \\frac{32}{65} \\quad"}, {"identifier": "D", "content": "\\ \\frac{33}{65}.\n\\]"}]
["B"]
null
null
669b1282-46df-4444-b097-abc0e94d1c6f
maths
3d-geometry
jee-mathematics
Let \(A(x, y, z)\) be a point in \(xy\)-plane, which is equidistant from three points \((0, 3, 2), (2, 0, 3)\) and \((0, 0, 1)\). Let \(B = (1, 4, -1)\) and \(C = (2, 0, -2)\). Then among the statements (S1) : \(\triangle ABC\) is an isosceles right angled triangle, and (S2) : the area of \(\triangle ABC\) is \(\frac{9\sqrt{2}}{2}\), \[
[{"identifier": "A", "content": "\\ \\text{both are true} \\quad"}, {"identifier": "B", "content": "\\ \\text{only (S2) is true} \\quad"}, {"identifier": "C", "content": "\\ \\text{only (S1) is true} \\quad"}, {"identifier": "D", "content": "\\ \\text{both are false}.\n\\]"}]
["C"]
null
null
e8e525f0-719e-4737-b196-ec4c9442a18e
maths
3d-geometry
jee-mathematics
The area (in sq. units) of the region \(\{ (x, y) : 0 \leq y \leq 2|x| + 1, 0 \leq y \leq x^2 + 1, |x| \leq 3 \}\) is \[
[{"identifier": "A", "content": "\\ \\frac{80}{3} \\quad"}, {"identifier": "B", "content": "\\ \\frac{44}{3} \\quad"}, {"identifier": "C", "content": "\\ \\frac{32}{3} \\quad"}, {"identifier": "D", "content": "\\ \\frac{17}{3}.\n\\]"}]
["B"]
null
null
3c8d4be8-c367-4856-bdc1-bfe37e60d677
maths
3d-geometry
jee-mathematics
The sum of the squares of all the roots of the equation \(x^2 + |2x - 3| - 4 = 0\), is \[
[{"identifier": "A", "content": "\\ 3(3 - \\sqrt{2}) \\quad"}, {"identifier": "B", "content": "\\ 6(3 - \\sqrt{2}) \\quad"}, {"identifier": "C", "content": "\\ 6(2 - \\sqrt{2}) \\quad"}, {"identifier": "D", "content": "\\ 3(2 - \\sqrt{2})\n\\]"}]
["C"]
null
null
577660f5-d79b-4d00-9af8-d50b7849743f
maths
3d-geometry
jee-mathematics
Let \(T_r\) be the \(r^{th}\) term of an A.P. If for some \(m, T_m = \frac{1}{25}, T_{25} = \frac{1}{25}\), and \(20 \sum_{r=1}^{25} T_r = 13\), then \(5m \sum_{r=m}^{m+2} T_r\) is equal to \[
[{"identifier": "A", "content": "\\ 98 \\quad"}, {"identifier": "B", "content": "\\ 126 \\quad"}, {"identifier": "C", "content": "\\ 142 \\quad"}, {"identifier": "D", "content": "\\ 112.\n\\]"}]
["B"]
null
null
d688540d-d072-44a1-b481-a459af38593f
maths
3d-geometry
jee-mathematics
Three defective oranges are accidently mixed with seven good ones and on looking at them, it is not possible to differentiate between them. Two oranges are drawn at random from the lot. If \(x\) denote the number of defective oranges, then the variance of \(x\) is \[
[{"identifier": "A", "content": "\\ \\frac{28}{75} \\quad"}, {"identifier": "B", "content": "\\ \\frac{18}{25} \\quad"}, {"identifier": "C", "content": "\\ \\frac{26}{75} \\quad"}, {"identifier": "D", "content": "\\ \\frac{14}{25}.\n\\]"}]
["A"]
null
null
403a27b0-6d1e-49c4-924d-8722f6a2915f
maths
3d-geometry
jee-mathematics
Let for some function \(y = f(x), \int_0^x tf(t) dt = x^2 f(x), x > 0\) and \(f
[{"identifier": "B", "content": "= 3\\). Then \\(f"}, {"identifier": "F", "content": "\\) is equal to\n\\["}, {"identifier": "A", "content": "\\ 1 \\quad"}, {"identifier": "B", "content": "\\ 3 \\quad"}, {"identifier": "C", "content": "\\ 6 \\quad"}, {"identifier": "D", "content": "\\ 2.\n\\]"}]
["A"]
null
null
f15c71bb-d3e0-42f2-b7da-a93f795013ef
maths
3d-geometry
jee-mathematics
If \(\int \frac{9x^2 \cos \pi x}{(1 + x^2)^2} dx = \pi (\alpha x^2 + \beta), \alpha, \beta \in \mathbb{Z}\), then \((\alpha + \beta)^2\) equals \[
[{"identifier": "A", "content": "\\ 64 \\quad"}, {"identifier": "B", "content": "\\ 196 \\quad"}, {"identifier": "C", "content": "\\ 144 \\quad"}, {"identifier": "D", "content": "\\ 100.\n\\]"}]
["D"]
null
null
bec8e309-4e7f-4767-9f29-a2c36dac2786
maths
3d-geometry
jee-mathematics
Let \(\{a_n\}\) be a sequence such that \(a_0 = 0, a_1 = \frac{1}{2}\) and \(2a_{n+2} = 5a_{n+1} - 3a_n, n = 0, 1, 2, 3, \ldots\). Then \(\sum_{k=1}^{100} a_k\) is equal to
[]
["B"]
null
null
4dfa6e24-a0d7-4203-b672-58d09c63870b
maths
3d-geometry
jee-mathematics
The number of different 5 digit numbers greater than 50000 that can be formed using the digits 0, 1, 2, 3, 4, 5, 6, 7, such that the sum of their first and last digits should not be more than 8, is
[{"identifier": "A", "content": "4608"}, {"identifier": "B", "content": "5720"}, {"identifier": "C", "content": "5719"}, {"identifier": "D", "content": "4607"}]
["D"]
null
null
01291000-d3a5-41f5-aac9-1a90237dadf5
maths
3d-geometry
jee-mathematics
The relation \( R = \{ (x, y) : x, y \in \mathbb{Z} \text{ and } x + y \text{ is even} \} \) is:
[{"identifier": "A", "content": "reflexive and symmetric but not transitive"}, {"identifier": "B", "content": "an equivalence relation"}, {"identifier": "C", "content": "symmetric and transitive but not reflexive"}, {"identifier": "D", "content": "reflexive and transitive but not symmetric"}]
["B"]
null
null
5df8a224-1e66-4ab3-a733-446cb3d5df54
maths
3d-geometry
jee-mathematics
Let \( f(x) = \begin{cases} 3x, & x < 0 \\ \min\{1 + x + |x|, x + 2|x|\}, & 0 \leq x \leq 2 \text{ where } [.] \text{ denotes greatest integer function} \end{cases} \). If \( \alpha \) and \( \beta \) are the number of points, where \( f \) is not continuous and is not differentiable, respectively, then \( \alpha + \beta \) equals \( \frac{5}{2} \)
[]
["E"]
null
null
70401e79-9f72-4a97-9c2d-6ff0463d1a59
maths
3d-geometry
jee-mathematics
Let \( M \) denote the set of all real matrices of order \( 3 \times 3 \) and let \( S = \{ -3, -2, -1, 1, 2 \} \). Let \[ S_1 = \{ A = [a_{ij}] \in M : A = A^T \text{ and } a_{ij} \in S, \forall i, j \}, \\ S_2 = \{ A = [a_{ij}] \in M : A = -A^T \text{ and } a_{ij} \in S, \forall i, j \}, \\ S_3 = \{ A = [a_{ij}] \in M : a_{11} + a_{22} + a_{33} = 0 \text{ and } a_{ij} \in S, \forall i, j \}. \] If \( n(S_1 \cup S_2 \cup S_3) = 125\alpha \), then \( \alpha \) equals \( \frac{5}{2} \)
[]
["ڍ"]
null
null
4141f89c-4f78-485e-a9bc-6f3ab89dc31c
maths
3d-geometry
jee-mathematics
If \( \alpha = 1 + \sum_{r=1}^{6} (-3)^{r-1} 12C_{2r-1} \), then the distance of the point \( (12, \sqrt{3}) \) from the line \( \alpha x - \sqrt{3}y + 1 = 0 \) is \( \frac{5}{2} \)
[]
["E"]
null
null
70575064-0b51-4839-8155-1945b70779e0
maths
3d-geometry
jee-mathematics
Let \( E_1 : \frac{x^2}{3} + \frac{y^2}{4} = 1 \) be an ellipse. Ellipses \( E_i \)'s are constructed such that their centres and eccentricities are same as that of \( E_1 \), and the length of minor axis of \( E_i \) is the length of major axis of \( E_{i+1}(i \geq 1) \). If \( A_i \) is the area of the ellipse \( E_i \), then \( \frac{5}{\pi} \left( \sum_{i=1}^{\infty} A_i \right) \) is equal to \( \frac{5}{\pi} \)
[]
["v"]
null
null
25f7b0a3-85b7-4842-bc13-f36f8a07d9a2
maths
3d-geometry
jee-mathematics
Let \( \vec{a} = \hat{i} + \hat{j} + \hat{k}, \vec{b} = 2\hat{i} + 2\hat{j} + \hat{k} \) and \( \vec{d} = \vec{a} \times \vec{b} \). If \( \vec{c} \) is a vector such that \( \vec{a} \cdot \vec{c} = |\vec{c}|, |\vec{c} - 2\vec{a}|^2 = 8 \) and the angle between \( \vec{d} \) and \( \vec{c} \) is \( \frac{\pi}{4} \), then \( |10 - 3\vec{b} \cdot \vec{c}| + |\vec{d} \times \vec{c}|^2 \) is equal to \( \frac{5}{2} \)
[]
["F"]
null
null