Datasets:
metadata
dataset_info:
features:
- name: video_id
dtype: string
- name: video_link
dtype: string
- name: title
dtype: string
- name: text
dtype: string
- name: channel
dtype: string
- name: channel_id
dtype: string
- name: date
dtype: string
- name: license
dtype: string
- name: original_language
dtype: string
- name: language_id_method
dtype: string
- name: transcription_language
dtype: string
- name: word_count
dtype: int64
- name: character_count
dtype: int64
- name: source_language
dtype: string
splits:
- name: train
num_bytes: 298197594003
num_examples: 22684737
download_size: 162573072184
dataset_size: 298197594003
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
license: cc-by-4.0
task_categories:
- text-generation
tags:
- conversational
language:
- en
- fr
- es
- pt
- de
- ru
- nl
- tr
- it
pretty_name: YouTube Commons Re-upload
YouTube Commons Re-upload
This is a re-upload of PleIAs' YouTube Commons, a valuable open dataset:
YouTube-Commons is a collection of audio transcripts of 2,063,066 videos shared on YouTube under a CC BY 4.0 license.
Content
The collection comprises 22,709,724 original and automatically translated transcripts from 3,156,703 videos (721,136 individual channels).
Unfortunately, there are problems with loading YouTube Commons with Hugging Face Datasets. In order to alleviate those and to further process the dataset, I took the source parquet-files and reuploaded this fixed version to HuggingFace.
Code
The code used for this reupload. It makes use of a git clone of the PleIAs/YouTube-Commons dataset.
from pathlib import Path
from datasets import load_dataset, Dataset
from tqdm import tqdm
columns = set('''video_link
video_id
title
text
channel
channel_id
date
license
original_language
language_id_method
transcription_language
source_language
word_count
character_count'''.split('\n'))
def generate():
for filepath in tqdm(sorted(Path('/Path/To/PleIAs/YouTube-Commons').rglob('*.parquet'))):
print(filepath)
dataset = load_dataset("parquet",
data_files={'train': str(filepath)})
for row in dataset['train']:
keys = set(row)
# Some of the files are missing one of these two columns.
# Setting them to None results in an Arrow error, so we use '' instead
if 'language_id_method' not in keys:
row['language_id_method'] = ''
if 'source_language' not in keys:
row['source_language'] = ''
if '__index_level_0__' in keys:
del row['__index_level_0__']
if not set(row) == columns:
raise ValueError(f'Error in columns: {set(row)}')
yield row
youtube = Dataset.from_generator(generate)
youtube.push_to_hub('Rijgersberg/YouTube-Commons')