Datasets:

Modalities:
Text
Formats:
parquet
ArXiv:
Libraries:
Datasets
pandas
License:
File size: 2,797 Bytes
b0d9a35
bee19bb
32c46b5
 
56fb389
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bee19bb
 
 
 
 
 
 
 
 
 
 
 
98251ec
 
 
 
e0c1dd2
98251ec
 
 
 
 
 
5611211
 
 
 
4f58d5e
 
5611211
4f58d5e
 
 
 
 
5611211
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
---
license: cc-by-sa-4.0
language_creators:
  - machine-generated
dataset_info:
  features:
  - name: tokens_a
    sequence: string
  - name: tokens_b
    sequence: string
  - name: labels_a
    sequence: float64
  - name: labels_b
    sequence: float64
  - name: lang_a
    dtype: string
  - name: lang_b
    dtype: string
  - name: subset
    dtype: string
  - name: id
    dtype: string
  - name: alignments
    dtype: string
  splits:
  - name: train_en
    num_bytes: 1640900
    num_examples: 1506
  - name: train_de
    num_bytes: 1101404
    num_examples: 3012
  - name: train_es
    num_bytes: 1154765
    num_examples: 3012
  - name: train_fr
    num_bytes: 1206414
    num_examples: 3012
  - name: train_ja
    num_bytes: 838252
    num_examples: 3012
  - name: train_ko
    num_bytes: 829328
    num_examples: 3012
  - name: train_zh
    num_bytes: 796140
    num_examples: 3012
  - name: test_en
    num_bytes: 833900
    num_examples: 750
  - name: test_de
    num_bytes: 558624
    num_examples: 1500
  - name: test_es
    num_bytes: 580224
    num_examples: 1500
  - name: test_fr
    num_bytes: 610017
    num_examples: 1500
  - name: test_ja
    num_bytes: 425912
    num_examples: 1500
  - name: test_ko
    num_bytes: 424407
    num_examples: 1500
  - name: test_zh
    num_bytes: 403680
    num_examples: 1500
  download_size: 2569205
  dataset_size: 11403967
task_categories:
- token-classification
language:
- en
- de
- es
- fr
- ja
- ko
- zh
size_categories:
- 1K<n<10K
---

Training and test data for the task of Recognizing Semantic Differences (RSD).

[See the paper](https://arxiv.org/abs/2305.13303) for details on how the dataset was created, and see our code at https://github.com/ZurichNLP/recognizing-semantic-differences for an example of how to use the data for evaluation.

The data are derived from the [SemEval-2016 Task 2 for Interpretable Semantic Textual Similarity](https://alt.qcri.org/semeval2016/task2/) organized by [Agirre et al. (2016)](http://dx.doi.org/10.18653/v1/S16-1082).
The original URLs of the data are:
* Train: http://alt.qcri.org/semeval2016/task2/data/uploads/train_2015_10_22.utf-8.tar.gz
* Test: http://alt.qcri.org/semeval2016/task2/data/uploads/test_goldstandard.tar.gz

The translations into non-English languages have been created using machine translation (DeepL).

## Citation
```bibtex
@inproceedings{vamvas-sennrich-2023-rsd,
      title={Towards Unsupervised Recognition of Token-level Semantic Differences in Related Documents},
      author={Jannis Vamvas and Rico Sennrich},
      month = dec,
      year = "2023",
      booktitle = "Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing",
      address = "Singapore",
      publisher = "Association for Computational Linguistics",
}
```