metadata
license: cc-by-4.0
tags:
- datasets
- finance
- timeseries
- tabular
- classification
- market-regime
- technical-indicators
- bitcoin
pretty_name: Multi‑Timeframe Market Regimes (HMM‑6) (BTCUSD)
Multi‑Timeframe Market Regimes (HMM‑6)
Dataset Summary
Labeled crypto market regimes derived from multi‑timeframe OHLCV features and technical indicators (5m, 15m, 1h). Labels come from a 6‑state Hidden Markov Model (HMM). Useful for regime detection and sequence modeling baselines (LSTM/Transformers). No future leakage: indicators computed only up to timestamp and labels correspond to the regime at that timestamp.
Source & Licensing
- Raw data: describe the exchange(s), symbols (e.g.,
BTCUSDT), and the exact ToS allowing redistribution. Replace this section with precise citations/links. - License: change the license above if the data source requires a specific license. If redistribution isn’t allowed, provide a script to regenerate labels from the original source instead of shipping raw candles.
Files
.
├── README.md
└── data/
├── train.csv # chronological split (older → newer)
├── validation.csv # next chunk after train
└── test.csv # most recent chunk
Optionally provide Parquet equivalents:
└── data/
├── train.parquet
├── validation.parquet
└── test.parquet
Columns
timestamp[UTC, ISO8601 or UNIX ms]- Multi‑TF OHLCV (5m, 15m, 1h):
open_*,high_*,low_*,close_*,volume_* - Indicators (15m):
log_ret_1_15m,ema_slope_21_15m,price_vs_ema55_15m,macd_hist_15m,adx_15m,atr_norm_15m,bb_width_15m,realized_vol_20_15m,rsi_15m,roc_15m,stoch_k_15m,wick_ratio_15m - Indicators (5m):
log_ret_1_5m,ema_slope_21_5m,price_vs_ema55_5m,macd_hist_5m,adx_5m,atr_norm_5m,bb_width_5m,realized_vol_20_5m,rsi_5m,roc_5m,stoch_k_5m,wick_ratio_5m - Indicators (1h):
log_ret_1_1h,ema_slope_21_1h,price_vs_ema55_1h,macd_hist_1h,adx_1h,atr_norm_1h,bb_width_1h,realized_vol_20_1h,rsi_1h,roc_1h,stoch_k_1h,wick_ratio_1h - Targets:
state(0‑5),regime(string label, optional),post_prob_*(optional soft posteriors per state)
Label Semantics
0: Choppy High‑Vol
1: Range
2: Squeeze
3: Strong Trend
4: Volatility Spike
5: Weak Trend
stateis the integer id.regimeis the human‑readable label (optional redundant column).- If available, include HMM posterior probabilities per state:
post_prob_0…post_prob_5.
Splitting Protocol (leak‑free)
- Sort by
timestampascending. - Choose three contiguous time blocks:
train(oldest),validation(middle),test(most recent). - Do not shuffle.
- If training sequence models, consumers should build sliding windows of length
time_steps(e.g., 64) within each split only.
How to Load
Python (CSV):
from datasets import load_dataset
# If you keep the README YAML above, this works without specifying data_files
ds = load_dataset("<user_or_org>/<repo>")
train = ds["train"]
valid = ds["validation"]
# Or explicitly with Parquet
ds = load_dataset("<user_or_org>/<repo>", data_files={
"train": "data/train.parquet",
"validation": "data/validation.parquet",
"test": "data/test.parquet",
})
PyTorch example (windowing):
import torch
import numpy as np
FEATURES = [
"log_ret_1_15m","ema_slope_21_15m","price_vs_ema55_15m","macd_hist_15m","adx_15m","atr_norm_15m","bb_width_15m","realized_vol_20_15m","rsi_15m","roc_15m","stoch_k_15m","wick_ratio_15m",
"log_ret_1_5m","ema_slope_21_5m","price_vs_ema55_5m","macd_hist_5m","adx_5m","atr_norm_5m","bb_width_5m","realized_vol_20_5m","rsi_5m","roc_5m","stoch_k_5m","wick_ratio_5m",
"log_ret_1_1h","ema_slope_21_1h","price_vs_ema55_1h","macd_hist_1h","adx_1h","atr_norm_1h","bb_width_1h","realized_vol_20_1h","rsi_1h","roc_1h","stoch_k_1h","wick_ratio_1h"
]
TARGET = "state"
WINDOW = 64
def make_windows(table):
X = np.stack([table[f] for f in FEATURES], axis=1)
y = np.array(table[TARGET])
Xw, yw = [], []
for i in range(len(X) - WINDOW + 1):
Xw.append(X[i:i+WINDOW])
yw.append(y[i+WINDOW-1]) # label at window end
return np.stack(Xw), np.array(yw)
Dataset Card Checklist
- Precise data source + collection dates + timezone
- License & ToS compliance
- Exact indicator definitions (lookback windows, smoothing, normalization)
- HMM configuration (n_states=6, emissions, training window, seed)
- Train/val/test date ranges
- Class distribution per split
- Known caveats & failure modes
- Version tag (e.g., v1.0.0) and changelog
Known Limitations
- Technical‑indicator engineered features; not raw trades.
- Single asset (if BTCUSDT only) may not generalize to alts/FX.
- Regimes are model‑dependent; HMM re‑fits may shift boundaries.
Changelog
- v1.0.0 — Initial release.