akashkumar5 commited on
Commit
8603943
·
verified ·
1 Parent(s): 5526cbf

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +124 -2
README.md CHANGED
@@ -11,5 +11,127 @@ tags:
11
  - bitcoin
12
  pretty_name: Multi‑Timeframe Market Regimes (HMM‑6) (BTCUSD)
13
  ---
14
- # Dataset Summary
15
- Labeled crypto market regimes derived from multitimeframe OHLCV features and technical indicators (5m, 15m, 1h). Labels come from a 6‑state Hidden Markov Model (HMM). Useful for regime detection and sequence modeling baselines (LSTM/Transformers). No future leakage: indicators computed only up to timestamp and labels correspond to the regime at that timestamp.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
11
  - bitcoin
12
  pretty_name: Multi‑Timeframe Market Regimes (HMM‑6) (BTCUSD)
13
  ---
14
+
15
+ # MultiTimeframe Market Regimes (HMM‑6)
16
+
17
+ ## Dataset Summary
18
+
19
+ Labeled crypto market regimes derived from multi‑timeframe OHLCV features and technical indicators (5m, 15m, 1h). Labels come from a 6‑state Hidden Markov Model (HMM). Useful for regime detection and sequence modeling baselines (LSTM/Transformers). **No future leakage**: indicators computed only up to `timestamp` and labels correspond to the regime at that timestamp.
20
+
21
+ ## Source & Licensing
22
+
23
+ * **Raw data**: describe the exchange(s), symbols (e.g., `BTCUSDT`), and the exact ToS allowing redistribution. Replace this section with precise citations/links.
24
+ * **License**: change the license above if the data source requires a specific license. If redistribution isn’t allowed, provide a script to regenerate labels from the original source instead of shipping raw candles.
25
+
26
+ ## Files
27
+
28
+ ```
29
+ .
30
+ ├── README.md
31
+ └── data/
32
+ ├── train.csv # chronological split (older → newer)
33
+ ├── validation.csv # next chunk after train
34
+ └── test.csv # most recent chunk
35
+ ```
36
+
37
+ Optionally provide Parquet equivalents:
38
+
39
+ ```
40
+ └── data/
41
+ ├── train.parquet
42
+ ├── validation.parquet
43
+ └── test.parquet
44
+ ```
45
+
46
+ ## Columns
47
+
48
+ * `timestamp` \[UTC, ISO8601 or UNIX ms]
49
+ * **Multi‑TF OHLCV (5m, 15m, 1h)**: `open_*`, `high_*`, `low_*`, `close_*`, `volume_*`
50
+ * **Indicators (15m)**: `log_ret_1_15m`, `ema_slope_21_15m`, `price_vs_ema55_15m`, `macd_hist_15m`, `adx_15m`, `atr_norm_15m`, `bb_width_15m`, `realized_vol_20_15m`, `rsi_15m`, `roc_15m`, `stoch_k_15m`, `wick_ratio_15m`
51
+ * **Indicators (5m)**: `log_ret_1_5m`, `ema_slope_21_5m`, `price_vs_ema55_5m`, `macd_hist_5m`, `adx_5m`, `atr_norm_5m`, `bb_width_5m`, `realized_vol_20_5m`, `rsi_5m`, `roc_5m`, `stoch_k_5m`, `wick_ratio_5m`
52
+ * **Indicators (1h)**: `log_ret_1_1h`, `ema_slope_21_1h`, `price_vs_ema55_1h`, `macd_hist_1h`, `adx_1h`, `atr_norm_1h`, `bb_width_1h`, `realized_vol_20_1h`, `rsi_1h`, `roc_1h`, `stoch_k_1h`, `wick_ratio_1h`
53
+ * **Targets**: `state` (0‑5), `regime` (string label, optional), `post_prob_*` (optional soft posteriors per state)
54
+
55
+ ## Label Semantics
56
+
57
+ ```
58
+ 0: Choppy High‑Vol
59
+ 1: Range
60
+ 2: Squeeze
61
+ 3: Strong Trend
62
+ 4: Volatility Spike
63
+ 5: Weak Trend
64
+ ```
65
+
66
+ * `state` is the integer id.
67
+ * `regime` is the human‑readable label (optional redundant column).
68
+ * If available, include HMM posterior probabilities per state: `post_prob_0` … `post_prob_5`.
69
+
70
+ ## Splitting Protocol (leak‑free)
71
+
72
+ * Sort by `timestamp` ascending.
73
+ * Choose three **contiguous** time blocks: `train` (oldest), `validation` (middle), `test` (most recent).
74
+ * Do **not** shuffle.
75
+ * If training sequence models, consumers should build sliding windows of length `time_steps` (e.g., 64) **within** each split only.
76
+
77
+ ## How to Load
78
+
79
+ Python (CSV):
80
+
81
+ ```python
82
+ from datasets import load_dataset
83
+ # If you keep the README YAML above, this works without specifying data_files
84
+ ds = load_dataset("<user_or_org>/<repo>")
85
+ train = ds["train"]
86
+ valid = ds["validation"]
87
+ # Or explicitly with Parquet
88
+ ds = load_dataset("<user_or_org>/<repo>", data_files={
89
+ "train": "data/train.parquet",
90
+ "validation": "data/validation.parquet",
91
+ "test": "data/test.parquet",
92
+ })
93
+ ```
94
+
95
+ PyTorch example (windowing):
96
+
97
+ ```python
98
+ import torch
99
+ import numpy as np
100
+ FEATURES = [
101
+ "log_ret_1_15m","ema_slope_21_15m","price_vs_ema55_15m","macd_hist_15m","adx_15m","atr_norm_15m","bb_width_15m","realized_vol_20_15m","rsi_15m","roc_15m","stoch_k_15m","wick_ratio_15m",
102
+ "log_ret_1_5m","ema_slope_21_5m","price_vs_ema55_5m","macd_hist_5m","adx_5m","atr_norm_5m","bb_width_5m","realized_vol_20_5m","rsi_5m","roc_5m","stoch_k_5m","wick_ratio_5m",
103
+ "log_ret_1_1h","ema_slope_21_1h","price_vs_ema55_1h","macd_hist_1h","adx_1h","atr_norm_1h","bb_width_1h","realized_vol_20_1h","rsi_1h","roc_1h","stoch_k_1h","wick_ratio_1h"
104
+ ]
105
+ TARGET = "state"
106
+ WINDOW = 64
107
+
108
+ def make_windows(table):
109
+ X = np.stack([table[f] for f in FEATURES], axis=1)
110
+ y = np.array(table[TARGET])
111
+ Xw, yw = [], []
112
+ for i in range(len(X) - WINDOW + 1):
113
+ Xw.append(X[i:i+WINDOW])
114
+ yw.append(y[i+WINDOW-1]) # label at window end
115
+ return np.stack(Xw), np.array(yw)
116
+ ```
117
+
118
+ ## Dataset Card Checklist
119
+
120
+ * [ ] Precise data source + collection dates + timezone
121
+ * [ ] License & ToS compliance
122
+ * [ ] Exact indicator definitions (lookback windows, smoothing, normalization)
123
+ * [ ] HMM configuration (n\_states=6, emissions, training window, seed)
124
+ * [ ] Train/val/test date ranges
125
+ * [ ] Class distribution per split
126
+ * [ ] Known caveats & failure modes
127
+ * [ ] Version tag (e.g., v1.0.0) and changelog
128
+
129
+ ## Known Limitations
130
+
131
+ * Technical‑indicator engineered features; not raw trades.
132
+ * Single asset (if BTCUSDT only) may not generalize to alts/FX.
133
+ * Regimes are **model‑dependent**; HMM re‑fits may shift boundaries.
134
+
135
+ ## Changelog
136
+
137
+ * v1.0.0 — Initial release.