|
--- |
|
license: cc-by-sa-4.0 |
|
language_creators: |
|
- machine-generated |
|
dataset_info: |
|
features: |
|
- name: tokens_a |
|
sequence: string |
|
- name: tokens_b |
|
sequence: string |
|
- name: labels_a |
|
sequence: float64 |
|
- name: labels_b |
|
sequence: float64 |
|
- name: lang_a |
|
dtype: string |
|
- name: lang_b |
|
dtype: string |
|
- name: subset |
|
dtype: string |
|
- name: id |
|
dtype: string |
|
- name: alignments |
|
dtype: string |
|
splits: |
|
- name: train_en |
|
num_bytes: 1640900 |
|
num_examples: 1506 |
|
- name: train_de |
|
num_bytes: 1101404 |
|
num_examples: 3012 |
|
- name: train_es |
|
num_bytes: 1154765 |
|
num_examples: 3012 |
|
- name: train_fr |
|
num_bytes: 1206414 |
|
num_examples: 3012 |
|
- name: train_ja |
|
num_bytes: 838252 |
|
num_examples: 3012 |
|
- name: train_ko |
|
num_bytes: 829328 |
|
num_examples: 3012 |
|
- name: train_zh |
|
num_bytes: 796140 |
|
num_examples: 3012 |
|
- name: test_en |
|
num_bytes: 833900 |
|
num_examples: 750 |
|
- name: test_de |
|
num_bytes: 558624 |
|
num_examples: 1500 |
|
- name: test_es |
|
num_bytes: 580224 |
|
num_examples: 1500 |
|
- name: test_fr |
|
num_bytes: 610017 |
|
num_examples: 1500 |
|
- name: test_ja |
|
num_bytes: 425912 |
|
num_examples: 1500 |
|
- name: test_ko |
|
num_bytes: 424407 |
|
num_examples: 1500 |
|
- name: test_zh |
|
num_bytes: 403680 |
|
num_examples: 1500 |
|
download_size: 2569205 |
|
dataset_size: 11403967 |
|
task_categories: |
|
- token-classification |
|
language: |
|
- en |
|
- de |
|
- es |
|
- fr |
|
- ja |
|
- ko |
|
- zh |
|
size_categories: |
|
- 1K<n<10K |
|
--- |
|
|
|
Training and test data for the task of Recognizing Semantic Differences (RSD). |
|
|
|
[See the paper](https://arxiv.org/abs/2305.13303) for details on how the dataset was created, and see our code at https://github.com/ZurichNLP/recognizing-semantic-differences for an example of how to use the data for evaluation. |
|
|
|
The data are derived from the [SemEval-2016 Task 2 for Interpretable Semantic Textual Similarity](https://alt.qcri.org/semeval2016/task2/) organized by [Agirre et al. (2016)](http://dx.doi.org/10.18653/v1/S16-1082). |
|
The original URLs of the data are: |
|
* Train: http://alt.qcri.org/semeval2016/task2/data/uploads/train_2015_10_22.utf-8.tar.gz |
|
* Test: http://alt.qcri.org/semeval2016/task2/data/uploads/test_goldstandard.tar.gz |
|
|
|
The translations into non-English languages have been created using machine translation (DeepL). |
|
|
|
## Citation |
|
```bibtex |
|
@inproceedings{vamvas-sennrich-2023-rsd, |
|
title={Towards Unsupervised Recognition of Token-level Semantic Differences in Related Documents}, |
|
author={Jannis Vamvas and Rico Sennrich}, |
|
month = dec, |
|
year = "2023", |
|
booktitle = "Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing", |
|
address = "Singapore", |
|
publisher = "Association for Computational Linguistics", |
|
} |
|
``` |
|
|